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ABSTRACT

TAIL ESTIMATION OF THE SPECTRAL DENSITY UNDER
FIXED-DOMAIN ASYMPTOTICS

By

Wei-Ying Wu

For spatial statistics, two asymptotic approaches are usually considered: increasing domain

asymptotics and fixed-domain asymptotics (or infill asymptotics). For increasing domain

asymptotics, sampled data increase with the increasing spatial domain, while under infill

asymptotics, data are observed on a fixed region with the distance between neighboring ob-

servations tending to zero. The consistency and asymptotic results under these two asymp-

totic frameworks can be quite different. For example, not all parameters are consistently

estimated under infill asymptotics while consistency holds for those parameters under in-

creasing asymptotics (Zhang 2004).

For a stationary Gaussian random field on Rd with the spectral density f(λ) that satisfies

f(λ) ∼ c |λ|−θ as |λ| → ∞, the parameters c and θ control the tail behavior of the spectral

density where θ is related to the smoothness of random field and c can be used to determine

the orthogonality of probability measures for a fixed θ. Specially, c corresponds to the

microergodic parameter mentioned in Du et al. (2009) when Matérn covariance is assumed.

Additionally, under infill asymptotics, the tail behavior of the spectral density dominates

the performance of the prediction, and the equivalence of the probability measures. Based

on those reasons, it is significant in statistics to estimate c and θ.

When the explicit form of f is known, its corresponding covariance structure can be

computed through the Fourier transformation. Therefore, spatial domain methodologies like

Maximum Likelihood Estimator (MLE) or Tapering MLE can be used for the estimation



of c and θ. Unfortunately, the exact form of f should be unknown in practice. Under this

situation, spatial domain methods will not be applied without the covariance information.

In my work, for data observed on grid points, two methods which utilize tail frequency

information are proposed to estimate c and θ. One of them can be viewed as a weighted

local Whittle type estimator. Under proposed approaches, the explicit form of f and the

restriction of the dimension are not necessary. The asymptotic properties of the proposed

estimators under infill asymptotics (or fixed-domain asymptotics) are investigated in this

dissertation together with simulation studies.
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Chapter 1

Introduction

With recent advances in technology, we are facing enormous amount of data sets. When

those data sets are observed on a regular grid, spectral analysis is popularly used due to

fast computation using the Fast Fourier Transform. For example, parameters of the spectral

density of a stationary lattice process can be estimated using a Whittle likelihood [Whittle,

(1954)], which is more efficient in terms of computation compared to the maximum likelihood

method on a spatial domain.

In my dissertation, I propose new methodologies developed from the perspective of spec-

tral analysis to estimate parameters that control the tail behavior of the spectral density

for a stationary Gaussian random field under fixed-domain asymptotics, which is one of two

famous sampling schemes in spatial statistics. The second sampling scheme is the increasing

domain asymptotics. Before explaining my research problem, I first introduce these two

sampling schemes and their differences.
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1.1 Increasing domain and fixed-domain asymptotics

Spatial data on a grid often can be regarded as a realization of a random field on a lattice.

That is, for a random field, Z(s) on Rd, data is observed at ϕJ for J ∈
∏d

j=1{1, · · · ,mj},

where ϕ is a grid length. When ϕ is fixed and the sample size is increasing (increasing

domain asymptotics), asymptotic properties of parameter estimates on a spectral domain

have been studied by many authors [see, e.g., Whittle (1954), Guyon (1982, 1995), Boissy et

al. (2005) and Guo et al. (2009)]. For example, Guyon (1982) studied asymptotic properties

of estimators using a Whittle likelihood or its variants when a parametric model is assumed

for the spectral density of a stationary process on a lattice. Guo et al. (2009) studied

asymptotic properties of estimators of long-range dependence parameters for anisotropic

spatial linear processes using a local Whittle likelihood method in which a parametric form

near zero frequency is only assumed. This is an extension of Robinson’s research (1995) on

time series.

For spatial data, it is often natural to assume that the data is observed on a bounded

domain of interest, therefore more observations on the bounded domain means that the

distance between observations, ϕ, decreases as the number of observations increases. This

sampling scheme requires a different asymptotic framework, called fixed-domain asymptotics

[Stein (1999)] (or infill asymptotics [Cressie (1993)]).

It has been shown that the asymptotic results under fixed-domain asymptotics can be

different from the results under increasing-domain asymptotics [see, e.g., Mardia and Mar-

shall (1984), Ying (1991, 1993), and Zhang (2004)]. For example, Zhang (2004) showed

not all parameters in the Matérn covariance model of a stationary Gaussian random field

on Rd are consistently estimable when d is smaller than or equal to 3. He also showed
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that a reparameterized quantity which is a function of variance and scale parameters can

be estimated consistently by the maximum likelihood method. On the other hand, under

increasing-domain asymptotics, the maximum likelihood estimators (MLEs) of variance and

scale parameters for a stationary Gaussian process are consistent and asymptotically normal

[Mardia and Marshall (1984)]. Although not all parameters can be estimated consistently

under fixed-domain asymptotics, a microergodic parameter can be estimated consistently

[see, e.g., Ying (1991, 1993), Zhang (2004), Zhang and Zimmerman (2005), Du et al. (2009),

and Anderes (2010)]. The microergodicity of functions of parameters determines the equiva-

lence of probability measures, whereby a microergodic parameter is the quantity that affects

asymptotic mean squared prediction error under fixed-domain asymptotics. [Stein (1990,

1999)].

Although there have been more asymptotic results available recently under fixed-domain

asymptotics, it is still very few in contrast with vast literature on increasing-domain asymp-

totics. Also, most results are for specific models of covariance functions. For example,

Ying (1991, 1993) and Chen et al. (2000) studied asymptotic properties of estimators for

a microergodic parameter in the exponential covariance function, while Zhang (2004), Loh

(2005), Kaufman et al. (2008), Du et al. (2009) and Anderes (2010) investigated asymptotic

properties of estimators for the Matérn covariance function. For the estimation of the fractal

dimension in the spatial domain under the fixed-domain asymptotics, Constantine and Hall

(1994) estimated effective fractal dimension using variogram for a non-Gaussian stationary

process on R. Chan and Wood (2004) introduced an increment-based estimator of the fractal

dimension of a function of a stationary Gaussian random field on Rd when d = 1 or 2. These

asymptotic results are established in the spatial domain.

Asymptotic results in the spectral domain are even less under fixed-domain asymptotics.
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Stein (1995) studied asymptotic properties of a spatial periodogram of a filtered version of

a stationary Gaussian random field. Lim and Stein (2008) extended results of Stein (1995)

and showed asymptotic normality of a smoothed spatial cross-periodogram under fixed-

domain asymptotics. Regarding the parameter estimation in the spectral domain under

fixed-domain asymptotics, Chan et al. (1995) proposed a periodogram-based estimator of

the fractal dimension of a stationary Gaussian random field when d = 1.

In the above discussions, it follows that the properties under increasing domain and

fixed domain are quite different and more research works are required for fixed-domain

asymptotics. In the next Section, I will begin to introduce my research problem under

fixed-domain asymptotics.

1.2 The tail behavior of the spectral density

In this dissertation, I propose estimators of parameters that control the tail behavior of

the spectral density for a stationary Gaussian random field when the data is observed on

a grid within a bounded domain and study their asymptotic properties under fixed-domain

asymptotics. Let f(λ) be the spectral density of a stationary Gaussian random field, Z(s)

on Rd and we assume that

f (λ) ∼ c |λ|−θ as |λ| → ∞,λ ∈ Rd (1.1)

where | · | is a usual Euclidean norm and θ > d to ensure integrability of f . That is, we only

assume power law for the tail behavior of the spectral density and do not assume any specific

parametric form of the spectral density. In the following subsection, the reasons for interest

4



in the tail behavior will be introduced from two perspectives; the equivalence of probability

measures and the prediction.

1.2.1 Equivalence of probability measures

The equivalence between two probability measures P1 and P2 on a measurable space {Ω,F)

is that P1(A) = 0 for any A ∈ F implies P2(A) = 0 and denoted by P1 ≡ P2. We usually

assume F is generated by the paths of the process {Z(s), s ∈ D}. When the stationarity is

considered for the process, many criteria based on the spectral densities have been developed

to classify the equivalence of probability measures [see, e.g.,Ibragimov (1978), Yadrenko

(1983) and Du (2009a)].

Theorem 1. (Yadrenko (1983)) Let Pi, i = 1, 2 be two probability measures such that under

Pi, the process {Z(s), s ∈ Rd} is stationary Gaussian with mean 0 and a second-order

spectral density fi(λ),λ ∈ Rd. If, for some θ > d, f1(λ) |λ|θ is bounded away from 0 and

∞ as |λ| → ∞, and for some finite c,

∫
|λ|>c

{
f2(λ)− f1(λ)

f1(λ)

}2

dλ < ∞. (1.2)

then P1 ≡ P2 on the paths of Z(s), s ∈ D, for any bounded subset D ⊂ Rd.

The integrability of (1.2) is determined by the tail of spectral densities. For example, if

fi(λ)’s are isotopic, i.e., depend only on |λ|, (1.2) will hold when there exists some ϵ > 0

such that

f1(λ)

f2(λ)
− 1 = O(|λ|−(d/2+ϵ)) as|λ| → ∞. (1.3)
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This implies the equivalence of probability measures can be verified by the decay degree of

their spectral densities.

Many applications of the equivalence of measures have been explored to reduce the com-

putational burden like a tapering method. Let ln(θ) be the log likelihood of data observed:

ln(θ) = −n

2
log(2π)− 1

2
log[detVn]−

1

2
X

′
nV

−1
n Xn. (1.4)

where n is sample size, Xn is a data vector and Vn is the covariance matrix. The computation

cost to obtain Maximum Likelihood Estimator (MLE) can be expensive.

To reduce computational burden, a tapering method on the covariance function can be

used:

Ṽ (l, θ) = V (l, θ) ◦ Vtap(l).

where V (l, θ) is the covariance function of the underlying process that depends on parameter

θ (possibly a set of parameters), Vtap(l) is the taper, a known positive function, that is 0

after a threshold distance and “◦” is Schur or Hadamard product. By replacing V (l, θ) with

Ṽ (l, θ), tapered likelihood is attained as

ln,tap(θ) = −n

2
log(2π)− 1

2
log[det Ṽn(l, θ)]−

1

2
X

′
nṼn(l, θ)

−1
n Xn. (1.5)

The consistency of the estimator based on ln,tap(θ) holds if the probability measure under

Ṽ (l, θ) is equivalent to the one under V (l, θ) [see. Zhang (2004)]. More theoretical discussion

about a tapered method is found in the Chapter 3 [Du, (2009a)].
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1.2.2 Prediction under fixed-domain asymptotics

The another motivation to study tail behavior of the spectral density comes from its role in

prediction. In spatial statistics, the best linear unbiased prediction is called kriging. Let pro-

cess Z(s) be a mean zero stationary process and data is sampled at locations {s1, s2, s3...., }

which are dense in a bounded region D ⊆ Rd, which implies that the infill sampling is

used. Further, assume s∗ be a new location that we would like to explore. Let Ẑ(s∗, n) be

the best linear unbiased prediction of Z(s∗) based on the data Z(s1), Z(s2), ..., Z(sn) and

e(s∗, n) be the error between Z(s∗) and Ẑ(s∗, n). The following theorem [Stein (1998), p.

136] compares the prediction performance between a correct measure P1 and a misspecified

measure P2.

Theorem 2. (Stein 1999, p.252) Let Z(s) be a mean zero stationary Gaussian random field

under probability measure Pi with spectral density fi, for i = 1, 2. If there exist some ρ > 0

such that f1(λ)|λ|ρ is bounded away from 0 and ∞, and
f2(λ)
f1(λ)

→ 1 as |λ| → ∞,

lim
n→∞

E1(e2(s
∗, n)− e1(s

∗, n))2

E1(e1(s∗, n))2
= 0

lim
n→∞

E2(e2(s
∗, n))2

E1(e2(s∗, n))2
= 0

(1.6)

where Ei(·) and ei(·) is the expectation and prediction error under probability measure Pi,

for i = 1, 2.

The above result means no matter which probability measures we used for prediction

performance is asymptotically equivalent under the fixed-domain sampling if the tail behavior

of f2 is as that of f1. Thus, understanding the tail behavior of the spectral density is of great

importance in spatial statistics.

In my dissertation, we introduce two approaches to estimate parameters that control the
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tail behavior of the spectral density. That is c and θ in (1.1). One of the proposed esti-

mators is obtained by minimizing an objective function that can be viewed as a weighted

Whittle likelihood, in which Fourier frequencies near a pre-specified non-zero frequency are

considered. This approach is similar to the local Whittle likelihood method introduced by

Robinson (1995) for estimating a long-range dependence parameter in time series analy-

sis. For a stationary lattice process, Robinson (1995) proposed to estimate a long-range

dependence parameter by minimizing the Whittle likelihood over Fourier frequencies near

zero since the long-range parameter dependence is controlled by the behavior of the spectral

density near zero. Meanwhile, we are interested in estimating parameters that govern the

spectral density of a random field when the frequency is very large so that we need to focus

on Fourier frequencies that are away from zero.

