BOROX CATALYSIS: A NEW FRONTIER IN CHIRAL BRØNSTED ACID CATALYSIS DERIVED FROM CHIRAL BORATE ANIONS

By

Anil Kumar Gupta

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Chemistry

2012

ABSTRACT

BOROX CATALYSIS: A NEW FRONTIER IN CHIRAL BRØNSTED ACID CATALYSIS DERIVED FROM CHIRAL BORATE ANIONS

By

Anil Kumar Gupta

In this doctoral research, focus has been on the development of the new chiral Brønsted acid catalysts, large-scale synthesis, novel reaction methodologies and understanding their mechanisms by experimental/computational analysis. In due course of time, a pool of unprecedented chiral Brønsted acid catalysts known to be "BOROX" catalysts, were prepared and characterized by NMR spectroscopy and X-ray analysis. These Wulff's BOROX catalysts were then employed on a variety of asymmetric reactions. In particular, the long-lasted problem of the alkyl aziridination has been solved by the development of the first multi-component aziridination reaction using the IMINO-BOROX catalyst. Out of the investigations regarding alkyl aziridination, a novel multi-component asymmetric [3+2] cycloaddition has also been developed. Additionally, an asymmetric epoxidation of aldehydes utilizing an unprecedented chiral SULFOX-BOROX catalyst has been successfully realized. By means of ¹H, ¹¹B NMR and computational analysis, the catalytic cycle of a Brønsted acid catalyzed reaction and its intermediates have been characterized using the Wulff aziridination reaction as the template. Interestingly, during this doctoral research, it has been found that the Brønsted acid catalysts derived from chiral borate anions are generated only upon the addition of a base. This was further supported by NMR spectroscopy, computational chemistry and X-ray analysis. Lastly, a

new mechanism has been examined for the imino-aldol reaction using computational chemistry.

This mechanism supports the idea of a Lewis acid assisted Brønsted acid catalyzed reaction.

COPYRIGHT

By

ANIL KUMAR GUPTA

2012

To,

My Family, Friends and Teachers

ACKNOWLEDGEMENTS

A life of a graduate student is full of experiences and mine is no different. A PhD degree is a result of the hard work, the dedication, and foremost the passion for the subject. However, it is impossible to discount the fact that it is one of the perfect examples where continuous support of several people contributes to the progress of one being and the science. I am really blessed in this regard. I would start my acknowledgement by thanking Professor Wulff, my research advisor, for providing an opportunity to work under his guidance. To me, he has always been one of the most simple person, I ever met. I could not have asked for a better person to be my intellect, vision and desire to do different from others always inspired me to work hard. When I joined the group, the senior members of the group were in the process of graduating. Hence, I had to go to Dr. Wulff for any problems I had and I was really surprised to see how patiently he used to listen and always had some valuable suggestions to offer. One of the most important things in the Wulff group is the freedom offered by him. The freedom to pursue my own ideas and dreams has allowed me to learn a lot many things in different research areas. I really liked his approach as it provides an opportunity to grow as an independent researcher and to enhance one's creative thinking. Also, his thrust on the minute details about the experimental information has helped me to become a skillful scientist. I would like to thank him for all his teachings about life and chemistry during the last six years. Not only he taught chemistry, but also how to celebrate success and enjoy life in the graduate life. Further, he introduced me to one of the interesting additions to my life i.e. wine. He is real wine connoisseur and loves to share with others. He also introduced me to the Sex, the sparkling

wine. I think, no words can suffice my gratitude to him for being an amazing advisor and a person.

My other committee members were also quite supportive throughout my PhD life. Specially, Dr. Babak Borhan has been very helpful on many occasions. I think, it's the ease with which he let others to interact with him makes him a different person altogether. And, he is such kind of a person who always has a solution irrespective of the problem. I learnt a lot from him thorough personal interactions and of course his spectroscopy course. His continuous support has provided much needed inspiration to keep going at crucial phases of my PhD. Hence I would like to thank him for all his inputs. Although I did not get a chance to interact a lot with Prof. Maleckza, I still found him one of the best teachers and I really enjoyed his course CEM 956. I really appreciate him for his suggestions and recommendations. Also, I would like to thanks Prof. Odom for his suggestions during my second year oral and final oral exams. Although Dr. Jackson is not in my committee, he has been really phenomenal in passing the passion for the understanding the mechanisms of organic reactions to me. I am really thankful to him. I would like to thank Dr. Baker for his smile whenever I met him in the hallway.

I owe special thanks to Dr. Dan Holmes for his time during my NMR studies. He has been really nice to me all the time. I have really bugged him a lot and I dedicate all my NMR studies to him. I also thank Dr. Richard Staples for his efforts towards the determination of the structure and absolute stereochemistry of some of my compounds. Additionally, I thank Ms. Chen Lijun and Dr. Jones for the excellent service they provided at Mass facility at Michigan State University. A special thank to my friend and my collaborator Carmin Burrell. It was really fun working with her and she was phenomenal in finishing up the collaborative project in a short span of time. Also, I would like to thank Jeanne Basnight, staff in Department of

Chemistry at Michigan State University, for her care for me. It was always refreshing to talk about many things including her grandson's funny stories. I would like to take this opportunity to thank Dr. G. B. Bhattacharjee, my advisor in my Masters, for his teachings and guidance. Also, I would like to thanks Dr. Chad Lewis, professor at Cornell University, for being patient and giving me ample time to finish my thesis and giving me an opportunity to work with him as a postdoctoral associate.

I believe that the lab environment is very important for a healthy PhD life. I was fortunate enough to be part of a wonderful group. All past group members were awesome, especially Dr. Zhenjie Lu. She taught me many things during my initial time in the group. Dr. Alex Predesus and Dr. Kostas Rampalakos were really awesome lab mates. Dr. Zhensheng Ding was always the funniest face of the group. Also, I would like to thank Dr. Gang Hu for his suggestions and ideas about research. In the current group, I interacted a lot with Dr. Li Huang and Dr. Dymtro Berbasov. We had so many fruitful and not so fruitful discussions about chemistry, life, and many other silly things. I shared some very good moments with Dr. Li Huang and found her an exceptional chemist and human being. Dr. Dymtro Berbasov is one of the few people who are immensely talented and very nice at the same time. I would like to thank him for teaching me driving and for the parties we had together. Also, I owe a special thanks to Victor Prutyanov for his valuable teachings about computational chemistry. He taught me the minute details of theoretical chemistry. I really had good time with other current group members like Hong Ren, Wenjun Zhao, Xin Zhang, Dr. Yong Guan and Dr. Nilanjana Majumdar in the group meeting and the post-group meeting parties. Hong Ren is one of the most hard working persons, I know. The smile of Wenjun Zhao is always soothing. I really like the simplicity of Xin Zhang. Dr. Yong Guan has been a very good lab mate and very friendly in nature. I am

really grateful to all of them for making a great atmosphere in the lab. It was also wonderful to work with Dr. Mathew Vetticatt, postdoctoral associate, in the Wulff group. I would like to thank him for his help in the KIE studies and his suggestions regarding calculations. I am also thankful to Yubai Zhou and Xiaopeng Yin, new Wulff group members, for their enthusiasm.

Dr. Munmun Mukherjee and Wynter E. Osminski certainly deserve special thanks. Wynter Osminski, a fun person to talk, has always been a quiet admirer of all my silly jokes. She has been a wonderful person to work with and to have long discussions. Especially, I would like to thank her for celebrating my last birthday in East Lansing and for her time during HRMS analysis. I wish her all the best for everything. In the end, I would like to thank Dr. Munmun Mukherjee for everything she did for me for last six years. We moved from Indiana University together and since then she has been always there for me. She is exceptional lab mate, a very close friend and of course, a wonderful human being. I used to have so many long discussions about chemistry and there are many inputs from her in my dissertation. In her defense talk, she mentioned that I helped her even if she did not need it. But, I can say very easily that she always helped me as I always needed her help. I was fortunate to work with Dr. María Pascual and Dr. Roberto Morán-Ramallal, postdoctoral research associates from Spain, during their brief visit. I learned a lot from them. I am also thankful to my undergraduate students Charlie Najt and Leslie Bateman for their help in my research and for the wonderful time we spent together.

I am also fortunate to have lot of friends outside the Wulff Group. Dr. Aman Kulshrestha has been a long time friend and has helped on numerous occasions. Its hard to mention every occasion, yet, she was there for every time I needed her. Specifically, she gave a lot of time during my postdoctoral search. So a big thank to her for all she did for me in last six years. Also, I am thankful to my other friends, Kumar Ashtekar, Carmin Burrell, Camille Watson, Ipek

Yapici, Tanya Berbasova, Atefeh Garzan, Roozbeh Yousefi, Arvind Jaganathan, Dr. Mercy Anyika, Dr. Rahman Saleem, Dr. Luis Mori-Quiroz, Dr. Luis Sanchez and Damith Parera for making my life pleasant by their presence. Specifically, Kumar Ashtekar helped me on many occasions, be it my car related issues or research problems. I am also thankful to him for patiently listening to my crap even if he was busy. I am sure that I am going to miss the big smile of Camille Watson. Her smile has always been the source of inspiration especially in tough times during PhD. Dr. Rahman Saleem and Dr. Luis-Mori Quiroz have also been very close friends. I would like to thank my other friends, Dr. Rupinder Sayal, Puneet Kumar, Dr. Paramita Mukherjee, Krishna Chotnerru, Dr. Kelly Telu, Dr. Abhishek Singh and Dr. Vijoya Sa for their time and help. Also, I would like to thank my friend, Sara Bano for her help and support. Additionally, I am lucky to have numerous good friends from India. Dr. Manish Singh, Abhishek Singh, Sapna Gupta, Aishwarya Kar, Soumitra Kar and Dr. Aditi Singhal, have been really nice and supportive throughout these years. Additionally, I am really thankful to my close friend, Dr. Navratna Vajpai, for helping me in every possible way whenever I needed. It would have been very difficult without his support.

Last but not the least, I would like to thank my family. It's their continuous support and encouragement that helped me to travel so far in life. I owe special thanks to my dad, Ramesh Chandra Gupta and my mom, Maya Gupta. It would not have been possible without them. My brother, Sunil Gupta and sister in law, Gudiya Gupta have been always there when it mattered most. I am also thankful to Nikhil Gupta, my younger brother, for being my best buddy and for listening to all my sorrows in difficult times. Finally, I would like to thank God for being so kind and providing a chance to interact with so many nice people during my journey so far.

TABLE OF CONTENTS

LIST OF TABLES	xvii
LIST OF FIGURES	xxii
LIST OF SCHEMES	xxxii
CHAPTER 1	
CHIRAL BORATE ANIONS IN ASYMMETRIC BRØNSTED ACID CATALYSI ASYMMETRIC COUNTERANION-DIRECTED CATALYSIS	SAND
1.1 Chiral anions in asymmetric catalysis and its different classes	1
1.2 Chiral borate anions in asymmetric Brønsted acid catalysis (Class I and II)	
1.2.1 An introduction to asymmetric Brønsted acid catalysis	
1.2.2 Chiral spiroborate anions in asymmetric Brønsted acid catalysis	
1.2.3 Chiral fused-spiroborate anions in asymmetric Brønsted acid catalysis	
1.2.4 Chiral boroxinate anions in asymmetric Brønsted acid catalysis: BOROX of	
1.3 Chiral borate anions in asymmetric counteranion-directed catalysis (Classes II, I	
V)	
1.5 Conclusions	
References	
CHAPTER 2 A NEW ARRAY OF BRØNSTED ACID CATALYSTS DERIVED FROM CHIRA ANIONS	
2.1 B3 or BOROX catalysts	55
2.1.1 Imines as the base: IMINO-BOROX catalyst	56
2.1.1.1 B(OPh) ₃ as the boron source	60
2.1.1.2 Other boron sources	64
2.1.1.3 Temperature studies of IMINO-BOROX catalyst 190a	
2.1.1.4 Multiplex diversity in the generation of BOROX catalyst	73
2.1.1.5 A comparison of X-ray structure and calculated structure of BORO	X catalyst 79
2.1.2 Amines as the base: AMINO-BOROX catalyst	83
2.1.3 Pyridines and quinolines as the base: PYRIDINO- and QUINOLINO-BOR	
2.1.4 Amides as the base: AMIDO-BOROX catalyst	
2.1.4 Affilides as the base: AVIIDO-BOROX catalyst	
2.1.6 Phosphine-oxides as the base: PHOSPHINOX-BOROX catalyst	
2.1.7 Amine-oxides as the base: AMINOX-BOROX catalyst	
2.1.8 Aldehydes as the base: ALDO-BOROX catalyst	

2.1.9 Diazo as the base: DIAZO-BOROX catalyst	118
2.1.10 Miscellaneous bases:	
2.2 Prediction of BOROX catalysts via computational chemistry	122
2.3 Possibility of bench-top stable BOROX catalyst	124
2.3.1 Substrate induced formation of the catalyst	125
2.3.2 Stability of the BOROX catalyst	126
2.3.2.1 Base incorporated in alcohol	126
2.3.2.2 Base incorporated in the boron source	130
2.4 B1 catalysts	
2.5 Conclusions	
Appendix (Experimental)	
References	167
CHAPTER 3 MECHANISTIC STUDY OF THE CATALYTIC CYCLE OF A BRØNSTED ACID	
CATALYZED REACTION UTILIZING AZIRIDINATION AS THE TEMPLATE	
3.1 Introduction	172
3.2 Characterization of the various stages of the catalytic cycle of a Brønsted acid catalyzed	
aziridination reaction	
3.2.1 Evidence for IMINO-BOROX complex	
3.2.2 Evidence for an AZIRIDINO-BOROX complex.	181
3.2.2.1 Monitoring the reaction by ¹ H NMR spectroscopy	181
3.2.2.2 Initial attempts towards the generation of AZIRIDINO-BOROX complex usi	ing
aziridine 114a	
3.2.2.3 First glimpse of an AZIRIDINO-BOROX complex using aziridine 1140	
3.2.2.4 Temperature studies of 2390 and recovery of aziridine 1140	198
3.2.2.5 Dependence of the formation of AZIRIDINO-BOROX 2390 on various	202
protocols	
3.2.2.6 Direct generation of AZIRIDINO-BOROX at room temperature	
3.2.3 Equilibrium studies	
3.2.4 Probing path II of the catalytic cycle	211
3.2.5 Termination of the catalytic cycle of the aziridination reaction	
3.2.6 Possibility of 'free' BOROX complex 23 -H	
3.3 Conclusions	
Appendix (Experimental)	
References	
References	203
CHAPTER 4	
CAN "FREE" PROTON BE THE COUNTER CATION OF CHIRAL BORATE ANIONS IN THE ABSENCE OFA BASE IN NON-AQUEOUS MEDIA	
4.1 Introduction	267

4.2 The case of the chiral spiroborates 20 -H and 21 -H	270
4.3 The case of the chiral fused-spiroborate 22-H	
4.4 The case of the achiral tetraphenoxyborate 262 -H	
4.5 Mode of catalysis: Lewis acid catalysis verses Brønsted acid catalysis	303
4.5.1 Asymmetric imino-aldol reaction and heteroatom Diels-Alder reactions catalyzed	
20- H	
4.5.2 Asymmetric Pictet-Spengler reaction catalyzed by 20 -H and 21 -H.	305
4.5.3 Asymmetric Diels-Alder reaction catalyzed by 22 -H.	
4.6 Conclusions	
Appendix (Experimental)	
References	327
CHAPTER 5	
AN EXAMINATION OF VARIOUS CHIRAL DIOLS AS LIGANDS FOR ASYMMETRI	\mathbf{C}
AZIRIDINATION REACTION AND THEIR IMPACT ON THE STRUCTURE OF THE BOROX CATALYST	
	226
5.1 Introduction	
5.2.1 Rational design of ISOVAPOL 197	
5.2.2 Preparation of ISOVAPOL 197	
5.2.3 Asymmetric aziridination reaction catalyzed by BOROX catalyst derived from	550
ISOVAPOL	338
5.2.4 NMR investigation of the BOROX catalysts 191a and 290a	
5.2.5 Calculated structure of BOROX catalyst 290a derived from ISOVAPOL (S)- 197	
5.2.6 X-Ray crystal structure of ISOVAPOL (S)-197 and VANOL (R)-59	
5.3 BINOL and its derivatives	
5.3.1 Preparation of BINOL derivatives	
5.3.2 Screening of BINOL and its derivatives on aziridination reaction	
5.3.3 NMR studies on substrate induced BOROX catalyst formation from BINOL and BINOL derivatives by imine 209h	
5.3.4 Calculated structure of BOROX catalyst 323a derived from 3,3'-Ph ₂ -BINOL 56a .	384
5.4 Generation of BOROX catalyst 329 with BINOL 55 using DMSO as the base	
5.5 TADDOL and its effect on the Wulff catalytic asymmetric aziridination reaction	
5.6 Conclusions	
Appendix (Experimental)	
References	
	157
CHAPTER 6	
DIRECT IMINO-BOROX CATALYSIS: ASYMMETRIC AZIRIDINATION, [3+2]	
CYCLOADDITION, UGI REACTION AND KINETIC RESOLUTION OF IMINES	
6.1 Catalytic asymmetric one-pot aziridination	
6.2 Racemic aziridination with various Lewis/Brønsted acids	460

6.3 Catalytic asymmetric [3+2] cycloaddition	461
6.4 Attempts towards catalytic asymmetric Ugi 3CR, Ugi-type 2CR and Ugi-type 3CR	
6.4.1 Attempts towards catalytic asymmetric Ugi -3CR	
6.4.2 Attempts towards catalytic asymmetric Ugi-type 2CR and Ugi-type 3CR	
6.5 Attempts towards catalytic asymmetric Passerini reaction	
6.6 Attempts towards kinetic resolution of imines	481
6.7 Conclusions	487
Appendix (Experimental)	489
References	540
CHAPTER 7	
INDIRECT IMINO-BOROX CATALYSIS: MULTICOMPONENT CATALYTIC	
ASYMMETRIC AZIRIDINATION (MCAZ)	
7.1 Introduction	545
7.2 The real need for a true multicomponent aziridination reaction	548
7.3 Can any or all the components of the proposed mcaz reaction generate the boroxinate catalyst?	551
7.4 Possible complications for the five-component catalyst assembly/aziridination	
7.5 Optimization and substrate scope of aryl substrates in the MCAZ reaction	
7.5.1 Different protocols for the multicomponent <i>cis</i> -aziridination (MCAZ)	
7.5.2 Catalyst loading, <i>N</i> -substituent and ligand screening	
7.5.3 Substrate scope for aromatic aldehydes	
7.6 Optimization and substrate scope of alkyl substrates in the MCAZ reaction	
7.6.1 Initial optimization using <i>n</i> -butanal and <i>n</i> -hexadecanal	
7.6.2 Substrate scope for aliphatic aldehydes	
7.7 Mechanistic study towards the five-component catalyst assembly/catalytic asymmetric aziridination	
7.7.1 Effects of the order of addition on the multicomponent <i>cis</i> -aziridination	
7.7.2 Mode of catalysis and sequence of the final steps in the five-component catalyst	
assembly/aziridination	
aziridination	
7.8.1 Using BH ₃ •Me ₂ S as the boron source	585
7.8.2 Using BH ₃ •THF as the boron source	
7.9 Initial attempts towards a multicomponent <i>trans</i> -aziridination reaction	591
7.10 Determination of absolute stereochemistry of <i>cis</i> - and <i>trans</i> -aziridines using circular dichroism	594
7.11 Gram scale catalysis and large scale synthesis	
7.12 Application of multicomponent aziridination reaction in organic synthesis	
7.13 Future applications: multicomponent intra-molecular aziridination reaction	
7.14 Conclusions	
Appendix (Experimental)	
References	682

CHAPTER 8	
SULFOX-BOROX CATALYSIS: CATALYTIC ASYMMETRIC EPOXIDATION OF	
ALDEHYDES	
8.1 Introduction	686
8.2 Previous approaches towards catalytic asymmetric synthesis of epoxides	687
8.3 Initial optimization of catalytic asymmetric epoxidation of aldehydes	693
8.4 Substrate scope	703
8.5 Determination of absolute stereochemistry of epoxides	707
8.5.1 <i>Via</i> optical rotation	707
8.5.2 <i>Via</i> X-ray structure	708
8.5.3 <i>Via</i> circular dichroism	708
8.6 Mechanistic study towards the identification of the actual catalyst in epoxidation reaction	n 713
8.6.1 Investigating non-covalent interactions	714
8.6.2 Screening of a different catalytic system	716
8.6.3 Catalytic asymmetric epoxidation reaction with and without dmso	
8.6.4 Temperature study	719
8.6.5 NMR study	720
8.6.6 Calculated structures of boroxinate catalysts from dmso and diazoacetamides	
8.6.7 Possible rationale for the observed stereochemical outcome of asymmetric epoxida	
reaction	
8.6.7.1 With DMSO	727
8.6.7.2 Without DMSO	728
8.6.7.3 Lewis acid catalysis	
8.6.8 Kinetic isotopic effect studies of asymmetric epoxidation reaction	
8.7 Gram scale catalysis and large scale synthesis	
8.8 Conclusions	
Appendix (Experimental)	
References	
CHAPTER 9	0110
IS IT REALLY A LEWIS ACID CATALYED ASYMMETRIC IMINO-ALDOL REACTI	ON?
- PROBING THE NATURE OF THE ACTIVE SITE VIA NMR SPECTROSCOPY,	. C
COMPUTATIONAL STUDIES AND SUBSTRATE AND CATALYST MODIFICATION	
9.1 Introduction	
9.2 Proposed catalytic cycle of imino-aldol reaction	
9.3 NMR experiments:	
9.4 DFT calculations	
9.4.1 Catalytic cycle I verses catalytic cycle II	
9.4.2 Various transition states for catalytic cycle II	
9.5 Catalyst modifications	
9.6 Imine modifications	
9.7 Examination of the catalytic cycle III for (S)-VAPOL 58	
9 8 Case of BINOL derivative 459	816

9.9 Conclusions	828
Appendix (Experimental)	
References	~ ~

LIST OF TABLES

Table 1.1 Different classes of catalysis involving chiral counter-anions	2
Table 1.2 The addition of N-methyl indole 145 to an iminium ion 146	31
Table 1.3 The ring-opening of an aziridinium ion 150 with benzylamine 151	32
Table 1.4 Asymmetric aziridination reaction with spiroborate ion-pair 147e	34
Table 1.5 Asymmetric cyclopropanation reaction with spiroborate ion-pair 147e	35
Table 1.6 Asymmetric cyclopropanation with spiroborate ion-pair 166	35
Table 1.7 Asymmetric hydrogenation with spiroborate ion-pair 147d	38
Table 2.1 Asymmetric aziridination with different boron sources and (S)-VAPOL 58 .	64
Table 2.2 NMR Analysis of mixtures of (S)-VAPOL 58, imine 111a and various bor	
Table 2.3 Catalytic asymmetric aziridination with different alcohols and (S)-VAPOL	74
Table 2.4 Catalytic asymmetric aziridination with different ligands	75
Table 2.5 Catalytic asymmetric aziridination with imines from different protecting gro	oups 77
Table 2.6 Comparison of distances in computed structure 190a using different levels	of theories
	82
Table 2.7 NMR Analysis of a mixture of (S)-VAPOL B(OPh) ₂ and amines 126 as has	ses 83

Table 2	.8 Comparison of distances in computed structure 215c using different levels of theo	
Table 2	2.9 NMR Analysis of a mixture of (S)-VAPOL, B(OPh) ₃ and pyridine derivati pyrrole, imidazole and quinoline derivatives as bases	
Table 2	.10 NMR Analysis of a mixture of (S)-VAPOL, B(OPh) ₃ and sulfoxides as bases	99
Table 2	.11 NMR Analysis of a mixture of (S)-VAPOL, B(OPh) ₃ and phosphine-oxides as ba	
Table 2	.12 NMR Analysis of a mixture of (S)-VAPOL, B(OPh) ₃ and amine-oxides as bases	112
Table 2	.13 Crystal data and structure refinement for BOROX complex 217b:	164
Table 2	.14 Hydrogen bonds [Å and °]	165
Table 3	.1 Monitoring aziridination reaction by ¹ H NMR spectroscopy	182
Table 3	.2 Generation of AZIRIDINO-BOROX 2390 with different boron sources	204
Table 5	.1 Screening of ISOVAPOL 197 with different <i>N</i> -protected imines	339
Table 5	.2 AZ reaction with imines 78 using (S)-ISOVAPOL and various solvents	341
Table 5	.3 AZ reaction with imines 78 using (S)-ISOVAPOL AND (R)-VANOL	342
Table 5	.4 AZ reaction with the catalysts derived from various ligands (Chen's work)	360
Table 5	.5 Asymmetric aziridination with the catalysts derived from various BINOL derivat	ives 364

Table 5.6 Aziridination with different <i>N</i> -protected Imines using (<i>R</i>)-55 and (<i>R</i>)-56a	_
Table 6.1 One-pot aziridination reaction of <i>N</i> -DAM imines 110 using procedure II	450
Table 6.2 Asymmetric Aziridination with Aryl DAM imines 110	455
Table 6.3 Asymmetric Aziridination with Alkyl DAM imines 110	458
Table 6.4 Effect of various additives on the aziridination reaction	459
Table 6.5 Racemic Aziridination with various Lewis/Brønsted acids	460
Table 6.6 Initial optimization of the [3+2] cycloaddition reaction	469
Table 6.7 Preliminary results towards the Ugi-3CR reaction	475
Table 6.8 Preliminary results towards the Ugi-2CR and Ugi-3CR	477
Table 6.9 Matched and mis-matched aziridinations of the phenylneopentyl imine (S)-3	5 78 482
Table 6.10 Kinetic resolution of phenylneopentyl imine <i>rac-</i> 378 furnishing amine (S)-	384 485
Table 6.11 Kinetic resolution of phenylneopentyl imine <i>rac-</i> 378 furnishing amine (S)-	385 486
Table 7.1 Protocol dependence of the multicomponent aziridination	558
Table 7.2 Catalyst Loading, N-substituent and Ligand Screening	560
Table 7.3 Multicomponent aziridination of aryl and hetero-aryl aldehydes	562
Table 7.4 Optimization of the multicomponent aziridination reaction of <i>n</i> -butanal	566

Table 7.5 Optimization of the multicomponent aziridination reaction of <i>n</i> -hexadecanal	127p 568
Table 7.6 Multicomponent aziridination of alkyl aldehydes	570
Table 7.7 Effect of order of addition on the multi-component aziridination reaction	573
Table 7.8 Multicomponent aziridination with a deficiency of benzaldehyde	579
Table 7.9 Aziridination reaction of pre-formed imine 78a with added bases	582
Table 7.10 Multicomponent aziridination using BH ₃ •Me ₂ S as the boron source	587
Table 7.11 Multicomponent aziridination using BH ₃ •THF as the boron source	590
Table 7.12 Multicomponent trans-aziridination of aldehydes	592
Table 8.1 Initial screening of various BOROX catalysts for asymmetric epoxidation re	action 694
Table 8.2 Initial screening of various diazoacetamides for asymmetric epoxidation	696
Table 8.3 Screening of diazoacetamides at different concentrations, solvents and temperature	
Table 8.4 Varying the equivalents of aldehydes and boron sources and sequence of ever	ents 700
Table 8.5 Screening of the one-pot procedure for asymmetric epoxidation	702
Table 8.6 Catalytic asymmetric epoxidation of aryl and alkyl aldehydes	704
Table 8.7 N-H verses N-Me and O in the catalytic asymmetric epoxidation reaction	715
Table 8.8 Catalytic asymmetric epoxidation with and without SULFOX-BOROX catal	vst 717

Table 8.9	Screening of various temperatures for asymmetric epoxidation	719
Table 9.1	Imino-aldol reaction between imine 457/458 with ketene acetal 460 using var ligands.	
Table 9.2	Imino-aldol reaction between imine 457a with keten acetal 460 using various liga	

LIST OF FIGURES

Figure 1.1 Chiral counter-anions used in asymmetric catalysis (blue: asymmetric Brønsted acid catalysis; red: asymmetric counteranion-directed catalysis). For interpretation of the references to color in this and all other figures, the reader is referred to the electronic version of this dissertation.
Figure 1.2 Chiral borate anions used in (A) asymmetric Brønsted acid catalysis (B) asymmetric counteranion-directed catalysis
Figure 1.3 A list of various (A) chiral phosphoric acids, phosphorodiamidic acid, phosphoramides, imidodiphosphoric acids, disulfonamides, carboxylic and sulfonic acids. (B) chiral thioureas and chiral diols
Figure 1.4 Chiral borate ion-pairs used for resolution of racemic compounds
Figure 1.5 Chiral borate ion-pairs used as chiral NMR shift reagents
Figure 1.6 Chiral borate ion-pairs used as chiral ligands
Figure 1.7 Chiral borate anions existing in nature
Figure 2.1 Brønsted acid catalysts derived from chiral borate anions and imines as the base 55
Figure 2.2 Generation of the BOROX catalysts 190a and 191a
Figure 2.3 Imine induced boroxinate catalyst formation using commercial B(OPh) ₃
Figure 2.4 Imine induced boroxinate catalyst formation using other boron sources
Figure 2.5 Generation of a BOROX catalyst from (A) trialkyl/triaryl borates 187 (B) boroxines 191 (C) B(OH) ₃ 193 (D) BH ₃ •Me ₂ S complex 192a

Figure 2.6	¹ H NMR spectra of the bay region of 190a in CDCl ₃
Figure 2.7	Imine induced boroxinate catalyst formation (See Table 2.5 for structures of different imines used)
Figure 2.8	Calculated structure of IMINO-BOROX catalyst 190a using Gaussian '03
Figure 2.9	Amine induced boroxinate catalyst formation
Figure 2.1	O Calculated structure of AMINO-BOROX catalyst 215c (derived from MEDAM amine 126c) using Gaussian '03
Figure 2.11	1 Pyridine induced boroxinate catalyst formation
Figure 2.12	2 Pyridine and quinoline derivatives in the induction of boroxinate catalyst formation
Figure 2.1	3 Solid state structure of the LUTIDINO-BOROX 217b visualized by the Mercury Program
Figure 2.14	4 Amide induced boroxinate catalyst formation
Figure 2.15	5 Sulfoxide induced boroxinate catalyst formation
Figure 2.10	6 Calculated structure of SULFOX-BOROX catalysts 222a and 222b using Gaussian '03
Figure 2.1'	7 Phosphine-oxide induced boroxinate catalyst formation
Figure 2.18	8 Amine-oxide induced boroxinate catalyst formation
Figure 2.19	9 Aldehyde induced boroxinate catalyst formation

Figure 2.20	Diazo induced boroxinate catalyst formation.	. 119
Figure 2.21	Miscellaneous bases induced boroxinate catalyst formation	. 121
Figure 2.22	2 Calculated structures of boroxinates (A) 228b (base = PhCHO 127a), (B) 2 (base = pyrrole 216d), (C) 222h (base = Me ₂ SO ₂ 221h), (D) 222i (base (CH ₂) ₄ SO ₂ 221i), (E) 224c (base = (BuO) ₃ PO 223c) and (F) 233b (base = 232b) using Gaussian '03	se = THF
Figure 2.23	Bases (with pre-installed alcohols) induced boroxinate catalyst formation	. 126
Figure 2.24	Aniline induced boroxinate catalyst formation	. 129
Figure 2.25	Attempt to generate dimer catalyst 238.	. 131
Figure 2.26	The Schlenk flask was prepared from a single-necked 25 mL pear-shaped flask had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve	
Figure 2.27	Natural charges on the oxygen atoms of the boroxinate anion	. 163
Figure 3.1	Chemical shift of the bay proton of (S)-VAPOL 58 and its different derivatives	. 177
Figure 3.2	Imine induced boroxinate catalyst formation	. 179
Figure 3.3	H NMR spectra in CDCl ₃ with Ph ₃ CH as internal standard	. 183
Figure 3.4	Aziridine 114a induced boroxinate catalyst formation	. 188
Figure 3.5	Aziridine 114o induced boroxinate catalyst formation	. 189
Figure 3.6	Calculated structure of AZIRIDINO-BOROX complex 2390 using Gaussian '03	. 195
Figure 3.7	¹ H NMR spectra of the bay region of boroxinate 2390 in d ₈ -toluene	. 199

Figure 3.8 Treatment	of 2390 with water			201
Figure 3.9 Direct ger	neration of aziridine-boro	xinate complex at roo	om temperature	205
Figure 3.10 Examina	tion of alkyl aziridines fo	or boroxinate formation	on	208
Figure 3.11 Aziridine	e induced boroxinate form	nation and its subsequ	uent dilution studi	es 211
Figure 3.12 Aziridine	e induced boroxinate form	nation and its behavio	or with excess azir	ridine 214
various	uilibrium between boroz borate species. (B) onding to Figure 3.12	Plot corresponding	to Figure 3.11	(C) Plot
Figure 3.14 Probing	Path II of the catalytic cy	cle (part i)		219
Figure 3.15 Probing	Path II of the catalytic cy	cle (part ii)		221
Figure 3.16 Probing	path X for the generation	of the adduct 230		225
Figure 3.17 Probing	path Y for the generation	of 230		227
BOROX structure	ulated structure of BORG catalyst 23-Ha resulting of the neutral BOROX	g from protonation catalyst 23 -Hb result	of 23 on O1. (C) ing from protonat	Calculated ion of 23 on
Figure 3.19 Design o	f the experiment to obser	ve the free neutral Bo	OROX 23- H	231
	BOROX 23 -H (B) Spirob		_	
	R chemical shifts of Bod chiral borate anions	=		

Figure 4	3 Calculated structures of 20-H, 72 and 72' obtained using Gaussian '03 at B3LYP 31g* level of theory	
Figure 4.4	4 NMR Analysis of a mixture of (R)-55 with B(OPh) ₃ and imine 78a or DMAP 2	77
Figure 4.	5 Bronsted acid 74a and Brønsted acid assisted Lewis acid 71a or 73a (imine = 78	-
Figure 4.	6 Schematic drawing of imine (S)-139a, Yamamoto's structure 248 and Gang Hu structure 249	
Figure 4.	7 Calculated structures of 251 and 251 -H obtained using Gaussian '03 at B3LYP 31g* level of theory	
Figure 4.8	8 Calculated structures of 22, 91 and 91' obtained using Gaussian '03 at B3LYP/6-31 level of theory	_
Figure 4.9	9 NMR Analysis of a mixture of 89 with various boron sources and imine 78a 2	91
Figure 4.1	10 Brønsted acid 92 and Brønsted acid assisted Lewis acid 90	95
Figure 4.	11 (A) tetraphenoxyborate anion 262 (B) proposed structure for 262-H (C) comm tetraphenoxyborates 244 (D) piperdine-B(OPh) ₃ 244d' (Lewis acid-Lewis ba adduct) (E) proposed structure for [imine-H] ⁺ [B(OPh) ₄] ⁻ complex 263/264 2	ise
Figure 4.	12 Calculated structures of 262 and 262-H obtained using Gaussian '03 at B3LYP 31g* level of theory	
Figure 4.	13 NMR Analysis of a mixture of PhOH 194a with B(OPh) ₃ 187a and DMAP 210	6 c . 99
Figure 4.1	14 Solid state structure of the tetraphenoxyborate 244e	02

Figure 4.15 (A) Asymmetric imino-aldol reaction of imine 78a catalyzed by 20-H (B) Diagrammatic representation of TS-263 and TS-264 for BA and BLA type mechanism respectively
Figure 4.16 (A) Asymmetric Pictet-Spengler reaction of nitrone 83a catalyzed by 20 -H (B) Division of layers for the ONIOM(B3LYP/6-31g**:AM1) level of calculations (C) 3D structures and relative energies of TS- <i>S</i> - 265 and TS- <i>R</i> - 265 for BA type mechanism. The relative energies given in italics are the energies computed from the full DFT B3LYP/6-31g* (D) 3D structures and relative energies of TS- <i>S</i> - 266 and TS- <i>R</i> - 266 for BLA type mechanism.
Figure 4.17 (A) Asymmetric Diels-alder reaction of 94a catalyzed by 22-H (B) Diagrammatic representation of TS-267 and TS-268 for BA and BLA type mechanism respectively
Figure 5.1 (A) Different chiral diols from vaulted biaryl ligands. (B) Different BOROX catalysts derived from VAPOL and VANOL. (C) Diagrammatic representation of X-ray structure of the BOROX catalyst 190a
Figure 5.2 (A) Possible orientation of the imine over the boroxinate core. (B) Rational design of the new vaulted ligand ISOVAPOL 197
Figure 5.3 Treatment of (S)- 59 and (S)- 197 with B(OPh) ₃ and imine 111a
Figure 5.4 Calculated structure of IMINO-BOROX catalyst 290a using Gaussian '03
Figure 5.5 (A) ORTEP drawing of X-ray crystal structure of (S)-197 and ORTEP drawing of crystal packing of (S)-197 along b-axis. (B) ORTEP drawing of X-ray crystal structure of all three conformations (in the unit cell) of (R)-59 and ORTEP drawing of crystal packing of (R)-59 along b-axis.
Figure 5.6 (A) Vaulted biaryl ligands (B) Linear biaryl ligands (C) Location of major and minor groove in vaulted and linear biaryl ligands
Figure 5.7 Treatment of (R) -55 and (R) -56a with commercial B(OPh) ₃ and imine 111h 370

Figure 5.8 Treatment of (R) -56e and (R) -56i with commercial B(OPh) ₃ and imine 111h 376
Figure 5.9 Treatment of (R) -56f and (R) -56j with commercial $B(OPh)_3$ and imine 111h 379
Figure 5.10 Treatment of (R) -53 and commercial B(OPh) ₃ and imine 111h
Figure 5.11 Calculated structure of IMINO-BOROX catalyst 323a using Gaussian '03 385
Figure 5.12 Treatment of BINOL (<i>R</i>)-55 and DMSO with different boron sources
Figure 5.13 Treatment of (R,R) -61a and commercial B(OPh) ₃ with imine 111h
Figure 7.1 (A) Catalytic asymmetric aziridination of imines. (B) three-component catalytic asymmetric aziridination. (C) five-component catalyst assembly/catalytic asymmetric aziridination. 546
Figure 7.2 (A) Biologically important alkyl aziridines. 387: antimicrobial activity against Grampositive bacteria. 388 and 389: cytotoxic and antimicrobial activity. 390: inhibitor of arachidonate epoxygenase. (B) Sphinganine family (391-394) of biologically important compounds resulting from the ring-opening from alkyl aziridines 550
Figure 7.3 Chemoselectivity in the five-component catalyst assembly/catalytic asymmetric aziridination
Figure 7.4 Products from the reaction with procedure VIII in Table 7.7
Figure 7.5 Time course of events in the five-component catalyst assembly/aziridination reaction. (A) Time zero. (B) Assembly of AMINO-BOROX 215a/215b. (C) Start of formation of imine 78/111 (78a/111a when R = Ph) in presence of AMINO-BOROX 215a/215b. (D) Formation of IMINO-BOROX catalyst 188/190 (188a/190a when R = Ph). (E) Catalytic asymmetric aziridination
Figure 7.6 Determination of absolute stereochemistry of <i>cis</i> -aziridines 124 and 130. (A) Observed ECCD amplitudes for chiral <i>cis</i> -aziridines. All measurements were

	performed with 1µM tweezer in hexanes at 0 °C. (B) Proposed mnemoni explaining the signs of the observed ECCD signals
(A	etermination of absolute stereochemistry of <i>trans</i> -aziridines 125 , 125 ′, 129 and 400 A) Observed ECCD amplitudes for chiral <i>trans</i> -aziridines. All measurements wer erformed with 1µM tweezer in hexanes at 0 °C. (B) Proposed mnemoni xplaining the signs of the observed ECCD signals
Figure 8.1 OF	RTEP drawing of <i>cis</i> -epoxides (A) (<i>S</i> , <i>S</i>)- 135g and (B) (<i>S</i> , <i>S</i>)- 435a
Figure 8.2 De	etermination of absolute stereochemistry of <i>cis</i> -epoxides 135 , 426a and 436a 70
Figure 8.3 De	etermination of absolute stereochemistry of <i>trans</i> -epoxide (<i>R</i> , <i>S</i>)- 135g
Figure 8.4 DN	MSO 221a and diazoacetamide 128a induced boroxinate formation
_	Calculated structure of SULFOX-BOROX catalyst 432 , DIAZO-BOROX catalyst 48a and 448'a using Gaussian '03
0	Proposed models (I and II) for the mechanisms involving (S)-SULFOX-BORO2 atalyst (derived from (S)-VANOL) leading to (A) cis-epoxide (B) trans-epoxide 72
_	Proposed model III for the mechanism involving (S)-DIAZO-BOROX catalys derived from (S)-VANOL) leading to both <i>cis</i> -epoxide and <i>trans</i> -epoxide
	roposed model IV for the mechanism involving chiral Lewis catalyst (derived from S)-VANOL) leading to both <i>cis</i> -epoxide and <i>trans</i> -epoxide
Figure 9.1 Lig	gands and imines used in the imino-aldol reaction
	ivision of layers for the ONIOM calculations ONIOM (B3LYP/LanL2DZ:HF/ FO-3G) and ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level

Figure 9.3 Calculated 3D structures and relative energies of the imine-catalyst complexes 466a and 470a at ONIOM(B3LYP/LanL2DZ:HF/STO-3G) level and ONIOM (BHandHLYP/DGDZVP:HF/STO-3G) level 800
Figure 9.4 Free Energy diagram for the transition states TS0-477-Si and TS1-478-Si at ONIOM (B3LYP/LanL2DZ:HF/STO-3G) level. Energy in parenthesis is enthalpy
Figure 9.5 Calculated 3D structures of the TS0-477-Si and TS1-478-Si at ONIOM (B3LYP /LanL2DZ:HF/STO-3G) level
Figure 9.6 (A) Different conformations and orientations of silyl ketene acetal 460 used for calculations. (B) Calculated 3D structures and relative free energies of TS1- 478 to TS4- 481 at ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level
Figure 9.7 Various ligands used for imino-aldol reaction. 809
Figure 9.8 Calculated 3D structures and relative free energies of (A) TS- 483 - <i>Si</i> and (B) TS- 483 - <i>Re</i> at ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level. 811
Figure 9.9 Free Energy diagram of transition states for imines 457a and 458a at ONIOM (BHandHLYP/DGDZVP:HF/STO-3G) level for catalytic cycle II. Energy in parenthesis is enthalpy
Figure 9.10 Calculated 3D structures and relative free energies of TS- 484 - <i>Si</i> and TS- 484 - <i>Re</i> at ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level
Figure 9.11 Division of layers for the ONIOM calculations ONIOM(B3LYP/LanL2DZ: HF/STO-3G) and ONIOM(B3LYP/DGDZVP:B3LYP/LanL2MB) level
Figure 9.12 (A) Different conformations and orientations of silyl ketene acetal 460 used for calculations. (B) Calculated 3D structures and relative free energies of TS1- 485 to TS4- 488 at ONIOM(B3LYP/LanL2DZ:HF/STO-3G) level. 820
Figure 9.13 Calculated relative free energies of TS1- 485 - <i>Si</i> , TS1- 485 - <i>Re</i> , TS3- 487 - <i>Si</i> and TS3- 487 - <i>Re</i> , at ONIOM(B3LYP/DGDZVP: B3LYP/LanL2MB) level

Figure 9.14	calculations. (B) Calc	mations and orientations of culated 3D structures and relast ASSE STO-3	ative free energies of	f TS1 -489 to
Figure 9.15	TS3- 491 - <i>Re</i> , at Calculated 3D structu	ve free energies of TS1-489- DNIOM(B3LYP/DGDZVP:B res and relative free energies GDZVP:B3LYP/LanL2MB)	3LYP/LanL2MB) s of TS1- 489 -Si and	level. (B) TS3- 491 - <i>Re</i>

LIST OF SCHEMES

Scheme 1.1 Brønsted acid catalysis verses asymmetric counteranion-directed catalysis	14
Scheme 1.2 Different proposals about catalytic activity of 20 -H (LB = Lewis base)	16
Scheme 1.3 Asymmetric imino-aldol reaction catalyzed by 20-H	17
Scheme 1.4 Asymmetric heteroatom Diels-Alder reaction catalyzed by 20-H or 74	18
Scheme 1.5 Asymmetric Pictet-Spengler reaction catalyzed by 20-H or 21-H	19
Scheme 1.6 Asymmetric aziridination reaction catalyzed by (<i>R</i> , <i>R</i>)-74a	19
Scheme 1.7 Proposed catalytic activity of 22-H	20
Scheme 1.8 Asymmetric Diels-Alder reaction of dienes and enals catalyzed by (A) 22-H 100	
Scheme 1.9 Formal [4+3] cycloaddition catalyzed by 22-H	22
Scheme 1.10 Asymmetric Diels-Alder reaction of dienes and alkynals catalyzed by 22-H	or 98 22
Scheme 1.11 Asymmetric aziridination reaction catalyzed by (R)-92a	23
Scheme 1.12 Generation of BOROX catalyst 104 and 105	24
Scheme 1.13 The Wulff asymmetric <i>cis</i> -aziridination reaction	25
Scheme 1.14 The Wulff asymmetric <i>trans</i> -aziridination reaction	26
Scheme 1.15 Asymmetric multicomponent aziridination reaction catalyzed by 104a or 10	0 5a 27

Scheme 1.16 Asymmetric aza Diels-Alder reaction of imine and Danishefsky diene 80	28
Scheme 1.17 Asymmetric aza-Cope rearrangement catalyzed by 105a	28
Scheme 1.18 Asymmetric [3+2] cycloaddition reaction catalyzed by BOROX catalyst 104a	a 29
Scheme 1.19 Asymmetric epoxidation reaction catalyzed by BOROX catalyst 105d	29
Scheme 1.20 Catalytic asymmetric reduction of quinolines	29
Scheme 1.21 Double stereodifferentiation in catalytic asymmetric aziridination	30
Scheme 1.22 The ring-opening of an aziridinium ion 150 and 154 with catalysts 147d and	153 33
Scheme 1.23 Asymmetric cyclopropanation reaction with spiroborate ion-pair 166b	37
Scheme 1.24 Chiral reaction medium made of spiroborate ion-pair 174	39
Scheme 2.1 The Wulff asymmetric <i>cis</i> -aziridination reaction with benzhydryl imines 78	57
Scheme 2.2 The Wulff asymmetric <i>cis</i> -aziridination reaction with benzhydryl imines 78	125
Scheme 2.3 Boroxinate formation using BH ₃ •Et ₂ NPh 192d	131
Scheme 3.1 Catalytic cycle of a Brønsted acid catalyzed reaction	173
Scheme 3.2 Brønsted acid catalyzed aziridination reaction	174
Scheme 3.3 Catalytic cycle of a Brønsted acid catalyzed aziridination reaction	176
Scheme 3.4 Different procedures used to perform and monitor the aziridination reaction	181

Scheme 3.5 Termination of the catalytic cycle and the aziridination reaction	224
Scheme 4.1 Asymmetric reactions reported to be catalyzed by 20-H	271
Scheme 4.2 Proposed catalytic activity of 20-H	273
Scheme 4.3 Common borate esters of catechol 250.	282
Scheme 4.4 Asymmetric reactions reported to be catalyzed by 22-H	286
Scheme 4.5 Proposed catalytic activity of 22-H	287
Scheme 4.6 Preparation of BINOL derivative 89	290
Scheme 4.7 Current understanding of the catalytic activity of 20-H	309
Scheme 4.8 Current understanding of the catalytic activity of 22-H	311
Scheme 5.1 (A) Preparation of the monomer 272 of VAPOL. (B) Proposed mechanism	336
Scheme 5.2 Preparation of the ISOVAPOL monomer 285	338
Scheme 5.3 Preparation of the <i>rac-</i> 197 and <i>(S)-</i> ISOVAPOL <i>(S)-</i> 197	338
Scheme 5.4 Common borate esters of (A) BINOL 55 and (B) BINOL derivatives 55 and	89 355
Scheme 5.5 BOROX catalysts from (A) (S)-VAPOL 58 and (B) (R)-BINOL 55	358
Scheme 5.6 Preparation of dimethoxy-BINOL 258	361
Scheme 5.7 Preparation of BINOL derivatives 56d (R = Br) and 56e (R = I)	361
Scheme 5.8 Preparation of BINOL derivative (A) 56a (R = Ph) and (B) 56f (R = TRIP).	362

Scheme 5.9	Preparation of BINOL derivative 56i (R = 9-phenanthryl)	363
Scheme 5.1	0 (A) One-pot aziridination with imine 78a using (<i>R</i>)- 55 and (<i>R</i>)- 56a as the light (B) aziridination with B1 catalysts.	
Scheme 5.1	1 NMR study of the BOROX catalysts using (R)-56 as the ligand	375
Scheme 5.12	2 Aziridination with imine 78a using (<i>R</i> , <i>R</i>)- 61a as the ligand.	389
Scheme 6.1	Catalytic asymmetric aziridination of imine 78a using procedure II	450
Scheme 6.2	2 Catalytic asymmetric aziridination of imine 110g (R = 4-Br-C ₆ H ₄) usin procedure II' (B) procedure IV (C) procedure V' (D) procedure V	- ' '
Scheme 6	3 (A) Reaction between EDA and different imines (B) Reaction be diazoacetamide and different imines (C) Possible products from the re between EDA and conjugated imine 335	action
Scheme 6.4	(A) Reaction between EDA and unsubstituted acroleins (B) Reaction between and β -substituted acroleins (C) Reaction between di-substituted aryldiazon and β -disubstituted acroleins	icetate
Scheme 6.5	(A) Reaction between 348 or EDA and α -substituted acroleins 347 (B) Re between EDA and α,β -substituted acroleins 352 (C) Reaction between substituted aryldiazoacetate and α -substituted acroleins 347	en di-
Scheme 6.6	[3+2] cycloaddition reaction between EDA and imine 3280	468
Scheme 6.7	Multicomponent [3+2] cycloaddition reaction.	470
Scheme 6.8	Attempts towards the (A) hydrolysis of adduct 360a (B) reduction of adduct	
Scheme 6.9	(X) Ugi-4CR reaction (Y) Proposed mechanism	472

Scheme 6.10 Proposed Ugi-3CR	473
Scheme 6.11 Proposed Ugi-type 2CR	477
Scheme 6.12 Catalytic Ugi-type three-component reaction	478
Scheme 6.13 (X) Passerini reaction (Y) Attempts towards the asymmetric Passerini reaction	tion. 480
Scheme 6.14 (A) Proposed Kinetic resolution of imine <i>rac-</i> 378. (B) Equation for the ca	lculation
of s factor	483
Scheme 7.1 (A) Self-condensation of imine 1100 during aziridination. (B) Self conden imine 111t during imine formation. (C) ¹ H NMR spectra of the formation 111t at t = 4 h and 21 h	of imine
Scheme 7.2 Generation of IMINO-BOROX catalysts 190a and 188a	552
Scheme 7.3 Generation of AMINO-BOROX catalysts 215a and 215b	553
Scheme 7.4 (A) Alkylation of the VAPOL by EDA. (B) Common products obtained reaction between benzaldehyde and EDA.	
Scheme 7.5 (A) Preparation of Imine 1111 (B) Synthesis of aziridine 1141 via two-step	
Scheme 7.6 An equilibrium between (A) AMINO-BOROX catalyst 215a/b and (B) BOROX catalyst 188/190	
Scheme 7.7 Various protocols for multicomponent aziridination reaction using BH ₃ •Me ₂	₂ S 586
Scheme 7.8 Various protocols for multicomponent aziridination reaction using BH ₃ •THI	F 589
Scheme 7.9 Gram scale asymmetric catalysis	599

Scheme 7.1	10 Large scale synthesis of MEDAM amine 126c	601
Scheme 7.1	11 Application of MCAZ reaction in organic synthesis	602
Scheme 7.1	12 Proposed intramolecular aziridination reaction via (A) Traditional aziridination	on (B)
	Multicomponent aziridination reaction	604
Scheme 8.1	Different approaches towards catalytic asymmetric epoxidation	688
Scheme 8.2	2 Catalytic asymmetric Darzens reaction	689
Scheme 8.3	3 Catalytic asymmetric epoxidation using sulfur ylides	689
Scheme 8.4	4 Catalytic asymmetric epoxidation using diazoacetamides	691
Scheme 8.	5 B(OPh) ₃ catalyzed reaction between benzaldehyde and (A) diazoester 8 diazoacetamide 123a (C) diazoacetamides 128a and 128c	
Scheme 8.0	6 Tri-substitute epoxidation reaction between benzaldehyde and (A) diazoacet 439a (B) diazoacetamide 439b	
Scheme 8.7	7 Comparison of the optical rotation values of epoxide (<i>S</i> , <i>S</i>)- 426a obtained from the literature	
Scheme 8.8	B Epoxidation reaction with catalyst 432 and 447	716
Scheme 8.9	O (A) General mechanism of the epoxidation reaction of aldehydes and diazoacet des catalyzed by our catalyst. (B) Equation used for the calculation of the ¹³ C values.	KIE
Scheme 8.1	10 Gram scale asymmetric catalysis	734
Scheme 8.1	11 Large scale synthesis of diazo compounds 454 and 128a	735

Scheme 9.1	Proposed catalytic cycles of imino-aldol reaction using (S)-VAPOL 58 (A, B, C)
	and (R)-6,6'-Br ₂ -BINOL 459 (D) as the ligands. (A) Catalytic cycle I (B) Catalytic
	cycle II (C) Catalytic cycle III (D) Catalytic cycle III'
Scheme 9.2	Proposed catalytic cycles of imino-aldol reaction using (R) -6,6'-Br ₂ -BINOL 459 as
Seneme 7.2	the ligand. (A) Catalytic cycle II' (B) Catalytic Cycle III'

CHAPTER 1

CHIRAL BORATE ANIONS IN ASYMMETRIC BRØNSTED ACID CATALYSIS AND ASYMMETRIC COUNTERANION-DIRECTED CATALYSIS

You should never be ashamed of any reaction you did. A publication is like a movie. A classic movie is not understood completely the first time.

