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Preface 
 
 

 This report is the fifth in a series of reports documenting research in the 
Ergonomics Research Laboratory, Michigan State University sponsored by Delphi 
Interior & Lighting Systems, General Motors Cooperation (formerly Inland Fisher Guide 
Division).  The experimental protocol has been developed through the cooperation of 
personnel from Delphi and the Ergonomics Research Laboratory over the course of the 
past three years.  It represents the culmination of several years hard work and creative 
problem solving efforts to bring objective measures of driver posture and subjective 
measures of the driver’s perceived comfort together into one comprehensive research 
program. 
 This research could not have been performed without the combined wisdom and 
experience of many people from Delphi and General Motors Corporation.  In particular, 
we would like to acknowledge the contributions of Alicia Vertiz, MD, Manager, Human 
Factors, Delphi Interior & Lighting Systems.  Her desire to further the general 
understanding of driver posture and comfort for the development of automotive seat 
design tools has led to the current understanding of technology and research tools that are 
reported in this document.  In addition, the people on her staff at Delphi have contributed 
immensely.  We would like to acknowledge the contributions in prior years of Bill 
Heitzeg and currently Lee Zhang, Ph.D. in their efforts to maintain liaison between 
Delphi and ERL. 
 Initially, Don Maertens, GM Mid-Size Car Division, was intimately involved and 
his cooperation and support by providing the vehicles used in this investigation has been 
critical to our progress.  His involvement has been interrupted by additional activities at 
General Motors, but his willingness to support research that he sees as important has 
remained strong. 
 Lastly, we would like to express our appreciation to the faculty and staff at 
Michigan State University who have been involved in this research throughout the years 
of our work.  This particularly involves faculty and staff of the Department of 
Biomechanics, College of Osteopathic Medicine as well as those from other departments 
and service units within the University that have supported this program in their 
respective roles. 
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The Initial Position and Postural Attitude of Vehicle Operators 
 

Seat Position 
 

 
I.  Introduction 

 
 Subjects representative of the mid-sized automobile market segment in the United 
States drove a four-door 1995 Chevrolet Lumina on three highway trips.  We measured 
their posture, seat position, muscle activity, pressure distribution and comfort under 
highway driving conditions [1].  Two identical vehicles were instrumented with video 
cameras to measure anatomical joint center positions (including H-point and D-point in 
the pelvis) in three-dimensional space, pressure distribution in the cushion and back, and 
an on-board PC equipped with an A-to-D board that was used to digitize signals from 
EMG electrodes on the driver’s back and all seat position transducers.  The seat was a 
six-way power seat with a power recline and a four-way lumbar support.  A technician sat 
in the back seat operating all measurement equipment and conducting a brief comfort 
interview at prescribed intervals during the drive.  The subjects, obtained from the general 
population in mid-Michigan, were selected to drive the vehicle without prejudice for halo 
or marketing effects [2].  This report describes how these subjects used the 12-way power 
seat in the vehicle to achieve a comfortable or occupant-preferred seat position while 
operating the vehicle on the highway. 
 

A.  Role of the Seat. 
 
 A six-way power seat with a power recline theoretically provides the occupant 
with all adjustments to accommodate personal anthropometric and preference needs to fit 
the vehicle design package [3,4].  In general, the vertical and horizontal adjustments in 
the seat primarily accommodate packaging variables of vision and reach.  For example, 
the horizontal (i.e. fore-aft) adjustment accommodates differences in seated leg length 
(i.e. H-point to Heel point) and the joint angles of the leg between the heel and hip.  The 
front and rear riser height adjustments for seated eye height, however, are very complex 
because they affect more variables in the seat than seat height.  These riser height 
adjustments can be used to change the angular orientation of the seat cushion which 
affects functional seat length (i.e. contact length), thigh support, and joint angles.  The 
angular adjustments typically accommodate comfort preferences for joint angles and 
seat/body contact areas.  Equally important to the “fit” variables that these angular 
adjustments affect is the change in the distribution of occupant body weight in the seat 
due to changes in body orientation.  As a result, riser adjustments can affect pressure 
distribution in the seat.  In summary, the primary six-way power seat adjustments play a 
large role in the comfort of the occupant. 
 In addition to the six-way power seat adjustments, the seat back had a two-way 
power recline and a four-way power lumbar support.  In general, the power recline 
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mechanism is a comfort feature that also accommodates large sitting heights and long 
arms in vehicle packaging.  For example, taller individuals can recline the seat to lower 
their functional sitting eye height.  A reclined seat back, however, requires long arms 
and/or a slouched posture in which the occupant sits in a “shoulders-forward” posture.  In 
an upright seat back, the lumbar support becomes most effective in its role relative to an 
erect posture in the occupant.  The four-way power lumbar support is a comfort 
adjustment, however, that depends upon proper seat design for full functional use in 
supporting the occupant’s back.  Neither the lumbar region nor the pelvis should be 
pushed into a lordotic posture because the net effect in the seat will be to push the 
occupant out of the seat.  The proper use of the lumbar support is to support, with contact, 
the curvature of the back in an upright posture.  If, for example, the occupant is unable to 
sit in an upright posture with lumbar extension, the four-way lumbar support will not 
contribute to the occupant’s comfort because pressure on the back will be too great.  
However, if the seat design accommodates an upright posture, then the four-way support 
will accommodate differences in the occupant’s back curvature in both vertical and 
horizontal components.  In summary, the power seat recline and the four-way lumbar 
support are most effective in well-designed seats but cannot improve a poorly designed 
seat. 
 

B.  Analysis of Seat Position 
 
 Subjects drove the vehicle on three separate occasions.  The last drive was a two-
hour “comfort drive” and the occupant was able to adjust the seat at his or her discretion.  
In this dynamic, on-road environment, what position of the seat represents the “desired” 
or “most comfortable” position for each subject?  There are a variety of methods for 
estimating this position such as using the average of all positions, the greatest length of 
time in any single position, or some combination of these two approaches.  Each method 
has its advantage but the object of this investigation is to investigate the relationship 
between comfort and posture.  As a result, we will assume that time in position is an 
important criterion to guide us in our selection of our analytical approach to the 
occupant’s representative seat position.  Identifying a procedure to estimate representative 
seat position for a variety of occupants is an important variable in our analysis since the 
position of the seat and its comfort features determines in large part the type of seat and 
its features in the vehicle package for particular market segments. 
 In many marketing strategies, there is great emphasis on comfort.  In recent years, 
the relationship between seat design and comfort has been emphasized.  This emphasis 
can be seen in the number of vehicles on the road with six-way (or more) power seats.  To 
investigate the association between the seat and occupant comfort, we used three 
questionnaires: a seat evaluation questionnaire, a post drive comfort questionnaire and 
verbal questionnaire [7].  The seat evaluation and posture questionnaires were 
administered at the end of the drive and the seat evaluation questionnaire concluded with 
an overall assessment of the occupant’s perception of the seat.  The verbal questions were 
asked several times during the drive and always at the end when the occupant was asked 
to summarize his/her level of comfort at the completion of the drive.  Results from these 
questionnaires should correlate with seat position data but the two questionnaires have an 
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experimental artifact that may affect the clarity of this relationship.  The questionnaires 
administered at the end of the drive ask the occupant to either remember their feelings 
during the drive and integrate these feelings or describe their present feeling of comfort.  
In contrast, the verbal question asks the occupant to describe feelings at the time on the 
road when the question is asked.  This temporal artifact in data collection will affect the 
correlation with seat position data since the seat position data are collected while the 
occupant is driving the vehicle.  However, it is hypothesized that if comfort and seat 
position are associated, then this relationship will be strong enough to be observed despite 
the differences in methodology.  For example, the number of times that the occupant 
adjusted the seat may be associated with comfort.  That is, occupants who move the seat 
frequently are probably occupants who are uncomfortable.  In our experimental protocol, 
we used a test drive of twenty minutes for the subject to become acquainted with the 
controls and we ignored the first thirty minutes of the subsequent two drives for the same 
reason.  Thus, we made every effort to remove learning curve effects on these data.  
Clearly there is a relationship between the occupant’s ability to drive the vehicle and 
comfort.  Whether seat position as a generalized parameter in this analysis has an 
important role in this comfort relationship has not been investigated.  In addition, we are 
concerned in this analysis with the capability of the seat to meet the occupant’s desired 
seat position and the occupant’s ability to maintain a comfortable posture in that position. 
 We investigated the effect of age, sex and stature.  These variables are used to 
determine the market segment for a particular vehicle package design.  To determine 
market effects on desired seat position, differences by age (generation), stature and sex in 
how different occupants used the seat will be investigated.  This analysis divided each of 
these variables into two categorical strata.  For age, the strata were defined by birth year 
into pre-Baby Boomer (prior to 1946) and Baby Boomers (after 1945).  For stature, the 
strata were defined by average US general population stature as above and below this 
average.  Sex was divided into male and female.  In general, these variables also have an 
association with socio-economic levels in the general population.  That is, older and taller 
individuals often have a higher level of education and associated income.  Thus, these 
results can shed some light on the preferences within a market segment as defined by the 
mid-sized Chevrolet Lumina. 
 Since adjustments are built in the seat to accommodate differences in body size, 
the range of adjustment is usually considered the total range from full rearward to full 
forward, for example.  However, there is also the range of travel used by each subject.  
This range of travel per subject reflects the amount of travel that the occupant uses to 
obtain comfort within this vehicle seat/package.  These intra-subject changes in seat 
position are important for comfort investigations because these changes affect joint angle 
in the driver and weight distribution in the seat.  In addition, they may be used to adjust 
for packaging variables, such as eyellipse location.  However, due to the protocol we 
followed, we feel that these adjustments should not play a large role in the recorded 
behavior of the driver. 
 Packaging, as the “fit” of the design interface between occupant and vehicle 
geometry’s, can be investigated by the analysis of “representative” seat positions for the 
total sample.  An extremely important parameter in packaging is the geometric fit 
between the seat’s support of driver position and two operational properties of the 



ERL-TR-95-006rev.  Ergonomics Research Laboratory 

©MSU, East Lansing, MI 4

vehicle, namely vision and reach.  These fit parameters determine, in large part, the 
ergonomic comfort of the driver in the vehicle.  Continuously recording the adjustments 
made by the driver leads to two different areas of investigation in seat packaging for the 
dynamic, highway environment.  First, it provides the best estimate of “representative” 
position for the package.  Second, it provides an estimate of the overall comfort of the 
driver in the seat and vehicle package under investigation.  As a result, our primary 
analysis of position and comfort will concentrate on the “free” drive when the driver had 
complete control over all seat adjustment parameters. 
 We also conducted a “fixed back” drive in which we controlled the orientation of 
the seat back regardless of what the driver adjusted in the seat.  Each subject drove two 
short trips of approximately forty-five minutes each in which the seat back was at either 
15° or 30° from vertical.  These back angles were selected at the extremes of a vehicle 
package that fits all sizes of individuals in our sample.  We were limited by an upright 
seatback angle that could not be used by a tall individual and conversely by a reclined 
seatback angle that could not be used by a short individual.  Some of the subjects were 
uncomfortable with the seatback angle and felt that it was a position that they would 
never personally select, but they were able to operate the vehicle safely without too much 
discomfort.  We were not concerned with comfort during these drives so much as the 
effect seat back angle had on the subject’s posture and seat position. 
 In summary, seat position and comfort are two complex variables in the total 
environment.  We will show the results in both graphical and numerical manner so that 
the effects of body size, age and sex can be seen.  In addition, limitations in the overall 
package will be evident from the analysis as well as how drivers use the seat to achieve 
comfort in highway driving. 
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II.  Methods and Materials 
 
A.  Description of Subjects 
 
 Forty subjects who met our age, sex and body size criteria volunteered to drive 
from over 800 subjects in the market sample obtained from R.L.Polk.  The participating 
subjects came from an R.L.Polk database after they voluntarily returned a background 
questionnaire [1].  The sample was balanced between subjects who were born between 
1921 and 1946 (Pre-Baby Boomers) and those born between 1945 and 1970 (Baby 
Boomers).  Body size was controlled by reference to the average stature for males and 
females in the latest US Army anthropometric survey [9].  Lastly, there were equal 
numbers of males and females in all categories. 
 According to the criteria originally given to R.L. Polk, all subjects had bought 
vehicles in the Upper Middle or Upper Middle Specialty class within three years 
preceding the beginning of this investigation in 1994.  However, the drive subjects reflect 
a slightly greater range of vehicles.  There were 19 subjects (47.5%) who had Upper 
Middle or Upper Middle Specialty vehicles.  The remaining 21 subjects drove vehicles 
from the upper economy (5%), lower middle (27.5%), traditional large (10%), basic 
luxury (2.5%), mid-sporty (2.5%), pickup (2.5%), and a minivan (2.5%).  A complete 
description of the distribution of the vehicles has been given previously along with 
greater description of the subjects between the three stratifying categories [1]. 
 In general, there were no complaints from any subjects regarding the experimental 
protocol or any aspect of the treatment they were afforded by the ride tech who 
accompanied them on their drives.  The subjects were highly co-operative and very 
willing to share their feelings about the vehicle and its seat although every effort was 
made to restrict their comments to how they were feeling rather than how they would 
design the vehicle or its seat. 
 