In our work, we establish consistency and asymptotic normality of estimators of c and

estimators of θ, respectively, when the other parameter is known. Some properties are also

discussed when both parameters are unknown. Specially, if the Matérn covariance model is

considered, c is related to a microergodic parameter. Consider the Matérn spectral density

given as

f(λ) =
σ2α2ν

πd/2(α2 + |λ|2)ν+d/2
, λ ∈ Rd. (1.7)

Matérn spectral density has three parameters (σ2, α, ν), where σ2 is the variance parameter,

α is the scale parameter and ν is the smoothness parameter. Since the Matérn spectral

density satisfies

f(λ) ∼ σ2α2ν

π
d
2

|λ|−(2ν+d)

8



as |λ| → ∞, we have c ≡ σ2α2ν/πd/2 and θ ≡ 2ν + d, and σ2α2ν is a microergodic

parameter. Thus, estimating σ2α2ν when ν is known is equivalent to estimate c when θ

is known. There are several references that investigate estimation of σ2α2ν in the spatial

domain. Zhang (2004) showed that σ2 and α can be estimated only in the form of σ2α2ν

under fixed-domain asymptotics when ν is known and d ≤ 3. Du et al. (2009) investigated

asymptotic properties of the MLE and the tapered MLE of σ2α2ν when ν is known, α is fixed

and d = 1 for a stationary Gaussian process. Anderes (2010) proposed an increment-based

estimator of σ2α2ν for a geometric anisotropic Matérn covariance function and showed that

α can be estimated separately when d > 4.

The parameter θ is related to the fractal index (or fractal dimension) when the process

{Z(s), s ∈ Rd} is a stationary isotropic Gaussian process. For example, for a stationary

Gaussian random field on Rd, suppose that its covariance function C(t) satisfies

C(t) ∼ C(0)− k|t|α as |t| → 0 (1.8)

for some k and 0 < α ≤ 2. In this case, α is the fractal index that governs the roughness

of sample paths of the process and the fractal dimension D becomes D = d + (1 − α/2).

This follows from Theorem 5.1 in Xue and Xiao (2010). When α = 2 in (1.8), it is possible

that the sample function may be differentiable. This can be determined by the smoothness

of C(t) in items of the spectral measure of {Z(s), s ∈ Rd}. Further information is in Adler

and Taylor (2007) and Xue and Xiao (2010).

On Abelian type theorem, (1.8) holding the corresponding spectral density satisfies

f(λ) ∼ k′|λ|−(α+d) as |λ| → ∞

9



so that θ ≡ α+ d in our settings.

The rest of this dissertation is organized in the following manner. First, in Chapter 2,

we explain our settings and assumptions. We extend the results in Stein (1995) and Lim

(2008) to more relaxed condition and then introduce our estimators and state theorems for

the asymptotic properties of the proposed estimators. Simulation study will be presented in

Chapter 3. In Chapter 4, we will discuss some issues related to our approach and possible

extension of the current work. In the final chapter, we give proofs of our theoretical results.
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Chapter 2

Main Results

2.1 Preliminary

In this work, we consider a stationary Gaussian random field, Z(s) on Rd with the spectral

density f(λ) that satisfies (1.1). Define a lattice process Yϕ(J) by Yϕ(J) ≡ Z(ϕJ), where

J ∈ Zd, the set of d-dimensional integer-valued vectors. The corresponding spectral density

of Yϕ(J) is

f̄ϕ(λ) = ϕ−d
∑

Q∈Zd
f

(
λ+ 2πQ

ϕ

)
,

for λ ∈ (−π, π ]d. Typically, f̄ϕ(λ) may have a peak near the origin which is getting higher as

ϕ → 0. This causes a problem to estimate the spectral density using the periodogram [Stein

(1995)]. To alleviate the problem, we consider a discrete Laplacian operator to difference

11



the data, which is proposed by Stein (1995). The Laplacian operator is defined by

∆ϕZ(s) =
d∑

j=1

{
Z(s+ ϕ ej)− 2Z(s) + Z(s− ϕ ej)

}
,

where ej is the unit vector whose jth entry is 1. Depending on the behavior of the spectral

density at high frequencies, we can apply the Laplacian operator iteratively to control the

peak near the origin. Define Y τ
ϕ (J) ≡

(
∆ϕ

)τ
Z(s) as the lattice process obtained by applying

the Laplacian operator τ times. Then as shown by Stein (1995), its corresponding spectral

density becomes

f̄ τ
ϕ (λ) =


d∑

j=1

4 sin2(λj/2)


2τ

f̄ϕ(λ). (2.1)

Under the condition of (1.1), the limit of f̄τϕ(λ) as ϕ → 0 after scaling by ϕd−θ is

ϕd−θf̄τϕ(λ) → c


d∑

j=1

4 sin2(λj/2)


2τ ∑

Q∈Zd
|λ+ 2πQ|−θ

for λ ̸= 0. Define

gc,θ (λ) =


c
{∑d

j=1 4 sin
2(λj/2)

}2τ ∑
Q∈Zd |λ+ 2πQ|−θ, λ ∈ (−π, π]d\{0},

0, λ = 0.

(2.2)

The limit function, gc,θ (λ) is integrable by choosing τ such that 4τ − θ > −d. When d = 1,

simple differencing is preferred as discussed in Stein (1995). Then, 4τ will be replaced with

2τ in our results.
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Now suppose that Z(s) is observed on the lattice ϕJ . More specifically, we assume that

we observe Y τ
ϕ (J) at J ∈ Tm = {1, ...,m}d after differencing Z(s) using the Laplacian

operator τ times. We further assume that ϕ = m−1 so that the number of observations

increases within a bounded observation domain. The spectral density of Y τ
ϕ (J) can be

estimated by a periodogram which is defined using a discrete Fourier transform of the data.

That is, the periodogram is defined by

Iτm(λ) = (2πm)−d |D(λ)|2 ,

where D(λ) is the discrete Fourier transform of the data given by

D(λ) =
∑

J∈Tm
Y τ
δ (J) exp{−iλTJ}.

We consider the periodogram only at Fourier frequencies, 2πm−1J for J ∈ Tm = {−⌊(m−

1)/2⌋, · · · ,m − ⌊m/2⌋}d, where ⌊x ⌋ is the largest integer not greater than x. A smoothed

periodogram at Fourier frequencies is defined by

Îτm

(
2πJ

m

)
=
∑

K∈Tm
Wh(K)Iτm

(
2π(J +K)

m

)
,

with weights Wh(K) given by

Wh(K) =
Λh (2πK/m)∑

L∈Tm Λh (2πL/m)
, (2.3)

13



where

Λh(s) =
1

h
Λ
(s
h

)
I{||s ||≤h}

for a symmetric continuous function Λ on Rd that satisfies Λ(s) ≥ 0 and Λ(0) > 0 and IA is

the indicator function of the setA. The norm || · || is defined by || s || = max{|s1|, |s2|, ..., |sd|}.

For positive functions a and b, a(λ) ≍ b(λ) for λ ∈ A means that there exist constants

C1 and C2 such that 0 < C1 ≤ a(λ)/b(λ) ≤ C2 < ∞ for all possible λ ∈ A. For asymptotic

results in this paper, we consider the following assumption on the spectral density f (λ).

Assumption 1. The spectral density f(λ) of a stationary Gaussian random field {Z(s), s ∈

Rd},

A. f (λ) ∼ c |λ|−θ as |λ| → ∞,

B. f (λ) is twice differentiable and there exists a positive constant C such that for |λ| > C,

f(λ) ≍ (1 + |λ|)−θ ,

∣∣∣∣ ∂

∂λj
f(λ)

∣∣∣∣ ≍ (1 + |λ|)−(θ+1) and∣∣∣∣ ∂2

∂λj∂λk
f(λ)

∣∣∣∣ ≍ (1 + |λ|)−(θ+2) (2.4)

for j, k = 1, ..., d.

2.2 Asymptotic properties of a smoothed periodogram

Asymptotic properties of a spatial periodogram and a smoothed spatial periodogram un-

der fixed-domain asymptotics were investigated by Stein (1995) and Lim and Stein (2008).

They assume that spectral density f is twice differentiable and satisfies (2.4) for all λ ∈ Rd.
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This assumption tells us that the spectral density f(λ) behaves like (1 + |λ|)−θ for all λ,

which is much stronger condition than (1.1). However this condition allows to find asymp-

totic bounds of expectation, variance and covariance of a spatial periodogram at Fourier

frequency 2πJ/m for each m ̸= 0 and J such that ∥J∥ ̸= 0. Consistency and asymptotic

normality of a smoothed spatial periodogram at Fourier frequency 2πJ/m, however, are

shown when limm→∞ 2πJ/m = µ ̸= 0, that is, J should not be closed to zero asymptot-

ically. Since we make use of asymptotic properties of a smoothed spatial periodogram at

such Fourier frequency under more general assumption (Assumption 1), we extend some of

the results in Stein (1995) and Lim and Stein (2008) under Assumption 1. We focus only on

a smoothed spatial periodogram in the following theorem, but results for a smoothed spatial

cross-periodogram can be shown similarly. Throughout the dissertation, denote

p−→ by convergence in probability;

d−→ by convergence in distribution.

Theorem 3. Suppose that the spectral density f of a stationary Gaussian random field Z(s)

on Rd satisfies Assumption 1. Also suppose that 4τ > θ − 1 and h = Cm−γ for some C > 0

where γ satisfies max{(d − 2)/d, 0} < γ < 1. Further, assume that limm→∞ 2πJ/m = µ

and 0 < ∥µ∥ < π. Then, we have

Îτm (2πJ/m)

f̄ τ
ϕ (2πJ/m)

p−→ 1 (2.5)

and
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mη
(
m−(d−θ)Îτm (2πJ/m)− gc,θ(µ)

)
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d

g2c,θ(µ)

)
, (2.6)

where η = d(1− γ)/2 and Λr =
∫
[−1,1]d

Λr(s)ds.

Remark 1. The function gc,θ is integrable under 4τ > θ−d which is satisfied by the condition

4τ > θ − 1. The condition 4τ > θ − 1 is necessary to show

E
(
Îτm (2πJ/m) /f̄ τ

ϕ (2πJ/m)
)

→ 1

and the condition max{(d− 2)/d, 0} < γ < 1 is needed to show

Var
(
Îτm (2πJ/m) /f̄ τ

ϕ (2πJ/m)
)

→ 0

so that (2.5) can be shown.
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2.3 Approach I

To estimate parameters, c and θ, we consider the following objective function to be mini-

mized.

L(c, θ) =
∑

K∈Tm
Wh(K)

{
log
(
md−θgc,θ (2π(J +K)/m)

)
+

1

md−θ

Iτm(2π(J +K)/m)

gc,θ(2π(J +K)/m)

}
, (2.7)

where Wh(K) is given in (2.3). In L(c, θ), 2πJ/m is any given Fourier frequency that

satisfies ∥J∥ ≍ m so that 2πJ/m is away from 0.

L(c, θ) can be viewed as a weighted Whittle likelihood function. When Λ is a nonzero

constant function, Wh(K) ≡ 1/|K| for K ∈ K, where K = {K ∈ Tm : ||2πK/m|| ≤ h}

and |K| is the number of elements in the set K. Then, L(c, θ) is the form of a local Whittle

likelihood for the lattice data {Y τ
δ (J),J ∈ Tm} in which the true spectral density is replaced

with md−θgc,θ. Note that gc,θ(λ) is the limit of the spectral density of Y τ
δ (J) after being

scaled by m−(d−θ) for non-zero λ when ϕ = m−1. The summation in L(c, θ) is over the

Fourier frequencies near 2πJ/m by letting h → 0 as m → ∞. While a local Whittle

likelihood method to estimate a long-range dependence parameter for time series considers

Fourier frequencies near zero, we consider Fourier frequencies near a pre-specified non-zero

frequency. For example, by choosing J such that ⌊2πJ/m⌋ = (π/2)1d, where 1d is the

d-dimensional vector of ones, L(c, θ) considers frequencies only near (π/2)1d.
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2.3.1 Estimation of c under the known θ

We consider the estimator of c by minimizing L(c, θ) when θ is known. Thus, the proposed

estimator of c when θ is known as θ0 is given by

ĉ = argmin
c∈C

L(c, θ0),

where C is the parameter space of c. ĉ has the explicit expression obtained by ∂L(c, θ0)/∂c =

0 :

ĉ =
∑

K∈Tm
Wh(K)

1

md−θ0

Iτm(2π(J +K)/m)

g0(2π(J +K)/m)
, (2.8)

where g0 ≡ g1,θ0 . The following theorem establishes the consistency and asymptotic nor-

mality of the estimator ĉ.

Theorem 4. Suppose that the spectral density f of a stationary Gaussian random field Z(s)

on Rd satisfies Assumption 1. Also suppose that 4τ > θ0− 1 for a known θ0 and h = Cm−γ

for some C > 0 where γ satisfies d/(d + 2) < γ < 1. Further, assume that J satisfies

⌊2πJ/m⌋ = (π/2)1d and the true parameter c is in the interior of the parameter space C

which is a closed interval. Then, for ĉ given in (2.8), we have

ĉ
p−→ c, (2.9)

and

mη(ĉ− c)
d−→ N

(
0 , c2

Λ2

Λ2
1

(
2π

C

)d
)
, (2.10)
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where Λr =
∫
[−1,1]d

Λr(s)ds and η = d(1− γ)/2.