-William D. Wulff

1.1 Chiral anions in asymmetric catalysis and its different classes

Chiral compounds have always an immense impact on every aspect of chemistry. In organic synthesis, there are primarily three ways of synthesizing chiral compounds: chiral pool derived synthesis; chiral auxiliary mediated synthesis and asymmetric catalysis. Nowadays, there are many different kinds of asymmetric catalysis using transition-metal complexes (organometallic catalysis), organic acids or bases/nucleophiles ("organocatalysis"), and enzymes (biocatalysis). le Chiral induction is typically achieved through strongly directional chiral catalyst-substrate interactions. Mostly, these interactions are operating via covalent bonds or coordination bonds. They could also be the result of simple Lewis acid/base interactions. However, many reactions might proceed via charged intermediates. In these cases, chirality induction can be achieved either by employing the salt of a chiral cation and an achiral anion or vice versa. The former type of catalysis has been used in organic synthesis for a very long time in the form of phase transfer catalysis.² The latter type, which involves the usage of chiral counter-anions, has emerged more recently. Over the past few years, there has been amazing advance in the field of asymmetric catalysis mediated by chiral counter-anions.³

Asymmetric catalysis mediated by chiral counter-anions can be classified into five different classes based on the counter-cation and mode of catalysis (Table 1.1). The very first class (I) belongs to the field of asymmetric Brønsted acid catalysis (sometimes called as asymmetric Hydrogen-bond catalysis). The second class (II) comprises chiral counter-anions along with protonated achiral or chiral bases (mostly amine) as the cation. This class can either be included in asymmetric Brønsted acid catalysis or asymmetric counteranion-directed catalysis (sometimes called as asymmetric ion-pairing catalysis or anion binding catalysis) depending upon their catalytic function (see section 1.2). The remaining three classes can be brought under the asymmetric counteranion-directed catalysis. In class III, the ion-pair catalysts consist of chiral anions with achiral or chiral bases with no protons (for instance: tetra-alkylammonium ion). The remaining two classes (IV and V) consist of chiral counter-anions with a) metal only or b) metal with achiral or chiral ligands. The first example of chiral counteranions utilized in transition metal catalysis and organocatalysis were reported in 2000 and 2006 respectively.

Table 1.1 Different classes of catalysis involving chiral counter-anions^a

Class	Anion	Counter Cation	Catalyst	Mode of Catalysis
I	X*-	H^{+}	Brønsted acid	Brønsted acid catalysis
II	X*-	$[B1-H]^{+}$ or $[B1*-H]^{+}$	Brønsted acid or Ion-pair	Brønsted acid catalysis and/or ACDC
III	X*-	$[B2]^{+}$ or $[B2^{*}]^{+}$	Ion-pair	ACDC
IV	X*-	M^{+}	Ion-pair	ACDC in metal catalysis
V	X*-	$M^{+}(L)$ or $M^{+}(L^{*})$	Ion-pair	ACDC in metal catalysis

 $[^]a$ X* $^-$ = Chiral anion; B1 or B2 = Base; B1* or B2* = Chiral base; M = Metal; L = Ligand; L* = Chiral ligand; ACDC = Asymmetric Counteranion-Directed Catalysis

These chiral anions differ in structure and reactivity. As discussed above, they have been used in both asymmetric Brønsted acid catalysis and asymmetric counteranion-directed catalysis. A list of some of the chiral anions used in asymmetric catalysis is shown in Figure 1.1. The list includes carboxylate, sulfonate, tetracoordinated phosphate, disulfonimidate, hexacoordinated phosphate anions. More recently, there are reports showcasing the concept of supramolecular chiral anions.

Figure 1.1 Chiral counter-anions used in asymmetric catalysis (blue: asymmetric Brønsted acid catalysis; red: asymmetric counteranion-directed catalysis). For interpretation of the references to color in this and all other figures, the reader is referred to the electronic version of this dissertation.

Antilla
J. Am. Chem. Soc. 2007, 129, 5830
J. Am. Chem. Soc. 2005, 127, 15696

List Chem. Commun. **2011**, 47, 10022. **Ding** Eur. J. Org. Chem. **2011**, 110-116.

List Angew. Chem. Int. Ed. 2006, 45, 4193 List J. Am. Chem. Soc. 2006, 128, 13368 Toste Science 2007, 317, 496 List Angew. Chem. Int. Ed. 2010, 49, 628 List Aldrichimica Acta 2008, 41, 31

List Chem. Commun. **2011**, *47*, 10022. **List** J. Am. Chem. Soc. **2010**, *132*, 17370

Tetracoordinated Phosphate anions

$$CF_3$$
 SO_2
 $N^ CF_3$
Disulfonimidate anion
 CF_3

List Angew. Chem. Int. Ed. 2009, 48, 4363 List Angew. Chem. Int. Ed. 2011, 50, 754 Lee J. Org. Chem. 2011, 76, 7141

Rueping Angew. Chem. Int. Ed. **2008**, 47, 593 **Rueping** Chem.–Eur. J. **2010**, 16, 13116

Rueping J. Am. Chem. Soc. **2011**, 133, 3732 **Rueping** Chem.–Eur. J. **2010**, 16, 13116

Phosphoramidate anions

$$\begin{array}{c|c}
CI & CI \\
CI & CI$$

Lacour Tetrahedron Lett. 2002, 43, 8257 Nelson Tetrahedron Asymmetry. 2003, 14, 1995

Lacour Chem. Commun. 2008, 829

Hexacoordinated Phosphate anions

Tetrahedron Asymmetry. 2008, 19, 822

Cobaltate anion

Figure 1.1 cont'd

JacobsenJ. Am. Chem. Soc. **2007**, 129, 13404

J. Am. Chem. Soc. 2008, 130, 7198

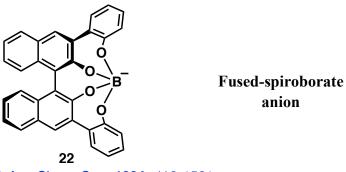
JacobsenAngew. Chem. Int. Ed. **2009**, 48, 6328

Chem. Asian J. 2008, 3, 430

Supramolecular chiral anions

The present discussion is focused on catalysis that involves chiral borate anions. They have been used in both asymmetric Brønsted acid catalysis (not organocatalysis as it involves boron) and asymmetric counteranion-directed catalysis (transition-metal catalysis). In the case of asymmetric Brønsted acid catalysis, there are three type of chiral borate anions: a) spiroborate ¹⁴ (SB) b) fused-spiroborate ¹⁵ (FSB) and c) boroxinate ¹⁶ (BOROX) (Figure 1.2). However, in the case of asymmetric counteranion-directed catalysis, only spiroborate type anions from BINOL, ^{4,11b,17} tartaric acid ¹⁸ and amino acids ¹⁸⁻¹⁹ are reported (Figure 1.2).

Figure 1.2 Chiral borate anions used in (**A**) asymmetric Brønsted acid catalysis (**B**) asymmetric counteranion-directed catalysis


A

Yamamoto, J. Am. Chem. Soc. **1994**, 116, 10520 **Nakagawa**, Synlett **1997**, 761 **Nakagawa**, J. Org. Chem. **1998**, 63, 6348 **James**, Tetrahedron Asymmetry. **2003**, 14, 1965

NakagawaSynlett **1997**, 761

J. Org. Chem. **1998**, *63*, 6348

Spiro-borate anions

Yamamoto, J. Am. Chem. Soc. 1994, 116, 1561 Yamamoto, J. Am. Chem. Soc. 1996, 118, 3049 Yamamoto, J. Am. Chem. Soc. 1998, 120, 6920 Yamamoto, J. Org. Chem. 1997, 62, 3026 Davies, Adv. Synth. Catal. 2006, 348, 2449

Wulff J. Am. Chem. Soc. 2009, 131, 15615 J. Am. Chem. Soc. 2010, 132, 14669 J. Org. Chem. 2010, 75, 5643 Org. Lett. 2011, 13, 5866

Ph O-B OPh OPh OPh

Wulff
J. Org. Chem. 2010, 75, 5643
J. Am. Chem. Soc. 2010, 132, 13100
J. Am. Chem. Soc. 2010, 132, 13104
J. Am. Chem. Soc. 2011, 133, 5656

Figure 1.2 cont'd

Boroxinate anions

B

Leitner, Chem. Cat. Chem 2010, 2, 55 Nelson, Tetrahedron Asymmetry. 2003, 14, 1995 Arndtsen, Org. Lett. 2000, 2, 4165

ArndtsenOrganomettallics. **2004**, *23*, 2838

Arndtsen Organomettallics. 2004, 23, 2838

Arndtsen
Tetrahedron Asymmetry. 2005, 16, 1789

30

Figure 1.2 cont'd

Arndtsen
Tetrahedron Asymmetry. 2005, 16, 1789

Spiro-borate anions

1.2 Chiral borate anions in asymmetric Brønsted acid catalysis (Class I and II)

In last decade or so, there has been enormous growth in the field of asymmetric Brønsted acid catalysis (Class I). There have been a number of elegant examples demonstrating the magnificent work in asymmetric catalysis utilizing these acids. A brief introduction is given below prior to the discussion of the chiral borate anions in asymmetric Brønsted acid catalysis.

1.2.1 An introduction to asymmetric Brønsted acid catalysis

A number of reviews have been published in the literature showcasing the idea of asymmetric catalysis via chiral Brønsted acid catalyst. The most common Brønsted acids used are chiral phosphoric acids, which has *chiral tetracoordinated phosphate anions*. More specifically, the phosphoric acids derived from BINOL and H8-BINOL are primarily used in

asymmetric catalysis. 21 In 2004, Akiyama and Terada have introduced these kinds of catalysts. 22 The binding of the substrate to the catalyst has been altered to a great deal with the help of 3,3' or 6,6' substituents on the BINOL ligand. Additionally, Toste and co-workers have introduced thio-phosphoric acids derived from BINOL derivatives. 23 coworkers have introduced the concept of chiral bis-phosphoric acid catalyst. ²⁴ In recent years. novel chiral phosphoric acids derived from VANOL, 25 VAPOL, 8a,8b,25-26 SPINOL. 8i,27 and TADDOL^{8i,28} have been employed. More recently, metal salts of VAPOL or BINOL phosphoric acids are being used. ²⁹ In recent years, the acidity of these Brønsted acids have been increased to a great extent by utilizing phosphorodiamidic acid, 30 phosphoramides, 10a,10b,31 bis(sufonyl)imides ^{9a,9b,32} and bis(sulfuryl)imides ³³ prepared from BINOL and H8-BINOL. ^{20a} More recently, List and coworkers have reported a novel class of C_2 -symmetric imidodiphosphoric acids.³⁴ The other group comprises chiral dicarboxylic acids^{6a,6b,35} and chiral disulfonic acids. ^{7,36} Also, the pKa values of these acids have been reported in DMSO ranging from 1.74±0.08 to 5.74±0.05. Rueping and co-workers have recently shown asymmetric Brønsted acid catalysis in aqueous solution.³⁸

In the case of Brønsted acid catalysis, the mode of substrate activation is either hydrogen bonding or ion-pair formation by the complete proton transfer to the substrate. Recently, it has been demonstrated that both the activation modes are synergistically operational in case of

imines.³⁹ The population of the substrate in an activation mode would also be governed by the strength of the acid. Weak Brønsted acids are likely to operate *via* hydrogen bonding. Consequently, chiral thioureas like 46-47, ^{20e,20h,20j,40} TADDOL 48⁴¹ and chiral BINOL derivatives 49-54⁴² have been used as Brønsted acid catalysts (Hydrogen-bond donor catalysts) (Figure 1.3B). In general, diols such as BINOLs 55 and 56, ⁴³ H8-BINOLs 53 and 57, ⁴⁴ VAPOL 58, ⁴⁵ VANOL 59, ⁴⁵ SPINOL 60⁴⁶ and TADDOL 61^{43a,47} are relatively very weak Brønsted acids when used directly as catalysts, however, they have been extensively used as chiral ligands for various asymmetric reactions. *It is important to note that while the catalyst might exist as the Brønsted acid, their catalytic function could be of Lewis acid type*. ^{25b,26a,26c,26d,48}

Figure 1.3 A list of various (**A**) chiral phosphoric acids, phosphorodiamidic acid, phosphoramides, imidodiphosphoric acids, disulfonamides, carboxylic and sulfonic acids. (**B**) chiral thioureas and chiral diols

A

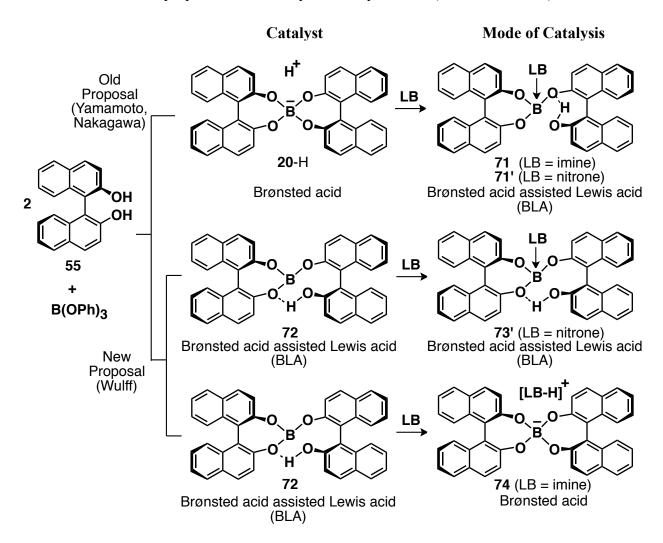
Figure 1.3 cont'd

Figure 1.3 cont'd

Regarding class II type catalyst, they exist as Brønsted acid catalysts. Depending upon their catalytic function, they belong to either asymmetric Brønsted acid catalysis or asymmetric counteranion-directed catalysis. For instance; if the catalyst looses all protons at the catalytic step, then it can be included in asymmetric counteranion-directed catalysis (Scheme 1.1). In these cases, class II serves as pre-catalyst and the eventually transforms into class III type catalyst during the reaction.

Scheme 1.1 Brønsted acid catalysis ⁴⁹ verses asymmetric counteranion-directed catalysis ⁵

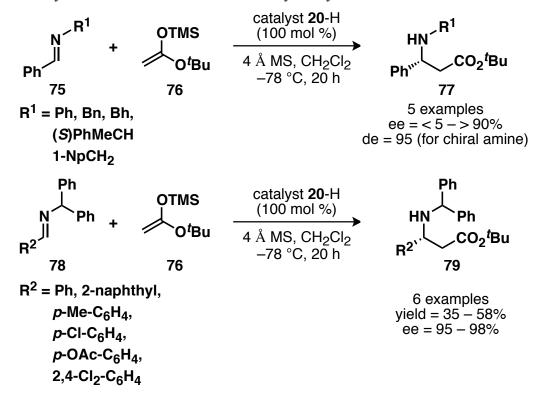
Scheme 1.1 cont'd


An important class of Brønsted acid catalysts involves chiral borate anions. Catalysts which belong to the class I are supposedly containing spiroborate ¹⁴ (SB) or fused-spiroborate ¹⁵ (FSB) anions. However these are found to be class II type catalysts (see section 1.2.2 and 1.2.3). Boroxinate ¹⁶ (BOROX) anions form the Brønsted acid catalyst only in the presence of a base and hence belong to class II.

1.2.2 Chiral spiroborate anions in asymmetric Brønsted acid catalysis

In 1994, Yamamoto and co-workers reported one of the early examples of chiral borate anions. They utilized spiroborate (SB) anion **20** for Mannich reactions ^{14a-14c} (Scheme 1.3) and heteroatom Diels-Alder reactions of imines (Scheme 1.4). ^{14a,14d} In the year 1997, the same catalyst was supposedly used for Pictet-Spengler reaction (Scheme 1.5). ^{14e,14f} The reported structure represents the catalyst as a Brønsted acid **20**-H containing a tetra-coordinate boron

(Scheme 1.2). However, the mode of catalysis of **20**-H was assumed to be Brønsted acid assisted Lewis acid (BLA) catalysis. The catalytic function of **20**-H was proposed to be as a chiral Lewis acid where interaction with a Lewis base disrupts one of the boron-oxygen bonds to give Lewis acid-Lewis base complex **71** (Scheme 1.2). However, we found that there is no tetracoordinated boron atom unless a base is added (see Chapter 4). Hence, catalyst **20**-H exists as Brønsted acid assisted Lewis acid (BLA) **72** with a tri-coordinate boron atom (Scheme 1.2).


Scheme 1.2 Different proposals about catalytic activity of **20**-H (LB = Lewis base)

Interestingly, we found that the mode of catalysis (catalytic function) is actually Brønsted acid or hydrogen bond catalysis for imino-aldol reaction of imines and Brønsted acid assisted Lewis acid catalysis for Pictet-Spengler reaction of nitrones (Scheme 1.2). For imino-aldol reaction of imine, the actual catalyst exists as Brønsted acid 74 and belongs to the class II type catalysts where it is formed only upon the addition of chiral or achiral bases (Scheme 1.2). A detailed discussion of this system is given in Chapter 4.

In the case of asymmetric imino-aldol reaction; stoichiometric amount of catalyst **20**-H was utilized and enantioselectivity up to 98% was reported (Scheme 1.3). Reaction with chiral amine created the environment for matched/mismatched cases resulting in 95% diastereomeric excess. Yamamoto and co-workers used the asymmetric imino-aldol reaction in the total synthesis of (+)-(S)-Dihydroperiphylline. 14b,14c

Scheme 1.3 Asymmetric imino-aldol reaction catalyzed by 20-H

Yamamoto and coworkers reported the asymmetric heteroatom Diels-Alder reaction between imine 75 and Danishefsky diene 80 to give vinylogous amides 81 (Scheme 1.4). They examined different imines derived from benzaldehyde and benzylamine or (*S*)-α-methylbenzylamine. Excellent yields and enantioselectivities and diastereoselectivities were obtained though stoichiometric amount of catalyst used. Results with chiral amine and different enantiomers of catalyst did not show any match or mismatched cases. Our group then thought to examine benzhydryl amine derived imine 78a as it is the protecting group we utilized for the same reaction with our BOROX catalyst. A slight increase in ee was observed as compared to the benzyl amine derived imine 75a although low yield was obtained when 10 mol % catalyst was used instead of 100 mol % (Scheme 1.4).

Scheme 1.4 Asymmetric heteroatom Diels-Alder reaction catalyzed by 20-H or 74

Regarding the Pictet-Spengler reaction, Nagakawa and coworkers had to utilize two equivalents of the catalyst **20**-H in order to get the turnover as the product **84** was more basic than the reactant **83**.

Scheme 1.5 Asymmetric Pictet-Spengler reaction catalyzed by 20-H or 21-H

catalyst 20-H or 21-H (200 mol %)

N R R A MS,
$$CH_2CI_2$$
25 °C, 48 h

83

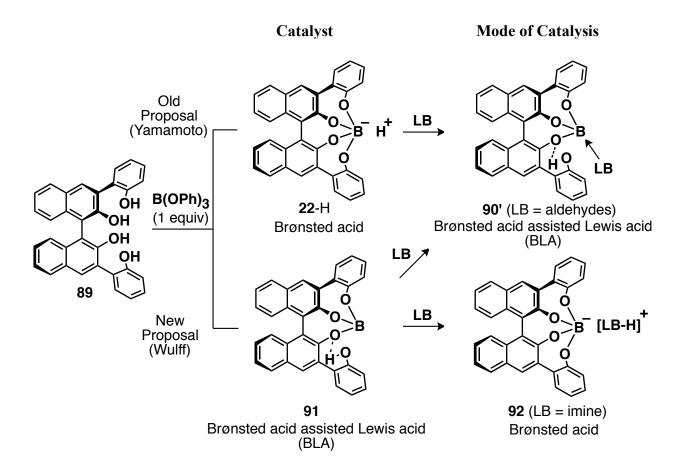
R = Ph, p -OMe-C₆H₄, p -NO₂-C₆H₄, Me, i Bu, 1-naphthyl,

catalyst 20-H or 21-H (200 mol %)

4 Å MS, CH_2CI_2
25 °C, 48 h

84

6 examples yield = 39 – 94% ee = 15 – 94%


Interestingly, the opposite enantiomer of aziridine **86a** was obtained when (R,R)-**74a** was employed as compared to a BOROX catalyst generated from (R)-VAPOL. Low yields and moderate ees were obtained irrespective of the catalyst loading (Scheme 1.6).

Scheme 1.6 Asymmetric aziridination reaction catalyzed by (R,R)-74a

1.2.3 Chiral fused-spiroborate anions in asymmetric Brønsted acid catalysis

Another example reported is the case of fused-spiroborate (FSB) anion 22. In 1994, Yamamoto and co-workers reported this kind of catalyst for the first time. They used this catalyst for asymmetric Diels-Alder reaction between dienes and enals (Scheme 1.8). The reported structure represents it as a Brønsted acid containing a tetra-coordinate boron atom (Scheme 1.7). However, it was proposed to function as a Brønsted acid assisted Lewis acid (BLA) catalyst. In this case, we found that it is indeed a BLA type mechanism for aldehydes. However, we found that there is no tetra-coordinated boron unless a base is added. This work is discussed more in detail in Chapter 4.

Scheme 1.7 Proposed catalytic activity of **22**-H

Excellent yields and ees were reported for the Diels-Alder reaction of dienes **93** and enals **94** giving exo isomer as the major product (Scheme 1.8A). In the years 1996 and 1998, Yamamoto and coworkers designed some modified catalytic systems for Diels-Alder reaction between dienes and enals in order to increase the enantio-induction and broaden the substrate scope (Scheme 1.8B). 15b,15c

Scheme 1.8 Asymmetric Diels-Alder reaction of dienes and enals catalyzed by (A) 22-H (B) 98-100

A
$$R^{1}$$
 R^{2} R^{2} R^{3} R^{2} R^{3} R^{3} R^{3} R^{3} R^{3} R^{4} R^{5} R^{2} R^{5} R^{6} R^{7} $R^$

B

catalyst 98
(1-20 mol %)

4 Å MS,
$$CH_2Cl_2$$
-78 °C, 1-24 h exo-endo = 1: 3 - >99

 R^2
 R^2
 R^3
 R^4
 R^2
 R^4
 R^2
 R^4
 R^2
 R^4
 R^5
 R^4
 R^5
 R^5

Scheme 1.8 cont'd

In the year 2006, Davies and coworkers introduced a formal [4+3] cycloaddition by a tandem Diels Alder reaction/ring expansion using **22**-H as the catalyst (Scheme 1.9). ^{15e}

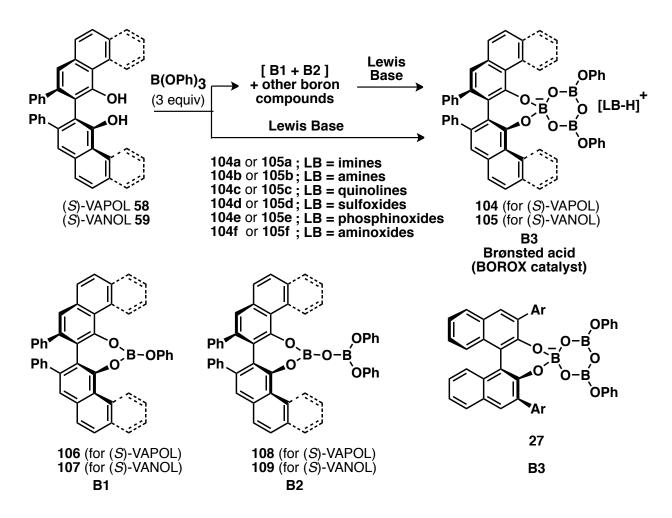
Scheme 1.9 Formal [4+3] cycloaddition catalyzed by **22-**H

96b 97 CHO
$$= \frac{R^1}{2}$$
 CHO $= \frac{R^2}{2}$ CHO

Additionally, Yamamoto and coworkers reported the first enantioselective catalytic Diels-Alder reaction of dienes **96** and acetylenic aldehydes **102** with ee up to 95%. ^{15d}

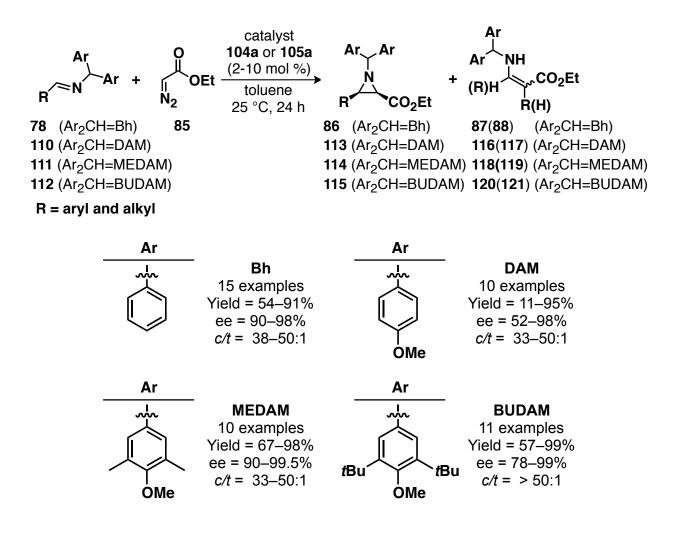
Scheme 1.10 Asymmetric Diels-Alder reaction of dienes and alkynals catalyzed by 22-H or 98

Also, as a part of this doctoral work, a low ee of 48% was observed for aziridine **86a** when (R)-**92a** was employed (Scheme 1.11).


Scheme 1.11 Asymmetric aziridination reaction catalyzed by (R)-92a

1.2.4 Chiral boroxinate anions in asymmetric Brønsted acid catalysis: BOROX catalysis

So far we have discussed two major kinds of chiral borate anions (SB **20**-H and FSB **22**-H) with free proton supposedly as the cation. Both contain a spiroborate ring as a common feature. However, there is no report of a chiral boroxinate (BOROX) catalyst in literature prior to our work. In the due course of time, we have developed a universal catalytic asymmetric aziridination utilizing a chiral boroxinate catalyst derived from the vaulted ligands such as


VAPOL **58** or VANOL **59** and B(OPh)₃. ¹⁶ The catalyst consists of a chiral boroxinate anion with a protonated base as the cation. It forms only in the presence of a base and hence it belongs to class II type of catalysts (Table 1.1). It can be generated *via* **B1** and **B2** or directly from the ligands (Scheme 1.12). Since, the borate anion can be seen as a derivative of a boroxine ring, we coined a new term "BOROX catalyst" for this class of catalysts. ¹⁶ More recently, we have shown that even some BINOL derivatives form boroxinate anions of type **27** in the presence of base. ⁵¹

Scheme 1.12 Generation of BOROX catalyst 104 and 105

For the past few years, a considerable effort has been given towards the evolution of a universal aziridination reaction. Utilizing BOROX catalysts, a substrate general catalytic asymmetric aziridination reaction for *cis*-^{16a-16d,16j,16k,16m} and *trans*-aziridination has been realized (Scheme 1.13 and 1.14). A unique feature of our catalytic system is that either *cis*-or *trans*-aziridines can be prepared from the same imine and same catalyst **104a/105a**. Recently, we accomplished a *cis*-aziridination for alkynyl imines. In all these cases, substrate i.e. imines, acting as the base, induced the formation of the BOROX catalyst of type **104a/105a**.

Scheme 1.13 The Wulff asymmetric *cis*-aziridination reaction

Scheme 1.13 cont'd

Scheme 1.14 The Wulff asymmetric *trans*-aziridination reaction

Ar
$$\rightarrow$$
 NHPh \rightarrow NHPh

A considerable amount of time during this doctoral research has been spent in the realization of the first catalytic asymmetric multicomponent *cis*- and *trans*-aziridination of aldehydes (Scheme 1.15). Although, amine **126** induced the generation of a BOROX species,

it was found the reaction was catalyzed by a BOROX catalyst generated from an imine after its complete formation from amine 126 and aldehyde 127.

Scheme 1.15 Asymmetric multicomponent aziridination reaction catalyzed by 104a or 105a

In 2007, our group reported the catalytic asymmetric aza Diels-Alder reactions of imines and Danishefsky diene **80** using a BOROX catalyst. In that case, excess B(OPh)₃ was found to be critical in improving the turnover of the catalyst. (Scheme 1.16).

Scheme 1.16 Asymmetric aza Diels-Alder reaction of imine and Danishefsky diene 80

Ph OMe (5-10 mol%)
$$R = \text{aryl and alkyl}$$

$$R = \text{aryl and alkyl}$$

$$R = \text{catalyst 104a} \text{(5-10 mol%)} \text{B(OPh)}_3 \text{(excess)} \text{Ph}$$

$$CH_2Cl_2:\text{toluene (1:1)} \text{-45 °C, 24-50 h}$$

$$R = \text{aryl and alkyl}$$

$$R = \text{aryl and alkyl}$$

$$R = \text{aryl and alkyl}$$

Adding to the versatility of the BOROX catalysts, our group has recently reported an example of catalytic asymmetric aza-Cope rearrangement of imines. Inspired by the multicomponent aziridination reaction, this was then performed in a multicomponent fashion. Interestingly, one equivalent of benzoic acid with respect to the catalyst was found to be synergistic in order to give useful levels of enantioselectivity (Scheme 1.17).

Scheme 1.17 Asymmetric aza-Cope rearrangement catalyzed by 105a

During the optimization of the multicomponent aziridination reaction, a novel [3+2] cycloaddition reaction was discovered (Scheme 1.18). The absolute stereochemistry was not determined. However, due to time constraints, this work has been put on hold.⁵³

Scheme 1.18 Asymmetric [3+2] cycloaddition reaction catalyzed by BOROX catalyst 104a

Ar
$$O$$
 OEt O Catalyst 104a O OEt O OEt O Catalyst 104a O OEt O OEt O Catalyst 104a O OEt O

A prominent part of this thesis will focus on the development of a catalytic asymmetric epoxidation reaction. A number of aldehydes were examined and excellent results were obtained (Scheme 1.19). ⁵³

Scheme 1.19 Asymmetric epoxidation reaction catalyzed by BOROX catalyst **105d**

Catalyst 105d (10 mol %)

R +
$$\frac{1}{N_2}$$
 Bu $\frac{\text{catalyst 105d}}{\text{toluene}}$ Bu $\frac{135}{N_2}$ Bu $\frac{1}{N_2}$ Bu $\frac{1}{N_2}$

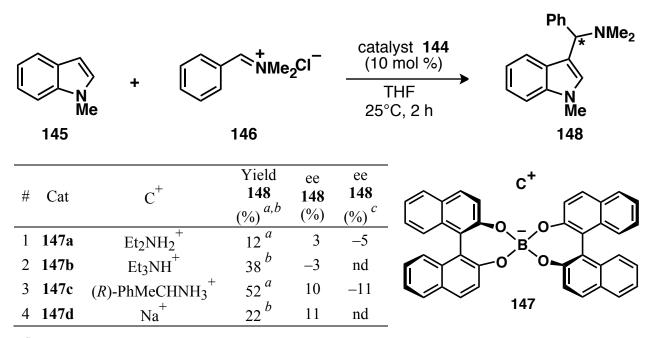
Our group has also been able to perform catalytic asymmetric reduction of quinolines (Scheme 1.20). ⁵⁴ High yields with moderate ees were obtained using BOROX catalyst **104c**.

Scheme 1.20 Catalytic asymmetric reduction of quinolines

Last but not the least, substrate-controlled and catalyst-controlled aziridination reactions were examined with our BOROX catalysts and chiral imines made from either chiral amines or chiral aldehydes. Both matched and mismatched cases were observed (Scheme 1.21). 55

Scheme 1.21 Double stereodifferentiation in catalytic asymmetric aziridination

$$\begin{array}{c} \text{Me} \\ \text{R} \\ \text{N} \\ \text{Ph} \\ \text{Ph} \\ \text{Ph} \\ \text{N}_{2} \\ \text{OEt} \\ \hline \\ 139 \\ \text{R} = \text{aryl and alkyl} \\ \text{R} = \text{CO}_{2} \\ \text{Et} \\ \text{R} = \text{Ar} \\ \text{Ar} \\ \text{R} = \text{Ar} \\ \text{R} = \text{Ar} \\ \text{Ar} \\ \text{R} = \text{Ar} \\ \text{Ar} \\ \text{Ar} \\ \text{R} = \text{Ar} \\ \text{Ar} \\ \text{Ar} \\ \text{Ar} \\ \text{Ar} \\ \text{R} = \text{Ar} \\ \text{$$


1.3 Chiral borate anions in asymmetric counteranion-directed catalysis (Classes II, III, IV, and V)

Nowadays, a lot of chiral anions are being used in asymmetric counteranion-directed catalysis.³ As discussed in section 1.2, a class II catalyst can be included in asymmetric counteranion-directed catalysis if the catalyst looses all protons prior to the chirality transfer

step. In these cases, the class II catalyst serves as the pre-catalyst and eventually transforms itself into a class III type catalyst (see Section 1.2, Scheme 1.1). One such kind of catalyst utilizing the chiral spiroborate anion **20** was reported in 2003. The addition of *N*-methyl indole **145** to an iminium ion **146** and the ring-opening of an aziridinium ion **150** with benzylamine **151** were studied utilizing catalyst **147**.

In these cases, the mode of catalysis is asymmetric counteranion-directed catalysis as depicted in Table 1.2 and 1.3. Various catalysts were generated using different chiral achiral amines as the base. The level of enantioselectivity obtained was very low (< 15%) irrespective of the base used for the generation of the catalyst. Nonetheless this was one of the early examples where chiral borate anions have been used in counteranion-directed catalysis.

Table 1.2 The addition of *N*-methyl indole **145** to an iminium ion **146**

^a Average yield for reactions with catalyst **147** and catalyst *ent-***147**. ^b Yield for the reaction with catalyst **147**. ^c ee for the reactions with catalyst *ent-***147**.

Table 1.3 The ring-opening of an aziridinium ion 150 with benzylamine 151

#	Cat	C^+	Yield 152 (%) ^a	ee 152 (%)	ee 152 (%)	c ⁺
1	147a	$\operatorname{Et_2NH_2}^+$	18	-6	5	B
2	147b	Et ₃ NH ⁺	25	13	-15	
3	147c	(R)-PhMeCHNH ₃ ⁺	12	3	7	
4	147d	Na ⁺	12	-7	nd	147 (C A ₁)

^a Average yield for reactions with catalyst **147** and catalyst *ent-***147**. ^b ee for the reactions with catalyst *ent-***147**.

This work was then extended to a catalyst belonging to class IV (see Table 1.1 for definition of class IV type catalysts). Chiral borate anions along with a metal as the cation have been employed in asymmetric catalysis. With catalyst **147d**, ring-opening of aziridinium ion was performed yielding diamine **152** in 12% yield and 7% ee. However, the same reaction was reported to afford **156** in 84% yield and 94% ee utilizing TRIP-PO₃Ag **153** (Scheme 1.22). See the catalysts of the catalysts are catalysts and the catalysts are catalysts.

Scheme 1.22 The ring-opening of an aziridinium ion 150 and 154 with catalysts 147d and 153.

$$\begin{array}{c} \text{catalyst} \\ 147d \\ (50 \text{ mol } \%) \\ \hline \text{THF-toluene} \\ 100 \, ^{\circ}\text{C} \\ \end{array} \begin{array}{c} \text{Ph} \\ \text{N} \\ \text{Ph} \\ \text{A}_{1} \\ \end{array} \begin{array}{c} \text{Ph} \\ \text{N} \\ \end{array} \begin{array}{c} \text{Nh}_{2} \\ \text{151} \\ \text{24 h} \\ \end{array} \begin{array}{c} \text{Ph} \\ \text{N} \\ \text{Nh} \\ \end{array} \begin{array}{c} \text{Nh}_{2} \\ \text{Nh} \\ \end{array} \begin{array}{c} \text{Nh}_{2} \\ \text{Nh} \\ \text{Nh} \\ \end{array} \begin{array}{c} \text{Nh}_{3} \\ \text{Nh} \\ \text{Nh} \\ \end{array} \begin{array}{c} \text{Nh}_{4} \\ \text{Nh} \\ \text{Nh} \\ \end{array} \begin{array}{c} \text{Nh}_{4} \\ \text{Nh} \\ \text{Nh} \\ \end{array} \begin{array}{c} \text{Nh}_{4} \\ \text{Nh} \\ \text{Nh} \\ \text{Nh} \\ \end{array} \begin{array}{c} \text{Nh}_{4} \\ \text{Nh} \\ \text{Nh} \\ \end{array} \begin{array}{c} \text{Nh}_{4} \\ \text{Nh} \\ \text{Nh} \\ \text{Nh} \\ \end{array} \begin{array}{c} \text{Nh}_{4} \\ \text{Nh} \\ \text{Nh} \\ \text{Nh} \\ \text{Nh} \\ \end{array} \begin{array}{c} \text{Nh}_{4} \\ \text{Nh}_{4} \\ \text{Nh} \\ \text{Nh}_{4} \\ \text{N$$

The following section is primarily focused on class V type catalysts (see Table 1.1 for definition of class V type catalysts). Conventionally, chiral ligands are bound to a metal along with an achiral non-coordinating counteranion. In these cases; steric information, which decides facial selectivity, lies within the coordination sphere. Recently, ion-pairs which have achiral ligands bound to the metal along with chiral non-coordinating anions have been utilized in asymmetric catalysis. ^{4,18-19} In these cases, the factors affecting enantioselection lies outside the coordination sphere. Moreover, a hybrid of chiral ligands and chiral anions provides the opportunity of matched and mismatched cases for catalysis.

Arndtsen and coworkers introduced class V type catalysts in the year 2000.⁴ They performed asymmetric aziridination and cyclopropanation of styrene utilizing catalyst **147e**.⁴ Low enantioslelectivities were observed in the case of aziridination reaction irrespective of the chiral or achiral ligands used (Table 1.4). In fact, similar results were obtained for the cyclopropanation reaction between styrene and ethyl diazoacetate. In these cases, *cis* isomer was found to be the major isomer (Table 1.5).

Table 1.4 Asymmetric aziridination reaction with spiroborate ion-pair 147e

-	#	L	Yield 159 (%)	ee 159 (%)		(.
_	1	160	75	-22 ^a	_	/
	2	160	85 ^b	-24^{b}	Ph 160	
	3	none	86	7	100	
	4	161	43	10		
	5	162	41	10		
_	6	163	78	<1	_ 《 》	
					<u>N N_</u>	

^a –33% ee with 10 mol % CuPF₆ and 11 mol % **160**. Besults for the reactions with catalyst *ent*-**147e**.

162

161

163

Table 1.5 Asymmetric cyclopropanation reaction with spiroborate ion-pair 147e

,0,,,,,,	ee 165 (%)	ee 164 (%)	Yield 164+165 (%)	cis/trans	T (°C)	#
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	21	6	12	1.4:1	0	1 a
ph PI	10	-28	20	2.2:1	0	2
ent- 160	15	6	34	nd	25	3^{a}
	12	8	34	nd	25	4

^a Results for the reactions with catalyst *ent-***147e**.

In 2004, Arndtsen and coworkers extended the concept of chiral spiroborate counteranion by employing tartrate amides to build the framework of the counteranion. ¹⁸⁻¹⁹

Table 1.6 Asymmetric cyclopropanation with spiroborate ion-pair 166

Table 1.6 Cont'd.

#	Cat.	trans/cis	Yield 164+165 (%)	ee 165 (%)	ee 164 (%)
1 a	166a	1.9:1	67	<2	<2
2	166b	1.3:1	21	17	26
3	166c	1.2:1	36	-23	-19
4	166d	1.0:1	3	-34	-19
5	166e	1.3:1	32	14	24

^a Reaction performed in dichloromethane at room temperature.

One of the important features of this approach is the availability of the large number of amino acids, thereby generating a large pool of possible catalysts. However, for cyclopropanation reaction, the maximum enantio-induction attained was 34% and 26% for *trans*-and *cis*-isomer respectively (Table 1.6). Interestingly, *trans* isomer was observed to be the major product. They carried out a limited substrate scope with catalyst **166b** (Scheme 1.23).

Scheme 1.23 Asymmetric cyclopropanation reaction with spiroborate ion-pair 166b

R1 R2 + OEt CO₂Et (1 mol %)

Benzene, 0 °C, overnight

167 85

Benzene, 0 °C, overnight

168

4 examples

Yield = 10–67%

ee (cis) = 2–26%

ee (trans) = 17–26%

$$t/c = 1.1-1.3:1$$

Recently, asymmetric hydrogenation of dimethyl itaconate **169** was reported by utilizing rhodium catalyst with *rac*-BINAP **171** in the presence of the chiral spiroborate ion-pair **147d** (Table 1.7). Enantioselectivity up to 57% ee was observed with BINAP *rac*-**171** and 69% ee with BINAP (*R*)-**171**. Interestingly, the opposite enantiomer of **170** was observed with BINAP (*R*)-**171** alone.

Table 1.7 Asymmetric hydrogenation with spiroborate ion-pair 147d

1.4 Miscellaneous chiral borate anions

There are many chiral borate anions reported in literature that are used for purpose other than asymmetric catalysis. This section will briefly touch on these aspects of chiral borate anions. In 2006, Leitner and co-workers employed chiral ionic liquid (CIL) as a medium for the aza-Baylis-Hillman reaction. The chiral ionic liquid was an ion pair 174 composed of an achiral methyltrioctylammonium cation and a spiroborate anion. They were able to attain enantioselectivity up to 84% ee utilizing this ionic liquid as the chiral reaction medium (Scheme Scheme 1.24).

Scheme 1.24 Chiral reaction medium made of spiroborate ion-pair 174

Tos NH O
$$O$$
 PPh₃ Chiral reaction medium O A examples O A examples O Chiral reaction medium O A examples O Chiral reaction medium O Chiral reaction medium O Chiral reaction medium O Chiral reaction medium

Additionally, some chiral borate anions are used as the vehicle for the resolution of racemic compounds. Periasamy and co-workers reported the resolution of BINOL *rac-55* by treating it with chiral amine and boric acid. The stereoselectivity is induced by the steroselective formation of the ion pair **147c** comprised of the spiroborate anion **20** and a chiral ammonium cation (Figure 1.4). More recently, resolution of racemic chiral diamines has been reported *via* an ion pair **176** consisting of a chiral diborate dianion and a protonated achiral diamine as the cation (Figure 1.4). So

Figure 1.4 Chiral borate ion-pairs used for resolution of racemic compounds

One of the prominent uses of the chiral borate anions has been its use as chiral NMR shift reagents. Arndtsen and co-workers utilized spiroborate **147e** as chiral NMR shift reagent for enantiomeric copper (I) complexes with tol-BINAP and oxazoline ligand (Figure 1.5).⁶⁰

Recently, Glorius and co-workers used chiral dianion 177 as a chiral shift reagent for NMR analysis of triphenylphosphonium salts (Figure 1.5). 59

Figure 1.5 Chiral borate ion-pairs used as chiral NMR shift reagents.

