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ABSTRACT 
 

SOIL BASED VEGETATION PRODUCTIVITY MODELING FOR A NORTHERN 
MICHIGAN SURFACE MINING REGION 

 
By 

 
Dustin L. Corr 

 
The proliferation of mined landscapes and concern for the environmental impacts 

associated with these lands have led to an increased interest in developing empirical predictive 

models to quantitatively assess the vegetative productivity potentials of reconstructed soils (neo-

sols).  This research presents equations for a northern Michigan mining region based on data 

derived from the National Resources Conservation Service.  We employed principal component 

analysis to develop models to predict the vegetative productivity of corn, corn silage, oats, 

alfalfa/hay, Irish potatoes, red maple (Acer rubrum L.), white spruce (Picea glauca [Moench] 

Voss), red pine (Pinus resinosa Aniton), eastern white pine (Pinus strobus L.), jack pine (Pinus 

banksiana Lamb.), and lilac (Syringa vulgaris L.).  Soil attributes that were examined in this 

research include: available water holding capacity, moist bulk density, % clay, % rock 

fragments, hydraulic conductivity, % organic matter, soil reactivity, % slope, and topographic 

position.  Five predictive equations based on land use have been developed and are described as 

an all woody and crop equation, a xeric equation, an equation specific to jack pine, and two 

semi-wet equations of varying conservativeness. The models were highly significant (p<0.0001) 

and explained 87.93%, 74.52%, 65.33%, 91.79% and 87.68% of the variation in site productivity 

of the respective land uses.  These equations are intended to be used in efforts to assess the 

vegetative productivity potentials of reconstructed soils on post-mined landscapes. 
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INTRODUCTION 

 
The proliferation of mined landscapes and concern for the environmental impacts 

associated with these lands have led to an increased interest in developing empirical predictive 

models to quantitatively assess the vegetative productivity potentials of reconstructed soils (neo-

sols).  Accurate modeling can be used to evaluate the conditions that are most influential to plant 

growth in a given region and can aid in the creation of an optimum post-mine land use plan.  

Landscape applications of this approach include agricultural uses as well as forested lands for 

timber production, habitat creation, visual quality, carbon sequestration, and watershed 

management.  These equations provide an inexpensive alternative to many of the currently 

utilized methods used to assess the potential of disturbed lands to reach productivity levels 

greater than or equal to pre-mined conditions.  This thesis examines the current knowledge base 

associated with reclamation productivity equations, as well as investigates practical topics that 

can lead to better understanding of the application of these equations.  The research examines the 

application of a methodology published by Burley and Thomsen (1987) in a multicounty mining 

region in Michigan’s Upper Peninsula.   

 
 
1.1 UNDERSTANDING RECLAMATION TERMINOLOGY 

There are several terms that are used interchangeably throughout the collective body of 

land reclamation literature.  It is therefore important to address the nomenclature associated with 

the renewal of disturbed land resources.  Reclamation is most accurately used to describe 

instances in which the post-mine land use is planned to be different from its pre-mine land use.  

Rehabilitation and restoration are most often used to describe returning land to a previously 

realized use.  The term renewal has been used most often in instances in which there are some 



 2 

type of built development associated with the project, or in cases in which a defined land use has 

yet been established.  Throughout this thesis reclamation will be used as an all-inclusive term 

describing all activities that repair, redefine, or otherwise enhance disturbed lands, although 

discuss will heavily focus on the establishment or reestablishment of vegetation on mined lands.  

 

1.2 CONDITIONS OF RECONSTRUCTION SOILS  

Numerous mining laws mandate that soil profiles be separately stripped and stockpiled 

and subsequently reapplied during the reclamation process.  There is inevitably some degree of 

mixing of the soil profiles throughout this process, thus creating new soil textures, profiles and 

patterns.  These neo-soils are often vastly different from their pre-mining conditions and are 

associated with unsuitable pH levels, increased bulk densities, greater percentage of rock 

fragments, decreased water-holding capacity, lack of organic content and lack of microbial 

activity (Bradshaw and Chadwick, 1980; Evanylo et al., 2005). 

The pH of mined soils can change as newly exposed rock is weathered and dissolves.  

Pyritic minerals oxidize to form sulfuric acid, which can rapidly lower the pH of a soil.  For the 

majority of plants, when soil pH is reduced below 5.5, plant growth is hindered due to metal 

toxicities such as manganese or aluminum, phosphorus fixation, and reduced populations of N-

fixing bacteria (Sheoran, 2010).  Minerals containing carbonate, which is found in much of the 

bedrock within Michigan’s Upper Peninsula, increases pH as they are weathered.  Most plants 

grow in pH levels ranging from slightly acidic to slightly alkaline, so breakdown of newly 

exposed bedrock has the potential to greatly influence plant productivity. 

Soil fertility is of major concern to post-mined soils.  As previously mentioned, many 

state laws mandate that soil horizons be stripped and reapplied in a specific order.  Once these 
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horizons have been removed they are stockpiled until the land is reclaimed.  While stockpiled, 

nutrients may be leached from the soil, topsoil is eroded, and nutrient cycles are disrupted.  

Reclamation specialists often plant cover crops on soil stockpiles to slow these processes, but 

there is inevitably some degree of degradation when soils are disrupted.  Macronutrients such as 

N, P and K are commonly found to be deficient in reconstructed soils (Coppin and Bradshaw, 

1982; Sheoran et al., 2008).  In many cases, such nutrients are reintroduced through the 

application of fertilizers to establish plant cover and initiate nutrient cycling. 

One of the most influential edaphic factors that reclamation specialists must address 

during reclamation efforts is the effect of increased bulk density of soils.  Bulk densities are in 

many cases drastically increased as heavy machinery involved in earth moving practices compact 

soils.  Compaction reduces the amount of pore space within the soil, thus limiting the amount of 

water the soil is able to hold and make available to plants.  Potter and others (1988) found that 

reconstructed soils have greatly reduced hydraulic conductivity, largely due to increased 

macropore space with increased bulk density.  This reduction in pore space also reduces soil 

aeration.  Rooting of plants is also hindered by soils with high bulk densities.  Many plants will 

not penetrate soil profiles that are severely compacted.  Sheoran (2010) suggests that three to 

four feet of non-compacted media are needed to maintain available water contents adequate to 

support plant growth through periods of drought.  Darmody and others (2002) suggest that in 

instances in which compaction caused by machinery cannot be avoided, that tillage of the first 

120 cm can assuage the negative effects of highly compacted soils. 

Microbial activity in reconstructed soils is greatly reduced in comparison to undisturbed 

soils.  Microbial activity has been found to decrease with depth and as the time soils are 

stockpiled increase (Harris et al., 1989).  Microbe populations are associated with maintaining 
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soil structure, decomposition of organic matter, as well as facilitating uptake of nitrogen and 

phosphorus.  Reduced pore space of compacted soils decrease the amount of spaces in which 

these organisms survive (Edgerton et al., 1995).  Nutrient content of soils is closely linked to soil 

microbial activity.  For instance, N-fixing microorganisms are needed to fix nitrogen in the soil 

into nitrate (NO3
-).  Without sufficient populations of these microorganisms soils will be 

deficient of nutrients necessary to support vegetative growth. 

Comparing the productivities of reconstructed soils to those of undisturbed soils is often 

difficult due to the inherent differences between these soil conditions.  Reconstructed soils are 

often associated with soil attributes that are vastly different from pre-mined conditions making it 

difficult for reclamation specialists to accurately predict the abilities of these soils to support 

plant growth and to what degree.  Potter and others (1989) suggest that it is possible to predict 

post-mine productivity based on assessing soil attributes, however this practice is still being 

refined.  

 

1.3 MINE RECLAMATION LEGISLATION 

Federal involvement in surface mine reclamation began with proposed legislation in the 

1940s, which eventually led to the passage of Surface Mining Control and Reclamation Act of 

1977 (SMCRA).  Prior to the passage of the SMCRA there was no national regulatory system for 

mine reclamation in the U.S.  Many mined lands were abandoned after mining operations ceased 

with no plans for reclamation of the disturbed landscapes. 

Early mining law in the United States focused heavily on land ownership and mineral 

rights and did little to address the reclamation of disturbed lands.  As the federal government 

became increasingly involved in leasing public lands to mining operators, the environmental 
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impacts and regulation of these lands became increasingly apparent to the scientific community.  

In the early 1900s, ecologists, planners, and landscape architects throughout the United States, 

and elsewhere, became increasing concerned with the unproductive and hazardous nature of 

these lands and began raising public concern for ways to assuage the environmental impacts 

associated with mined landscapes.  However, the development of legislation in response to this 

movement toward land reclamation was slow and prior to the SMCRA, made little effort was 

made to make mine operators responsible for the reclamation of disturbed lands.  In 1914, 

Congress passed an Act that made one of the first moves toward making the mining prospector, 

the responsible party for damages, to the disturbed lands.  The Act focused on the disturbance of 

productive agricultural land, mandating a separate disposal of the surface of the land to the 

original agricultural landowner prior to the removal of any minerals.  Furthermore, the Act 

provided that the mining operation was responsible for compensation to the agricultural 

landowner for any damages to the production of the land (Colby, 1945).  Although primary 

intent of this legislation was not to mitigate the environmental impacts of disturbances associated 

with the mining practice in particular, it is used as an example to mark an important period in 

mining law in which the scientific and political communities began to actively seek change in the 

environmental policy of mined lands. 

Legislation that directly addressed the reclamation of mined lands first occurred at the 

state level.  The oldest of such state laws, was passed by the state of Indiana in 1941.  Several 

additional states enacted similar laws in the years to follow.  These early reclamation laws 

focused primarily on establishing vegetative cover, without any major concern for slope 

management of spoil piles.  Dissatisfaction with the resulting topography from these early 

reclamation efforts led to amendments in various state laws in the early 1950s, which required 



 6 

lands to be returned to particular ranges of slope (LaFevers, 1977).  Over the next two decades, 

numerous states passed and amended regulatory legislation concerning post-mined lands.  

However, inconsistencies among these state laws suggested need for national legislation to 

establish minimal criteria for reclamation. 

With growing political concern for environment protection in the 1960s, the federal 

government began proposing legislation that would create a federal law to regulate mining 

operations and reclamation of post-mined lands.  The House of Representatives’ Bill 25, which 

proposed such legislation, was voted in by congress but subsequently vetoed by President Ford 

in May of 1975.  However, the idea for federal surface mining regulation was reintroduced as 

H.R. 2 to President Carter soon after taking office.  The bill was quickly signed into law 

thereafter on August 3, 1977 (Simpson, 1985).   

In accordance with the National Environmental Policy Act of 1969, the federal Office of 

Surface Mining (OSM) released an Environmental Impact Statement (EIS).  The EIS released by 

the OSM in 1979 outlined the purposes of the Act as to: “1) establish a national program to 

protect society from the adverse impacts of coal mining; 2) where reclamation as required by the 

Act is not feasible, to prohibit mining; 3) to require contemporaneous reclamation (no lag 

allowed); 4) to balance coal production with the preservation of agricultural lands; 5) to assist 

states in developing, administering, and enforcing a regulatory program; 6) to reclaim abandoned 

mine lands; 7) to insure public participation in the development of regulations, standards and 

programs within the SMCRA” (Burley, 2001 pg. 77).  A full list of objectives is listed in the 

official congressional Statement of Purpose of the SMRCA of 1977.  The implicit intent of the 

bill was not to prevent the surface mining of coal, but rather to set boundaries for these 
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operations that expressed the societal inclination that reclamation must be an integral component 

of mining operations (Munshower and Judy, 1988). 

Although the SMCRA developed a national regulatory system for mine reclamation, the 

act imparted the primary responsibility of surface mining regulation and reclamation standards to 

state governments.  Congress authorized state governing bodies to administer surface mine 

regulations as each deem fit so as to address the unique natures of their states’ various terrains, 

climates, biological factors, geochemical factors, among other conditions that affect coal mining 

areas (Workman, 1987).  State regulations, therefore, vary considerably causing much debate 

over the effectiveness of the SMCRA.  Some critics argue that the SMCRA of 1977 and many 

state mine reclamation laws overly emphasize water quality and erosion control, often 

compromising site productivity, reforestation, carbon sequestration, and seeking alternative 

productive land uses (Rodrigue and Burger, 2004).  Other criticisms focus on the confusion the 

duality of regulation that state and federal mandates can impose on mine operators (Lucas, 

1987).  Despite perceived flaws, the SMCRA of 1977 currently sets minimal standards for 

surface coal mining operations and reclamation efforts in the U.S.  All other additional mandates 

are the responsibilities of the states to administer. 

Although the SMCRA of 1977 requires mined lands to be reclaimed, the language that is 

used leaves a significant amount of interpretation to be had in regards to what is considered 

reclaimed.  Section 515 of the SMCRA of 1977 requires mining operations to “restore the land 

affected to a condition capable of supporting the uses which it was capable of supporting before 

any mining, or higher or better use”.  The inexplicit condition “higher or better use” can be 

interpreted in many ways.  When considering an alternative uses for post-mined lands there are a 

variety of issues reclamationists explore to determine if the use is indeed “better”.  Smith (2001) 
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presents a Canadian case study in which describes productivity calculations that assess the 

productivity of a pre-mined land use of a forested landscape when compared to its post-mined 

land use as a cattle ranch.  However, comparisons among less comparable factors such as 

environmental benefits (wildlife habitat, stormwater management, carbon sequestration, etc.), 

economic benefits (crop and fiber production, tourism, job creation, etc.), and social benefits 

(recreation, aesthetics, education, etc.) may all be considered when evaluating the 

appropriateness of an alternative post-mined land use.  Actually quantifying these factors is 

difficult in many cases.  Moreover, accurately predicting the probability that these land uses can 

be brought to fruition can be particularly challenging and costly.  Due to the intentionally vague 

language of the SMCRA, states have formed their own laws that address the distinctive concerns 

regarding mine reclamation.  

 

1.4 MICHIGAN RECLAMATION LEGISLATION 

Currently mining in the state of Michigan is regulated and enforced by the Michigan 

Department of Environmental Quality (MDEQ).  Regulation of mining operations and 

reclamation is mandated under Parts 615, 625, 631, 632, 635, and 637 of Public Act 451, the 

Natural Resources and Environmental Protection Act (NREPA).  These parts regulate the mining 

of oil and gas, mineral wells (mineral exploration), general mine reclamation rules, nonferrous 

metallic mining, coal mining, and sand dune mining respectively.  Although regulations of 

mining types vary to some degree, due to the means of extraction and geological conditions 

associated with the location of the mined material, all types require the submittal and acceptance 

of proper permits including a reclamation plan before extraction begins.   
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MDEQ require mining companies to submit reclamation plans as part of the permit 

application process.  Part 632 section 324.63527 [2.b] of the NREPA requires submission of a 

reclamation plan that will effectively “restore the land affected to a condition capable of 

supporting the uses that it was capable of supporting prior to any mining, or higher or better 

uses”.  The vague language “higher or better use” is echoed from the 1977 SMCRA.  Although 

this undefined language gives reclamationists flexibility when determining post-mine land uses, 

it lacks identification of proper means of quantifying productivity.  Additionally the law requires 

that A and B soil horizons be stripped, stored, and reapplied separately, unless information can 

provided that an available alternative would be more supportive to vegetative growth.  The 

flexibility in this section gives reclamationists the opportunity to explore different substrates to 

be applied as growth media.  A considerable amount of research has investigated the applications 

of various alternative substrates as growth media or soil amendments (Zornoza et al., 2012; 

Watts et al., 2012; 

 

 

žek et al., 2012, Beauchamp et al., 2006; Tripathy et al., 2008).  

However, regionally based field testing should be conducted to verify the interaction of these 

amenities with other soil properties. 

The law further specifies that the reclamation plan will restore “the productivity of the 

land prior to mining, based on the average yield of food, fiber, forage, or wood products 

consistent with productivity of similar lands in this state under best management practices”, as 

stated in Michigan Public Act 451 of 1994 part 635 section 324.63518.iii.  Expected biomass 

production, many times in the form of crop yields, is used to establish a predicted level of 

productivity that the post-mined land can support.  However, there is no specified, appropriate 

method for predicting productivity levels within the law.  In many cases, productivity of 

reference areas is used to compare to post-mined lands.  Doll and Wollenhaupt (1985) criticized 
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this method, describing it as unreliable and costly.  Despite the perceived flaws of the methods 

used, P.A. 451 Rule 9 of section 425 empowers “the supervisor of reclamation” to evaluate the 

reclamation plan to determine if it adheres to the mandates of the act.  It is the authority of this 

person to assess the productivity of the land prior to mining, yet not acceptable evaluation 

method is specified.  It is therefore beneficial to explore accurate methods of quantifiably predict 

vegetative productivity of post-mine soils based on observed crop yields within the mining 

region. 