B.  Description of Seat 
 
 1992 Pontiac AM6-W seat frames were installed in each vehicle with 1995 
Lumina foam and upholstery.  The seat back was modified by the installation of a 
Schukra 4-way lumbar support.  In both the cushion and back upholstery, we installed a 
zipper at the outer trim so that we could insert pressure mats between the foam and 
upholstery.  In addition to these modifications to the original foam and upholstery, we 
used an extended seat track in the fore-aft adjustment.  Thus, the seat and package are 
slightly different from those found in the Chevrolet showroom that is available to the 
customer. 
 To document the seat and package we used in this investigation, we mapped the 
centerline in three-dimensional space with a three-dimensional electrogoniometer 
previously described [1].  After digitizing the centerline of each surface in the vehicle 
package and seat, data files were converted to IGES format files for AutoCAD (Release 
12, 1993) to read.  After creating the package and seat drawing file it was manipulated to 
generate specific seat positions and Oscar [12] was placed in the seat centerline drawing 
at the design H point location. 
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 First we digitized the three-dimensional contour of the headliner, windshield, and 
dash along the centerline of the driver as well as the gas-pedal and floor of the car near 
the gas pedal.  Next, we analyzed data from the 1995 Drive study to calculate the 
preferred steering wheel angle.  The steering wheel was placed in the position closest to 
that determined by averaging the drive data when subjects sat in their modal position, 
then digitized the steering wheel with a CCM. 
 The seat including the pan, suspension, lumbar support, and upholstery was 
measured in design position by digitizing the various surfaces and points.  The design 
position for the extended travel seat track was determined by Jim Bogan at CPE in GMC 
to be located 40 mm forward of full rear and 20 mm up from the base.  After reviewing 
the drawing it was determined that additional data was needed for the top and bottom 
surface of the foam and the surface of the fabric when the Velcro type fastener on the 
cushion to prevent upholstery bridging was employed.  Additionally it was decided to 
measure the seat cushion along both the centerline and the line of thigh contact. 
 For the new measurements indicated above, the seat was placed in the full down 
and rearward position and the data was taken as locked plane data streams with the three-
dimensional electro-goniometer software [13].  In addition the seat pan was re-measured 
to verify proper alignment when translating the data to design position.  Digitizing the 
back and bottom surfaces of the foam cushions required that reference points be placed 
on the seated face of the foam (Foam “A” in Figure 2), and the foam be relocated where 
the surface in contact with the seat frame and suspension or lumbar support (Foam “B” in 
Figure 2) was more accessible.  
 After all seat data had been collected, the seat data were translated 40 mm forward 
and 20 mm upward.  A check of seat-pan alignment verified that the various files were in 
identical positions. 
 Seat Co-ordinate to Vehicle Co-ordinate Conversion.  The files were originally 
gathered in the seat co-ordinate system, where the origin is the top of the right-rear seat 
bolt (Figure 1).  The positive x-axis goes from the origin to the right foremost seat bolt; 
the y-axis runs from the origin to the left seat bolt.  We first converted the co-ordinates in 
the data acquisition co-ordinate system to the vehicle co-ordinate system in AutoCAD so 
that we were viewing the left side of the seat.  Finally, the origin of the seat co-ordinate 
system or (0,0) point is translated to (3098,237), e.g., the vehicle co-ordinate location of 
the bolt head as per the co-ordinates in the IL-43686 package drawing.  This procedure 
yields a two-dimensionally correct drawing in the vehicle co-ordinate system.  Since the 
Oscar template does not deal with vehicle y-axis information, there is no need to correct 
the data for y-axis offset. 
 Template Placement.  With the vehicle interior generated, and the seat placed in 
the design position, Oscar is placed in the drawing with Oscar’s H-point placed at the H-
point machine location per the “Dimension Coordination - CPE, Interior Dimensions 
(Design VS. Actual)” form completed and submitted by Jim Bogan, 5/25/95 (Figure 2).  
The design H-point is 3139,452, the CPE measured H-point is 3114,452.   The laboratory 
used the CPE measured H-point location for all design position drawings.  Next the back 
is rotated to the design torso angle, and finally the foot, calf, and thigh are manipulated to 
place the heel on the floor with the foot slightly depressing the accelerator.  Based on the 
interior package layout drawing IL-43686 [11], the torso angle for Oscar is 26 degrees. 
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Figure 1.  Seat co-ordinate system with origin at right rear bolt. 
 
 
C.  Description of Seat Electronics 
 
 In order to record the seat position in the vehicle laboratories, a combination of 
linear potentiometers and inclinometers were used.  The transducers used to sense seat 
movement consist of a 12 K linear potentiometer attached to one of the drive cables for 
the seat adjustment gears.  The drive cable is installed so that the potentiometer is 
centered in its operating range.  The potentiometer is then electrically installed into the 
resistance-to-voltage converter circuit described below.  The drive cables used were as 
follows: 
 

Front riser - Cadillac seat memory cable ( 9” w/ 12K pot {Brown}) 
Rear riser - Cadillac seat memory cable ( 15 1/2” w/ 12K pot {Blue}) 
Fore / Aft - Cadillac seat memory cable ( 9 1/2” w/ 12K pot {white}) 

 
 Steering, seat and trunk inclinometers were Midori PMP-S30T transducers 
W/Midori PV-05 “MR PACK” amplifiers.  These inclinometers have a 60° range of 
measured movement with 0° at the middle of its measured range.  The trunk inclinometer 
was mounted in the electronics enclosure with 0° oriented relative to gravity.  The seat 
inclinometer was mounted on an aluminum bracket designed to hold the inclinometer at 
0° when the seat back angle was in the middle of its adjustment range.  The steering 
inclinometer was fastened to a set of plastic wedges to establish 0° on a level mounting 
platform when the steering column is in the middle position.  One wedge rotated the 

(0,0,0) 
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Figure 2.  Oscar sitting in AM6-W seat in design position. 
 
 
inclinometer around the X axis to approximately 0°, and another wedge rotated the 
inclinometer around the Y axis to 0°. 
 In the electronics enclosure located in the trunk, a seat position circuit board 
(Appendix B) was installed to read the position of a car seat based on linear 
potentiometers in the adjustment mechanisms.  In addition, this circuit board had several 
other important functions.  The circuit read the inclination (or tilt) of the steering wheel, 
seat back, and vehicle based on a signal coming from solid-state inclinometers placed on 
each device.  In addition, the design provided power to the Bio-pak electromyography 
amplifier [1], as well as a signal path from the amplifier to the A/D card.  For the fixed 
back drives, the circuit provided the ability to automatically adjust the recline angle of the 
seat back to an angle under the control of the ride tech.  As part of the experimental 
protocol, the circuit board also signaled the computer when the driver of the vehicle made 
any adjustments to the seat.  Lastly, it automatically turned the infrared LED’s’ on for 
each set of images taken from the cameras. 
 The circuit board, developed for this study, consists of the following sub circuits: 
 

(1) Three power supplies: +12 Unreg., +5 Reg., and  -5 Reg.; 

Foam “B” 

Foam “A”

Upholstery 

Lumbar 
Support 

Foam “B” 
Seat Frame 

Seat Frame Suspension 
Spring 

Foam “A” 

Upholstery
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(2) Five resistance to voltage converters; 
(3) A relay driver for the IR. LED’s; 
(4) A latch & computer interface to signal seat activity; 
(5) A series of differential amplifiers to determine vehicle corrected seat 

back angle; 
(6) A comparator-latch-driver circuit to control the back adjustment 

motor. 
 
 Power supplies.  The 12-volt supply is simply the reserve battery located in the 
trunk, with a capacitor filtering out the charging system noise.  As the 12 volt circuits are 
all relatively noise immune, a large degree of regulation was not required.  The +5 volt 
supply is a simple circuit based on the LM78M05 linear voltage regulator.  Very little 
concern need be given to support component selection.  Additional details are in the 
National Semiconductor general purpose linear devices data book [5].  The -5 volt supply 
is designed around the MAXIM MAX635 -5v switching regulator I.C.  External 
component selection was based on a current requirement of 20 mA.  Load calculations for 
the Maxim MAX635 are fairly critical, as are component values, so the “MAXIM power 
supply circuits” data book should be consulted for additional details [6]. 
 R-V amplifiers. A resistance-to-voltage amplifier was used to convert the seat 
position potentiometer information into a signal that could be used by the computers A/D 
board.  The first generation design was based on a single op-amp design which proved to 
be troublesome since it required a time-consuming and critical calibration process.  This 
design was later modified into a two-stage design. The first stage allowed for balancing 
the circuit to obtain 0 volts at the lower end of the seat adjustment, this stage maintained 
a fixed gain for simplicity of tuning.  The second stage utilized an adjustable gain to set 
the output at 10 volts on the upper end of the seat adjustment.  This change in circuit 
design required the addition of two quad op-amp I.C.s, but greatly reduced the time for 
calibration as well as improving the design’s stability.  
 IR LED Driver.  Due to the high current requirements of the IR LED’s used, we 
switch the LED’s on only when required for video imaging.  The circuit utilizes one 
section of a Motorola MC1489 Quad Line receiver I.C. to read a signal from the 
computer’s serial port.  The output of the line receiver is applied to a switching transistor 
that drives a 12v relay operating the LED’s. 
 Seat movement signaling.  One diode is attached to each of the 12 seat 
movement signals to form a 12-Input OR Gate.  This signal is reduced in level through a 
resistive voltage divider to drop the signal down to a level compatible with a 7414 
Schmitt Trigger IC.  When seat activity is initiated, a capacitor is charged through a series 
resistor and diode.  The Schmitt Trigger output instantly goes low.  When seat activity is 
stopped, the diode causes the capacitor to discharge through a variable resistor causing a 
delay of several seconds.  As the capacitor discharges below 1.7 volts, the output of the 
Schmitt Trigger will go high causing the Q output of a Latch I.C. to go high.  The Q 
output signals an RS-232 Line Driver which signals the computer’s serial port that an 
adjustment has been made.  This output stays high until the computer sends a signal to the 
clear input of the latch. 
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 Inclinometers.  Inclinometers were used to measure the rotation around the Y 
axis of three automotive parameters: 

1) steering wheel, 
2) vehicle, 
3) seat back. 