Chiral borate anions have also been used as ligands in asymmetric catalysis. Peng and coworkers developed a new class of chiral spiroborate ligands and used them in enantioselective Nozaki-Hiyama allylation of alkyl and aryl ketones (Figure 1.6).

Figure 1.6 Chiral borate ion-pairs used as chiral ligands.

In quest of designing ordered materials with predicable structures and properties, considerable effort has been given to the study of chiral borate anions as a structural unit in solution and in the solid state. Back-to-back twin bowls of D3-symmetry containing tris-(spiroborate) cyclophanes were recently prepared. These compounds have been prepared for

potential iterative host-guest interactions in an effort to generate supramolecular chain structures. 63

Finally, it is interesting to observe that there are quite a few chiral spiroborate esters exist in nature (Figure 1.7). ⁶⁴ The first natural product containing boron to be identified was boromycin 180,65 a polyether macrolide antibiotic. It was isolated from a culture of Streptomyces antibioticus which originated from a terrestrial soil sample from Ivory Coast. It is active against the Gram-positive bacteria. Boromycin affects the cytoplasmic membrane, which results in the release of potassium ions from the cell. Recent studies have suggested that boromycin has potent anti-HIV activity. 66 The total synthesis has been reported by White and coworkers. The second natural product, aplasmomycin **181**, was isolated from a strain of Streptomyces griseus obtained from shallow sea and mud. 68 Aplasmomycin inhibits the growth of gram-positive bacteria in vitro and is active against *Plasmodium berghei* in vivo. 68 Its total synthesis has also been reported by a number of groups. ⁶⁹ Another structurally related natural product is Tartrolon B **182**. It was isolated from Myxobacterium *Sorangium cellulosum* strain. ⁷⁰ Like other boron containing natural products, it also inhibits gram-positive bacteria and works as ion carriers. A number of syntheses of this compound have been reported in the recent past.⁷¹ In 1994, Moore and co-workers reported borophycin 183. Borophycin is the potent cytotoxin in the lipophilic extract of a marine strain of the blue-green algae (cyanobacterium) Nostoc linckia. No synthesis of borophycin has been reported yet. It showed cytotoxicity against LoVo

(MIC 0.066 µg/mL).⁷² Also, the biosyntheses of boromycin,⁷³ aplasmomycin,⁷⁴ tartrolon B⁷⁵ and borophycin⁷² have also been elucidated. All of these natural products are polyketides and have the same boron-binding substrate C₁-C₇ in each half of the symmetric molecules. Further, a novel AI-2 furanosyl borate diester complex **184** and was originally identified in the bioluminescent marine bacterium *Vibrio harveyi* as one of the two autoinducers that regulate light production in response to sell density.⁷⁶ Later on, it has been proposed to serve as universal bacterial quorum sensing signal containing boron for inter bacteria community communication.⁷⁷

Figure 1.7 Chiral borate anions existing in nature

Figure 1.7 cont'd

1.5 Conclusions

At the end, it is quite clear that the usage of chiral borate anions has been more prominent in last decade or so. In the field of asymmetric Brønsted acid catalysis, chiral boroxinate (BOROX) anions and other borate anions have been used quite comprehensively for a number of reactions. On the other hand, a lot of work has been done in transition metal catalysis using chiral anions other than borate anions. A significant effort is still needed in order to achieve this goal.

In subsequent chapters, a tale of BOROX catalysis will be told. It involves various aspects of catalysis such as designing new BOROX catalysts, novel reaction methodologies and its mechanistic understanding via NMR spectroscopy and computational chemistry.

REFERENCES

REFERENCES

- (1) (a) Hanessian, S. In *Total Synthesis of Natural Products: The 'Chiron' Approach*; Baldwin, J. E., Ed.; Pergamon: Oxford, UK, 1983. (b) Nugent, W. A.; Rajanbabu, T. V.; Burk, M. J. *Science* **1993**, 259, 479-483. (c) Taylor, M. S.; Jacobsen, E. N. *Proc. Nat. Acad. Sci. U.S.A* **2004**, 101, 5368-5373. (d) *Catalytic Asymmetric Synthesis*, 3rd Ed.; Ojima, I., Ed.; Wiley-VCH: Weinheim, 2010. (e) *Asymmetric Synthesis: The Essentials, 2nd, Completely Revised Edition*; Christmann, M.; Bräse, S., Eds.; Wiley-VCH: Weinheim, 2007.
- (2) Asymmetric Phase Transfer Catalysis; Maruoka, K., Ed.; Wiley-VCH Weinheim, 2008.
- (3) (a) Lacour, J.; Hebbe-Viton, V. *Chem. Soc. Rev.* **2003**, *32*, 373-382. (b) Lacour, J.; Moraleda, D. *Chem. Commun.* **2009**, 7073-7089. (c) Rueping, M.; Koenigs, R. M.; Atodiresei, I. *Chem.–Eur. J.* **2010**, *16*, 9350-9365.
- (4) Llewellyn, D. B.; Adamson, D.; Arndtsen, B. A. Org. Lett. 2000, 2, 4165-4168.
- (5) Mayer, S.; List, B. Angew. Chem., Int. Ed. 2006, 45, 4193-4195.
- (6) (a) Hashimoto, T.; Uchiyama, N.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 14380-14381.
 (b) Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 10054-10055.
 (c) Dorta, R.; Shimon, L.; Milstein, D. J. Organomet. Chem. 2004, 689, 751-758.
- (7) (a) Hatano, M.; Sugiura, Y.; Akakura, M.; Ishihara, K. *Synlett* **2011**, 1247-1250. (b) Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. *J. Am. Chem. Soc.* **2008**, *130*, 16858-16860.
- (8) (a) Li, G.; Liang, Y.; Antilla, J. C. *J. Am. Chem. Soc.* **2007**, *129*, 5830-5831. (b) Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. *J. Am. Chem. Soc.* **2005**, *127*, 15696-15697. (c) Martin, N. J. A.; List, B. *J. Am. Chem. Soc.* **2006**, *128*, 13368-13369. (d) Liao, S.; List, B. *Angew. Chem., Int. Ed.* **2010**, *49*, 628-631. (e) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. *Science* **2007**, *317*, 496-499. (f) List, B.; Adair, G.; Mukherjee, S. *Aldrichimica Acta* **2008**, *41*, 31-39. (g) Xu, S.; Wang, Z.; Zhang, X.; Ding, K. *Eur. J. Org. Chem.* **2011**, 110-116. (h) Jiang, G.; List, B. *Chem. Commun.* **2011**, *47*, 10022-10024. (i) Coric, I.; Mueller, S.; List, B. *J. Am. Chem. Soc.* **2010**, *132*, 17370-17373.
- (9) (a) Chen, L.-Y.; He, H.; Chan, W.-H.; Lee, A. W. M. J. Org. Chem. **2011**, 76, 7141-7147. (b) Ratjen, L.; Garcia-Garcia, P.; Lay, F.; Beck, M. E.; List, B. Angew. Chem., Int. Ed. **2011**, 50,

- 754-758. (c) Garcia-Garcia, P.; Lay, F.; Garcia-Garcia, P.; Rabalakos, C.; List, B. *Angew. Chem., Int. Ed.* **2009**, *48*, 4363-4366.
- (10) (a) Rueping, M.; Uria, U.; Lin, M.-Y.; Atodiresei, I. *J. Am. Chem. Soc.* **2011**, *133*, 3732-3735. (b) Rueping, M.; Nachtsheim, B. J.; Koenigs, R. M.; Ieawsuwan, W. *Chem.–Eur. J.* **2010**, *16*, 13116-13126. (c) Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. *Angew. Chem., Int. Ed.* **2008**, *47*, 593-596.
- (11) (a) Goncalves-Farbos, M.-H.; Vial, L.; Lacour, J. *Chem. Commun.* **2008**, 829-831. (b) Carter, C.; Fletcher, S.; Nelson, A. *Tetrahedron: Asymmetry* **2003**, *14*, 1995-2004. (c) Lacour, J.; Monchaud, D.; Marsol, C. *Tetrahedron Lett.* **2002**, *43*, 8257-8260.
- (12) Belokon, Y. N.; Maleev, V. I.; Kataev, D. A.; Mal'fanov, I. L.; Bulychev, A. G.; Moskalenko, M. A.; Saveleva, T. y. F.; Skrupskaya, T. y. V.; Lyssenko, K. A.; Godovikov, I. A.; North, M. *Tetrahedron: Asymmetry* **2008**, *19*, 822-831.
- (13) (a) Peterson, E. A.; Jacobsen, E. N. *Angew. Chem., Int. Ed.* **2009**, *48*, 6328-6331. (b) Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2008**, *130*, 7198-7199. (c) Pan, S. C.; List, B. *Chem.–Asian. J.* **2008**, *3*, 430-437. (d) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2007**, *129*, 13404-13405.
- (14) (a) Ishihara, K.; Miyata, M.; Hattori, K.; Tada, T.; Yamamoto, H. *J. Am. Chem. Soc.* **1994**, *116*, 10520-10524. (b) Ishihara, K.; Kuroki, Y.; Yamamoto, H. *Synlett* **1995**, 41-42. (c) Kuroki, Y.; Ishihara, K.; Hanaki, N.; Ohara, S.; Yamamoto, H. *Bull. Chem. Soc. Jpn.* **1998**, *71*, 1221-1230. (d) Cros, J. P.; Pérez-Fuertes, Y.; Thatcher, M. J.; Arimori, S.; Bull, S. D.; James, T. D. *Tetrahedron: Asymmetry* **2003**, *14*, 1965-1968. (e) Kawate, T.; Yamada, H.; Matsumizu, M.; Nishida, A.; Nakagawa, M. *Synlett* **1997**, 761-762. (f) Yamada, H.; Kawate, T.; Matsumizu, M.; Nishida, A.; Yamaguchi, K.; Nakagawa, M. *J. Org. Chem.* **1998**, *63*, 6348-6354.
- (15) (a) Ishihara, K.; Yamamoto, H. *J. Am. Chem. Soc.* **1994**, *116*, 1561-1562. (b) Ishihara, K.; Kurihara, H.; Yamamoto, H. *J. Am. Chem. Soc.* **1996**, *118*, 3049-3050. (c) Ishihara, K.; Kurihara, H.; Matsumoto, M.; Yamamoto, H. *J. Am. Chem. Soc.* **1998**, *120*, 6920-6930. (d) Ishihara, K.; Kondo, S.; Kurihara, H.; Yamamoto, H.; Ohashi, S.; Inagaki, S. *J. Org. Chem.* **1997**, *62*, 3026-3027. (e) Dai, X.; Davies, H. M. L. *Adv. Synth. Catal.* **2006**, *348*, 2449-2456.
- (16) (a) Zhang, Y.; Desai, A.; Lu, A.; Hu, G.; Ding, Z.; Wulff, W. D. *Chem. –Eur. J.* **2008**, *14*, 3785-3803. (b) Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. *Org. Lett.* **2008**, *10*, 5429-5432. (c) Mukherjee, M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. *J. Org. Chem.* **2010**, *75*, 5643-5660. (d) Ren, H.; Wulff, W. D. *Org. Lett.* **2010**, *12*, 4908-4911. (e) Hu, G.; Huang, L.; Huang, R. H.; Wulff, W. D. *J. Am. Chem. Soc.* **2009**, *131*, 15615-15617. (f) Hu, G.; Gupta, A. K.;

- Huang, R. H.; Mukherjee, M.; Wulff, W. D. *J. Am. Chem. Soc.* **2010**, *132*, 14669–14675. (g) Gupta, A. K.; Mukherjee, M.; Wulff, W. D. *Org. Lett.* **2011**, *13*, 5866-5869. (h) Newman, C. A.; Antilla, J. C.; Chen, P.; Predeus, A. V.; Fielding, L.; Wulff, W. D. *J. Am. Chem. Soc.* **2007**, *129*, 7216-7217. (i) Desai, A. A.; Wulff, W. D. *J. Am. Chem. Soc.* **2010**, *132*, 13100-13103. (j) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. *J. Am. Chem. Soc.* **2010**, *132*, 13104-13107. (k) Desai, A. A.; Morán-Ramallal, R.; Wulff, W. D. *Org. Synth.* **2011**, *88*, 224-237. (l) Ren, H.; Wulff, W. D. *J. Am. Chem. Soc.* **2011**, *133*, 5656-5659. (m) Desai, A. A.; Ren, H.; Mukherjee, M.; Wulff, W. D. *Org. Process Res. Dev.* **2011**, *15*, 1108-1115.
- (17) Chen, D.; Sundararaju, B.; Krause, R.; Klankermayer, J.; Dixneuf, P. H.; Leitner, W. *ChemCatChem* **2010**, *2*, 55-57.
- (18) Llewellyn, D. B.; Arndtsen, B. A. Organometallics 2004, 23, 2838-2840.
- (19) Llewellyn, D. B.; Arndtsen, B. A. Tetrahedron: Asymmetry 2005, 16, 1789-1799.
- (20) (a) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W.; Atodiresei, I. *Angew. Chem., Int. Ed.* **2011**, *50*, 6706-6720. (b) Schenker, S.; Zamfir, A.; Freund, M.; Tsogoeva, S. B. *Eur. J. Org. Chem.* **2011**, 2209-2222. (c) Rueping, M.; Kuenkel, A.; Atodiresei, I. *Chem. Soc. Rev.* **2011**, *40*, 4539-4549. (d) List, B.; Kampen, D.; Reisinger, C. M. *Top Curr Chem* **2010**, *291*, 395-456. (e) Sohtome, Y.; Nagasawa, K. *Synlett* **2010**, 1-22. (f) Yamamoto, H.; Payette, J. N. In *Hydrogen Bonding in Organic Synthesis*; Wiley-VCH 2009, p 73-140. (g) Yu, X.; Wang, W. *Chem.—Asian. J.* **2008**, *3*, 516-532. (h) Doyle, A. G.; Jacobsen, E. N. *Chem. Rev.* **2007**, *107*, 5713-5743. (i) Akiyama, T. *Chem. Rev.* **2007**, *107*, 5744-5758. (j) Taylor, M. S. J., E. N. *Angew. Chem., Int. Ed.* **2006**, *45*, 1520-1543. (k) Akiyama, T.; Itoh, J.; Fuchibe, K. *Adv. Synth. Catal.* **2006**, *348*, 999-1010.
- (21) (a) Terada, M. Synthesis **2010**, 1929-1982. (b) Terada, M. Bull. Chem. Soc. Jpn. **2010**, 83, 101-119. (c) Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S. B. Org. Biomol. Chem. **2010**, 8. (d) Terada, M. Chem. Commun. (Cambridge, U. K.) **2008**, 4097-4112. (e) Connon, S. J. Angew. Chem., Int. Ed. **2006**, 45, 3909-3912.
- (22) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. *Angew. Chem., Int. Ed.* **2004**, *43*, 1566-1568. (b) Uraguchi, D.; Terada, M. *J. Am. Chem. Soc.* **2004**, *126*, 5356-5357.
- (23) Shapiro, N. D.; Rauniyar, V.; Hamilton, G. L.; Wu, J.; Toste, F. D. *Nature* **2011**, *470*, 245-249.

- (24) Momiyama, N.; Konno, T.; Furiya, Y.; Iwamoto, T.; Terada, M. J. Am. Chem. Soc. **2011**, 133, 19294-19297.
- (25) (a) Desai, A. A.; Wulff, W. D. *Synthesis* **2010**, 3670-3680. (b) Rowland, E. B.; Rowland, G. B.; Rivera-Otero, E.; Antilla, J. C. *J. Am. Chem. Soc.* **2007**, *129*, 12084-12085.
- (26) (a) Senatore, M.; Lattanzi, A.; Santoro, S.; Santi, C.; Della, S. G. *Org. Biomol. Chem.* **2011**, *9*, 6205-6207. (b) Desai, A. A.; Huang, L.; Wulff, W. D.; Rowland, G. B.; Antilla, J. C. *Synthesis* **2010**, 2106-2109. (c) Larson, S. E.; Baso, J. C.; Li, G.; Antilla, J. C. *Org. Lett.* **2009**, *11*, 5186-5189. (d) Della, S. G.; Lattanzi, A. *Org. Lett.* **2009**, *11*, 3330-3333. (e) Rowland, G. B.; Rowland, E. B.; Liang, Y.; Perman, J. A.; Antilla, J. C. *Org. Lett.* **2007**, *9*, 2609-2611. (f) Liang, Y.; Rowland, E. B.; Rowland, G. B.; Perman, J. A.; Antilla, J. C. *Chem. Commun.* **2007**, 4477-4479.
- (27) (a) Xu, B.; Zhu, S.-F.; Xie, X.-L.; Shen, J.-J.; Zhou, Q.-L. *Angew. Chem., Int. Ed.* **2011**, *50*, 11483-11486. (b) Xing, C.-H.; Liao, Y.-X.; Ng, J.; Hu, Q.-S. *J. Org. Chem.* **2011**, *76*, 4125-4131. (c) Müller, S.; Webber, M. J.; List, B. *J. Am. Chem. Soc.* **2011**, *133*, 18534-18537. (d) Huang, D.; Xu, F.; Lin, X.; Wang, Y. Chiral spirocyclic phosphoric acid, its preparation method and application as catalyst CN102030780A Apr 27, 2011. (e) Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y. *J. Org. Chem.* **2010**, *75*, 8677-8680.
- (28) (a) Akiyama, T. Preparation of cyclic erythritol phosphoric acid derivatives as catalysts for asymmetric synthesis WO2006092884A1 . (b) Voituriez, A.; Charette, A. B. *Adv. Synth. Catal.* **2006**, *348*, 2363-2370. (c) Akiyama, T.; Saitoh, Y.; Morita, H.; Fuchibe, K. *Adv. Synth. Catal.* **2005**, *347*, 1523-1526.
- (29) (a) Zheng, W.; Zhang, Z.; Kaplan, M. J.; Antilla, J. C. *J. Am. Chem. Soc.* **2011**, *133*, 3339-3341. (b) Zhang, Z.; Zheng, W.; Antilla, J. C. *Angew. Chem., Int. Ed.* **2011**, *50*, 1135-1138. (c) Larson, S. E.; Li, G.; Rowland, G. B.; Junge, D.; Huang, R.; Woodcock, H. L.; Antilla, J. C. *Org. Lett.* **2011**, *13*, 2188-2191. (d) Rueping, M.; Bootwicha, T.; Sugiono, E. *Synlett* **2011**, 323-326. (e) Hatano, M.; Ishihara, K. *Synthesis* **2010**, 3785-3801. (f) Klussmann, M.; Ratjen, L.; Hoffmann, S.; Wakchaure, V.; Goddard, R.; List, B. *Synlett* **2010**, 2189-2192.
- (30) Terada, M.; Sorimachi, K.; Uraguchi, D. Synlett 2006, 133-136.
- (31) (a) Hashimoto, T.; Nakatsu, H.; Yamamoto, K.; Maruoka, K. *J. Am. Chem. Soc.* **2011**, *133*, 9730-9733. (b) Vellalath, S.; Coric, I.; List, B. *Angew. Chem., Int. Ed.* **2010**, *49*, 9749-9752. (c) Cheon, C. H.; Yamamoto, H. *J. Am. Chem. Soc.* **2008**, *130*, 9246-9247. (d) Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B. J. *Angew. Chem., Int. Ed.* **2007**, *46*, 2097-2100. (e) Nakashima, D.; Yamamoto, H. *J. Am. Chem. Soc.* **2006**, *128*, 9626-9627.

- (32) (a) He, H.; Chen, L.-Y.; Wong, W.-Y.; Chan, W.-H.; Lee, A. W. M. *Eur. J. Org. Chem.* **2010**, 4181-4184. (b) Treskow, M.; Neudoerfl, J.; Giernoth, R. *Eur. J. Org. Chem.* **2009**, 3693-3697.
- (33) Berkessel, A.; Christ, P.; Leconte, N.; Neudörfl, J.-M.; Schäfer, M. Eur. J. Org. Chem. **2010**, 5165-5170.
- (34) Coric, I.; List, B. *Nature* **2012**, *483*, 315-319.
- (35) (a) Hashimoto, T.; Omote, M.; Maruoka, K. *Angew. Chem., Int. Ed.* **2011**, *50*, 3489-3492. (b) Hashimoto, T.; Omote, M.; Maruoka, K. *Angew. Chem., Int. Ed.* **2011**, *50*, 8952-8955. (c) Hashimoto, T.; Kimura, H.; Nakatsu, H.; Maruoka, K. *J. Org. Chem.* **2011**, *76*, 6030-6037. (d) Hashimoto, T.; Kimura, H.; Maruoka, K. *Angew. Chem., Int. Ed.* **2010**, *49*, 6844-6847.
- (36) Hatano, M.; Sugiura, Y.; Ishihara, K. *Tetrahedron: Asymmetry* **2010**, *21*, 1311-1314.
- (37) Christ, P.; Lindsay, A. G.; Vormittag, S. S.; Neudoerfl, J.-M.; Berkessel, A.; O'Donoghue, A. C. *Chem.–Eur. J.* **2011**, *17*, 8524-8528.
- (38) Rueping, M.; Theissmann, T. Chem. Sci. 2010, 1, 473-476.
- (39) (a) Fleischmann, M.; Drettwan, D.; Sugiono, E.; Rueping, M.; Gschwind, R. M. *Angew. Chem., Int. Ed.* **2011**, *50*, 6364-6369. (b) Simón, L.; Goodman, J. M. *J. Org. Chem.* **2011**, *76*, 1775-1788.
- (40) (a) Takemoto, Y. *Chem. Pharm. Bull.* **2010**, *58*, 593-601. (b) Yoshida, K.; Inokuma, T.; Takasu, K.; Takemoto, Y. *Molecules* **2010**, *15*, 8305-8326. (c) Rodriguez, A. A.; Yoo, H.; Ziller, J. W.; Shea, K. J. *Tetrahedron Lett.* **2009**, *50*, 6830-6833. (d) Connon, S. J. *Chem. Commun.* **2008**. (e) Rampalakos, C.; Wulff, W. D. *Adv. Synth. Catal.* **2008**, *350*, 1785-1790. (f) Connon, S. J. *Chem.—Eur. J.* **2006**, *12*, 5418-5427. (g) Takemoto, Y. *Org. Biomol. Chem.* **2005**, *3*.
- (41) (a) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. *Nature* **2003**, *424*, 146-146. (b) Thadani, A. N.; Stankovic, A. R.; Rawal, V. H. *Proc. Nat. Acad. Sci. U.S.A* **2004**, *101*, 5846-5850. (c) Gondi, V. B.; Gravel, M.; Rawal, V. H. *Org. Lett.* **2005**, *7*, 5657-5660. (d) McGilvra, J. D.; Unni, A. K.; Modi, K.; Rawal, V. H. *Angew. Chem., Int. Ed.* **2006**, *45*, 6130-6133. (e) Gómez-Bengoa, E. *Eur. J. Org. Chem.* **2009**, 1207-1213. (f) Etzenbach-Effers, K.; Berkessel, A. *Top Curr Chem* **2010**, *291*, 1-27.

- (42) (a) Tillman, A. L.; Dixon, D. J. *Org. Biomol. Chem.* **2007**, *5*. (b) Momiyama, N.; Yamamoto, Y.; Yamamoto, H. *J. Am. Chem. Soc.* **2007**, *129*, 1190-1195. (c) Matsui, K.; Takizawa, S.; Sasai, H. *Synlett* **2006**, 761-765. (d) Momiyama, N.; Yamamoto, H. *J. Am. Chem. Soc.* **2005**, *127*, 1080-1081. (e) Matsui, K.; Takizawa, S.; Sasai, H. *J. Am. Chem. Soc.* **2005**, *127*, 3680-3681. (f) Dixon, D. J.; Tillman, A. L. *Synlett* **2005**, 2635-2638. (g) McDougal, N. T.; Schaus, S. E. *J. Am. Chem. Soc.* **2003**, *125*, 12094-12095. (h) Dixon, D. J.; Tillman, A. L. *Synlett* **2005**, 2635-2638.
- (43) (a) *Privileged Chiral Ligands and Catalysts*; Zhou, Q.-L., Ed.; Wiley-VCH: Weinheim, 2011. (b) Brunel, J. M. *Chem. Rev.* **2008**, *108*, 1170-1170. (c) Chen, Y.; Yekta, S.; Yudin, A. K. *Chem. Rev.* **2003**, *103*, 3155-3211. (d) Jorgensen, K. A.; Simonsen, K. B.; Gothelf, K. V. *J. Org. Chem.* **1998**, *63*, 7536-7538.
- (44) (a) Heumann, L. V.; Keck, G. E. *J. Org. Chem.* **2008**, *73*, 4725-4727. (b) Takasaki, M.; Motoyama, Y.; Yoon, S.-H.; Mochida, I.; Nagashima, H. *J. Org. Chem.* **2007**, *72*, 10291-10293. (c) Korostylev, A.; Tararov, V. I.; Fischer, C.; Monsees, A.; Borner, A. *J. Org. Chem.* **2004**, *69*, 3220-3221. (d) Au-Yeung, T. T. L.; Chan, S.-S.; Chan, A. S. C. *Adv. Synth. Catal.* **2003**, *345*, 537-555 and references therein. (e) Ding, K.; Guo, H. *Tetrahedron Lett.* **2000**, *41*, 10061-10064.
- (45) Ding, Z.; Osminski, W. E. G.; Ren, H.; Wulff, W. D. Org. Process Res. Dev. 2011, 15, 1089-1107 and references therein.
- (46) (a) Zhou, Q. L.; Xie, J. H. *Top. Organomet. Chem.* **2011**, *36*, 1-28. (b) Ding, K. L.; Han, Z. B.; Wang, Z. *Chem.–Asian. J.* **2009**, *4*, 32-41 and references therein. (c) Cheng, X.; Hou, G. H.; Xie, J. H.; Zhou, Q. L. *Org. Lett.* **2004**, *6*, 2381-2383. (d) Zhu, S. F.; Fu, Y.; Xie, J. H.; Liu, B.; Xing, L.; Zhou, Q. L. *Tetrahedron: Asymmetry* **2003**, *14*, 3219-3224. (e) Zhang, J. H.; Liao, J.; Cui, X.; Yu, K. B.; Zhu, J.; Deng, J. G.; Zhu, S. F.; Wang, L. X.; Zhou, Q. L.; Chung, L. W.; Ye, T. *Tetrahedron: Asymmetry* **2002**, *13*, 1363-1366. (f) Birman, V. B.; L. Rheingold, A.; Lam, K.-C. *Tetrahedron: Asymmetry* **1999**, *10*, 125-131.
- (47) (a) Lam, H. W. *Synthesis* **2011**, 2011-2043. (b) Pellissier, H. *Tetrahedron* **2008**, *64*, 10279-10317. (c) Seebach, D.; Beck, A. K.; Heckel, A. *Angew. Chem., Int. Ed.* **2001**, *40*, 92-138.
- (48) Zhang, Z.; Jain, P.; Antilla, J. C. Angew. Chem., Int. Ed. 2011, 50, 10961-10964.
- (49) Martin, N. J. A.; List, B. J. Am. Chem. Soc. 2006, 128, 13368-13369.
- (50) Hu, G. PhD Thesis, Michigan State University, 2007.

- (51) Hu, G.; Huang, L.; Gupta, A. K.; Huang, R.; Wulff, W. D., manuscript in preparation.
- (52) Guan, Y.; Wulff, W. D., Unpublished results.
- (53) Gupta, A. K.; Wulff, W. D., Unpublished results.
- (54) Desai, A.; Wulff, W. D., Unpublished results.
- (55) (a) Huang, L.; Zhang, Y.; Staples, R. J.; Huang, R. H.; Wulff, W. D. *Chem.–Eur. J.* **2012**, *18*, 5302-5313. (b) Mukherjee, M. PhD Dissertation, Michigan State University, 2012.
- (56) Hamilton, G. L.; Kanai, T.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 14984-14986.
- (57) Gausepohl, R.; Buskens, P.; Kleinen, J.; Bruckmann, A.; Lehmann, C. W.; Klankermayer, J.; Leitner, W. *Angew. Chem., Int. Ed.* **2006**, *45*, 3689-3692.
- (58) Periasamy, M.; Venkatraman, L.; Sivakumar, S.; Sampathkumar, N.; Ramanathan, C. R. *J. Org. Chem.* **1999**, *64*, 7643-7645.
- (59) Loewer, Y.; Weiss, C.; Biju, A. T.; Fröhlich, R.; Glorius, F. J. Org. Chem. 2011, 76, 2324-2327.
- (60) Llewellyn, D. B.; Arndtsen, B. A. Can. J. Chem. 2003, 81, 1280-1284.
- (61) Huang, X.-R.; Chen, C.; Lee, G.-H.; Peng, S.-M. Adv. Synth. Catal. 2009, 351, 3089-3095.
- (62) (a) Raskatov, J. A.; Brown, J. M.; Thompson, A. L. *Crystengcomm* **2011**, *13*, 2923-2929. (b) Wrackmeyer, B.; Klimkina, E. V.; Milius, W. *Eur. J. Inorg. Chem.* **2011**, 2164-2171. (c) Tu, T.; Maris, T.; Wuest, J. D. *Cryst. Growth Des.* **2008**, *8*, 1541-1546. (d) Green, S.; Nelson, A.; Warriner, S.; Whittaker, B. *J. Chem. Soc., Perkin Trans. 1* **2000**, 4403-4408.
- (63) Danjo, H.; Hirata, K.; Yoshigai, S.; Azumaya, I.; Yamaguchi, K. J. Am. Chem. Soc. 2009, 131, 1638-1639.

- (64) (a) Baker, S. J.; Tomsho, J. W.; Benkovic, S. J. *Chem. Soc. Rev.* **2011**, 40. (b) Carrano, C.; Schellenberg, S.; Amin, S.; Green, D.; Küpper, F. *Mar. Biotechnol.* **2009**, 11, 431-440. (c) Dembitsky, V. M.; Smoum, R.; Al-Quntar, A. A.; Ali, H. A.; Pergament, I.; Srebnik, M. *Plant Science* **2002**, 163, 931-942.
- (65) (a) Dunitz, J. D.; Hawley, D. M.; Mikloš, D.; White, D. N. J.; Berlin, Y.; Marušić, R.; Prelog, V. *Helv. Chim. Acta* **1971**, *54*, 1709-1713. (b) Hütter, R.; Keller-Schien, W.; Knüsel, F.; Prelog, V.; Rodgers, G. C.; Suter, P.; Vogel, G.; Voser, W.; Zähner, H. *Helv. Chim. Acta* **1967**, *50*, 1533-1539.
- (66) Kohno, J.; Kawahata, T.; Otake, T.; Morimoto, M.; Mori, H.; Ueba, N.; Nishio, M.; Kinumaki, A.; Komatsubara, S.; Kawashima, K. *Biosci. Biotechnol., Biochem.* **1996**, *60*, 1036-1037.
- (67) White, J. D.; Avery, M. A.; Choudhry, S. C.; Dhingra, O. P.; Gray, B. D.; Kang, M. C.; Kuo, S. C.; Whittle, A. J. J. Am. Chem. Soc. **1989**, 111, 790-792.
- (68) Okami, Y.; Okazaki, T.; Klitahara, T.; Umezawa, H. J. Antibiot. 1976, 29, 1019-1025.
- (69) (a) Matsuda, F.; Tomiyoshi, N.; Yanagiya, M.; Matsumoto, T. *Tetrahedron* **1990**, *46*, 3469-3488. (b) White, J. D.; Vedananda, T. R.; Kang, M. C.; Choudhry, S. C. *J. Am. Chem. Soc.* **1986**, *108*, 8105-8107. (c) Nakata, T.; Saito, K.; Oishi, T. *Tetrahedron Lett.* **1986**, *27*, 6345-6348. (d) Corey, E. J.; Pan, B. C.; Hua, D. H.; Deardorff, D. R. *J. Am. Chem. Soc.* **1982**, *104*, 6816-6818. (e) Corey, E. J.; Hua, D. H.; Pan, B. C.; Seitz, S. P. *J. Am. Chem. Soc.* **1982**, *104*, 6818-6820.
- (70) Irschik, H.; Schummer, D.; Gerth, K.; Höfle, G.; Reichenbach, H. J. Antibiot. 1977, 48, 26-30.
- (71) (a) Mulzer, J.; Berger, M. J. Org. Chem. **2004**, 69, 891-898. (b) Berger, M.; Mulzer, J. J. Am. Chem. Soc. **1999**, 121, 8393-8394.
- (72) Hemscheidt, T.; Puglisi, M. P.; Larsen, L. K.; Patterson, G. M. L.; Moore, R. E.; Rios, J. L.; Clardy, J. J. Org. Chem. **1994**, *59*, 3467-3471.
- (73) Chen, T. S. S.; Chang, C.-J.; Floss, H. G. J. Org. Chem. 1981, 46, 2661-2665.

- (74) (a) Lee, J. J.; Dewick, P. M.; Gorst-Allman, C. P.; Spreafico, F.; Kowal, C.; Chang, C. J.; McInnes, A. G.; Walter, J. A.; Keller, P. J.; Floss, H. G. J. Am. Chem. Soc. **1987**, 109, 5426-5432. (b) Chen, T. S. S.; Chang, C.-J.; Floss, H. G. J. Am. Chem. Soc. **1981**, 103, 4565-4568.
- (75) Schummer, D.; Schomburg, D.; Irschik, H.; Reichenbach, H.; Höfle, G. *Liebigs Ann. Chem.* **1996**, 965-969.
- (76) Bassler, B. L.; Wright, M.; Showalter, R. E.; Silverman, M. R. *Mol. Microbiol.* **1993**, *9*, 773-786.
- (77) Chen, X.; Schauder, S.; Potier, N.; Van Dorsselaer, A.; Pelczer, I.; Bassler, B. L.; Hughson, F. M. *Nature* **2002**, *415*, 545-549.

CHAPTER 2

A NEW ARRAY OF BRØNSTED ACID CATALYSTS DERIVED FROM CHIRAL BORATE ANIONS

I think you don't have enough work in the lab. Plus, I think you need another paper.

-William D. Wulff

As discussed in chapter 1, the field of asymmetric Brønsted acid catalysis has made amazing advances over the last few years. Particularly, there has been an exponential growth in the field of chiral phosphoric acids, phosphoramides, bis(sufonyl)imides, bis(sulfuryl)imides, chiral dicarboxylic acids, and chiral disulfonic acids prepared from BINOL and H8-BINOL and their derivatives. More recently, novel chiral phosphoric acids derived from VANOL, VAPOL, SPINOL, and TADDOL log, have also been employed.

In the case of Brønsted acids derived from chiral borate anions, there is no example reported prior to our work. Although Brønsted acid catalyst derived from spiroborate anions ¹² have been reported, they have been proposed to mechanistically function as a Lewis acid until it was found in work for this thesis that they can function as Brønsted acids (Scheme 4.6, Chapter 4). At the present time, there are three different kinds of Brønsted acid catalysts derived from chiral borate anions as shown in Figure 2.1. These are characterized by NMR spectroscopy and are discussed in subsequent sections of this chapter.

Figure 2.1 Brønsted acid catalysts derived from chiral borate anions and imines as the base

2.1 B3 or BOROX Catalysts

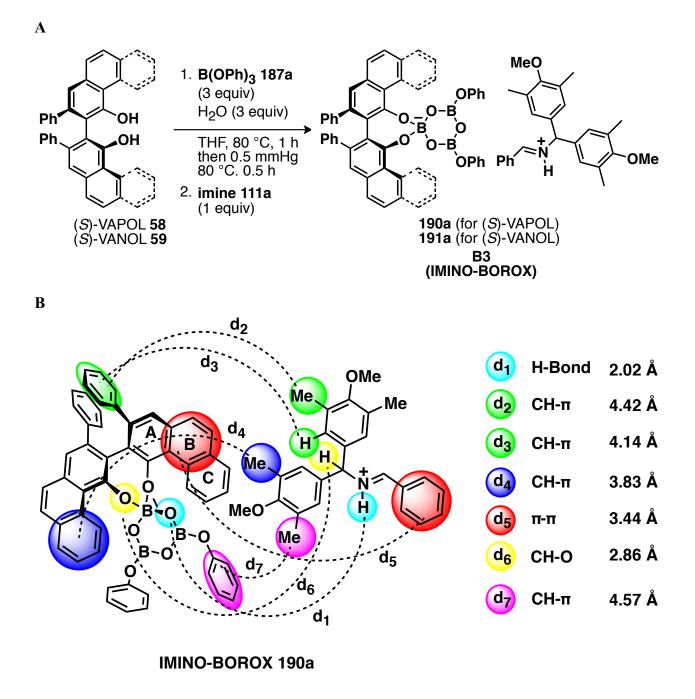
Prior to our report, a Brønsted acid derived from a chiral boroxinate anion has never been reported (Scheme 2.1). Since the boroxinate anion can be viewed as a derivative of a boroxine ring, we coined a new term "BOROX catalyst" for this class of catalysts. These novel spiroboroxinate catalysts are formed only upon the addition of a base (usually imines) and thus it belongs to class II type catalysts (Table 1.1, Chapter 1). Initially, only imines were used to generate these catalysts. The aim of this part of the project is two fold: a) refinement of the study

towards the discovery of unique chiral boroxinate catalysts generated by imines b) screening other bases and thereby generating an array of novel Brønsted acid catalysts and subsequently their application in asymmetric catalysts. Hence, a number of novel BOROX catalysts were generated using different bases. These catalysts were characterized by ¹H NMR, ¹¹B NMR spectroscopy and computational chemistry. It must be noted that these catalysts could also be chiral Lewis acids as similar NMR behavior is expected in the case of Lewis acids. However, we were able to obtain X-ray crystals of the BOROX catalysts with bases such as imines ^{13f} and 2,6-lutidine (this work). The screening of different bases is discussed below.

2.1.1 Imines as the base: IMINO-BOROX catalyst

Over the past few years, we have developed a universal catalytic asymmetric aziridination reaction of imines utilizing a catalyst derived from either of the vaulted ligands VAPOL 58 or VANOL 59 and commercial B(OPh)₃ (Chapter 1, Scheme 1.13). Inspired by the work reported by Brookhart and Templeton, we reported the catalytic asymmetric aziridination of imines 78 to afford *cis*-aziridines in 1999 and 2000. Meanwhile, a lot of mechanistic studies were carried out in our group regarding the identification of the structure of the active catalyst. Prior to these studies, it was believed that the active catalyst was B1 106/107 (Scheme 2.1) that was generated from VAPOL or VANOL when reacted with triphenyl borate 187a. This proposed structure was based on analogous studies carried out by Yamamoto on BINOL 55, 12a, 16 however no spectroscopic evidence was presented by Yamamoto for his proposed structure. Further, Yu Zhang, one of the former group members, found that on the

basis of NMR and MS studies there are two boron species identified as B2 108/109 and B1 106/107 (Scheme 2.1). Additionally, it was found that the catalyst enriched with B2 108/109 gives higher asymmetric inductions and higher rates in the aziridination reaction compared with catalyst enriched with B1 106/107. In the continuing effort to probe the mechanistic rationale for the asymmetric inductions observed for catalysts generated from VAPOL and VANOL, a major breakthrough was the identification of the active boroxinate catalyst 188/189 (Scheme 2.1). Surprisingly, the catalyst for the aziridination reaction proved to be a Brønsted acid catalysis in operation contrary to the common belief that a Lewis-acid catalyst was involved. In general, the pKa of protonated imines is approximately 7. This suggests that the pKa value of the protonated boroxinate species should be in the same range i.e. either lower or equal to 7.

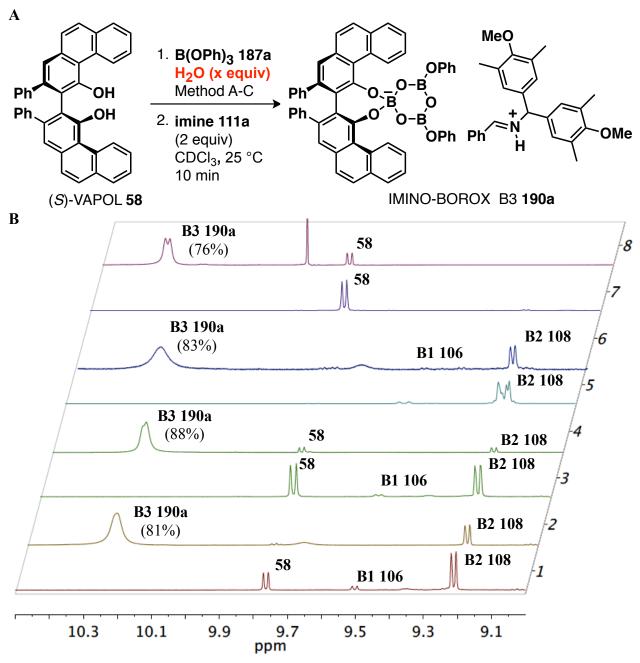

Scheme 2.1 The Wulff asymmetric *cis*-aziridination reaction with benzhydryl imines 78

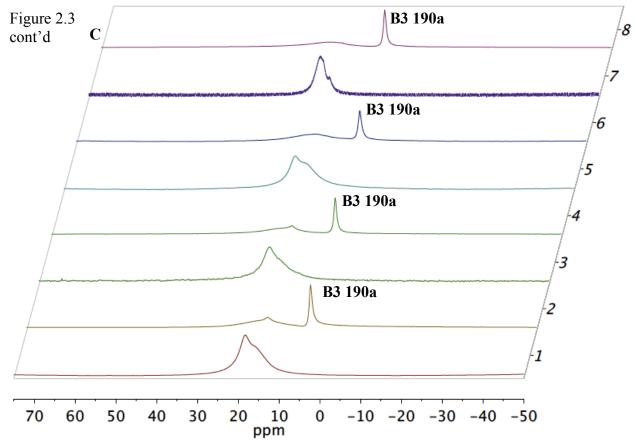
Scheme 2.1 cont'd

This is the first ever example of a chiral boroxinate catalyst reported in the literature. Gang Hu, one of the former group members, was able to characterize the catalyst by obtaining the X-ray crystal structure of the boroxinate catalyst with the MEDAM phenyl imine 111a. 13f The crystal structure of catalyst 190a showed a complex consisting of a protonated imine and a chiral counteranion in the form of a boroxinate anion derived from (S)-VAPOL 58 and commercial B(OPh)₃ (Figure 2.2). Apart from the strong hydrogen bond (d₁), a number of important non-covalent interactions (d_2 - d_7 , CH- π and π - π) were observed as shown in Figure 2.2. The nature of the involvement of the imine suggested that the actual catalyst was formed upon the addition of imine. X-ray structure revealed the presence of a tetra-coordinate boron which was further confirmed by ¹¹B NMR spectroscopy. A ¹H NMR study of the crystals revealed that the bay proton (Hb) of VAPOL shifted up field to δ 10.2-10.4 ppm. Our understanding of the catalyst was greatly enhanced since we were able to obtain crystals and structural information about the actual boroxinate catalyst in the aziridination reaction. However, it is not easy to grow crystals on demand. It was then thought to design an NMR

protocol in order to characterize these kinds of catalysts. Gang Hu, a former group member, initiated certain NMR experiments, however, a quantitative assessment of the BOROX catalysts and other VAPOL derivatives was missing.

Figure 2.2 (A) Generation of the BOROX catalysts **190a** and **191a**. (B) Diagrammatic representation of the solid-state structure of the chemzyme-substrate complex **190a**.


2.1.1.1 B(OPh)₃ as the boron source


A series of NMR experiments were designed to devise the protocol for the characterization of BOROX catalysts generated by vaulted ligands and commercial B(OPh)₃. The identification of various species generated in the process is facilitated by the fact that the bay proton (H_b) of VAPOL **58**, its derivatives B1 **106** and B2 **108** along with the IMINO-BOROX catalyst **190a** are quite distinct. The chemical shift of the bay protons for VAPOL is at $\delta = 9.77$ ppm (CDCl₃). To begin with, we employed the traditional method for catalyst formation which involves heating (S)-VAPOL with 3 equiv of commercial B(OPh)₃ at 80 °C. This resulted in the generation of a 53% yield of pyroborate B2 106 ($\delta = 9.22$ ppm, CDCl₃) along with a 6% yield of the meso-borate B1 **104** ($\delta = 9.55$ ppm, CDCl₃) and 20% of unreacted VAPOL (entry 1, Figure 2.3B). Treatment of this mixture with 2 equivalents of the imine 111a at room temperature within a few minutes results in the conversion of the colorless solution of 106 and 108 to a red solution of boroxinate **190a** ($\delta = 10.26$ ppm, CDCl₃) in 81% yield (entry 2, Figure 2.3B). Another tool that has been used in the characterization of these catalysts is ¹¹B NMR spectroscopy. Three coordinate aryl borate compounds show very broad absorptions at 16-18 ppm in the ¹¹B NMR spectrum. However, the increased spherical symmetry of a tetracoordinate boron leads to a sharpening of the absorption and the negative charge of the borate causes an upfield shift. The IMINO-BOROX catalyst 190a has a sharp absorption at 5.33 ppm (entry 2, Figure 2.3C). The ratio of the tetra-coordinate boron to tri-coordinate boron is found to

be 1:2 which furthers supports the structure of the BOROX catalyst. This study was published in a recent publication. $^{13\mathrm{f}}$

Figure 2.3 (**A**) Imine induced boroxinate catalyst formation using commercial B(OPh)₃. (**B**)^a

¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard with percent yields of **190a** given parenthesis. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.3B

a Note for Figure 2.3B: Entry 1: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h (method A). Entry 2: 2.0 equiv of imine **111a** added to the solution in entry 1 for 10 min at 25 °C. Entry 3: Same as entry 1 except that 3 equiv of H₂O was also added to make the precatalyst in THF (method B). Entry 4: 2.0 equiv of imine **111a** added to the solution in entry 3 for 10 min at 25 °C. Entry 5: Same as entry 1 except that 4 equiv of commercial B(OPh)₃ and 1 equiv of H₂O was used to make the pre-catalyst (method C). Entry 6: 2.0 equiv of imine **111a** added to the solution in entry 5 for 10 min at 25 °C. Entry 7: (S)-VAPOL (0.1 mmol) plus 3

equiv commercial B(OPh)₃ at 25 °C for 10 min. Entry 8: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv imine **111a** at 25 °C for 10 min.

The formation of the three B-O-B linkages in the boroxine ring in the BOROX catalyst 190a requires 3 equivalents of water along with commercial B(OPh)₃. The source of the water in the cases where the water is not added is most probably results from partial hydrolysis of commercial B(OPh)₃. ^{13f} Hence, the ratio of **190a**, **106**, **108**, and unreacted **58** may vary significantly depending on the nature and amount of hydrolyzed boron species present in commercially available B(OPh)3. It must be remembered that no boroxinate catalyst was observed when highly purified B(OPh)₃ was employed. 13f It was then decided to add the 3 equivalents of water to the mixture of VAPOL and commercial B(OPh)3 in order to compensate for any variation in the quality of commercial B(OPh)₃ and to study the subsequent effect in the NMR studies. As shown in the third entry of Figure 2.3B, this method for catalyst formation generated the pyroborate B2 108 and mesoborate B1 106 in 41% yield and 5% yield respectively. The amount of unreacted VAPOL 58 was found to be 45% as monitored by ¹H NMR spectroscopy. After the addition of 2 equivalents of imine 111a, an 88% yield of the boroxinate catalyst 190a was formed (entry 4, Figure 2.3B). Also, the pre-catalyst made from method C (B(OPh)₃:H₂O = 4:1) gave B2 **108** in 90% yield and B1 **106** in 5% yield. Subsequent treatment with 2 equiv of imine 111a resulted in 190a in 83% yield (entry 6, Figure 2.3B).