Burley (2001) compares several state reclamation laws.  In this Burley acknowledges the 

applicability of a regression approach to many state mandates that require comparative 

productivity level studies of pre-mined and post-mined lands.  Although vegetative productivity 

models, such as the one explored in this research, are not yet required by any state, these models 

show great potential to accurately predict state mandated vegetative success rates.  

 

1.5 RECLAMATION EVALUATION APPROACHES 

Reclamation specialists are concerned with creating models to predict vegetative 

productivity.  Essentially, four general ecological model types have been developed that can be 

applied to predict post-mining soil productivity to assess vegetation growth of agricultural crops, 

rangeland plants, and woody plants (Le Cleac’h et al. 2004; Burley et al., 2001).  Although some 

states’ laws explicitly express the method to compare the productivity level of pre-mined and 

post-mined soil productivity levels, each of these models has been used in past reclamation 

efforts throughout the United States.  Recognition and understanding of these model types gives 

reclamationists a broader understanding of past and present reclamation practices and inherent 

advantage and disadvantages of each described. 
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The first model is a heuristic method, known as the “reconstructing nature” approach. 

Federal and many state laws mandate that mine operators strip and stockpile A, B and C 

separately so that these horizons may be reapplied in the correct order during reclamation.  

Although stratified stockpiling is supposedly an important and beneficial process, results are 

extremely variable with limited ability to predict vegetative performance and have not been 

validated by adequate research.  Dancer and Jansen (1981) as well as McSweeney and others 

(1981) discovered that replacement or alteration of claypan subsoils commonly found in southern 

Illinois improved the chemical and physical properties of mined land.  Here, mixtures of B and C 

horizons showed greater vegetative growth compared to B horizon materials alone.  Stripping 

and reapplication of A horizon material is extremely important and a heavily used method in the 

reconstruction of prime farmland as a post-mined land use.  However, mandates of topsoil depths 

to be respreads are dependent on the characteristics of the soil material and the crops to be grown 

(Friendland, 2001).  Mandated depths vary depending among state due to differences in edaphic 

parameters including soil depth to bedrock or depth to toxic materials. 

Post-mined soils are often vastly different from their pre-mining conditions (refer to 

section entitled Conditions of Post-mined Soils for a description of the potential differences and 

causes for these differences among post-mine and pre-mine soils).  Recreating soil system with 

similar productivity levels based on attempted recreation of pre-mine conditions is therefore, 

difficult.  The first model, although requiring minimal planning, has proven to be a poor 

predictor of vegetative performance. 

The second model is a statistical comparison method known as the “reference site” 

approach.  In this approach soils from an undisturbed site are compared with the same or a 

similar, nearby mined site.  If no statistical difference exists between undisturbed soils properties 
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and those of post-mined soils, the reclamation effort is deemed acceptable.  Zipper and others 

(2011) investigated the reforestation potentials of 25 sites in the Appalachian region of the 

eastern United States and found that post-mined landscapes were comparable to nearby 

undisturbed lands.  The results of the study indicated that post-mine soils have the capacity to 

support productive forest vegetation and identify conditions that affect growth.  However, such 

studies do not give a quantified prediction of vegetative productivity potential and are associated 

with extensive and costly data collection (Burley, 2001).  Doll and Wollenhaupt (1985) 

described the reference site approach as “an unreliable and expensive means of evaluating 

reclamation success”.  Although this model is appropriate, and widely used to assess post-mine 

growth potentials, it does little to predict post-mine vegetative productivity. 

The reference site approach often determines successful restoration based on a 

comparison of post-mining crop yields to those of similar, undisturbed reference areas.  Once 

adequate or comparable yields have been achieved, the land is considered reclaimed, thus 

satisfying the obligations of the mining operation.  Upon satisfaction of reclamation obligations, 

the bond held by the governing body is released, withdrawing all financial connection to further 

reclamation.  Such post-reclamation evaluation methods to determine neo-sol productivities are 

often conducted once the opportunities to cost effectively amend the soils are lost (Burley, 1987).  

It is therefore, important to investigate methods to that are capable of accurately predicting 

vegetative productivity of post-mined soils so as to give reclamation planners opportunities to 

address identified soil factors that inhibit optimal growth prior to the establishment of a post-

mined land use. 

The third model, the “sufficiency” approach, employs a series of expert derived tables 

and charts.  Here the soil is evaluated based on defined criteria and either accepted as sufficient 
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or rejected.  This approach has been used to evaluate vegetative productivity potentials by 

assigning point values to particular soils attributes, and is commonly used by foresters to predict 

biomass production rates of various tree species.  Foresters often investigate volume 

measurements, plant indicators, and height growth indexes to evaluate sites (Woolery et al., 

2002).  Baker and Broadfoot (1978, 1979) used the sufficiency approach to develop methods to 

predict potential tree heights based on soil data published by the Natural Resource Conservation 

Service (NRCS).  The methodology, as defined by Baker and Broadfoot (1978, 1979), assigns 

point values representing conditions that are good, fair, and poor for vegetative growth.  These 

values were weighed depending on importance to plant growth and totaled to determine the 

predicted growth rates of a given tree specie.  Neill (1979) used a similar index methodology.  

Neill’s work led to the identification of most of the soil factors useful for the regression analysis 

approach.  Doll and Wollenhaupt (1985) later refined Neill’s index approaches and applied the 

method to post-mine soils.  However, the equation derived by Doll and Wollenhaupt is heuristic 

and hypothetical (not statistically validated) and could therefore not be mathematically applied to 

actual situations.  More recent studies have been employed the index model with research 

conducted in the Mississippi River Valley (Belli, 1998; Groninger, 2000).  Similar to other 

heuristic index models, these studies lack statistical reliability yet established fundamental 

precedents leading to creation of more accurate statistical models.  However, Potter and others 

(1988) argue that this model is beneficial in cost-effectively assessing the amendment and 

treatment needs of post-mine soils based on pre-mined soil conditions. 

According to Burley and Thomsen (1987), index productivity models, do not address at 

least six major points.  1) Soil attribute interactions are not accounted for.  Soil attributes can 

interact independently with crop production, grouped with other soil attributes interacting 
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collectively but independent from other soil attributes, or completely interdependent.  For 

instance, research shows that electric conductivity (EC), is a soil attribute that correlates with 

many soil properties that exist in most agriculturally supportive lands such as clay content, 

organic matter, and bulk density, but is traditionally used to quantify soluble salt contents 

(Corwin and Lesch, 2005).  However, the degree in which these attributes interact together to 

affect plant growth is unknown.  These attributes may be further complicated by secondary 

interactions with additional attributes as well.  In many existing index models, soil attributes are 

all multiplied as though it were one interaction model despite a lack of statistical basis to do so.  

2) Soil attributes may also exhibit non-linear responses such as squared terms, which are not 

represented in index models.  Squared terms represent soil attributes that increase or decrease 

productivity to a certain point and then reverse its trend.  These attributes are extremely 

important when explaining instances such as when moderate amounts of available water content 

aids in a plants ability to grow, yet when a point is reached in which soils are overly saturated, 

plant growth is hindered.  3) Constants, also known as beta coefficients, are absent from index 

models, yet it may be appropriate to consider slope constants and intercepts.  4) Interactions of 

crop types are not reflected in index models.  Soil attributes may affect various crop types 

differently and therefore warrant separate equations to describe the predicted productivities.  

This is discovered in statistical models by investigating what crop types covary together.  If two 

or more crop types covary they can be described by the same equation.  5) Regionality may be a 

consideration when selecting soil attributes to investigate.  Some attributes may not be 

significant to include in certain regions while important to other models.  Electric conductivity, 

as an indicator of problematic soluble salt content is mostly associated with arid regions, such as 

those found in the American southwest (Powers et. al, 1978).  Electric conductivity may not be 
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beneficial to investigate if in a region that soil salinity is not as prominent such as the American 

northeast.  Researchers must consider regional differences that significantly affect edaphic 

conditions when determining characteristics to investigate.  6) Finally, the significance of the 

attributes is not considered.  Soil attributes may vary in significance or not included at all in the 

equation.  For example, crop yields of specific plant groups may be reduced if available water 

levels are too high or too low.  Although available water is known to effect plant growth, when 

investigated with other attributes such as bulk density and percent organic matter, available water 

may not contribute to the accuracy of the model and therefore be omitted from the final equation.  

In addition to these six points, Burley (1995) also describes his concern for restrictions of 

variable exploration.  Firstly, soils explored in this approach are often restricted to a limited 

number of soil types.  Secondly, vegetation variables are often restricted to one type that 

describes all crop types.  Other approaches may be further investigated for a broader range of 

soils and a more focused group of plant types. 

The fourth and final model describe here is the statistical “regression analysis” approach, 

in which empirical evidence is used to develop equations that predict vegetation performance.  

Similar to the reference site approach, the regression analysis approach is associated with 

extensive data collection, which can take years to collect.  Development of a reliable statistical 

productivity equation requires a data set derived from growth of various species across all soil 

types averaged over a ten-year period (Burley, 2001).  For this reason many researchers have 

pursued sufficiency models in lieu of investigating regression models.  The Natural Resources 

Conservation Service (NRCS), however, has compiled substantial county-based data that may be 

applied to alleviate the costs associated with the data collection process necessary for the develop 

of an accurate model employing the regression analysis approach.  Similar studies have 
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employed (NRCS) data to reduce the costs associated with data collection need for statistical 

analysis of vegetative productivity potentials (Le Cleac’h et al., 2004; Woolery et al., 2002; 

Burley, 2001; Groninger et al., 2000, Burley et al., 1996; Burley, 1995a & b; Barnhisel and 

Hower, 1994; Burger et al. 1994; Burley and Bauer, 1993; Barnhisel et al. 1992; Burley, 1991; 

Gale et al., 1991; Burley, 1990; Burley and Thomsen, 1990; Burley et al., 1989).  Studies by 

Woolery and others (2002) and Groninger and other (2000) used the regression approach to 

predict tree growth in southern Illinois.  These studies used regression of a combination of 

collected soils data and expect derived indexes.  Although their methods are considered 

scientifically accurate, the methodology described by Burley and Thomsen (1987) limit the 

amount of theoretical information (derived indexes) by limiting the amount of qualitative 

assumptions about variables explored.   

Burley and Thomsen (1987) describes the methodology for establishing empirically 

derived equations for predicting vegetative productivity.  The first equation to use this 

methodology was developed by Burley et al. (1989) and is used in this research to investigate 

vegetative productivity on an area in Michigan’s Upper Peninsula. 
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METHODS 
 
 
 

2.1 METHODOLOGY 

Independent variables are representative of physical and chemical characteristics of each 

soil investigated.  Soil factors included in similar studies include topographic position, percent 

slope, percent organic matter, bulk density, soil reactivity, percent clay, percent rock fragments 

greater than 3 inches in diameter, hydraulic conductivity, and available water content.  These 

characteristics were selected based on the work of Neill (1979), and later refined by other 

researchers Doll and Wollenhaupt (1985).  Data for soils are available in published NRCS 

county soil surveys, which provide these characteristics for nearly all soils included in the 

surveys.  Other soil characteristics may be investigated if data is available.  Additionally, the 

values for the soil characteristics must be available for the first 48 inches of each soil type.  In 

some cases, availability of soil characteristic values was limited by the depth of the soil type.  

This was often due to shallow soils over bedrock or high water tables.  The values that were not 

included in the NRCS tables must therefore be interpolated based on other empirical evidence.    

Soil productivity has been linked to soil depth.  According to research conducted by Doll 

and other (1984), soil depths affect vegetative productivity in different proportions.  The research 

describes a soil weighing method in which soil characteristics are assessed based on depth.  This 

method contributes 40% of the total crop yield to the first 12 inches of the soil profile.  Inch 13 

to inch 24 contribute 30% of the crop yield, while inches 25 through 36 account for 20% of the 

yield.  Finally, inches 37 through 48 contribute 10% of the crop yield value.  This research 

suggests that 100% of the crop yield value can be attributed to the first 48 inches of the soil 

profile.  Although it could be argued that this weighing method is flawed as being only an 
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estimate of the relationship between soil depth and plant productivity, there has been no other 

method found that can provide a more accurate means of this affect.  This methodology employs 

this soil characteristic weighing method to gain a more accurate assessment of soil-plant 

correlations. 

To be statistically analyzed variables must be represented as a single value.  Deriving 

single values NRCS soil surveys is complicated by the way in which the data provided is 

presented.  Firstly, soil attributes are often given ranges of values as opposed a single value.  

Bulk density, for example may be given a range of 1.0 g/cc to 2.0 g/cc for a given depth.  This 

range must be averaged so as to generate a single value, a value of 1.5 g/cc in this example.  

Secondly, the chemical and physical soil characteristics provided in NRCS soil surveys are often 

presented according to soil profile depths.  For example, a characteristic such as pH may be 

given for depths of 0 to 8, 8 to 25, 25 to 32, and 32 to 80 inches.  These values must be 

reorganized into appropriate depth ranges so they can be weighed according to the weighing 

method used in this methodology. 

Dependent variables in the vegetative productivity models are typically crop harvest data 

and woody plant growth rates.  Crop yield data should be collected over several growing seasons 

including years of differing amounts of precipitation and temperature ranges, such as data 

provided by the NRCS.  Gaining data that has been collected over several seasons, gives a more 

accurate understanding of crop yields in a typical year.  It is important to note that crop yields 

must be actual measured quantities and not derived from another index.  Modeling of values 

derived from other indexes will result in similar equations to the existing index, and thus result in 

no further understanding of the data.  Crop harvest data may be expressed in terms of various 

units, most commonly bushels per acre, tons per acre, or pounds per acre. The NRCS presents 
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woody plant growth data in terms of feet of growth per year, although other growth rates or plant 

volumes could potentially be used.  Dissimilar units of measurement among vegetative types do 

not necessarily pose a problem. 

Units of measurement may vary among both independent variables and dependent 

variables.  For example, discrepancies in soil characteristic (independent variable) units include 

g/cc for moist bulk density and percentages for characteristics such as for clay content and 

organic content.  Similarly, crop data can be presented as tons per acre or bushels per acres.  It is 

therefore necessary to standardize by a mean of zero and a variance of one all variable to 

accurately compare variables with different units of measurement.  If variables are not 

standardized, variable with higher real number values will dominate the equation.   

Furthermore, these larger real numbers may not even be greater quantities than their 

smaller counterparts.  Crop yields, for instance, may be presented as 75 bushels per acre of oats 

and 13 tons per acre of corn silage for a given soil unit.  In this example, 13 tons of corn silage is 

a much larger quantity than 75 bushels of oats, but this is not reflected in the real number values 

of the data.  According to the United States Department of Agriculture (USDA, 1992), one ton of 

oats contains 68.8944 bushels.  By converting bushels of oats to tons of oats per acre, a value of 

approximately 1.1 tons per acre of oats is found.  The converted value of 1.1 is a much smaller 

real number than 75, and now oats has a much smaller relative value when compared to the 13 

tons per acre value of the corn silage.  Such conversions are time consuming and in some cases 

are not able to be made, such as converting units of g/cc to In/hr.  Standardizing crop and soil 

data alleviates the complications associated with different units and makes it possible to analyze 

variables with different units.  All variables must be standardized to be converted to z-scores of 

the crop yield or soil characteristic sets of observations. 
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Once the data is standardized and organized it is ready to be analyzed.  At this point it is 

possible to create regression equations for each crop type.  However, creating separate equations 

may not be necessary.  It may be possible to combine multiple crop types into one equation.  By 

investigating the multivariate relationship among crop types using Principal Component Analysis 

(PCA), it is possible to identify crop types that covary and can therefore be combined into one 

equation.  PCA is used to determine the number of dimensions needed to explain the variance 

across all crop types.  Simply put, PCA is a dimension reduction tool.  In this method each 

dimension explains a set a crop types that covary together.  Ideally, all crop types will covary 

and investigators will be able to derive one equation that will explain all crops from one 

dimension.  If all crops do not covary the investigator may have to develop additional equations 

to explain one or multiple significant dimension.  For instance, if PCA shows that soybean and 

corn silage covary together, while white pine (Pinus strobus L.) and red maple (Acer rubrum L.) 

covary together, these four crop types can be described within two different dimensions.  