Remark 2. Theorem 4 can also be proved when we replace θ0 in (2.8) with a consistent

estimator θ̂ as long as the estimator θ̂ satisfies θ̂ − θ0 = op((log(m))−1).

Remark 3. We can prove Theorem 4 for J such that limm→∞ 2πJ/m = µ and 0 < ∥µ∥ < π

instead of the specific choice of ⌊2πJ/m⌋ = (π/2)1d, which we choose for simplicity in the

proof.

When we choose Λ as a constant function and C = (1/2)π2, we have

mη(ĉ− c)
d−→ N

(
0 , 2dc2π−d

)
.

For the Matérn spectral density given in (3.1) with d = 1, Du et al. (2009) showed that for

any fixed α1 with known ν, maximum likelihood estimator of σ2 satisfies

n1/2(σ̂2α2ν1 − σ20α
2ν
0 )

d−→ N
(
0 , 2(σ20α

2ν
0 )2

)
, (2.11)

where n is the sample size, and σ20 and α0 are true parameters. Note that m is the sample

size of Y τ
δ which is the τ times differenced lattice process of Z(s). Since π1/2c = σ2α2ν for

d = 1, we have the same asymptotic variance as in (2.11). However, our approach has a

slower convergence rate since η < 1/3 when d = 1 as we used partial information. This is

also the case for a local Whittle likelihood method in Robinson (1995).
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2.3.2 Estimation of θ under the known c

To estimate θ, we assume that c is known as c0. The proposed estimator of θ is then given

by

θ̂ = argmin
θ∈Θ

L(c0, θ), (2.12)

where Θ is the parameter space of θ. The consistency and the convergence rate of the

proposed estimator θ̂ are given in the following Theorem.

Theorem 5. Suppose that the spectral density f of a stationary Gaussian random field Z(s)

on Rd satisfies Assumption 1. Also suppose that 4τ > θ − 1 and h = Cm−γ for some C > 0

where γ satisfies d/(d + 2) < γ < 1. Further, assume that J satisfies ⌊2πJ/m⌋ = (π/2)1d

and the true parameter θ is in the interior of the parameter space Θ which is a closed interval.

Then, for θ̂ given in (2.12), we have

θ̂
p−→ θ. (2.13)

In addition,

θ̂ − θ = op((logm)−1). (2.14)

Remark 4. The consistency of θ̂ is not enough to determine the asymptotic distribution of

θ̂ since we have θ in the exponent of m in the expression of L(c, θ). For the proof of the

asymptotic distribution, we need the rate of convergence given in (2.14).

From Theorem 5, we can now show the following Theorem for the asymptotic distribution
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of θ̂.

Theorem 6. Under the conditions of Theorem 5, we have

log(m)mη(θ̂ − θ)
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
,

where η = d(1− γ)/2.

Remark 5. Note that we have a different convergence rate for θ̂ compared to the convergence

rate for ĉ given in Theorem 4. The additional term log(m) is from the fact that θ is in the

exponent of m in the expression of L(c, θ).

2.3.3 Estimation under unknown c and θ

In the previous discussion, we consider estimation of one parameter when the other parameter

is known. But in practice, both may be unknown. In order to handle this situation, c is

assigned as any fixed value c∗. The estimator of θ is then defined by

θ̂ = argmin
θ∈Θ

L(c∗, θ). (2.15)

Theorem 7. Suppose that the spectral density f of a stationary Gaussian random field Z(s)

on Rd satisfies Assumption 1. Also suppose that 4τ > θ − 1 and h = Cm−γ for some C > 0

where γ satisfies d/(d + 2) < γ < 1. Further, assume that J satisfies ⌊2πJ/m⌋ = (π/2)1d

and the true parameter θ is in the interior of the parameter space Θ which is a closed interval.

Then, for θ̂ given in (2.15), we have

θ̂
p−→ θ. (2.16)
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Furthermore,

θ̂ − θ = Op((logm)−1). (2.17)

In contrast to Theorem 5, The convergence rate of θ̂ is slower. With this convergence

rate, we can not prove asymptotic distribution of θ̂. Also, we could consider the estimator

of c0 by minimizing L(θ̂, c), where θ̂ defined in (2.15), that is,

ĉ =
∑

K∈Tm
Wh(K)

1

md−θ̂

Iτm(2π(J +K)/m)

g
θ̂
(2π(J +K)/m)

, (2.18)

where θ̂ is the estimate of θ given in (2.15) with the fixed c∗. But, the consistency of ĉ is not

guaranteed. Instead, we obtain the following results which can be easily derived from

Corollary 1. ĉ− c0 = Op(1).
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2.4 Approach II

In Section 2.3, we developed a local Whittle type estimator which utilizes Fourier frequency

information around 2πJ/m = (π/2)1d. However, as the sample size increases, the Fourier

frequencies used in the estimator will be very closed to 2πJ/m = (π/2)1d. Thus, we could

use gc,θ(·) only at [2πJ/m]. In this Section, we provide another estimation methodology

which uses directly the smoothed periodogram with a fixed frequency. Alternative estimator

is obtained by minimizing

R(c, θ) = log
(
md−θgc,θ (2πJ/m)

)
+

1

md−θ

Îτm(2πJ/m)

gc,θ(2πJ/m)
. (2.19)

Asymptotic properties will be discussed in the rest of this Section, and the organization

is same as the Section 2.3. Most theoretical results of the new estimators are identical with

those obtained in Section 2.3 but require some changes in proof.

2.4.1 Estimation of c under known θ

The estimator of c is established by minimizing R(c, θ) when θ is known. Thus, when θ is

known as θ0, the proposed estimator of c is given by

ĉ = argmin
c∈C

R(c, θ0),

where C is the parameter space of c. By the similar way in Section 2.3, the exact form of ĉ

is obtained by solving the equation ∂R(c, θ0)/∂c = 0 :

ĉ =
1

md−θ0

Îτm(2πJ/m)

g0(2πJ/m)
, (2.20)
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where g0 ≡ g1,θ0 . The same consistency and asymptotic results as in Section 2.3 hold for

this estimator.

Theorem 8. Suppose that the spectral density f of a stationary Gaussian random field Z(s)

on Rd satisfies Assumption 1. Also suppose that 4τ > θ0− 1 for a known θ0 and h = Cm−γ

for some C > 0 where γ satisfies d/(d + 2) < γ < 1. Further, assume that J satisfies

⌊2πJ/m⌋ = (π/2)1d and the true parameter c is in the interior of the parameter space C

which is a closed interval. Then, for ĉ given in (2.20), we have

ĉ
p−→ c, (2.21)

and

mη(ĉ− c)
d−→ N

(
0 , c2

Λ2

Λ2
1

(
2π

C

)d
)
, (2.22)

where Λr =
∫
[−1,1]d

Λr(s)ds and η = d(1− γ)/2.

2.4.2 Estimation of θ under known c

Using (2.19), we can consider

θ̂ = argmin
θ∈Θ

R(c0, θ), (2.23)

where Θ is the parameter space of θ when we assume that c is known as c0. In the following

Theorem, the consistency and the convergence rate of the new estimator θ̂ defined in (2.23)

are provided.
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Theorem 9. Suppose that the spectral density f of a stationary Gaussian random field Z(s)

on Rd satisfies Assumption 1. Also suppose that 4τ > θ − 1 and h = Cm−γ for some C > 0

where γ satisfies d/(d + 2) < γ < 1. Further, assume that J satisfies ⌊2πJ/m⌋ = (π/2)1d

and the true parameter θ is in the interior of the parameter space Θ which is a closed interval.

Then, for θ̂ given in (2.23), we have

θ̂
p−→ θ. (2.24)

In addition,

θ̂ − θ = op((logm)−1). (2.25)

Remark 6. With the similar way in the Section 2.3, the rate of convergence given in (2.25)

is also useful for studying the asymptotic properties of θ̂. The same result as in the Section

2.3 will be shown.

Theorem 10. Under the conditions of Theorem 9, we have

log(m)mη(θ̂ − θ)
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
,

where η = d(1− γ)/2.
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2.4.3 Estimation under unknown θ and c

In this subsection, we also consider the situation when both parameters are unknown. With

a given c∗ which may be different from the true value c0, the estimator of θ is established by

θ̂ = argmin
θ∈Θ

R(c∗, θ). (2.26)

Then, we have the following results which are similar to see 2.3.3.

Theorem 11. Suppose that the spectral density f of a stationary Gaussian random field

Z(s) on Rd satisfies Assumption 1. Also suppose that 4τ > θ0 − 1 for a known θ0 and

h = Cm−γ for some C > 0 where γ satisfies d/(d + 2) < γ < 1. Further, assume that J

satisfies ⌊2πJ/m⌋ = (π/2)1d and the true parameter θ is in the interior of the parameter

space Θ which is a closed interval. Then, for θ̂ given in (2.26), we have

θ̂
p−→ θ (2.27)

Moreover,

θ̂ − θ = Op((logm)−1). (2.28)

If

ĉ =
1

md−θ̂

Îτm(2πJ/m)

g
θ̂
(2πJ/m)

, (2.29)

is viewed as the estimator of true value c0, we can show ĉ− c0 = Op(1).
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Based on the quantity of c∗, the overestimation and underestimation of θ̂ for true value

θ0 can be found in the following result.

Theorem 12. (i) When c∗ < c0, there exists M such that P
(
θ0 ≥ θ̂

)
= 0 for m > M.

(ii) When c∗ > c0, there exists M such that P
(
θ0 ≥ θ̂

)
= 0 for m > M.

Remark 7. The properties of overestimation and underestimation for the first approach are

also found from simulation study. However, theoretical results will be more complicated than

second approach because the effect from Bm and Cm should be pored.
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Chapter 3

Simulation Study

In this chapter, simulation studies with various many models are introduced to validate the

asymptotical results obtained in Chapter 2. Although estimators constructed in Chapter 2

work for high dimensional situation, one dimensional Matérn covariance model with various

parameter values are considered here.

Let Z(s) is a stationary Gaussian process on R with a Matérn covariance function whose

spectral density follows (see e.g., Stein 1999, pp. 31)

f(λ) = σ2(α2 + λ)−ν−1/2. (3.1)

Data are generated from the subroutine ”mnrnd” in Matlab with covariances following

(3.1). We consider the region D = [0, 10] with different grid size ϕ = 0.1, 0.05 and 0.025

which corresponds to m = 100, 200, and 400. 500 data sets are simulated for each case. So

that we have 500 parameter estimates.

For the sake of simplifying computation, function Λ is a constant function so thatWh(K)

is same for each K ∈ K. The four times finite difference operator (τ = 4) is applied on the
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simulated data, and C = 1 and γ = 1/3 is chosen for the bandwidth . The notations used

in the tables are defined as follows: m is sample size, |K| is the number of non-zero weights

Wh(K), Bias is the average of the bias obtained by estimations, and STD is the standard

deviation of estimates.

In the first example, we consider (α, σ2, ν) = (1, 1/π, 1/2). In this case, true parameters

of (c, θ) are (1/π, 2). Table 3.1 and Table 3.2 are results of estimates θ and c, respectively.

Bias of Table 3.1 and Table 3.2 shows errors between our estimations and true value

are less than 10−2 and STD means the estimations are very concentrated. Compared with

the sample size (m), under the present bandwidth setting, the number of non-zero weights,

|K|, seems to be small for each K ∈ K, that is, small number of frequencies are used. The

wider bandwidth setting is also considered by replacing C = 1 with C = 5, and simulation

output is shown in Table 3.3. The Bias and STD are slightly improved in the new bandwidth

setting.

The second simulation example comes from (3.1) with (α, σ2, ν) = (1, 1/π, 3/2) which

implies (c, θ) = (1/π, 4). Under the same setting in the previous example with C = 1, The

Bias and STD in Table 3.4 and 3.5 show similar results. Further, C = 5 is again applied to

have wider bandwidth and the output is shown in Table 3.4. Although STD is improved,

Bias in Table 3.6 did not be improved. From Table 3.3 and 3.6, the accuracy of estimation

seems to be affected by which bandwidth we select. Therefore, it is important to find an

optimal bandwidth. We will investigate this as a future research.