Interestingly, we found that the formation of the IMINO-BOROX catalyst **190a** can be observed simply upon the treatment of VAPOL **58** and 3 equivalents of B(OPh)₃ with 2 equivalents of imine **111a** at room temperature in 76% yield (entry 8, Figure 2.3B). More interestingly, VAPOL **58** and commercial B(OPh)₃ barely react with each other to afford a 3% yield of B2 **108** and this does not change after 24 h (entry 7, Figure 2.3B). However, an 18% yield of B2 **108** was observed with another sample of commercial B(OPh)₃.

2.1.1.2 Other boron sources

A special feature of the BOROX catalyst is that a variety of catalysts can be made by utilizing various trialkyl or triaryl borates **187** and different boroxines **191** (Figure 2.5A and 2.5B). However, these approaches are not feasible due to the limited commercial availability of these compounds. This limitation has been solved by employing BH₃•Me₂S **192a**, B(OH)₃ **193** and BH₃•THF **192b** in conjunction with different alcohols (Figure 2.5C and 2.5D). A comparison of these boron sources and of B(OPh)₃ for catalyst preparation and their impact on the outcome in the aziridination reaction has been presented in Table 2.1.

Table 2.1 Asymmetric aziridination with different boron sources and (S)-VAPOL **58** ^a

Table 2.1 cont'd

#	Boron Source	Pre-catalyst (method) ^b	Ratio ('B' source: PhOH:H ₂ O)	Procedure	Yield 86a (%) ^c	ee 86a (%) ^d
1	B(OPh) ₃	A	3:0:0	I	83	91
2	$B(OPh)_3$	-e	3:0:0	II	80	92
3	B(OPh) ₃	В	3:0:3	III	84	92
4	$B(OPh)_3$	C	4:0:1	IV	$82 (81)^g$	94 (96) ^g
5	B(OPh) ₃	$-^f$	4:0:0	V	80	92
6	BH ₃ •Me ₂ S	Е	3:2:3	VI	85 (81) ^g	94 (91) ^g
7	BH ₃ •Me ₂ S	F	3:2:3	VII^h	89	92
8	$B(OH)_3$	G	3:2:0	$VIII^{i}$	85	90
9	BH ₃ •THF	Н	3:2:3	IX	82	94

^a Unless otherwise specified, all reactions were run with 1 mmol of imine **78a** in toluene (0.5 M in imine 78a) with 1.2 equiv of 85. b Method A: The pre-catalyst was prepared by heating 1 equiv of (S)-VAPOL with 3 equiv of commercial B(OPh)₃ in toluene at 80 °C for 1 h. followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Method B: By heating 1 equiv of (S)-VAPOL, 3 equiv of commercial B(OPh)₃ and 3 equiv of H₂O in THF at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Method C: Same as Method A except 4 equiv of commercial B(OPh)₃ with 1 equiv of H₂O was used. Method E: By heating 1 equiv of (S)-VAPOL, 3 equiv of BH3•Me2S, 2 equiv of PhOH and 3 equiv of H2O in toluene at 100 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 100 °C. Method F: Same as Method E except removals of volatiles was excluded. Method G: Same as Method A except 3 equiv of B(OH)₃ with 2 equiv of PhOH was used. Method H: By mixing 1 equiv of (S)-VAPOL, 3 equiv of BH₃•THF, 2 equiv of PhOH and 3 equiv of H₂O in toluene at 25 °C for 15 min followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 25 °C. c Isolated yield. d Determined by HPLC. e In this case, cat **188a** is directly generated by mixing 1 equiv of (S)-VAPOL, 3 equiv of B(OPh)₃ and 10 equiv of imine 78a in toluene at 25 °C for 5 min. f In this case, cat 188a is directly generated by heating a mixture of 1 equiv of (S)-VAPOL, 4 equiv of B(OPh)₃ and 10 equiv of imine **78a** in toluene at 80 °C for 0.5 h. g m-xylene used as the solvent for results in parenthesis. h Data contributed by Wynter Osminski. ⁱ Data contributed by Li Huang.

It was then decided to carry out NMR analyses in order to quantify the amount of boroxinate catalyst formed in each case. The generation of the BOROX catalyst with 2 equiv of imine **111a** resulted in 55%, 71% and 26% yields of **190a** from triphenoxyboroxine **191a**, BH₃•Me₂S **192a** and B(OH)₃ **193**, respectively (entries 2, 4 and 6, Figure 2.4A).

Figure 2.4 Imine induced boroxinate catalyst formation using other boron sources. (**A**)^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard with percent yields of **190a** given in parenthesis. (**B**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.4A.

A

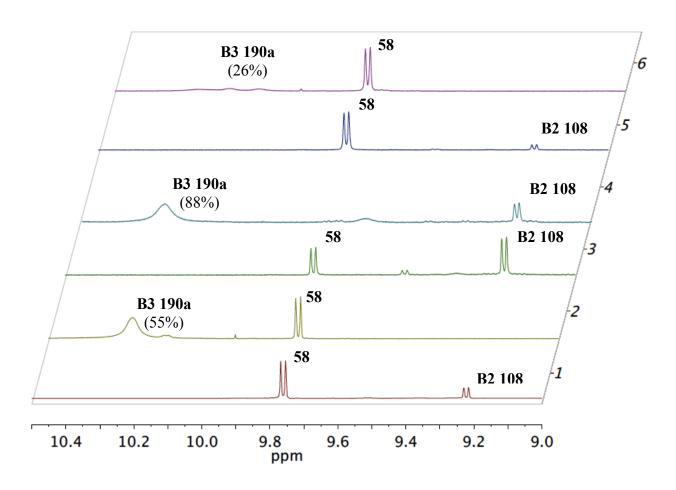
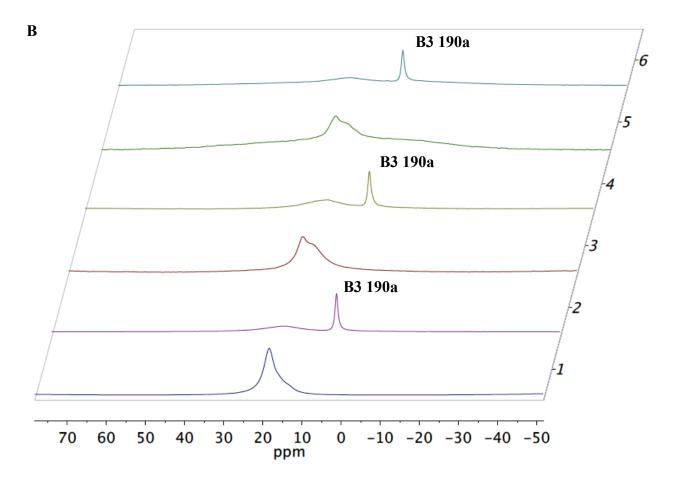



Figure 2.4 cont'd

at 25 °C for 10 min (method D). Triphenoxyboroxine **191a** was prepared when a mixture of 3 equiv BH₃•Me₂S **192a**, 3 equiv PhOH and 3 equiv H₂O was heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h (see experimental). Entry 2: 2.0 equiv of imine **111a** added to the solution in entry 1 for 10 min at 25 °C. Entry 3: (*S*)-VAPOL (0.1 mmol) plus 3 equiv BH₃•Me₂S **192a**, 2 equiv PhOH and 3 equiv H₂O were heated at 100 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h (method E). Entry 4: 2.0 equiv of imine **111a** added to the solution in entry 3 for 10 min at 25 °C. Entry 5: (*S*)-

VAPOL (0.1 mmol) plus 3 equiv B(OH)₃ **193** and 2 equiv PhOH were heated at 80 °C in CH₃CN for 1 h followed by removal of volatiles under vacuum for 0.5 h (method G). Entry 6: 2.0 equiv of imine **111a** added to the solution in entry 5 for 10 min at 25 °C.

A detailed summary of the results obtained from the various NMR experiments on mixtures of (S)-VAPOL 58, imine 111a and various boron sources are presented in Table 2.2.

Table 2.2 NMR Analysis of mixtures of (S)-VAPOL **58**, imine **111a** and various boron sources ^a

ОН *ОН 58	imi (x Met	ne 111 equiv hod A- DCl ₃ C, 10 n	$\frac{1a}{G} \stackrel{\text{[imi]}}{\longrightarrow} \left(\begin{array}{c} O \\ O \end{array} \right)$	O-B	OPh O +	0	-о-в́	OPh OPh	+ (*°0	B-OPI 106 B1	58 (unreacted)
		#	Pre-Cat method b	Equiv of imine (x)	Cat. (%)	(S)- VAPOL c,d	B1 <i>d</i>	B2 d	B3 <i>d</i>	¹ Η (δ) e	11 B (δ)
B(OP) Before imin	ore	1	A	-	-	20	6	53	-		18.29
Afte imii		2 3 4 5		2 10 1 0.5	50 10 100 200	2 <1 6 41	<1 <1 <1 <1	13 6 4 11	81 55 90 49 ^g	10.24 10.29 10.23 10.23	15.92, 5.33 16.73, 5.37 15.96, 5.38 18.29, 5.42
Before imin	ore	6	В	-	-	45	5	41	-		18.46
Afto imi		7 8		2	50 100	4 1	<1 <1	4 2	88 90	10.23 10.25	15.92, 5.36 16.00, 5.35

Table 2.2 cont'd

B(OPh) ₃ Before imine	9	-	-	-	85	<1	3	-		18.24
After imine	10 11		2 10	50 10	11 11	<1 <1	<1 <1	76 41	10.31 10.41	19.16, 5.51 17.75, 5.52
B(OPh) ₃ Before imine	12	C	-	-	<1	5	88	-		18.39
After imine	13		2	50	1	<1	15	83	10.26	19.33, 5.42
Before imine	14	D	-	-	69	4	23	-		18.39
After imine	15		2	50	19	<1	<1	55	10.25	19.33, 5.42
BH ₃ .Me ₂ S Before imine	16	E	-	-	33	5	53	-		18.27
After imine	17 18		2 1	50 100	<1 <1	<1 <1	20 30	71 62	10.26 10.28	16.18, 5.50 16.04, 5.45
B(OH) ₃ Before imine	19	G	-	-	65	2	9	-		18.31
After imine	20 21		2 1	50 100	39 50	<1 <1	<1 <1	26 23	10.16 10.16	19.13, 5.43 19.49, 5.42

^a Unless otherwise specified, all NMR samples were prepared from (S)-VAPOL (0.1 mmol), boron sources and imine **111a** in CDCl₃ (1 mL) utilizing methods A-G for pre-catalyst preparation. ^b See Table 2.1 for various methods. Method D: The pre-catalyst was prepared by simple mixing of 1 equiv of (S)-VAPOL and pre-formed triphenoxyboroxine **191a**. ^c Unreacted (S)-VAPOL **58**. ^d NMR yield with Ph₃CH as internal standard with ligand as the limiting reagent. ^e Chemical Shift of the peaks observed in the bay region of **190a** in the ¹H NMR spectrum. ^f Chemical Shift of the peaks observed in the ¹¹B NMR spectrum. ^g The NMR yield with Ph₃CH as internal standard with respect to imine is 89%.

Finally, we have four different protocols for the generation of the BOROX catalyst as shown in Figure 2.5.

Figure 2.5 Generation of a BOROX catalyst from (A) trialkyl/triaryl borates 187 (B) boroxines 191 (C) B(OH)₃ 193 (D) BH₃•Me₂S complex 192a

2.1.1.3 Temperature studies of IMINO-BOROX catalyst 190a

A temperature study on the ¹H NMR spectrum of the IMINO-BOROX catalyst **190a** provided additional information of the dynamics of this complex. The ¹H NMR spectrum of **190a** has only one peak for bay protons (Figure 2.6A, entry 2). This was interpreted to mean that the migration of the protonated imine from top face of the catalyst to the bottom face is fast on the NMR time scale. On decreasing the temperature from 25 °C to -44 °C, the two sets of bay

protons in the imine-boroxinate complex **190a** begin to appear (Figure 2.6A, entry 5). This reflects a decreased rate of migration of the iminium on the NMR time scale at low temperature.

Figure 2.6 (A) ^a ¹H NMR spectra of the bay region of **190a** in CDCl₃. (B) ¹H NMR spectra of the methyl and methoxy regions of **190a** in CDCl₃ corresponding to the entries of Figure 2.6A.

A

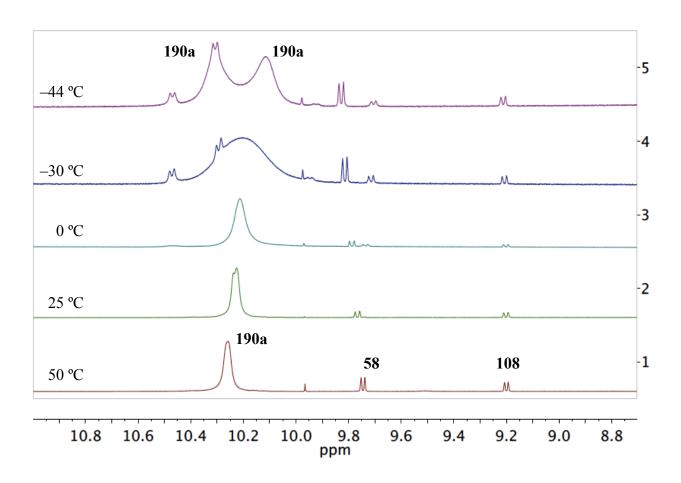
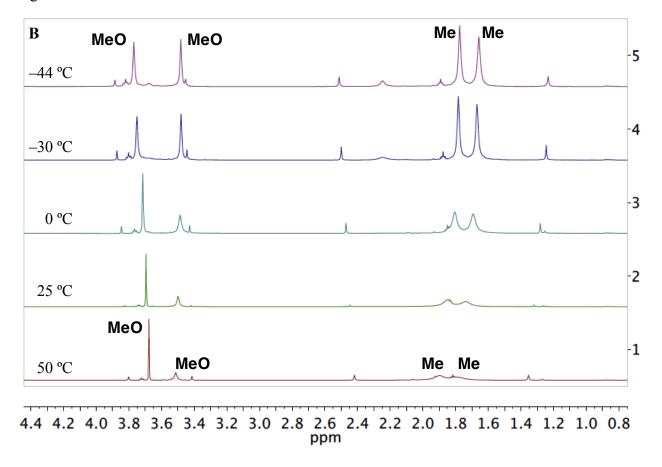



Figure 2.6 cont'd

^a Note for Figure 2.6A: Entry 1: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial $B(OPh)_3$ and 3 equiv H_2O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of imine **111a** was added to the pre-catalyst followed by the addition of $CDCl_3$ (1 mL) and the stirred for 10 min at 25 °C. The NMR taken at 50 °C. Entry 2: Same as entry 1 but the NMR taken at 25 °C. Entry 3: Same as entry 1 but the NMR taken at 0 °C. Entry 4: Same as entry 1 but the NMR taken at -30 °C. Entry 5: Same as entry 1 but the NMR taken at -44 °C.

Another important observation was made in the methyl and the methoxy region of the boroxinate complex **190a** (Figure 2.6B). At ambient temperature (25 °C), one of the methoxy groups was found to be much broader than the other. This observation indicates that one of the methoxy groups is more restricted than the other one in complex **190a**. However, at low temperature (-44 °C), the equivalent methyl and methoxy groups of the free imine **111a** are desymmetrized in the boroxinate **190a** (Figure 2.6B, entry 5). This behavior of boroxinate complex at low temperature is ambiguous and not completely understood at present. Both methyl ($\delta = 1.85$ ppm and 1.74 ppm) and methoxy ($\delta = 3.70$ ppm and 3.49 ppm) groups are substantially shielded as compared to the free imine ($\delta = 3.69$ ppm and $\delta = 2.26$ ppm for methyl and methoxy groups in free imine **111a**, respectively).

2.1.1.4 Multiplex diversity in the generation of BOROX catalyst

As discussed earlier, the diversity of BOROX catalyst is exemplified by the fact that different alcohols, ligands and imines can be employed. These variations can generate a potentially large pool of catalysts and thereby provide new opportunities in asymmetric catalysis. Considerable time was devoted during the course of this doctoral research to the development of these novel catalysts. One of the first variations that were tried was the generation of catalyst 196a with cubenol 194c. No significant change in the yield or enantioselectivity was observed in the aziridination reaction (Table 2.3, entry 3). However, this work was carried out in more detail by another group member namely Wynter Osminski. Cyclohexanol 194b was found to be the optimum alcohol for the Wulff asymmetric aziridination reaction (Table 2.3, entry 2).

Table 2.3 Catalytic asymmetric aziridination with different alcohols and (S)-VAPOL ^a

#	Catalyst	Alcohol Source	Yield 86a (%) ^b	ee 86a (%) ^c
1	188a	С РОН 194а	89	92
2	195a	◯ −ОН 194b	90	95 ^d
3	196a	OH 194c e	89	92

^a Unless otherwise specified, all reactions were performed with 1 mmol of imine **78a** in toluene (0.5 M in imine **78a**) with 1.2 equiv of **85**. The pre-catalyst was prepared heating 1 equiv of (S)-VAPOL, 3 equiv of BH₃•Me₂S, 2 equiv of alcohol or phenol and 3 equiv of H₂O in toluene at 100 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 100 °C (method F). ^b Isolated yield. ^c Determined by HPLC. ^d Data contributed by Wynter Osminski. ^e Generously provided by Victor Prutyanov.

A number of comprehensive studies have shown that both VAPOL and VANOL are broadly effective in the asymmetric aziridination reaction.¹³ In search of more diversity in the catalyst and in continued improvement in the aziridination with benzhydryl imines **78**, we envisioned the possibility of the (*S*)-ISOVAPOL **197**. The ligand was easily synthesized following the new protocol for the synthesis of VAPOL.¹⁸ The results are discussed in detail in

chapter 5. Unfortunately, no significant improvement was observed when ISOVAPOL was employed in the aziridination reaction (Table 2.4, entry 3). Recently, another group member namely Yong Guan was able to increase the stereo-induction of the aziridines from benzhydryl imines by synthesizing a derivative of VANOL that has *tert*-butyl groups in the 7,7′ positions ((S)-7,7′-tBu₂-VANOL 198, Table 2.4, entry 4). Additionally, another group member, Li Huang found that 3,3′-Ph₂-BINOL 56a gave satisfactory results. Later on, in order to *investigate the structure of the catalyst*, we screened a number of chiral diols such as BINOL derivatives 56 and TADDOL 61a. The results and NMR analysis are discussed in detail in chapter 5.

Table 2.4 Catalytic asymmetric aziridination with different ligands ^a

#	Catalyst	Ligand		Yield 86a (%) ^b	ee 86a (%) c
1	188a	(S)-VAPOL	58	82	94
2	189a	(S)-VANOL	59	87	93
3	199a	(S)-ISOVAPOL	197	82	92
4	200a	(S)-7,7'- t Bu ₂ -VANOL	198	82	98 ^d
5	201a	(R)-3,3'-Ph ₂ -BINOL	56a	88	-76 ^e
6	202a	(R)-3,3'-I ₂ -BINOL	56e	80	-51
7	203a	(R)-BINOL	55	66	-13
8	204a	(R)-3,3'-TRIP ₂ -BINOL	56f	78	2
9	205a	(R, R)-TADDOL	61a	73	<1

Table 2.4 cont'd

^a Unless otherwise specified, all reactions were performed with 1 mmol of imine **78a** in toluene (0.5 M in imine **78a**) with 1.2 equiv of **85**. The pre-catalyst was prepared by heating 1 equiv of (S)-ligand with 4 equiv of commercial B(OPh)₃ and 1 equiv of H₂O in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C (method C). ^b Isolated Yield. ^c Determined by HPLC. ^d Data contributed by Yong Guan. ^e Data contributed by Li Huang.

Lastly, a variation on the protecting group of the imine was examined (Table 2.5). Prior to this doctoral research, benzyhydryl, ^{13a} DAM ¹⁹ and BUDAM ^{13b} N-protecting groups were already employed in the search for the optimal substituent. Bh and DAM groups were found to be equally good and the BUDAM group was found to be the best for aryl imines. Although DAM imines 110 were already examined by Zhenjie Lu, a former group member, they were needed to be tested under new reaction conditions (toluene as the solvent instead of CCl₄ and a new procedure for catalyst preparation) for the optimization of alkyl imines. We were able to establish a simplified procedure utilizing DAM imines. The results are discussed in detail in chapter 6. Meanwhile, a new protecting group, MEDAM was developed by another group member namely Munmun Mukherjee. This group was found to be the optimal N-substituent for the asymmetric aziridination reactions of both aryl and alkyl imines. ^{13c} In terms of *mechanistic* findings, a combination of results from benzyl, benzhydryl and homo-benzhydryl (this work) protecting groups revealed the requirement for two aromatic rings separated by a methine group, which is directly attached to the nitrogen of the imine (Table 2.5, entries 1-3).

Table 2.5 Catalytic asymmetric aziridination with imines from different protecting groups ^a

		_	Solvent							
#	aat	Protecting	C ₆ H ₅ CH ₃		CH ₂	Cl ₂	CCl ₄			
#	cat	Group (PG)	Yield azi	ee azi	Yield azi	ee azi	Yield azi	ee azi		
		(10)	(%) ^b	(%) ^c	(%) ^b	(%) ^c	$(\%)^b$	(%) ^c		
1	210a	CH ₂ Ph	_	_	51 ^d	43^d	54 ^d	48 ^d		
2	211a	CH ₂ CHPh ₂	32	52	35	39	15	54		
3	188a	CHPh ₂	82	94	83	89	84	93		
4	212a	DAM	95	92	80	90	84	94		
5	190a	MEDAM	98 ^e	99.8 ^e	89 ^e	97.5 ^e	81 ^e	99 ^e		
6	213a	BUDAM	96 ^d	99 ^d	84 ^d	99 ^d	94 ^d	99 ^d		

Unless otherwise specified, all reactions were performed with 1 mmol of imine **78a** in toluene (0.5 M in imine **78a**) with 1.2 equiv of **85**. The pre-catalyst was prepared by heating 1 equiv of (S)-VAPOL with 4 equiv of commercial B(OPh)₃ and 1 equiv of H₂O in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C (method C). The concentration of the reaction was 0.2 M in imine **78a** for entry 2. Isolated Yield. Determined by HPLC. Data contributed by Yu Zhang. Data contributed by Munmun Mukherjee.

A NMR analysis of various imines was then performed and it is shown in Figure 2.7. All the imines show the formation of the boroxinate catalysts.

Figure 2.7 Imine induced boroxinate catalyst formation (See Table 2.5 for structures of different imines used). (**A**)^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (**B**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.7A.

A

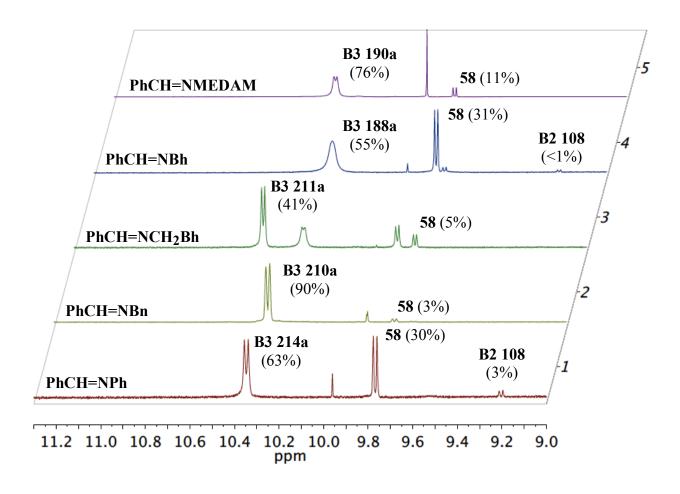
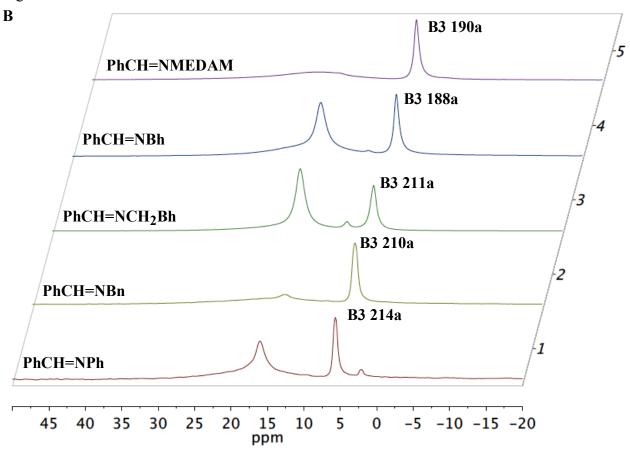



Figure 2.7 cont'd

^a Note for Figure 2.7A: Entry 1: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv imine **75a** (PhCH=NPh) at 25 °C for 10 min. Entry 2: same as entry 1 with imine **206a** (PhCH=NCH₂Ph). Entry 3: same as entry 2 with imine **207a** (PhCH=NCH₂CHPh₂). Entry 4: same as entry 2 with imine **78a** (PhCH=NCHPh₂). Entry 5: same as entry 2 with imine **111a** (PhCH=NMEDAM).

2.1.1.5 A comparison of X-ray structure and calculated structure of BOROX catalyst

We have previously reported the solid-state structure of the IMINO-BOROX catalyst-substrate complex 190a. The X-ray analysis revealed the presence of a number of non-

covalent interactions between the protonated imine substrate as it is bound in the anionic boroxinate catalyst (Figure 2.2B). In the follow-up work where a lot different bases were examined for BOROX complex, we have used computational chemistry to predict the possible structures of the BOROX catalysts with various bases. As a prelude, computations were first performed on the IMINO-BOROX 190a since the results could be compared with the solid-state structure determined by X-ray analysis. 13f Calculations were preformed using Gaussian '03 at B3LYP/6-31g* level of theory. The results of DFT calculations on **190a** are shown in Figure 2.8 and are very similar to the structure determined by X-ray. There are some differences as one might expect for a substrate-catalyst complex in the gas phase versus solid state. The strongest non-covalent interaction would be expected to be the H-bond between the protonated iminium and the boroxinate core. As in the solid state this was found to be with O-2 of the boroxinate core with a calculated distance of 1.73 Å vs. 2.02 Å in the solid state (d₁ in Figure 2.8 and Figure 2.2B). Common to both structures is the edge-face interaction (CH- π) between of one of the aryl rings of the MEDAM group with one of the phenyl rings of the VAPOL ligand (d2 in Figure 2.8 and Figure 2.2B). This distance in the calculated structure is 3.92 Å (Figure 2.8) and it is 4.42 Å (Figure 2.2B) in the solid state. It should be noted that the CH- π interaction distances are by convention indicted as the distance between the carbon bearing the hydrogen and the centroid of the benzene ring participating in the interaction. ²² There are also differences in the orientation of the phenyl group of the benzaldehyde imine relative to one of the phenanthrene walls of the VAPOL ligands (d₅ in Figure 2.8 and Figure 2.2B). The contact distance is about the same (3.56 vs 3.44 Å) but the angle between the planes containing these two rings increases from 4 to 39° in

the calculated structure. This twisting of the phenyl ring in the calculated structure allows for a closer edge-face interaction between one of the phenoxy groups of the boroxinate core and the phenyl group of the benzaldehyde imine (d_8 , Figure 2.8). This distance is 4.66 Å in the calculated structure and 5.52 Å in the solid state. This phenoxy group of the boroxinate core in the calculated structure also moves about a half an Angstrom closer for a better CH- π interaction with one of the methyl groups on the back-end aryl substituent of the MEDAM group (d_9 in Figure 2.8). Also, there is another interaction (CH-O) between the methine CH of the iminium and the O-1 of the boroxinate anion (d_6 in Figure 2.8 and Figure 2.2B).

Figure 2.8 Calculated structure of IMINO-BOROX catalyst **190a** using Gaussian '03. **(A)** Calculated B3LYP/6-31g* structure visualized by the Mercury Program (C, gray; O, red; N, blue; B, yellow; H, white). Hydrogen atoms omitted for clarity (except N-H and C-H). Some secondary interactions are highlighted: $d_1 = 1.73$ Å (H-bonding), $d_2 = 3.92$ Å (CH-π), $d_5 = 3.56$ Å (CH-π or π-π stack), $d_6 = 2.53$ Å (CH-O), $d_8 = 4.66$ Å (CH-π), $d_9 = 4.02$ Å (CH-π). **(B)** Space-filling rendition of **190a** with the same orientation and showing hydrogens. The boroxinate anion is given in green and the iminium cation is in traditional colors.

Figure 2.8 cont'd

As the complex involves hydrogen bonding, it was also examined with BHandHLYP/6-31g* level of theory and the results were not significantly different from that with B3LYP/6-31g* (Table 2.6).

Table 2.6 Comparison of distances in computed structure 190a using different levels of theories

Methods	d ₁ (Å)	d ₂ (Å)	d ₅ (Å)	d ₆ (Å)	d ₈ (Å)	d9 (Å)
V rov. orvatala	2.02	4.42	3.44	2.86	5.52	4.78
X-ray crystals B3LYP/3-21g*	1.53	3.89	3.44	2.80	3.32 4.42	4.78 4.19
B3LYP/6-31g*	1.73	3.92	3.56	2.53	4.66	4.02
BHandHLYP/6-31g*	1.73	3.84	3.52	2.47	4.55	3.88

2.1.2 Amines as the base: AMINO-BOROX catalyst

After establishing the catalytic system where imines are the bases that generate the catalysts, we envisioned to screen other bases in order to broaden the diversity of the BOROX catalyst. To begin with, one of the obvious choices for the base is an amine as they are more basic than imines. An ulterior motive to screening amines was to examine the possibility of developing the first example of a catalytic asymmetric multicomponent aziridination (MCAZ). To our delight, all kinds of aliphatic amines (1°, 2°, 3°) generated B3 catalysts in good yields (Table 2.7, entries 1-5 and Figure 2.9, entries 1-5). The pKa of protonated triethylamine is 10.65 (in water).

Table 2.7 NMR Analysis of a mixture of (S)-VAPOL, B(OPh)₃ and amines **126** as bases ^a

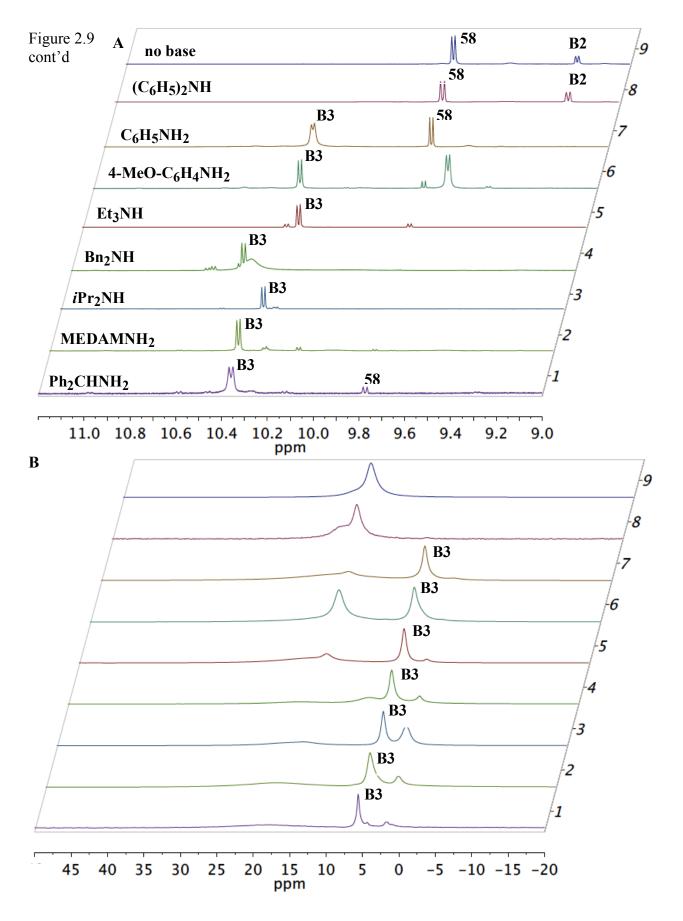

#	series	Base 126 ^b	Equiv of Base	(S)- VAPOL c,d	B1 106 d	B2 108 d	B3 215 d	¹ Н е	11 _B
1	a	Ph ₂ CHNH ₂	2	7	<1	<1	66	10.36	17.77, 5.58
2	c	MEDAM-NH ₂	2	3	<1	<1	50	10.37	18.48, 5.48
3	g	iPr ₂ NH	2	<1	<1	<1	74	10.31	16.13, 5.18
4 ^g	h	Bn ₂ NH	2	<1	<1	<1	34	10.45	18.25, 5.56
5	i	Et ₃ N	2	8	<1	<1	63	10.25	16.00, 5.37
6 ^g	j	$4\text{-MeO-C}_6\text{H}_4\text{NH}_2$	2	5	<1	<1	23	10.30	15.85, 5.49
7	k	$C_6H_5NH_2$	2	24	<1	<1	61	10.29	16.04, 5.56
8	l	$(C_6H_5)_2NH$	2	51	<1	28	<1	_	16.41
9	_	No base	0	57	5	18	<1	_	16.00

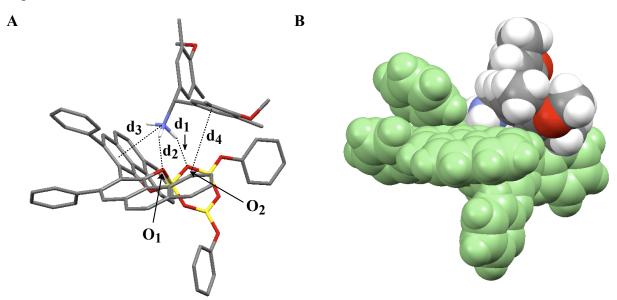
Table 2.7 cont'd

unless otherwise specified, all NMR samples were prepared by mixing (S)-VAPOL **58** (0.1 mmol) and commercial B(OPh)₃ (0.3 mmol) and base **126** in CDCl₃ (1 mL) at 25 °C and stirring 10 min before spectra were taken. All bases were distilled or sublimed prior to use. Unreacted (S)-VAPOL **58**. NMR yield with Ph₃CH as internal standard with ligand as the limiting reagent. Chemical Shift for the bay proton in B3-base complex. Chemical Shift of the peaks observed in B NMR spectrum. There is an unknown specie at 10.41 ppm (40% yield, determined by the integration of the bay proton of the new species against the internal standard) for entry 4 and at 9.66 ppm (44% yield, determined by the integration of the bay proton of the new species against the internal standard) for entry 6.

To our surprise, even an aromatic amine such as aniline **126k** (pKa of protonated aniline is 4.62 in water)²⁴ gave BOROX catalyst **215k** in 61 % yield (Table 2.7, entry 7 and Figure 2.9 entry 7). However, Ph₂NH **126l** (pKa of Ph₂N⁺H₂ is 0.78 in water) failed to give any boroxinate. After these results, we moved on to develop a true MCAZ reaction and were able to successfully accomplish that goal and this is discussed in detail in Chapter 7.

Figure 2.9 Amine induced boroxinate catalyst formation. (**A**)^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (**B**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.9A.

^a Note for Figure 2.9A: Entry 1: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv amine **126a** (Ph₂CHNH₂) at 25 °C for 10 min. Entry 2: same as entry 1 but with amine **126c** (MEDAM-NH₂). Entry 3: same as entry 2 but with amine **126g** (iPr₂NH). Entry 4: same as entry 2 but with amine **126h** (Bn₂NH). Entry 5: same as entry 2 but with amine **126i** (Et₃N). Entry 6: same as entry 2 but with amine **126j** (4-MeO-C₆H₄NH₂). Entry 7: same as entry 2 but with amine **126k** (C₆H₅NH₂). Entry 8: same as entry 2 but with amine **126l** ((C₆H₅)₂NH). Entry 9: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ at 25 °C for 10 min.


A lot effort has been given to obtain crystals of AMINO-BOROX catalyst. Unfortunately, no success was achieved. Therefore, computational methods were undertaken to explore the possible structures of the AMINO-BOROX 215c derived from MEDAM amine 126c. Calculations were preformed using Gaussian '03 at B3LYP/6-31g* level of theory. The protonated amine 126c-H should have a very different binding mode in the boroxinate species 215c due to the absence of the benzylidene group on the nitrogen atom and the presence of an ammonium ion with three hydrogens capable of H-bonding to the anionic boroxinate platform.

The calculated structure for the BOROX species **215c** is presented in Figure 2.10. The key interactions between the cationic protonated amine and the anionic boroxinate core are the two hydrogen bonds from the ammonium ion to O-1 and O-2 of the boroxinated anion (Figure 2.10). The hydrogen bond to O-2 ($d_1 = 1.75$ Å) is slightly shorter than that to O-1 ($d_2 = 1.96$ Å) consistent with the computational finding that the electron density of the boroxinate core is

highest at O-2 (see experimental). There is also a short distance between the ammonium nitrogen and the centroid of the A-ring of one of the phenanthrene units in the VAPOL ligand $(d_3 = 3.21 \text{ Å})$, which is indicative of an NH- π interaction. The iminium ion in **190a** and the ammonium ion in **215c** both have the protonated nitrogen H-bonded to O-2 of the boroxinate core, but the head groups of the nitrogen substituent (MEDAM group) are on opposite sides of the boroxinate platform. In **190a** the MEDAM group has an edge-face interaction with the phenyl substitutent of VAPOL and in **215c**, the MEDAM group has an edge-face interaction with the C-ring of VAPOL $(d_4 = 4.18 \text{ Å})$.

Figure 2.10 Calculated structure of AMINO-BOROX catalyst **215c** (derived from MEDAM amine **126c**) using Gaussian '03. **(A)** Calculated B3LYP/6-31g* structure visualized by the Mercury Program (C, gray; O, red; N, blue; B, yellow; H, white). Hydrogen atoms omitted for clarity (except N-H). Some secondary interactions are highlighted: $d_1 = 1.75$ Å (H-bonding), $d_2 = 1.96$ Å (H-bonding), $d_3 = 3.21$ Å (NH-π or cation-π), $d_4 = 4.18$ Å (CH-π). **(B)** Space-filling rendition of **215c** with the same orientation and showing hydrogens. The boroxinate anion is given in green and the ammonium cation is in traditional colors.

Figure 2.10 cont'd

The boroxinate complex 215c was also examined with BHandHLYP/6-31g* level of theory and the results were not significantly different from that with B3LYP/6-31g* (Table 2.8). In fact, a calculated structure of 215k (not shown here) derived from aniline 126k also revealed the presence of dual hydrogen bonding and an NH- π interaction.

Table 2.8 Comparison of distances in computed structure 215c using different levels of theories

Methods	d ₁ (Å)	d ₂ (Å)	d ₃ (Å)	d ₄ (Å)
X-ray crystals	-	-	-	-
B3LYP/3-21g*	1.60	1.86	3.15	4.05
B3LYP/6-31g*	1.75	1.96	3.21	4.18
BHandHLYP/6-31g*	1.74	1.99	3.16	4.13

2.1.3 Pyridines and Quinolines as the base: PYRIDINO- and QUINOLINO-BOROX catalyst

It was interesting to find that heterocyclic bases were also able to generate B3 in good yields. Simple mixing of pyridine **216a** with VAPOL and commercial B(OPh)₃ in CDCl₃ gave a

white precipitate in the NMR tube (unsuitable for shimming). However, we were able to obtain a good quality ¹H NMR and ¹¹B NMR spectra (in d₈-toluene), when the boroxinate catalyst was made via pre-catalyst (Figure 2.11). The boroxinate **217a** was obtained in 85% yield when one equivalent of pyridine was added to the pre-catalyst. The pKa of protonated pyridine is 5.14. ²⁴ **Figure 2.11** Pyridine induced boroxinate catalyst formation. (**A**) ¹H NMR spectra of **217a** in d₈-toluene. A mixture of (*S*)-VAPOL (0.1 mmol), 3 equiv commercial B(OPh)₃ was heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h (method A). Thereafter, 1.0 equiv of pyridine **216a** was added to the pre-catalyst followed by the addition of d₈-toluene (1 mL) and the stirred for 10 min at 25 °C. (**B**) ¹¹B NMR spectra corresponding to

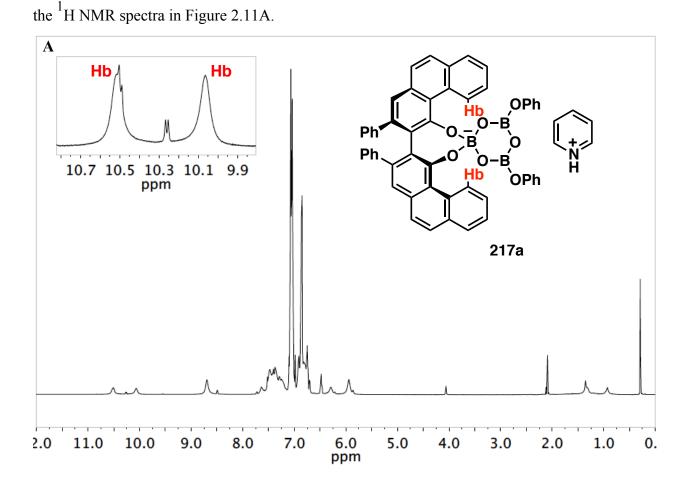
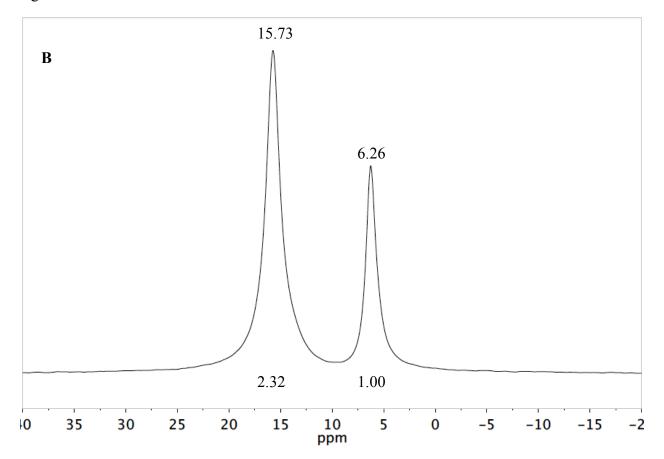



Figure 2.11 cont'd

The 1 H NMR spectrum of **217a** has two peaks ($\delta = 10.07$ ppm and $\delta = 10.51$ ppm) for the bay protons (Figure 2.11A). This was interpreted to mean that the migration of the protonated pyridine from top face of the catalyst to the bottom face is slow on the NMR time scale. Pyridine derivatives such as 2,6-lutidine **216b** and DMAP **216c** also gave the catalyst in good yields (Table 2.9 and Figure 2.11, entries 1-2). In fact, Gang Hu, a former group member, was able to obtain an X-ray crystal structure of boroxinate **217c**. A small amount of [DMAP-H]⁺ [B(OPh)₄]⁻ **218** (δ =2.30 ppm, 11 B NMR) was also observed during the NMR study of **217c** complex. The structure of **218** was confirmed by X-ray analysis and is discussed in chapter 4.

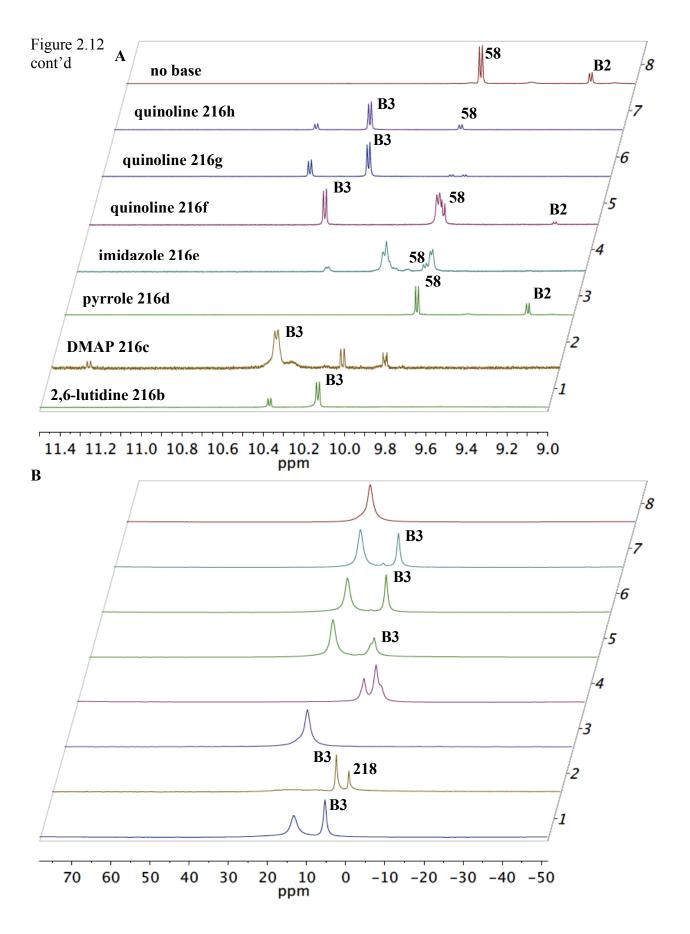

Table 2.9 NMR Analysis of a mixture of (S)-VAPOL, $B(OPh)_3$ and pyridine derivatives, pyrrole, imidazole and quinoline derivatives as bases a

Table 2.9 cont'd

^a Unless otherwise specified, all NMR samples were prepared by mixing (S)-VAPOL **58** (0.1 mmol) and commercial B(OPh)₃ (0.3 mmol) and base **216** in CDCl₃ (1 mL) at 25 °C and stirring 10 min before spectra were taken. Compounds **216f-h** were generously provided by Amila Dissanayake. ^b All bases were distilled or sublimed prior to use. ^c Unreacted (S)-VAPOL **58**. ^d NMR yield with Ph₃CH as internal standard with ligand as the limiting reagent. ^e Chemical Shift for the bay proton in B3-base complex. ^f Chemical Shift of the peaks observed in ¹¹B NMR spectrum.

In case of pyrrole **216d**, there was no sign of catalyst formation (Table 2.9 and Figure 2.12, entry 3). This was expected, as the pKa of protonated pyrrole is –3.80.²⁵ The case of imidazole **216e** was a little complex as there was no tri-coordinate boron observed in the ¹¹B NMR spectrum (Figure 2.11, entry 4). It might be possible that all three boron atoms are coordinated by imidazole. Quinoline derivatives were also screened for the generation of QUINOLINO-BOROX catalyst (Table 2.9 and Figure 2.11, entries 5-7). Direct generation of a boroxinate from quinolines lead us to the discovery of another asymmetric reaction mediated by QUINOLINO-BOROX catalyst i.e. asymmetric reduction of quinolines²⁶ as discussed in Scheme 1.20 of Chapter 1. The pKa of protonated quinoline and 5,6-benzoquinoline are 4.85 and 5.15 respectively.²⁴

Figure 2.12 Pyridine and quinoline derivatives in the induction of boroxinate catalyst formation. (**A**)^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (**B**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.12A.

and 2 equiv **216b** at 25 °C for 10 min. Entry 2: same as entry 1 with **216c**. Entry 3: same as entry 2 with **216d**. Entry 4: same as entry 2 with **216e**. Entry 5: same as entry 2 with **216f**. Entry 6: same as entry 2 with **216g**. Entry 7: same as entry 2 with **216h**. Entry 8: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ at 25 °C for 10 min.