Therefore, two separate equations will need to be developed to explain all four crops.  In this 

way PCA is extremely helpful to simplify large amounts of variable.   

The PCA procedure begins with a selected set of dependent variable to be investigated 

being organized into a covariance matrix.  PCA of the matrix will generate a set of eigenvalues 

that represent each dimension of the dataset.  The maximum number of dimensions is equal to 

the number of crop types (dependent variables) in the dataset.  This means that if a total of seven 

crop types are used, there can be no more than seven dimensions.  The largest eigenvalue will be 

the first value of the PCA results and can be no greater than the number of variables investigated.  

Furthermore, the sum of all eigenvalues can equal no greater than the total number of variables.  

For example, if there are three vegetative types used and the first eigenvalue is 2.6, the sum of 
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the remaining two eigenvalues must be equal to 0.4.  The proportion of each eigenvalue of the 

total dimension illustrates how much of the variance is explained by that eigenvalue.  These 

values can also be added to gain a perspective on how much a group of variables explains.  For 

instance, if the first five of nine eigenvalues represent 90 percent (a combined value of 8.1) of 

the variance, the remaining four eigenvalues represent only 10 percent (a combined value of 0.9) 

of the variance.  In this way researchers are able to interpret the significance of eigenvalues so as 

to more accurately make decisions on what is significant to the study. 

Eigenvalues greater than 1.0 are considered to represent significant dimensions worthy of 

further investigation.  In smaller data sets, those consisting of less than 100 soil types, 

eigenvalues greater than 0.8 should be selected.  However, it is recommended that a data set 

consists of approximately 100 independent variables for accurate modeling.  Table 1.1 gives an 

example of an eigenvalue table that examine 11 crop types.  The results in Table 1.1, Table 1.2, 

as well as in Table 1.3 were taken from preliminary trials of data used in this study, but were not 

used in further investigations.  These results are used strictly for illustrational purposes and do 

not reflect any actual results used to develop equations in this study.  The first four eigenvalues, 

represented by Prin1, Prin2, Prin3, and Prin4, are significant enough to be considered for further 

modeling analysis (>1.0).  Additionally, notice the results give the relative proportion of the data 

that each dimension explains.  Collectively the first four eigenvalues explain more than 79% of 

the variance. 
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Table 1.1 Example eigenvalue table.  These results are strictly to illustrate the methods of this 
study and do not reflect any actual values derived from this investigation. 
 
 
                                      Eigenvalues of the Covariance Matrix 

 
                Eigenvalue    Difference    Proportion    Cumulative 

 
Prin1    3.46188048    0.90373795        0.2978        0.2978 
Prin2    2.55814253    0.69077766        0.2200        0.5178 
Prin3    1.86736487    0.53020775        0.1606        0.6784 
Prin4    1.33715712    0.64996588        0.1150        0.7934 
Prin5    0.68719124    0.17634190        0.0591        0.8525 
Prin6    0.51084934    0.15208652        0.0439        0.8965 
Prin7    0.35876282    0.04780339        0.0309        0.9273 
Prin8    0.31095943    0.03326234        0.0267        0.9541 
Prin9    0.27769709    0.14698777        0.0239        0.9779 
Prin10  0.13070932    0.00494302        0.0112        0.9892 
Prin11  0.12576630    0.12576630        0.0108        1.0000 

 
 
 
 Significant dimensions are then investigated by examining the eigenvector coefficients.  

Table 1.2 investigates the four significant dimensions from Table 1.1.  Eigenvector scores range 

from 1.0 to -1.0.  These scores indicate the strength of the association with the corresponding 

principal component axis.  Scores close to 1.0 or -1.0 are considered to be strongly associated, 

while scores closer to 0 are considered weaker.  Positive scores indicate a positive association 

and negative scores indicate negative associations. 

 
Table 1.2 Example eigenvalue chart. These results are strictly to illustrate the methods of this 
study and do not reflect any actual values derived from this investigation. 
 

                                         Eigenvectors 
 

           Prin1           Prin2           Prin3           Prin4 
 

Corn                           0.383742     -.103134     -.032841      -.486517 
Corn Silage                0.477603     -.186402     -.000236      -.390847 
Oats                            0.328985     -.223164     0.045024     -.072393 
Irish Potato                0.457793     -.099761     -.372264      0.385713 
Alfalfa Hay                0.363850     -.099289     -.162625       0.376985 
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Table 1.2 (cont’d) 
Red Maple                 0.144508     0.078080     0.608105     -.015604 
White Spruce             0.220520     0.027231     0.435188     0.455841 
Red Pine                     0.152413     0.522985     -.101128      0.080511 
Eastern White Pine   0.226707     0.482660     0.222298     0.108421 
Jack Pine                    0.073695     0.428711     -.394658     -.129633 
Lilac                            0.157724     0.433474     0.239349     -.267075 

 
 

Interpretation of the eigenvector analysis allows researchers to understand the potential 

for each principal to be translated into a vegetative productivity equation and which of the 

dependent variable developed models will describe.  It is important to understand how to 

interpret these results so as to create models that will be most helpful for specific intent.  By 

understanding ways in which crop types covary, researchers are better able to derive equations 

that will predict vegetative growth for particular planning objectives such as agriculture lands, 

habitat creation, aesthetics, carbon sequestration, or growth for lumber production.  It is 

suggested that interpretation of the eigenvectors be conducted in order, as this is the order of 

significance.   

Eigenvector results are presented and can be interpreted in three main ways; all positive 

numbers, some positive and some negative numbers, and one positive number with all other 

numbers negative.  All positive values, especially in the first principal component column 

reveals that all crop types covary in this dimension, suggesting that one model could be derived 

to explain all crop types.  It is preferred that all crop types can be explained in one equation, as in 

the example of principal 1 of Table 1.2.  Alone, however, this example principal only explains 

29.78% of the total variance (refer to Table 1.1).  Therefore, it may be useful to investigate 

additional models.  Because the first four principals in Table 1.1 have eigenvalues greater than 

1.0, further analysis of these principals is recommended. 
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Both positive and negative values within one eigenvector, indicates a predictive model 

that describes soil characteristics that support two contrasting sets of crop types.  The second 

principal of Table 1.2, for instance, shows that the first six crops covary together, all having 

positive signs, while the last five crop types, all having negative signs, covary together.  Notice 

that all crop types with a negative sign are agricultural field crops, and that all those with a 

positive sign are woody plants.  Therefore principal 2 may be investigated further as a field crop 

versus woody plant model in which positive scores show favorable conditions for woody plants 

and negative score for conditions that favor field crop production. 

Eigenvectors with one positive number and all the remaining values are negative, can be 

further investigated to derive equations for one crop type.  In these types of vectors, the equation 

will be suitable for predicting the vegetative success of the crop type with the positive value.  

Burley (1990) derived a single crop equation for sugar beets in a similar study. 

Once eigenvectors (dependent variables) have been identified and soil characteristic data 

has been weighed, the data set is ready for regression analysis.  Regression analysis is used to 

examine the ability of soil attributes to predict the vegetative productivity of investigated crop 

types.  This procedure identifies main affects (ex. % clay), squared terms (ex. % clay x % clay), 

and two variable interaction terms (ex. % Clay x pH) as they correspond to dependent variables.  

Important variables are then entered into a stepwise regression procedure.   The maximum R-

squared improvement technique is used to create a list of possible equations. 

Selecting the strongest equation is determined by selecting an equation with the largest 

explanation of the data, represented as an R-squared score, for equations presented that consist of 

significant p-values.  P-values less than or equal 0.05 are considered specific, while those less 

than 0.01 are considered highly specific (refer to Table 1.3).  Burley and Thomsen (1987) 
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recommend searching for two types of models when considering possible equations.  The first 

type of model is one in which all p-values are less than 0.01 and an R-squared value greater than 

0.7.  If this does not exist, it is suggested that an equation in which all variables have p-values 

less than 0.05 and has an R-squared value greater than 0.7. 

 
Table 1.3 Example Stepwise Maximum R2 Improvement acceptable equation.  These results are 
strictly to illustrate the methods of this study and do not reflect any actual values derived from 
this investigation. 
 
 

Maximum R-Square Improvement: Step 26 
Variable SLCL Entered: R-Square = 0.7563 and C(p) = 10.0819 

 
                                                         Sum of           Mean 
          Source                       DF        Squares         Square       F Value     Pr > F 
 
       Model                        12          45409       3784.04297      20.95     <.0001 
           Error                          81          14632        180.64020 
            Corrected Total          93          60040 
 
 
 
                                      Parameter        Standard 
                Variable         Estimate            Error            Type II SS     F Value    Pr > F 
 
                Intercept      -52.67096   19.35937       1337.13197       7.40        0.0080 
                SL2              -0.20017   0.04212         4080.71941      22.59      <.0001 
                BD2             70.25217   13.36404       4991.81143      27.63      <.0001 
                AW2            2826.95353      895.83163     1798.86660      9.96          0.0022 
                TPSL           1.51899            0.27008         5713.91270      31.63      <.0001 
                TPFR           1.44884            0.34309         3221.41360      17.83      <.0001 
                TPPH           -1.80908           0.40871        3539.23420      19.59      <.0001 
                TPOM          -4.26685          1.06019         2925.92286      16.20      0.0001 
                SLCL           0.08558            0.04244        734.56634         4.07        0.0471 
                FRBD          -6.97459           1.31855        5054.26848       27.98      <.0001 
                FRHC          1.01052            0.14887         8323.08235      46.08      <.0001 
                FROM         1.35934            0.59059         956.97113        5.30        0.0239 
                BDAW        -636.30437      165.40282      2673.36574      14.80      0.0002 

 
Bounds on condition number: 86.929, 4546.4 
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Table 1.3 illustrates an example of significant stepwise regression equation.  From a list 

of potential equations, researchers are to select the equation with the least significant p-values 

that explain the most variance of the dataset.  This example explains 75.63% of the variance (R-

square = 0.7563).  Additionally, all 12 of the variables are considered significant (<0.05) and all 

but two variables are considered highly significant (<0.0001).  This equation would be 

considered acceptable to be developed into an accurate equation. 

 The resulting equations from the process described here employs soil parameters to 

predict a productivity index.  The productivity index is a unitless value that indicates relative 

productivity of a given soil.  Typically index scores have ranged from five to negative ten, with 

scores near five indicating highly productive soils and scores near negative ten being highly 

unproductive (Le Cleac’h, 2004).  These scores should be used in conjunction with eigenvector 

values to indicate the appropriateness of a soil to plant species that are associated to varying 

degrees with the equation employed. 

 
2.2 STUDY AREA 
 
Figure 1.1 Location of study area in Michigan. 
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County selection for compiling a data set should be based on availability of data provided 

by the NRCS, or similar reliable source, and proximity to the site of interest.  Soil surveys 

developed by the NRCS are generated after years of data collection and released as a county 

based document.  Although this research uses entire counties to develop data sets, it is possible to 

create models based on specific geological, climatological, social, or other identified boundaries.  

The area of study is located in the western Upper Peninsula of Michigan.  The geology of 

the region is largely composed of sedimentary and igneous rock that is covered by glacial drift.  

Both of these types of rock are important to human activity.  Sedimentary rock is often 

associated with extractable commodities such as petroleum, natural gas, salt, gypsum, and 

limestone.  Igneous rock in the region is associated with extractable minerals, most notably, iron 

ore and copper.  The mining of iron ore and copper accounts for the majority of mined surface 

area in the region, most of which occurs in Marquette County, Michigan. 

Marquette County is of particular interest to reclamationists as it currently hosts a large-

scale iron ore mining operations and has recently opened a copper mine.  However, the NRCS 

has not released the appropriate crop and woody species data necessary for the methodology 

employed in this study.  Burley (1995a) found that multicounty models could be developed that 

could be applied throughout a region.  Therefore, two adjacent counties that provided the 

appropriate yield and growth rate information, Iron County and Dickinson County, were 

selected.  All three counties mentioned are within the Menominee Iron Range with the Marquette 

range in Marquette County, the western range in Iron County and the eastern range in Dickinson 

County.  The similar geologies of the three counties of interest lend themselves well to the 

creation of a regional model.  
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Figure 1.2 Locations of mines and mine exploration sites in the Michigan’s western Upper 
Peninsula. For interpretation of the references to color in this and all other figures, the reader is 
referred to the electronic version of this thesis. 

 
 

Historically, all three counties have been mined.  Figure 1.4 illustrates the locations of 

mines and exploration sites.  Michigan is divided into four major metallic mining ranges, the 

Copper Mining District of Keweenaw, Houghton and Ontonagon counties; the Marquette Iron 

Range of Marquette and Baraga counties; the Menominee Iron Range of Dickinson and Iron 

Counties; and the Gogebic Iron Range of Gogebic county.  Although not within the same range, 

the similarities in mining histories and extraction methods of ores makes the counties in which 

data was derived from, Iron and Dickinson counties, and other mined counties within the region, 

most notably Marquette County, comparable. 
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2.2a Iron County 

Iron County has a long history of mining that began when surveyors reported abnormal 

compass readings in 1846.  Soon after, iron ore exploration led thousands to the area to prospect 

the land, of what is now know as the western Menominee range.  Lumbering also grew rapidly as 

an economic activity.  Extensive iron formations were discovered near the Iron River and Crystal 

Falls.  When the Chicago and Northwestern Railways reached the eastern range in 1882, miners 

had reportedly extracted 74,000 tons of ore. Mining steadily grew over the next forty years when 

it finally reached peak production in the 1920s (Linsemier, 1997).  According to Linsemier 

(1997), the Sherwood was the last active mine in Iron County.  Currently, approximately 90 

percent of the Iron County is forest, which is largely dominated by sugar maple (Linsemier, 

1997). 

Iron County is located in the high plateau region with land formations resulting from 

continental glaciation.  Major bedrock types include the Michigamme slate and associated 

formations including greywacke, greenstone, and quartzite deposits.  Although outcrops are 

common throughout the county, most of the area is covered by glacial drift.  The landscape is 

characterized by rolling ground moraines, end moraines, steep ice-compact features, and outwash 

plains.  Soils are predominately Spodisols, characterize as fine sands to sandy loams in texture 

(Albert, 1995).  Linsemier (1997) describes the taxonomic classification of each soil type 

examined in this study. 

 

2.2b Dickinson County  

Similar to Iron County, the early history of Dickinson County is largely shaped by its 

lumber and mining activities.  The contemporary economic activities within the county are 
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heavily dependent upon the tree growth for lumber, pulpwood, and fuel (Linsemier, 1989).  The 

physiology of the county is the result of continental glaciation, dominated by moraines, till 

plains, and outwash plains.  More than 90 percent of Dickinson County is forested, with a similar 

species composition as Iron County. Albert (1995) describes the soils of the county to be thin 

layers of sandy to loamy sand soils on bedrock.  A description of taxonomic classifications for 

all soils investigated in this study are provided by Linsemier (1989). 

 

2.3 VARIABLES INVESTIGATED 

 Independent variables employed in this study included nine soil parameters.  The soil 

parameters investigated in this study were available water holding capacity, moist bulk density, 

percent clay, percent rock fragments, hydraulic conductivity, percent organic matter, soil 

reaction, percent slope and topographic position.  Units and abbreviations of these variables as 

they are shown in the following results are included in Table 1.4. 

 
 
Table 1.4 Independent variable soil parameter units and abbreviations as they appear in the 
regression models and final developed equations. 
 

Abbreviation Factor Unit of Measurement 
AW Available Water Holding Capacity Inches/inch 
BD Moist Bulk Density g/cc 
CL % Clay Proportion by weight 
FR % Rock Fragments Proportion by weight of particles >3 

inches 
HC Hydraulic Conductivity Inches/hour 
OM % Organic Matter Proportion by weight 
PH Soil Reaction pH 
SL % Slope (Rise/Run)*100 
TP Topographic Position Scale 1 to 5 where: 

          1 = Lowlands (Bottomlands) 
       2.5 = Mid-slopes 
          5 = Highlands (Ridge lines) 
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  There were a total of 95 soils investigated between Dickinson and Iron Counties.  45 

applicable soils were investigated from Iron County, while 50 applicable soils were examined 

from Dickinson County.  Soils that did not have crop or woody plant data were not included.  