Under the same simulation setting as Table 3.6, the second approach is also applied and

the output are shown in Table 3.7. Compared with Table 3.6, the performance of the second

approach seems to be similar with the first one. This matches those theoretical results we

found before.
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We consider the estimating θ when c is also unknown. In previous examples whose true

value are (θ, c) = (2, 1/π) and (θ, c) = (4, 1/π). θ is estimated when c is assumed as 2, 1,

0.2 and 0.1. The simulation output of previous two examples under different c are shown in

Table 3.8 and Table 3.9, and their histograms are placed in the Figure 3.1 and 3.2. When c

is bigger than true value, the Bias is positive and grows as c increase. In the Figure 3.1 and

3.2, if the selected c is 1/π (true value of c), the estimates distributed around the both sides

of the true value of θ (θ = 4). Meanwhile, when c is not equal to 1/π, most of estimates is

left or right of the true value. Moreover, in the Figure 3.3, trend of estimations is gradually

moving to true value as the increase of sample size.
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Table 3.1: Estimation of θ under known c

m |K| Wh(K) Bias STD
100 7 1/7 0.039 0.129
200 10 1/10 0.009 0.088
400 17 1/17 0.009 0.05

Table 3.2: Estimation of c under known θ

m |K| Wh(K) Bias STD
100 7 1/7 0.00072 0.12
200 10 1/10 0.0039 0.0945
400 17 1/17 0.0024 0.078

Table 3.3: Estimation of θ under known c

m |K| Wh(K) Bias STD
100 33 1/33 -0.0024 0.0618
200 52 1/52 0.004 0.038
400 83 1/83 0.002 0.0256
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Table 3.4: Estimation of θ under known c

m |K| Wh(K) Bias STD
100 7 1/7 0.032 0.138
200 10 1/10 0.02 0.094
400 17 1/17 0.011 0.058

Table 3.5: Estimation of c under known θ

m |K| Wh(K) Bias STD
100 7 1/7 0.014 0.132
200 10 1/10 0.003 0.094
400 17 1/17 -0.003 0.077

Table 3.6: Estimation of θ under known c

m |K| Wh(K) Bias STD
100 33 1/33 0.04 0.066
200 52 1/52 0.031 0.042
400 83 1/83 -0.027 0.027
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Table 3.7: Estimation of θ under known c (Second approach)

m |K| Wh(K) Bias STD
100 33 1/33 0.004 0.077
200 52 1/52 0.026 0.047
400 83 1/83 -0.027 0.03

Table 3.8: Estimation of θ under unknown c for Example 1

c |K| Wh(K) Bias STD
2 52 1/52 0.4907 0.0421
1 52 1/52 0.2996 0.0419

1/π 52 1/52 0.004 0.0378
0.2 52 1/52 -0.1364 0.0417
0.1 52 1/52 −0.3180 0.0378

Table 3.9: Estimation of θ under unknown c for Example 2

c |K| Wh(K) Bias STD
2 52 1/52 0.5332 0.0418
1 52 1/52 0.2245 0.0415

1/π 52 1/52 0.031 0.042
0.2 52 1/52 -0.1309 0.0413
0.1 52 1/52 -0.3331 0.0415
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    Figure 3.1: Histogram of Example 1 on different c. 
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Figure 3.2: Histogram of Example 2 on different c. 
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Figure 3.3: Histogrm of Example 2 with different grid sizes on wrong c.
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Chapter 4

Discussion

In this dissertation, we first extended the result of Stein and Lim (2008) on weaker assump-

tions. Then, we proposed two approaches to estimate c and θ that govern the tail behavior

of the spectral density of a stationary Gaussian random field on Rd. The proposed estima-

tors are obtained by minimizing the objective function given in (2.7) and (2.19). The first

approach makes use of frequency information around 2πJ/m. The second approach only

employ the information from [2πJ/m] = (π/2)1d. Regarding proofs of asymptotic results

and simulation comparison, there is not much difference between these two approaches.

As mentioned in Chapter 2, the objective function given in (2.7) is similar to the one

used in the local Whittle likelihood method when a kernel function Λ in Wh(K) is constant.

When we replace md−θgc,θ with f̄τϕ(λ) and remove Wh(K) in (2.7), it can be thought of

an approximation to the likelihood of Y τ
ϕ(J). This approximation, however, has not been

verified under fixed-domain asymptotics. One might think that we can apply a similar

technique to prove the validity of Whittle approximation to the likelihood since Y τ
ϕ(J) is

a lattice process. However, the spectral density f̄τϕ(λ) of Y τ
ϕ(J) converges to zero, which
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require a different approach and further investigation is needed.

The weights in (2.7) is controlled by h, a bandwidth, which can be interpreted as a

proportion of Fourier frequencies to be considered in the objective function. In our theorems,

we assume h = Cm−γ for some constant C. In proofs, we make use of the properties of

a smoothed spatial periodogram Îτm. Simulation results are also changing with different

bandwidth. Thus, we could find the optimal bandwidth that minimizes the mean squared

error of Îτm. However, finding the mean squared error of Îτm needs explicit expressions of the

bias and variance of Îτm(λ) and this requires further investigation. It will be more useful

when we can estimate c and θ together or estimate θ when c is unknown. Due to the form of

gc,θ, proving their asymptotic properties under fixed-domain asymptotics is challenging and

needs different mathematics.

Although some contributions including theoretical results are made for the case which

both parameters are unknown, more efforts are still need. In the current method, to estimate

θ, c was pretended to be a fixed number c∗ but convergence rate of θ̂ may be slower. To

handle this problem, we believe updating c∗ through θ̂ could be more reasonable, but how

to update both estimators by an iterative way is still open.

The approaches of the fractal index could be another alternative way to research the tail

behavior of the spectral density. By Abelian type theorem, some relationships between the

tail of the spectral density and the origin of the covariance function have been existed. In

this situation, the methodologies for the fractal index may be useful but the detail have to be

carefully considered. Also, we believe our approaches should be available for the stationary

increment process.

Finally, in our work, data are sampled from on the regular grid points. But in practice,

irregular situation is more interesting. Several works or ideas discussed for increasing do-
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main asymptotics may be also valid for fixed-domain asymptotics. Meanwhile, we are also

interested in extending our univariate approaches univariate to multivariate situation.

39



Chapter 5

Appendix

5.1 The properties of gc,θ(λ)

Some properties of the function gc,θ(λ) are discussed in this Appendix. These properties

will be used in the proofs given in Appendix 5.2.1. Recall that

gc,θ(λ) = c


d∑

j=1

4 sin2(λj/2)


2τ ∑

Q∈Zd
|λ+ 2πQ|−θ .

For a function gc,θ(λ), let ∇g be the gradient of g with respect to λ and let ġ and g̈

denote the first and second derivatives of gc,θ(λ) with respect to θ, respectively. That

is,∇g = (∂g/∂λ1, · · · , ∂g/∂λd), ġ = ∂gc,θ(λ)/∂θ and g̈ = ∂2gc,θ(λ)/∂θ
2.

We denote Aρ = [−π, π]d \ (−ρ, ρ)d for a fixed ρ that satisfies 0 < ρ < 1. Since we

assume that the parameter space Θ is a closed interval in Chapter 2, let Θ = [θL, θU ] and

θL > d. Although Lemma 1 can be shown for any fixed ρ with 0 < ρ < 1, we further assume

that ρ is small enough so that all Fourier frequencies near (π/2)1d considered in R(c, θ) are

contained in Aρ.
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Lemma 1. The following properties hold for gc,θ(λ). Let c > 0 be a fixed constant.

(a) There exist constants KL and KU such that for all (θ,λ) ∈ Θ×Aρ,

0 < KL ≤ gc,θ(λ) ≤ KU < ∞. (5.1)

(b) For any θ1, θ2 ∈ Θ, there exist constants KL and KU such that for all λ ∈ Aρ,

0 < KL ≤ gc,θ1(λ)/gc,θ2(λ) ≤ KU < ∞. (5.2)

(c) ∇g, ġ, g̈, ġ/g and ∇(ġ/g) are uniformly bounded on Θ×Aρ.

(d) gc,θ(λ) is continuous on Θ×Aρ.

Proof. Since gc,θ(λ) is linear in c, it will be enough just consider g1,θ(λ). First, we find the

upper and lower bounds of
∑

Q∈Zd |λ+ 2πQ|−θ. For all (θ,λ) ∈ Θ×Aρ, we have

∑
Q∈Zd

|λ+ 2πQ|−θ ≥ π−θU > 0

and

∑
Q∈Zd

|λ+ 2πQ|−θ ≤
∑

Q∈Zd\{0}

|λ+ 2πQ|−θL + ϵ−θU

≤ (2π)dϵd−θL/(d− θL) + ϵ−θU ,
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where the last inequality follows from

∑
Q∈Zd\0

|λ+ 2πQ|−θL ≤
∫
|y|≥1

|λ+ 2πy|−θLdy

≤
∫
|z|≥ϵ

(2π)d|z|−θLdz

=

∫
x≥ ϵ

(2π)dxd−1x−θLdx

= (2π)dϵd−θL/(θL − d), (5.3)

since θL > d. Thus, we have

0 < kL ≤
∑

Q∈Zd
|λ+ 2πQ|−θ ≤ kU < ∞, (5.4)

where kL = π−θU and kU = (2π)dϵd−θL/(θL − d) + ϵ−θU .

Then, (a) follows from (5.4),

(4d sin2(ϵ/2))2τ ≤


d∑

j=1

4 sin2(λj/2)


2τ

≤ (4d)2τ ,

and by setting KL ≡ c (4d sin2(ϵ/2))2τkL and KU ≡ c (4d)2τkU .

(b) follows from observing that
∑

Q∈Zd |λ+ 2πQ|−θ has lower and upper bounds that

are uniform on Θ×Aρ as given in (5.4).
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For (c), we have

∣∣∣∣ ∂g∂λi

∣∣∣∣ = c

∣∣∣∣∣4τ
{ d∑

j=1

4 sin2(λj/2)

}2τ−1

sin(λi)
∑

Q∈Zd
|λ+ 2πQ|−θ

− θ

{ d∑
j=1

4 sin2(λj/2)

}2τ−1 ∑
Q∈Zd

(λi + 2πQi) |λ+ 2πQ|−θ−2

∣∣∣∣∣
≤ K

∑
Q∈Zd

|λ+ 2πQ|−θ

≤ K kU

for some constant K > 0 and kU given in (5.4), which implies uniform boundedness of ∇g

on Θ×Aρ. For the uniform bound of ġ and g̈ , we first compute ġ and g̈:

ġ = −c

{ d∑
j=1

4 sin2(λj/2)

}2τ ∑
Q∈Zd

|λ+ 2πQ|−θ log |λ+ 2πQ| ,

g̈ = c

{ d∑
j=1

4 sin2(λj/2)

}2τ ∑
Q∈Zd

|λ+ 2πQ|−θ (log |λ+ 2πQ|)2 .

Since we can find x0 and K such that for a given β > 0, | log x| ≤ Kxβ for all x > x0, we

can show that there exist n0, K1 and K2 that satisfy

|ġ| ≤ K1 +K2

∑
Q∈Zd,||Q||≥n0

|λ+ 2πQ|−θ+β

for some fixed β > 0. When we choose β = (θL − θ)/2, we can show that

∑
Q∈Zd,||Q||≥n0

|λ+ 2πQ|−θ+β < ∞
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using a similar argument to show (5.3), which leads to uniform boundedness of ġ. Similarly,

we can show uniform boundedness of g̈.

The uniform boundedness of ġ/g follows from uniform boundedness of ġ and (a). To

show uniform boundedness of ∇(ġ/g), consider

∂

∂λi
(ġ/g) = −

∑
Q∈Zd |λ+ 2πQ|−θ−2 (λi + 2πQi)(1− θ log |λ+ 2πQ|)∑

Q∈Zd |λ+ 2πQ|−θ

+

(∑
Q∈Zd |λ+ 2πQ|−θ log |λ+ 2πQ|

)(
−θ
∑

Q∈Zd |λ+ 2πQ|−θ−2 (λi + 2πQi)
)

(∑
Q∈Zd |λ+ 2πQ|−θ

)2 .

Since denominators in the expression of ∂ (ġ/g) /∂λi have uniform lower bounds as shown

in (5.4), it is enough to find uniform bounds of numerators to show uniform boundedness of

∂ (ġ/g) /∂λi. By observing that |λi + 2πQi| ≤ |λ+ 2πQ| and |λ+ 2πQ|−1 ≤ K for some

K > 0 on Aρ, we can show that each numerator in the expression of ∂ (ġ/g) /∂λi is uniformly

bounded on Θ×Aρ using a similar argument to show uniform boundedness of ġ.

To show (d), it is enough to show the continuity of
∑

Q∈Zd |λ+ 2πQ|−θ on Θ×Aρ since{∑d
j=1 4 sin

2(λj/2)
}2τ

is continuous on Aρ. It can be easily shown that

∑
Q∈Zd,||Q||>n

|λ+ 2πQ|−θ

converges to zero uniformly on Θ × Aρ as n → ∞, which implies the uniform convergence

of
∑

Q∈Zd,||Q||≤n
|λ+ 2πQ|−θ to g(θ,λ). Thus, the continuity of gc,θ(λ) in λ follows from

the continuity of |λ+ 2πQ|−θ.
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5.2 Proofs of Theorems in Section 2

5.2.1 Proofs of Theorems in Section 2.2

Proof of Theorem 3. If f(λ) satisfies (2.4) for all λ, (2.5) and (2.6) hold by results in

Stein (1995) and Lim and Stein (2008). To prove (2.5) and (2.6) when (2.4) holds only for

large λ, we need to show that the effect of f(λ) on |λ| ≤ C is negligible.

Consider a spectral density k(λ) which satisfies k(λ) ∼ c|λ|−θ as |λ| → ∞ and k(λ) is

twice differentiable and satisfies (2.4) for all λ. Also assume that k(λ) ≡ f(λ) for |λ| > C.