Since the steering wheel position was purely a passive measurement, its signal was 
passed directly to the A/D board.  The fixed back drive angle protocol required that the 
seat back be fixed relative to the floor pan.  To implement the fixed back angle protocol, 
the vehicle and seat back inclinometer signals were tapped and fed into a back angle 
comparator. 
 Fixed back angle comparator.  The fixed back angle function is accomplished 
by utilizing several differential amplifiers to calculate variations of the vehicle and seat 
from the desired position. 
 The first stage consists of a differential op-amp used to determine the variation of 
the vehicle from a horizontal plane, perpendicular to the gravity vector.  This is 
accomplished by tying the output of the vehicle inclinometer to the non-inverting input of 
the amplifier and applying a fixed voltage of equal value to the inverting input.  Any 
variation in the vehicle inclination will be indicated in the output of this amplifier with 
the original, calibrated horizontal orientation yielding 0 volts. 
 The second half of the first stage utilizes an identical differential amplifier to 
measure the difference between the seat back angle (referenced to vertical) and a 
computer-generated signal representing the back angle (referenced to the original 
orientation of the vehicle horizontal plane). 
 The second stage of the fixed back angle circuit is also a differential amplifier 
used to compare the variation in the seat back angle to the variation in the vehicles 
orientation.  The output of the first two stages of processing can be represented by the 
equation 
 

Vout = (Vseatback - Vlock angle) - (Vvehicle - Vhorizontal)  
 

where Vseatback  is the voltage from the seatback inclinometer.  Vlock angle is the computer 
generated voltage representing the desired seat back angle.  Vvehicle is the voltage from the 
vehicle inclinometer.  Vhorizontal is the fixed voltage set to match the vehicle inclinometer 
output when the vehicle is on a level surface. 
 The output of the seat angle differential amplifiers is fed into a window 
comparator whose outputs are logically ANDed with the latch signal from the seat 
movement sensor to prevent the seat back from being constantly adjusted by random road 
noise.  The two resulting signals (Recline Back, and Elevate Back) are fed to transistor 
switches driving a set of relays to control back angle. 
 
C.  Description of seat position parameters. 
 
 For the Fall 1994 Comfort Study, 1992 Pontiac AM6 W-seats were installed in 
each vehicle laboratory [1].  The AM6 is a six-way adjustable seat with a manual recliner.  
Several modifications were made to the seat including:  
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- replace the manual recliner with a power model;  
- add a Schukra four-way power lumbar support; and 
- replace the standard fore/aft track with an extended travel track. 

 
 The seat track has geometrical properties which uniquely affect the interpretation 
of the seat position data.  First, the extended travel track allowed for an additional 31.75 
mm of fore-aft adjustment, with approximately 12.7 mm more in the forward direction 
and 19.05 mm in the aft direction.  Second, the track, as measured in the laboratory, is 
inclined approximately 8.2° from horizontal.  This measured inclination of the track, 
however, differs from seat [10] and package drawings [11] that show 7.502° and 8°, 
respectively.  To compare the seat position data in this report with other similar studies, 
these geometrical properties of the seat must be considered in the comparison. 
 In addition to the unique track and seat inclination, the dimensions that are 
reported for seat position are measured with respect to the relative travel of each physical 
actuator.  For example, the displacement of the front riser jackscrew displacement is 
measured from its lowest position.  The height of the front riser jackscrew in the vehicle 
axis system, however, changes as a function of seat travel on the 8.2° inclination of the 
track in the vehicle.  Thus, the seat position parameters can only be considered 
coordinates in a local seat axis system defined relative to the seat track. 
 Although both seats are essentially identical, slight discrepancies exist in their 
range of travel (Table 1). 
 

 Car #1 Seat Car #2 Seat 
1.  Fore/Aft 203.0 mm 203.0 mm 
2.  Front Hgt   41.0 mm   42.1 mm 
3.  Rear Hgt   41.0 mm   42.1 mm 
4.  Lumbar In/Out   25.0 mm   29.4 mm 
5.  Lumbar Up/Down   38.1 mm   47.6 mm 
6.  Back Recline   36°   36° 
7.  Seatback Inclination   54°   54° 

 
Table 1.  Range for seat adjustments by car seat. 
 
 Since the Schukra lumbar support uses the deformation of spring steel to provide 
a continuous change in contour for the low back region, the up/down travel can vary 
depending upon whether the support is in its maximum or minimum curvature.  The 
travel reported in Table 1 describes the range when the curvature is maximal, that is, the 
lumbar support is fully out.  The travel of the lumbar in/out is simply the measurement of 
the distance from the most protruding position of the spring steel cage used to define 
lumbar curvature to the least protruding position. 
 The seatback can be reclined more than the range of movement in the power 
recliner (36° total).  The absolute position of the seatback can be positioned relative to 
vertical from 5° to 59°.  This extended range of position in the seat back is a combination 
of seat back position and the relative heights of the front and rear risers.  Therefore, 
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certain back angle positions are only attainable if the front and rear risers are adjusted for 
the additional travel listed above in the 54° total. 
 Accuracy of Seat Position System.  An analysis was performed to determine the 
accuracy of the seat position system on a per-channel basis.  Since the seat position circuit 
recorded ten samples of the seat’s position in less than a one second interval, we assumed 
that the seat did not move during the course of that sampling interval.  Using this 
assumption, the standard deviation of each channel’s 10 samples then represented the 
instability of that channel.  These individual standard deviations were calculated for all 
the measurement events of 10 subjects and then averaged on a per-channel basis.  Due to 
slight differences in seat position equipment between the two vehicle laboratories, this 
task was performed for both vehicles.  A total of approximately 600 samples was used to 
determine this per channel accuracy.  The results yielded slight discrepancies in accuracy 
between the two vehicles as shown below (Table 2). 
 The accuracy reported in Table 2 is based on 1 mm of travel, hence the fore/aft 
channel in vehicle #1 (±0.001221) which had a 203 mm range of motion would have this 
accuracy multiplied by 203, or a ±0.248 mm accuracy.  A summary of the accuracy of 
each measurement channel for each of the two vehicle laboratories is shown in Table 3. 
 
 

Vehicle # Accuracy of Linear 
Channels per 1 mm of travel 

Accuracy of Angular 
Channels per 1 deg of Travel 

1 ±0.001221   ±0.007597 
2  ±0.002926  ±0.0084381 

 
Table 2.  Accuracy of the Seat Position Circuit per 1 mm of Travel 
 
 Slightly lower accuracy for the angular displacement channels is a result of road 
vibrations that were induced on the inclinometers.  Every precaution was taken to fasten 
the inclinometers as securely as possible, but even slight displacements from road 
vibrations will result in fluctuations of the output.  
 
 

 Car 1 Car 2 
Seat Fore/Aft ±0.23213 ±0.63888 

Seat Rear Riser Hgt. ±0.049714 ±0.13392 
Seat Front Riser Hgt. ±0.064113 ±0.12134 
Lumbar In/Out ±0.04338 ±0.070567 
Lumbar Up/Down ±0.03576 ±0.101366 
Seat Back Angle ±0.520892 ±0.557499 
Steering Wheel Angle ±0.470256 ±0.516266 
 
Table 3.  Accuracy of the Seat Position Circuit for each Vehicle Laboratory 
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D.  Analysis Procedures. 
 
 The original seat position data contained 10 samples per event, where the number 
of events depended on two conditions: whether it was the fixed back angle or free drive 
and how many times the subject adjusted the seat.  Each event represented a single point 
in time during the drive when a measurement was taken.  Each set of data was then 
averaged by throwing out the high and low values and taking the mean of the remaining 
eight values.  The result was a single value for each measurement channel at that 
particular event.  These data were then separated into free, upright and reclined and 
itemized by subject. 
 Intra-subject Analysis.  For each subject, a number of different parameters were 
compiled for each of the seven measured channels.  These included: the initial and final 
positions, the change from the final to initial position, the range of adjustment throughout 
the drive, and the frequency of adjustment.  The range was the maximum value that was 
measured at any point during the drive minus the minimum that was measured.  
Determining the frequency of adjustment was a somewhat more arduous task.  The 
difficulty arose from separating what was actually an adjustment and what was just a 
fluctuation caused by the instability of the system, namely in the analog-to-digital 
conversion.  The instabilities were a result of noise in the components of the seat position 
circuit and were shown as a fluctuation in the least significant bit (LSB).  To distinguish 
between instability and an adjustment, criteria were established based on the standard 
deviation of each channel.  The resulting criteria for adjustment were chosen to be values 
that were slightly higher than the reported value for the uncertainty of any particular 
channel.  The uncertainty varied for each channel and a summary of the uncertainties can 
be found in the previous section, “Accuracy of the Seat Position System”.   A summary of 
the criteria for adjustment is listed below (Table 4). 
 For example, if the Seat Rear Riser Height was moved more than 1.0 mm between 
any two successive events, then that situation was considered to be an adjustment.  A 
slightly higher criterion for adjustment was used for the Steering Wheel Angle (3.00 deg).  
This value was chosen because the steering wheel adjustment is notched, such that only 
five positions are attainable.  Therefore, the steering wheel cannot be adjusted in 
increments that are any smaller than 6.00 deg, so an absolute value of 3.00 degrees is a 
suitable criterion for adjustment. 
 

Seat Parameter Criteria for Adjustment 
Seat Fore/Aft >1.0 mm 

Seat Rear Riser Height >1.0 mm 
Seat Front Riser Height >1.0 mm 
Lumbar In/Out >1.0 mm 
Lumbar Up/Down >1.0 mm 
Seat Back Angle >1.0 deg 
Steering Wheel Angle >3.0 deg 

 
Table 4.  Criteria to Determine if the Seat has been Adjusted 
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 Inter-subject Analysis.  For the inter-subject analysis, the most representative 
single position for each subject was chosen.  By determining this most representative 
position, each subject could then be easily compared and categorized against the other 
subjects.  The first solution to this problem was to take the statistical mean of each 
subject’s events and call the resulting position the average position for that subject.  This 
solution was ultimately rejected because each event was weighted evenly, despite the fact 
that individual events are usually of varying lengths of time.  In other words, if a subject 
spent two minutes in one position and 25 minutes in another, the mean for these two 
events would be calculated and the resulting position would be called the most 
representative position for that subject.  This is clearly incorrect since the subject spent a 
much larger portion of the drive in the position that had the 25-minute duration.  
Therefore, the task of choosing the most representative position for each subject had to 
consider the time duration of each measurement event of that subject. 
 The second solution to this problem considered all seat positions per unit of time 
for each subject.  The resulting position was called the modal position.  Since the modal 
position for each subject considered the amount of time that each subject spent in that 
measurement event, it was chosen to be the most representative single position.  The 
modal position was defined as the seat position in which the subject sat for the longest 
period of time.  To determine the modal position, a time record of each measurement 
event, the data collection log, was examined.  The longest duration between changes in 
seat position in the data collection log was identified.  This analysis yields two positions 
at the beginning and at the end of the modal position period of time.  The beginning 
position of this period of time was chosen as the modal position for that subject. 



ERL-TR-95-006rev.  Ergonomics Research Laboratory 

©MSU, East Lansing, MI 15

III. Results 
 
A. Drive subject demographics. 
 
 All but one of the forty subjects had excellent health with no injuries in the past 
six months.  The subject who had been injured described a knee injury that had placed 
some restrictions on her activity, but she was not currently under any medical restrictions 
for activities such as driving a car for two hours.  The majority of the subjects (62.5%) 
drove primarily on urban or city roads but a few (30%) subjects drove extensively on the 
highway.  The remainder drove under all conditions including rural roads.  The most 
frequent trip length was from 5-20 miles (47.5%) with 27.5% typically driving more than 
50 miles per trip.  Approximately 40% took a two-hour trip once a week while 32.5% 
drove this length of time once a month.  Ten percent of the sample took a two-hour trip 
every day. 
 The majority of the subjects had bucket seats (67.5%) while 25% had split bench 
and 7.5% had bench seats in their normal driving vehicle.  In addition, 35% of the 
subjects had power seats and 25% of the subjects had adjustable lumbar support in their 
seat.  Three individuals used a seating aid: 1) pillow; 2) beaded mat; 3) foam wedge for 
additional height. 
 The forty drive subjects were evenly balanced for sex, age and stature [1].  The 
average age of the pre-Baby Boomer subjects was 61.8 yrs (M) and 63 yrs (F) and for 
Baby Boomers, it was 37.8 yrs (M) and 34.8 yrs (F).  Stature was 1741 mm (M) and 1624 
mm (F) for the Baby Boomers and 1756 mm (M) and 1628 mm (F) for the pre-Baby 
Boomers.  A complete anthropometric description is available in ERL-TR-95-002 [2]. 
 