These soils were most often lowland mucks that did not provide adequate soil characteristic 

information.  Additionally, soil complexes were not included in the data because the proportions 

of the soils that comprised the complexes that the crop and woody plants were grown on are 

unknown.  Most soils that comprise these soil complexes were included in the data set as 

singular soil types.    

 Dependent variables consisted of five crop types and six woody plant species.  Crops 

investigated in this study include corn, corn silage, oats, alfalfa/hay, and Irish potatoes.  Woody 

plant species investigated were red maple (Acer rubrum L.), white spruce (Picea glauca 

[Moench] Voss), red pine (Pinus resinosa Aniton), eastern white pine (Pinus strobus L.), jack 

pine (Pinus banksiana Lamb.), and lilac (Syringa vulgaris L.).  A list of dependent variables and 

their associated units and abbreviations as they are shown in the eigenvector analysis are 

included in Table 1.5.  These specific plants were selected for investigation due to the 

availability of information of these plants in both counties.   

 

Table 1.5 Dependent variable crop and woody plant units and abbreviations as they appear in the 
eigenvector analysis. 
 
Agronomic Crops 

Abbreviation Crop Type Measured Average Yield 
CO Corn Bushels/acre 
CS Corn Silage   Tons/acre 
OA Oats   Bushels/acre  
IP Irish Potatoes   Hundredweights/acre, 100lbs/acre 
AH Alfalfa Hay Tons/acre 
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Table 1.5 (cont’d) 

Woody Plants 

Abbreviation Crop Type Botanical Name Measured Average Yield 
RM Red Maple Acer rubrum L. Feet/20 years 
WS White Spruce Picea glauca [Moench] Voss Feet/20 years 
RP Red Pine Pinus resinosa Aniton Feet/20 years 
EP Eastern White Pine Pinus strobus L. Feet/20 years 
JP Jack Pine Pinus banksiana Lamb. Feet/20 years 
LI Lilac Syringa vulgaris L. Feet/20 years 
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RESULTS 
 
 
 
 

Table 2.1 illustrates the eigenvalues of the combined Iron County and Dickinson County 

crop and woody plant data set.  There were 4 principal component axes with eigenvalues greater 

than 1.0.  The eigenvalue for the first principal component axis contains 28.80 percent of the 

variance in the crop and woody plant variables.  The first axis contains the largest proportion of 

the variance in the data set and is therefore the primary candidate for further investigation.  The 

eigenvalue for the second, third and fourth principal component axes contained 23.32 percent, 

16.15 percent and 10.94 percent of the variance respectively.  The first four principal 

components together comprised 79.21 percent of the variance in the data set.  

 
 
Table 2.1 Principal component analysis eigenvalues of the covariance matrix for Iron County 
and Dickinson County, Michigan. 
 

                               Eigenvalue        Difference       Proportion  Cumulative 
 
                Prin1     3.16822981    0.60353241        0.2880        0.2880 
                Prin2     2.56469741    0.78771328        0.2332        0.5212 
                Prin3     1.77698412    0.57343332        0.1615        0.6827 
                Prin4     1.20355081    0.63213620        0.1094        0.7921 
                Prin5     0.57141461    0.07981335        0.0519        0.8441 
                Prin6     0.49160125    0.09542970        0.0447        0.8888 
                Prin7     0.39617155    0.08579710        0.0360        0.9248 
                Prin8     0.31037446    0.03691405        0.0282        0.9530 
                Prin9     0.27346041    0.14526776        0.0249        0.9779 
                Prin10   0.12819264    0.01286972        0.0117        0.9895 
                Prin11   0.11532292    0.11532292        0.0105        1.0000 
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Table 2.2 Principal component analysis eigenvectors for Iron County and Dickinson County, 
Michigan dependent variables.  See Table 1.5 for explanations of variable abbreviations.  The 
number 1 attached to each variable indicates that that variable has been standardized to a mean of 
zero and a standard deviation of 1. 
 
 

 Prin1 Prin2 Prin3 Prin4 
CO1 0.403014 -.129644 -.165482 -.453338  
CS1 0.446947 -.197810  -.119725  -.313282 
OA1 0.388777     -.286682  -.041966 -.030582 
IP1 0.334832     -.083064 -.298629 0.387424     
AH1 0.333357     -.108640 -.177557 0.455676    
RM1 0.192615     -.113110 0.591965 -.137687  
WS1 0.255142     -.003187 0.464371 0.436319 
RP1 0.175800     0.515927     -.080397 0.093462 
EP1 0.280114     0.454817 0.229088 0.092214 
JP1 0.075413     0.436752 -.410653 -.039082 
LI1 0.214888     0.408141 0.205355     -.331010 

 
 
 
3.1 PRINCIPAL COMPONENT 1 

As illustrated in Table 2.2 all the eigenvector coefficients for the first principal component were 

positive suggesting that all crop and woody plant types investigated covary together.  Dependent 

variable values ranged from 0.447 to 0.193.  The first principal component could be described as 

an all crop and woody plant response axis.  Values >0.4 or <-0.4 are considered to have strong 

association with their principal components and are the most descriptive terms of the variables 

investigated.  There are two such variables in the first principal component: corn and corn silage.  

These two terms represent the two most significant variable of the equation.  In this way, the 

equation could also be described as a corn-corn silage axis.   

Figure 2.1 illustrates the best suitable model developed for the first principal component.  

The model was found to explain 87.93 percent of the variance. The model is not over specific, 

having 21 terms in the equation and C(p)=21.54.  C(p) values that are close to the number of 
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terms in the equation are considered to “fit” well (Agresti, 2012), therefore further validating the 

strength of this model. 

 
Figure 2.1 Best model found for the Stepwise Maximum R-squared Improvement for Principal 
Component 1.  Refer to Table 1.4 for an explanation of independent variable soil parameters.  
 
                     

       Maximum R-Square Improvement: Step 41 
R-Square = 0.8793 and C(p) = 21.5359 

                                   
 

                                                              Sum of       Mean 
            Source                           DF       Squares      Square    F Value    Pr > F 
 
            Model             20       258.95863     12.94793   26.60    <.0001 
            Error                73       35.53447     0.48677 
            Corrected Total             93       294.49310 
 
 
                                    Parameter     Standard 
            Variable          Estimate        Error         Type II SS      F Value     Pr > F 
 
            Intercept        -0.87194      0.16672       13.31485         27.35        <.0001 
            TP                  0.50466      0.14014        6.31249           12.97        0.0006 
            SL                 -2.07312      0.17001       72.38096          148.70     <.0001 
            CL                  0.80349      0.29730        3.55540           7.30          0.0086 
            HC               -0.96635       0.22510        8.97071           18.43       <.0001 
            AW              -2.37413       0.30757        29.00372         59.58       <.0001 
            PH                 0.40641       0.12497        5.14788          10.58         0.0017 
            SL2               0.39799       0.07666        13.12078         26.95       <.0001 
            FR2              -0.26293      0.03837        22.85670         46.96       <.0001 
            AW2             0.88193       0.13862        19.70213        40.47        <.0001 
            TPCL            0.36989       0.11895        4.70698          9.67            0.0027 
            TPBD          -0.59481       0.10137        16.76003        34.43        <.0001 
            TPHC          -0.48820       0.12425        7.51535          15.44         0.0002 
            TPOM          2.06655       0.22987        39.34052        80.82        <.0001 
            SLOM         -1.45369       0.30566        11.01033        22.62       <.0001 
            FRBD          -0.76847       0.22587        5.63458          11.58         0.0011 
           CLHC          -0.74717        0.20693        6.34626          13.04         0.0006    
           CLPH          -0.42867        0.15428        3.75814           7.72           0.0069 
           BDOM         -0.67422        0.15699        8.97763          18.44       <.0001 
           HCPH          -0.76090        0.18229        8.48116          17.42       <.0001 
           AWPH         -1.20130        0.23201       13.05026         26.81       <.0001 

 
Bounds on condition number: 22.894, 3308.2 
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3.2 PRINCIPAL COMPONENT 2  
 

Table 2.2 shows the eigenvector coefficients for the second principal component.  The 

coefficients in the second eigenvector can be organized in three separate groups: positively 

associated (positive values), negatively associated (negative values) and weakly associated 

(values near zero).  Positive coefficients include red pine, eastern white pine, jack pine, and lilac.  

All of these species also had values that were considered be strongly associated (x>0.4, x<-0.4).  

White Spruce was the only plant type to have a value near 0, indicating that it is not described 

well by this model.  Plant types with negative values were not as strongly associated as those 

plant types with positive values.  Negative values ranged from -0.083 to -0.287. 

Figure 2.2 illustrates the best equation derived for the second principal component.  The 

equation was found to explain 74.52 percent of the variance.  The model is not over specific, 

having 13 terms and a C(p) value of 36.78. 

 
Figure 2.2 Best model found for the Stepwise Maximum R-squared Improvement for 
Principal Component 2.  Refer to Table 1.4 for an explanation of independent variable soil 
parameters. 
            

 
Maximum R-Square Improvement: Step 24 

R-Square = 0.7452 and C(p) = 36.7759 
               
                                       Sum of            Mean 

Source              DF        Squares           Square        F Value      Pr > F 
 
    Model                 12      177.86957       14.82246      19.74         <.0001 
    Error                  81       60.82255        0.75090 
      Corrected Total       93      238.69212 
 
 
                         Parameter        Standard 
           Variable      Estimate          Error          Type II SS     F Value      Pr > F 
 
           Intercept      -0.42029      0.14323      6.46564           8.61          0.0043 
           SL              0.48772       0.09661     19.13846          25.49   <.0001 
           FR              0.87531       0.21882     12.01465         16.00   0.0001 
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     Figure 2.2 (cont’d) 
 

AW             -1.96851       0.19208     78.86507         105.03   <.0001 
           AW2             0.77296       0.11849     31.95257         42.55   <.0001 
           TPFR            0.68607       0.19490      9.30484          12.39   0.0007 
           TPCL            0.63153       0.11230     23.74723         31.63   <.0001 
           TPBD           -0.33830       0.10738      7.45230          9.92   0.0023 
           FRHC            1.92499       0.27429     36.98520        49.25   <.0001 
           FRPH           -0.48216       0.19359      4.65801         6.20   0.0148 
           FROM            1.29944       0.19656     32.81805        43.71   <.0001 
           CLHC           -0.83076       0.16952     18.03317        24.02   <.0001 
           BDHC            0.62243       0.12067     19.97710        26.60   <.0001 
 

Bounds on condition number: 8.1439, 462.11 
 

 
 
3.3 PRINCIPAL COMPONENT 3 

Table 2.2 illustrates the eigenvector coefficients associated with the third principal 

component.  This eigenvector can be divided into two main groups.  Out of all plant species 

investigated there were only two tree species that had positive values, red maple and white 

spruce.  Both red maple and white spruce showed values that were considered strongly 

associated (x>0.4, x<-0.4), with values of .592 and .464 respectively.  All other crop and woody 

plant types had negative values.  This suggests that this model can be best described as a red 

maple-white spruce dimension.   

Figure 2.3 illustrates the first equation derived for the third principal component, in 

which all p values were less than 0.04.  The equation was found to explain 91.79 percent of the 

variance, which was the highest of all the best-fit models developed in this study.  There were 38 

terms in this model and had a C(p) value of 33.95.  Although some researchers consider models 

with C(p) values less than the number of terms to be over specific (Burley & Thomsen,1987), 

others suggest that the relativity of the values is what should be considered (Agresti, 2012).  
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Depending on the interpretation of these terms, the model could be considered reliable.  Because 

of possible discrepancies of interpretations, a second, more conservative model was developed. 

 
Figure 2.3 First model found for the Stepwise Maximum R-squared Improvement for 
Principal Component 3 with all P values below 0.04.  The number of terms in this model 
(38 terms) was greater than the C(p) value (33.95) and may be considered over specific.  
Refer to Table 1.4 for an explanation of independent variable soil parameters. 
 

 
Maximum R-Square Improvement: Step 78 

R-Square = 0.9179 and C(p) = 33.9479 
 

                                        Sum of     Mean 
     Source                DF       Squares          Square         F Value     Pr > F 
     Model                 37        151.70037        4.10001      16.93        <.0001 
      Error                56       13.56251         0.24219 
      Corrected Total       93       165.26288 

                          
      Parameter        Standard 

            Variable         Estimate          Error          Type II SS     F Value        Pr > F 
 
            Intercept     -0.58174     0.15337      3.48424         14.39   0.0004 
            TP             -0.63534       0.16313      3.67348         15.17   0.0003 
            SL              0.94986       0.12365     14.29269        59.01   <.0001 
            FR             -1.98688       0.32976      8.79217         36.30   <.0001 
            AW          -0.47879       0.17128      1.89255         7.81   0.0071 
            PH             -0.31093       0.11289      1.83737         7.59   0.0079 
            OM          0.83128       0.21698      3.55463         14.68   0.0003 
            TP2         0.46565       0.14067      2.65374         10.96   0.0016 
            SL2         -0.23547       0.07126      2.64424         10.92   0.0017 
            FR2        -0.56152       0.08572     10.39341        42.91  <.0001 
            CL2       -1.66751       0.15338     28.62412        118.19   <.0001 
            BD2         0.84355       0.08690     22.82194        94.23   <.0001 
            HC2        -2.74580       0.32562     17.22179        71.11   <.0001 
            TPFR       -1.99879       0.26111     14.19194        58.60   <.0001 
            TPBD     -1.79813       0.19132     21.39216        88.33   <.0001 
            TPHC      -2.12934       0.34823      9.05563         37.39   <.0001 
            TPAW     -1.45257       0.29009      6.07261        25.07   <.0001 
            TPPH      -0.64835       0.13853      5.30537        21.91   <.0001 
            SLFR      0.59705       0.13604      4.66457        19.26   <.0001 
            SLBD   0.52308       0.09160      7.89863        32.61   <.0001 
            SLHC       0.55404       0.15350      3.15520        13.03   0.0007 
            SLAW       0.55188       0.16719      2.63872        10.90   0.0017 
            SLPH        0.21506       0.08479      1.55815        6.43   0.0140 
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Figure 2.3 (cont’d) 
 

     FRCL           -7.30507        0.57101       39.63747     163.66      <.0001 
            FRBD           -0.47675         0.18432       1.62033       6.69           0.0123 
            FRHC           -4.55352         0.61478       13.28637     54.86        <.0001 
            FRPH            0.53054          0.17869       2.13505        8.82          0.0044 
            FROM            2.86700          0.53390       6.98382        28.84        <.0001 
            CLHC           -5.84236         0.58049      24.53200       101.29     <.0001 
            CLAW           -1.16284        0.38663       2.19076         9.05          0.0039 
            CLPH            0.72328          0.21485       2.74472       11.33         0.0014 
            BDPH           -0.52386        0.14214       3.28952        13.58         0.0005 
            BDOM           -0.66791        0.19598       2.81284        11.61         0.0012 
            HCPH            0.90940          0.19840       5.08856        21.01       <.0001 
            HCOM       1.58268          0.39057       3.97694        16.42        0.0002 
            AWPH        -0.48875        0.23002       1.09348         4.52          0.0380 
            AWOM       1.20690          0.32471       3.34585        13.82        0.0005 
            PHOM        -0.34027        0.10984       2.32418         9.60          0.0030 

 
Bounds on condition number: 152.86, 44747 

 
 

Figure 2.4 illustrates a second model for the third principal component.  This equation 

was found to explain 87.68 percent of the variance, which is comparable to the r-square value of 

the first principal component.  In contrast to the model shown in Figure 2.3, the number of terms 

in this model shown in Figure 3.4 (38 terms) is less than the C(p) value (48.00).  This equation 

would not be considered over specific according to criteria described by Burley (1988), and is 

therefore a more conservative model than that shown in Table R.5. 

 
Figure 2.4 Second model found for the Stepwise Maximum R-squared Improvement for 
Principal Component 3 with all P values below 0.04.  The number of terms in this model 
(32 terms) was greater than the C(p) value (48.00) and is not considered over specific.  
Refer to Table 1.4 for an explanation of independent variable soil parameters. 
 