While studying the NMR spectra of the complex 217b (base = 2,6 lutidine) derived from (R)-VAPOL, colorless crystals were serendipitously formed in the NMR tube and thus the opportunity to determine the crystal structure of the LUTIDINO-BOROX complex 217b presented itself. Structural parameters for 217b are available free of charge from the Cambridge Cystallographic Data Centre under reference number CCDC. The observed crystal structure is found to be different from crystal structures of all the boroxinates we reported so far. A detailed analysis revealed the presence of two BOROX units (B3a and B3b) in a single array (Figure 2.13). Each unit consists of a protonated lutidinium ion, a molecule of phenol and the boroxinate anion derived from a boroxine ring in which the tetra-coordinate boron is spiro-fused to the VAPOL ligand. There is no direct H-bonding between the protonated lutidinium and the boroxinate anion, but rather the protonated lutidinium is H-bonded to the phenol (Figure 2.13, d₁ = 1.91 Å in **B3a** and $d_{1'}$ = 1.87 Å in **B3b**), which in turn is H-bonded to the boroxinate anion (Figure 2.13, $d_1 = 1.91$ Å in **B3a** and $d_{1'} = 1.92$ Å in **B3b**). It must be noted that the pKa of protonated lutidine is 5.77.24 Yamamoto and coworkers reported a similar kind of hydrogen bonding interaction incorporating a molecule of phenol in the case of the crystal structure of a

spiroborate anion. ^{12a} An important difference between the two B3 units (**B3a** and **B3b**) is that they differ at the point of binding of the phenol to the boroxinate: the phenol is H-bonded to O1 in **B3a** and to O2 in **B3b**. It must be remembered that we have always observed the presence of hydrogen bonding to O2 in all boroxinates reported so far. ^{13e,13f} Similar to the case of imines, there are several non-covalent interactions like CH- π and π - π interactions. One of the important CH- π interactions is from the methyl group on lutidine to the middle ring of the phenantherene unit in the VAPOL ligand (Figure 2.13, d₃ = 3.77 Å in **B3a** and d₃, = 4.17 Å in **B3b**).

Figure 2.13 (A)^a Solid state structure of the LUTIDINO-BOROX 217b visualized by the Mercury Program (C, gray; O, red; N, blue; B, yellow; H, white). Hydrogen atoms omitted for clarity (except N-H and O-H). (B) Space-filling rendition of 217b with the same orientation and showing hydrogens. The boroxinate anion is given in green and the lutidinium cation is in traditional colors. (C) Diagrammatic representation of B3a and B3b in 217b

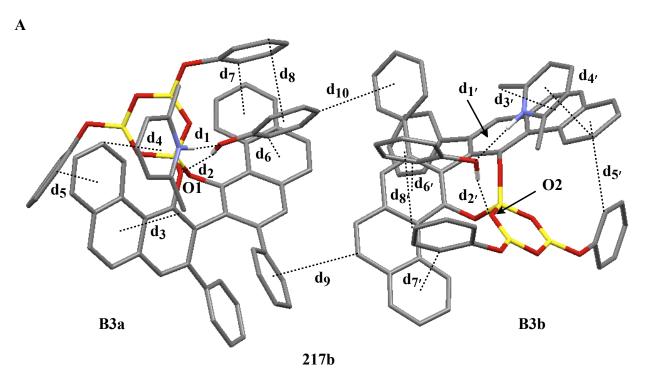
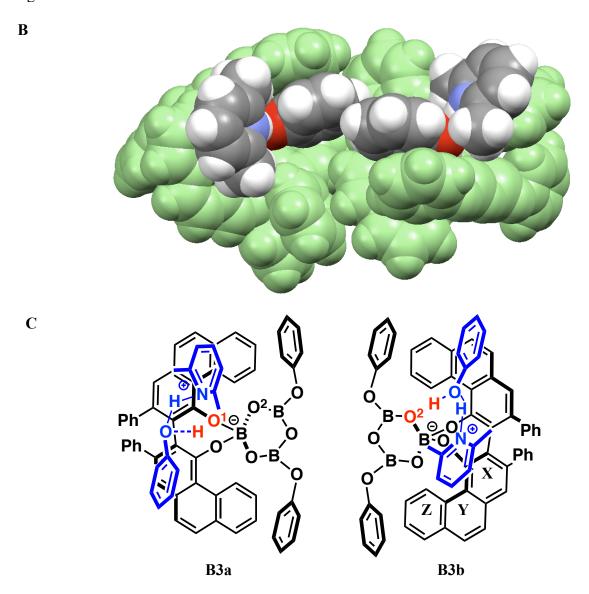
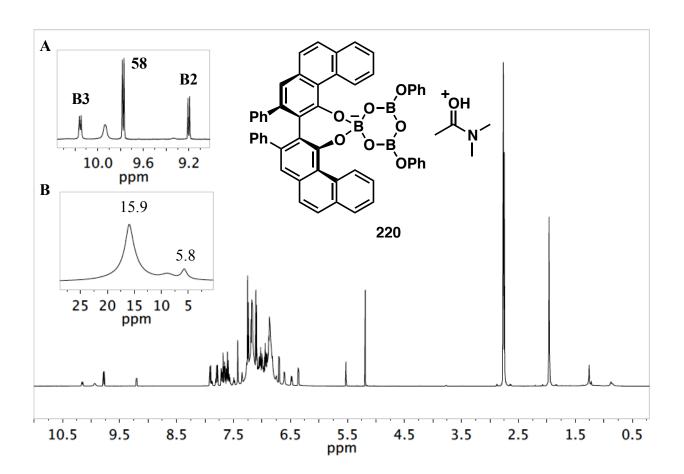



Figure 2.13 cont'd


^a Note for Figure 2.13A: Some secondary interactions are highlighted: d_1 = 1.91 Å (H-bonding), d_2 = 1.91 Å (H-bonding), d_1 = 1.87 Å (H-bonding), d_2 = 1.92 Å (H-bonding), d_3 = 3.77 Å (CH-π), d_3 = 4.17 Å (CH-π), d_4 = 3.54 Å (CH-π or π-π stack), d_4 = 3.44 Å (CH-π or π-π stack), d_5 = 3.70 Å (CH-π), d_5 = 3.92 Å (CH-π), d_6 = 3.94 Å (CH-π), d_6 = 3.50 Å (CH-π), d_7 = 3.54 Å

(СН- π), $d_{7'} = 3.43$ Å (СН- π), $d_{8} = 3.40$ Å (СН- π or π - π stack), $d_{8'} = 3.54$ Å (СН- π or π - π stack), $d_{9} = 3.62$ Å (СН- π), $d_{10} = 4.25$ Å (СН- π).

There are several other CH- π interactions including the two interactions from the phenyl ring of the phenol component of the boroxinate to the end ring of the phenonthrene unit in the VAPOL ligand (Figure 2.13, $d_5 = 3.70$ and $d_7 = 3.54$ in **B3a** and $d_{5'} = 3.92$ and $d_{7'} = 3.43$ in **B3b**). One of the interesting CH- π interactions is from the external phenol to the middle ring (in case of B3a) or X-ring (in case of B3b) of the phenanthrene unit in the VAPOL ligand (Figure 2.13, $d_6 = 3.94$ in **B3a** and $d_{6'} = 3.50$ in **B3b**). Another important noncovalent interaction between the catalyst and the base is a π - π stacking interaction between the external phenol molecule and the phenyl ring of the phenol component of the boroxinate anion (Figure 2.13, $d_8 =$ 3.40 in **B3a** and $d_{8'} = 3.54$ in **B3b**). An additional π - π stacking interaction was located between the aryl ring of lutidine and the end ring of the phenanthrene unit in the VAPOL ligand (Figure 2.13, $d_4 = 3.54$ in **B3a** and $d_{4'} = 3.44$ in **B3b**). Finally, there are two CH- π interactions, which are possibly holding the two B3 units together (Figure 2.13, $d_9 = 3.62$ and $d_{10} = 4.25$ in **B3a** and **B3b**). The crystal structure of **217b** has provided many new details about the nature and binding of the boroxinate catalyst. The presence of two B3 units suggests the idea of possible aggregation of the catalyst in the mechanism of aziridination reaction. Also, the steric bulk of two methyl groups on lutidine might have made it necessary for the external phenol to serve the role of the sandwich for the hydrogen bonding. This suggests that the asymmetric reduction of quinoline should be tried with an extra molecule of phenol during the preparation of the catalyst as quinoline and lutidine both have steric bulk at the ortho positions.

2.1.4 Amides as the base: AMIDO-BOROX catalyst

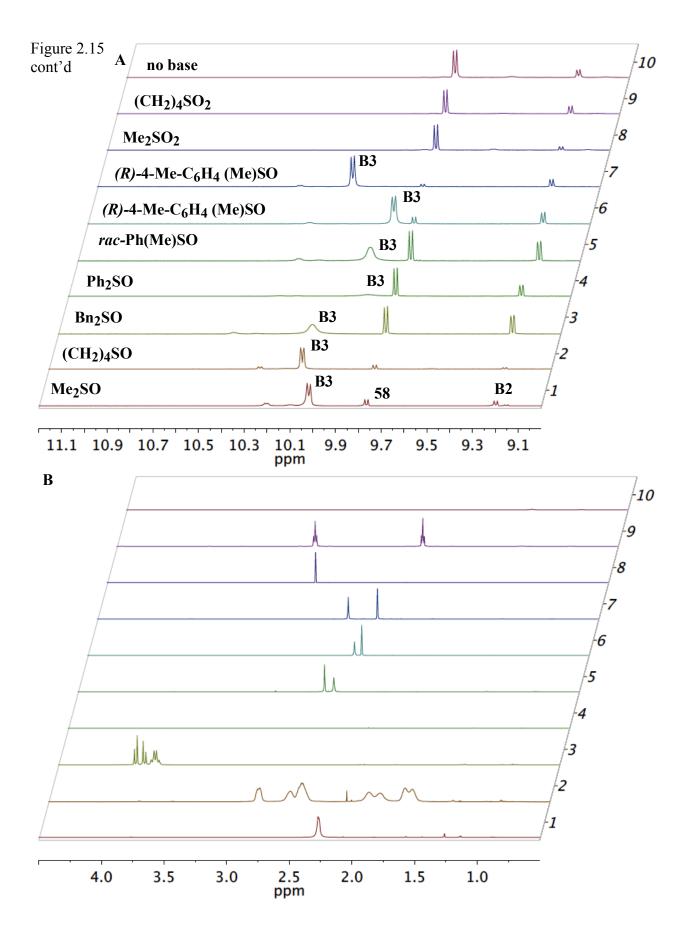
The next base examined was amides. The pKa of the protonated N, N dimethyl acetamide **219** is -0.39. An 18% yield of the catalyst **220** was formed when 2 equiv of **219** was employed based on the integration of the absorption at $\delta = 10.16$ ppm in 1 H NMR spectrum (Figure 2.14). **Figure 2.14** Amide induced boroxinate formation. (**A**) 1 H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv **219** at 25 °C for 10 min. (**B**) 11 B NMR spectra corresponding to the 1 H NMR spectra in Figure 2.14A.

2.1.5 Sulfoxides as the base: SULFOX-BOROX catalyst

In search of a highly acidic BOROX catalyst, we envisioned to employ very weak bases like sulfoxides. It must be noted that the pKa of a protonated dimethyl sulfoxide is –1.8 (in H_2O). To our delight and surprise, when 2 equiv of DMSO **221a** was used as the base the SULFOX-BOROX catalyst **222a** was formed in 66% yield (Table 2.10, entry 1). In fact, good yields of boroxinate catalysts were obtained irrespective of the sulfoxides being acyclic, cyclic, aliphatic or even aromatic (Table 2.10, entries 1-5). Also, mixed sulfoxides like **221e** resulted in 46% yield of the catalyst (Table 2.10, entry 6). The pKa of protonated **221e** is –2.27.

Table 2.10 NMR Analysis of a mixture of (S)-VAPOL, $B(OPh)_3$ and sulfoxides as bases a

(*OH	Bas (x e	$ \begin{array}{c} 3 & (3 \text{ equiv}) \\ \mathbf{5e} & 221 \\ \mathbf{equiv}) \\ \mathbf{OCl}_{3} \\ 10 & \mathbf{min} \end{array} $ [Base-H)-В О О-В	+ (*O)B	3-О-В́	OPh OPh	+ (*0	B-OP	∨oH
58		1 M 22	_		108 B2			106 B1	58 (unreacted)
#	series	Base 221 ^b	Equiv of Base	(S)- VAPOL c,d	B1 106 d	B2 108 d	B3 222 d	¹ Н е	¹¹ B
1 2	a	Me ₂ SO	1 2	21 11	<1 <1	15 10	53 66	9.98 10.02	16.03, 6.98 15.95, 6.24
3	b	(CH ₂) ₄ SO	2	8	<1	3	73	10.08	15.78, 5.70
4	c	Bn ₂ SO	2	22	<1	17	38	10.09	15.96, 7.42
5	d	Ph ₂ SO	2	45	<1	21	25	10.01	16.01, 8.57
6	e	±Ph(Me)SO	2	22	<1	17	46	9.94	15.96, 7.11
7	f	(R)- p -tol- (Me) SO	1	32	<1	15	47	9.81	15.95, 7.92
8	f	(R)- p -tol- (Me) SO	2	09	<1	17	74	9.87	15.97, 6.73
9 ^g	g	(R)- p -tol- (Me) SO	1	18	<1	08	64	10.01	15.94, 7.66
10^{g}	g	(R)- p -tol- (Me) SO	2	06	<1	13	70	10.08	15.93, 6.43
11	h	Me_2SO_2	2	69	07	11	<1	_	15.99
12	i	$(CH_2)_4SO_2$	2	58	<1	22	<1	_	15.98


Table 2.10 cont'd

13	_	No base	0	57	5	18	<1	_	16.00

^a Unless otherwise specified, all NMR samples were prepared by mixing (S)-VAPOL **58** (0.1 mmol) and commercial B(OPh)₃ (0.3 mmol) and base **221** in CDCl₃ (1 mL) at 25 °C and stirring for 10 min before spectra were taken. ^b All bases were distilled or sublimed prior to use. ^c Unreacted (S)-VAPOL **58**. ^d NMR yield with Ph₃CH as internal standard with ligand as the limiting reagent. ^e Chemical Shift for the bay proton in B3-base complex. ^f Chemical Shift of the peaks observed in the ¹¹B NMR spectrum. ^g (R)-VAPOL used for analysis.

Chiral sulfoxide **221f** was employed with both enantiomers of the ligand. Similar yields were observed in both the cases suggesting the absence of any kind of matched/mismatched case although the bay proton is 0.2 ppm different between the diastereometric SULFOX-BOROX species. Interestingly, sulfones **221h** and **221i** gave no sign of BOROX catalyst. This was expected, as the pKa of the protonated dimethylsulfone **221h** is –12 (in H₂O).²⁹

Figure 2.15 Sulfoxide induced boroxinate catalyst formation. (A) ^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (B) The alkyl region corresponding to the ¹H NMR spectra in Figure 2.15A. (C) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.15A. (D) ^b The shift in the methyl region of the dimethylsulfoxide after the formation of 222a. ¹H NMR spectra in CDCl_{3.} (E) The bay region of the ¹H NMR spectra corresponding to the ¹H NMR spectra in Figure 2.15D.

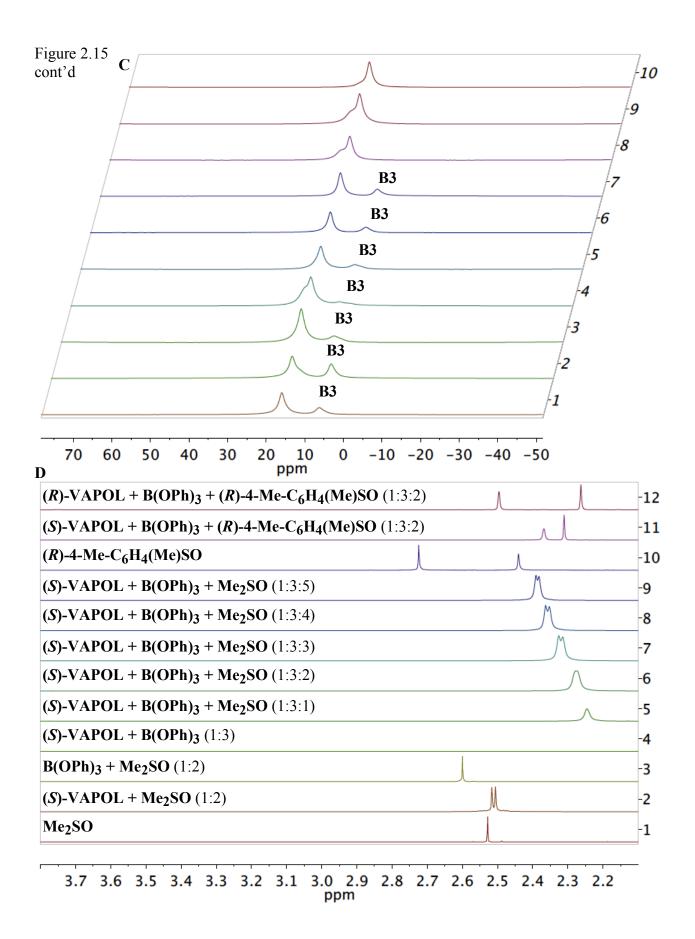
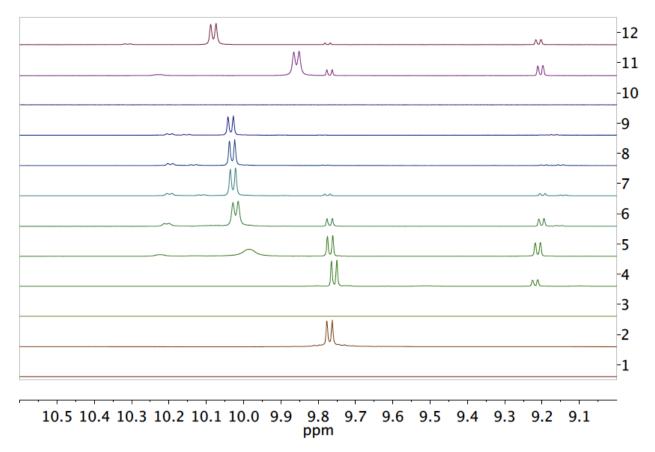
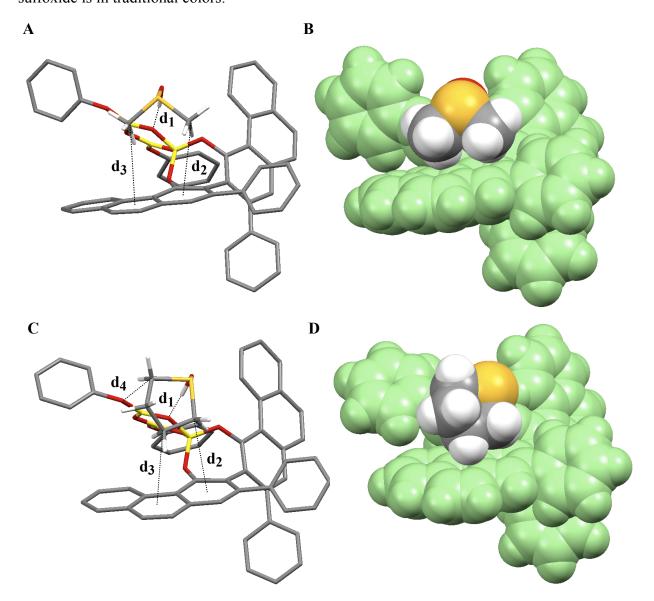



Figure 2.15 cont'd **E**

and 2 equiv Me₂SO **221a** at 25 °C for 10 min. Entries 2-6: same as entry 1 with 2 equiv (CH₂)₄SO **221b**, Bn₂SO **221c**, Ph₂SO **221d**, *rac*-Ph(Me)SO **221e** and (*R*)-4-Me-C₆H₄(Me)SO **221f** respectively. Entry 7: (*R*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv (*R*)-4-Me-C₆H₄(Me)SO **221f** at 25 °C for 10 min. Entries 8-9: same as entry 1 with 2 equiv Me₂SO₂ **221h** and (CH₂)₄SO₂ **221i**, respectively. Entry 10: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ at 25 °C for 10 min. b Note for Figure 2.15D: Entry 1: neat

DMSO. Entry 2: (*S*)-VAPOL (0.1 mmol) plus 2 equiv Me₂SO **221a** at 25 °C for 10 min. Entry 3: commercial B(OPh)₃ (0.1 mmol) plus 2 equiv Me₂SO **221a** at 25 °C for 10 min. Entry 4: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ at 25 °C for 10 min. Entry 5: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 1 equiv Me₂SO **221a** at 25 °C for 10 min. Entry 6: same as entry 5 except 2 equiv Me₂SO **221a** used. Entry 7: same as entry 5 except 3 equiv Me₂SO **221a** used. Entry 8: same as entry 5 except 4 equiv Me₂SO **221a** used. Entry 9: same as entry 5 except 5 equiv Me₂SO **221a** used. Entry 10: neat (*R*)-4-Me-C₆H₄(Me)SO **221f**. Entry 11: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv (*R*)-4-Me-C₆H₄(Me)SO **221f** at 25 °C for 10 min. Entry 12: (*R*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv (*R*)-4-Me-C₆H₄(Me)SO **221f** at 25 °C for 10 min.


With the realization of the SULFOX-BOROX catalyst, we decided to computationally explore the complexes of 222a and 222b in order to gain some insight into their possible structures. Calculations were preformed using Gaussian 03 at B3LYP/6-31g* level of theory. The resulting structures are presented in Figure 2.16. There is hydrogen bond between the protonated DMSO and the boroxinate core (Figure 2.16A, $d_1 = 1.44$ Å). One of the intriguing features in the calculated structure was the possible CH- π interaction between the methyl groups of DMSO and the phenanthrene ring of the ligand (Figure 2.16A, $d_2 = 3.56$ Å and $d_3 = 3.80$ Å). A careful analysis of the 1 H NMR of the SULFOX-BOROX species 222a (Figure 2.15D, entry 1

vs. 5) revealed an upfield shift of 0.3 ppm when one equiv of DMSO was used to generate 222a. Although the methyl peak for free DMSO was missing when excess DMSO (up to 5 equivalents) was employed, the difference in chemical shift decreased from 0.3 ppm to 0.15 ppm (Figure 2.15D, entry 1 vs. 5-9). This suggests that there is an exchange between bound DMSO and free DMSO. An up field shift for the methyl protons was also observed in the case of the chiral sulfoxide 221f (Figure 2.15D, entry 10 vs. 11-12). Similar observations (experimental and theoretical) were made for the methylene units in the case of 222b derived from (CH₂)₄SO 221b (Figure 2.16C and 2.16D). The structure for 222h was also computed and is discussed in Section 2.2. Also, the rationale of the lack of a match/mismatch relationship in catalyst formation, was also found as the sulfoxide 221f shifts in such a way that it has the maximum CH-π interaction (not shown here). The SULFOX-BOROX catalyst 222a was successfully employed for the catalytic asymmetric epoxidation of aldehydes. The details are discussed in Chapter 8.

Figure 2.16 Calculated structure of SULFOX-BOROX catalysts **222a** and **222b** using Gaussian '03. They are visualized by the Mercury Program (C, gray; O, red; S, orange; B, yellow; H, white). Hydrogen atoms omitted for clarity (except protonated DMSO and TMSO). **(A)** Calculated B3LYP/6-31g* structure of **222a**. Some secondary interactions are highlighted: $d_1 = 1.44 \text{ Å}$ (H-bonding), $d_2 = 3.56 \text{ Å}$ (CH-π), $d_3 = 3.80 \text{ Å}$ (CH-π). **(B)** Space-filling rendition of **222a** with the same orientation and showing hydrogens. The boroxinate anion is given in green and the protonated sulfoxide is in traditional colors. **(C)** Calculated B3LYP/6-31g* structure of **222b**. Some secondary interactions are highlighted: $d_1 = 1.44 \text{ Å}$ (H-bonding), $d_2 = 3.67 \text{ Å}$ (CH-π), $d_3 = 3.54 \text{ Å}$ (CH-π), $d_4 = 3.39 \text{ Å}$ (CH-O). **(D)** Space-filling rendition of **222b** with the same

Figure 2.16 cont'd

orientation and showing hydrogens. The boroxinate anion is given in green and the protonated sulfoxide is in traditional colors.

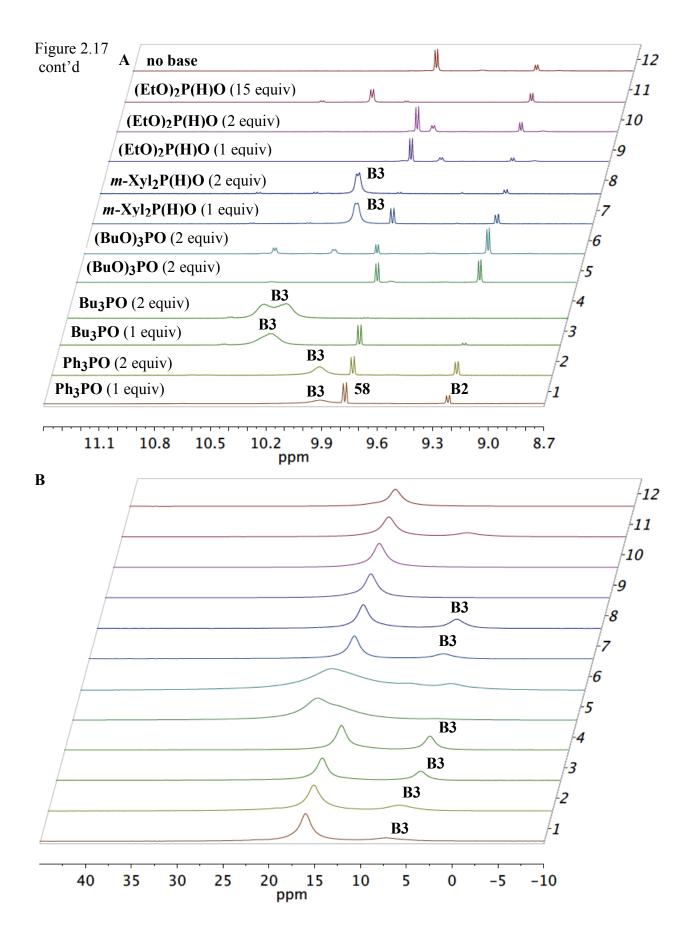
2.1.6 Phosphine-oxides as the base: PHOSPHINOX-BOROX catalyst

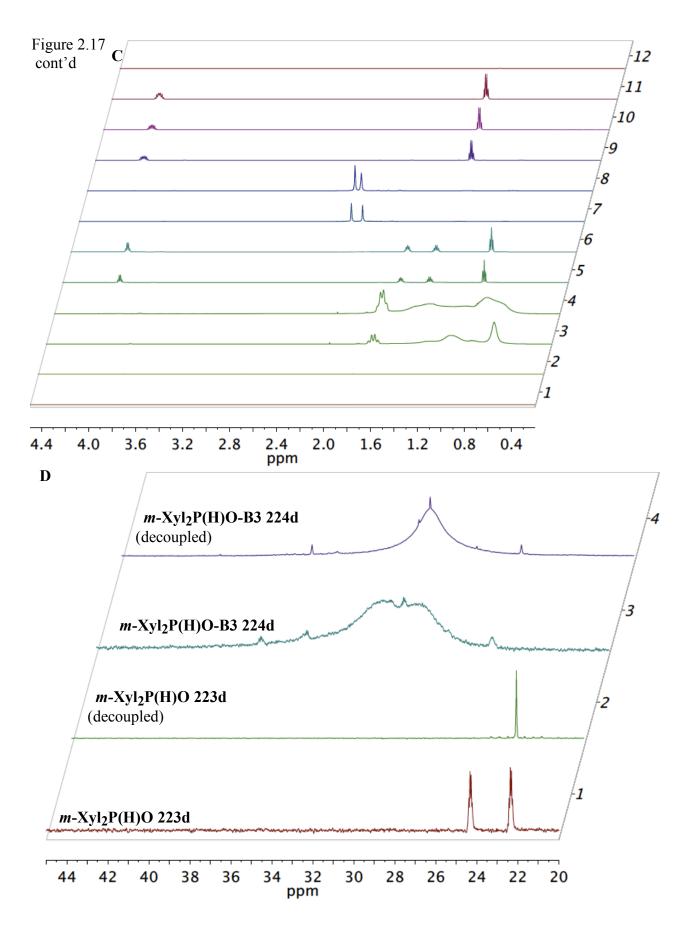
Another class of bases examined is phosphine-oxides **223**. As expected, aliphatic phosphine-oxides afforded excellent yields of the boroxinate catalysts **224** (Table 2.11, entries 3-4). The pKa's of protonated $Ph_2P(Me)O$ and $Bu_2P(Me)O$ are -3.2^{27} and -1.51 ± 0.29^{30}

respectively. This suggested that there is lower probability that Ph₃PO might induce the catalyst formation. In fact, although boroxinate formation did occur with Ph₃PO, the catalyst was generated in lower yields than with Bu₃PO. (Table 2.11, entries 1-2). Additionally, secondary phosphine oxide *m*-Xyl₂P(H)O **223d** was also able to generate the BOROX catalyst as well (Table 2.12, entries 7-8). However, tributyl phosphate **223c** and phosphonate **223e** were found not to be basic enough to give the catalyst (Table 2.11, entries 5-6 and 9-10).

Table 2.11 NMR Analysis of a mixture of (S)-VAPOL, B(OPh)₃ and phosphine-oxides as bases

(OH	CD 25 °C,	Cl_3 10 min)-В́ О)-В́	6	-О-В́ С	OPh + OPh	(°0,	B-OPh	∨он
58	0.1	M 22 B	-		08 32			106 B1	58 (unreacted)
#	series	Base 223 ^b	Equiv of Base	(S)- VAPOL c,d	B1 106 d	B2 108 d	B3 224 d	¹ H _e	11 _B
1 2	a	Ph ₃ PO	1 2	29 15	<1 <1	11 11	37 41	9.91 9.96	15.94, 7.16 15.96, 6.59
3 4	b	Bu ₃ PO	1 2	10 <1	<1 <1	<1 <1	67 94	10.25 10.28	15.94, 5.13 14.76, 5.06
5 6	c	(BuO) ₃ PO	1 2	30 12	<1 <1	43 30	<1 <1	_ _	18.23 17.57
7 8	d	m-Xyl ₂ P(H)O	1 2	11 05	<1 <1	7 <1	66 78	9.98 10.01	15.96, 7.11 15.95, 7.92
9 10	e	(EtO) ₂ P(H)O	1 2	60 44	<1 <1	10 20	<1 <1	_ _	16.00 15.97
11	_	No base	0	57	5	18	<1	_	16.00


^a Unless otherwise specified, all NMR samples were prepared by mixing (S)-VAPOL **58** (0.1 mmol) and commercial B(OPh)₃ (0.3 mmol) and base **223** in CDCl₃ (1 mL) at 25 °C and


Table 2.11 cont'd

stirring for 10 min before spectra were taken. ^b All bases were distilled or sublimed prior to use. ^c Unreacted (S)-VAPOL **58**. ^d NMR yield with Ph₃CH as internal standard with ligand as the limiting reagent. ^e Chemical Shift for the bay proton in B3-base complex. ^f Chemical Shift of the peaks observed in the ¹¹B NMR spectrum.

The NMR analysis is given in Figure 2.17. Characteristic peaks were observed in the ¹H NMR and ¹¹B NMR spectra in the cases where it formed the boroxinate catalyst. Although, the bay region of the ¹H NMR spectra do show some new peaks (Figure 2.17A, entries 7 and 12), no significant change in the alkyl region indicated the absence of any boroxinate species when large excesses of tributyl phosphate **223c** and phosphonate **223e** are used.

Figure 2.17 Phosphine-oxide induced boroxinate catalyst formation. (A)^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (B) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.17A. (C) The alkyl region corresponding to the ¹H NMR spectra in Figure 2.17A. (D) ³¹P NMR spectra in CDCl₃. The chemical shifts in ³¹P NMR are referenced with respect to a standard sample of H₃PO₄. Entry 1: pure *m*-Xyl₂P(H)O 223d. Entry 2: pure *m*-Xyl₂P(H)O 223d (decoupled). Entry 3: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv *m*-Xyl₂P(H)O 223d at 25 °C for 10 min. Entry 4: same as entry 3 with decoupling.

and 1 equiv Ph₃PO **223a** at 25 °C for 10 min. Entry 2: same as entry 1 with 2 equiv Ph₃PO **223a**. Entry 3 and 4: same as entry 1 with 1 and 2 equiv Bu₃PO **223b** respectively. Entry 5 and 6: same as entry 1 with 1 and 2 equiv (BuO)₃PO **223c** respectively. Entry 7 and 8: same as entry 1 with 1 and 2 equiv m-Xyl₂P(H)O **223d** respectively. Entry 9, 10 and 11: same as entry 1 with 1, 2 and 15 equiv (EtO)₂P(H)O **223e** respectively. Entry 12: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ at 25 °C for 10 min.

Also, the BOROX catalyst **224d** was characterized by 31 P NMR analysis (Figure 2.17D). The 31 P NMR spectrum of pure m-Xyl₂P(H)O **223d** exhibits one single peak at δ = 23.29 ppm when the spectrum is proton decoupled. A new broad peak at δ = 29.25 ppm was observed in case of boroxinate **224d**. The chemical shifts in the 31 P NMR spectrum are referenced with respect to a standard sample of H₃PO₄.

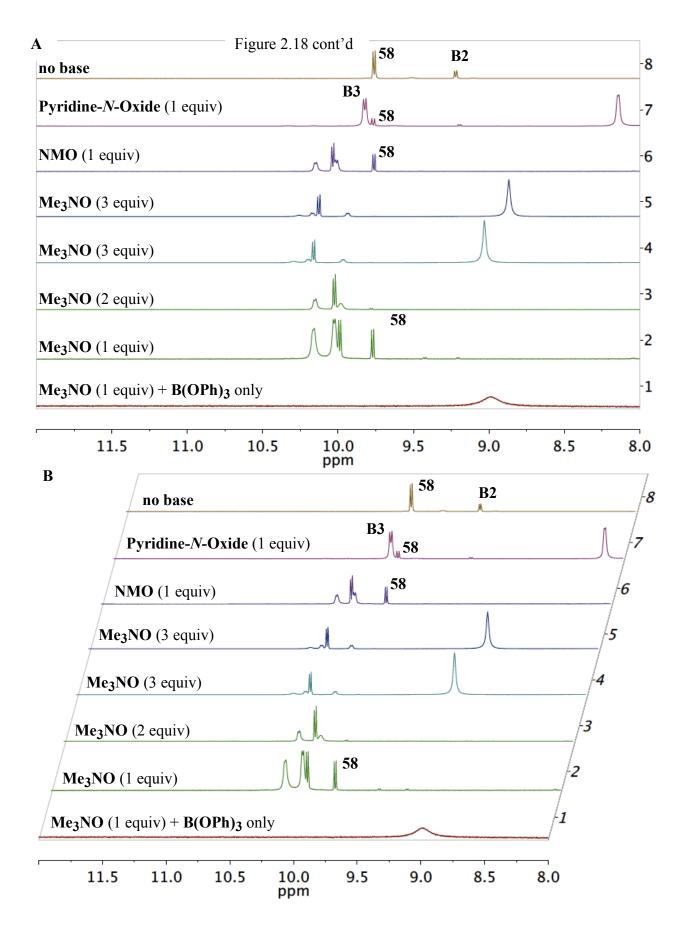
The computed structure of 224b reveals the presence of possible CH- π interactions between the alkyl groups of the phosphine oxide and the phenanthrene ring of the ligand (calculated structure not shown).

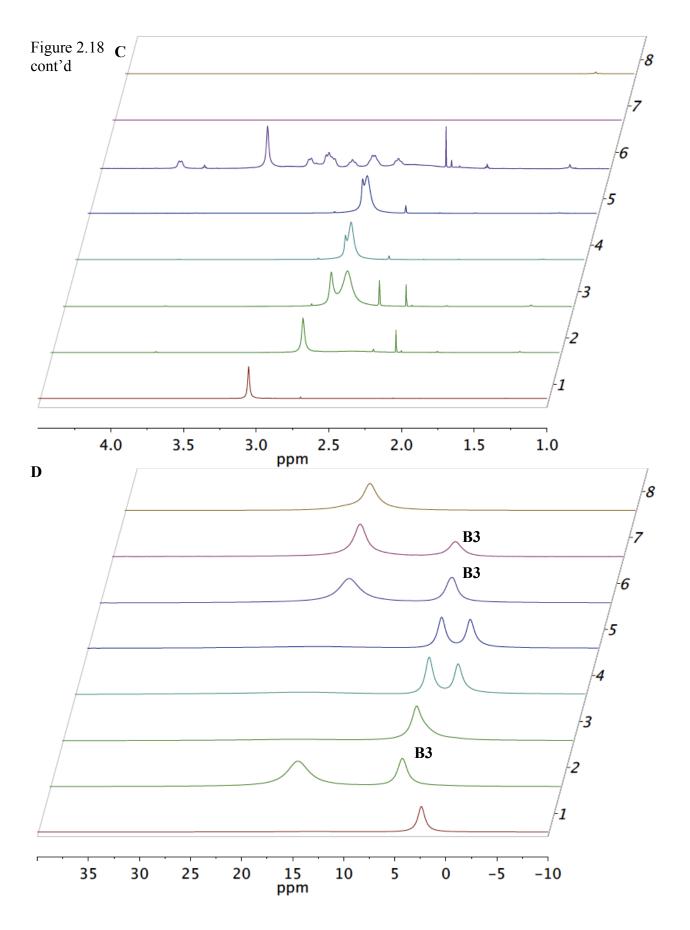
2.1.7 Amine-oxides as the base: AMINOX-BOROX catalyst

Given the ability of phosphine-oxides to generate boroxinate species, it was natural to consider that amine-oxides could also generate boroxinates, further broadening the scope of

boroxinate catalysts. As documented in the literature, the pKa of protonated Me₃NO is 4.6 (in H₂O)³¹ whereas the pKa of protonated pyridine-*N*-oxide is 0.79 (in H₂O).³² From NMR studies, it seems that boroxinates **226** are generated when 1 equiv of amine oxides are utilized (Table 2.12, entries 1,5-6 and Figure 2.18D, entries 3,7-8). However, they are not generated in a clean fashion in the cases of Me₃NO **225a** and *N*-methyl morpholine oxide **225b** as some additional unknown peaks were observed (Figure 2.18A, entries 3 and 6).

Table 2.12 NMR Analysis of a mixture of (S)-VAPOL, B(OPh)₃ and amine-oxides as bases ^a


B(OPh) ₃ (3 equiv) Base 225 OH OH OH OH OH OH OH OH OH O									
				226'	OPh		_{226''} Ò	Ph	
#	series	Base 225 ^b	Equiv of Base	(S)- VAPOL c,d	B3 226 d	¹ Н е	¹¹ B	¹¹ B	
1			1	7	nd	nd	15.70, 5.48	1.8:1.0	
2 3	a	MacNO	2	<1	nd	nd	17.08, 5.30	0.2:1.0	
	а	Me ₃ NO	3	<1	nd	nd	17.95, 5.31,2.51	0.8:1.0:1.0	
4			3	<1	nd	nd	17.63, 5.31,2.48	0.7:1.0:1.1	
5	b	NMO	1	15	nd	nd	15.56, 5.50	1.7:1.0	
6	c	Pyridine- <i>N</i> -oxide	1	9	68	9.98	15.66, 6.42	2.2:1.0	
7	_	No base	0	57	<1	_	16.00	_	

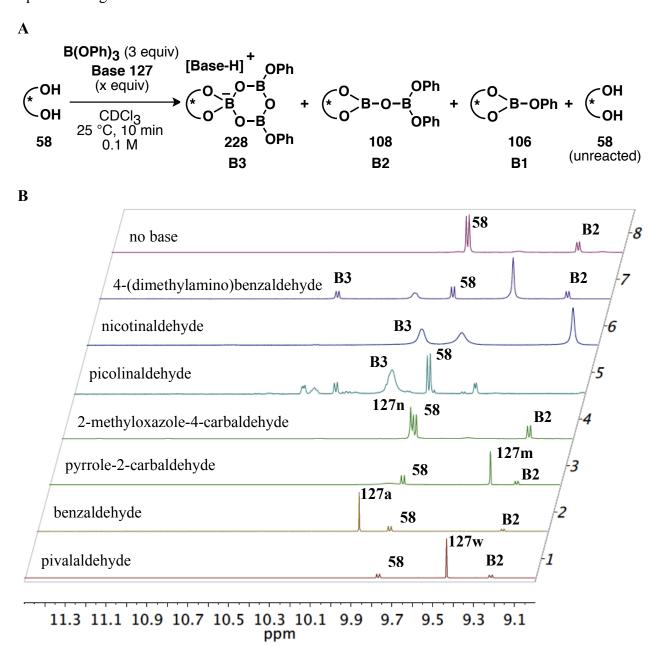

Table 2.12 cont'd

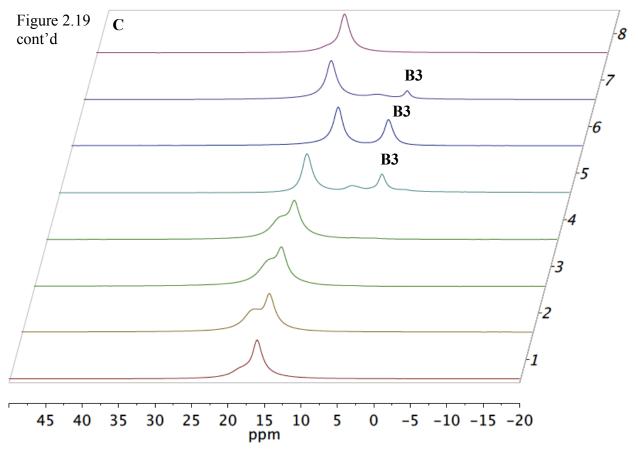
^a Unless otherwise specified, all NMR samples were prepared by mixing (S)-VAPOL **58** (0.1 mmol) and commercial B(OPh)₃ (0.3 mmol) and base **225** in CDCl₃ (1 mL) at 25 °C and stirring for 10 min before spectra were taken. All but entry 7 have both B1 **106** and B2 **108** <1. Entry 7 has 5% and 18% of **106** and **108** respectively. ^b All bases were distilled or sublimed prior to use. ^c Unreacted (S)-VAPOL **58**. ^d NMR yield with Ph₃CH as internal standard with ligand as the limiting reagent. ^e Chemical Shift for the bay proton in B3-base complex. ^f Chemical Shift of the peaks observed in the ¹¹B NMR spectrum. ^g The ratio of peaks observed in the ¹¹B NMR spectrum.

With excess amine oxides (Table 2.12, entries 2-4 and Figure 2.18, entries 4-6), extra coordination of amine oxide to boron seems to be operating giving rise possibly to **226'** or **226''**(Table 2.12). These structures are suggested by the integration of the peaks in the 11 B NMR (Table 2.12). A clean generation of B3 (δ = 9.82 ppm in 1 H NMR, 68% yield) was observed when one equiv of pyridine-*N*-oxide **225c** was used (Table 2.12, entry 6 and Figure 2.18, entry 8).

Figure 2.18 Amine-oxide induced boroxinate catalyst formation. (**A**)^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (**B**) same as in Figure 2.18A with a stacked angle of 15°. (**C**) The alkyl region corresponding to the ¹H NMR spectra in Figure 2.18A. (**D**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.18A.

a Note for Figure 2.18A: Entry 1: Me₃NO **225a** plus 1 equiv commercial B(OPh)₃ at 25 °C for 10 min. Entry 2: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 1 equiv Me₃NO **225a** at 25 °C for 10 min. Entry 3: same as entry 2 with 2 equiv Me₃NO **225a**. Entry 4: same as entry 2 with 3 equiv Me₃NO **225a**. Entry 5: 3 equiv Me₃NO **225a** is added to a preformed mixture of (*S*)-VAPOL (0.1 mmol) and 3 equiv commercial B(OPh)₃ in CDCl₃. Entry 6: same as entry 2 with 1 equiv NMO (*N*-methyl morpholine oxide) **225b**. Entry 7: same as entry 2 with 1 equiv pyridine-*N*-Oxide **225c**. Entry 8: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ at 25 °C for 10 min.

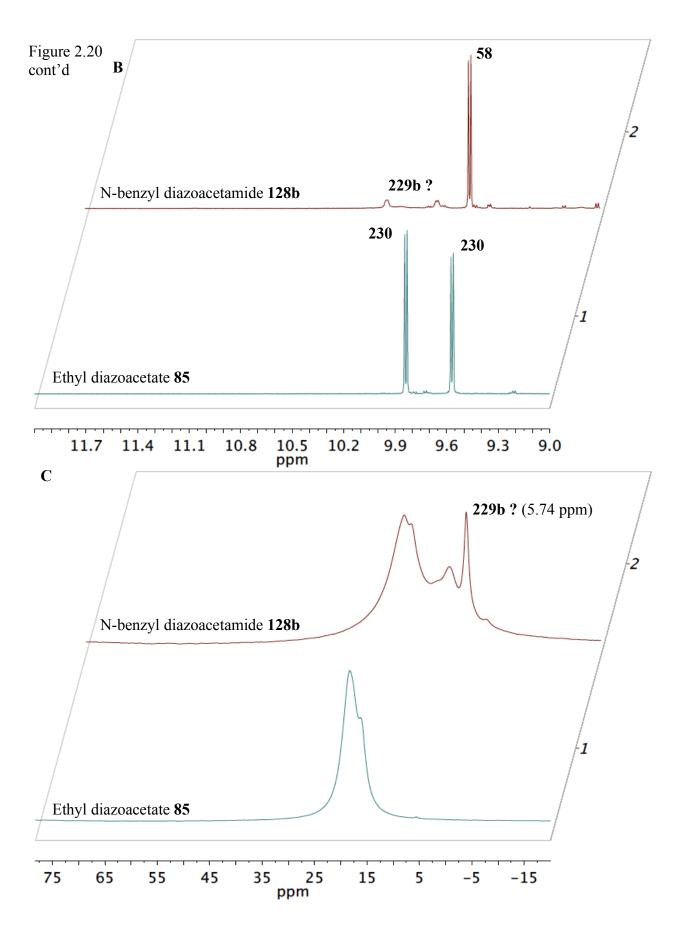

In some cases, with excess amine oxides, an appreciable amount of an absorption at $\delta = 2.7$ ppm is observed in the ¹¹B NMR spectrum which is tentatively assigned as [Me₃NO-H]⁺ [B(OPh)₄]⁻ **227** or [Me₃NO \rightarrow B(OPh)₃] **227**′ from the NMR study of **226a** complex (Figure 2.18, entries 1,4-5). The computed structures of **226a** and **226b** reveal the presence of the possible CH- π and π - π interactions between the alkyl or aryl groups of the oxide and the phenanthrene ring of the ligand (calculated structure not shown). It would be interesting to examine nitrones as the base (not done).


2.1.8 Aldehydes as the base: ALDO-BOROX catalyst

As expected, no sign of any boroxinate was observed when aldehydes 127 were utilized as the bases (Figure 2.19). This is probably due to the high acidity (pKa = -7) of the protonated aldehydes. However, aldehydes with other basic sites do form BOROX catalyst. This is probably due the protonation of the nitrogens attached to these aldehydes (Figure 2.19, entries 5-

7). Surprisingly, 2-methyloxazole-4-carbaldehyde **127n** failed to give any boroxinate even though it has a free basic nitrogen (Figure 2.19, entry 4). In almost all cases, pyroborate B2 **108** was observed.

Figure 2.19 (**A**) Aldehyde induced boroxinate catalyst formation. (**B**)^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.19B.

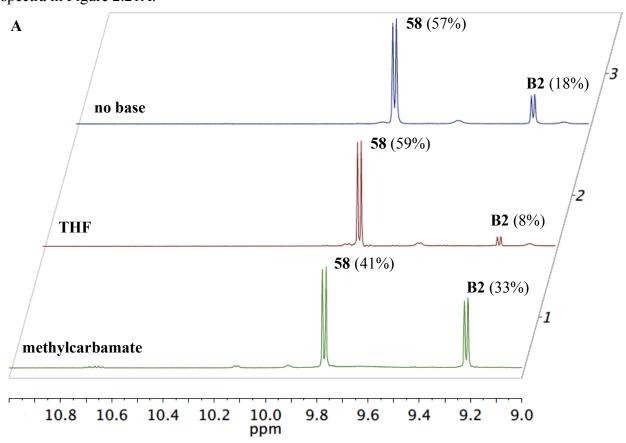

and 2 equiv pivalaldehyde **127w** at 25 °C for 10 min. Entry 2: same as entry 1 with 2 equiv benzaldehyde **127a**. Entry 3: same as entry 1 with 2 equiv pyrrole-2-carbaldehyde **127m**. Entry 4: same as entry 1 with 2 equiv of 2-methyloxazole-4-carbaldehyde **127n**. Entry 5: same as entry 1 with 2 equiv picolinaldehyde **127i**. Entry 6: same as entry 1 with 2 equiv nicotinaldehyde **127j**. Entry 7: same as entry 1 with 2 equiv 4-(dimethylamino)benzaldehyde **127h**. Entry 8: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ at 25 °C for 10 min.