Let I
f,τ
m (λ) be the periodogram at λ from the observations under f(λ) and

a
f,τ
m,ϕ(J ,K)

= (2πm)−d
∫
Rd


d∑

j=1

4 sin2
(
ϕλj
2

)
2τ

f(λ)Φ(λ,J ,K)dλ.

where

Φ(λ,J ,k) =
d∏

j=1

sin2
(

mϕλj
2

)
sin

(
ϕλj
2 +

πJj
m

)
sin

(
ϕλj
2 +

πKj
m

)
Note that

E
(
I
f,τ
m (2πJ/m)

)
= a

f,τ
m,ϕ(J ,J),

Var
(
I
f,τ
m (2πJ/m)

)
= a

f,τ
m,ϕ(J ,J)

2 + a
f,τ
m,ϕ(J ,−J)2.

(2.5) and (2.6) follow from Theorems 3, 6 and 12 in Lim and Stein (2008) when these

Theorems hold for f under Assumption 1. The key part of proofs of these Theorems under
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Assumption 1 is to show

E
(
I
f,τ
m (2πJ/m)

)
f̄τϕ(2πJ/m)

= 1 +O(m−β1) (5.5)

Var
(
I
f,τ
m (2πJ/m)

)
f̄τϕ(2πJ/m)2

= 1 +O(m−β2), (5.6)

for some β1, β2 > 0. Once (5.5) and (5.6) are shown, the other parts of proofs are similar to

the proofs in Lim and Stein (2008).

Since results in Stein (1995) and Lim and Stein (2008) hold for k(λ), we have (5.5) and

(5.6) for k(λ). Then, (5.5) and (5.6) for f(λ) follow from

∣∣∣af,τm,ϕ(J ,±J)− a
k,τ
m,ϕ(J ,±J)

∣∣∣ = O(m−d−4τ ), (5.7)

for J that satisfies ∥J∥ ≍ m and 2J/m ̸∈ Zd. (5.7) holds since

∣∣∣af,τm,ϕ(J ,±J)− a
k,τ
m,ϕ(J ,±J)

∣∣∣
=

∣∣∣∣∣(2πm)−d
∫
|λ|≤C

{∑d
j=1 4 sin

2

(
ϕλj
2

)}2τ

(f(λ)− k(λ))Φ(λ,J ,k)dλ

∣∣∣∣∣
≤ (2πm)−d

∫
|λ|≤C

{∑d
j=1 4 sin

2

(
ϕλj
2

)}2τ

|f(λ)− k(λ)|Φ(λ,J ,k)dλ

≤ v m−d−4τ

for some positive constant v since k(λ) ≡ f(λ) for |λ| > C and
∥∥ϕλj/2± πJj/m

∥∥ stays

away from zero and π when m is large.
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5.2.2 Proofs of Theorems in Section 2.3

Proof of Theorem 4. To show weak consistency of ĉ, we consider upper and lower bounds

of ĉ. Let

KU = argmaxK∈Tm,Wh(K) ̸=0 g0 (2π(J +K)/m)

and

KL = argminK∈Tm,,Wh(K)̸=0 g0 (2π(J +K)/m).

Recall that g0 = g1,θ0 . Then, we have

∑
K∈Tm Wh(K)Iτm(2π(J +K)/m)

md−θ0g0(2π(J +KU )/m)
≤ ĉ

≤
∑

K∈Tm Wh(K)Iτm(2π(J +K)/m)

md−θ0g0(2π(J +KL)/m)

which can be rewritten as

c Îτm(2πJ/m)

md−θ0gc,θ0(2π(J +KU )/m)
≤ ĉ

≤ c Îτm(2πJ/m)

md−θ0gc,θ0(2π(J +KL)/m)
(5.8)

with probability one. Note that both gc,θ0(2π(J + KU )/m) and gc,θ0(2π(J + KL)/m)

converge to gc,θ0((π/2)1d) by continuity of gc,θ(λ) and m−(d−θ0)Îτm(2πJ/m) converges to

gc,θ0((π/2)1d) in probability by Theorem 3. Thus, it follows that ĉ converges to c in proba-

bility.
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For the asymptotic distribution of ĉ, note that we have

mη

(
Îτm (2πJ/m)

md−θ0
− gc,θ0 ((π/2)1d)

)
d−→ N

(
0 ,

Λ2

Λ2
1

(
2π

C

)d

g2c,θ0
((π/2)1d)

)
(5.9)

from Proposition 12 in Lim and Stein (2008) and

mη
(
gc,θ0

(
2π(J +KE )/m

)
− gc,θ0 ((π/2)1d)

)
−→ 0, (5.10)

for E = U or L, since 4τ > θ0 − 1, h = Cm−γ and d
d+2 < γ < 1. Then, (2.10) follows from

(5.50) and (5.10).

To prove Theorem 5, we consider following lemmas.

Lemma 2. Consider a function hm(x) = − log(x) + dm(x− 1), where dm is positive and a

function of a positive integer m. Also assume that dm → 1 as m → ∞. Then, for a given r

with 0 < r < 1, there exist δr > 0 and Mr such that for all m ≥ Mr,

hm(x) > δr,

for any x ∈ Zr, where Zr = {z : |z − 1| > r, z > 0}.

Proof. It can be easily shown that for any positive integer m, hm(x) is a convex function

on (0,∞) and minimized at x = 1/dm with hm(1/dm) ≤ 0. Let h∞(x) = − log(x) + x− 1.

Since dm → 1, for any r ∈ (0, 1), there exists Mr > 0 such that for all m ≥ Mr, we have

|1/dm − 1| ≤ r and min{hm(1 − r), hm(1 + r)} > (1/2)min{h∞(1 − r), h∞(1 + r)} > 0.
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Hence for all x ∈ Zr, we have

hr(x) ≥ min{hm(1− r), hm(1 + r)} > (1/2)min{h∞(1− r), h∞(1 + r)} ≡ δr.

The following lemma shows that L(c0, θ1) − L(c0, θ0) can be bounded from below by

three terms and two of them can be neglected.

Lemma 3. For a positive integer m and θ1 ∈ Θ, we have

L(c0, θ1)− L(c0, θ0) ≥ Am +Bm + Cm,

where

Am = − log

(
mθ1−θ0

gc0,θ0(2π(J + Sm)/m)

gc0,θ1(2π(J + Sm)/m)

)

+
Îδm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)

(
mθ1−θ0

gc0,θ0(2π(J + Sm)/m)

gc0,θ1(2π(J + Sm)/m)
− 1

)
,

(5.11)

Bm = log

(
gc0,θ0(2π(J + Sm)/m)

gc0,θ0(2π(J + SM )/m)

gc0,θ1(2π(J + SM )/m)

gc0,θ1(2π(J + Sm)/m)

)
(5.12)

Cm =
Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)

(
1−

gc0,θ0(2π(J +KM )/m)

gc0,θ0(2π(J +Km)/m)

)
. (5.13)
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In (5.11)-(5.13), KM , Km, SM and Sm are defined as

KM = argmax{K∈Tm,Wh(K)̸=0}gc0,θ0(2π(J +K)/m),

Km = argmin{K∈Tm,Wh(K) ̸=0}gc0,θ0(2π(J +K)/m),

SM = argmax{K∈Tm,Wh(K) ̸=0} log

(
gc0,θ0(2π(J +K)/m)

gc0,θ1(2π(J +K)/m)

)
,

Sm = argmin{K∈Tm,Wh(K) ̸=0}
gc0,θ0(2π(J +K)/m)

gc0,θ1(2π(J +K)/m)
.

Furthermore,

sup
θ∈Θ

|Bm| = o(1), (5.14)

Cm = op(1), (5.15)

where (5.15) is under the conditions of Theorem 5.
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Proof. From the expression of L(c, θ) given in (2.7), we have

L(c0, θ1)− L(c0, θ0)

= −
∑

K∈Tm
Wh(K) log

(
mθ1−θ0

gc0,θ0 (2π(J +K)/m)

gc0,θ1 (2π(J +K)/m)

)

+
∑

K∈Tm
Wh(K)

Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)
mθ1−θ0

gc0,θ0(2π(J +K)/m)

gc0,θ1(2π(J +K)/m)

−
∑

K∈Tm
Wh(K)

Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

≥ log

(
mθ1−θ0

gc0,θ0 (2π(J + SM )/m)

gc0,θ1 (2π(J + SM )/m)

)

+
∑

K∈Tm
Wh(K)

Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +KM )/m)
mθ1−θ0

gc0,θ0(2π(J + Sm)/m)

gc0,θ1(2π(J + Sm)/m)

−
∑

K∈Tm
Wh(K)

Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +Km)/m)

= − log

(
mθ1−θ0

gc0,θ0(2π(J + SM )/m)

gc0,θm(2π(J + SM )/m)

)
+

Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)

×

(
mθ1−θ0

gc0,θ0(2π(J + Sm)/m)

gc0,θ1(2π(J + Sm)/m)
−

gc0,θ0(2π(J +KM )/m)

gc0,θ0(2π(J +Km)/m)

)
=: Hm.

Hm is further decomposed as

Hm = − log

(
mθ1−θ0

gc0,θ0(2π(J + Sm)/m)

gc0,θ1(2π(J + Sm)/m)

)

+
Îδm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)

(
mθ1−θ0

gc0,θ0(2π(J + Sm)/m)

g
c0,θ

1(2π(J + Sm)/m)
− 1

)

+ log

(
gc0,θ0(2π(J + Sm)/m)

gc0,θ0(2π(J + SM )/m)

gc0,θ1(2π(J + SM )/m)

gc0,θ1(2π(J + Sm)/m)

)

+
Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)

(
1−

gc0,θ0(2π(J +KM )/m)

gc0,θ0(2π(J +Km)/m)

)
,
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which is Am +Bm + Cm given in (5.11)-(5.13).

Note that 2π(J+KM )/m, 2π(J+Km)/m, 2π(J+SM )/m and 2π(J+Sm)/m converge

to (π/2)1d as m → ∞. Note also that the convergence of 2π(J+SM )/m and 2π(J+Sm)/m

holds for θ1 uniformly on Θ, because h → 0.

The continuity of gc0,θ in Lemma 1 implies that as m → ∞,

log

(
gc0,θ0(2π(J + Sm)/m)

gc0,θ0(2π(J + SM )/m)

gc0,θ1(2π(J + SM )/m)

gc0,θ1(2π(J + Sm)/m)

)
−→ 0 (5.16)

holds for θ1 uniformly on Θ, therefore, supΘ |Bm| = o(1). Also, we have

m−(d−θ0)Îτm(2πJ/m)/gc0,θ0(2π(J +KM )/m)
p−→ 1,

since m−(d−θ0)Îτm(2πJ/m)/gc0,θ0 ((π/2)1d) converges to one in probability by Theorem 3

and gc0,θ0 (2π(J +KM )/m) converges to gc0,θ0 ((π/2)1d). Thus, together with

1−
gc0,θ0(2π(J +KM )/m)

gc0,θ0(2π(J +Km)/m)
→ 0,

Cm converges to one in probability.

Theorem 13 (Egorov theorem (Folland 1999)). Suppose that ν(X) < ∞, and f1, f2, ... and

f are measurable complex-valued functions on X such that fn → f a.e. Then for every ϵ > 0

there exists E ⊆ X such that ν(E) < ϵ and fn → f uniformly on Ec.

Proof of Theorem 5. Let (Ω,F ,P) be the probability space where a stationary Gaussian

random field Z(s) is defined. To emphasize dependence on m, we use θ̂m instead of θ̂ in this
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proof. Note that we have

P (L(c0, θ̂m)− L(c0, θ0) ≤ 0) = 1 (5.17)

for any positive integer m, due to the definition of θ̂m. We are going to prove the theorem

by deriving a contradiction to (5.17) when θ̂m does not converge to θ0 in probability.

Suppose that θ̂m does not converge to θ0 in probability. Then, there exist ϵ > 0, δ > 0

and M1 such that for m ≥ M1,

P (|θ̂m − θ0| > ϵ) > δ.

We define Dm = {ω ∈ Ω : |θ̂m − θ0| > ϵ}. By Lemma 3, we have

L(c0, θ̂m)− L(c0, θ0) ≥ Am +Bm + Cm,

where Am, Bm and Cm are given in (5.11)-(5.13) with θ1 = θ̂. Also, note that

Am = hm

(
mθ̂−θ0

gc0,θ0(2π(J + Sm)/m)

g
c0,θ̂

(2π(J + Sm)/m)

)
,

where hm(·) is defined in Lemma 2 with

dm =
Îδm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)
, (5.18)

where KM is defined in Lemma 3.

We are going to show that there exist {mk}, a subsequence of {m} and a subset of Dmk
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such that for large enough mk, Amk
+Bmk

+ Cmk
is bounded away from zero.

By Theorem 3 and the convergence of gc0,θ0 (2π(J +KM )/m) to gc0,θ0 ((π/2)1d), we

have dm
p→ 1. Then, there exists {mk}, a subsequence of {m} such that dmk

converges to one

almost surely. By (5.17) in Lemma 3, almost sure convergence of dmk
implies that Cmk

given

in (5.13) converges to zero almost surely. To use Lemma 2, we need uniform convergence of

dmk
which is obtained by Egorov’s Thoerem (Folland, 1999). By Egorov’s Theorem, there

exists Gδ ⊂ Ω such that dmk
and Cmk

converge uniformly on Gδ and P (Gδ) > 1− δ/2.

On the other hand, there exists a M2, which does not depend on ω, such that for mk ≥

M2,

∣∣∣∣∣∣mθ̂mk−θ0
k

gc0,θ0(2π(J + Smk
)/mk)

g
c0,θ̂mk

(2π(J + Smk
)/mk)

− 1

∣∣∣∣∣∣ >
1

2
(5.19)

for all ω ∈ Dmk
, because of the uniform boundedness of gc0,θ0/gc0,θ1 .