 
Maximum R-Square Improvement: Step 60 

Variable PH Removed: R-Square = 0.8768 and C(p) = 48.0039 
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Figure 2.4 (cont’d) 
 
                                                   Sum of              Mean 
      Source                  DF        Squares             Square        F Value      Pr > F 
 
      Model                    31         144.89768         4.67412      14.23        <.0001 
      Error                      62         20.36520           0.32847 
      Corrected Total     93         165.26288 
 

                        Parameter       Standard 
Variable          Estimate          Error         Type II SS   F Value  Pr > F 
 
Intercept      -0.64768      0.15896      5.45334     16.60       0.0001 
TP             -0.56620       0.16100      4.06219     12.37       0.0008 
SL              0.85356       0.13144     13.85171     42.17       <.0001 
FR             -1.42155       0.26872      9.19248     27.99       <.0001 
AW             -0.53829       0.16094      3.67441     11.19       0.0014 
TP2             0.67112       0.13881      7.67752     23.37       <.0001 
SL2            -0.24282       0.08060      2.98123      9.08        0.0037 
CL2            -1.51835       0.14372     36.66066    111.61      <.0001 
BD2             0.66391       0.08253     21.25649     64.71      <.0001 
HC2            -1.33439       0.32871      5.41298     16.48       0.0001 
AW2             0.57716       0.21442      2.37983      7.25        0.0091 
PH2            -0.23985       0.09895      1.93000      5.88        0.0183 
TPFR           -1.90574       0.25036     19.03170     57.94       <.0001 
TPBD           -1.63418       0.19261     23.64559     71.99      <.0001 
TPHC           -2.13468       0.31306     15.27275     46.50       <.0001 
TPAW           -1.53045       0.26143     11.25712     34.27       <.0001 
TPPH           -0.80303       0.13070     12.39936     37.75       <.0001 
SLFR            0.53827       0.14504      4.52414     13.77       0.0004 
SLBD            0.47082       0.10204      6.99323     21.29       <.0001 
SLHC            0.54800       0.16483      3.63047     11.05       0.0015 
SLAW            0.61201       0.18416      3.62761     11.04       0.0015 
SLPH            0.28039       0.09621      2.78965      8.49        0.0050 
FRCL           -8.01308       0.71664     41.06728    125.03     <.0001 
FRHC           -1.46864       0.37425      5.05827     15.40       0.0002 
FRAW         2.05719       0.36236     10.58654     32.23      <.0001 
FRPH           1.26966       0.17728     16.84806     51.29      <.0001 
FROM            0.63147       0.22656      2.55187      7.77        0.0070 
CLHC           -5.90892       0.58555     33.44890    101.83     <.0001 
CLAW           -1.46907       0.38887      4.68798     14.27       0.0004 
BDOM           -1.13415       0.19548     11.05651     33.66      <.0001 
HCAW         1.50420       0.52412      2.70549      8.24        0.0056 
HCPH            1.08156       0.12385     25.05197     76.27       <.0001 

 
Bounds on condition number: 89.777, 18983 
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3.4 PRINCIPAL COMPONENT 4 
 

Although the eigenvalue for the fourth principal component, as shown in Table 2.1 was 

larger than 1.0 (1.2), the best model from the stepwise regression analysis was not significant 

enough to be considered a relevant model.  The best model found had a R-squared value of 

0.3133.  Because the model explained such a small portion (31.33 percent) of the variation in the 

crop and woody plant axis, it was not considered for further analysis.  No equation was produced 

for this model. 

 

Figure 2.5 Best model found for the Stepwise Maximum R-squared Improvement for 
Principal Component 4.  Refer to Table 1.4 for an explanation of independent variable soil 
parameters. 
 

Maximum R-Square Improvement: Step 4 
R-Square = 0.3133 and C(p) = 105.8427 

                                        
                                         Sum of           Mean 
   Source                DF        Squares         Square          F Value    Pr > F 
 
   Model               4           35.03746        8.75936      10.15        <.0001 
   Error                 89         76.80084        0.86293 
   Corrected Total      93         111.83830 
 

 
                                   Parameter     Standard 
        Variable             Estimate        Error         Type II SS   F Value    Pr > F 

Intercept -0.42257       0.14536      7.29247       8.45         0.0046 
   TP              0.26187        0.09767      6.20256       7.19         0.0087 
    BD             -0.31102       0.10184      8.04777       9.33         0.0030 
    BD2             0.18310        0.07441      5.22483       6.05         0.0158 
   AW2             0.24152        0.08266      7.36694       8.54         0.0044 

 
Bounds on condition number: 1.1179, 17.144 
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DISCUSSION 

 
 
 

There were a total of 5 equations developed for the three principal component 

investigated.  Figures 3.1, 3.2, 3.3, 3.4, and 3.6 display the equations developed for all 

significant principal components identified from the data of Iron and Dickinson Counties.  

All equations developed are highly specific with p-values less than 0.0001, and are 

considered statistically significant.  As previously discussed, the significant eigenvector 

values indicate plant species that each equation best describes and can be used to further 

investigate similarities among dependent variables to categorize the equations. 

Revegetation efforts in reclamation projects often involve an attempt to recreate a 

biological community that previously existed on the site or to blend the reclaimed 

landscape into adjacent lands.  Therefore, it is beneficial to investigate possible way to 

categorize developed equations to better describe the communities in which they are 

intended to predict.  Similar studies have categorized equations based on the plant species 

the derived equations best describe.  In a study of a three county North Dakotan coal 

mining region, Burley (1995) investigated the potential to find a predictive equation to 

describe the lowlands and the transitional zones that composed the study area.  By 

referring equations directly to a landscape type or post land use, reclamation specialist can 

more effectively use such equations to aid in reclamation projects.  Furthermore, 

categorization is dependent upon the variable analyzed.  For instance, Burley (1995a) 

investigated biophysical variables to describe vegetative productivity across a spatial 

region and found that the equations developed in the study could be categorized as a 

geomorphology equation, a climatology equation, and a biological equation.  Based on the 
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variables investigated in this study, the most appropriate method of categorization would 

be to describe equations as community types.   

John T. Curtis, a plant ecologist and botanist from the University of Wisconsin 

conducted an in-depth inventory of the Wisconsin’s northern floristic zone (Curtis, 1959).  

This series of studies gives a comprehensive analysis of a neighboring region that shows 

similar geological and climatic (Linsemier, 1989; Linsemier, 1997) characteristics.  Both 

the study area of the Curtis studies and the study area of this investigation have been 

classified by the International Union for Conservation and Nature and Natural Resources 

(IUCN) (Udvardy, 1975) as being in the Great Lakes biogeographical province and by the 

United States Department of Agriculture, Forest Service (McNab et al., 2005) as being 

within the Laurentian Mixed Forest Province.  Due to the strong, established similarities 

between these study areas the data reported by Curtis is considered comparable and 

applicable to the study area of this study. 

 

4.1 PRINCIPAL COMPONENT 1: Mesic Model 

Figure 3.1 presents the equation developed from the stepwise maximum r-squared 

improvement for the first principal component.  All plant species investigated in the first 

principal component were found to covary together indicating that the model can be 

described as an all crop and woody plant model.  An analysis of eigenvector values implied 

that the model could also be described as a corn-corn silage model.  However, it may be 

more beneficial to describe this equation according to its community type so as to connect 

the model to a post-mine community rather than a particular set of plants.  The plants 

selected for this study are all adapted to growth in moderate soils that are typical in this 
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region.  Moderate soils in the northern Upper Peninsula are often sandy to loamy, well-

drained soils that are slightly alkaline to slightly acidic.  These soils are well suited to 

support a broad range of plant types and are typical of northern mesic forests.  It is 

important to note the distinction of these soils abilities to support growth and the actual 

plant growth patterns that occur in natural conditions. 

 

Figure 3.1 Best equation found for the Stepwise Maximum R-squared Improvement for 
Principal Component 1.  This equation is best described as a mesic model. 
 
Plant = -0.872 + [((TP-3.121)*1.267-1)*(0.505)] 
   + [((SL-8.00)*7.765-1)*(-2.073)] 
   + [((CL-8.915)*4.138-1)*(0.803)] 
   + [((HC-5.227)*4.302-1)*(-0.966)] 
   + [((AW-0.122)*0.040-1)*(-2.374)] 
   + [((PH-5.971)*0.671-1)*(0.406)] 
   + [((SL-8.00)*7.765-1)* ((SL-8.00)*7.765-1)*(0.398)] 
   + [((FR-4.571)*6.760-1)* ((FR-4.571)*6.760-1)*(-0.263)] 
   + [((AW-0.122)*0.040-1)* ((AW-0.122)*0.040-1)*(0.882)] 
   + [((TP-3.121)*1.267-1)* ((CL-8.915)*4.138-1)*(0.370)] 
   + [((TP-3.121)*1.267-1)* ((BD-1.506)*0.084-1)*(-0.595)] 
   + [((TP-3.121)*1.267-1)*((HC-5.227)*4.302-1)*(-0.488)] 
   + [((TP-3.121)*1.267-1)*((OM-1.995)*1.201-1)*(2.067)] 
   + [((SL-8.00)*7.765-1)* ((OM-1.995)*1.201-1)*(-1.454)] 
   + [((FR-4.571)*6.760-1)*((BD-1.506)*0.084-1)*(-0.768)] 
   + [((CL-8.915)*4.138-1)* ((HC-5.227)*4.302-1)*(-0.747)] 
   + [((CL-8.915)*4.138-1)* ((PH-5.971)*0.671-1)*(-0.429)] 
   + [((BD-1.506)*0.084-1)*((OM-1.995)*1.201-1)*(-0.674)] 
   + [((HC-5.227)*4.302-1)* ((PH-5.971)*0.671-1)*(-0.761)] 
   + [((AW-0.122)*0.040-1)*((PH-5.971)*0.671-1)*(-1.201)] 
 
 

This points to an inherent concern when comparing the finds of Curtis’s and similar 

naturalized community observation studies to the findings of this research.  The study 

conducted by Curtis was an inventory of tree stands in natural settings with the influence 

of interspecies competition, while the soils surveys this research used to develop its data 
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set measured trees grow under more controlled circumstances that limited this interaction.  

This could account for discrepancies between findings of these studies.  Despite the manner 

in which data sets were derived, the Curtis study gives useful insight into the tree species 

that exist in a natural community setting, which revegetation reclamation efforts are most 

likely going to attempt to replicate.   

All species investigated in this study have unique ranges of soil conditions in which 

they are able to grow.  For instance, white spruce is usually associated with more wet soil 

conditions, whereas red pine is most commonly associated with dry sites.  However, the 

range of both species as well as all others investigated reaches into more moderate 

conditions.  This common range of conditions that satisfies the growth needs of species 

would imply that all species would covary in one axis, as was found for the first principal 

component.  The first model can therefore best be described as a mesic model. 

 

4.2 PRINCIPAL COMPONENT 2 EQUATION: Northern Dry Forest Model 

Figure 3.2 presents the equation developed from the stepwise maximum r-squared 

improvement for the second principal component.  The eigenvector analysis of this 

principal component (refer to Table 2.2) found that four woody species were found to be 

strongly associated with this axis; jack pine, red pine, eastern white pine, and lilac.  Curtis 

identifies five dominate species for the northern dry forest, the three most dominant of 

which, in order of importance, are jack pine (Pinus banksiana Lamb.), red pine (Pinus 

resinosa Aniton), and white pine (Pinus strobus L.).  Additionally, Curtis identified red pine 

as one of two “species which attain optimum importance” (Curtis, 1959 pg. 537) in this 

community.  This finding coincides the findings of the second eigenvector values, which 
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shows that red pine is the most strongly associated coefficient of the axis with a value of 

0.516 (refer to Table 2.2).   

 

Figure 3.2 Best equation found for the Stepwise Maximum R-squared Improvement for 
Principal Component 2.  This equation is best described as a northern dry forest model. 
 
PLANT = -0.420 + [((SL-8.000)*7.765-1)*(0.488)] 
       + [((FR-4.571)*6.760-1)*(0.875)] 
       + [((AW-0.122)*0.040-1)*(-1.979)] 
       + [((AW-0.122)*0.040-1)* ((AW-0.122)*0.040-1)*(0.773)] 
       + [((TP-3.121)*1.267-1)*((FR-4.571)*6.760-1)*(0.686)] 
       + [((TP-3.121)*1.267-1)*((CL-8.915)*4.138-1)*(0.632)] 
       + [((TP-3.121)*1.267-1)*((BD-1.506)*0.084-1)*(-0.338)] 
       + [((FR-4.571)*6.760-1)*((HC-5.227)*4.302-1)*(1.925)] 
       + [((FR-4.571)*6.760-1)*((PH-5.971)*0.671-1)*(-0.482)] 
       + [((FR-4.571)*6.760-1)*((OM-1.995)*1.201-1)*(1.299)] 
       + [((CL-8.915)*4.138-1)*((HC-5.227)*4.302-1)*(-0.831)] 
       + [((BD-1.506)*0.084-1)*((HC-5.227)*4.302-1)*(0.622)] 
 

It is important to recognize that although jack pine was considered the most 

important tree identified by Curtis, red pine was identified as reaching its maximum 

growth potential in this community.  This is most like accounted for by the influence of 

interspecies competition, as previously discussed.  Due to the strong connection between 

the findings of Curtis and the eigenvector results of this study, the second principal 

component equation would best be described as a northern dry forest equation. 

 

4.3 Principal Component 3 Equation: Wet Mesic Model 

Figures 3.3 and 3.4 show the equations developed for the third principal 

component.  Two separate equations were derived due to possible divergences in 

statistical interpretations, as previously discussed.  Figure 3.4 illustrates the second 

equation developed from the stepwise maximum r-squared improvement, which is 
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considered to be more conservative than the equation shown in Figure 3.3.  The equations 

explain 91.79% and 87.68% of the variance.  Considering the small amount of explanation 

of the variance that is lost by selecting the second equation and its more conservative 

nature, the second equation is considered to be the most reliable model for the third 

principal component. 

 

Figure 3.3 First equation found for the Stepwise Maximum R-squared Improvement for 
Principal Component 3.  Comparison of number of terms in the equation and C(p) value 
indicates that this equation may be over specific. 
 
PLANT = -0.582 + [((TP-3.121)*1.267-1)*(-0.635)] 
       + [((SL-8.000)*7.765-1)*(0.950)] 
       + [((FR-4.571)*6.760-1)*(-1.987)] 
       + [((AW-0.122)*0.040-1)*(-0.479)] 
       + [((PH-5.971)*0.671-1)*(-0.311)] 
       + [((OM-1.995)*1.201-1)*(0.831)] 
       + [((TP-3.121)*1.267-1)*((TP-3.121)*1.267-1)*(0.466)] 
       + [((SL-8.000)*7.765-1)*((SL-8.000)*7.765-1)*(-0.235)] 
       + [((FR-4.571)*6.760-1)*((FR-4.571)*6.760-1)*(-0.562)] 
       + [((CL-8.915)*4.138-1)*((CL-8.915)*4.138-1)*(-1.668)] 
       + [((BD-1.506)*0.084-1)*((BD-1.506)*0.084-1)*(0.844)] 
       + [((HC-5.227)*4.302-1)*((HC-5.227)*4.302-1)*(-2.746)] 
       + [((TP-3.121)*1.267-1)* ((FR-4.571)*6.760-1)*(-1.999)] 
       + [((TP-3.121)*1.267-1)*((BD-1.506)*0.084-1)*(-1.798)] 
       + [((TP-3.121)*1.267-1)*((HC-5.227)*4.302-1)*(-2.129)] 
       + [((TP-3.121)*1.267-1)*((AW-0.122)*0.040-1)*(-1.453)] 
       + [((TP-3.121)*1.267-1)*((PH-5.971)*0.671-1)*(-0.648)] 
       + [((SL-8.000)*7.765-1)*((FR-4.571)*6.760-1)*(0.597)] 
       + [((SL-8.000)*7.765-1)*((BD-1.506)*0.084-1)*(0.523)] 
       + [((SL-8.000)*7.765-1)*((HC-5.227)*4.302-1)*(0.554)] 
       + [((SL-8.000)*7.765-1)*((AW-0.122)*0.040-1)*(0.552)] 
       + [((SL-8.000)*7.765-1)*((PH-5.971)*0.671-1)*(0.215)] 
       + [((FR-4.571)*6.760-1)*((CL-8.915)*4.138-1)*(-7.305)] 
       + [((FR-4.571)*6.760-1)*((BD-1.506)*0.084-1)*(-0.477)] 
       + [((FR-4.571)*6.760-1)*((HC-5.227)*4.302-1)*(-4.554)] 
       + [((FR-4.571)*6.760-1)*((PH-5.971)*0.671-1)*(0.531)] 
       + [((FR-4.571)*6.760-1)*((OM-1.995)*1.201-1)*(2.867)] 
       + [((CL-8.915)*4.138-1)*((HC-5.227)*4.302-1)*(-5.842)] 
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Figure 3.3 (cont’d) 
 
                        + [((CL-8.915)*4.138-1)*((AW-0.122)*0.040-1)*(-1.163)] 
       + [((CL-8.915)*4.138-1)*((PH-5.971)*0.671-1)*(0.723)] 
       + [((BD-1.506)*0.084-1)*((PH-5.971)*0.671-1)*(-0.524)] 
       + [((BD-1.506)*0.084-1)*((OM-1.995)*1.201-1)*(-0.668)] 
       + [((HC-5.227)*4.302-1)*((PH-5.971)*0.671-1)*(0.909)] 
       + [((HC-5.227)*4.302-1)*((OM-1.995)*1.201-1)*(1.583)] 
       + [((AW-0.122)*0.040-1)*((PH-5.971)*0.671-1)*(-0.489)] 
       + [((AW-0.122)*0.040-1)*((OM-1.995)*1.201-1)*(1.207)] 
       + [((PH-5.971)*0.671-1)*((OM-1.995)*1.201-1)*(-0.340)] 
 
Figure 3.4 Second equation found for the Stepwise Maximum R-squared Improvement for 
Principal Component 3.  Comparison of number of terms in the equation and C(p) value 
indicates that this equation is most likely not over specific.  This is considered the more 
conservative equation for this principal component when compared to the equation in 
Figure 3.3.  Best described as a wet mesic model. 
 