 
B.  The Modal Position: Free Drive 
 
 The modal position is the seat position in which the occupant sat for the longest 
period of time.  Data were collected according to collection protocol described in ERL-
TR-95-001.  This protocol, in general, followed a sequence that collected data at 0, 30, 90 
and 120 minutes during the drive unless the occupant moved the seat after the first thirty 
minutes of the drive.  If the occupant moved the seat, the ride tech collected all data and 
administered the verbal questionnaire.  Drive time was defined by a clock in the on-board 
computer and as data were collected.  When the file was saved, the time was written to a 
log file maintained on each computer in each vehicle. 
 When examining the files that were saved, it was observed that some files were 
saved for the seat position data that did not record a change in any of the seven seat and 
vehicle parameters that were measured.  The analysis, therefore, had to examine each set 
of data to determine if there was a change in data channel value.  The criteria for change 
are in Table 4. 
 In addition to recognizing whether a change had occurred, it was also important to 
determine an amount of time for the occupant to make adjustments to seat position.  The 
data collection software was programmed to write a file after 15 seconds of no seat 
parameter activity.  This time between saving files proved to be too short.  In examining 
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the files and the time at which they were saved to hard disk, it was discovered that many 
subjects made sequential changes in seat position before sitting in the seat position for 
two minutes or more.  Thus, we decided that if two or more files were saved sequentially 
with less than two minutes separating the times in which the seat adjustment was made, 
the last file in the sequence would describe seat position. 
 As a result of these data processing procedures, the following variables were 
calculated to describe the analysis of seat position (Table 5).  The number of files was 
counted for each subject in the Free and Fixed Back Drives (i.e. File #).  From each file, 
the number of seat positions (i.e. SP #) was calculated from the number of sequential files 
that actually had a change in one or more seating variables (this included adjustments of 
steering wheel angle).  In addition, the number of times that each parameter was adjusted 
plus the sum of adjustments (i.e. Para #) has been reported.  The time from start of drive 
to the occupant finding his or her modal seat position (i.e. Time To) was measured in 
minutes and the length of time in that position was also measured in minutes (i.e. Length 
In).  A two-tailed T-Test for samples with equal variances was calculated for each of the 
variables comparing the results stratified by sex, generation (Baby Boomer vs. Pre Baby 
Boomer) and stature (Above vs. Below Average Stature).  At the .05 level of significance, 
a difference in the length of time in seat position for generation is statistically significant 
with BB modal position 9.1 minutes longer than PBB.  In addition, the number of seat 
position changes is also significantly different with PBB making an average of 2.4 more 
seat adjustments than BB. 
 In the Free Drive, there were seven seat and vehicle parameters that could be 
freely adjusted by the driver.  These parameters were rear riser height (Rr Riser H.), front 
riser height (Frt Riser H.), fore-aft length (Fore-Aft), lumbar support height (Lum U/D), 
lumbar support depth (Lum I/O), back angle and steering wheel angle.  According to the 
experimental protocol, the ride tech was to collect data each time the driver adjusted one 
of the seat parameters.  The software to collect data was written to monitor the length of 
time following a seat parameter adjustment and then write the data to disk. 
 
 
Variable Total Sex Generation Stature 
  Male Female BB PBB Above Below 
File #   6.4 ±  3.0   6.4 ±  2.7   6.5 ±  3.4   5.8 ±  2.4   7.1 ±  3.5   5.9 ±  2.7   6.9 ±  3.3 
SP #   4.4 ±  2.8   4.4 ±  1.9   4.4 ±  3.6   3.2 ±  1.7   5.6 ±  3.3   4.3 ±  2.8   4.5 ±  2.9 
Para # 11.5 ±  9.7 11.2 ±  6.5 11.8 ±12.3   9.4 ±  6.1 13.6 ±12.1 11.8 ±12.6 11.1 ±  6.0 
Time To 51.5 ±22.3 50.7 ±18.7 52.4 ±25.0 48.3 ±19.5 54.8 ±24.8 48.9 ±21.6 54.1 ±23.1 
Length In 46.4 ±14.6 47.4 ±14.5 45.5 ±15.0 51.0 ±12.2 41.9 ±15.7 48.4 ±16.6 44.5 ±12.5 

 
Table 5.  Description of number of seat positions and length of time (in minutes) in 
Free Drive modal position (numbers in bold are significantly different at the .05 
level). 
 
 
 Table 6 reports the seat position adjustments made by the total sample and strata 
by sex, generation, and stature.  There were no significant differences between any strata.  
The total number of adjustments during any Free Drive range from 0 to 49 and the 
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average number of adjustments in the total sample was 11.5 (±9.7).  There was no 
difference by sex (M = 11.2 ±6.5, F = 11.8 ±12.3), generation (BB = 9.4 ±6.1, PBB = 
13.6 ±12.1) or stature (Above =11.8 ±12.6, Below = 11.1 ±6.0). 
 
 

Variable Total Sex Generation Stature 
  Male Female BB PBB Above Below 

Rr Riser H. 1.2 (±1.5) 1.2 ±1.3 1.1 ±1.8 0.8 ±1.1 1.5 ±1.8 1.5 ±2.0 0.8 ±0.8 

Frt Riser H. 1.5 (±2.0) 1.7 ±1.7 1.4 ±2.3 1.9 ±2.6 1.2 ±1.2 1.7 ±2.6 1.4 ±1.3 

Fore-Aft 1.9 (±1.9) 1.6 ±1.3 2.2 ±2.4 2.2 ±2.4 1.6 +1.2 2.5 ±2.4 1.4 ±1.0 

Lum U/D 1.4 (±1.5) 1.3 ±1.1 1.4 ±1.8 1.4 ±1.7 1.3 ±1.3 1.2 ±1.7 1.6 ±1.1 

Lum I/O 1.5 (±2.0) 1.2 ±0.9 1.8 ±2.6 1.7 ±2.5 1.3 ±1.3 1.1 ±1.4 1.9 ±2.4 

Back Angle 1.7 (±1.9) 1.5 ±1.6 1.9 ±2.1 2.2 ±2.3 1.2 ±1.2 1.8 ±2.3 1.6 ±1.4 

S W Angle 2.4 (±1.6) 2.7 ±1.6 2.0 ±1.6 2.7 ±1.8 2.0 ±1.4 2.2 ±1.8 2.6 ±1.5 

 
Table 6.  Number of adjustments in Free Drive for each seat and vehicle parameter 
for the total sample and by strata in sex, generation and stature. 
 
 
 Given that the number of seat adjustments varied by subject and time during the 
Free Drive, the modal position has been defined to identify a seat position in which the 
driver sat for the longest period of time.  As reported in Table 5, this period of time varied 
around 46 minutes (SD = ±14.6).  In the modal position, the seat position selected by the 
total sample is reported in Table 7.  H Differ. is calculated by subtracting rear riser height 
from front riser height. 
 
 
Variable Total Sex Generation Stature 
  Male Female BB PBB Above Below 
Rr Riser H 17.9 ±13.7 16.4 ±13.5 19.4 ±14.1 13.6 ±11.7 22.2 ±14.5 11.3 ±  9.4 24.5 ±14.4 

Frt Riser H 16.7 ±13.7 19.3 ±13.4 14.0 ±13.8 12.0 ±12.0 21.3 ±14.7 11.6 ±11.0 21.7 ±14.5 

H Differ. -1.2 ±14.5   3.0 ±11.8 -5.4 ±16.0 -1.6 ±12.9 -0.9 ±16.4   0.3 ±14.2) - 2.8 ±15.1 

Fore-Aft 34.7 ±40.8 19.4 ±26.5 49.9 ±47.2 35.1 ±41.8 34.3 ±40.9 12.7 ±24.8 56.6 ±42.3 

Lum U/D 14.5 ±13.7   9.8 ±12.1 19.2 ±13.9 14.1 ±13.4 14.9 ±14.4 17.0 ±14.2 12.1 ±13.1 

Lum I/O 15.3 ±  9.8 13.3 ±10.3 17.3 ±  9.1 14.0 ±10.0 16.6 ±  9.7 12.1 ±11.7 18.4 ±  6.3 

Back Angle 18.1 ±  4.4 19.3 ±  3.8 16.9 ±  4.7 19.0 ±  4.0 17.2 ±  4.7 19.5 ±  4.0 16.7 ±  4.4 

SW Angle -28.3 ± 8.3 -27.9 ± 8.6 -28.6 ± 8.1 -27.5 ± 7.7 -29.0 ± 8.9 -27.2 ± 9.6 -29.4 ± 6.7 

 
Table 7.  Average and standard deviation of the seven seat and vehicle parameters 
in the Free Drive modal position for the total sample and by strata in sex, generation 
and stature (numbers in bold are significant at the .05 level). 
 
 For the seat adjustments reported in Table 7, only steering wheel angle did not 
have a significant difference attributed to sex, generation or stature.  Rear riser and front 
riser heights differed significantly by generation and stature.  Fore-aft location of the seat 
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differed significantly by sex and stature.  The up-down position of the lumbar support 
differed significantly between the sexes whereas the in-out position of the lumbar support 
differed significantly by stature group.  Back angle also differed significantly by stature 
group.  These differences have been incorporated in the histograms that illustrate the 
distribution of choices in seat position for the drive subjects in the free drive. 
 The distribution of subjects in these modal positions was plotted in histograms.  
The frequency of the front riser, rear riser and fore-aft modal positions was computed for 
groups defined by equally spaced categories (Figure 3).  Once the modal position was 
established for every subject, these data were then categorized.  Each of the individual 
seat position channels were divided into 5 zones.  These zones were equally spaced 
divisions whose size varied depending on the total range of travel of that particular 
channel.  For example, the Fore/Aft channel had a total range of travel of 203.00 mm.  
When this range is divided into 5 equal zones, each zone is 40.6 mm wide.  The zones for 
the Fore/Aft channel are shown graphically below. 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Division of fore-aft travel by equally spaced zones to illustrate 
distribution of subjects in fore-aft travel. 
 
 
 Once the data are separated into distinct zones, it is possible to determine what 
percentage of the sample population positioned the seat in each zone.  This process was 
repeated in a similar manner for each of the measurement channels and the results were 
then plotted in a bar graph form. 
 The frequency of rear riser modal positions was calculated for divisions of the 
riser travel of 8.42 mm.  There were five divisions and the results for the total sample are 
reported in Figure 4.  The zero position was at the lowest position, closest to the floor and 
the maximum position was 42.1 mm above zero.  The rear riser determines, essentially, 
the height of the seat above the floor.  The stacked bars in Figure 2 report the relative 
frequencies of the subjects in the below and above stature groups.  The distribution shows 
that the below stature typically used the highest range of rear riser height as opposed to 
the lower range being used by the above average stature group. 
 

0.00 mm 40.6 mm 81.2 mm 121.8 mm 162.4 mm 203.00 mm

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Division of the Fore/Aft Channel into Zones 
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Figure 4.  Frequency of rear riser height modal positions in Free Drive. 
 
 
 The front riser height distribution shown in Figure 5 is divided into the same five 
divisions used for rear riser heights.  The maximum front riser height described in Table 1 
is 42.1mm, and that is the highest position of the seat from the vehicle floorboard.  
Although the front riser can be adjusted simultaneously with the rear riser, each riser can 
also be adjusted independently to change the pitch of the seat cushion.  As a result, the 
distribution of front and rear riser heights is slightly different. 
 Since there is a statistically significant difference at the .05 level (Table 7) in the 
use of the front riser height by stature group, Figure 5 shows the distributions of front 
riser heights for the above average stature group and the below average stature group.  
The above stature group tends to use the front riser in its lower positions.  The below 
average height group, however, has a bimodal distribution.  This bimodal use of the front 
riser is attributed to the use of the front riser to provide thigh support and change the 
effective contact length of the seat cushion. 
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Figure 5.  Frequency of front riser height modal positions in Free Drive. 
 