Let Hmk
= Dmk

∩ Gmk
. Note that P (Hmk

) > δ/2 > 0 for mk ≥ M1. Then, by Lemma

2 with r = 1/2, there exist δr > 0 and Mr such that for mk ≥ Mr,

Amk
= − log

(
m

θ̂mk−θ0
k

gc0,θ0(2π(J + Smk
)/mk)

gc0,θ1(2π(J + Smk
)/mk)

)

+
Îδmk

(2πJ/mk)

m
d−θ0
k gc0,θ0(2π(J +KM )/mk)

(
m

θ̂mk−θ0
k

gc0,θ0(2π(J + Smk
)/mk)

gc0,θ1(2π(J + Smk
)/mk)

− 1

)
> δr (5.20)

uniformly on Hmk
. Note here that Mr ≥ max{M1,M2}.

By the uniform convergence of |Bm| on Θ shown in Lemma 3, there exists a M3 such
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that for mk ≥ M3,

∣∣∣Bmk

∣∣∣ <
δr
4

(5.21)

with θ1 = θ̂mk
(ω) uniformly for ω ∈ Ω. The uniform convergence of Cmk

on Gδ allows us to

find M4 such that for mk ≥ M4,

∣∣∣Cmk

∣∣∣ <
δr
4

(5.22)

uniformly on Hmk
.

Therefore, for mk ≥ max{Mr,M3,M4}, we have Amk
+ Bmk

+ Cmk
≥ Amk

− |Bmk
| −

|Cmk
| > δr/2 on Hmk

which leads

L(c0, θ̂mk
)− L(c0, θ0) >

δr
2

(5.23)

on Hmk
. Since P (Hmk

) > δ/2 > 0, it contradicts to (5.17) which completes the proof. Here,

we do not need P (∩kHmk
) > 0 since (5.17) should holds for any m > 0.

To show (2.14), it is enough to show that mθ̂−θ0
p−→ 1 which is equivalent to show that

gc0,θ0(2π(J + Sm)/m)

g
c0,θ̂

(2π(J + Sm)/m)

p−→ 1, (5.24)

mθ̂−θ0
gc0,θ0(2π(J + Sm)/m)

g
c0,θ̂

(2π(J + Sm)/m)

p−→ 1. (5.25)

(5.24) follows from the consistency of θ̂ and the continuity of gc0,θ shown in Lemma 5.1.
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To show (5.25), notice that we have

P
(
L(c0, θ̂)− L(c0, θ0) ≤ 0

)
= 1 (5.26)

for each m > 0 by the definition of θ̂ and we have

P
(
L(c0, θ̂)− L(c0, θ0) ≥ Am +Bm + Cm

)
= 1

by Lemma 3.

Suppose that (5.25) does not hold. Then, there exists r > 0, δ > 0 and M1 such that

P

(∣∣∣∣∣mθ̂−θ0
gc0,θ0(2π(J + Sm)/m)

g
c0,θ̂

(2π(J + Sm)/m)
− 1

∣∣∣∣∣ > r

)
> δ

for all m ≥ M1. On the other hand, there exists {mk}, a subsequence of {m}, such that

dmk
→ 1, Bm → 0 and Cm → 0 almost surely, where dm is given in (5.18), Bm and Cm

are given in (5.12) and (5.13) with θ1 = θ̂. Then, by Egorov’s Thoerem, there exists Ωδ ⊂ Ω

such that P (Ωδ) > 1 − δ/2 and dmk
, Bm and Cm are uniformly convergent on Ωδ. As in

Lemma 2, for amk
, a nonzero solution of hmk

(bmk
) = 0, where

bm = mθ̂−θ0
gc0,θ0(2π(J + Sm)/m)

g
c0,θ̂

(2π(J + Sm)/m)
,

there exists M2 such that |amk
− 1| ≤ r uniformly on Ωδ for all mk ≥ M2. Now, define

Dm =

{
ω :

∣∣∣∣∣mθ̂−θ0
gc0,θ0(2π(J + Sm)/m)

g
c0,θ̂

(2π(J + Sm)/m)
− 1

∣∣∣∣∣ > r

}
. (5.27)
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Note that P (Dmk
∩ Ωδ) ≥ δ/2 > 0 for all mk ≥ max{M1,M2}. Similarly to the proof of

Lemma 2, for each mk ≥ max{M1,M2}, there exists δr > 0 such that Amk
> δr for all

ω ∈ Dmk
∩ Ωδ. This implies that

P (Amk
> δr) ≥ δ/2

for each mk ≥ max{M1,M2}. Note that δr does not depend on mk which can be seen in

Lemma 2. Meanwhile, there exists M3 such that for mk ≥ M3,

|Bmk
| ≤ δr/4, |Cmk

| ≤ δr/4

for all ω ∈ Ωδ. Hence we have

P
(
L(c0, θ̂)− L(c0, θ0) > δr/2

)
≥ δ/2

for mk ≥ max{M1,M2,M3}, which contradicts to (5.26). Thus, (5.25) is proved.

Alternative Proof of Theorem 5. To show the consistency of θ̂, for a given ϵ > 0 such

that 0 < ϵ < min{θU−θ0, θL−θ0}/2, define Θϵ = {θ : |θ−θ0| ≤ ϵ} and Θc
ϵ is the complement

of Θϵ. Then, we have

P
(
θ̂ ∈ Θc

ϵ ∩ Θ
)

= P

(
inf

Θc
ϵ ∩ Θ

L(c0, θ) ≤ inf
Θϵ ∩ Θ

L(c0, θ)

)

≤ P

(
inf

Θc
ϵ ∩ Θ

(L(c0, θ)− L(c0, θ0)) ≤ 0

)
.
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By Lemma 3, we also have

inf
Θc
ϵ ∩ Θ

(L(c0, θ)− L(c0, θ0)) ≥ inf
Θc
ϵ ∩ Θ

(Am +Bm + Cm)

≥ inf
Θc
ϵ ∩ Θ

(Am − |Bm|) + Cm

≥ inf
Θc
ϵ ∩ Θ

Am − sup
Θ

|Bm|+ Cm,

where Am, Bm and Cm are given in (5.11)-(5.13). Thus, to show the consistency of θ̂, it is

enough to show that there exists δ > 0 such that

P

(
inf

Θc
ϵ ∩ Θ

Am + Cm > δ

)
−→ 1.

since Bm is deterministic with supΘ |Bm| → 0 as m → ∞. We can consider Am as

Am = hm

(
mθ−θ0

gc0,θ0(2π(J + Sm)/m)

gc0,θ(2π(J + Sm)/m)

)
,

where hm(·) is defined in Lemma 2 with

dm =
Îδm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)
, (5.28)

where KM is defined in Lemma 3. For θ ∈ Θc
ϵ ∩ Θ, if θ > θ0 + ϵ,

mθ−θ0
gc0,θ0(2π(J + Sm)/m)

gc0,θ(2π(J + Sm)/m)
−→ ∞

asm → ∞, because of the uniform boundedness of gc0,θ0/gc0,θ shown in Lemma 1. Similarly,
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if θ < θ0 − ϵ,

mθ−θ0
gc0,θ0(2π(J + Sm)/m)

gc0,θ(2π(J + Sm)/m)
−→ 0

as m → ∞. Thus, there exists M1 such that for m ≥ M1,

∣∣∣∣∣mθ−θ0
gc0,θ0(2π(J + Sm)/m)

gc0,θ(2π(J + Sm)/m)
− 1

∣∣∣∣∣ >
1

2
, (5.29)

for all θ ∈ Θc
ϵ ∩ Θ, because of the uniform boundedness of gc0,θ0/gc0,θ.

By Theorem 12 in Lim and Stein (2008) and the convergence of gc0,θ0 (2π(J +KM )/m)

to gc0,θ0 ((π/2)1d), dm
p→ 1. Similarly, we can show that Cm

p→ 0. Then, there exists a

δ > 0 such that

P

(
inf

Θc
ϵ ∩ Θ

Am + Cm > δ

)
−→ 1 (5.30)

by Lemma 2 with r = 1/2 and the fact that randomness of Am and Cm comes from the

same quantity dm. This completes the proof of (2.13).

To proof Theorem 6, we consider the following Lemma.

Lemma 4. Under the conditions of Theorem 5, let η = d(1− γ)/2, we have

59



(a)

mη

 ∑
K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)
− 1


d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
, (5.31)

(b)

∑
K∈Tm

Wh(K)

(
1 − Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

)
ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)

= Op(m
−η) (5.32)

Proof. To prove (5.31), we find the asymptotic distribution of its lower and upper bounds.

It can be easily shown that

LBm ≤ mη

 ∑
K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)
− 1

 ≤ UBm,

where

LBm = mη

(
Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)
− 1

)
, (5.33)

UBm = mη

(
Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +Km)/m)
− 1

)
(5.34)
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with KM and Km as given in Lemma 3. We rewrite LBm as

LBm = mη
((

Îτm(2πJ/m)

md−θ0gc0,θ0((π/2)1d)
− 1

)
gc0,θ0((π/2)1d)

gc0,θ0(2π(J +KM )/m)

+
gc0,θ0((π/2)1d)

gc0,θ0(2π(J +KM )/m)
− 1

)
.

By Lemma 1 and γ > d/(d+ 2), we have

gc0,θ0((π/2)1d)

gc0,θ0(2π(J +KM )/m)
−→ 1,

mη

(
gc0,θ0((π/2)1d)

gc0,θ0(2π(J +KM )/m)
− 1

)
−→ 0.

Thus, by Theorem 3,

LBm
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
.

Similarly, we can show

UBm
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
.

The lower and upper bounds converge to the same distribution which implies (5.31).
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To show (5.32), we rewrite the LHS of (5.32) as

∑
K∈Tm

Wh(K)

(
1 − Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

)
ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)

=
∑

K∈Tm
Wh(K)

ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)
−

ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

−
∑

K∈Tm
Wh(K)

Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)

+
ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)
.

By Lemma 1 and γ > d/(d+ 2), we can show that

mη

 ∑
K∈Tm

Wh(K)
ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)
−

ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

 −→ 0.

Also, it can be easily shown that

LBm ≤
∑

K∈Tm
Wh(K)

Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)
≤ UBm,

where

LBm =
Îτm(2πJ/m)

md−θ0gc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)ġc0,θ0(2π(J + Pm)/m)

g2c0,θ0
(2π(J + Pm)/m)

,

UBm =
Îτm(2πJ/m)

md−θ0gc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)ġc0,θ0(2π(J + PM )/m)

g2c0,θ0
(2π(J + PM )/m)

,
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with

PM = argmax{K∈Tm,Wh(K)̸=0}
ġc0,θ0(2π(J +K)/m)

g2c0,θ0
(2π(J +K)/m)

,

Pm = argmin{K∈Tm,Wh(K) ̸=0}
ġc0,θ0(2π(J +K)/m)

g2c0,θ0
(2π(J +K)/m)

.

By Lemma 1, γ > d/(d+ 2) and Theorem 3, we can show that

mη

(
LBm −

ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

)
d−→ N

0,

(
ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

)2
Λ2

Λ2
1

(
2π

C

)d
 ,

mη

(
UBm −

ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

)
d−→ N

0,

(
ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

)2
Λ2

Λ2
1

(
2π

C

)d
 .

This completes the proof of (5.32).

Proof of Theorem 6. Let L̇ = ∂L/∂θ and L̈ = ∂2L/∂θ2. To show the asymptotic distri-

bution of θ̂, we consider the Taylor expansion of L̇(c0, θ̂) around θ0,

L̇(c0, θ̂) = L̇(c0, θ0) + L̈(c0, θ̄)(θ̂ − θ0),

where θ̄ lies on the line segment between θ̂ and θ0. Since L̇(c0, θ̂) = 0, we have

log(m)mη(θ̂ − θ0) = −log(m)mη
(
L̈(c0, θ̄)

)−1
L̇(c0, θ0).

Thus, it is enough to show

(log(m))−1mηL̇(c0, θ0)
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
, (5.35)

(log(m))−2L̈(c0, θ̄)
p−→ 1. (5.36)
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Since

L̇(c0, θ0) = − log(m) +
∑

K∈Tm
Wh(K)

ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)

−
∑

K∈Tm
Wh(K)Iτm(2π(J +K)/m)

×

(
− log(m)md−θ0gc0,θ0(2π(J +K)/m) +md−θ0 ġc0,θ0(2π(J +K)/m)

)
(
md−θ0gc0,θ0(2π(J +K)/m)

)2
= log(m)

 ∑
K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)
− 1


+
∑

K∈Tm
Wh(K)

(
1 − Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

)
ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)
,

we see that (5.35) follows from Lemma 4.