PLANT = -0.648 + [((TP-3.121)*1.267-1)*(-0.566)] 
       + [((SL-8.000)*7.765-1)*(0.854)] 
       + [((FR-4.571)*6.760-1)*(-1.422)] 
       + [((AW-0.122)*0.040-1)*(-0.538)] 
       + [((TP-3.121)*1.267-1)*((TP-3.121)*1.267-1)*(0.671)] 
       + [((SL-8.000)*7.765-1)*((SL-8.000)*7.765-1)*(-0.243)] 
       + [((CL-8.915)*4.138-1)*((CL-8.915)*4.138-1)*(-1.518)] 
       + [((BD-1.506)*0.084-1)*((BD-1.506)*0.084-1)*(0.664)] 
       + [((HC-5.227)*4.302-1)*((HC-5.227)*4.302-1)*(-1.334)] 
       + [((AW-0.122)*0.040-1)*((AW-0.122)*0.040-1)*(0.577)] 
       + [((PH-5.971)*0.671-1)*((PH-5.971)*0.671-1)*(-0.240)] 
       + [((TP-3.121)*1.267-1)*((FR-4.571)*6.760-1)*(-1.906)] 
       + [((TP-3.121)*1.267-1)*((BD-1.506)*0.084-1)*(-1.634)] 
       + [((TP-3.121)*1.267-1)*((HC-5.227)*4.302-1)*(-2.135)] 
       + [((TP-3.121)*1.267-1)*((AW-0.122)*0.040-1)*(-1.530)] 
       + [((TP-3.121)*1.267-1)*((PH-5.971)*0.671-1)*(-0.803)] 
       + [((SL-8.000)*7.765-1)*((FR-4.571)*6.760-1)*(0.538)] 
       + [((SL-8.000)*7.765-1)*((BD-1.506)*0.084-1)*(0.471)] 
       + [((SL-8.000)*7.765-1)*((HC-5.227)*4.302-1)*(0.548)] 
       + [((SL-8.000)*7.765-1)*((AW-0.122)*0.040-1)*(0.612)] 
       + [((SL-8.000)*7.765-1)*((PH-5.971)*0.671-1)*(0.280)] 
       + [((FR-4.571)*6.760-1)*((CL-8.915)*4.138-1)*(-8.013)] 
       + [((FR-4.571)*6.760-1)*((HC-5.227)*4.302-1)*(-1.469)] 
       + [((FR-4.571)*6.760-1)*((AW-0.122)*0.040-1)*(2.057)] 
       + [((FR-4.571)*6.760-1)*((PH-5.971)*0.671-1)*(1.270)] 
       + [((FR-4.571)*6.760-1)*((OM-1.995)*1.201-1)*(0.631)] 
       + [((CL-8.915)*4.138-1)*((HC-5.227)*4.302-1)*(-5.909)] 
       + [((CL-8.915)*4.138-1)*((AW-0.122)*0.040-1)*(-1.469)] 
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Figure 3.4 (cont’d) 
 

     + [((BD-1.506)*0.084-1)*((OM-1.995)*1.201-1)*(-1.134)] 
       + [((HC-5.227)*4.302-1)*((AW-0.122)*0.040-1)*(1.504)] 
       + [((HC-5.227)*4.302-1)*((PH-5.971)*0.671-1)*(1.082)] 
 

 

The eigenvector coefficients that were strongly associated with the third principal 

component were red maple and white spruce (refer to Table 2.2).  Both of these species are 

considered to be well suited for growth in more lowland conditions or transitional zones 

between wet lowlands and uplands.  Curtis identified black spruce (Picea mariana [Mill.] 

Britton, Sterns & Poggenb.) as the most dominant species in northern lowland forests.  The 

study showed that although white spruce (Picea glauca [Moench] Voss) was found in some 

stands, numbers of observed trees were limited.  Both species prefer comparable soils and 

have similar North American distributions that cover portions of the northern United 

States and much of Canada.  These two species commonly occur together in more northern 

limits of their distributions, white spruce is often out competed by black spruce in southern 

range limits (Rook, 2002), which could account for the low occurrence of the species in the 

areas surveyed.  Although black spruce growth rates were not included in the available 

data provided by the NRCS, due to the commonalities between white spruce and black 

spruce these species have been considered comparable species for analytical purposes of 

this model. 

White spruce is known to grow poorly in soils with high water tables yet is not 

considered a true wet lowland plant but rather is most commonly found in transitional 

zones between swampy lowlands and uplands or in alluvial zones.  Similarly, red maple 

(Acer rubrum L.) is commonly associated with a wide variety of wet sites and transitional 
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zones.  The strong associations of these species to the third principal component would 

suggest that this axis could be best described as a wet mesic model or an alluvial zone 

model.   

Figure 3.5 “Behavior of major tree species on the combined ordination of northern upland 
and lowland forests. 1, tamarack (Larix laricina); 2, black spruce (Picea mariana); 3, white 
cedar (Thuja ocidentalis); 4, hemlock (Tsuga canadensis); 5, sugar maple (Acer saccharum); 
6, white pine (Pinus strobus); 7, red pine (Pinus resinosa); 8, jack pine (Pinus banksina)” 
(Curtis, 1959 pg. 180).  
 

 

 

One concern with naming the third principal component model the wet mesic model 

is that Curtis found that jack pine (Pinus banksiana Lamb.) to show a spike in occurrence in 

the wet mesic range as illustrated in Figure 3.5.  However, the eigenvalues of this axis 

indicate that jack pine was strongly negatively associated with the model with a value of -

0.411 (refer to Table 2.2).  This strong negative association could cause some explanatory 

concern for this model.  However, because jack pine results showed a strong positive 
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association with the second principal component and a strong negative association with 

the third principal component neither axis is considered to be truly descriptive of the 

species.  It is therefore necessary to develop an additional model that combines these two 

axes to best predict the productivity potential of jack pine. 

 
4.4 JACK PINE MODEL 
 

An equation was developed specifically for jack pine due to the findings of the principal 

component analysis.  As illustrated in Table 2.2, the eigenvector values for jack pine in both the 

second and the third principal components were either greater than 0.4 or less than -0.4 showing 

a that this species is strongly associated with both axes.  Because there are two models that could 

be used to predict the vegetative productivity of jack pine, neither model alone is best suited as a 

predictive model for this species.  Therefore it is necessary to develop an additional model that is 

most reliable to predict the vegetative productivity of jack pine.  

 
Figure 3.6 Plot of hypothetical values to illustrate potential findings of principal 
component 2 and principal component 3 as separate axes and a combined axis that shows 
the most reliable jack pine axis. 
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Figure 3.6 illustrates a plotting of hypothetical findings of equations that could be derived 

from the second and the third principal components.  The values plotted are not derived from any 

developed equation, but rather are used to illustrate that combining the principal component 2 

axis with the principal component 3 axis will result in a new axis that will most accurately 

describe the productivity of jack pine.  By using only one model, the reliability of the results are 

not as strong, as shown by plot points near the x or y axes.  By combining the two equations the 

predictability of the model is not split between two axes, but rather combined into one that 

specifically describes one plant, jack pine.  Results from such a model would show trends more 

similar to those of the combined principal 2 and principal 3 equations plot points.  As this 

illustration suggests, the most accurate equation to predict the productivity potential of jack pine 

would be derived by combining the equations developed from principal component 2 and 

principal component 3. 

Figure 3.7 shows the best equation that describes jack pine.  The equation is considered 

to be highly specific and explains 65.33% of the variance.  This model was developed by 

multiplying the equation from each dimension that was strongly associated with jack pine.  It 

should noted that the second equation, that of principal component 3, was multiplied by a factor 

of -1 to reverse the association with this species.  This equation should be used to most 

accurately predict the vegetative productivity of jack pine. 
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Figure 3.7 Jack pine model derived from multiplying the second principal component 
model by the most reliable model for the third principal component.  
 
PLANT = {-0.420 + [((SL-8.000)*7.765-1)*(0.488)] 
       + [((FR-4.571)*6.760-1)*(0.875)] 
       + [((AW-0.122)*0.040-1)*(-1.979)] 
       + [((AW-0.122)*0.040-1)* ((AW-0.122)*0.040-1)*(0.773)] 
       + [((TP-3.121)*1.267-1)*((FR-4.571)*6.760-1)*(0.686)] 
       + [((TP-3.121)*1.267-1)*((CL-8.915)*4.138-1)*(0.632)] 
       + [((TP-3.121)*1.267-1)*((BD-1.506)*0.084-1)*(-0.338)] 
       + [((FR-4.571)*6.760-1)*((HC-5.227)*4.302-1)*(1.925)] 
       + [((FR-4.571)*6.760-1)*((PH-5.971)*0.671-1)*(-0.482)] 
       + [((FR-4.571)*6.760-1)*((OM-1.995)*1.201-1)*(1.299)] 
       + [((CL-8.915)*4.138-1)*((HC-5.227)*4.302-1)*(-0.831)] 
       + [((BD-1.506)*0.084-1)*((HC-5.227)*4.302-1)*(0.622)]}  
           *  {[-0.648 + [((TP-3.121)*1.267-1)*(-0.566)] 
       + [((SL-8.000)*7.765-1)*(0.854)] 
       + [((FR-4.571)*6.760-1)*(-1.422)] 
       + [((AW-0.122)*0.040-1)*(0.538)] 
       + [((TP-3.121)*1.267-1)*((TP-3.121)*1.267-1)*(0.671)] 
       + [((SL-8.000)*7.765-1)*((SL-8.000)*7.765-1)*(-0.243)] 
       + [((CL-8.915)*4.138-1)*((CL-8.915)*4.138-1)*(-1.518)] 
       + [((BD-1.506)*0.084-1)*((BD-1.506)*0.084-1)*(0.664)] 
       + [((HC-5.227)*4.302-1)*((HC-5.227)*4.302-1)*(-1.334)] 
       + [((AW-0.122)*0.040-1)*((AW-0.122)*0.040-1)*(0.577)] 
       + [((PH-5.971)*0.671-1)*((PH-5.971)*0.671-1)*(-0.240)] 
       + [((TP-3.121)*1.267-1)*((FR-4.571)*6.760-1)*(-1.906)] 
       + [((TP-3.121)*1.267-1)*((BD-1.506)*0.084-1)*(-1.634)] 
       + [((TP-3.121)*1.267-1)*((HC-5.227)*4.302-1)*(-2.135)] 
       + [((TP-3.121)*1.267-1)*((AW-0.122)*0.040-1)*(-1.530)] 
       + [((TP-3.121)*1.267-1)*((PH-5.971)*0.671-1)*(-0.803)] 
       + [((SL-8.000)*7.765-1)*((FR-4.571)*6.760-1)*(0.538)] 
       + [((SL-8.000)*7.765-1)*((BD-1.506)*0.084-1)*(0.471)] 
       + [((SL-8.000)*7.765-1)*((HC-5.227)*4.302-1)*(0.548)] 
       + [((SL-8.000)*7.765-1)*((AW-0.122)*0.040-1)*(0.612)] 
       + [((SL-8.000)*7.765-1)*((PH-5.971)*0.671-1)*(0.280)] 
       + [((FR-4.571)*6.760-1)*((CL-8.915)*4.138-1)*(-8.013)] 
       + [((FR-4.571)*6.760-1)*((HC-5.227)*4.302-1)*(-1.469)] 
       + [((FR-4.571)*6.760-1)*((AW-0.122)*0.040-1)*(2.057)] 
       + [((FR-4.571)*6.760-1)*((PH-5.971)*0.671-1)*(1.270)] 
       + [((FR-4.571)*6.760-1)*((OM-1.995)*1.201-1)*(0.631)] 
       + [((CL-8.915)*4.138-1)*((HC-5.227)*4.302-1)*(-5.909)] 
       + [((CL-8.915)*4.138-1)*((AW-0.122)*0.040-1)*(-1.469)] 
       + [((BD-1.506)*0.084-1)*((OM-1.995)*1.201-1)*(-1.134)] 
       + [((HC-5.227)*4.302-1)*((AW-0.122)*0.040-1)*(1.504)] 
       + [((HC-5.227)*4.302-1)*((PH-5.971)*0.671-1)*(1.082)]      * -1} 
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4.5 INTERPRETATION OF MODELS 

Interpretation of models developed using this methodology is often difficult.  It may 

be most beneficial to select one equation for further analysis to demonstrate the methods 

of interpreting such equations.  The equation developed for the second principal 

component has been selected as the example for equation interpretation due to its relative 

simplicity in comparison to other equations in this study (refer to Figure 3.8).  As 

previously mentioned, the equation is best described as a northern dry forest or xeric 

model.  The woody plant species that are strongly, positively associated with this equation 

grow well in well drained, sandy soils that are dry or seasonally dry, which is consistent 

with the findings of the stepwise regression analysis. 

 
Figure 3.8 Best equation developed from the Stepwise Maximum R-squared Improvement 
of Principal Component 2.  This equation has been selected as an example to illustrate 
methods of interpreting vegetative productivity equations. 
 
PLANT = -0.420 + [((SL-8.000)*7.765-1)*(0.488)] 
       + [((FR-4.571)*6.760-1)*(0.875)] 
       + [((AW-0.122)*0.040-1)*(-1.979)] 
       + [((AW-0.122)*0.040-1)* ((AW-0.122)*0.040-1)*(0.773)] 
       + [((TP-3.121)*1.267-1)*((FR-4.571)*6.760-1)*(0.686)] 
       + [((TP-3.121)*1.267-1)*((CL-8.915)*4.138-1)*(0.632)] 
       + [((TP-3.121)*1.267-1)*((BD-1.506)*0.084-1)*(-0.338)] 
       + [((FR-4.571)*6.760-1)*((HC-5.227)*4.302-1)*(1.925)] 
       + [((FR-4.571)*6.760-1)*((PH-5.971)*0.671-1)*(-0.482)] 
       + [((FR-4.571)*6.760-1)*((OM-1.995)*1.201-1)*(1.299)] 
       + [((CL-8.915)*4.138-1)*((HC-5.227)*4.302-1)*(-0.831)] 
       + [((BD-1.506)*0.084-1)*((HC-5.227)*4.302-1)*(0.622)] 
 

The equation is comprised of a combination of main-effect terms, squared terms, 

and interaction terms.  Main-effect terms are those associated with a single soil parameter.  

Main-effect terms included in the second principal component equation are percent slope, 

percent rock fragment, and available water content.  The coefficient for the first main-effect 
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term, percent slope, is positive meaning that an increase in slope will add to the 

productivity of the described species.  Similarly, percent rock fragment also increases the 

productivity of these plants.  As expected, available water is negatively associated with the 

model meaning that the plants of the xeric model grow well in dry soils.  However, this 

term is complicated by its interaction with the available water squared term. 