 
 Height difference, reported in Table 7 as H Diff., is determined by subtracting the 
rear from the front riser heights.  In this analysis, zero in Height difference means that 
front riser height equals rear riser height.  Since there is approximately 40 mm travel in 
front riser height (Table 1), the total range described in Figure 4 is 80 mm, from -40 mm 
to +40 mm.  Unlike the other histograms, height difference is divided into ten categories 
with each stratum representing an 8 mm range.  This height difference reflects the amount 
of thigh support preferred by the occupant.  That is, if the front riser is raised higher than 
the rear riser, this difference suggests that the front edge of the cushion is raised into the 
thigh. 
 Although there is no statistically significant difference at the .05 level (Table 7) in 
H Difference between males and females, the effect of sex on the relative position of the 
front to rear riser height is greatest among the three strata that describe sex, generation 
and stature.  The total distribution in Figure 6 is approximately normal.  There are slight 
differences in how males and females use the pitch of the seat cushion.  Males tend to 
raise the front of the cushion whereas females tend to lower the front of the cushion. 
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Figure 6.  Frequency of riser height difference in modal positions of free drive. 
 
 
 The frequency of locations of the seat in the fore-aft direction is divided into five 
categories (Figure 7).  The total travel is approximately 203 mm, thus, the divisions 
represent 40.6 mm travel.  The results are skewed to the front of the seat, and the zero 
position is at full rear position of the seat with most above average drivers maximizing 
the rearward position of the seat.  The below average drivers use the more aft positions, 
but no subjects took the seat to its closest position to the accelerator. 
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Figure 7.  Frequency of the fore-aft seat modal position in the free drive. 
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 The lumbar positions in the up-down and in-out directions are depicted in Figures 
8 and 9 respectively.  In these histograms, subjects who did not use the in/out travel of the 
lumbar support were considered not to be using the lumbar support.  Thus, nine subjects 
were excluded from these histograms.  The zero position in the up-down direction is at 
the lowest position and the zero position in the in-out direction is at its most rearward 
position. 
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Figure 8.  Frequency of lumbar up-down modal positions in free drive (categories in 
mm). 
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Figure 9.  Frequency of lumbar in-out modal positions in the free drive (categories 
in mm). 
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 The range of seat positions provides an estimate of how much each occupant uses 
adjustment travel.  The preceding data have presented the total amount of travel needed 
by the population, but the individual occupant does not use the entire range of available 
travel.  As a result, the range of travel in each seat adjustment parameter was calculated 
from the minimum and maximum position selected by each occupant.  The summary 
statistics on these data are presented in Table 8. 
 
 

Variable Total Sex Generation Stature 
  Male Female BB PBB Above Below 

Rr Riser Hgt   5.7 ±  8.2   5.9 ±  7.8   5.4 ±  8.8   6.1 ±  9.4   5.2 ±  7.0   6.0 ±  8.5   5.3  ±  8.1 

Frt Riser Hgt   7.1 ±  9.5   8.1 ±  9.0   6.1 ±10.0   6.0 ±  8.0   6.0 ±  8.0   8.0 ±10.5   6.3 ±  8.5 

Hgt Differ. - 1.5 ±  7.2 - 2.2 ±  6.7 - 0.8 ±  7.7   0.1 ±  7.2 - 3.1 ±  7.0 - 2.0 ±  9.4 - 1.0 ±  4.2 

Fore-Aft 10.8 ±12.9   7.9 ±10.3 13.8 ±14.8 10.8 ±12.9 10.9 ±13.3 10.8 ±14.0 10.9 ±12.1 

Lum U/D 10.0 ±12.6 12.1 ±13.5   7.8 ±11.6   9.8 ±12.9 10.2 ±12.7   8.7 ±11.3 11.2 ±14.0 

Lum I/O   6.4 ±  8.1   6.1 ±  6.3   6.7 ±  9.6   6.5 ±  7.8   6.3 ±  8.5   6.6 ±  8.0   6.2 ±  8.5 

Back Angle   4.0 ±  3.4   4.8 ±  3.7   3.3 ±  3.0   3.8 ±  3.0   4.3 ±  3.8   3.7 ±  3.4   4.4 ±  3.5 

S W Angle   9.0 ±  6.1   9.6 ±  6.8   8.3 ±  5.3   8.8 ±  6.3   9.2 ±  5.9   9.4 ±  6.3   8.5 ±  5.9 

 
Table 8.  Range of seat adjustment travel (in mm and degrees) for the total sample 
and by strata for sex, generation and stature. 
 
 
 There were no significant differences between any strata for any of the seat 
adjustment parameters.  A two-tailed t-test for equal variances was used to test for 
differences at the .05 level of significance. 
 
 
C.  Seat Position in the Fixed Back Drive 
 
 The fixed back drive was composed of two 45-minute drive segments: an upright 
seat back and a reclined seat back drive segment.  Data were collected at the beginning of 
the fixed back drive, at 30 minutes and at 45 minutes.  If a subject adjusted their seat 
between 0 and 30 minutes, the adjustment was ignored, as in the Free Drive data 
collection protocol.  If a subject adjusted their seat between the 30- and 45-minute 
scheduled data collection times, then a complete set of data were recorded.  In the fixed 
back drive we collected data on only two subjects between the 30- and 45-minute interval 
of the reclined drive and no data were collected outside of the scheduled protocol data 
collection times for subjects during the upright seat back drive.  In addition, this drive, 
divided into two parts, was conducted to generate two different spinal shapes in each 
subject with which we would be able to test our spine model developed in the laboratory.  
As a result, the number of seat positions and length of time in a modal position is of no 
value.  Furthermore, as a consequence of our controlling the seat back angle, the driver 
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did not have as much control over the adjustable seat and vehicle parameters as he or she 
did in the Free Drive. 
 In the fixed back angle drives, the seat back angle was fixed at 15° in the upright 
and 30° in the reclined positions.  Each subject was allowed to adjust all other seat 
parameters, but the on-board computer calculated the seat back angle during each drive 
segment when any changes were made and corrected the seat for the assigned seat back 
angle.  The adjustable seat parameters were, therefore, the same as in the Free Drive 
except for back angle.  The position of the six adjustable seat and vehicle parameters for 
the upright drive are reported in Table 9 and for the reclined drive in Table 10.  A two-
tailed T-Test for samples with equal variances was used to test for differences between 
strata in the sex, generation, and stature groups.  For those comparisons in which the 
variance was not equal, e.g. above and below average height for fore-aft adjustment in the 
upright seat back drive, a T-Test for samples with unequal variances was used.  An 
α<0.05 was used to identify significant differences between strata. 
 
Variable Total Sex Generation Stature 
  Male Female BB PBB Above Below 
Rr Riser H 17.5 ±13.6 16.5 ±14.1 18.5 ±13.4 16.0 ±13.5 19.0 ±13.9 14.6 ±14.6 20.4 ±12.2 

Frt Riser H 17.5 ±13.4 17.9 ±14.8 17.0 ±12.4 16.0 ±14.5 19.0 ±12.5 17.9.±.17.6 17.1 ±  8.5 

H Differ. 0.0 ±12.7   1.5 ±14.7 -1.5 ±10.4   0.0 ±12.6   0.0 ±13.1   3.3 ±14.2 -3.3 ±10.3 

Fore-Aft 32.8 ±36.3 16.3 ±21.8 49.3 ±40.7 30.8 ±34.6 34.8 ±38.7 13.5 ±19.6 52.1 ±39.3 

Lum U/D 20.9 ±14.7 17.9 ±13.8 23.8 ±15.4 15.8 ±13.1 25.9 ±14.9 23.2 ±14.8 18.5 ±14.7 

Lum I/O 15.8 ±  9.6 13.4 ±10.4 18.3 ±  8.3 14.3 ± 9.43 17.3 ±  9.9 14.3 ±11.3 17.4 ±  7.6 

S W Angle -21.8 ±8.8 -22.0 ± 5.1 -21.6 ±11.4 -23.2 ±11.2 -20.5 ± 5.8 -20.3 ±10.9 -23.3 ±6.2 

 
Table 9.  Average (in mm and degrees) and standard deviation of adjustable 
parameters in the upright drive segment for the total sample and by strata in sex, 
generation, and stature (numbers in bold are significantly different at the .05 level). 
 

Variable Total Sex Generation Stature 
  Male Female BB PBB Above Below 

Rr Riser H 24.9 ±14.3 21.9 ±15.2 27.9 ±13.0 21.1 ±14.7 28.8 ±13.1 25.4 ±14.2 24.4 ±14.8 

Frt Riser H 18.4 ±12.6 15.7 ±12.9 21.2 ±12.0 18.1 ±13.1 18.8 ±12.5 19.6 ±13.9 17.3 ±11.4 

H Differ. -6.5 ±13.7 -6.3 ±14.9 -6.7 ±12.8 -3.0 ±15.1 -10.0 ±11.5 -5.8 ±13.7 -7.1 ±14.1 

Fore-Aft 56.2 ±46.5 30.3 ±28.1 82.2 ±47.2 51.8 ±45.1 60.6 ±48.6 38.5 ±48.1 74.0 ±38.1 

Lum U/D 22.8 ±16.7 17.4 ±15.7 28.1 ±16.3 16.8 ±15.2 28.8 ±16.2 26.9 ±16.3 18.6 ±16.4 

Lum I/O 15.6 ±  9.8 11.5 ±  9.7 19.8 ±  8.2 12.1 ±  9.4 19.2 ±  9.1 15.3 ±11.0 16.0 ±  8.7 

S W Angle -21.1 ±8.3 -22.9 ± 5.7 -19.5 ±10.1 -22.3 ±10.5 -20.0 ± 5.7 -19.7 ±10.7 -22.6 ± 5.2 

 
Table 10.  Average and standard deviation of adjustable parameters in the reclined 
drive segment for the total sample and by strata in sex, generation, and stature 
(numbers in bold are significantly different at the .05 level). 
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 Tables 9 and 10 describing the upright and reclined drive segments respectively 
share three results in common.  There are significant differences in both drive segments 
by sex for fore/aft adjustment, by generation for lumbar up/down adjustment, and by 
stature for fore/aft adjustment. 
 In the reclined drive, however, there are significant differences by sex in the 
lumbar adjustments, both up-down and in-out, and by generation for lumbar in-out.  
Although the differences between the two drive conditions were not tested while holding 
the sex, generation and stature categories constant, large differences are observed.  The 
average differences in fore-aft seat locations between the upright and reclined drives are 
14.0 mm and 32.9 mm for males and females respectively.  The seat was moved forward 
in the reclined drive and rearward in the upright drive.  The vertical locations of the 
lumbar support are very similar.  The differences in fore-aft locations of the seat in the 
upright and reclined drives for stature are 25.0 mm and 21.9 mm for the above and below 
average stature groups respectively. 
 The distribution of rear riser modal positions in the fixed back drives is depicted 
in Figure 10.  In general, the upright portion of the fixed back drive has subjects evenly 
grouped throughout the range of rear riser travel.  In the reclined seat back drive, 
however, there is a tendency for the subjects to sit with the seat height raised above the 
floor. 

Error! Not a valid link. 
Figure 10.  Frequency distribution of rear riser modal positions in fixed back drive 
(categories in mm). 
 
 The frequency distribution of front riser modal positions for thigh support appears 
to approximate a normal distribution with the average at zero (i.e. equal to rear riser 
height) and evenly distributed to either side (Figure 11).  However, in the reclined 
position, there are 26 subjects with negative front riser modal positions and 14 with 
positive front riser positions.  This distribution in the reclined position contrasts with a 
distribution of 19 and 21 subjects in the upright modal position for negative and positive 
front riser positions respectively. 