Next we prove (5.36). After some simplification, we have

L̈(c0, θ̄) = (log(m))2
∑

K∈Tm
Wh(K)

Iτm(2π(J +K)/m)

md−θ̄gc0,θ̄
(2π(J +K)/m)

− 2 log(m)
∑

K∈Tm
Wh(K)

Iτm(2π(J +K)/m)ġc0,θ̄
(2π(J +K)/m)

md−θ̄g2
c0,θ̄

(2π(J +K)/m)

+ 2
∑

K∈Tm
Wh(K)

Iτm(2π(J +K)/m)ġ2
c0,θ̄

(2π(J +K)/m)

md−θ̄g3
c0,θ̄

(2π(J +K)/m)

+
∑

K∈Tm
Wh(K)

1 − Iτm(2π(J +K)/m)

md−θ̄gc0,θ̄
(2π(J +K)/m)

 g̈c0,θ̄
(2π(J +K)/m)

gc0,θ̄
(2π(J +K)/m)

−
∑

K∈Tm
Wh(K)

ġ2
c0,θ̄

(2π(J +K)/m)

g2
c0,θ̄

(2π(J +K)/m)

=: E1 + E2,

where E1 is the first term with (log(m))2 and E2 is the last four terms in the expression of
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L̈(c0, θ̄).

First, we want to show that

(log(m))−2E1
p−→ 1. (5.37)

It can be easily shown that

LBm ≤ (log(m))−2E1 ≤ UBm,

where

LBm =
Îτm(2πJ/m)

md−θ0gc0,θ0((π/2)1d)

mθ̄−θ0gc0,θ0((π/2)1d)

gc0,θ̄
(2π(J + PM )/m)

,

UBM =
Îτm(2πJ/m)

md−θ0gc0,θ0((π/2)1d)

mθ̄−θ0gc0,θ0((π/2)1d)

gc0,θ̄
(2π(J + Pm)/m)

with

PM = argmax{K∈Tm,Wh(K)̸=0}gc0,θ̄
(2π(J +K)/m),

Pm = argmin{K∈Tm,Wh(K)̸=0}gc0,θ̄
(2π(J +K)/m).

By Theorem 3, (2.14) in Theorem 5 and Lemma 1, we can show that both LBm and

UBm converge to one in probability, which in turn implies (5.37). In a similar way, we can

show that (log(m))−1E2 = Op(1). Thus, together with (5.37), we can show (5.36), which

completes the proof.
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In order to prove Theorem 7, we will extend Lemma 2 to more generalized situation.

Lemma 5. Consider a function hm(x) = − log(x) + dm(x − 1), (x > 0), where {dm} is a

sequence of positive numbers such that dm → d > 0 as m → ∞. Then, there exists some

rl ∈ (0, 1) and ru ∈ (1,∞), δr > 0 and M such that ∀m ≥ M, we have

hm(x) > 1

∀x ∈ (0, rl] ∪ [ru,∞).

Proof. Since dm → d > 0, then ∀ϵ ∈ (0, d), ∃M s.t. ∀m ≥ M,

|dm − d| < ϵ

or d− ϵ < dm < d+ ϵ.

∀c > 0 fixed, note that the function fc(x) = − log(x)+ c(x−1), (x > 0) has the following

properties:

(i)

fc(x) → ∞ as x → 0+ or x → ∞.

(ii) f ′c(x) = − 1
x + c. So, f ′c(x) = 0 ⇔ x = 1

c .

f ′c(x) < 0 if x <
1

c
and f ′c(x) > 0 if x >

1

c
.

(iii) fc(x) attains its minimum at x = 1
c and fc(x) ≤ 0. ( fc(

1
c ) < 0 if c ̸= 1. Otherwise,
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f1(1) = 0. ) Hence we can find x1 < 1
c < x2 such that

fc(x) ≥ 1

if 0 < x ≤ x1 or x ≥ x2. Now we apply the above facts to c = d− ϵ or c = d + ϵ to get the

following:

(a) If 0 < x ≤ x1, then

hm(x) = − log(x) + dm(x− 1) ≥ − log(x) + (d+ ϵ)(x− 1) ≥ 1.

(b) If x ≥ x2, then

hm(x) = − log(x) + dm(x− 1) ≥ − log(x) + (d− ϵ)(x− 1) ≥ 1.

Therefore, we have proved the Lemma.

To prove Theorem 11, we first find the lower bound for L(c∗, θ1) − L(c∗, θ0). The con-

struction of this lower bound follows by replacing c0 in (5.11),(5.12) and (5.13) in Lemma 3

with c∗. The lower bounded is also established by three terms and two of them are dominated

by the other.

Lemma 6. For a positive integer m and any θ1 ∈ Θ, we have

L(c∗, θ1)− L(c∗, θ0) ≥ Am +Bm + Cm,
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where

Am = − log

(
mθ1−θ0

gc∗,θ0(2π(J + Sm)/m)

gc∗,θ1(2π(J + Sm)/m)

)

+
Îδm(2πJ/m)

md−θ0gc∗,θ0(2π(J +KM )/m)

(
mθ1−θ0

gc∗,θ0(2π(J + Sm)/m)

gc∗,θ1(2π(J + Sm)/m)
− 1

)
,

(5.38)

Bm = log

(
gc∗,θ0(2π(J + Sm)/m)

gc∗,θ0(2π(J + SM )/m)

gc∗,θ1(2π(J + SM )/m)

gc∗,θ1(2π(J + Sm)/m)

)
(5.39)

Cm =
Îτm(2πJ/m)

md−θ0gc∗,θ0(2π(J +KM )/m)

(
1−

gc∗,θ0(2π(J +KM )/m)

gc∗,θ0(2π(J +Km)/m)

)
. (5.40)

In (5.38)-(5.40), KM , Km, SM and Sm are defined as

KM = argmax{K∈Tm,Wh(K)̸=0}gc∗,θ0(2π(J +K)/m),

Km = argmin{K∈Tm,Wh(K) ̸=0}gc∗,θ0(2π(J +K)/m),

SM = argmax{K∈Tm,Wh(K) ̸=0} log

(
gc∗,θ0(2π(J +K)/m)

gc∗,θ1(2π(J +K)/m)

)
,

Sm = argmin{K∈Tm,Wh(K) ̸=0}
gc∗,θ0(2π(J +K)/m)

gc∗,θ1(2π(J +K)/m)
.

Furthermore,

sup
θ∈Θ

|Bm| = o(1), (5.41)

Cm = op(1), (5.42)

where (5.42) is under the conditions of Theorem 5.

Proof of Lemma 6. The procedure of the proof for this Lemma is the same as Lemma 6.

Therefore, we will not introduce the details.
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Proof of Theorem 7. Let (Ω,F ,P) be the probability space where a stationary Gaussian

random field Z(s) is defined. To emphasize dependence on m, we use θ̂m instead of θ̂ in this

proof. Note that we have

P (L(c∗, θ̂m)− L(c∗, θ0) ≤ 0) = 1 (5.43)

for any positive integer m, due to the definition of θ̂m. We are going to prove the theorem

by deriving a contradiction to (5.43) when θ̂m does not converge to θ0 in probability.

Suppose that θ̂m does not converge to θ0 in probability. Then, there exist ϵ > 0, δ > 0

and M1 such that for m ≥ M1,

P (|θ̂m − θ0| > ϵ) > δ.

We define Dm = {ω ∈ Ω : |θ̂m − θ0| > ϵ}. By Lemma 3, we have

L(c∗, θ̂m)− L(c∗, θ0) ≥ Am +Bm + Cm,

where Am, Bm and Cm are given in (5.38)-(5.40) with θ1 = θ̂. Also, note that

Am = hm

(
mθ̂−θ0

gc∗,θ0(2π(J + Sm)/m)

g
c∗,θ̂(2π(J + Sm)/m)

)
,

where hm(·) is defined in Lemma 5 with

dm =
Îδm(2πJ/m)

md−θ0gc∗,θ0(2π(J +KM )/m)
, (5.44)
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where KM is defined in Lemma 3.

We are going to show that there exist {mk}, a subsequence of {m} and a subset of Dmk

such that for large enough mk, Amk
+Bmk

+ Cmk
is bounded away from zero.

By Theorem 3 and the convergence of gc∗,θ0 (2π(J +KM )/m) to gc∗,θ0 ((π/2)1d), we

have dm
p→ d = c0/c

∗. Then, there exists {mk}, a subsequence of {m} such that dmk

converges to one almost surely. By (5.17) in Lemma 3, almost sure convergence of dmk

implies that Cmk
given in (5.40) converges to zero almost surely. To use Lemma 5, we need

uniform convergence of dmk
which is obtained by Egorov’s Thoerem (Folland, 1999). By

Egorov’s Theorem, there exists Gδ ⊂ Ω such that dmk
and Cmk

converge uniformly on Gδ

and P (Gδ) > 1− δ/2.

On the other hand, there exists a M2, which does not depend on ω, such that for mk ≥

M2,

m
θ̂mk−θ0
k

gc∗,θ0(2π(J + Smk
)/mk)

g
c∗,θ̂mk

(2π(J + Smk
)/mk)

(5.45)

falls on the outside of (rl, ru) for all ω ∈ Dmk
, because of the uniform boundedness of

gc∗,θ0/gc∗,θ1 .

Let Hmk
= Dmk

∩ Gmk
. Note that P (Hmk

) > δ/2 > 0 for mk ≥ M1. Then, by Lemma

5, there exist δr > 0 and Mr such that for mk ≥ Mr,

Amk
= − log

(
m

θ̂mk−θ0
k

gc∗,θ0(2π(J + Smk
)/mk)

gc∗,θ1(2π(J + Smk
)/mk)

)

+
Îδmk

(2πJ/mk)

m
d−θ0
k gc∗,θ0(2π(J +KM )/mk)

(
m

θ̂mk
−θ0

k

gc∗,θ0(2π(J + Smk
)/mk)

gc∗,θ1(2π(J + Smk
)/mk)

− 1

)
> δr (5.46)
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uniformly on Hmk
. Note here that Mr ≥ max{M1,M2}.

By the uniform convergence of |Bm| on Θ shown in Lemma 6, there exists a M3 such

that for mk ≥ M3,

∣∣∣Bmk

∣∣∣ <
δr
4

(5.47)

with θ1 = θ̂mk
(ω) uniformly for ω ∈ Ω. The uniform convergence of Cmk

on Gδ allows us to

find M4 such that for mk ≥ M4,

∣∣∣Cmk

∣∣∣ <
δr
4

(5.48)

uniformly on Hmk
.

Therefore, for mk ≥ max{Mr,M3,M4}, we have Amk
+ Bmk

+ Cmk
≥ Amk

− |Bmk
| −

|Cmk
| > δr/2 on Hmk

which leads

L(c∗, θ̂mk
)− L(c∗, θ0) >

δr
2

(5.49)

on Hmk
. Since P (Hmk

) > δ/2 > 0, it contradicts to (5.43) which completes the proof. Here,

we do not need P (∩kHmk
) > 0 since (5.43) should holds for any m > 0.

(2.17) comes from

lim
m→∞

P

(
mθ̂−θ0

gc∗,θ0(2π(J + Sm)/m)

g
c∗,θ̂(2π(J + Sm)/m)

∈ (rl, ru)

)
= 1.

Otherwise, the same contradiction to (5.43) will be found.
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To prove (2.29), let

KM = argmax{K∈Tm,Wh(K)̸=0}gθ̂(2π(J +K)/m),

Km = argmin{K∈Tm,Wh(K) ̸=0}gθ̂(2π(J +K)/m).

Assume

ĉ =
∑

K∈Tm
Wh(K)

1

md−θ̂

Iτm(2π(J +K)/m)

g
θ̂
(2π(J +K)/m)

.

c mθ̂−θ 1
md−θ

Îτm(2πJ/m)
gθ,c(2π(J+KM )/m)

gθ(2π(J+KM )/m)

g
θ̂
(2π(J+KM )/m)

≤ ĉ ≤ c mθ̂−θ 1
md−θ

Îτm(2πJ/m)
gθ,c(2π(J+Km)/m)

gθ(2π(J+Km)/m)

g
θ̂
(2π(J+Km)/m)

By Theorem 3 and the convergence of gc,θ (2π(J +Km)/m) and gc,θ (2π(J +KM )/m)

to gc,θ ((π/2)1d),

1

md−θ

Îτm(2πJ/m)

gθ,c(2π(J +KM )/m)
→p 1

and

1

md−θ

Îτm(2πJ/m)

gθ,c(2π(J +Km)/m)
→p 1.

Corollary 1 is verified because θ̂ − θ = Op(log(m)−1) and the boundedness of gc,θ.
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5.2.3 Proofs of Theorems in Section 2.4

The idea to verify the theoretical results of the second estimator defined in Section 2.4

are similar with Section 2.3. The procedures of proofs will be simpler and worked out by

Theorem 3 and Lemma 2.

Proof of Theorem 8. Compared with the first estimator in Section 2.3, the consistency

of ĉ will be directly attained because m−(d−θ0)Îτm(2πJ/m) converges to gc,θ0((π/2)1d) in

probability by Theorem 3.

ĉ =
Îτm(2πJ/m)

md−θ0g0(2πJ/m)
→p c.