Squared terms describe variables that increase or decrease productivity to a limit 

then reverse their trends, forming parabolic trend lines.  Available water content multiplied 

by available water content is the only squared term in this equation.  This term shows that 

available water content increases productivity to a certain point then begins to decrease its 

positive influence on growth after its peak.  This implies that the species described the 

equation can survive in conditions with low availability of water, but growth rates are 

reduced when soils become overly saturated or extremely dry.  Although the availability of 

water soil parameter is only represented in this equation by a main-effect and a square 

term, many other parameters found in other equations of this study are further 

complicated by their relations with interaction terms. 

The interaction terms are often much more difficult to draw intuitive conclusions 

from when compared to main-effect and squared terms.  Interaction terms are those terms 

that multiply two different soil parameters together.  For instance, the term that multiples 

topographic position with percent clay is positively associated with the model.  This means 

that these plants grow well in steeply sloped soils with high clay content.  This interaction 

could possibly be interpreted as; soils that are steeply sloped may be less likely to erode if 

they have strongly cemented clay-bond soils.  However, no research has been found that 

suggests such finds are related to productivity of the described plant species.  This term is 
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further complicated by other terms that are associated with topographic position, such as 

those that combine topographic positions with percent rock fragments and bulk density.  

When analyzing the terms individually, all associations may not be intuitive.  It is therefore 

necessary to analyze all terms concurrently to fully comprehend the meaning of these 

interactions.  However, analysis of all terms can be very complicated, especially in 

equations with many terms.  

Some terms in the resulting equation may be considered tempering terms, there to 

set limits upon other interactions within the equation.  This could possibly be true for the 

two terms; topographic position multiplied by percent clay, which show a positive 

association, and topographic position multiplied by bulk density, which is negatively 

associated with the model.  It is difficult to draw definitive conclusions from such 

interactions because one may think that soils with high percent clay would have high bulk 

densities, yet the opposing trends of these terms contradict this assumption.  In many cases 

such contradictions cannot be intuitively explained as the terms are present in the equation 

to set limits on one another.  

An alternative rationalization for this specific contradiction may possibly be 

explained by the presence of bedrock under shallow soils.  Bulk density numbers can be 

drastically increased in cases of shallow soils, in which the bulk density bedrock, having a 

relatively high bulk density compared to soils, is measured within the first 48 inches of soil.  

These high bulk density values could drastically change the overall bulk density value 

reported for a soil and thus lower the resulting productivity score.  This explanation would 

also allow for the possibility for soils with high clay content to be along ridgelines.   
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Regardless of such speculation, all soil parameter interactions must be field tested 

before any definitive conclusions are drawn from such equations.  As illustrated in this 

discussion it is difficult to decipher the actual edaphic interactions, as they relate to 

vegetative productivity, that these equations describe.  Complications associated with 

analyzing such equations are exacerbated as the number of terms is increased and the 

number of times a given soil parameter presents itself within the equation.  Despite 

difficulties, it is important for researches to review and analyze such equations to identify 

issues that may be presented in developed predictive models.   

 

4.6 LIMITATIONS OF STUDY 

Although the models investigated in this study all explained significant amounts of the 

variance, there are some factors that were not considered that could have strengthened the study.  

Firstly, there is a general lack of consideration for post-mined nutrient conditions.  Nutrients are 

often leached from spoil piles greatly limiting the abilities of soils to support the growth of a 

wide variety of vascular species, including the crop and woody plant species investigated in this 

study.  The loss of soil nutrients from disturbed soils makes it difficult to compare soils 

measured in soil surveys that have an established A horizon and functioning nutrient cycles.   

Reestablishment of nutrient contents throughout soil profiles that are similar to 

concentrations found in undisturbed soils is often a lengthy process.  Research by Ottenhof and 

other (2007) suggests that soil organic matter as it relates to N, P, S, K, Ca, Na, and Mg 

concentrations, is largely dependent upon the species grown.  In this study, the reestablishment 

of soil organic content in post-mined soils to pre-mined conditions ranged from estimates of 30 

to 120 years.  Acton and others (2011) identified soils organic carbon content as an indicator of 
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soil health, however carbon concentrations were found to be greatly limited to the first 10 cm of 

soil on mined soils of up to 14 years since reclamation.  Berg (1975) identified nitrogen as the 

most limiting factor on mine tailings in Colorado.  Often disturbed soils are planted with plants 

associated with nitrogen fixation such as member of the legume family including clover, 

soybean, or alfalfa (Berg, 1975) to initiate the nitrogen cycle in deficient soils.  However, 

establishment of a sustainable nitrogen system can take years. Although bringing soil nutrient 

levels equal to or greater than pre-mined conditions throughout soil profiles may take a 

considerable amount of time, bringing these concentrations to adequate levels to foster 

vegetative growth may take much less time. 

To initiate the processes post-mined soils are often planted with cover crops to avoid 

nutrient loss, prevent erosion of topsoil, and help to initiate sustainable nutrient cycles.  Until 

plants are established reclamationists often fertilize areas to augment nutrient deficient soils.  

When this occurs the availability of the nutrient is most likely not dependent upon its 

concentration in the soil, but rather on the pH level of the soil as it pertains to nutrient 

absorption.  Brady and Weil (2002) related many other chemical and biological properties to pH 

and considered it a master variable in determining nutrient availability.  In this way, the equation 

does account for at least a component of what is necessary for nutrient cycling, as it relates to a 

plant’s ability to uptake nutrients from the soil.  However, it may be beneficial to explore 

variables that account for the concentrations of nutrients in the soil.   

The most significant soil parameter investigated in this study that relates to soil nutrient 

concentration is percent organic matter.  Three major macronutrients, nitrogen, phosphorus and 

potassium, which are generally deficient in post-mined soils (Coppin and Bradshaw, 1982; 

Sheoran et al., 2008) have been related directly to soil organic content (Sheoran et al., 2010).  
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Although these factors have been correlated with soil organic content, exact concentrations of 

individual nutrients have not been identified in the equations.  It may be beneficial to investigate 

variables to accurately assess effects of specific nutrients to account for further explanation of 

the variance. 

Microorganism populations in post-mined soils are often much smaller when compared 

to undisturbed soils and restoration of populations takes time.  Chodak and others (2009), Harris 

(2003,2009), Jasper (2007), 

 

 

žek and others (2003), as well as Whitford and Elkins (1986) 

emphasized the importance of soil microorganisms to ecosystems and recommended proper soil 

management during restoration to ensure biological health of the system.  Again, there is no 

variable that has been explored in this study that addresses the microfauna of soils directly.  

Arshad and Martin (2002) identified soil respiration, as an indicator of microorganism health and 

therefore of soil quality.  Although soil respiration or other similar indicators have not been 

utilized in this study they could be add to other studies for further investigation.  A study by 

Showalter and other (2007) found that microbial activity correlated with mine spoil pH, and that 

pH correlated well with tree growth.  pH is considered the only indicator of microorganism 

activity used in the models in the research presented in this thesis. 

The variables presented in this study are not a fully comprehensive set of soil quality 

indicators but rather a set of variables experts that developed county soil surveys have identified 

as significant soil parameters.  Further exploration of possible variables should be conducted to 

strengthen variance explanations.  Furthermore, it is important to recognize that these equations 

are regional and land use based.  Regional factors may be included as the importance of soil 

attributes that affect plant productivity are identified within various regions of study.  For 

instance, electric conductivity, as an indicator of soluble salts in the soil, was not included in this 
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study because salt content is not commonly considered a major limiting factor for plants in the 

Upper Peninsula of Michigan.  Instead, electric conductivity would more like be used to assess 

soil quality in arid regions such as the southwestern United States (Scholl, 1986).   

Some regional factors that have not explicitly included in this study are still represented 

in the data set.  For instance, there are many regions throughout the study that are characterized 

by shallow soils and outcrops that would be expected to limit growth of larger species, however, 

depth to bedrock was not one of the independent variables investigated in this study.  Although 

not represented with their own independent variable, bedrock depths were measured to be within 

the first 48 inches of certain soil profile.  The observed properties of the impermeable rock did 

influence the soil attribute values associated with that soil type.  For instance, the bulk density of 

bedrock is considerably greater than all soils types in this region and would therefore produced 

relatively high values for these soils.  Similarly, the values of hydraulic conductivity, percent 

clay content, organic matter content, and percent rock fragments would all be heavily influenced 

by the presence of bedrock within the first 48 inches of earth. 

Frost heave was identified by Linsemier (1989) as being a significant regional factor that 

affects plant growth.  Frost heave is generally associated with soil texture, depth of soil, and 

depth of water table.  As soils holding high amounts of water freeze and therefore expand and 

shift, root systems are damaged and trees can be uprooted.  The harsh winters and shallow soils 

throughout the region makes frost heave an issue of major concern to the productivity of plants.  

Although soil texture and depth to water table are attributes not directly expressed in the 

equation as independent variables, I consider the measured properties used to create the data set 

adequate for accounting for the influence of them.  The texture of the soil is partially accounted 

for by the parameters percent clay and percent rock fragments, although could be strengthen by 
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including other texture variables such as percent sand content.  As previously mentioned, depth 

to bedrock is represented in the equations as the values of bedrock with the first 48 inches of soil 

affect attribute values.  Depth to water table is largely unrepresented in this investigation.  The 

soil surveys used to derive soil data showed no crop or woody plant growth values for soils with 

high water tables, commonly classified as mucks.  It may therefore be beneficial to investigate 

variables that account for the influence of high water tables. 

The equations derived from this methodology are also land use based.  The concept of 

land use includes uses before, during, and the intended land use after mining.  Land use prior to 

mining as it relates to soil conditions is usually not a major concern for most reclamation 

projects.  However, rare instance in which industrial use could have contaminated soils prior to 

mine could affect the reapplied A horizon of the post-mined soil.  Soil contamination is most 

likely to occur during the mining operations themselves.  Soil contaminates can greatly influence 

the soil quality and therefore the productivity potential of soils.  Soil toxicity was not considered 

a major variable to be considered in the development of the models due to the type of mineral 

extraction that is currently being conducted in this region. 

According to the United States Department of the Interior, U.S. Geological Survey, there 

are currently no active mining operations in Iron County or Dickinson County (USGS, 2012), the 

equations are to be applied on a regionally basis if to be applied directly to a mine reclamation 

effort.  The Tilden and Empire Mines are located in the adjacent, Marquette County.  Both mines 

are open pit iron mines.  Iron mining is associated with relatively low occurrence of toxic 

materials that persist in the soil when compared to the mining of many other materials, such as 

gold, silver, nickel, or copper sulfide.  The presented equations can only be applied to mining of 

relatively inert substances such as sand, gravel, coal and iron when compared to mineral 
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extraction processes that result in more hazardous chemicals.  However, the recent opening of a 

copper and nickel mine in Marquette County may warrant the addition of further variable 

investigation if being applied to this site.  In September of 2011, the Kennecott Eagle Minerals 

Company began underground copper and nickel mining operation.  Bech et al. (1997) reported 

the presence of Cu, Zn, Pb, Co, Ni, Cd, and As in soils surrounding copper mines.  Although the 

types of metal contaminates associated with copper mining depends on the ore being mined, it is 

possible if some or all of these contaminants are present in post-mined soils from this operation.  

Bech (1997) linked the availability of these elements to uptake by vegetation to soil parameters 

suggesting that the exploration of such variables is beneficial.  It may be beneficial to investigate 

additional variables and redevelop the models if this study intends to be accurately applied to 

mines that result in toxic materials. 

 The selection of crop and woody plant types in this study is also a limiting factor to its 

use.  Plant types were selected based on the NRCS data that was available.  Although the 

methodology presented in this study can be applied to any available data set, species are limited 

in this case due to the data set being derived from a secondary source.  Species are therefore 

limited to those published in soil surveys.  Increasing the number of species could have varying 

affects on resulting equations.  Firstly, it may give a more accurate indication on the community 

type that the eigenvector describes.  Investigating a broader array of plant types could also 

develop equations for plant or community types that were not investigated in this study.  

However, as previously stated, data collection for use in such equations is both time consuming 

and costly.  The methodology employed in this study presents a cost-effective process for the 

development of empirical models to predict vegetative productivity potentials of post-mined 

soils. 
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4.7 ADDITIONAL USES OF EQUATIONS 

 The models in this study can be used in two main ways.  The primary intent of these 

equations is to establish accurate models that predict growth potentials of crop and woody 

species on reconstructed soils.  However, these equations can also be analyzed as a means of 

identifying post-mine soil treatments.  For instance, cases in which plant species are described by 

an equation that identifies bulk density as a major limiting factor to plant growth and the sampled 

soil receives an insufficient score, reclamationists may recommend a tilling regime to reduce the 

bulk density of the measured soil.  This post-mine soil treatment would be expected to decrease 

bulk density and therefore raise the soil index score.  In this way the equations can be view not 

only as a way to identify the applicability of a species or set of species to a soil, but also a way to 

identify problematic conditions of the equation. 

Similarly, the influence of soil amendments or alternative growth medias could be more 

accurately predicted by the equations developed by this methodology.  A considerable amount of 

research has investigated the applications of various alternative substrates as growth media or 

soil amendments (Zornoza et al., 2012; Watts et al., 201

 

 

žek et al., 2012, Beauchamp et 

al., 2006; Tripathy et al., 2008).  The equations could be used to assess the influence of these 

amendments as they change soil scores produced employing these models.  By examining the 

properties of a soil amendment and applying them to the equation as they proportionally 

influence the properties of the treated soil, reclamationists are able to assess appropriate type and 

quantities of given amendments.  The addition of compost for instance, would be expected to 

raise available water holding capacity, increase percent organic matter, and reduce the bulk 

density of a soil.  However, it is unknown how different quantities are expected to change the 

productivity of soils and interact with other unaccounted for interactions that may not be 
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apparent.  The models developed in this study can be used to assess these interactions and assist 

reclamationists in making amendment application decisions. 
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Table A.1 Iron County Independent Variables 
 
  TP SL FR CL BD HC AW PH OM 
IR1OCA 1.5 1.5 0.138 10.842 1.54 1.848 0.148 7.061 1.5 
IR2OCB 1.5 4 0.138 10.842 1.54 1.848 0.148 7.061 1.5 
IR3OCD 2 12 0.138 10.842 1.54 1.848 0.148 7.061 1.5 
IR4PAA 2.5 1.5 4.5 9.583 1.536 3.503 0.139 5.523 1.25 
IR5PAB 2.5 4 4.5 9.583 1.536 3.503 0.139 5.523 1.25 
IR6PAD 2.5 12 4.85 9.583 1.536 3.503 0.139 5.523 1.25 
IR7TRB 2 3.5 2.85 11.238 1.488 2.38 0.154 6.332 2 
IR8TRD 3 12 2.85 11.238 1.488 2.38 0.154 6.332 2 
IR9SOA 1 1.5 7.2 14.25 1.533 1.3 0.152 7.27 2 
IR10CHA 1 1.5 5.583 6.35 1.482 6.91 0.107 5.415 2 
IR11KAB 2 3.5 0 8.591 1.484 5.05 0.114 5.213 1.25 
IR12KAD 2 12 0 8.591 1.484 5.05 0.114 5.213 1.25 
IR13GAA 1.5 1.5 0.479 12.967 1.534 0.985 0.19 5.655 3.5 
IR14FEA 2 1.5 0 12.541 1.532 0.46 0.19 5.114 1.5 
IR15FEB 2.5 4 0 12.541 1.532 0.46 0.19 5.114 1.5 
IR16FED 2.5 12 0 12.541 1.532 0.46 0.19 5.114 1.5 
IR17PEB 3.5 3.5 9.233 6 1.505 6.05 0.099 5.545 2 
IR18PED 3.5 12 9.233 6 1.505 6.05 0.099 5.545 2 
IR19KEB 2.5 3.5 12.252 8.25 1.624 3.948 0.092 5.523 1.25 
IR20KED 3 12 12.252 8.25 1.624 3.948 0.092 5.523 1.25 
IR21ESB 2.5 3.5 10 8.6 1.478 3.73 0.101 6.287 1.75 
IR22STA 1.5 1.5 5.013 10.675 1.416 2.365 0.205 5.291 2 
IR23STB 2 4 5.013 10.675 1.416 2.365 0.205 5.291 2 
IR24STD 3 12 5.013 10.675 1.416 2.365 0.205 5.291 2 
IR25SAB 3.5 3.5 8.383 8.267 1.601 1.3 0.118 5.528 2 
IR26SAD 4 12 8.383 8.267 1.601 1.3 0.118 5.528 2 
IR27SUB 3.5 3.5 4.366 6.263 1.541 7.845 0.127 5.638 2 
IR28SUD 4 12 4.366 6.263 1.541 7.845 0.127 5.638 2 
IR29SUA 3.5 1.5 3.934 7.058 1.541 6.599 0.142 5.621 2 
IR30MAA 1.5 1.5 4.646 7.238 1.568 4.533 0.108 5.647 2 
IR31PEB 2 3.5 5.65 8.429 1.607 1.005 0.146 6.05 2 
IR32PED 2.5 12 5.65 8.429 1.607 1.005 0.146 6.05 2 
IR33SAB 2.5 3.5 11.05 8.5 1.384 4 0.128 6.43 2 
IR34SAD 3 12 11.05 8.5 1.384 4 0.128 6.43 2 
IR35ALB 2.5 3 1.5 16.113 1.596 1.255 0.175 6.147 3.5 
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Table A.1 Iron County Independent Variables (Cont’d) 