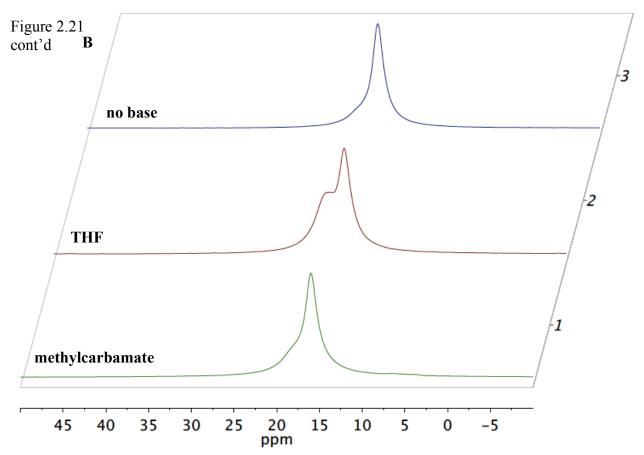
2.1.9 Diazo as the base: DIAZO-BOROX catalyst

Ethyl diazoacetate **85** was found to be reacting with the VAPOL to afford **230** in 80% yield when tested under conditions optimal for boroxinate generation (Figure 2.20). The mono-

alkylated adduct **230** is often observed at the end of the Wulff catalytic asymmetric aziridination reaction. There was no sign of any boroxinate **229a**. In a separate experiment, a peak at $\delta = 5.74$ ppm (in ¹¹B NMR) was observed when *N*-benzyl diazoacetamide **128b** was employed as the base (Figure 2.20). However, there is no conclusive evidence for the formation of the boroxinate **229b**. The calculated structure of **229b** supports the presence of the boroxinate (not shown here). Also, there was no sign of adduct **231** under these conditions. It must be remembered that most diazo compounds are more basic at the carbon bearing the leaving group.

Figure 2.20 (**A**) Diazo induced boroxinate catalyst formation. (**B**)^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.20B.




^a Note for Figure 2.20B: Entry 1: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv EDA **85** at 25 °C for 10 min. Entry 2: same as entry 1 with 2 equiv N-benzyl diazoacetamide **128b**. (C) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in.

2.1.10 Miscellaneous bases:

Bases such as methyl carbamate **232a** and THF **232b** failed to give any boroxinate **233** (Figure 2.21). The pKa of protonated THF is –2.02, which is quite similar to DMSO. Hence it is quite interesting to observe the BOROX catalyst with DMSO and not with THF.

Figure 2.21 Miscellaneous bases induced boroxinate catalyst formation. (**A**)^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (**B**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.21A.

^a Note for Figure 2.21A: Entry 1: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv methyl carbamate **232a** at 25 °C for 10 min. Entry 2: same as entry 1 with 2 equiv THF **232b**. Entry 3: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ at 25 °C for 10 min.

2.2 Prediction of BOROX catalysts via computational chemistry

During the calculations of the possible BOROX complexes, an interesting observation was made. In all the cases, where no boroxinates were observed, it was found that proton is completely transferred to the O2 and the boroxinate ring is also collapsed (Figure 2.21). Specifically, the bond between O2 and tetra-coordinate boron is broken. This is found in the

cases of bases like PhCHO 127a, pyrrole 216d, Me₂SO₂ 221h, (CH₂)₄SO₂ 221i, BuO₃PO 223c, THF 232b etc. A few of calculated structures are presented in Figure 2.21. Hence, we can probably make a guess about the generation of the boroxinate complex even without the NMR study. It must be noted that these calculations are not representative of the actual structures and it should be used as tool to predict the possibility of boroxinate formation. In all cases, the distance (B-O2) between the O-2 and former tetra-coordinate boron was found to more than 1.6 Å. Additionally, the former tetra-coordinate boron is found to be out of the plane by $\sim 13^{\circ}$ –14°. In the case of the boroxinate anion, the \angle oop and B-O2 was found to be 20.2° and 1.43 Å respectively (not shown here).

Figure 2.22 Calculated structures of boroxinates (A) 228b (base = PhCHO 127a), (B) 217d (base = pyrrole 216d), (C) 222h (base = Me₂SO₂ 221h), (D) 222i (base = (CH₂)₄SO₂ 221i), (E) 224c (base = (BuO)₃PO 223c) and (F) 233b (base = THF 232b) using Gaussian '03. Calculated B3LYP/6-31g* structure visualized by the Mercury Program (C, gray; O, red; N, blue; B, pink, S, orange; H, white). Hydrogen atoms omitted for clarity (except O-H). ∠oop = angle out of plane for the former tetra-coordinate boron, B-O2 = the distance between O-2 and the former tetra-coordinate boron.

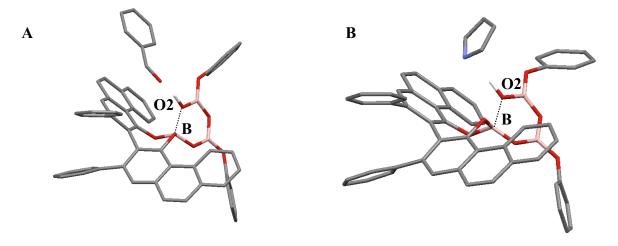
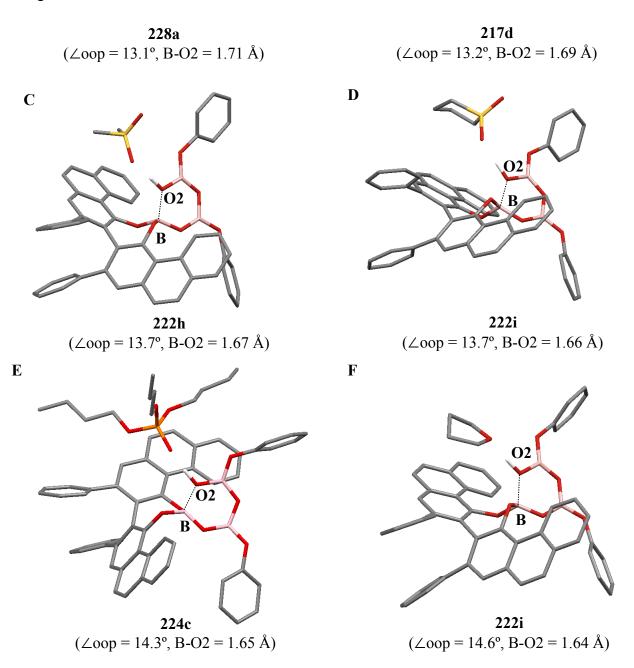



Figure 2.22 cont'd

2.3 Possibility of Bench-Top Stable BOROX catalyst

The real application of any catalyst lies in its broad applicability in catalytic asymmetric reactions. This, in turn, requires the catalyst to be easily available specifically on a commercial

scale. There has been a long lasting dream of the feasibility of the commercial BOROX catalyst.

There are two problems regarding this possibility. They are discussed below with their probable solutions.

2.3.1 Substrate induced formation of the catalyst

The first problem with our catalyst is its unique characteristic, which is substrate-induced formation of the catalyst. This is a big problem as the commercially available catalyst should ideally be independent of the substrate used. A potential solution of the problem could be that a particular base should be employed to generate the catalyst, which is easily replaced by the substrate without disrupting the catalyst structure. The realization of the SULFOX-BOROX catalyst could be the first step in this direction. In terms of basicity, DMSO should be easily replaced by an imine. In fact, the same was observed when the aziridination reaction was carried out with the pre-formed SULFOX-BOROX catalyst 222a (Scheme 2.2). The aziridination reaction gave comparable results to the reaction carried out by substrate-induced IMINO-BOROX catalyst 188a. Later, other boroxinates derived from bases such as aniline and benzhydryl amine were also tried and the results are described in Chapter 7 in detail.

Scheme 2.2 The Wulff asymmetric *cis*-aziridination reaction with benzhydryl imines 78

IMINO-BOROX catalyst **188a**: yield = 82%, ee = 90% SULFOX-BOROX catalyst **222a**: yield = 86%, ee = 90%

2.3.2 Stability of the BOROX catalyst

The second problem is a typical one for any catalyst i.e. stability of the catalyst. One of the complexities of the BOROX catalyst is that its assembly is dependent on a number of variables. One of the ways to increase the stability is to decrease the number of these variables. This can be done by utilizing one of the components in which there is a pre-installed base. Among all the variables, the two obvious choices are the alcohol component and the borane component. These two modifications were tested and are discussed below.

2.3.2.1 Base incorporated in alcohol

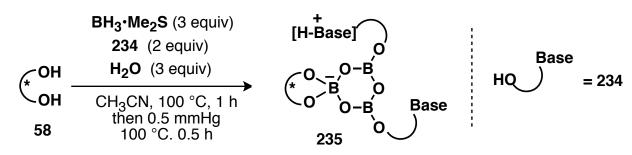

The major advantage of boroxinate catalysts as revealed by the work in this thesis is that now there are many bases from which to choose to generate the boroxinate catalyst. Since sulfoxides can be easily be replaced by imines, it was thought to utilize the alcohol **234a** which has a sulfoxide in the tether. Thereafter, it was utilized and afforded the BOROX catalyst **235a** in 40% NMR yield ($\delta = 11.06$ ppm and 10.44 ppm in 1 H NMR and $\delta = 5.30$ in 11 B NMR, Figure 2.23B, entry 1). As the structure of this species is not known, the presented structure is an assumption only. Later, two other alcohols **234b** and **234c** were also employed. However, the results were not that conclusive from the 11 B NMR spectrum (Figure 2.23, entries 2-3).

Figure 2.23 (A) Bases (with pre-installed alcohols) induced boroxinate catalyst formation. (B)^a

1 H NMR spectra in CDCl₃ with Ph₃CH as internal standard. (C) 11 B NMR spectra corresponding to the 1 H NMR spectra in Figure 2.23B with the highlighted chemical shifts of the various boron species.

Figure 2.23 cont'd

A

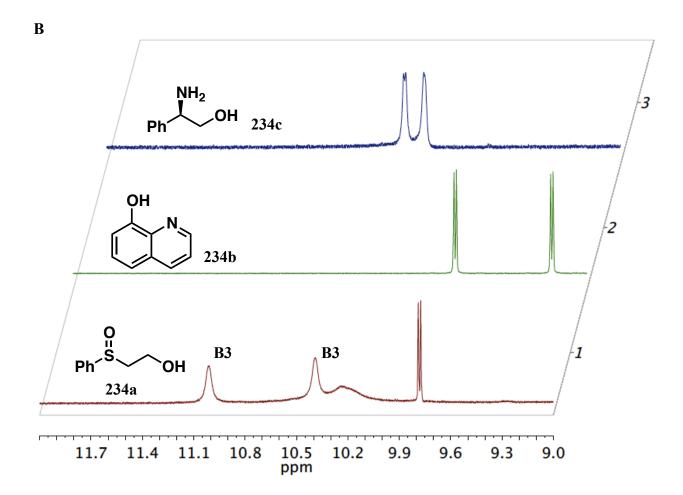
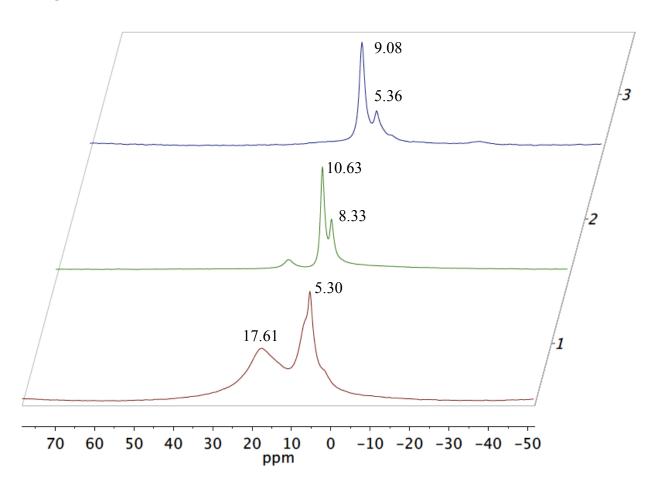
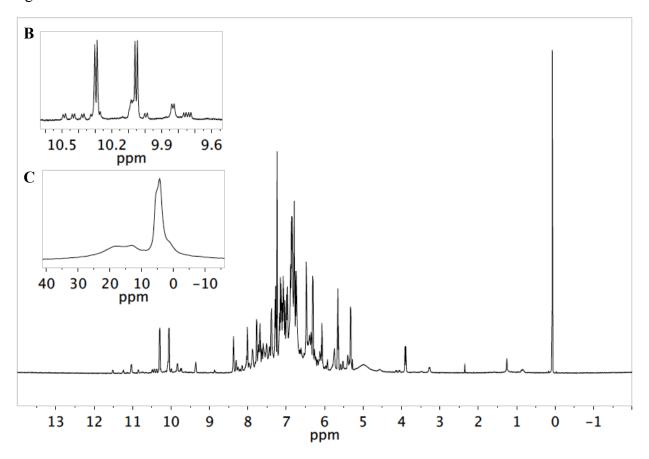



Figure 2.23 cont'd

 \mathbf{C}


^a Note for Figure 2.23B: Entry 1: (S)-VAPOL (0.1 mmol) plus 3 equiv BH₃•Me₂S **192a**, 2 equiv ROH **234a** and 3 equiv H₂O were heated at 100 °C in CH₃CN for 1 h followed by removal of volatiles under vacuum for 0.5 h. Entry 2: same as entry 1 with 2 equiv ROH **234b**. Entry 3: same as entry 1 with 2 equiv ROH **234c**.

One of the other ways is to utilize a base, which could simply function as the alcohol component. Hence we tried to generate the boroxinate **236** by employing 1 equiv of (S)-VAPOL, 3 equiv of BH3•Me₂S, 3 equiv H₂O and 3 equiv aniline **126k**. The result is presented in Figure 2.24. To our delight, boroxinate complex **236** was observed. However, the structure of **236** is not confirmed and must remain a tentative assignment. Peaks at $\delta = 10.06$ ppm and $\delta = 10.30$ ppm (in the ¹H NMR spectrum) and $\delta = 4.35$ ppm (in the ¹¹B NMR spectrum) supports the formation of the catalyst **236**.

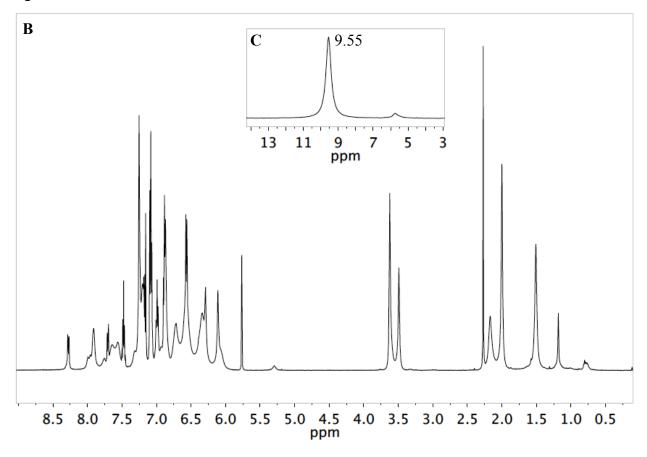
Figure 2.24 (**A**) Aniline induced boroxinate catalyst formation. (**B**) ¹H NMR spectra in CDCl₃. (*S*)-VAPOL (0.1 mmol) plus 3 equiv BH₃•Me₂S **192a**, 3 equiv aniline **126k** and 3 equiv H₂O were heated at 100 °C in CH₃CN for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, the catalyst was dissolved in CDCl₃ and subjected to NMR analysis. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.24B.

A

Figure 2.24 cont'd

2.3.2.2 Base incorporated in the boron source

Another way is the usage of the borane that has the base installed in it. The base attached to borane should be a weak so that it can be easily be replaced by the substrate i.e. imine. Hence we decided to examine borane like BH₃•PPh₃ **192c** and BH₃•Et₂NPh **192d**. While BH₃•PPh₃ **192c** failed to give any catalyst, boroxinate **237** was obtained when BH₃•Et₂NPh **192d** was employed (Scheme 2.3, NMR not shown). A peak at $\delta = 10.73$ ppm (in 11 H NMR) and $\delta = 5.88$ ppm (in 11 B NMR) supports the formation of the catalyst **237**. It must be noted that structure of **237** is a tentative assignment.


Scheme 2.3 Boroxinate formation using BH₃•Et₂NPh 192d

2.4 B1 catalysts

So far we have been focused on the BOROX catalyst, which has three boron atoms involved. Another class of the catalyst could be one, which involves only boron atom in a spiroborate such as **74** and **92** (Figure 2.1). The catalysts **74** and **92** will be discussed in detail in Chapter 4 and 5. Given the existence of **74**, it was wondered that whether a similar catalyst could be made from our VANOL ligand. Although, the structure of **238** is not confirmed, a characteristic peak at $\delta = 9.55$ ppm was observed when VANOL **59** was subjected to conditions suitable for spiroborate formation (Figure 2.25).

Figure 2.25 (**A**) Attempt to generate dimer catalyst **238**. (**B**) ¹H NMR spectra in CDCl₃. (*S*)-VANOL (0.1 mmol) plus 0.5 equiv BH₃•Me₂S **192a** was heated at 100 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 0.5 equiv of imine **111a** was added. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 2.25B.

Figure 2.25 cont'd

2.5 Conclusions

This chapter describes the generation of novel boroxinate catalysts employing various bases. These catalysts are characterized by ¹H NMR and ¹¹B NMR spectroscopy, computational chemistry and X-ray analysis. Some of these catalysts have already been utilized for various catalytic asymmetric reactions such as asymmetric aziridination of imines, multicomponent aziridination of aldehydes, [3+2] cycloaddition of imines and aldehydes, asymmetric reduction of quinolines and asymmetric epoxidation of aldehydes. Hopefully, a variety of new asymmetric reactions will be accomplished utilizing these novel catalysts in the near future.

APPENDIX

2.6 Experimental

2.6.1 General information1	35
2.6.2 Synthesis of imines 75a , 78a , 110a-112a , 206a , 207a , boroxine 191a and diazo 128b 1	37
2.6.3 Aziridination with different boron sources and pre-catalyst methods A-H (<i>Table 2.1</i>) 1	43
2.6.4 Aziridination using different alcohols (<i>Table 2.3</i>)/ligands (<i>Table 2.4</i>)/imines (<i>Table 2.5</i>)1	51
2.6.5 NMR analysis of a mixture of VAPOL, various boron sources, and imine 111a at various	ous
conditions (Figure 2.3, 2.4 and Table 2.2)	54
2.6.6 NMR analysis of a mixture of VAPOL, B(OPh) ₃ and bases 75a , 78a , 85 , 111a , 126 , 1	27 ,
128b, 206a, 207a, 216, 219, 221, 223, 225, 232 (Figures 2.7, 2.9, 2.11, 2.12, 2.14, 2.15, 2.14)	17-
2.21 and Tables 2.7, 2.9-2.12)	58
2.6.7 Aziridination in the presence of SULFOX-BOROX catalyst 222a	59
2.6.8 NMR analysis of a mixture of VAPOL, B(OPh) ₃ and the bases 234 and 126k (<i>Figure 2</i>	23-
2.24)	60
2.6.9 NMR analysis of a mixture of VAPOL, PhOH, H ₂ O and borane 192d (<i>Scheme 2.3</i>) 1	61
2.6.10 NMR analysis of a mixture of VAPOL, BH ₃ •Me ₂ S (0.5 equiv) and imine 111a (0.5
equiv) (Figure 2.25)	62
2.6.11 DFT Calculations of 190a, 215c, 222a, 222b, 217d, 222h, 222i, 228a and 233b (Figure 2)	ure
2.8, 2.10, 2.16, 2.22)	63
2.6.12 Crystallographic structure determination of BOROX complex 217b (<i>Figure 2.13</i>) 1	63

2.6.1 General information

All reactions were carried out in flame-dried glassware under an atmosphere of argon unless otherwise indicated. Unless otherwise specified, all solvents were strictly dried before use: dichloromethane and acetonitrile were distilled over calcium hydride under nitrogen; tetrahydrofuran, and ether were distilled from sodium and benzophenone; toluene was distilled from sodium under nitrogen. Hexanes and ethyl acetate were ACS grade and used as purchased.

Melting points were recorded on a Thomas Hoover capillary melting point apparatus and are uncorrected. IR spectra were recorded in KBr matrix (for solids) and on NaCl disc (for liquids) on a Nicolet IR/42 spectrometer. CDCl₃ (with TMS) was dried over activated 4Å overnight and distilled. Purified CDCl3 was stored and handled in a glove box. Commercial CDCl₃ in ampoule (CIL[®], 100%, 0.75 mL) can be directly used in a glove box without further purification. ¹H NMR and ¹³C NMR were recorded on a Varian Inova 300 MHz or Varian Unity Plus 500 MHz or Varian Inova 600 MHz spectrometer using CDCl₃ as solvent (unless otherwise noted). The residual peak of CDCl₃ or TMS was used as the internal standard for both ¹H NMR ($\delta = 7.24$ ppm for CDCl₃ or $\delta = 0$ ppm for TMS) and ¹³C NMR ($\delta = 77.0$ ppm). ¹¹B NMR spectra were recorded on a Varian 500 MHz instrument or Varian Inova 600 MHz spectrometer in CDCl₃ unless otherwise noted. ¹¹B NMR was done in a Norell[®] quartz NMR tube and referenced to external standard BF₃•Et₂O ($\delta = 0$ ppm). Chemical shifts were reported in parts per million (ppm). Low-resolution Mass Spectrometry and High Resolution Mass Spectrometry were performed in the Department of Chemistry at Michigan State University

Mass Facility. Analytical thin-layer chromatography (TLC) was performed on Silicycle silica gel plates with F-254 indicator. Visualization was by short wave (254 nm) and long wave (365 nm) ultraviolet light, or by staining with phosphomolybdic acid in ethanol or with potassium permanganate. Column chromatography was performed with silica gel 60 (230 – 450 mesh).

HPLC analyses were performed using a Varian Prostar 210 Solvent Delivery Module with a Prostar 330 PDA Detector and a Prostar Workstation. Chiral HPLC data for the aziridines and epoxides were obtained using a CHIRALCEL OD-H column and PIRKLE COVALENT (R, R) WHELK-O 1 column.

Optical rotations were obtained on a Perkin-Elmer 341 polarimeter at a wavelength of 589 nm (sodium D line) using a 1.0 decimeter cell with a total volume of 1.0 mL. Specific rotations are reported in degrees per decimeter at 20 °C and the concentrations are given in gram per 100 mL in ethyl acetate unless otherwise noted.

All reagents were purified by simple distillation or crystallization with simple solvents unless otherwise indicated. Ethyl diazoacetate **85** and B(OPh)₃ (stored in dessicators) are obtained from Aldrich Chemical Co., Inc. and used as received. Amines such as aniline **126k**, benzyl amine **126e**, homo-benzhydrylamine **126f** and benzhydrylamine **126a** (distilled prior to use) are also obtained from Aldrich Chemical Co., Inc. and used as received. (*S*)-VAPOL **58** or (*S*)-VANOL **59** (>99% ee) were made according to published procedure and were dried over P₂O₅ overnight under reduced pressure (0.1 mm Hg) with refluxing hexane in a Abderhalden drying apparatus. These ligands are also commercially available from Aldrich Chemical Co., Inc and Strem Chemicals. bis(4-methoxyphenyl)methanamine (DAM amine) **126b**, ¹⁹ bis-(3,5-di-

methyl-4- methoxyphenyl)methanamine (MEDAM amine) **126c**, ^{13c} bis-(3,5-di-*tert*-butyl-4-methoxyphenyl)methanamine (BUDAM amine) **126d**, ^{13b} *m*-Xyl₂P(H)O **223d** ³³ and sulfoxide **234a** ³⁴ were made according to the published procedure. Unless otherwise noted, all NMR analysis has been carried out using Ph₃CH as the internal standard.

Home-made Schlenk flask:

Figure 2.26 The Schlenk flask was prepared from a single-necked 25 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve.

2.6.2 Synthesis of imines 75a, 78a, 110a, 111a, 112a, 206a, 207a, boroxine 191a and diazo 128b

General Procedure for the synthesis of aldimines – Illustrated for the synthesis of *N*-phenylmethylidene-*bis*(4-methoxy-3,5-dimethylphenyl)methylamine 111a.

Benzaldehyde was distilled before use and all imines were could be purified by crystallization.

N-phenylmethylidene-bis(4-methoxy-3,5-dimethylphenyl)methylamine 111a: To a 50 mL flame-dried round bottom flask filled with argon was added bis(2,6-di-methyl-4-methoxyphenyl)methylamine 126c (1.49 g, 5.00 mmol), MgSO₄ (1.0 g, 8.4 mmol, freshly flame-dried) and dry CH₂Cl₂ (15 mL). After stirring for 10 min, benzaldehyde 127a (0.54 g, 5.05 mmol, 1.01 equiv) was added. The reaction mixture was stirred at room temperature for 24 h. The reaction mixture was filtered through Celite and the Celite bed was washed with CH₂Cl₂ (10 mL × 3) and then the filtrate was concentrated by rotary evaporation to give the crude imine as an off-white solid. Crystallization (1:9 CH₂Cl₂/hexanes) and collection of the first crop afforded 111a as a white solid (mp 144-146 °C) in 90% isolated yield (1.74 g, 4.5 mmol).

Spectral data for **111a**: 1 H NMR (CDCl₃, 500 MHz) δ 2.24 (s, 12H), 3.66 (s, 6H), 5.35 (s, 1H), 6.99 (s, 4H), 7.39-7.41 (m, 3H), 7.80–7.82 (m, 2H), 8.35 (s, 1H); 13 C (CDCl₃, 125 MHz) δ 16.22, 59.59, 77.41, 127.86, 128.46, 128.49, 130.61, 130.63, 136.45, 139.22, 155.84, 160.28; IR (thin film) 2944w, 1643vs, 1483vs cm⁻¹; Mass spectrum: m/z (% rel intensity) 387 M+ (3), 283 (100), 40 (17); Anal calcd for $C_{26}H_{29}NO_2$: C, 80.59; H, 7.54; N, 3.61. Found: C, 80.42; H, 7.24;

N, 3.55. These spectral data match those previously reported for this compound. 13c

78a

N-benzylidene-1,1-diphenylmethanamine 78a: Imine 78a was prepared according to the procedure described above for imine 111a. Crystallization (1:5 ethyl acetate/hexanes) and collection of the first crop afforded 78a as white solid crystals (mp. 99-101 °C) in 80% isolated yield (1.09 g, 4 mmol).

Spectral data for **78a**: ¹H NMR (CDCl₃, 300 MHz) δ 5.64 (s, 1H), 7.20-7.90 (m, 15H), 8.46 (s, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 77.62, 126.69, 127.40, 128.15, 128.19, 128.24, 130.47, 136.07, 143.64, 160.48. These spectral data match those previously reported for this compound. 13a

OMe OMe 110a

mmol).

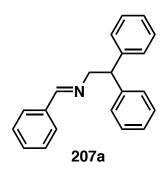
N-benzylidene-bis(4-methoxyphenyl)methylamine 110a: Imine 110a was prepared according to the procedure described above for imine 111a. Crystallization (1:25 CH₂Cl₂ / hexanes) and collection of the first crop afforded 110a as white solid crystals (mp 60-61 °C) in 91% isolated yield (1.51 g, 4.55

Spectral data for **110a**: ¹H NMR (CDCl₃, 300 MHz) δ 3.76 (s, 6H), 5.51(s, 1H), 6.84 (d, 4H, J =8.8 Hz), 7.25-7.27 (m, 4H), 7.37-7.40 (m, 3H), 7.79–7.82 (m, 2H), 8.37 (s, 1H); ¹³C (CDCl₃, 75

MHz) δ 55.17, 76.55, 113.71, 128.35, 128.43, 128.61, 128.70, 130.60, 136.28, 158.43, 160.24. These spectral data match those previously reported for this compound. 19

N-benzylidene-1,1- bis(3,5-di-tert-butyl-4-methoxyphenyl) methanamine 112a: Imine 112a was prepared according to the procedure described above for imine 111a. Crystallization (1:100 EtOAc/hexanes) and collection of the first crop afforded 112a as white solid crystals (mp. 127-129 °C) in 90% isolated

Spectral data for **112a**: ¹H NMR (CDCl₃, 500 MHz) δ 1.429 (s, 18H), 1.433 (s, 18H), 3.70 (s, 3H), 3.70 (s, 3H), 5.51 (s, 1H), 7.27 (s, 4H), 7.42–7.44 (m, 3H), 7.86–7.89 (m, 2H), 8.52 (s, 1H); $^{13}\text{C (CDCl}_3,\ 75\ \text{MHz})\ \delta\ 32.08,\ 35.77,\ 64.13,\ 78.20,\ 126.02,\ 128.40,\ 128.47,\ 130.50,\ 136.55,$ 137.42, 143.10, 158.29, 160.23. These spectral data match those previously reported for this $compound. \\^{13b}$


N-benzylideneaniline 75a: Imine 75a was prepared according to the procedure described above for imine 111a. Crystallization (1:5 EtOAc/hexanes) and collection of the first crop afforded 75a as white solid crystals (mp. 48-50 °C) in 80% isolated yield (0.72 g, 4.0 mmol).

Spectral data for **75a**: 1 H NMR (CDCl₃, 500 MHz) δ 7.19-7.23 (m, 3H), 7.39 (t, 2H, J = 8 Hz), 7.46-7.48 (m, 3H), 7.88-7.91 (m, 2H), 8.45 (s, 1H); 13 C (CDCl₃, 125 MHz) δ 120.85, 125.91, 128.76, 128.80, 129.13, 131.36, 136.22, 152.09, 160.38. These spectral data match those previously reported for this compound. 35

N-benzylidene-1-phenylmethanamine 206a: Imine 206a was prepared according to the procedure described above for imine 111a. Distillation afforded 206a as colorless oil (bp 119-120 °C at 0.1 mm

Hg) in 85% isolated yield (0.83 g, 4.25 mmol).

Spectral data for **206a**: ¹H NMR (CDCl₃, 300 MHz) δ 4.79 (s, 2H), 7.20-7.40 (m, 8H), 7.75-7.78 (m, 2H), 8.35 (s, 1H); ¹³C (CDCl₃, 75 MHz) δ 64.94, 126.89, 127.88, 128.18, 128.40, 128.50, 130.67, 136.05, 139.20, 161.88. These spectral data match those previously reported for this compound.³⁶

N-benzylidene-1-phenylmethanamine 207a: Imine 207a was prepared according to the procedure described above for imine 111a. Crystallization (1:9 EtOAc/hexanes) and collection of the first crop afforded 207a as white solid crystals (mp. 92-94 °C) in 70% isolated yield (1.0 g, 3.5 mmol).

Spectral data for **207a**: 1 H NMR (CDCl₃, 600 MHz) δ 4.26 (dd, J = 7.2, 1.4 Hz, 2H), 4.46 (t, J = 7.2 Hz, 1H), 7.15 – 7.20 (m, 2H), 7.25 – 7.30 (m, 8H), 7.33 – 7.39 (m, 3H), 7.57 – 7.64 (m, 2H),

8.07 (t, J = 1.4 Hz, 1H); ¹³C (CDCl₃, 150 MHz) δ 52.01, 66.29, 126.28, 128.00, 128.32, 128.42, 128.43, 130.47, 136.19, 143.08, 161.92; IR (thin film) 3061 m, 3026 m, 2841 m, 1645 s, 1493 s, 1451 s, 1309 m cm⁻¹; HRMS (ESI-TOF) m/z 286.1594 [(M+H⁺); calcd. for C₂₁H₂₀N: 286.1596].

Synthesis of triphenoxyboroxine 191a:

2,4,6-triphenoxy-1,3,5,2,4,6-trioxatriborinane 191a: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added phenol **194a** (28.2 mg, 0.3 mmol), BH₃•Me₂S (150 μL, 0.3 mmol, 2.0 M in toluene) and H₂O (5.4 μL, 0.3 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added. The flask was sealed by closing the Teflon valve, and then placed in an oil bath (80 °C) for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles are removed completely, a full vacuum is applied and is maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature yielding the boroxine **191a** as white solid. The boroxine prepared in this manner typically afforded boroxine **191a**: B(OPh)₃ **187a** = 12:1 as indicated by ¹³C NMR.

Spectral data for boroxine **191a**: 1 H NMR (CDCl₃, 500 MHz) δ 7.07 (d, 6H, J = 7.5 Hz), 7.12 (t, 3H, J = 7.0 Hz), 7.30 (t, 6H, J = 7.5 Hz); 13 C NMR (CDCl₃, 125 MHz) δ 119.95, 123.95, 129.36, 152.00. These spectral data match those previously reported for this compound. 37

Synthesis of Diazoacetamide 128b: See Chapter 8

2.6.3 Aziridination with different boron sources and pre-catalyst methods A-H (Table 2.1)

Pre-catalyst Method A:

To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*S*)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (87 mg, 0.3 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to effect dissolution. The flask was sealed by closing the Teflon valve, and then placed in an 80 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask.

Pre-catalyst Method B:

To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*S*)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (87 mg, 0.3 mmol) and water (5.4 μL, 0.3 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry THF (2 mL) was added through the top of the Teflon valve to effect dissolution. The flask was sealed by closing the Teflon valve, and then placed in an 80 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask.

Pre-catalyst Method C:

This method is similar to method A except that a combination of (S)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (116 mg, 0.4 mmol) and water (1.8 μ L, 0.1 mmol) was employed.

Pre-catalyst Method D:

To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and pre-made triphenoxyboroxine **191a** (0.1 mmol) was added (*S*)-VAPOL (54 mg, 0.1 mmol).

Pre-catalyst Method E:

To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*S*)-VAPOL (54 mg, 0.1 mmol) and BH₃•Me₂S (150 μL, 0.3 mmol, 2.0 M in toluene), PhOH (18.8, 0.2 mmol) and H₂O (5.4 μL, 0.3 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to effect dissolution. The flask was sealed by closing the Teflon valve, and then placed in an 100 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask.

Pre-catalyst Method F:

This method is similar to method E except that the removal of volatiles and a full vacuum for 30 min was excluded.

Pre-catalyst Method G:

This method is similar to method A except that a combination of (S)-VAPOL (54 mg, 0.1 mmol) and B(OH)₃ (18.6 mg, 0.3 mmol) and PhOH (18.8, 0.2 mmol) was employed.

Pre-catalyst Method H:

To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*S*)-VAPOL (54 mg, 0.1 mmol) and BH₃•THF (300 μL, 0.3 mmol, 1.0 M in THF), PhOH (18.8, 0.2 mmol) and H₂O (5.4 μL, 0.3 mmol). Under an argon

flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to effect dissolution. The flask was sealed by closing the Teflon valve, and then stirred at 25 °C for 10 min. After 10 min, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at 25 °C. The flask was then opened to argon through the side-arm of the Schlenk flask.

*Aziridination with procedures I (pre-catalyst method A), III (pre-catalyst method B), IV (pre-catalyst method C), VI (pre-catalyst method E), VII (pre-catalyst method F), VIII (pre-catalyst method G) and IX (pre-catalyst method H):

General Procedure for performing aziridination – Illustrated for the synthesis of (2R,3R)-ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a using pre-catalyst method A.

(2R,3R)- ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: The pre-catalyst was made using method A employing 10 mol% of (S)-VAPOL. To the flask containing the pre-

catalyst (made from method A) was first added the aldimine **78a** (271 mg, 1 mmol) and then dry toluene (2 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was stirred for 5 min to give a light orange solution. To this solution was rapidly added ethyl diazoacetate (EDA) **85** (124 μ L, 1.2 mmol) followed by closing the Teflon valve. The resulting mixture was stirred for 24 h at room temperature. Immediately upon addition of ethyl diazoacetate the reaction mixture became an intense yellow, which changed to light yellow towards the end of the reaction. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with dichloromethane (5 mL \times 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid.

A measure of the extent to which the reaction went to completion was estimated from the 1 H NMR spectrum of the crude reaction mixture by integration of the aziridine ring methine protons relative to either the imine methine proton or the proton on the imine carbon. The *cis/trans* ratio was determined by comparing the 1 H NMR integration of the ring methine protons for each aziridine in the crude reaction mixture. The *cis* (J = 7-8 Hz) and the *trans* (J = 2-3 Hz) coupling constants were used to differentiate the two isomers. The yields of the acyclic enamine side products **87a** and **88a** were determined by 1 H NMR analysis of the crude reaction mixture by integration of the *N*-H proton relative to the that of the *cis*-aziridine methine protons with the aid of the isolated yield of the *cis*-aziridine. Purification of the crude aziridine by silica gel chromatography (35 mm × 400 mm column, 19:1 hexanes/EtOAc as eluent, under gravity) afforded pure cis-aziridine **86a** as a white solid (mp. 127.5-128.5 °C on 92% ee material) in 83

% isolated yield (297 mg, 0.83 mmol); cis/trans: >50:1. Enamine side products: 8 % yield of **87a** and 4% yield of **88a.** The optical purity of **86a** was determined to be 91% ee by HPLC analysis ((CHIRALCEL OD-H column, 90:10 hexanes/iPrOH at 222 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.01$ min (major enantiomer, **86a**) and $R_t = 4.67$ min (minor enantiomer, ent-**86a**).

Spectral data for **86a**: $R_f = 0.3$ (1:9 EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 0.95 (t, 3H, J = 7.3 Hz), 2.64 (d, J = 6.8 Hz, 1H), 3.19 (d, J = 6.8 Hz, 1H), 3.91 (q, J = 7.1 Hz, 2H), 3.93 (s, 1H), 7.16-7.38 (m, 11H), 7.47 (d, J = 7.1 Hz, 2H), 7.58 (d, J = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 75 Hz) δ 13.93, 46.36, 48.01, 60.57, 77.68, 127.18, 127.31, 127.39, 127.52, 127.76, 127.78, 128.48, 135.00, 142.37, 142.49, 167.75; $[\alpha]_D^{20} = +$ 33.4 (c 1.0, CH₂Cl₂) on 91.0% ee material (HPLC). These spectral data match those previously reported for this compound. ^{13a}

Aziridination with procedure II

(2R,3R)- ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: To a 25 mL flame-dried round bottom flask filled with argon was added (S)-VAPOL (54 mg, 0.1 mmol), commercial

B(OPh)₃ (87 mg, 0.3 mmol) and aldimine **78a** (271 mg, 1.00 mmol). The mixture was dissolved in toluene (1 mL) at room temperature. The reaction mixture was stirred for 5 min to give a light orange solution. To this solution was rapidly added EDA **85** (124 μL, 1.20 mmol) and the resulting mixture was stirred for 24 h at room temperature. The reaction was diluted by the addition of 6 mL hexane. The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with dichloromethane (5 mL × 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (as discussed above) afforded pure aziridine **86a** as a white solid in 80 % yield and 92 % ee.

Aziridination with procedures V

(2R,3R)- ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: To a 25 mL flame-dried home-made Schlenk flask (see Figure 1) equipped with a stir bar and flushed with argon was added (S)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (116 mg, 0.4 mmol) and aldimine 78a (271 mg, 1 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added to dissolve the reagents. The flask was sealed by closing the Teflon valve, and then placed in an 80 °C (oil bath) for 1 h. The catalyst mixture was then

allowed to cool to room temperature and open to argon through the side-arm of the Schlenk flask. To this solution was rapidly added ethyl diazoacetate (EDA) **85** (124 μ L, 1.2 mmol) followed by closing the Teflon valve. The resulting mixture was stirred for 24 h at room temperature. Immediately upon addition of ethyl diazoacetate the reaction mixture became an intense yellow, which changed to light yellow towards the completion of the reaction. The reaction was diluted by addition of hexane (6 mL). The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with dichloromethane (5 mL \times 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (as discussed above) afforded pure aziridine **86a** as a white solid in 80 % yield and 92 % ee.

2.6.4 Aziridination using different alcohols (*Table 2.3*) or ligands (*Table 2.4*) or imines (*Table 2.5*)

- **A)** With different alcohols (*Table 2.3*): Aziridination was performed with procedure VII (precatalyst method F) described above using alcohols **194**.
- **B**) With different ligands (*Table 2.4*): Aziridination was performed with procedure IV (precatalyst method C) described above using different ligands. See more details in Chapter 5.
- C) With different imines (*Table 2.5*): Aziridination was performed with procedure IV (precatalyst method C) described above using different imines.

Synthesis of aziridine 113a using imine 110a:

(2R,3R)-ethyl-1-(bis(4-methoxyphenyl)methyl)-3-phenylaziridine-2-carboxylate 113a:

Imine 110a (332 mg, 1 mmol) was reacted according to the general procedure IV (pre-catalyst method C) described above with (S)-VAPOL (10 mol%) as the ligand. Purification of the crude aziridine by silica gel chromatography (35 mm × 400 mm column, 9:1 hexanes/EtOAc as eluent, after elution of the first fraction, which contains EDA and / or enamine side products 116a and 117a, the eluent was changed to 5:1 hexanes / EtOAc) afforded pure cis-aziridine 113a as a white solid (mp 89-90 °C on 94% ee material) in 95 % isolated yield (396 mg, 0.95 mmol); cis/trans: 50:1. Enamine side products: 1% yield of 116a and 1% yield of 117a. The optical purity of 113a was determined to be 92% ee by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/2-propanol at 226nm, flow-rate: 1.0 mL/min): retention times; R_t = 8.80 min (major enantiomer, 113a) and R_t = 15.70 min (minor enantiomer, ent-113a)

Spectral data for **113a**: $R_f = 0.28$ (1:5 EtOAc/hexanes). ¹H NMR (CDCl₃, 500 MHz) δ 0.93 (t, 3H, J = 7.1 Hz), 2.59 (d, 1H, J = 6.8 Hz), 3.13 (d, 1H, J = 6.8 Hz), 3.67 (s, 3H), 3.75 (s, 3H),

3.81 (s, 1H), 3.91-3.98 (m, 2H), 6.74 (d, 2H, J = 8.8 Hz), 6.82 (d, 2H, J = 8.8 Hz), 7.14-7.24 (m, 3H), 7.31-7.35 (m, 4H), 7.43 (d, 2H, J = 8.8 Hz); ¹³C (CDCl₃, 75 MHz) δ 13.94, 46.39, 48.02, 55.15, 55.22, 60.54, 76.44, 113.80, 127.27, 127.75, 127.79, 128.16, 128.49, 134.93, 135.13, 135.16, 158.61, 158.71, 167.83 (one sp^2 carbon not located); $[\alpha]_D^{20}$ +36.5 (c 1.0, EtOAc) on 94% ee material (HPLC). These spectral data match those previously reported for this compound. ¹⁹

Synthesis of aziridine 209a using imine 207a:

(2R,3R)-ethyl-1-(2,2-diphenylethyl)-3-phenylaziridine-2-carboxylate 209a: Imine 207a (285 mg, 1 mmol) was reacted according to the general procedure IV (pre-catalyst method C) described above with (S)-VAPOL (10 mol%) as ligand except that the concentration of the reaction is 0.2 M i.e. 6 mL of toluene was used. A clear solution was obtained upon the addition imine and toluene. After 2-3 min, the clear solution turned to a yellow gel. A similar observation was made when CCl₄ was used as the solvent. However, no gel was observed in the case of CH₂Cl₂. Purification of the crude aziridine by silica gel chromatography (35 mm × 400

mm column, 15:1 hexanes/EtOAc as eluent, gravity) afforded pure cis-aziridine **209a** as a white solid (mp 99-101 °C on 43% ee material) in 32 % isolated yield (119 mg, 0.32 mmol); *cis/trans*: >50:1. Enamine side products: <1% yield. The optical purity of **209a** was determined to be 52% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flowrate: 0.7 mL/min): retention times; $R_t = 74.06$ min (major enantiomer, **209a**) and $R_t = 21.4$ min (minor enantiomer, *ent-***209a**)

Spectral data for **209a**: $R_f = 0.32$ (1:9 EtOAc/hexanes). ¹H NMR (CDCl₃, 300 MHz) 0.98 (t, J = 7.1 Hz, 3H), 2.30 (d, J = 6.8 Hz, 1H), 2.79 (d, J = 6.8 Hz, 1H), 3.22 (dd, J = 11.6, 6.8 Hz, 1H), 3.33 (dd, J = 11.6, 7.6 Hz, 1H), 3.91 (qq, J = 10.8, 7.1 Hz, 2H), 4.47 (t, J = 7.1 Hz, 1H), 7.10 – 7.44 (m, 15H); ¹³C (CDCl₃, 125 MHz) δ 13.90, 46.42, 47.82, 51.32, 60.45, 65.45, 126.41, 126.46, 127.17, 127.53, 127.78, 128.15, 128.27, 128.33, 128.40, 135.08, 142.82, 142.97, 167.95; IR (thin film, cm⁻¹) 3061 m, 3028 m, 2930 m, 1747 s, 1495 s, 1450 s, 1196 s; HRMS (ESI-TOF) m/z 372.1964 [(M+H⁺); calcd. for C₂₅H₂₆NO₂ : 372.1964]; [α]²⁰ +4.1 (c 1.0, CH₂Cl₂) on 43% ee material (HPLC).

2.6.5 NMR analysis of a mixture of VAPOL, various boron sources, and imine 111a at various conditions (*Figure 2.3, 2.4 and Table 2.2*)

As shown in Fig. 2.3, 2.4 and Table 2.2 of this chapter, a mixture of (S)-VAPOL **58** and B(OPh)₃ **187a** or triphenoxyboroxine **191a** or BH₃•Me₂S **192a** or B(OH)₃ **193** gives different yields of unreacted VAPOL **58**, mesoborate B1 **106** and pyroborate B2 **108** employing different

reaction conditions (pre-catalyst methods). The yields do not show any significant change after 24 h. Also, it was evident from the 1 H NMR and 11 B NMR that no boroxinate B3 **190a** was formed unless imine **111a** was added (characteristic peaks i.e. δ 10.2-10.4 and δ 5.5-5.7 were missing in 1 H NMR and 11 B NMR respectively). The amount of B3 **190a** differs with respect to different catalyst loading and different methods of preparation of the pre-catalyst. Unless otherwise noted, commercial B(OPh)₃ is used in all the experiments. Also, Ph₃CH is used as the internal standard.

Experimental:

Entry 1, Figure 2.3 and Entry 1, Table 2.2: The pre-catalyst was made using method A employing (S)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (87 mg, 0.3 mmol). To the flask containing the pre-catalyst was first added the Ph₃CH (12.22 mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The off-white colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 2, Figure 2.3 and Entry 2, Table 2.2:

The pre-catalyst was made using method A employing (*S*)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (87 mg, 0.3 mmol). To the flask containing the pre-catalyst was first added the imine **111a** (78 mg, 0.2 mmol), Ph₃CH (12.22 mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 3, Figure 2.3 and Entry 6, Table 2.2: Same as entry 1 except that the pre-catalyst was made using method B.

Entry 4, Figure 2.3 and Entry 7, Table 2.2: Same as entry 2 except that the pre-catalyst was made using method B.

Entry 5, Figure 2.3 and Entry 9, Table 2.2: Same as entry 1 except that the pre-catalyst was made using method C.

Entry 6, Figure 2.3 and Entry 10, Table 2.2: Same as entry 2 except that the pre-catalyst was made using method C.