Error! Not a valid link. 
Figure 11.  Frequency distribution of riser height difference in modal positions in 
fixed back drive (categories in mm). 
 
 As a result of the change in back angle, there were some subjects who used the 
forward travel of the seat track in the fore-aft adjustment in the reclined portion of the 
fixed back angle drive.  However, as seen in Figure 12, the distribution is skewed as in 
the free drive shown in Figure 6. 
 

Error! Not a valid link. 
 
Figure 12.  Frequency of fore-aft modal positions in the fixed back drive (categories 
in mm). 
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 The height of lumbar support in both the reclined and upright portions of the fixed 
back angle drive is bimodal (Figure 13).  Some subjects used the lumbar support in its 
lowest position and some subjects used it in a high position. 
 

Error! Not a valid link. 
 
Figure 13.  Frequency distribution of the lumbar up-down modal positions in the 
fixed back angle drive (categories in mm). 
 
 The in-out modal position of the lumbar support in the fixed back angle drive, 
however, appears to be a tri-modal distribution (Figure 14).  The differences between the 
reclined and upright usage are minimal. 

Error! Not a valid link. 
Figure 14.  Frequency distribution of lumbar in-out modal positions in the fixed 
back angle drive (categories in mm). 
 
 
 
 
D.  Anthropometric variation in selected modal positions. 
 
 Twelve anthropometric dimensions were measured on each driver in the 
laboratory (ERL-TR-95-002).  Correlations between these dimensions and the seven seat 
package adjustments were made for males (Table 11) and females (Table 12) separately.  
In general, the females had higher correlations than the males, but the highest correlation 
in the females was -.795 between sitting height and rear riser height.  The highest 
correlation in the males was -.619 between elbow-hand length and fore-aft seat position. 
 
 
 Rr Riser Fr Riser Fore-Aft Lum U/D Lum I/O Back A. SW Angle 
Stature -.638 -.354 -.750 .121 -.045  .117  .057 
Weight -.346 -.383 -.571 .302 -.127  .048 -.095 
Sitting Hgt -.795 -.396 -.485 .024  .034  .251 -.162 
Sitting Eye Hgt -.733 -.436 -.481 .100 -.040  .219 -.217 
Knee Hgt -.581 -.323 -.708 .219  .045  .065  .007 
Popliteal Hgt -.612 -.349 -.642 .219  .036  .032  .002 
Should.-Elbow L -.518 -.364 -.723 .219 -.236  .148  .023 
Elbow-Hand L -.541 -.434 -.683 .253  .117  .210  .270 
Butt-Popliteal L -.317 -.494 -.598 .100 -.195 -.167  .151 
Shoulder Br -.233 -.367 -.472 .405 -.098 -.071 -.268 
Hip Br -.287 -.320 -.300 .121  .028 -.024 -.306 
Bispinous Br -.056 -.015 -.120 .102  .098 -.012 -.094 
 
Table 11.  Correlations between anthropometry and seat adjustments in the free 
drive for females. 
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 Rr Riser Fr Riser Fore-Aft Lum U/D Lum I/O Back A. SW Angle 
Stature -.300 -.060 -.505 .196 -.584  .348  .020 
Weight -.180  .122 -.442 .282 -.131  .219  .358 
Sitting Hgt -.344 -.210 -.303 .022 -.545  .410  .216 
Sitting Eye Hgt -.398 -.264 -.276 .041 -.608 -.264 .170 
Knee Hgt -.339 -.001 -.583 .136 -.499  .260 -.075 
Popliteal Hgt -.347  .014 -.466 .058 -.537 .316 -.153 
Should-Elbow L  .082  .353 -.497 .221 -.210 -.008  .111 
Elbow-Hand L -.284 -.021 -.619 .153 -.196 -.006 -.110 
Butt-Popliteal L -.151  .283 -.428 .303 -.451  .369 -.057 
Shoulder Br -.419  .088 -.002 .541 -.253  .412  .402 
Hip Br -.265 -.030 -.582 .114 -.199 -.083 -.083 
Bispinous Br -.149  .050 -.288  .084 -.470 -.034 -.056 
 
Table 12.  Correlations between anthropometry and seat adjustments in the free 
drive for males. 
 
 
 Fore-aft seat position is significantly correlated in males and females with stature, 
knee height, and elbow-hand length.  Since stature is the most easily obtained dimension 
from these three anthropometric measurements, a scatter plot between stature and fore-aft 
seat position is reported in Figure 15.  Fore-aft seat position, it should be recalled, is 
measured with zero at the rearmost seat position.  The slopes of the trend lines for 
females indicate that females use a greater range of fore-aft seat position than do males. 
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Figure 15.  Relationship between fore-aft seat modal position in the free drive and 
stature for males and females. 
 
 Although the highest correlation in both males and females is -.795 between rear 
riser and sitting height for females, the correlations between rear riser and sitting eye 
height is -.733 and -.398 for females and males respectively.  There is a slightly higher 
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correlation between sitting eye height and rear riser height in males than between sitting 
height and rear riser height.  A scatter plot of the data representing the relationships 
between sitting eye height and rear riser height is presented in Figure 16.  The zero 
position for rear riser height is at the lowest position closest to the floorboard. 
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Figure 16.  Relationship between rear riser height modal position in the free drive 
and sitting eye height for males and females. 
 Although the relationships between lumbar in/out position and anthropometric 
dimensions is low, the average correlation for females is -.032 and for males, -.398.  The 
highest correlation, -.608 is with sitting eye height that is depicted in Figure 17. 
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Figure 17.  Relationship between lumbar in/out modal position in the free drive and 
sitting eye height for males. 
 
E.  Comfort and Selected Modal Position 
 
 When the concept of comfort is incorporated in the results, another parameter 
associated with time must be considered.  That is, the occupant’s comfort state is not 
static, but dynamic, and the comfort parameter must be considered in at least two states.  
Thus, the occupant may be comfortable (C) or uncomfortable (U) at either the beginning 
or end of the modal period.  This change of comfort state means that there are four groups 
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of occupants who must be considered and the change of modal seat position must be 
evaluated relative to these four comfort states: CC, CU, UC, & UU. 
 The occupant’s state of comfort was measured with the verbal questionnaire [7] 
which asked if the occupant was comfortable or uncomfortable according to the protocol 
described in the ERL-TR-95-001 [1].  The results were recorded on tape by the ride 
technician who also inquired relative to the source of the occupant’s discomfort and 
asked the occupant to rate their level of discomfort from 0 to 10.  The results were coded 
in a database and stored relative to the time during the drive that the questions were 
asked.  These times were correlated with the data collection log for all data files stored on 
the on-board computer during the drive.  Thus, the relationship between occupant comfort 
and seat position was determined by time during the drive.  The questions were generally 
asked within 1-2 minutes of data collection with two exceptions for whom the seat 
position data were collected twenty minutes prior to the comfort data.  In addition, there 
were seven cases for which there were no comfort data due to equipment failure and/or 
noise on the tape recorder. 
 There were 33 complete cases when the sample of 40 was stratified between the 
four comfort groups of CC, CU, UC, and UU representing comfort or discomfort at the 
beginning (“B”) or end (“E”) of the modal drive period (Table 13).  The data are 
presented in pairs representing the beginning (B) and end (E) of the modal period drive 
for rear riser height, front riser height, fore-aft seat position, lumbar up/down, lumbar 
in/out, back angle, difference in riser height (Front - Rear), and steering wheel angle.  The 
rating is the comfort level on a scale of 0 to 10 (ERL-TR-95-004) described by the 
occupant at the time the data were collected. The data in selected modal positions are in 
millimeters and degrees and the magnitudes of travel for each adjustment parameter are 
significantly different (Table 1).  As a result, to determine whether seat adjustments over 
time are related to comfort and the changing state for each individual, additional analysis 
must normalize and remove the effect of the changing dimensional scales upon the 
results.  The data are, therefore, normalized for the change in seat position for each 
measured parameter from the beginning to the end of the modal position.  Normalization 
uses the average range of seat adjustment (Table 8) used by all forty subjects. 
 
 
 
 
 
 
 

Variable CC CU UC UU 
Rear Riser-B 17.5 ±14.1 20.6 ±14.7 18.7 ±18.5 18.0 ±12.0 
Rear Riser-E 17.7 ±14.3 20.6 ±14.6 20.5 ±18.3 19.8 ±12.5 
Front Riser-B 13.3 ±  8.8 16.1 ±15.8 23.2 ±17.5 20.9 ±16.6 
Front Riser-E 14.1 ±  9.1 16.2 ±15.8 23.0 ±17.7 22.2 ±12.7 
Fore-Aft-B 36.9 ±35.5 24.2 ±27.9 56.4 ±69.4 49.3 ±43.5 
Fore-Aft-E 36.7 ±34.9 24.0 ±27.9 57.0 ±69.3 45.5 ±38.9 
Lumbar-U/D-B   8.7 ±12.6 18.6 ±14.6   9.2 ±  9.5 18.7 ±14.9 
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Lumbar-U/D-E   9.2 ±12.6 18.7 ±14.4 10.7 ±  8.7 17.8 ±13.2 
Lumbar-I/O-B 15.7 ±  9.3 16.0 ±10.2 11.0 ±11.3 18.3 ±  8.9 
Lumbar-I/O-E 16.8 ±10.3 16.4 ±10.4 13.2 ±10.9 19.0 ±  7.1 
Back Angle-B 19.2 ±  4.7 15.8 ±  5.2 19.1 ±  3.0 18.9 ±  4.2 
Back Angle-E 19.8 ±  5.0 15.9 ±  5.2 18.9 ±  1.8 18.3 ±  4.8 
Riser Dif-B   4.2 ±11.9   4.5 ±14.2 - 4.6 ±15.0 - 2.8 ±18.1 
Riser Dif-E   3.6 ±11.5   4.5 ±14.0 - 2.5 ±14.2 - 2.4 ±17.0 
SW Angle-B -28.4 ±7.6 -29.9 ±12.4 -27.3 ± 4.4 -27.4 ± 7.6 
SW Angle-E -22.2 ± 7.5 -24.9 ±12.5 -26.3 ± 4.2 -26.3 ± 5.9 
Rating-B   0.0 ±  0.0   0.0 ±  0.0   2.5 ±  1.3   4.6 ±  2.1 
Rating-E   0.0 ±  0.0   3.2 ±  1.6   0.0 ±  0.0   4.5 ±  1.8 
 
Table 13.  Average and standard deviation for modal period seat positions by 
comfort group. 
 