  
 
 
Table A.2 Iron County Dependent Variables 
 
  CO CS OA IP AH RM WS RP EP JP LI 
IR1OCA 70 11 60 0 0 0 0 30.5 30.5 30.5 11.5 
IR2OCB 70 11 60 0 0 0 0 30.5 30.5 30.5 11.5 
IR3OCD 50 8 40 0 0 0 0 30.5 30.5 30.5 11.5 
IR4PAA 70 11 70 0 0 0 0 30.5 30.5 30.5 11.5 
IR5PAB 70 11 70 0 0 0 0 30.5 30.5 30.5 11.5 
IR6PAD 55 9 55 0 0 0 0 0 0 0 0 
IR7TRB 0 14 75 350 0 0 0 0 0 0 0 
IR8TRD 0 0 60 0 0 0 0 0 0 0 0 
IR9SOA 85 14 75 0 0 0 0 0 0 0 0 
IR10CHA 0 0 60 0 0 0 20.5 0 30.5 0 11.5 
IR11KAB 70 13 60 0 0 0 0 20.5 20.5 20.5 11.5 
IR12KAD 0 0 50 0 0 0 0 20.5 20.5 20.5 11.5 
IR13GAA 0 0 85 0 0 0 20.5 0 30.5 0 0 
IR14FEA 75 12 75 0 0 30.5 20.5 30.5 30.5 0 11.5 
IR15FEB 70 11 75 0 0 30.5 20.5 30.5 30.5 0 11.5 
IR16FED 60 10 70 0 0 30.5 20.5 30.5 30.5 0 11.5 
IR17PEB 60 10 55 0 0 0 0 30.5 30.5 30.5 11.5 
IR18PED 0 0 0 0 0 0 0 30.5 30.5 30.5 11.5 
IR19KEB 0 10 60 250 3 0 20.5 30.5 30.5 20.5 11.5 
IR20KED 0 0 0 0 2.4 0 20.5 30.5 30.5 20.5 11.5 

 
 

  TP SL FR CL BD HC AW PH OM 
IR36MOA 1 1.5 7.5 6.417 1.678 1.3 0.111 6.037 2.5 
IR37PEB 3.5 3.5 7.5 6.133 1.507 6.217 0.099 5.535 2 
IR38PED 3.5 12 7.5 6.133 1.507 6.217 0.099 5.535 2 
IR39MOA 1 1.5 7.5 6.417 1.678 1.3 0.111 6.037 2.5 
IR40BEA 1 1 3.5 11 1.28 1.3 0.212 5 3 
IR41STB 3 4 4.517 10.675 1.395 1.661 0.214 5.268 2 
IR42LOB 2.5 3.5 7.5 7.583 1.314 4.728 0.139 5.351 1.25 
IR43LOD 2.5 12 7.5 7.583 1.314 4.728 0.139 5.351 1.25 
IR44MOA 1 1 7.5 8.396 1.616 1.3 0.135 5.798 2.5 
IR45PEB 3.5 3.5 4.475 6 1.505 6.05 0.099 5.545 2 
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A.2 Iron County Dependent Variables (cont’d) 
 
 CO CS OA IP AH RM WS RP EP JP LI 
IR21ESB 75 12 70 350 3.5 0 20.5 30.5 30.5 20.5 11.5 
IR22STA 0 14 80 350 4 0 20.5 20.5 30.5 20.5 0 
IR23STB 0 14 80 350 4 0 20.5 20.5 30.5 20.5 0 
IR24STD 0 0 60 0 3 0 20.5 20.5 30.5 20.5 0 
IR25SAB 80 13 65 0 0 0 0 0 0 0 0 
IR26SAD 0 0 0 0 0 0 0 0 0 0 0 
IR27SUB 0 0 55 275 0 0 0 20.5 20.5 20.5 0 
IR28SUD 0 0 0 0 0 0 0 20.5 20.5 20.5 0 
IR29SUA 0 0 60 275 0 0 0 20.5 20.5 20.5 0 
IR30MAA 0 10 50 0 0 0 0 30.5 30.5 30.5 11.5 
IR31PEB 80 13 75 0 3.5 0 0 0 0 0 0 
IR32PED 0 0 65 0 3.5 0 0 0 0 0 0 
IR33SAB 0 0 60 275 0 20.5 20.5 30.5 30.5 0 0 
IR34SAD 0 0 0 0 0 20.5 20.5 30.5 30.5 0 0 
IR35ALB 90 15 70 0 0 30.5 20.5 0 30.5 0 11.5 
IR36MOA 0 12 60 0 0 30.5 20.5 0 30.5 0 11.5 
IR37PEB 60 10 55 0 0 0 0 30.5 30.5 30.5 11.5 
IR38PED 0 0 0 0 0 0 0 30.5 30.5 30.5 11.5 
IR39MOA 0 12 60 0 0 30.5 20.5 0 30.5 0 11.5 
IR40BEA 0 0 70 0 0 0 20.5 0 30.5 0 0 
IR41STB 0 14 75 350 4 0 20.5 20.5 30.5 20.5 0 
IR42LOB 0 0 75 0 3.5 0 0 0 0 0 0 
IR43LOD 0 0 0 0 2.5 0 0 0 0 0 0 
IR44MOA 0 12 60 0 0 30.5 20.5 0 30.5 0 11.5 
IR45PEB 60 10 55 0 0 0 0 30.5 30.5 30.5 11.5 

 
 
 
Table A.3 Dickinson County Independent Variables 
 
  TP SL FR CL BD HC AW PH OM 
DI1PEB 4 3 7.5 10.265 1.394 3.825 0.138 5.82 1.75 
DI2PED 4.5 12 7.5 10.265 1.394 3.825 0.138 5.82 1.75 
DI3PEF 5 26.5 7.5 10.265 1.394 3.825 0.138 5.82 1.75 
DI4FEB 3.5 3 0 12.2 1.477 0.64 0.2 5.05 1.5 
DI5FED 3 12 0 12.2 1.477 0.64 0.2 5.05 1.5 
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Table A.3 Dickinson County Independent Variables (cont’d) 
 
  TP SL FR CL BD HC AW PH OM 
DI6KAB 4 3 0 5.817 1.489 5.65 0.087 6.005 1.25 
DI7KAD 4.5 12 0 5.817 1.489 5.65 0.087 6.005 1.25 
DI8KAF 5 26.5 0 5.817 1.489 5.65 0.087 6.005 1.25 
DI9ESB 3.5 3 2.625 8.879 1.484 3.64 0.105 6.253 1.75 
DI10ESD 4 12 2.625 8.879 1.484 3.64 0.105 6.253 1.75 
DI11EMB 3.5 3 2.5 15.417 1.624 3.055 0.13 6.968 2 
DI12EMD 4 12 2.5 15.417 1.624 3.055 0.13 6.968 2 
DI13EMF 5 26.5 2.5 15.417 1.624 3.055 0.13 6.968 2 
DI14PEB 3.5 3 4.683 5.5 1.522 4.5 0.09 5.421 2 
DI15PED 4 12 4.683 5.5 1.522 4.5 0.09 5.421 2 
DI16PEF 5 26.5 4.683 5.5 1.522 4.5 0.09 5.421 2 
DI17DE 1 0 0 5.8 1.515 13 0.064 6.94 8 
DI18ROA 3.5 1.5 0 5 1.468 13 0.079 5.505 1.5 
DI19NAB 4 3 8.5 7.675 1.414 5.04 0.125 6.884 2 
DI20NAD 4.5 12 8.5 7.675 1.414 5.04 0.125 6.884 2 
DI21NAF 5 26.5 8.5 7.675 1.414 5.04 0.125 6.884 2 
DI22ROB 4 3 0 5 1.468 13 0.07 5.611 1.5 
DI23ROD 4.5 12 0 5 1.468 13 0.07 5.611 1.5 
DI24ROF 5 26.5 0 5 1.468 13 0.07 5.611 1.5 
DI25OCB 3.5 3 1.275 9.775 1.556 2.475 0.12 7.098 1.5 
DI26OCD 4.5 12 1.275 9.775 1.556 2.475 0.12 7.098 1.5 
DI27WAA 1 1.5 0 6.55 1.401 13 0.082 5.528 3 
DI28MAB 4 3 3.417 7.625 1.375 12.633 0.083 6.883 1.75 
DI29MAD 4.5 12 3.417 7.625 1.375 12.633 0.083 6.883 1.75 
DI30MAF 5 26.5 3.417 7.625 1.375 12.633 0.083 6.883 1.75 
DI31KI 1 0 0 5 1.45 13 0.05 5.29 9.5 
DI32VIB 4 3 0 2.983 1.579 13 0.08 5.54 1 
DI33VID 4.5 12 0 2.983 1.579 13 0.08 5.54 1 
DI34VIF 5 26.5 0 2.983 1.579 13 0.08 5.54 1 
DI35CHA 1.5 1.5 4.563 6.3 1.491 7.378 0.103 5.429 2 
DI36ZIB 4 3 0 4.75 1.595 13 0.08 6.61 1.5 
DI37ZID 4.5 12 0 4.75 1.595 13 0.08 6.61 1.5 
DI38ZIF 5 26.5 0 4.75 1.595 13 0.08 6.61 1.5 
DI39RUB 4 3 0 4.437 1.443 13 0.061 5.297 0.75 
DI40RUD 4.5 12 0 4.437 1.443 13 0.061 5.297 0.75 
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Table A.3 Dickinson County Independent Variables (cont’d) 
 
  TP SL FR CL BD HC AW PH OM 
DI41RUF 5 26.5 0 4.437 1.443 13 0.061 5.297 0.75 
DI42UD 2 0 0 0 0 0 0 0 0 
DI43SOB 1.5 2 1.5 13.354 1.55 1.3 0.138 7.344 2 
DI44ENB 1 0 5 14.65 1.515 3.189 0.12 7.335 5.5 
DI45ALB 3.5 3 0.075 16.637 1.599 1.255 0.175 6.415 3 
DI46HE 1 0 0 31.3 1.525 0.432 0.173 7.467 3.5 
DI47LOB 3.5 3 43.75 8.083 1.445 1.263 0.089 6.45 2 
DI48LOD 4 12 43.75 8.083 1.445 1.263 0.089 6.45 2 
DI49UVB 4 4 4.125 18.125 1.664 0.92 0.167 6.093 2 
DI50UVD 4.5 12 4.125 18.125 1.664 0.92 0.167 6.093 2 

 
 
 

Table A.4 Dickinson County Dependent Variables 
 
  CO CS OA IP AH RM WS RP EP JP LI 
DI1PEB 70 11 60 300 3 0 20.5 30.5 30.5 0 11.5 
DI2PED 0 0 50 0 0 0 20.5 30.5 30.5 0 11.5 
DI3PEF 0 0 0 0 0 0 20.5 30.5 30.5 0 11.5 
DI4FEB 90 15 80 362.5 4 30.5 20.5 30.5 30.5 0 11.5 
DI5FED 0 0 70 0 3.5 30.5 20.5 30.5 30.5 0 11.5 
DI6KAB 70 13 60 300 3 0 0 30.5 30.5 0 11.5 
DI7KAD 0 0 55 0 2.5 0 0 30.5 30.5 0 11.5 
DI8KAF 0 0 0 0 0 0 0 30.5 30.5 0 11.5 
DI9ESB 75 12 70 312.5 3.5 0 20.5 30.5 30.5 30.5 11.5 
DI10ESD 0 0 55 0 3.1 0 20.5 30.5 30.5 30.5 11.5 
DI11EMB 75 15 75 337.5 3.5 30.5 20.5 30.5 30.5 0 11.5 
DI12EMD 0 0 70 0 3.2 30.5 20.5 30.5 30.5 0 11.5 
DI13EMF 0 0 0 0 0 30.5 20.5 30.5 30.5 0 11.5 
DI14PEB 70 10 60 300 3 0 0 30.5 30.5 30.5 11.5 
DI15PED 0 0 55 0 2.7 0 0 30.5 30.5 30.5 11.5 
DI16PEF 0 0 0 0 0 0 0 30.5 30.5 30.5 11.5 
DI17DE 0 0 0 0 0 0 30.5 0 30.5 0 11.5 
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Table A.4 Dickinson County Dependent Variables (cont’d) 
 
 CO CS OA IP AH RM WS RP EP JP LI 
DI18ROA 70 10 60 300 3 0 20.5 30.5 30.5 30.5 0 
DI19NAB 70 11 70 312.5 3 0 20.5 30.5 30.5 0 11.5 
DI20NAD 0 0 65 0 2.6 0 20.5 30.5 30.5 0 11.5 
DI21NAF 0 0 0 0 0 0 20.5 30.5 30.5 0 11.5 
DI22ROB 60 10 50 287.5 2.8 0 20.5 30.5 30.5 30.5 0 
DI23ROD 0 0 45 0 2.2 0 20.5 30.5 30.5 30.5 0 
DI24ROF 0 0 0 0 0 0 20.5 30.5 30.5 30.5 0 
DI25OCB 70 11 70 312.5 3 0 0 30.5 30.5 30.5 11.5 
DI26OCD 50 8 65 0 2.5 0 0 30.5 30.5 30.5 11.5 
DI27WAA 70 14 60 0 3 0 11.5 0 30.5 0 0 
DI28MAB 70 13 60 300 3 0 20.5 30.5 30.5 30.5 11.5 
DI29MAD 0 0 55 0 2.7 0 20.5 30.5 30.5 30.5 11.5 
DI30MAF 0 0 0 0 0 0 20.5 30.5 30.5 30.5 11.5 
DI31KI 0 0 0 0 0 0 0 0 0 0 0 
DI32VIB 50 8 40 262.5 2.5 0 0 30.5 30.5 30.5 11.5 
DI33VID 0 0 0 0 0 0 0 30.5 30.5 30.5 11.5 
DI34VIF 0 0 0 0 0 0 0 30.5 30.5 30.5 11.5 
DI35CHA 70 11 65 0 3 0 20.5 0 30.5 30.5 11.5 
DI36ZIB 70 10 60 300 3 0 0 30.5 30.5 30.5 11.5 
DI37ZID 0 0 55 0 2.7 0 0 30.5 30.5 30.5 11.5 
DI38ZIF 0 0 0 0 0 0 0 30.5 30.5 30.5 11.5 
DI39RUB 0 0 0 0 2 0 0 30.5 30.5 30.5 11.5 
DI40RUD 0 0 0 0 0 0 0 30.5 30.5 30.5 11.5 
DI41RUF 0 0 0 0 0 0 0 30.5 30.5 30.5 11.5 
DI42UD 0 0 0 0 0 0 0 0 0 0 0 
DI43SOB 80 14 80 0 3.5 30.5 20.5 0 30.5 0 11.5 
DI44ENB 0 0 0 0 0 0 0 0 0 0 0 
DI45ALB 90 14 85 0 4 30.5 20.5 0 30.5 0 11.5 
DI46HE 0 0 0 0 0 0 0 0 0 0 0 
DI47LOB 70 11 70 312.5 3 0 0 0 0 0 0 
DI48LOD 0 0 65 0 2.7 0 0 0 0 0 0 
DI49UVB 80 15 65 362.5 3.8 0 20.5 30.5 30.5 30.5 11.5 
DI50UVD 70 14 60 0 3.8 0 0 30.5 30.5 30.5 11.5 
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