Entry 7, Figure 2.3 and Entry 11, Table 2.2: To a 10 mL flame-dried round bottom flask, equipped with a stir bar, filled with argon was added (*S*)-VAPOL 58 (54 mg, 0.1 mmol, 1 equiv), commercial B(OPh)₃ (87 mg, 0.3 mmol, 3 equiv), Ph₃CH (12.22 mg, 0.05 mmol) and CDCl₃(1 mL). The resultant mixture was stirred for 10 min at room temperature. The off-white colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and

¹¹B NMR analysis. A Teflon tape was wrapped on the cap of the NMR tube while storing the sample for 24h.

Entry 8, Figure 2.3 and Entry 12, Table 2.2: To a 10 mL flame-dried round bottom flask, equipped with a stir bar, filled with argon was added (*S*)-VAPOL 58 (54 mg, 0.1 mmol, 1 equiv), commercial B(OPh)₃ (87 mg, 0.3 mmol, 3 equiv), imine 111a (78 mg, 0.2 mmol, 2 equiv), Ph₃CH (12.22 mg, 0.05 mmol) and CDCl₃(1 mL). The resultant mixture was stirred for 10 min at room temperature. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 1, Figure 2.4 and Entry 14, Table 2.2: Same as entry 1 of Figure 2.3 except that the precatalyst was made using method D.

Entry 2, Figure 2.4 and Entry 15, Table 2.2: Same as entry 2 of Figure 2.3 except that the precatalyst was made using method D.

Entry 3, Figure 2.4 and Entry 16, Table 2.2: Same as entry 1 of Figure 2.3 except that the precatalyst was made using method E.

Entry 4, Figure 2.4 and Entry 17, Table 2.2: Same as entry 2 of Figure 2.3 except that the precatalyst was made using method E.

Entry 5, Figure 2.4 and Entry 19, Table 2.2: Same as entry 1 of Figure 2.3 except that the precatalyst was made using method G and CH₃CN used the solvent for catalyst preparation.

Entry 6, Figure 2.4 and Entry 20, Table 2.2: Same as entry 2 of Figure 2.3 except that the precatalyst was made using method G and CH₃CN used the solvent for catalyst preparation.

Temperature Studies of 190a:

The pre-catalyst was made using method B employing (*S*)-VAPOL (54 mg, 0.1 mmol) and B(OPh)₃ (87 mg, 0.3 mmol) and H₂O (5.4 μ L, 0.3 mmol). To the flask containing the pre-catalyst was first added the imine **111a** (39 mg, 0.1 mmol), Ph₃CH (12.22 mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis at various temperatures.

2.6.6 NMR analysis of a mixture of VAPOL, B(OPh)₃ and bases 75a, 78a, 85, 111a, 126,
127, 128b, 206a, 207a, 216, 219, 221, 223, 225, 232 (Figures 2.7, 2.9, 2.11, 2.12, 2.14,
2.15, 2.17-2.21 and Tables 2.7, 2.9-2.12)

To a 10 mL flame-dried round bottom flask, equipped with a stir bar, filled with argon was added (S)-VAPOL **58** (54 mg, 0.1 mmol, 1 equiv.), B(OPh)₃ (87 mg, 0.3 mmol, 3 equiv.), base (x equiv.), Ph₃CH (12.22 mg, 0.05 mmol) and CDCl₃(1 mL). The resultant mixture was stirred for

10 min at room temperature. After 10 min, the mixture was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

In case of pyridine **216a**, a procedure same as entry 4 of Figure 2.3 and entry 7 of Table 2.2 with one equiv of the base.

2.6.7 Aziridination in the presence of SULFOX-BOROX catalyst 222a

(2R,3R)- ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: To The pre-catalyst was made using method B employing (S)-VAPOL (54 mg, 0.1 mmol), B(OPh)₃ (87 mg, 0.3 mmol) and H₂O (5.4 μL, 0.3 mmol). To the flask containing the pre-catalyst was first added the DMSO (7.1 μL, 0.1 mmol) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 1 h. After 1 h, imine 78a (271 mg, 1 mmol) was added to the flask containing the SULFOX-BOROX catalyst 222a under an argon flow through side-arm of the Schlenk flask. To this solution was rapidly added ethyl diazoacetate (EDA) 85 (124 μL, 1.2 mmol) followed by closing the Teflon valve. The resulting mixture was stirred for 24 h at room temperature. Immediately upon addition of ethyl diazoacetate the reaction mixture became an

intense yellow, which changed to light yellow towards the end of the reaction. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with dichloromethane (5 mL × 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (as discussed above) afforded pure aziridine 86a as a white solid in 86 % yield and 90 % ee. The same reaction afforded aziridine 86a in 80% yield and 90% ee in the absence of catalyst 222a.

2.6.8 NMR analysis of a mixture of VAPOL, B(OPh)₃ and base 234 and 126k (*Figure 2.23-2.24*)

A) with base 234:

The catalyst **235** was made using the pre-catalyst method E employing (*S*)-VAPOL (54 mg, 0.1 mmol) and BH₃•Me₂S (150 μL, 0.3 mmol, 2.0 M in toluene), ROH **234** (18.8, 0.2 mmol) and H₂O (5.4 μL, 0.3 mmol). Acetonitrile was used as the solvent to make the catalyst. To the flask containing the catalyst was added Ph₃CH (12.22 mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for

10 min. The resulting solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

B) with base 126k:

The catalyst **236** was made using the pre-catalyst method E employing (*S*)-VAPOL (54 mg, 0.1 mmol) and BH₃•Me₂S (150 μL, 0.3 mmol, 2.0 M in toluene), PhNH₂ **126k** (27.3 μL, 0.3 mmol) and H₂O (5.4 μL, 0.3 mmol). To the flask containing the catalyst was added CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The resulting solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

2.6.9 NMR analysis of a mixture of VAPOL, PhOH, H₂O and borane 192d (Scheme 2.3)

The catalyst **237** was made using the pre-catalyst method F employing (S)-VAPOL (54 mg, 0.1 mmol) and BH₃•Et₂NPh **192d** (53.3 μL, 0.3 mmol), PhOH (18.8, 0.2 mmol) and H₂O (5.4 μL,

0.3 mmol) in d₈-toluene. The resulting solution was then directly transferred to a quartz NMR tube and was subjected to ^{1}H NMR and ^{11}B NMR analysis. A peak at $\delta = 10.73$ ppm (in ^{1}H NMR) and $\delta = 5.88$ ppm (in ^{11}B NMR) supports the formation of the catalyst 237.

2.6.10 NMR analysis of a mixture of VAPOL, BH₃•Me₂S (0.5 equiv) and imine 111a (0.5 equiv) (*Figure 2.25*)

To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*S*)-VANOL **59** (44 mg, 0.1 mmol) and BH₃•Me₂S (25 μL, 0.05 mmol, 2.0 M in toluene). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to effect dissolution. The flask was sealed by closing the Teflon valve, and then placed in an 100 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask containing the pre-catalyst was first added the imine **111a** (19 mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The

reaction mixture was then stirred for 10 min. The resulting solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

2.6.11 DFT Calculations of 190a, 215c, 222a, 222b, 217d, 222h, 222i, 228a and 233b (*Figure 2.8, 2.10, 2.16, 2.22*)

All quantum mechanical calculations were performed using the GAUSSIAN 03.²⁰ The B3LYP³⁸ and BHandHLYP³⁹ density functional were used along with 3-21G* and 6-31G* basis sets. There were no imaginary frequencies found in any calculations. The coordinates were provided to Prof. Wulff as a separate file.

NBO analysis on (S)-VAPOL-BOROX anion: NBO analysis was performed at the B3LYP/6-31G* level of theory as shown in Figure 2.27.

Figure 2.27 Natural charges on the oxygen atoms of the boroxinate anion

2.6.12 Crystallographic structure determination of BOROX complex 217b (Figure 2.13)

The crystallographic data of X-ray diffraction studies in this work were collected using a Bruker CCD (charge coupled device) based diffractometer equipped with an Oxford Cryostream low-temperature apparatus operating at 173 K. Data were measured using omega and phi scans of 0.5° per frame for 30 s. The total number of images was based on results from the program COSMO where redundancy was expected to be 4.0 and completeness to 0.83 Å to 100%. Cell

parameters were retrieved using APEX II software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software, which corrects for Lp. Scaling and absorption corrections were applied using SADABS multi-scan technique, supplied by George Sheldrick. The structures are solved by the direct method using the SHELXS-97 program and refined by least squares method on F², SHELXL- 97, which are incorporated in SHELXTL-PC V 6.10. The structure was solved in the space group P2 (# 4). All non-hydrogen atoms are refined anisotropically. Hydrogens were calculated by geometrical methods and refined as a riding model except for those of the water molecules, which could not be found or refined. The Flack parameter is used to determine chirality of the crystal studied, the value should be near zero, a value of one is the other enantiomer and a value of 0.5 is racemic. The Flack parameter was refined to -0.02(18), confirming the absolute stereochemistry. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the program within Platon report that we may have the correct enantiomer based on this comparison. All the drawings are done at 50% ellipsoids. The crystallographic data including hydrogenbonds are summarized in Tables 2.13 and 2.14. The full structural parameters for 217b have been submitted in Cambridge Crystallographic Data Center (Reference numbers CCDC).

Table 2.13 Crystal data and structure refinement for BOROX complex **217b**:

Empirical formula	C66 H66 B3 Cl3 N O11.25			
Formula weight	1191.98			
Temperature	173(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21			
Unit cell dimensions	$a = 9.7855(9) \text{ Å}$ $\alpha = 90^{\circ}$.			
	$b = 46.667(5) \text{ Å}$ $\beta = 109.379(2)^{\circ}$.			

Table 2.13 cont'd

	$c = 13.9815(14) \text{ Å} \gamma = 90^{\circ}.$		
Volume	6023.0(10) Å ³		
Z	4		
Density (calculated)	1.315 Mg/m^3		
Absorption coefficient	0.215 mm ⁻¹		
Table 2.13 cont'd			
F(000)	2500		
Crystal size	0.23 x 0.14 x 0.11 mm ³		
Theta range for data collection	1.54 to 25.40°.		
Index ranges	-9<=h<=11, -50<=k<=56, -16<=l<=16		
Reflections collected	26222		
Independent reflections	17859 [R(int) = 0.0788]		
Completeness to theta = 25.40°	99.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9776 and 0.9528		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	17859 / 1 / 1489		
Goodness-of-fit on F ²	0.983		
Final R indices [I>2sigma(I)]	R1 = 0.1101, $wR2 = 0.2734$		
R indices (all data)	R1 = 0.2096, $wR2 = 0.3440$		
Absolute structure parameter	-0.02(18)		
Largest diff. peak and hole	1.075 and -0.388 e.Å- ³		

Table 2.14 Hydrogen bonds [Å and °]

D-HA	d(D-H)	d(HA)	d(DA)	∠(DHA)
O(1B)-H(1BA)O(4B)	0.84	1.92	2.751(10)	168.2
N(1A)-H(1AA)O(1A)	0.88	1.91	2.789(13)	175.6
O(1A)-H(1AB)O(3A)	0.84	1.90	2.701(11)	157.8
N(1B)-H(1BB)O(1B)	0.88	1.87	2.748(13)	174.1

REFERENCES

REFERENCES

- (1) (a) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W.; Atodiresei, I. *Angew. Chem., Int. Ed.* **2011**, *50*, 6706-6720. (b) Schenker, S.; Zamfir, A.; Freund, M.; Tsogoeva, S. B. *Eur. J. Org. Chem.* **2011**, 2209-2222. (c) Rueping, M.; Kuenkel, A.; Atodiresei, I. *Chem. Soc. Rev.* **2011**, *40*, 4539-4549. (d) List, B.; Kampen, D.; Reisinger, C. M. *Top Curr Chem* **2010**, *291*, 395-456. (e) Rueping, M.; Koenigs, R. M.; Atodiresei, I. *Chem.—Eur. J.* **2010**, *16*, 9350-9365. (f) Sohtome, Y.; Nagasawa, K. *Synlett* **2010**, 1-22. (g) Yamamoto, H.; Payette, J. N. In *Hydrogen Bonding in Organic Synthesis*; Wiley-VCH 2009, p 73-140. (h) Yu, X.; Wang, W. *Chem.—Asian. J.* **2008**, *3*, 516-532. (i) Doyle, A. G.; Jacobsen, E. N. *Chem. Rev.* **2007**, *107*, 5713-5743. (j) Akiyama, T. *Chem. Rev.* **2007**, *107*, 5744-5758. (k) Taylor, M. S. J., E. N. *Angew. Chem., Int. Ed.* **2006**, *45*, 1520-1543. (l) Akiyama, T.; Itoh, J.; Fuchibe, K. *Adv. Synth. Catal.* **2006**, *348*, 999-1010.
- (2) (a) Terada, M. Synthesis **2010**, 1929-1982. (b) Terada, M. Bull. Chem. Soc. Jpn. **2010**, 83, 101-119. (c) Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S. B. Org. Biomol. Chem. **2010**, 8. (d) Terada, M. Chem. Commun. (Cambridge, U. K.) **2008**, 4097-4112. (e) Connon, S. J. Angew. Chem., Int. Ed. **2006**, 45, 3909-3912.
- (3) (a) Rueping, M.; Uria, U.; Lin, M.-Y.; Atodiresei, I. J. Am. Chem. Soc. **2011**, 133, 3732-3735. (b) Hashimoto, T.; Nakatsu, H.; Yamamoto, K.; Maruoka, K. J. Am. Chem. Soc. **2011**, 133, 9730-9733. (c) Rueping, M.; Nachtsheim, B. J.; Koenigs, R. M.; Ieawsuwan, W. Chem.—Eur. J. **2010**, 16, 13116-13126. (d) Vellalath, S.; Coric, I.; List, B. Angew. Chem., Int. Ed. **2010**, 49, 9749-9752. (e) Cheon, C. H.; Yamamoto, H. J. Am. Chem. Soc. **2008**, 130, 9246-9247. (f) Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B. J. Angew. Chem., Int. Ed. **2007**, 46, 2097-2100. (g) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. **2006**, 128, 9626-9627.
- (4) (a) Ratjen, L.; Garcìa-Garcìa, P.; Lay, F.; Beck, M. E.; List, B. *Angew. Chem., Int. Ed.* **2011**, 50, 754-758. (b) Chen, L.-Y.; He, H.; Chan, W.-H.; Lee, A. W. M. *J. Org. Chem.* **2011**, 76, 7141-7147. (c) He, H.; Chen, L.-Y.; Wong, W.-Y.; Chan, W.-H.; Lee, A. W. M. *Eur. J. Org. Chem.* **2010**, 4181-4184. (d) Treskow, M.; Neudoerfl, J.; Giernoth, R. *Eur. J. Org. Chem.* **2009**, 3693-3697.
- (5) Berkessel, A.; Christ, P.; Leconte, N.; Neudörfl, J.-M.; Schäfer, M. Eur. J. Org. Chem. **2010**, 5165-5170.
- (6) (a) Hashimoto, T.; Omote, M.; Maruoka, K. *Angew. Chem., Int. Ed.* **2011**, *50*, 3489-3492. (b) Hashimoto, T.; Omote, M.; Maruoka, K. *Angew. Chem., Int. Ed.* **2011**, *50*, 8952-8955. (c) Hashimoto, T.; Kimura, H.; Nakatsu, H.; Maruoka, K. *J. Org. Chem.* **2011**, *76*, 6030-6037. (d) Hashimoto, T.; Kimura, H.; Maruoka, K. *Angew. Chem., Int. Ed.* **2010**, *49*, 6844-6847. (e)

- Hashimoto, T.; Uchiyama, N.; Maruoka, K. J. Am. Chem. Soc. **2008**, 130, 14380-14381. (f) Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. **2007**, 129, 10054-10055.
- (7) (a) Hatano, M.; Sugiura, Y.; Akakura, M.; Ishihara, K. *Synlett* **2011**, 1247-1250. (b) Hatano, M.; Sugiura, Y.; Ishihara, K. *Tetrahedron: Asymmetry* **2010**, *21*, 1311-1314. (c) Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. *J. Am. Chem. Soc.* **2008**, *130*, 16858-16860.
- (8) (a) Desai, A. A.; Wulff, W. D. *Synthesis* **2010**, 3670-3680. (b) Rowland, E. B.; Rowland, G. B.; Rivera-Otero, E.; Antilla, J. C. *J. Am. Chem. Soc.* **2007**, *129*, 12084-12085.
- (9) (a) Senatore, M.; Lattanzi, A.; Santoro, S.; Santi, C.; Della, S. G. *Org. Biomol. Chem.* **2011**, 9, 6205-6207. (b) Desai, A. A.; Huang, L.; Wulff, W. D.; Rowland, G. B.; Antilla, J. C. *Synthesis* **2010**, 2106-2109. (c) Larson, S. E.; Baso, J. C.; Li, G.; Antilla, J. C. *Org. Lett.* **2009**, *11*, 5186-5189. (d) Della, S. G.; Lattanzi, A. *Org. Lett.* **2009**, *11*, 3330-3333. (e) Rowland, G. B.; Rowland, E. B.; Liang, Y.; Perman, J. A.; Antilla, J. C. *Org. Lett.* **2007**, *9*, 2609-2611. (f) Liang, Y.; Rowland, E. B.; Rowland, G. B.; Perman, J. A.; Antilla, J. C. *Chem. Commun.* **2007**, 4477-4479. (g) Li, G.; Liang, Y.; Antilla, J. C. *J. Am. Chem. Soc.* **2007**, *129*, 5830-5831. (h) Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. *J. Am. Chem. Soc.* **2005**, *127*, 15696-15697.
- (10) (a) Xu, B.; Zhu, S.-F.; Xie, X.-L.; Shen, J.-J.; Zhou, Q.-L. *Angew. Chem., Int. Ed.* **2011**, *50*, 11483-11486. (b) Xing, C.-H.; Liao, Y.-X.; Ng, J.; Hu, Q.-S. *J. Org. Chem.* **2011**, *76*, 4125-4131. (c) Müller, S.; Webber, M. J.; List, B. *J. Am. Chem. Soc.* **2011**, *133*, 18534-18537. (d) Huang, D.; Xu, F.; Lin, X.; Wang, Y. Chiral spirocyclic phosphoric acid, its preparation method and application as catalyst CN102030780A Apr 27, 2011. (e) Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y. *J. Org. Chem.* **2010**, *75*, 8677-8680. (f) Coric, I.; Mueller, S.; List, B. *J. Am. Chem. Soc.* **2010**, *132*, 17370-17373.
- (11) (a) Akiyama, T. Preparation of cyclic erythritol phosphoric acid derivatives as catalysts for asymmetric synthesis WO2006092884A1 . (b) Voituriez, A.; Charette, A. B. *Adv. Synth. Catal.* **2006**, *348*, 2363-2370. (c) Akiyama, T.; Saitoh, Y.; Morita, H.; Fuchibe, K. *Adv. Synth. Catal.* **2005**, *347*, 1523-1526.
- (12) (a) Ishihara, K.; Miyata, M.; Hattori, K.; Tada, T.; Yamamoto, H. *J. Am. Chem. Soc.* **1994**, *116*, 10520-10524. (b) Ishihara, K.; Kuroki, Y.; Yamamoto, H. *Synlett* **1995**, 41-42. (c) Kuroki, Y.; Ishihara, K.; Hanaki, N.; Ohara, S.; Yamamoto, H. *Bull. Chem. Soc. Jpn.* **1998**, *71*, 1221-1230. (d) Cros, J. P.; Pérez-Fuertes, Y.; Thatcher, M. J.; Arimori, S.; Bull, S. D.; James, T. D. *Tetrahedron: Asymmetry* **2003**, *14*, 1965-1968. (e) Kawate, T.; Yamada, H.; Matsumizu, M.; Nishida, A.; Nakagawa, M. *Synlett* **1997**, 761-762. (f) Yamada, H.; Kawate, T.; Matsumizu, M.; Nishida, A.; Yamaguchi, K.; Nakagawa, M. *J. Org. Chem.* **1998**, *63*, 6348-6354.

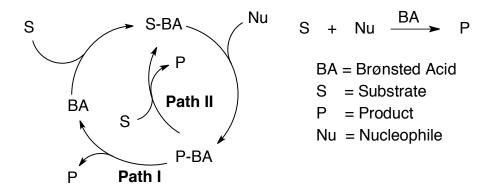
- (13) (a) Zhang, Y.; Desai, A.; Lu, A.; Hu, G.; Ding, Z.; Wulff, W. D. Chem. –Eur. J. 2008, 14, 3785-3803. (b) Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429-5432. (c) Mukherjee, M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. J. Org. Chem. 2010, 75, 5643-5660. (d) Ren, H.; Wulff, W. D. Org. Lett. 2010, 12, 4908-4911. (e) Hu, G.; Huang, L.; Huang, R. H.; Wulff, W. D. J. Am. Chem. Soc. 2009, 131, 15615-15617. (f) Hu, G.; Gupta, A. K.; Huang, R. H.; Mukherjee, M.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 14669–14675. (g) Gupta, A. K.; Mukherjee, M.; Wulff, W. D. Org. Lett. 2011, 13, 5866-5869. (h) Newman, C. A.; Antilla, J. C.; Chen, P.; Predeus, A. V.; Fielding, L.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7216-7217. (i) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13100-13103. (j) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13104-13107. (k) Desai, A. A.; Morán-Ramallal, R.; Wulff, W. D. Org. Synth. 2011, 88, 224-237. (l) Ren, H.; Wulff, W. D. J. Am. Chem. Soc. 2011, 133, 5656-5659. (m) Desai, A. A.; Ren, H.; Mukherjee, M.; Wulff, W. D. Org. Process Res. Dev. 2011, 15, 1108-1115.
- (14) Casarrubios, L.; Perez, J. A.; Brookhart, M.; Templeton, J. L. *J. Org. Chem.* **1996**, *61*, 8358-8359.
- (15) (a) Antilla, J. C.; Wulff, W. D. J. Am. Chem. Soc. **1999**, 121, 5099-5100. (b) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. **2000**, 39, 4518-4521.
- (16) Hattori, K.; Yamamoto, H. J. Org. Chem. 1992, 57, 3264-3265.
- (17) Favrot, J.; Vocelle, D.; Sandorfy, C. Photochem. Photobiol. 1979, 30, 417-421.
- (18) Ding, Z.; Osminski, W. E. G.; Ren, H.; Wulff, W. D. Org. Process Res. Dev. 2011, 15, 1089-1107 and references therein.
- (19) Lu, Z.; Zhang, Y.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7185-7194.
- (20) Gaussian 03, Revision D.01 M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.

- Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004
- (21) (a) Nishio, M. *Tetrahedron* **2005**, *61*, 6923-6950. (b) Nishio, M. H., M.; Umezawa, Y. *The CH/\pi Interaction: Evidence, Nature, and Consequences*; Wiley-VCH, 1998.
- (22) Plevin, M. J.; Bryce, D. L.; Boisbouvier, J. Nat Chem 2010, 2, 466-471.
- (23) Hall, H. K. J. Am. Chem. Soc. 1957, 79, 5441-5444.
- (24) Braude, E. A.; Nachod, F. C.; Phillips, W. D.; Zuckerman, J. J. *Determination of Organic Structures by Physical Methods*; Academic Press: New York, 1955.
- (25) Chiang, Y.; Whipple, E. B. J. Am. Chem. Soc. 1963, 85, 2763-2767.
- (26) Desai, A.; Wulff, W. D., Unpublished results.
- (27) Haake, P.; Cook, R. D.; Hurst, G. H. J. Am. Chem. Soc. 1967, 89, 2650-2654.
- (28) Landini, D.; Modena, G.; Scorrano, G.; Taddei, F. J. Am. Chem. Soc. 1969, 91, 6703-6707.
- (29) Hall, S. K.; Robinson, E. A. Can. J. Chem. **1964**, 42, 1113-1122.
- (30) Cook, A. G.; Mason, G. W. J. Org. Chem. 1972, 37, 3342-3345.
- (31) Bell, R. P.; Higginson, W. C. E. *Proc. R. Soc. Lond. A* **1949**, *197*, 141-159.
- (32) Jaffé, H. H.; Doak, G. O. J. Am. Chem. Soc. 1955, 77, 4441-4444.
- (33) Kanbayashi, N.; Onitsuka, K. Angew. Chem., Int. Ed. 2011, 50, 5197-5199.
- (34) Ghorbani-Choghamarani, A.; Sardari, S. Chinese Journal of Catalysis 2010, 31, 1347-1350.

- (35) Luca, O. R.; Wang, T.; Konezny, S. J.; Batista, V. S.; Crabtree, R. H. New J. Chem. 2011, 35, 998-999.
- (36) Hu, Z.; Kerton, F. M. Org. Biomol. Chem. 2012, 10, 1618-1624.
- (37) Cole, T. E.; Quintanilla, R.; Rodewald, S. Synth. React. Inorg. Met.-Org. Chem. 1990, 20, 55-63.
- (38) (a) Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098. (b) Lee, C. Y., W.; Parr, R. G. *Phys. Rev. B* **1988**, *37*, 785.
- (39) (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 1372-1377. (b) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. **2005**, 1, 415-432. (c) Yu, W.; Liang, L.; Lin, Z.; Ling, S.; Haranczyk, M.; Gutowski, M. J. Comput. Chem. **2009**, 30, 589-600.

CHAPTER 3

MECHANISTIC STUDY OF THE CATALYTIC CYCLE OF A BRØNSTED ACID CATALYZED REACTION UTILIZING AZIRIDINATION AS THE TEMPLATE

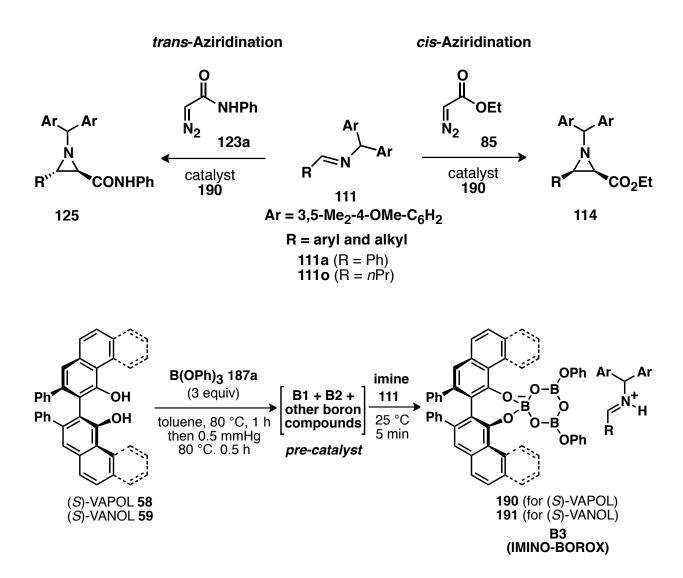

I think you do not have enough work these days.

-William D. Wulff

3.1 Introduction

Generally, in a Brønsted acid catalyzed reaction (Scheme 3.1), substrate (S) binds to the catalyst (BA) giving S-BA complex that further reacts with nucleophile (Nu) resulting in a complex where product is bound to the catalyst (P-BA). This complex collapses to release the product (P) and the catalyst (BA). There is another associative pathway (Path II) where substrate directly replaces product from P-BA complex to give S-BA complex. To best of our knowledge, there is no example in literature, which provides evidence for the existence of such proposed complexes, especially the product bound to the catalyst in the case of the aziridination reaction. The aim of this work is to characterize and otherwise gain evidence for the existence of such complexes and other intermediates of the catalytic cycle. Another goal of this work is to explore the possibility of observing the depletion of P-BA complex in the presence of the substrate (S). The catalytic cycle of other systems have been studied using NMR spectroscopy, ¹ mass spectrometry² and theoretical calculations. ³

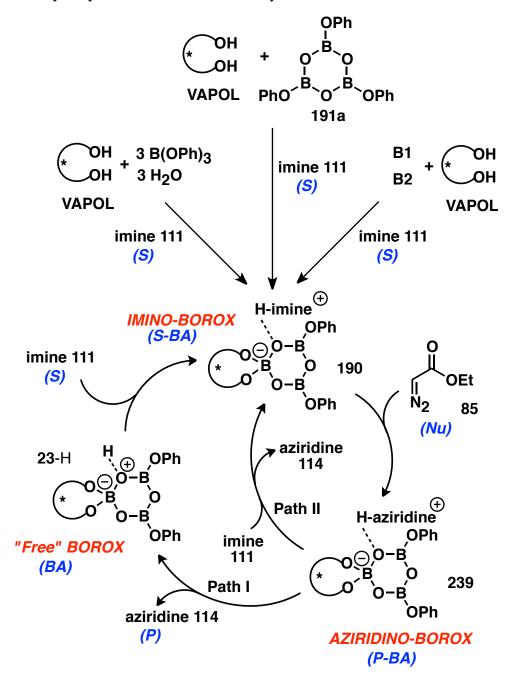
Scheme 3.1 Catalytic cycle of a Brønsted acid catalyzed reaction



3.2 Characterization of the various stages of the catalytic cycle of a Brønsted Acid catalyzed aziridination reaction

In the field of organic synthesis, importance has always been given to efforts to provide tangible evidence to support the proposed mechanisms or reaction pathways. Most of the time, this helps to gain insight which can be the spark leading to new discoveries. With the aim of understanding the mechanistic aspect of our aziridination reaction, we decided to characterize the various proposed complexes and intermediates of the catalytic cycle. This, in turn, might support the existence of the proposed complexes in a general catalytic cycle of any Brønsted acid catalyzed reaction. Hence, our aziridination reaction might serve as the template for the catalytic cycle of a Brønsted acid catalyzed reaction. There is no such study reported in case of a Brønsted acid catalyzed reaction. Over the last several years we have developed a general catalytic asymmetric aziridination that is based on the reaction of diazo compounds with imines mediated by asymmetric catalysts generated from the VANOL or VAPOL ligands and various boron compounds (Scheme 3.2). As discussed in Chapter 2, the protocol for catalyst formation involves 3 equivalents of commercial B(OPh)₃ and 1 equivalent of ligand giving the mixture of

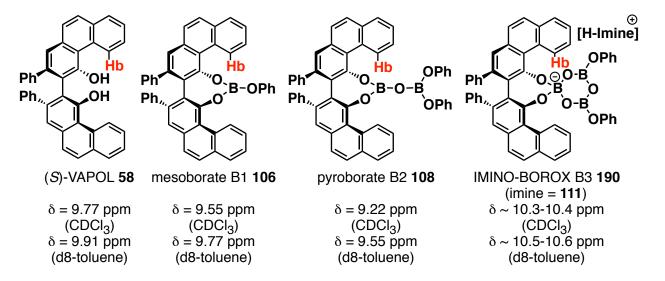
B1 **106/107** and B2 **108/109** (Scheme 3.2). Thereafter, the actual IMINO-BOROX catalyst is formed only upon the addition of the substrate i.e. imine. As mentioned earlier, the IMINO-BOROX catalyst **190** is comprised of a chiral borate anion containing a spiro-boroxinate ring and a protonated iminium ion (Scheme 3.2). ^{5f}


Scheme 3.2 Brønsted acid catalyzed aziridination reaction

Scheme 3.2 cont'd

The catalytic cycle pertaining to the catalytic asymmetric aziridination reaction is shown in Scheme 3.3. As said earlier, addition of imine 111 to the pre-catalyst and other borates sources including commercial B(OPh)₃ and triphenoxyboroxine 191a generates IMINO-BOROX catalyst 190. Subsequent attack of diazoester 85 should form the proposed boroxinate-aziridine complex 239 (AZIRIDINO-BOROX) where aziridine is bound to the catalyst. Turnover then would lead to the loss of aziridine and then incorporation of another molecule of the imine 111 regenerating the IMINO-BOROX 190. While we have not been able to obtain any direct evidence for the presence of the protonated boroxinate species 23-H (Free BOROX), it is not clear if the overall conversion of the AZIRIDINO-BOROX 239 to the IMINO-BOROX 190 involves loss of aziridine to give the Brønsted acid 23-H which then protonates the imine to give 190, or if there is an associative reaction between 239 and the imine 111 which directly leads to the aziridine 114 and the IMINO-BOROX 190. The fact that this reaction turns over is consistent with the assumption that aziridine is, most likely, significantly slower in inducing boroxinate formation than the imine.

Scheme 3.3 Catalytic cycle of a Brønsted acid catalyzed aziridination reaction



3.2.1 Evidence for IMINO-BOROX complex

In terms of the characterization of various stages of the catalytic cycle, we have already presented evidence for the structure and involvement of an IMINO-BOROX species as the

catalyst with the help of NMR spectroscopy and X-ray analysis. The identification of this species is facilitated by the fact that the bay protons (Hb) of VAPOL and its derivatives, which include IMINO-BOROX catalyst, are quite distinct (Figure 3.1). For VAPOL this doublet is at δ = 9.77 ppm (CDCl₃). The formation of the three B-O-B linkages in the boroxine ring in the BOROX catalyst **190** requires 3 equiv of water and the source of this most certainly results from partial hydrolysis of commercial B(OPh)₃. This is supported by the fact that no boroxinate occurs with extremely pure B(OPh)₃. Sf Hence, we decided to study the effect of the addition of water on the generation of the IMINO-BOROX catalyst **190**.

Figure 3.1 Chemical shift of the bay proton of (S)-VAPOL 58 and its different derivatives

As shown in Figure 3.2B, the traditional method for catalyst formation involves heating (S)-VAPOL with 3 equiv of commercial B(OPh)₃ at 80 °C generating the pre-catalyst (method A, Figure 3.2B, entry 1). Another procedure was also employed where 3 equiv of H₂O was

added to the mixture of ligand and commercial B(OPh)₃ (method B, Figure 3.2B, entry 3). With method A, the pyroborate 108 is formed in 53% yield (41% with H₂O, method B) along with a 6% yield (5% with H₂O, method B) of the mesoborate **106** and 20% (45% with H₂O, method B) of unreacted VAPOL **58** (Figure 3.2B, entries 1 and 3) as monitored by ¹H NMR spectroscopy. Treatment of either of these mixtures with 1 equiv of the imine 111a (R = Ph) at room temperature resulted within a few minutes in the conversion of the colorless solution of 106 and 108 to a red solution of IMINO-BOROX catalyst 190a in 90% yield (also 90% with H₂O, method B). There is not much change in terms of the yield of 190a with respect to either method, however the amount of B2 108 is higher in case of method A (entry 1 verses 3). The presence of the BOROX catalyst 190a was indicated by the broadened doublet at $\delta = 10.23$ ppm (Figure 3.2B, entries 2 and 4). In order to confirm that other imines could induce catalyst formation, we utilized alkyl imines 1110 (R = n-propyl) and 1120' (R = ethyl) to form the catalyst. Indeed, both imines generated the boroxinate catalysts 1900 and 2130' in 49% yield (Figure 3.2B, entry 5) and 60% yield (Figure 3.2B, entry 6) respectively. Another tool utilized in this analysis is the ¹¹B NMR spectrum. Most, three coordinate aryl borate compounds have very broad absorptions at 16-18 ppm in the ¹¹B NMR spectrum. However, the increased spherical symmetry of four coordinate boron leads to sharp lines in the spectrum and the negative charge of the borate causes an up field shift. The IMINO-BOROX catalysts 190a, 190o and 213o' have sharp absorptions at 5.38, 5.35 and 5.48 ppm respectively (Figure 3.2C, entries 2, 5 and 6). The X-ray structure of **190a** has been reported previously. ^{5f}

Figure 3.2 (**A**) Imine induced boroxinate catalyst formation. (**B**)^a ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard with yields of boroxinate catalysts in parenthesis. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 3.2B.

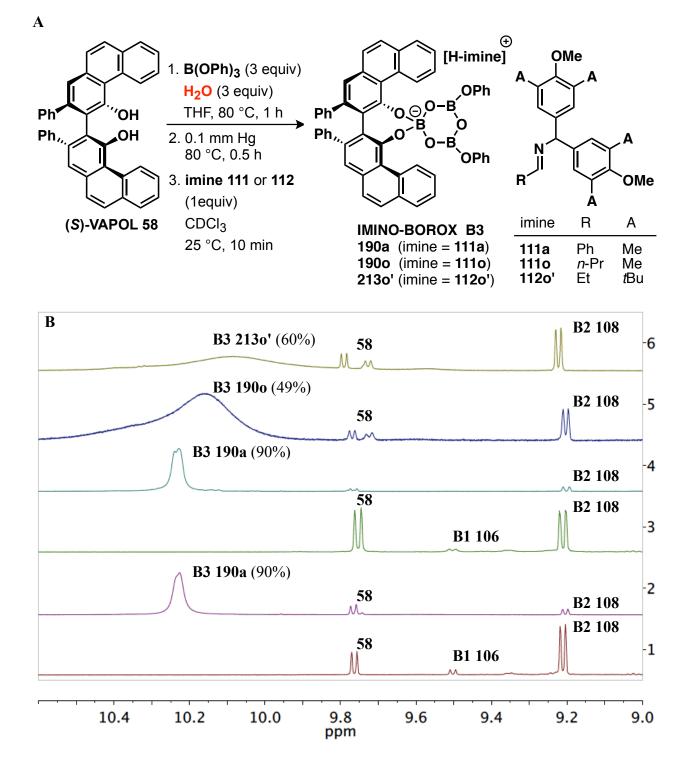
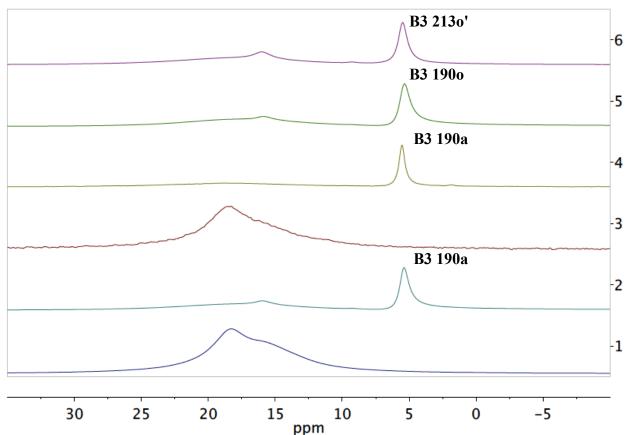



Figure 3.2 cont'd

 \mathbf{C}

^a Note for Figure 3.2B: Entry 1: (*S*)-VAPOL (0.1 mmol) plus 3 equiv of commercial B(OPh)₃ were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h (method A). Entry 2: 1.0 equiv of imine **111a** added to the solution in entry 1 for 10 min at 25 °C. Entry 3: Same as entry 1 except that 3 equiv of H₂O was also added to make the precatalyst (method B). Entry 4: 1.0 equiv of imine **111a** added to the solution in entry 3 for 10 min at 25 °C. Entry 5: 1.0 equiv of imine **111o** added to the solution in entry 3 for 10 min at 25 °C. Entry 6: 1.0 equiv of imine **112o**′ added to the solution in entry 3 for 10 min at 25 °C.

3.2.2 Evidence for an AZIRIDINO-BOROX complex

Next, we moved on with the attempts to find evidence for the AZIRIDINO-BOROX specie **239**. In the past, there have been a lot of unsuccessful attempts in our group.

3.2.2.1 Monitoring the reaction by ¹H NMR Spectroscopy

One of the ways of observing AZIRIDINO-BOROX 239 is to follow the aziridination reaction by ¹H NMR spectroscopy. Presumably, that imine has higher binding affinity compared to the aziridine, which results in turnover. However, it was thought that the presence of 239 could perhaps be observable towards the end of the reaction when the amount of aziridine is much larger than the amount imine and this might help shift the equilibrium towards 239. Hence we decided to follow the reaction using ¹H NMR spectroscopy. We employed three different procedures as shown in Scheme 3.4. The formation of aziridine and the alkylated VAPOL derivative 230 was observed in each case. The results are summarized in Table 3.1. A detailed discussion on the formation of 230 is given in section 3.2.4.

Scheme 3.4 Different procedures used to perform and monitor the aziridination reaction

Procedure i

Procedure ii

Scheme 3.4 cont'd

Procedure iii

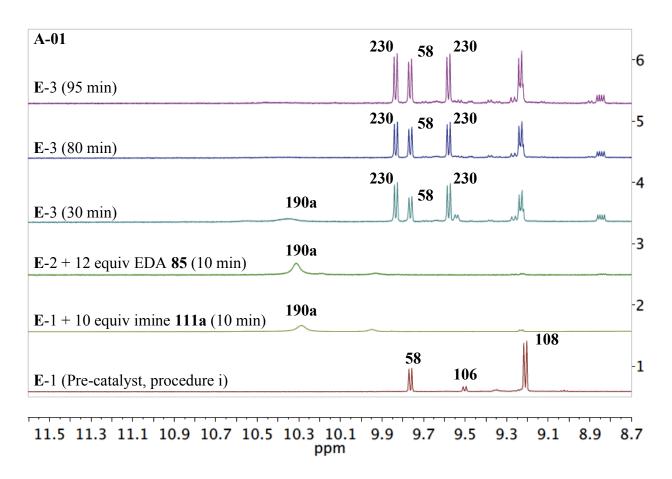
Table 3.1 Monitoring aziridination reaction by ¹H NMR spectroscopy ^a

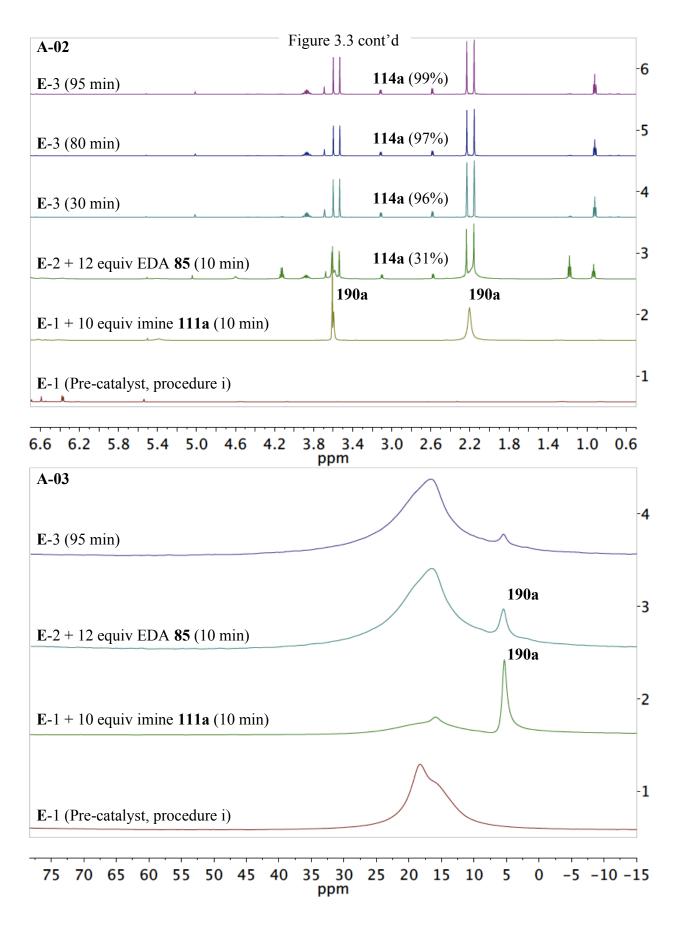
	#	Proc b	Time (min)	(S)- VAPOL 58 ^{c,d}	230	B1 106 ^d	B2 108 ^d	B3 190a ^d	B3 190a ^e	114a ^e
$B(OPh)_3$										
Before imine	X1	i	10	20	-	6	53	-	-	-
After imine (10 equiv)	X2	i	10	<1	-	<1	6	55	6	-
After EDA	X3	i	10	<1	<1	<1	<1	62	6	31
(12 equiv)	X4	i	30	14	38	8	20	20	2	96
	X5	i	80	18	37	<1	27	8	1	97
	X6	i	95	15	32	<1	25	<1	<1	99
$B(OPh)_3$										
Before imine	Y1	i	10	20	-	6	53	-	-	-
After imine (2 equiv)	Y2	i	10	2	-	<1	13	81	41	-
After EDA	Y3	i	10	2	<1	3	10	82	41	11
(2.4 equiv)	Y4	i	15	<1	26	7	27	23	11	90
Boroxine										
Before imine	Y5	ii	-	69	-	4	23	-	-	-
After imine (2 equiv)	Y6	ii	10	19	-	<1	<1	55	28	-
After EDA	Y7	ii	10	24	9	<1	1	66	33	65
(2.4 equiv)	Y8	ii	15	12	38	<1	4	46	23	73
	Y9	ii	25	7	45	<1	4	38	19	78

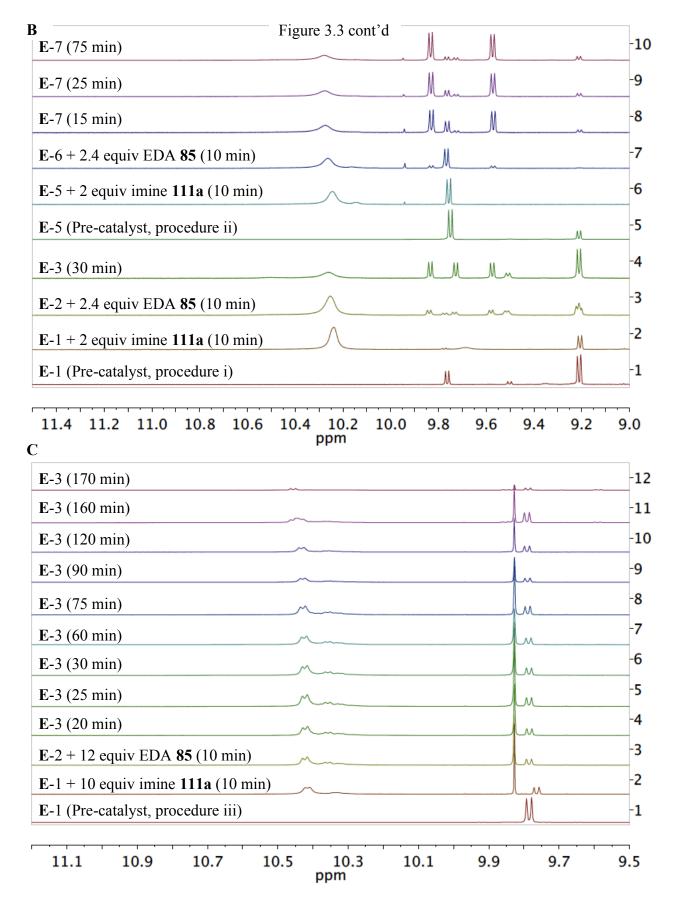
Table 3.1 cont'd

	Y10	ii	75	4	52	<1	4	33	17	79
$B(OPh)_3$										
Before imine	Z 1	iii	10	85	-	<1	3	-		-
After imine (10 equiv)	Z2	iii	10	11	-	<1	<1	41	4	-
After EDA	Z 3	iii	15	10	<1	<1	<1	31	3	15
(12 equiv)	Z 4	iii	20	10	<1	<1	<1	31	3	17
	Z 5	iii	25	11	<1	<1	<1	34	3	21
	Z 6	iii	30	11	<1	<1	<1	34	3	22
	Z 7	iii	60	12	<1	<1	<1	34	3	35
	Z 8	iii	75	13	<1	<1	<1	34	3	65
	Z 9	iii	90	14	<1	<1	<1	34	3	69
	Z10	iii	120	20	<1	<1	<1	47	5	82
	Z 11	iii	160	26	9	<1	<1	45	5	86
	Z12	iii	170	27	11	<1	<1	30	3	88

unless otherwise specified, all NMR samples were prepared with (S)-VAPOL **58** (0.1 mmol), commercial B(OPh)₃ (0.3 mmol) or boroxine **191a** (0.1 mmol) and imine **111a** in CDCl₃ (1 mL) utilizing method i-iii. For different methods; see scheme 3.4. Unreacted (S)-VAPOL **58**. NMR yield with Ph₃CH as internal standard with (S)-VAPOL **58** as the limiting reagent.