 
 Due to the small sample size (N=33 with complete data), a reduction in the 
number of variables is essential to investigate the relationship between change in comfort 
state and seat position.  Thus, with these normalized data, four new parameters were 
defined that represented the total amount of seat position movement in the vertical and 
horizontal directions (SeatPos), total amount of lumbar adjustment in the vertical and 
horizontal directions (Lumbar), total angular adjustment in the seatback and difference 
between front and rear riser heights (Angle) and finally with the normalized steering 
wheel angle (SW).  The equation for seat position is defined as follows: 
 

SP
F A F A

F A
R B R B

R B
F R F R

F R
B E

R

B E

R

B E

R

=
−

+
−

+
−   [1] 

 
where SP is the sum of the three seat position parameters in the vertical and horizontal 
directions.  The subscripts “B” and “E” identify the seat adjustment position at the 
beginning and end of the modal seat position period and the superscript bar over the FA 
represents the average range (R) for the adjustment.  FA is the fore-aft position; RB is the 
rear riser height; and FR is the front riser height. 
 The relationship between the changes in the vertical and horizontal positions of 
the lumbar support in the seat back and comfort were investigated by calculating a 
variable that represents the total amount of adjustment in the lumbar support.  The 
equation to calculate this change in lumbar support was calculated as follows: 
 

Lumbar
LUD LUD

LU
LIO LIO

LIO
B E

R

B E

R

=
−

+
−

  [2] 

 
where LUD is the up-down position of the lumbar support and LIO is the in-out position 
of the lumbar support. 
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 The relationship between the changes in angular position in the seat were 
calculated from two adjustment parameters: back angle and the difference in front and 
rear riser heights, i.e. seat cushion angle.  The equation to calculate this change in angular 
adjustment was calculated as follows: 
 

Angle
BA BA

BA
RD RD

RD
B E

R

B E

R

=
−

+
−

  [3] 

 
where BA is back angle and RD is riser height difference calculated by subtracting the 
front riser height from the rear riser height. 
 The change in the steering wheel position was calculated by simply subtracting 
the absolute value at the end from the beginning location of the steering wheel during the 
modal position and dividing this difference by the average range of adjustment in the 
steering wheel.  Thus, the calculation was as follows: 
 

SW
SW SW

SW
B E

R

=
−

     [4] 

 
where SW is steering wheel angular position. 
 The results of univariate F tests show that Seat Position and Angle are statistically 
significant at α ≤.05 (Table 14).  A multivariate Anova was used to test for the 
relationship between the dependent variables of Seat Position, Lumbar and Angle and the 
independent variable of comfort in the general linear equation 
 

Y XB E= +     [5] 
 
where Y is a matrix of dependent variables, X is a matrix of independent variables (CC, 
CU, UC, and UU) and E is a matrix of random errors [8]. 
 
 
 
 
 
 
Variable Least Squares Means Univariate F Tests 
 CC CU UC UU F-Ratio P 
Seat Pos 0.250 0.126 0.741 1.866 4.829 0.008 
Lumbar 0.229 0.085 0.479 0.647 2.803 0.057 
Angle 0.685 0.288 1.969 3.150 6.375 0.002 
TOTAL 1.164 0.499 3.189 5.663 NA NA 
 
Table 14.  Results of univariate F tests for differences in change of comfort 
associated with adjustments in normalized seat position variables. 
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 Three multivariate test statistics were calculated, Wilks’ Lambda (F=3.164, 
P=0.003), Pillai Trace (F=2.406, P=0.017), and Hotelling-Lawley Trace (F=3.884, 
P=0.001), and all of them were statistically significant.  As a result, additional 
discriminate analysis used canonical coefficients to compute discriminant scores for the 
four strata within the comfort factor.  The discriminant scores were used to predict 
membership in one of the four groups.  The results define a four by four frequency table 
that contains only three cells with n ≥ 5.  A scatter plot of these results illustrates that 
those subjects in groups CC and CU cluster very closely about a mean change of zero in 
seat position.  The UC and UU subjects are scattered with a wide range in delta values for 
seat position.  Unfortunately, chi-square tests are unreliable when more than 1/5 of the 
cells have frequencies less than 5.  However, the predicted groups for each of the comfort 
strata were tested with a Pearson Chi-Square (P=0.000), Likelihood ratio chi-square 
(P=0.000) and McNemar symmetry chi-square (P=0.891). 
 Since there are four distinct groups of comfort states in the forty subjects, the 
relationship between lengths of time in the modal position (Table 4) was examined.  A 
one-way analysis of variance test found statistically significant differences between the 
groups (Table 15).  A Tukey test of multiple comparisons between the lengths of time 
among the four groups reveals that the UU group is statistically significant at the .05 level 
of significance. 
 
 
 
 CC CU IC UU 
Length (min.) 51.6 ±4.5 49.9 ±4.5 46.2 ±6.0 33.7 ±4.3 
 
Table 15.  Length of time in modal position for four comfort strata. 
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IV.  Discussion 
 
 Seat position has long been understood by everyone to be a critical parameter for 
vehicle operation and operator comfort.  If the seat cannot be adjusted within tolerable 
driver reach dimensions, the driver will have trouble operating the vehicle safely and 
sitting comfortably.  The initial planning for this study, however, did not anticipate 
finding significant results in the seat position data because the selected seat for the 
driving test had considerable travel with electronic controls for the operator. 
 The controls for the seat were placed carefully beside the seat so that they were 
easily understood and operated the seat in the direction of control movement.  Thus, for 
those subjects who did not have experience with so-called “six-way” power seats, the 
intuitive operation of the seat and its controls was carefully considered.  As a result, there 
were no complaints about either the control operation or their placement. 
 Most subjects did not move the seat a great deal, or “play” with the seat and its 
controls.  Especially by the time they made their comfort drive for 2 hours, they had 
already experienced approximately 2 hours driving the vehicle.  As a result, the average 
number of files per subject, 6.4 (Table 5) was expected.  However, when the 
displacements and time between adjustments were considered in the analysis, the average 
number of files was not a good indicator of the amount of adjustment made by the 
subjects.  The average number of seat positions considered unique according to our 
criteria of displacement (1 mm) and time (1 minute) were 4.4.  However, subjects tended 
to make more than one adjustment per change in seat position.  The average number of 
parameters adjusted was 11.5 which means that approximately 2.6 adjustments were 
made for every change in seat position.  This number of adjustments reflects the coupling 
between parameters in the seat.  This coupling phenomenon, if it exists and is consistent, 
represents a new area of investigation for seating ergonomics. 
  As was expected, the vertical and horizontal locations of the seat were 
highly variable, depending primarily upon body size, but there were also some differences 
by age and sex that were not associated with sexual dimorphism.  For example, in Table 
7, males placed the lumbar support in a statistically significant lower position than 
females.  There was also a rather remarkable difference in the use of front and rear risers 
between the sexes.  Although the difference was not statistically significant, females tend 
to raise the rear riser above the front riser whereas males tend to raise the front riser 
above the rear riser.  The net effect of this difference between front and rear riser heights 
is to effectively shorten, for females, and lengthen, for males, the length of the contact 
between the thigh and seat cushion.  Thus, we have referred to the front riser as a source 
of thigh support (Figure 5) and the rear riser as the primary source of seat height control 
(Figure 4). 
 In most of the seat position variables, there was a tendency to not use the full 
extent of the travel.  In particular, the extended travel of the fore-aft seat track was not 
used in its position closest to the accelerator (Figure 6).  In fact, the skewed distribution 
appears to be truncated in the rearward direction that implies that the drivers would have 
preferred greater rearward travel. 
 With respect to the use of lumbar support, there was considerable use of the full 
travel of the support in both up-down (Figure 7) and in-out directions.  As previously 



ERL-TR-95-006rev.  Ergonomics Research Laboratory 

©MSU, East Lansing, MI 34

noted, there is a statistically significant differences in the up-down location by sex, but 
there are no differences by age or stature in the up-down location.  There is, however, a 
statistical difference in the in-out location of the lumbar support by stature.  The above 
average stature wants a less protruding lumbar support than the below average stature 
(Table 7).  As illustrated in the Figure 6, however, the full range of the in-out adjustment 
of the lumbar support is used. 
 The fixed back drive was originally planned to test the differences in posture as 
part of the evaluation of our spinal model.  In general the use of the seat in the fixed back 
drive is comparable to the use of the seat in the free, comfort drive except that the sex 
differences in the use of the front riser height to provide thigh support disappear.  
However, statistically significant differences are observed by sex and stature for fore-aft 
seat location, by generation for lumbar up-down location in both the upright (Table 9) and 
reclined (Table 10) drives.  In the reclined drives, the lumbar up-down and lumbar in-out 
are significantly different between sex and age groups.  It is clear in Figures 12 and 13 
that the lumbar support is used in its full range thereby suggesting that adjustability in the 
up-down direction is valuable to the driver. 
 The relationship between seat position and body size was examined more 
thoroughly with a few anthropometric dimensions.  From the twelve anthropometric 
dimensions measured on these subjects (ERL-TR-95-002), only riser height and fore-aft 
seat location have correlations greater than .7 with any anthropometric dimensions.  
Within this analysis, only female subjects have correlations greater than .7; the highest 
correlation in the male data (Table 12) was -0.619 between Elbow-hand length and fore-
aft seat position. 
 Perhaps of greater interest to packaging are the results of the regression analysis 
seen in Figures 14-16.  This analysis shows that females use a greater range of seat 
position in the fore-aft location than males.  In addition, males use a smaller portion of 
the fore-aft seat position because they are larger and sit closer to the rearmost seat 
position.  The resulting slope of the regression line representing the change in fore-aft 
position with stature indicates a need for more rearward motion of the seat.  
Theoretically, there is no reason for the different slopes between males and females in the 
relationship between seat fore-aft position and stature since this relation is based solely on 
geometric relationships.  For example, the relationship between riser height and sitting 
eye height, which is also a geometric relationship, does not show a large difference in 
slope between the sexes.  Thus, the flatter slope in Figure 14 depicting the relationship 
between fore/aft seat position and stature for males is due mainly to the restricted travel 
of the seat rearward and the consequent “bunching” of the data in the rearward seat 
positions. 
 Of a more general nature, however, are the interesting results of the comfort 
analysis.  Seat position is an independent variable in the occupant/vehicle interface that is 
clearly related to comfort.  That is, if a driver cannot place the seat in a position that 
optimizes the geometric requirements to operate the vehicle, the driver will find the 
vehicle difficult to operate over a long period of time.  We have long recognized that one 
of the greatest strengths of the “human race” is its incredible adaptability.  However, as 
we have evolved into consumers who expect the environment to minimize pain and 
maximize pleasure regardless of the job, our patience with inefficient design has 
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diminished to the point of not accepting many of our former conditions.  Consequently, a 
successful seat and package design has to include the ability to optimally position the seat 
for each driver, regardless of differences in age, sex, or body size. 
 The basic problem in this investigation was, however, to reduce the massive 
amount of information into a manageable task.  The experimental design was created to 
measure comfort while the driver was operating the vehicle on the highway.  The only 
source for measuring driver comfort, however, is the verbal response of the driver.  
Consequently, we decided to solicit this information, whether the driver voluntarily spoke 
of discomfort or not, at fixed intervals or when the seat was re-positioned.  This logic was 
based, in part, on the preceding perceptions that people will seek an optimal position in 
which to engage in any activity and being unable to find it will describe their perception 
of the environment to be uncomfortable.  As a result, a verbal question, “Are you 
comfortable? was asked every time the seat was re-positioned or at the fixed intervals 
described previously in ERL-TR-95-001.  This functional definition of comfort, however, 
means that comfort is a dynamic, rather than static state of mind in the occupant. 
 A dynamic state of comfort relative to the modal position previously discussed 
means that the seated occupants have four choices based upon whether they are 
comfortable or uncomfortable at the beginning or end of the modal position driving 
period.  Thus, four categories of comfort states are possible and we have used 
abbreviations to designate them as CC, CU, UC, and UU.  The first letter represents the 
beginning and the last the end of the modal period.  Using these categories, the modal 
position, by comfort group, has some interesting properties. 
 There are 33 subjects with complete comfort and seat position data.  Within the 
four categories, nine (9) are in the comfortable group (CC), five in UC, 9 in CU and 10 in 
the uncomfortable group (UU).  The UU group has the greatest amount of change in seat 
position between the beginning and end of the modal position and the UC group has 
almost as great of normalized movement from beginning to end of modal position as the 
UU group (Table 12).  In contrast to the change in seat position, the drivers in groups CC 
and CU change in steering wheel angle more than the drivers in groups UC and UU 
(Table 13).  Thus, it appears that the uncomfortable groups (UU and UC) are continuing 
to seek an improved seat position whereas the comfortable groups (CC and CU) have 
found a comfortable seat position.  This conclusion is re-affirmed by the results shown in 
Table 12 where the three general variables of seat position, lumbar position, and angular 
position are analyzed.  The sum of the total normalized movement goes from 1.1 units in 
the CC group to 5.7 units in the UU group.  Unfortunately, the sample size is too small to 
thoroughly analyze with confidence the results of these data, but the trend is certainly 
present in all of the comfort data analysis.  Seat position is important for occupant 
comfort. 
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V.  Conclusions 
 