The asymptotic distribution of ĉ comes from Theorem 3

mη

(
Îτm (2πJ/m)

md−θ0
− gc,θ0 ((π/2)1d)

)
d−→ N

(
0 ,

Λ2

Λ2
1

(
2π

C

)d

g2c,θ0
((π/2)1d)

)
(5.50)

Proof of Theorem 9. For all θ1 and θ2 in Θ,

R(c0, θ1)−R(c0, θ2) = − log

(
mθ1−θ2

gc0,θ2(2πJ/m)

gc0,θ1(2πJ/m)

)

+
Îδm(2πJ/m)

md−θ2gc0,θ2(2πJ/m)

(
mθ1−θ2

gc0,θ2(2πJ/m)

g
c0,θ

1(2πJ/m)
− 1

)
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We also suppose that Z(s) is a stationary Gaussian random field defined on the prob-

ability space (Ω,F ,P) and replace θ̂m with θ̂ in this proof. The main idea of proving the

theorem is looking for a contradiction to

P (R(c0, θ̂m)−R(c0, θ0) ≤ 0) = 1 (5.51)

for any positive integer m, due to the definition of θ̂m when θ̂m does not converge to θ0 in

probability.

Suppose that θ̂m does not converge to θ0 in probability. Then, there exist ϵ > 0, δ > 0

and M1 such that for m ≥ M1,

P (|θ̂m − θ0| > ϵ) > δ.

We define Dm = {ω ∈ Ω : |θ̂m − θ0| > ϵ}.

Assume

dm =
Îδm(2πJ/m)

md−θ0gc0,θ0(2πJ/m)
, (5.52)

By Theorem 3, we know dm
p→ 1. Then, there exists {mk}, a subsequence of {m} such

that dmk
converges to one almost surely. To use Lemma 2, we need uniform convergence of

dmk
which is obtained by Egorov’s Thoerem (Folland, 1999). By Egorov’s Theorem, there

exists Gδ ⊂ Ω such that dmk
converge uniformly on Gδ and P (Gδ) > 1− δ/2.

On the other hand, there exists a M2, which does not depend on ω, such that for mk ≥
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M2,

∣∣∣∣∣∣mθ̂mk−θ0
k

gc0,θ0(2πJ/mk)

g
c0,θ̂mk

(2πJ/mk)
− 1

∣∣∣∣∣∣ >
1

2
(5.53)

for all ω ∈ Dmk
, because of the uniform boundedness of gc0,θ0/gc0,θ1 .

Let Hmk
= Dmk

∩ Gmk
. Note that P (Hmk

) > δ/2 > 0 for mk ≥ M1. Then, by Lemma

2 with r = 1/2, there exist δr > 0 and Mr such that for mk ≥ Mr,

− log

(
m

θ̂mk−θ0
k

gc0,θ0(2πJ/mk)

gc0,θ1(2πJ/mk)

)

+
Îδmk

(2πJ/mk)

m
d−θ0
k gc0,θ0(2πJ/mk)

(
m

θ̂mk−θ0
k

gc0,θ0(2πJ/mk)

gc0,θ1(2πJ/mk)
− 1

)
> δr (5.54)

uniformly on Hmk
. Note here that Mr ≥ max{M1,M2}.

Since P (Hmk
) > δ/2 > 0, it contradicts to (5.51) which completes the proof because

(5.51) holds for any m > 0.

To show (2.14), it is enough to show that mθ̂−θ0
p−→ 1 which is equivalent to show that

mθ̂−θ0
gc0,θ0(2π(J + Sm)/m)

g
c0,θ̂

(2π(J + Sm)/m)

p−→ 1 (5.55)

because
gc0,θ0(2π(J + Sm)/m)

g
c0,θ̂

(2π(J + Sm)/m)

p−→ 1. (5.56)

(5.56) follows from the consistency of θ̂ and the continuity of gc0,θ shown in Lemma 5.1.

To show (5.55), notice that we have

P
(
R(c0, θ̂)−R(c0, θ0) ≤ 0

)
= 1 (5.57)
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for each m > 0 by the definition of θ̂.

Suppose that (5.55) does not hold. Then, there exists r > 0, δ > 0 and M1 such that

P

(∣∣∣∣∣mθ̂−θ0
gc0,θ0(2πJ/m)

g
c0,θ̂

(2πJ/m)
− 1

∣∣∣∣∣ > r

)
> δ

for all m ≥ M1. On the other hand, there exists {mk}, a subsequence of {m}, such that

dmk
→ 1. Then, by Egorov’s Thoerem, there exists Ωδ ⊂ Ω such that P (Ωδ) > 1 − δ/2

and dmk
. Now, define

Dm =

{
ω :

∣∣∣∣∣mθ̂−θ0
gc0,θ0(2πJ/m)

g
c0,θ̂

(2πJ/m)
− 1

∣∣∣∣∣ > r

}
. (5.58)

Note that P (Dmk
∩ Ωδ) ≥ δ/2 > 0 for all mk ≥ max{M1,Mr}. Similarly to the proof of

Lemma 2, for each mk ≥ max{M1,Mr}, there exists δr > 0 such that R(c0, θ̂)−R(c0, θ0) >

δr for all ω ∈ Dmk
∩ Ωδ. This implies that

P (R(c0, θ̂)−R(c0, θ0) > δr) ≥ δ/2

for each mk ≥ max{M1,Mr}. Note that δr does not depend on mk which can be seen in

Lemma 2.

Proof of Theorem 10. Let Ṙ = ∂L/∂θ and R̈ = ∂2R/∂θ2. To show the asymptotic

distribution of θ̂, we consider the Taylor expansion of Ṙ(c0, θ̂) around θ0,

Ṙ(c0, θ̂) = Ṙ(c0, θ0) + R̈(c0, θ̄)(θ̂ − θ0),
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where θ̄ lies on the line segment between θ̂ and θ0. Since Ṙ(c0, θ̂) = 0, we have

log(m)mη(θ̂ − θ0) = − log(m)mη
(
R̈(c0, θ̄)

)−1
Ṙ(c0, θ0).

Thus, it is enough to show

(log(m))−1mηṘ(c0, θ0)
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
, (5.59)

(log(m))−2R̈(c0, θ̄)
p−→ 1. (5.60)

Since

Ṙ(c0, θ0) = − log(m) +
ġc0,θ0(2πJ/m)

gc0,θ0(2πJ/m)
− Îτm(2π(J)/m)

×

(
− log(m)md−θ0gc0,θ0(2πJ/m) +md−θ0 ġc0,θ0(2πJ/m)

)
(
md−θ0gc0,θ0(2πJ/m)

)2
= log(m)

(
Îτm(2πJ/m)

md−θ0gc0,θ0(2πJ/m)
− 1

)

+

(
1 − Îτm(2πJ/m)

md−θ0gc0,θ0(2πJ/m)

)
ġc0,θ0(2πJ/m)

gc0,θ0(2πJ/m)
,

we see that (5.59) follows from Lemma 4.
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Next we prove (5.60). After some simplification, we have

R̈(c0, θ̄) = (log(m))2
Îτm(2π(J +K)/m)

md−θ̄gc0,θ̄
(2πJ/m)

− 2 log(m)
Îτm(2πJ/m)ġc0,θ̄

(2πJ/m)

md−θ̄g2
c0,θ̄

(2πJ/m)

+ 2
Îτm(2πJ/m)ġ2

c0,θ̄
(2πJ/m)

md−θ̄g3
c0,θ̄

(2πJ/m)
+

1 − Îτm(2πJ/m)

md−θ̄gc0,θ̄
(2πJ/m)

 g̈c0,θ̄
(2πJ/m)

gc0,θ̄
(2πJ/m)

−
ġ2
c0,θ̄

(2πJ/m)

g2
c0,θ̄

(2πJ/m)

=: E1 + E2,

where E1 is the first term with (log(m))2 and E2 is the last four terms in the expression of

R̈(c0, θ̄).

First, we know that

(log(m))−2E1
p−→ 1.

and

(log(m))−1E2 = Op(1)

from Theorem 3, (2.14) in Theorem 5 and Lemma 1.

Proof of Theorem 11. Let (Ω,F ,P) be the probability space where a stationary Gaussian

random field Z(s) is defined. To emphasize dependence on m, we use θ̂m instead of θ̂ in this
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proof. Note that we have From the previous discussion,

R(c∗, θ̂m)−R(c∗, θ0) = − log

(
mθ̂m−θ0

g∗,θ0(2πJ/m)

g
c∗,θ̂m

(2πJ/m)

)

+
Îδm(2πJ/m)

md−θ0g∗,θ0(2πJ/m)

(
mθ̂m−θ0

gc∗,θ0(2πJ/m)

g
c∗,θ̂m

(2πJ/m)
− 1

)

and

P (R(c∗, θ̂m)−R(c∗, θ0) ≤ 0) = 1, ∀m. (5.61)

for any positive integer m, due to the definition of θ̂m. We are going to prove the theorem

by deriving a contradiction to (5.61) when θ̂m does not converge to θ0 in probability.

Suppose that θ̂m does not converge to θ0 in probability. Then, there exist ϵ > 0, δ > 0

and M1 such that for m ≥ M1,

P (|θ̂m − θ0| > ϵ) > δ.

We define Dm = {ω ∈ Ω : |θ̂m − θ0| > ϵ} and

dm =
Îδm(2πJ/m)

md−θ0gc∗,θ0(2πJ/m)
. (5.62)

By Theorem 3, we have dm
p→ d = c0/c

∗. Then, there exists {mk}, a subsequence of

{m} such that dmk
converges to one almost surely. To use Lemma 5, we need uniform

convergence of dmk
which is obtained by Egorov’s Thoerem (Folland, 1999). By Egorov’s
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Theorem, there exists Gδ ⊂ Ω such that dmk
converges uniformly on Gδ and P (Gδ) > 1−δ/2.

On the other hand, there exists a M2, which does not depend on ω, such that for mk ≥

M2,

m
θ̂mk−θ0
k

gc∗,θ0(2πJ/mk)

g
c∗,θ̂mk

(2πJ/mk)
(5.63)

falls on the outside of (rl, ru) for all ω ∈ Dmk
, because of the uniform boundedness of

gc∗,θ0/gc∗,θ1 .

Let Hmk
= Dmk

∩ Gmk
. Note that P (Hmk

) > δ/2 > 0 for mk ≥ M1. Then, by Lemma

5, there exist δr > 0 and Mr such that for mk ≥ Mr,

R(c∗, θ̂m)−R(c∗, θ0) (5.64)

= − log

(
m

θ̂mk−θ0
k

gc∗,θ0(2πJ/mk)

gc∗,θ1(2πJ/mk)

)

+
Îδmk

(2πJ/mk)

m
d−θ0
k gc∗,θ0(2πJ/mk)

(
m

θ̂mk−θ0
k

gc∗,θ0(2πJ/mk)

gc∗,θ1(2πJ/mk)
− 1

)
> δr (5.65)

uniformly on Hmk
. Note here that Mr ≥ max{M1,M2}. It contradicts to (5.61) which

completes the proof. Here, we do not need P (∩kHmk
) > 0 since (5.61) should holds for

any m > 0.

Assume

ĉ =
1

md−θ̂

Îτm(2πJ/m)

g
θ̂
(2πJ/m)

.
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Then,

ĉ = c mθ̂−θ 1

md−θ

Îτm(2πJ/m)

gθ,c(2πJ/m)

gθ(2πJ/m)

g
θ̂
(2πJ/m)

.

(2.29) is proven because of θ̂− θ = Op(log(m)−1), the boundedness of gc,θ and Theorem

3.

Lemma 7. Consider a function hm(x) = − log(x) + dm(x− 1), where dm is positive and a

function of a positive integer m. Also assume that dm → d > 1 (or < 1) as m → ∞. Then,

there exists some M such that for all m ≥ M,

hm(x) > 0

for any x > 1 (or x < 1).

Proof. (For d > 1) As the previous discussion, we have known hm(x) is a convex function on

(0,∞) for any positive integer m and minimized at x = 1/dm with hm(1/dm) ≤ 0. Because

dm → d > 1, there exists M such that dm > 1 if m ≥ M. There exists two intersection points

between x-axis of hm(x) will be 1 and um < 1. Since the convexity of hm(x), when m ≥ M,

hm(x) < 0 if x > 1 (or x < 1).

Proof of Theorem 12. Suppose that the result (i) of Theorem 12 does not hold, then there

exists δ and M1 such that

P
(
θ0 < θ̂m

)
> δ

for m > M1.
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By Theorem 3, we have dm
p→ d = c0/c

∗. Then, there exists {mk}, a subsequence of {m}

such that dmk
converges to one almost surely. To use Lemma 7, we need uniform convergence

of dmk
which is obtained by Egorov’s Thoerem (Folland, 1999) . By Egorov’s Theorem, there

exists Gδ ⊂ Ω such that dmk
converges to uniformly on Gδ and P (Gδ) > 1 − δ/2. Assume

c∗ < c0. Then, dm converge c0/c
∗ > 1. By the uniform convergence, there exists M such

that dmk
> 1 when mk > M.

Assume that ω ∈ Ωmk = {ω : θ0 < θ̂mk
}.

gc∗,θ0(2πJ/m) > g
c∗,θ̂mk

(2πJ/m)

because of the monotonicity of gc∗,θ about θ.

m
θ̂mk−θ0
k

gc∗,θ0(2πJ/mk)

g
c∗,θ̂mk

(2πJ/mk)
> 1 (5.66)

for all ω ∈ Ωmk

∩
Gδ. Because R(c∗, θ̂mk

)−R(c∗, θ0) > 0 on Ωmk

∩
Gδ and P (Ωmk

∩
Gδ) > 0

when mk > M , this contradicts to (5.61) will be found. The result (ii) will also be proven

in a similar way.
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