 In general, modal position is a new concept in seat comfort investigations.  The 
idea of a modal position, however, affects future seating investigations in that it shows 
that time in the seat is important in evaluating a seat.  The evaluation of occupant’s seated 
comfort must be based upon sufficient time for the occupant to identify his or her optimal 
seat position.  In this seat position, however, the data must be analyzed to determine 
occupant position, occupant posture, occupant muscle fatigue, and occupant comfort.  All 
of these factors contribute to the overall evaluation of the seat by the occupant.  Any 
subsequent changes in the design of the seat, however, should be based upon results from 
individuals who have clearly, in all data, found a comfortable, i.e. stable, seat position in 
the particular vehicle package.  In this investigation, we have 27.3% of our subjects in a 
comfortable state throughout their modal position.  The rest of the subjects were divided 
between 42.4% of the subjects who were mixed (UC and CU) in their comfort state and 
30.3% of the subjects who were uncomfortable.  Thus, approximately 1/3 to 3/4’s of the 
subjects have results that describe the failure of the seat or some attributes of the package 
to establish and maintain a comfortable state while operating the vehicle.  Whether this 
information is available from laboratory studies in which the “driver” sits in a seat for a 
short period of time is clearly a question mark.  Seat and package design must be based 
on a program that establishes a greater proportion of comfortable occupants than 
uncomfortable occupants. 
 This investigation selected subjects from the market population that had bought 
vehicles similar to the mid-size vehicle used on the drives.  Differences in the market 
population according to age, sex and body size are also reflected in the data on seat 
position usage.  Vehicle packaging accommodates most of these differences, i.e. range of 
adjustment in seating parameters.  However, it is important to note that some of the 
adjustments affect seat size and subsequent occupant comfort.  In particular, women who 
have shorter legs than men tend to drop the front of the seat below the rear of the seat.  
This difference in riser height is used to effectively shorten the seat cushion to 
accommodate shorter leg length.  Thus, the six-way power seat has features that affect 
occupant comfort and should be considered in the design of the seat and vehicle 
packaging parameters. 
 In conclusion, results from driving tests are direct measures of the occupant’s 
actual preference in posture, position and comfort levels.  Within the nine comfortable 
subjects in our investigation, a comfortable seat position was obtained.  In the remaining 
24 subjects (72.7%), a comfortable occupant state was not obtained by ten subjects during 
their modal seat position period and the remainder, 14 subjects, were unable to sustain a 
comfortable state during their modal period.  We conclude from these data that adjustable 
seat positions cannot make up for an uncomfortable seat and/or package.  Without these 
data, the relative effects of seat design and packaging variables upon occupant comfort 
are extremely difficult to understand.  The data reported in this document, however, must 
be considered limited to the mid-size vehicle in which they were collected until additional 
vehicles of different packaging dimensions are investigated.  It is expected that basic 
concepts developed in this report will be equally valid in other packages and that the 
equipment and procedures developed for the mid-size vehicle are equally applicable to 
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other motor vehicles.  However, the specific use of these data on the driver’s seat and its 
effects on comfort level in a predictive model for seat design and vehicle packaging will 
have to await additional data and vehicle laboratory investigations of other vehicle 
packages and seat designs. 
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Appendix A 
 
 
 
Seat Adjustment Parameters at Beginning and End of Modal Position including 
Driver Comfort level. 
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Table A.  Location of Seat Adjustable Parameters at beginning of Modal Position. 
 
ID Sex Age Stature Rear ForAft Lumud Lumio Front BackA SW DifRiser Comfort Rating
1 F B B 20.7 67.4 38.0 25.0 2.6 12.7 -31.9 18.1 C 0 
2 F B B 33.6 50.9 19.3 16.7 16.0 11.1 -26.6 17.6  
3 F B B 21.4 92.0 19.7 15.1 0.6 15.5 -27.0 20.7 U 9 
4 F P B 35.2 146.8 24.1 9.8 41.0 18.9 -34.1 -5.8 U 1 
5 F P B 35.0 89.5 3.9 21.2 40.9 13.8 -31.4 -5.9 C 0 
6 F B A 11.7 0.9 28.7 17.7 0.8 21.7 -28.9 10.9  
7 F P A 5.7 1.4 14.3 0.4 19.7 19.5 -27.3 -14.1  
8 F P B 37.0 112.8 5.9 19.8 26.8 18.4 -21.3 10.2 C 0 
9 F P B 18.3 44.5 5.1 20.6 18.1 11.8 -22.3 0.2 C 0 
10 F B B 0.6 116.0 5.3 25.0 29.4 21.6 -27.0 -28.8 U 4 
11 F B A -0.4 0.6 0.0 21.1 9.4 16.2 -22.6 -9.8  
12 F P B 38.4 63.5 0.3 10.9 30.9 19.8 -33.5 7.6 U 4 
13 F P A 32.6 2.4 36.3 28.8 11.7 22.1 -16.3 21.0  
14 F B A 9.5 13.4 31.6 25.0 0.6 11.3 -44.1 8.9 C 0 
15 F P A 6.0 32.2 38.0 25.0 16.7 15.9 -39.4 -10.6 U 4 
16 F P B 40.6 25.0 38.0 0.7 0.8 8.8 -43.8 39.9 C 0 
17 F B A 0.5 19.2 0.5 3.7 11.6 25.1 -28.7 -11.1 C 0 
18 F B A 8.6 111.7 29.3 24.7 0.0 24.4 -32.0 8.7 U 5 
19 F P A 20.0 5.2 27.3 28.7 -0.4 12.6 -16.7 20.4 U 4 
20 F P A 13.2 2.4 18.6 7.1 2.9 16.7 -16.8 10.3 C 0 
21 M B B 20.9 44.7 2.3 16.3 16.9 17.9 -22.3 4.1 U 2 
22 M B A 19.8 9.9 38.0 0.3 19.0 23.3 -33.5 0.8 C 0 
23 M B A 29.0 3.4 0.0 0.4 13.3 19.1 -32.1 15.7 C 0 
24 M P B 36.4 44.2 4.0 24.5 26.0 24.3 -27.0 10.4 C 0 
25 M B B 7.6 14.2 10.5 21.6 13.7 18.8 -25.4 -6.2 C 0 
26 M B A 12.8 20.9 14.2 22.6 9.1 18.7 -5.4 3.7 C 0 
27 M B A 0.7 4.0 0.5 0.4 4.0 17.9 -39.2 -3.3 U 7 
28 M P A 0.8 2.1 0.7 25.0 33.0 24.6 -34.3 -32.2 U 2 
29 M P B 34.7 22.8 38.0 25.0 40.9 14.7 -26.9 -6.2 U 5 
30 M P B 0.7 25.2 0.1 19.4 15.5 24.5 -28.9 -14.8 C 0 
31 M P A 15.0 0.7 2.5 3.4 15.9 15.1 -34.4 -0.9  
32 M P B 40.2 2.5 3.5 19.9 36.4 14.4 -26.8 3.7 U 2 
33 M P B 3.9 12.3 14.3 21.0 1.6 13.0 -39.4 2.3 C 0 
34 M B A 1.4 12.3 13.0 0.4 4.3 21.8 -26.8 -2.9 U 3 
35 M B A 5.2 1.2 22.2 7.8 13.8 22.3 -27.0 -8.7 C 0 
36 M B B 40.7 1.1 0.2 25.0 41.0 19.8 -22.3 -0.3 C 0 
37 M P A 18.3 6.3 23.1 0.3 42.0 22.4 -16.1 -23.7 U 6 
38 M P B 12.1 43.4 0.5 19.7 6.8 12.9 -43.8 5.3 C 0 
39 M B A 15.9 4.4 0.3 0.2 4.9 19.0 -21.7 11.0 U  
40 M B B 11.3 112.9 8.3 11.8 28.2 20.9 -25.5 -16.9 U  
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Table B.  Location of Seat Adjustment Parameters at end of Modal Position. 
 
ID Rear ForAft Lumud Lumio Front BackA SW DifRiser Comfort Rating 

1 20.7 67.3 38.0 25.0 2.6 12.3 -32.0 18.1 C 0
2 34.7 61.1 22.8 19.1 18.6 13.5 -23.0 16.1  
3 36.3 75.6 19.6 19.2 21.1 13.4 -27.1 15.2 U 7
4 38.7 147.8 24.1 13.3 40.9 18.1 -31.5 -2.2 C 0
5 34.8 89.6 3.9 21.2 40.8 14.2 -32.4 -6.0 U 4
6 11.4 1.1 28.6 17.6 0.8 21.6 -16.7 10.6  
7 5.7 1.2 14.3 0.4 19.5 19.9 -27.4 -13.8  
8 37.2 111.0 6.9 22.7 27.0 20.5 -16.2 10.2 C 0
9 18.8 44.5 6.4 23.9 18.7 13.9 -16.9 0.2 U 5

10 1.4 115.8 7.3 25.0 28.2 20.5 -29.7 -26.8 C 0
11 -0.6 -0.5 -0.3 24.3 9.5 17.8 -18.5 -10.1  
12 38.1 63.3 6.2 19.0 30.6 19.6 -34.2 7.5 U 5
13 32.3 2.3 35.9 28.7 11.8 21.3 -16.5 20.5  
14 9.5 13.3 31.6 25.0 0.6 10.6 -32.6 8.9 U 5
15 6.3 40.7 38.0 25.0 21.8 17.1 -27.1 -15.5 U 5
16 39.9 21.8 37.4 0.6 0.7 8.5 -36.1 39.2 U 3
17 0.5 19.2 0.4 3.7 11.7 24.5 -16.5 -11.2 C 0
18 10.4 93.6 20.0 19.3 3.9 26.0 -29.8 6.5 U 5
19 27.8 7.3 22.1 24.8 -0.3 9.3 -21.2 28.1 U 4
20 13.5 4.9 18.8 7.2 3.2 16.6 -16.8 10.3 C 0
21 21.0 32.5 2.3 16.3 17.0 16.6 -22.2 4.0 U 2
22 19.7 9.7 38.0 0.3 19.0 23.2 -22.2 0.7 U 2
23 29.3 3.2 0.0 0.4 19.1 20.8 -32.3 10.2 C 0
24 37.2 43.6 4.9 28.3 26.7 26.1 -16.8 10.6 C 0
25 7.7 11.4 12.9 25.0 14.1 20.3 -20.6 -6.3 C 0
26 13.1 21.8 14.1 22.6 9.6 18.3 4.4 3.5 U 2
27 0.7 3.9 0.5 0.3 4.2 18.3 -26.6 -3.5  
28 0.8 2.2 0.4 25.0 23.6 22.3 -33.9 -22.8 U 2
29 25.6 22.6 37.6 25.0 36.7 16.2 -30.0 -11.1 U 5
30 0.8 25.7 0.1 19.4 15.6 24.4 -16.5 -14.8 C 0
31 15.0 0.7 2.5 3.4 15.9 15.0 -22.5 -0.9  
32 41.0 2.9 4.4 23.1 37.4 16.5 -21.6 3.6 C 0
33 3.8 12.8 14.3 20.9 1.4 12.8 -27.4 2.4 U 2
34 6.5 7.2 14.4 3.7 3.7 20.9 -25.4 2.8 C 0
35 5.0 1.2 22.1 7.8 13.7 23.2 -27.5 -8.7 U 1
36 41.0 1.2 0.2 25.0 41.0 18.8 -33.6 0.0 U 5
37 19.5 5.1 21.4 2.3 38.1 19.6 -16.5 -18.6 U 7
38 12.1 44.3 0.5 19.7 6.9 13.0 -31.8 5.2 C 0
39 14.7 11.3 3.1 1.0 4.9 18.4 -23.1 9.9 C 0
40 11.7 111.7 10.4 13.6 29.0 22.6 -20.7 -17.3 U 3
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APPENDIX B 
 
 

In-Car Analog Processing Board 
 

Circuit
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