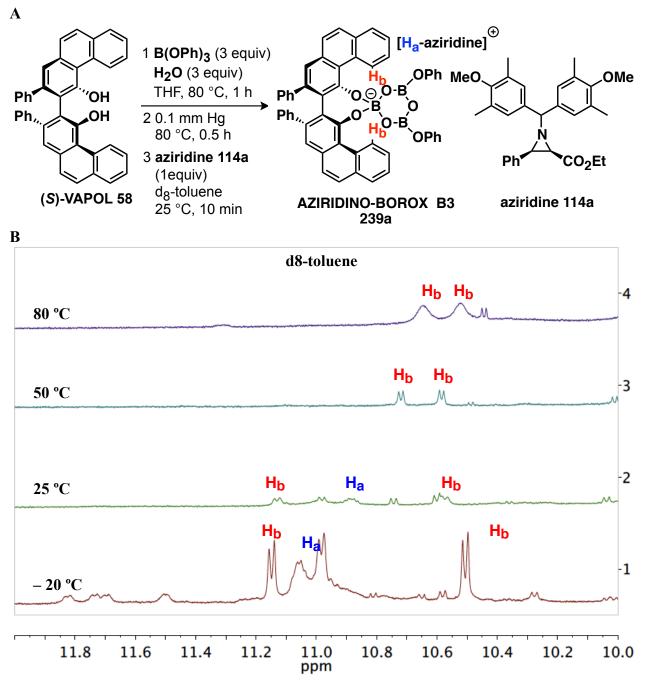

Irrespective of various methods, there is no sign of AZIRIDINO-BOROX complex at any time interval. This was most evident in Figure 3.3A as there was no new significant peak in the bay region of the ¹H NMR spectrum of the ligand nor in the ¹¹B NMR spectrum.


Figure 3.3 (A) A-01: ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard (procedure i). Entry 1: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Entry 2: 10 equiv of imine 111a added to the solution in entry 1 for 10 min at 25 °C. Entry 3: 12 equiv of EDA 85 added to the solution in entry 2 for 10 min at 25 °C. Entry 4: Same as entry 3 after 30 min.


Figure 3.3 cont'd

Entry 5: Same as entry 3 after 80 min. Entry 6: Same as entry 3 after 95 min. **A-02**: ¹H NMR spectra of the methoxy and methyl regions corresponding to the entries in Figure 3.3A-01. **A-03**: ¹¹B NMR spectra corresponding to the ¹H NMR spectra (entries 1, 2, 5 and 6) in Figure 3.3A-01. **(B)** ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. The reaction is performed using procedures i and ii using 2 equiv of imine **111a** and 2.4 equiv of EDA **85**; see scheme 3.4 for procedures i and ii. **(C)** ¹H NMR spectra in CDCl₃ with Ph₃CH as internal standard. The reaction is performed using method iii using 10 equiv of imine **111a** and 12 equiv of EDA **85**; see scheme 3.4 for procedure iii.

A



One of the interesting aspects of our catalytic aziridination reaction is that it is a substrate-induced catalytic system. Since imines are generally more basic than aziridines it should not be surprising that all of the NMR studies in Figure 3.3 and Table 3.1 failed to turn up any evidence for an aziridine-catalyst complex. However, this suggests that the second line of thought should be to employ aziridine 114 as a base to generate a boroxinate in the absence of an imine to avoid any competition for the catalyst. Presumably, the behavior of the species 239 should be similar to IMINO-BOROX catalyst 190.

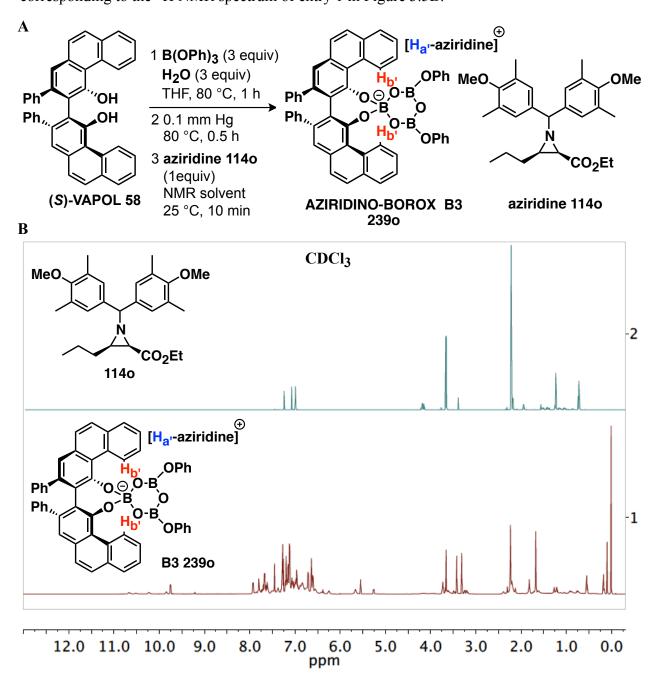
3.2.2.2 Initial attempts towards the generation of AZIRIDINO-BOROX complex using aziridine 114a

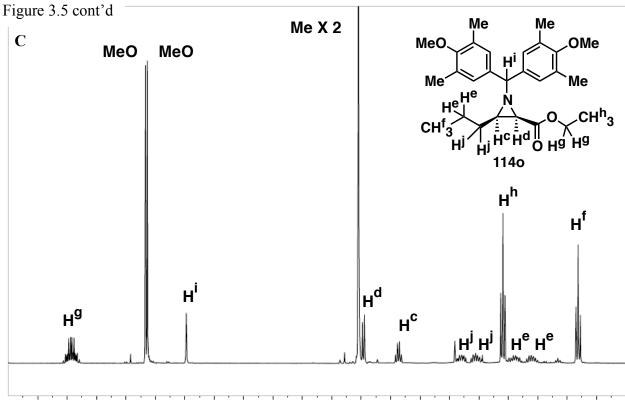
Initial attempts towards the generation of aziridine-boroxinate complex 239a (with phenyl aziridine 114a) by following the reaction were not that conclusive. We used aziridine 114a to affect the desired result. At first instant, it seemed that the desired complex was formed. This inference was suggested by the 1H NMR spectrum of the bay region and by the ^{11}B NMR spectrum. A very small peak at 5.95 ppm was seen in the ^{11}B NMR spectrum. With the help of NOESY1D and COSY, we were able to identify the peaks for the bay region protons at $\delta = 10.59$ and $\delta = 11.12$ ppm in d_8 -toluene ($\delta = 10.5$ and $\delta = 10.8$ ppm in CDCl₃) at room temperature. Also, the proton attached to the N of aziridinium was found to be at $\delta = 10.89$ ppm in d8-toluene ($\delta = 10.32$ ppm in CDCl₃). A simple temperature study (-20 °C to 80 °C) revealed that aziridinium cation exchanges with increased rate on NMR time scale at higher temperature as both the bay protons come closer (Figure 3.4B). However, this complex was found to unstable at room temperature over a period of time. The evidence for the existence of complex 239a was only indicative and not conclusive.

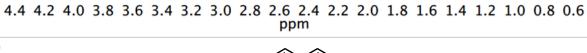
Figure 3.4 (**A**) Aziridine **114a** induced boroxinate catalyst formation. (**B**)^a ¹H NMR spectra of the bay region in d₈-toluene.

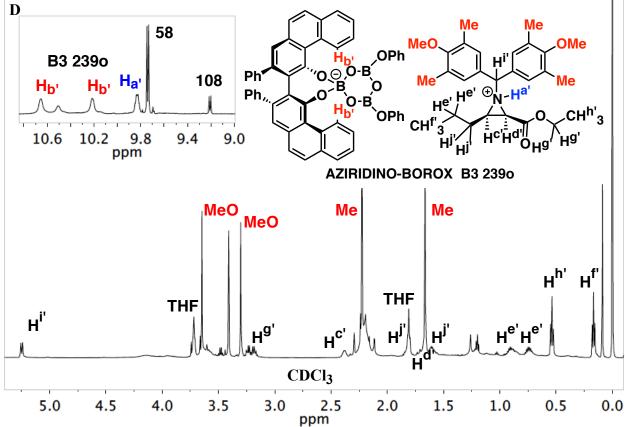
^a Note for Figure 3.4B: Entry 1: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under

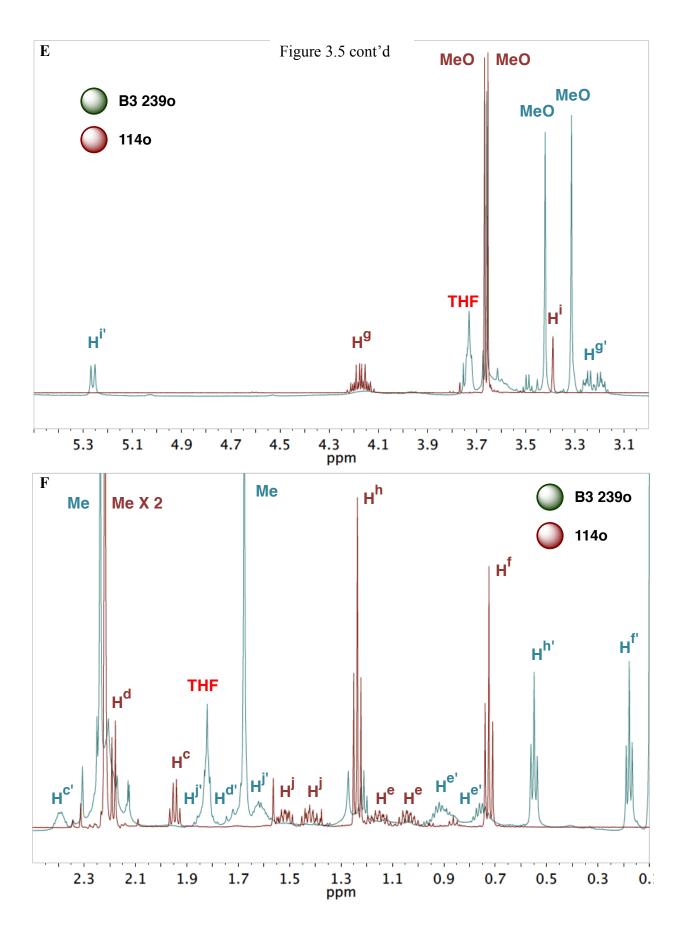
vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine **114a** added to the pre-catalyst in d₈-toluene (1 mL) for 10 min at 25 °C. The NMR was taken at –20 °C. Entry 2: Same as entry 1 but the NMR was taken at 25 °C. Entry 3: Same as entry 1 but the NMR was taken at 50 °C. Entry 4: Same as entry 1 but the NMR was taken at 80 °C.

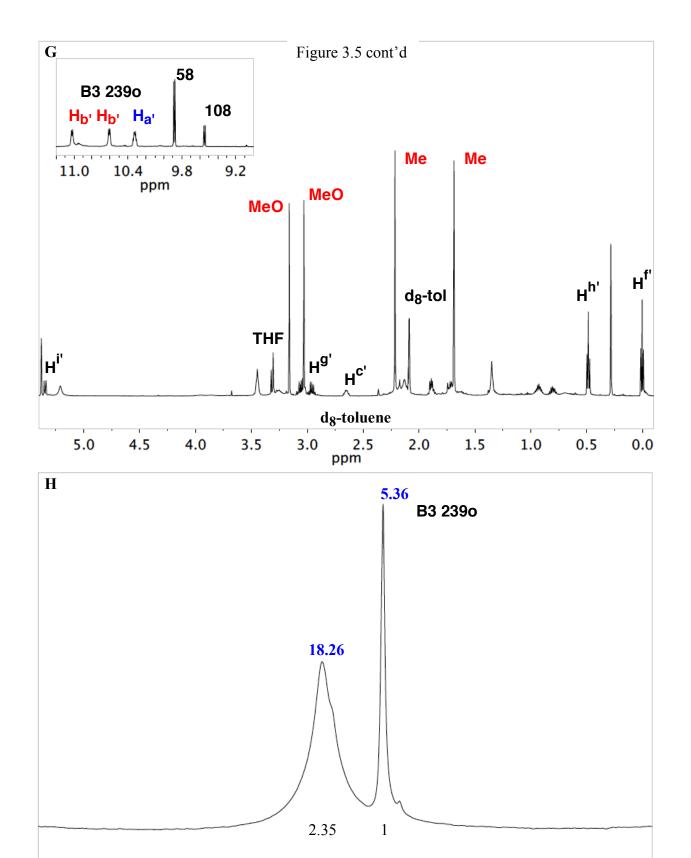

3.2.2.3 First glimpse of an AZIRIDINO-BOROX complex using aziridine 1140


Next, we examined aziridine **114o** as the substrate for the generation of a boroxinate-aziridine complex **239o**. To our delight, this provided the first conclusive evidence of an AZIRIDINO-BOROX **239o**. A characteristic peak at δ 5.36 ppm was observed in the ¹¹B NMR spectrum (Figure 3.5H). In fact, few peaks were observed at bay region of the ligand in ¹H NMR spectrum that is expected for a boroxinate species (Figure 3.5D and 3.5G). A bit of a more careful look revealed the presence of two bay protons of the ligand at δ = 10.2 ppm and δ = 10.6 ppm in CDCl₃ (Figure 3.5D). The presence of two bay protons peak is probably due the slow exchange of the aziridinium cation with the top and bottom face of the catalyst on the NMR time scale. The same peaks were observed at δ = 10.6 ppm and δ = 11.0 ppm in d8-toluene (Figure 3.5D). With the help of COSY and HMBC, we were able to identify the changes in the chemical shifts of key protons of aziridine **114o**. These observations are discussed below.


Figure 3.5 (**A**) Aziridine **1140** induced boroxinate catalyst formation. (**B**)^a ¹H NMR spectra in CDCl₃. (**C**) Expanded view of ¹H NMR spectrum of neat aziridine **1140** (entry 2 in Figure 3.5B); (**D**) Expanded view of ¹H NMR spectrum of **B3 2390** (entry 1 in Figure 3.5B). (**E**) Expanded view of the superimposed ¹H NMR spectra of **B3 2390** and **1140** for the region


Figure 3.5 cont'd


between $\delta = 3$ ppm to $\delta = 5.5$ ppm. (F) Expanded view of the superimposed 1 H NMR spectra of B3 2390 and 1140 for the region between $\delta = 0.1$ ppm to $\delta = 2.5$ ppm. (G) Same as entry 1 in Figure 3.5B except that the 1 H NMR spectrum was taken in d8-toluene. (H) 11 B NMR spectrum corresponding to the 1 H NMR spectrum of entry 1 in Figure 3.5B.



20 10 ppm -10

0

-20

-30

-40

-50

40

50

30

70

60

^a Note for Figure 3.5B: Entry 1: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine **114o** was added to the pre-catalyst as a solution in CDCl₃ (1 mL) for 10 min at 25 °C. ¹H NMR spectrum was taken at 25 °C. Entry 2: ¹H NMR spectrum of the pure aziridine **114o**.

The chemzyme-product complex 2390 derived from the aziridine 1140 could not be induced to form crystals suitable for an X-ray diffraction study. It was then decided to explore the structure of **2390** by computational chemistry in order to compliment our observations by ¹H NMR spectroscopy. The possible AZIRIDNINO-BOROX complex 2390 was then computed by DFT calculations using Gaussian '03 at B3LYP/6-31g* level of theory. 6 The calculated structure of 2390 not only supports the boroxinate ion pair motif, but also gives some insight as to how the aziridine might be docking with the boroxinate. The structural analysis further confirms the presence of an ion pair consisting of a protonated aziridinium ion and the boroxinate anion derived from a boroxine ring in which the tetra-coordinate boron is spiro-fused to the VAPOL ligand. This structure is consistent with the many non-covalent interactions observed between the boroxinate anion and the aziridinium observed by ¹H NMR spectroscopy. These interactions are summarized in Figure 3.6. As was seen in the case of iminiums, ^{5f} there is a hydrogen bond from the protonated aziridinium to the oxygen in the boroxinate ring that is attached to the four coordinate boron (O2). The H-O distance of 1.75 Å (Figure 3.6, d_1) suggests a strong to moderate hydrogen bond 40 and the chemical shift of this proton is $\delta = 9.8$ ppm in

CDCl₃ (δ = 10.3 ppm in d8-toluene) which is quite different from the proton associated with the nitrogen of the protonated imine in the IMINO-BOROX catalyst **190** (δ = 13-14 ppm). ^{5f}

Figure 3.6 Calculated structure of AZIRIDINO-BOROX complex **2390** using Gaussian '03. (**A**) Calculated B3LYP/6-31g* structure visualized by the Mercury program (C, gray; O, red; N, blue; B, yellow; H, white). Hydrogen atoms are omitted from ligand for clarity (except that of aziridine and O2-H). Some secondary interactions are highlighted: $d_1 = 1.75$ Å (H-bonding), $d_2 = 3.95$ Å (CH-π), $d_3 = 4.57$ Å (CH-π), $d_4 = 4.30$ Å (CH-π), $d_5 = 4.35$ Å (CH-π), $d_6 = 4.00$ Å (CH-π) and $d_7 = 2.71$ Å (CH-O). (**B**) Space-filling rendition of **2390** with the same orientation and showing hydrogens. The boroxinate anion is given in green and the aziridinium is in traditional colors.

A

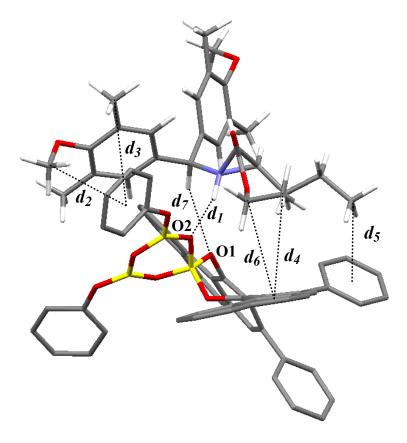
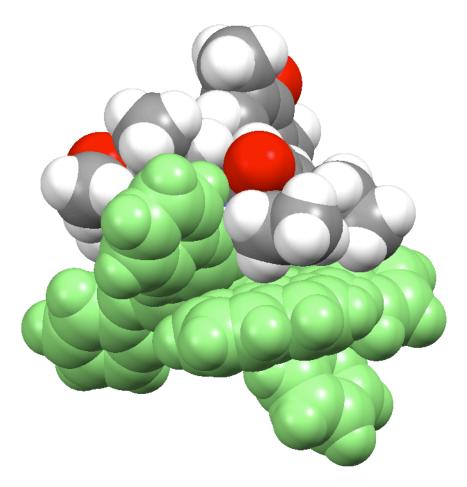



Figure 3.6 cont'd

B

The calculated structure of **2390** provides insight to the up field shift observed for the key protons of the aziridine **1140** upon formation of the aziridine-boroxinate complex **2390**. There are several CH- π interactions. One of the interesting interactions is between one of the MEDAM methoxy groups and the phenyl ring of the phenol component (Figure 3.6, $d_2 = 3.95$ Å). There are other CH- π interactions including one from a MEDAM methyl to the phenyl ring of the phenol component (Figure 3.6, $d_3 = 4.57$ Å). The observed dissymmetry (Figure 3.5E and 3.5F) in the case of methyl and methoxy groups of the MEDAM rings is consistent with these CH- π interactions. In fact, these interactions which place these methyl and methoxy groups in

the shielding region of various arene rings furthers confirms the observation in the 1 H NMR spectrum of complex **2390** (Figure 3.5E and 3.5F). The methoxy groups are observed as two singlets ($\delta = 3.42$ ppm and $\delta = 3.31$ ppm, 6H), which are shielded relative to the free aziridine **1140** ($\delta = 3.67$ ppm and $\delta = 3.65$ ppm, 6H) by 0.25 ppm and 0.34 ppm (Figure 3.5E). Similarly, the methyl groups are also observed as two singlets ($\delta = 2.23$ ppm and $\delta = 1.68$ ppm, 12H), which are shielded relative to the free aziridine **1140** ($\delta = 2.22$ ppm, 12H) by 0.54 ppm (Figure 3.5F).

A similar upfield shift also occurs for the methyl groups in the propyl group and in the ester group of the aziridine 114o. Both triplets were found to be shifted upfield by 0.53 and 0.65 ppm respectively (Figure 3.5F, H^f and H^h vs. H^{f'} and H^{h'}). This upfield shift can be explained by the CH- π interactions between these groups and the phenyl ring of the phenol component (Figure 3.6, $d_5 = 4.35$ Å) and also with the arene rings of the phenanthrene ring of the VAPOL (Figure 3.6, $d_4 = 4.30$ Å). Similar upfield shifts and CH- π interactions were observed regarding the CH_2 units of propyl and ester groups of the aziridine 1140 (Figure 3.5F and Figure 3.6, H^g vs. $H^{g'}$, $d_6 = 4.00 \text{ Å}$). One of the interesting observations was the downfield shift of the methine proton (Figure 3.5E, Hⁱ vs. H^{i'}) by 1.87 ppm. The factors contributing to this high shift could be a) the adjacent protonated nitrogen behaves as an electron withdrawing group, b) the CH-O interaction between H^{i'} and O1 (Figure 3.6, $d_7 = 2.71$ Å). A similar downfield shift (~1.37 ppm) was observed for the BOROX catalyst 190a where the CH-O interaction (2.86 Å) was found to be present between the methine proton of imine and the O1 of the boroxinate anion (Chapter 2,

Figure 2.2B). To summarize, the first evidence for product binding to the catalyst in a Brønsted acid catalyzed aziridination reaction has been established by ¹H NMR spectroscopy, ⁸ and which is well supported by theoretical calculations.

3.2.2.4 Temperature studies of 2390 and recovery of aziridine 1140

We then decided to carry out some additional experiments in order to confirm the presence of **2390**. The ¹H NMR spectrum of **2390** has two different bay proton absorptions (Figure 3.5D and 3.5G) and this was interpreted to mean that migration of the protonated aziridine from the top face of the catalyst to the bottom face is slow on the NMR time scale. To gain evidence for this interpretation a temperature study on the ¹H NMR spectrum of the complex 2390 was performed. On elevating the temperature from 25 °C to 80 °C, the two sets of bay protons (H_b) in the aziridine-boroxinate complex 2390 begin to coalesce to give one single doublet (entry 3, Figure 3.7A). This reflects an increased exchange rate on NMR time scale at higher temperature. However, this complex seems to be unstable at higher temperature (80 °C) as new peaks are observed in the ¹H NMR spectrum when the sample is brought back to room temperature (Figure 3.7A, entry 4). In order to study their exchange processes, NOE experiments were carried out at 50 °C. Upon irradiation of one of the bay proton ($\delta = 11.06$ ppm), the other bay proton appeared with the same sign ($\delta = 10.67$ ppm). This observation further confirms that the aziridinium cation exchanges with the faces of the catalyst slowly on the NMR time scale.

Figure 3.7 (**A**) ¹H NMR spectra of the bay region of boroxinate **2390** in d₈-toluene. Entry 1: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine **1140** was added to the pre-catalyst as a solution in d₈-toluene (1 mL) for 10 min at 25 °C. The NMR was taken at 25 °C. Entry 2: Same as entry 1 but the NMR was taken at 50 °C. Entry 3: Same as entry 1 but the NMR was taken at 80 °C. Entry 4: entry 3 is cooled to 25 °C. (**B**) NOE (at 50 °C) performed by irradiating one of the bay protons (δ = 11.06 ppm) in entry 2 of Figure 3.7A.

A

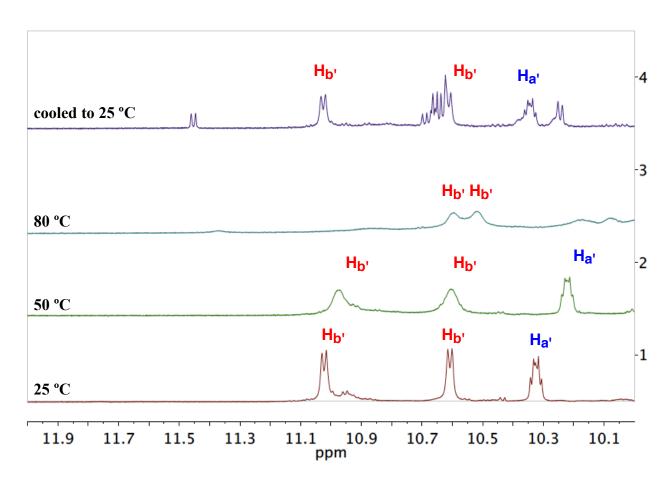
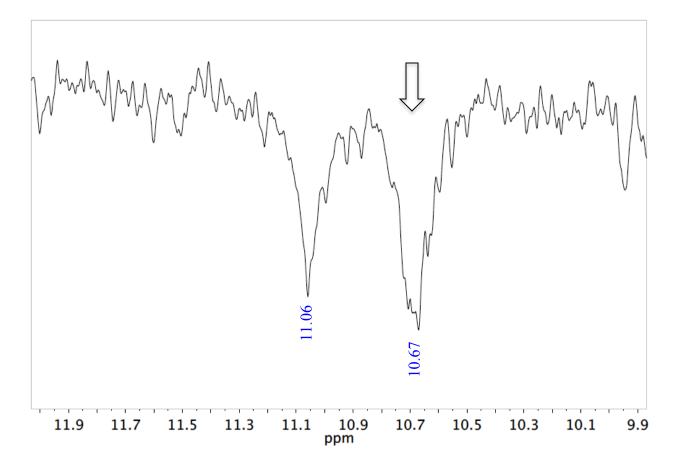



Figure 3.7 cont'd **B**

Additionally, it was thought that if the observed NMR behavior is due to the formation of AZIRIDINO-BOROX complex then it should be possible to recover aziridine upon the addition of water. In fact, aziridine release was observed when water was added in portions as shown in Figure 3.8. In fact, disappearance of the aziridine-boroxinate complex occurs concomitant with appearance of the free aziridine **1140** (Figure 3.8). The description of the protons labeled in Figure 3.8C has been given in the Figure 3.5. The aziridine **1140** was obtained with 85% recovery. The difference in amount of aziridine **1140** observed in the ¹H NMR spectrum (entry 4, after the addition of 0.4 mmol H₂O) and % recovery (70% vs. 85%) can be attributed to the

possibility that the aziridine **1140** can form complexes with other boron sources such as B(OPh)₃ or hydrolyzed derivatives.

Figure 3.8 (A) Treatment of 2390 with water. (B) ¹H NMR spectra of the bay region in CDCl₃ with Ph₃CH as internal standard. Entry 1: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine 1140 was added to the pre-catalyst as a solution in CDCl₃ (1 mL) for 10 min at 25 °C. The NMR was taken at 25 °C. Entry 2: 1 equiv H₂O added to entry 1. Entry 3: 2 equiv H₂O added to entry 1. Entry 4: 4 equiv H₂O added to entry 1. Entry 5: 10 equiv H₂O added to entry 1. (C) ¹H NMR spectra corresponding to the entries 1–4 in Figure 3.8B highlighting the methyl and methoxy regions. The description of the protons labeled in Figure 3.8C has been given in the Figure 3.5. Entry 5: aziridine 1140 isolated (purified by silica gel chromatography) after the addition of 1.0 mmol H₂O to entry 1. (D) ¹¹B NMR spectra corresponding to the ¹H NMR spectra of entries in Figure 3.8B

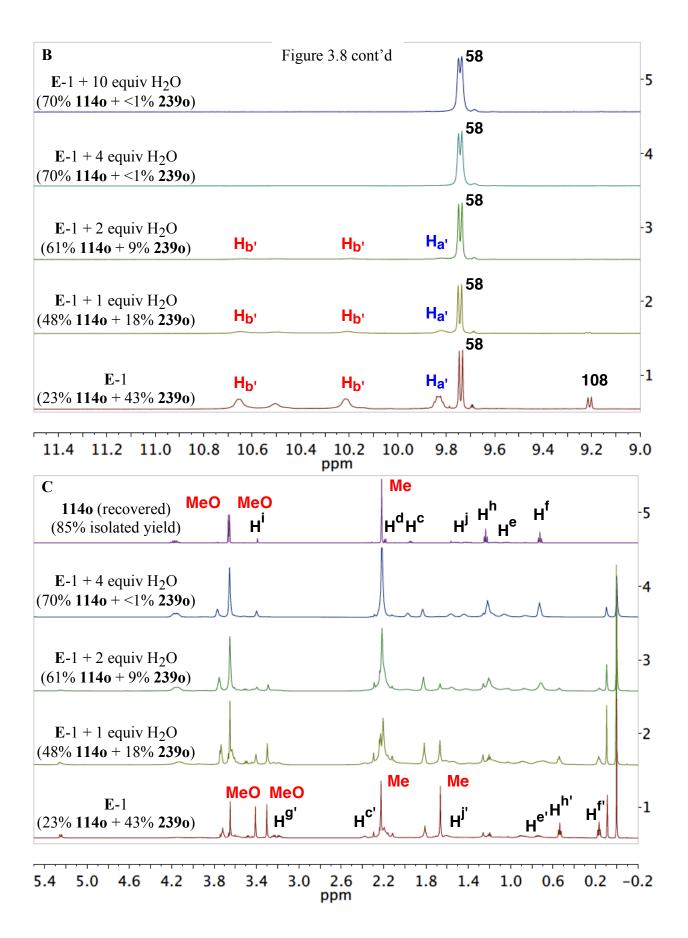
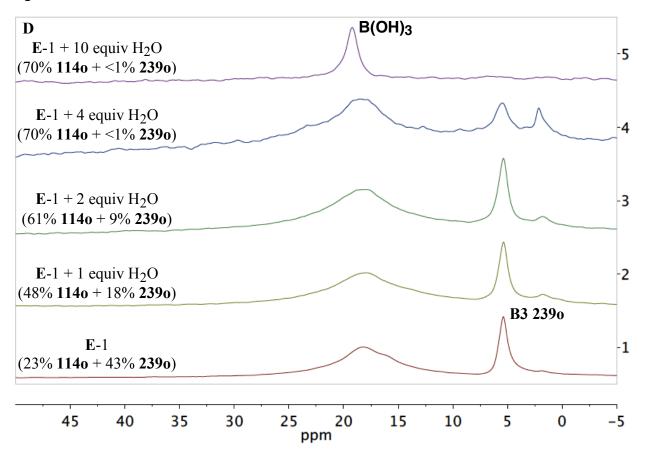



Figure 3.8 cont'd

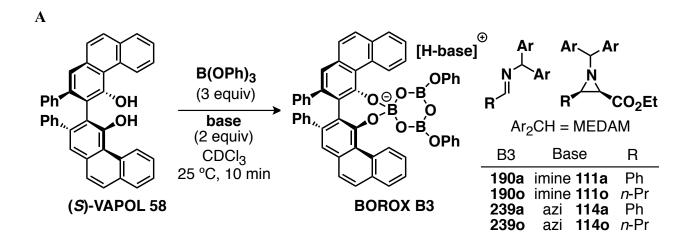
3.2.2.5 Dependence of the formation of AZIRIDINO-BOROX 2390 on various protocols

After the confirmation of the presence of AZIRIDINO-BOROX complex, we became interested to find out whether the generation of the **2390** depends on the protocol used for precatalyst generation. As shown in Table 3.2, different yields were obtained for different protocols. Also, we found that this complex decomposes to some extent at elevated temperatures of as 80 °C and 50 °C (Table 3.2, entries 2 and 6). The complex is relatively stable to storage, however it decomposes slowly on being kept for long periods of time (Table 3.2, entry 7).

Table 3.2 Generation of AZIRIDINO-BOROX **2390** with different boron sources ^a

#	Boron Source	Pre-catalyst b (method)	Solvent c	Yield 2390 (%) ^d
1	B(OPh) ₃	В	d ₈ -toluene	47
2	B(OPh) ₃	В	d ₈ -toluene	26 ^e
3	$B(OPh)_3$	В	CDCl ₃	43
4	$B(OPh)_3$	C	CDCl ₃	19
5	Boroxine	D	CDCl ₃	30 (26) ^g
6	BH ₃ .Me ₂ S	Е	CDCl ₃	31
7	BH ₃ .Me ₂ S	E	CDCl ₃	17 ^f

^a Unless otherwise specified, all NMR samples were prepared with 0.1 mmol of aziridine **114o** in solvent (0.1 M in aziridine **114o**) with 1.0 equiv of (S)-VAPOL **58**. ^b Method B: The pre-catalyst was prepared by heating 1 equiv of (S)-VAPOL, 3 equiv of commercial B(OPh)₃ and 3 equiv of H₂O in THF at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Method C: Same as Method B except 4 equiv of commercial B(OPh)₃ with 1 equiv of H₂O was used. Method D: By mixing 1 equiv of (S)-VAPOL and 1 equiv of triphenoxyboroxine **191a**. Triphenoxyboroxine **191a** was prepared by heating 3 equiv of BH₃.Me₂S, 2 equiv of PhOH and 3 equiv of H₂O in toluene at 100 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 100 °C. Method E: By heating 1 equiv of (S)-VAPOL, 3 equiv of BH₃.Me₂S, 2 equiv of PhOH and 3 equiv of H₂O in toluene at 100 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 100 °C. c NMR Solvent. d Determined by H NMR using Ph₃CH as an internal standard. ^e In this case, the resulting mixture was heated at 80 °C for 0.5 h after the addition of aziridine 1140. ^f In this case, the resulting mixture was heated at 50 °C for 1.0 h after the addition of aziridine 114o. g Results in parenthesis are from NMR sample that was kept at 25 °C for 24 h prior to analysis.


3.2.2.6 Direct generation of AZIRIDINO-BOROX at room temperature

Recently, we have shown that IMINO-BOROX 190a can be generated in 76% yield at room temperature by simple mixing the ligand, commercial B(OPh)₃ and imine 111a. At this point, it became interesting to find out whether AZIRIDINO-BOROX 2390 can be directly generated at room temperature or not. It was delightful to observe 2390 in 15% yield when 2 equiv of aziridine 1140 was mixed with lequiv of (S)-VAPOL and 3 equiv of commercial B(OPh)₃ (Figure 3.9, entry 5). The yield was determined by H NMR using Ph₃CH as the internal standard. The low yield can be attributed to low binding affinity of aziridines to the catalyst as compared to imines. However, it must be noted that the conversion of pre-catalyst to AZIRIDINO-BOROX 2390 is higher than direct generation from commercial B(OPh)₃ (43% yield vs 15% yield, Table 3.2 vs Figure 3.9). The evidence for AZIRIDINO-BOROX 239a is not observed on the NMR time scale possibly due to fast exchange processes (entry 4, Figure 3.9B). One observation to be noted was the presence of aldehydes due to partial hydrolysis of imines (entries 2 and 3, Figure 3.9B).

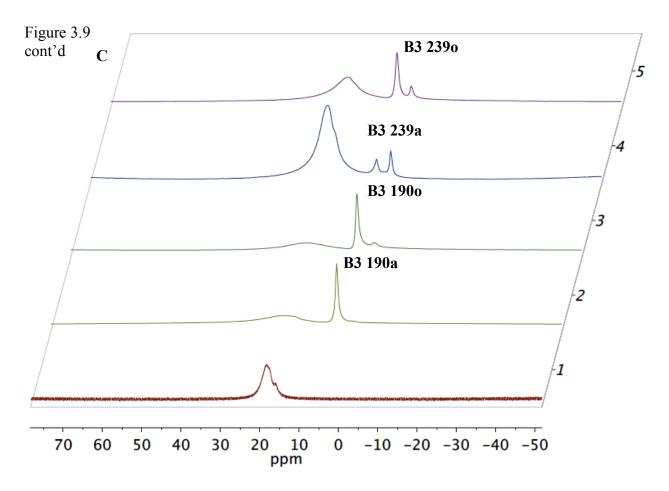
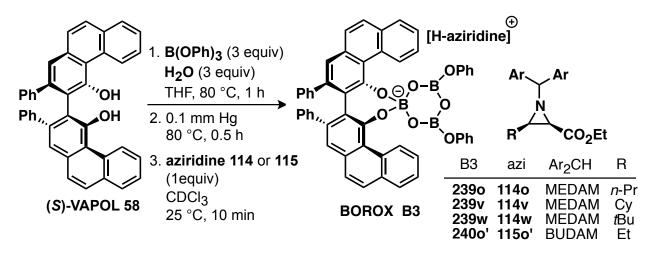

Figure 3.9 (**A**) Direct generation of aziridine-boroxinate complex at room temperature. (**B**)^{a 1}H NMR spectra of the bay region in CDCl₃ with Ph₃CH as internal standard. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 3.9A

Figure 3.9 cont'd

В

58 B3 2390 **58** *n*PrCHO **1270 58** B3 190o PhCHO **127a** B3 190a **58 58** B2 108 10.7 9.9 ppm 9.3 9.1 10.5 10.3 10.1 9.7 9.5

^a Note for Figure 3.9B: Entry 1: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ at 25 °C for 10 min. Entry 2: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv imine **111a** at 25 °C for 10 min. Entry 3: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv imine **111o** at 25 °C for 10 min. Entry 4: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv aziridine **114a** at 25 °C for 10 min. Entry 5: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv aziridine **114o** at 25 °C for 10 min.


3.2.2.7 Generation of AZIRIDINO-BOROX complexes from other alkyl aziridines

Although the phenyl substituted aziridine 114a failed to provide any conclusive evidence for an AZIRIDINO-BOROX complex, the n-propyl aziridine 1140 was able to assemble the boroxinate 2390 in 43% yield. This suggested that aziridines derived from aliphatic aldehydes are more prone to provide convincing evidence for boroxinate complexes formation. Hence, we decided to screen the ethyl, cyclohexyl and tert-butyl substituted aziridines 1150', 114v and 114w, respectively. Indeed, it was possible to observe the assembly of AZIRIDINO-BOROX 2400' when aziridine 1150' (protecting group = BUDAM) was reacted with the pre-catalyst. Interestingly, only one peak for bay protons of the boroxinate complex 240o' was observed which indicates that the migration of the protonated aziridine from top face of the catalyst to the bottom face is fast on the NMR time scale in this case (Figure 3.10A, entry 1). It must be noted that aziridine 1150' has the BUDAM group as the protecting group. When aziridine 114v was used, two distinct bay protons were observed (Figure 3.10A, entry 3). In addition to the bay protons, an unknown peak around $\delta = 10.6$ ppm was observed which increased along with the boroxinate species when excess aziridine 114v was added (Figure 3.10A, entry 4). Interestingly, aziridine 114w generated only a small amount of boroxinate 239w as illustrated by the ¹¹B NMR spectrum (Figure 3.10B, entry 5).

Figure 3.10 (**A**) Examination of alkyl aziridines for boroxinate formation. (**B**)^a ¹H NMR spectra of the bay region in CDCl₃ with Ph₃CH as internal stardard. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 3.10B

Figure 3.10 cont'd

 \mathbf{A}

В

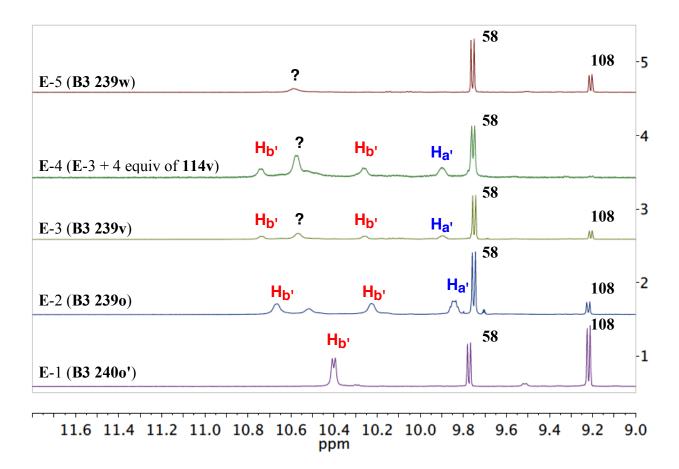
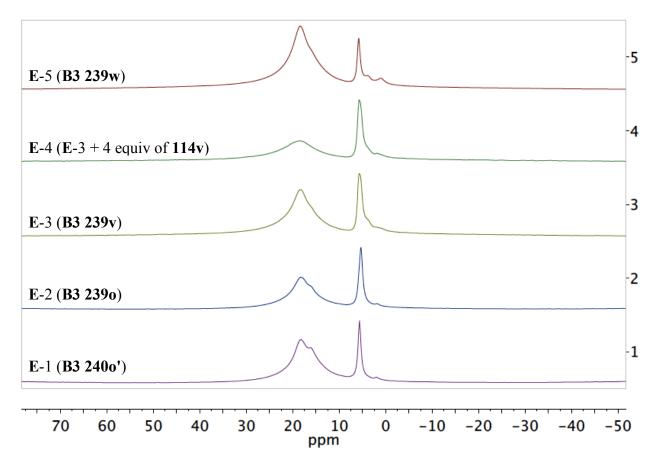
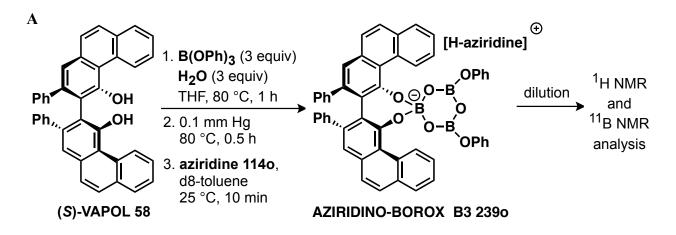



Figure 3.10 cont'd

 \mathbf{C}


a Note for Figure 3.10B: Entry 1: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine 115o' was added to the pre-catalyst as a solution in CDCl₃ (1 mL) for 10 min at 25 °C. Entry 2: Same as entry 1 except that aziridine 114o was employed. Entry 3: Same as entry 1 except that aziridine 114v was employed. Entry 4: 4 equiv of aziridine 114v added to entry 1. Entry 5: Same as entry 1 except that aziridine 114w was employed.

3.2.3 Equilibrium studies

After the establishment of conditions for the formation of a product-catalyst complex, it was important to know whether these species exist in equilibrium or not. It is a challenging task since it is not a simple case where the product binds to a pre-existing catalyst. In the present case, the equilibrium is in between the product and the catalyst and between all of the species from which the catalyst is assembled with the aid of substrate. However, we chose to carry out this study using the aziridine-catalyst complex rather than the imine-catalyst complex since the aziridine has a lower binding affinity (basicity) and it should be easier to observe equilibrium effects. We designed two sets of experiments. In the first, we started off with a concentrated mixture containing AZIRIDINO-BOROX complex and then diluted the mixture with the subsequent addition of solvent. As shown in Figure 3.11B, amount of the boroxinate 2390 decreases with the decrease in the concentration of the reaction mixture. A corresponding increase in the amount of (S)-VAPOL 58 was also observed. With further dilution, unbounded aziridine 1140 was also observed (entry 8, Figure 3.11B). This suggests that there is shift in the equilibrium towards free aziridine and ligand upon dilution.

Figure 3.11 (**A**) Aziridine induced boroxinate formation and its subsequent dilution studies. (**B**)^a ¹H NMR spectra of the reaction mixture in d₈-toluene with Ph₃CH as internal standard. The numbers given in the spectra shows the NMR yield of respective species (red, **2390**; green, **58**; blue, **108**). The description of the protons labeled in Figure 3.11A has been given in the Figure 3.5. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 3.11B

Figure 3.11 cont'd

В

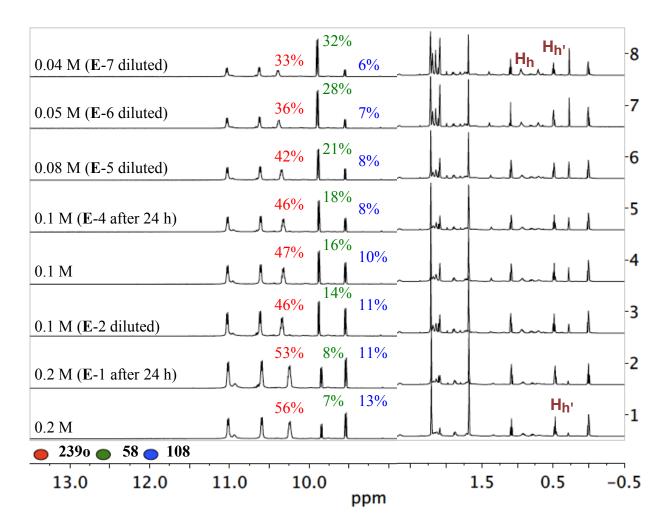
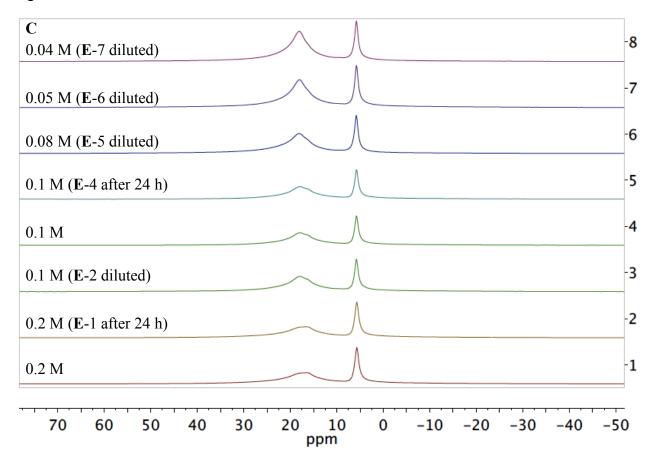
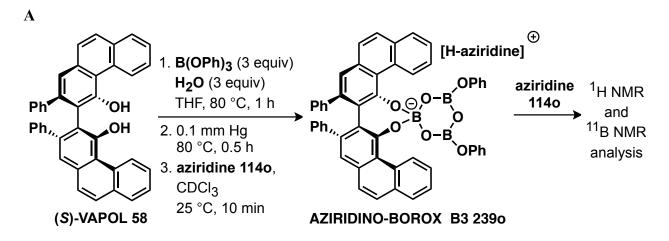



Figure 3.11 cont'd

and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine **1140** was added to the pre-catalyst as a solution in d8-toluene (1 mL) for 10 min at 25 °C. Entry 2: Same as entry 1 after 24 h. Entry 3: An additional 1 mL of d8-toluene was added to entry 2 (0.1 M). Entry 4: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine **1140** was added to the pre-catalyst as a solution in d₈-toluene (1 mL) for 10 min at 25 °C. Entry 5:


Same as entry 4 after 24 h. Entry 6: An additional 0.25 mL of d₈-toluene was added to entry 4 (0.08 M). Entry 7: An additional 0.75 mL of d₈-toluene was added to entry 6 (0.05 M). Entry 8: An additional 0.50 mL of d₈-toluene was added to entry 7 (0.04 M).

The corresponding ¹¹B NMR spectra also show that there is an increase in the amount of tricoordinate boron compounds as compared to tetra-coordinated boroxinate upon dilution. Hence these data suggest that these species are in equilibrium.

This equilibrium was further confirmed by another experiment where the concentration of aziridine **1140** was increased. An increase in AZIRIDINO-BOROX **2390** was observed with an increase in aziridine **1140** due to the shift in the equilibrium. This is presented in Figure 3.12 with the help of ¹H NMR and ¹¹B NMR spectroscopy.

Figure 3.12 (**A**) Aziridine induced boroxinate formation and its behavior with excess aziridine. (**B**)^a ¹H NMR spectra of the reaction mixture in CDCl₃ with Ph₃CH as internal standard. The numbers given in the spectra shows the NMR yield of respective species. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 3.12B.

Figure 3.12 cont'd

В

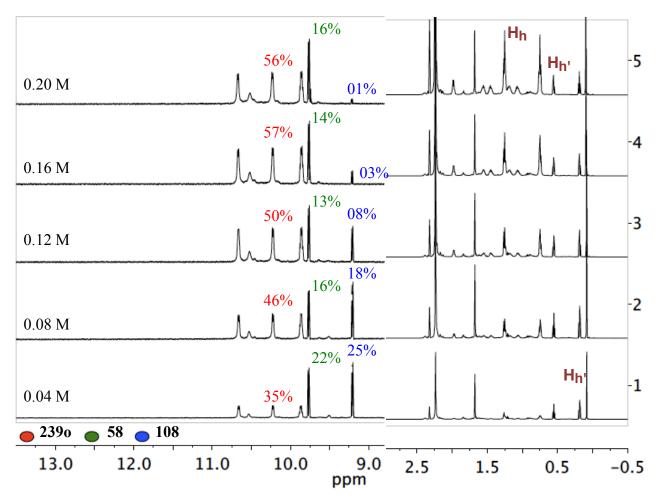
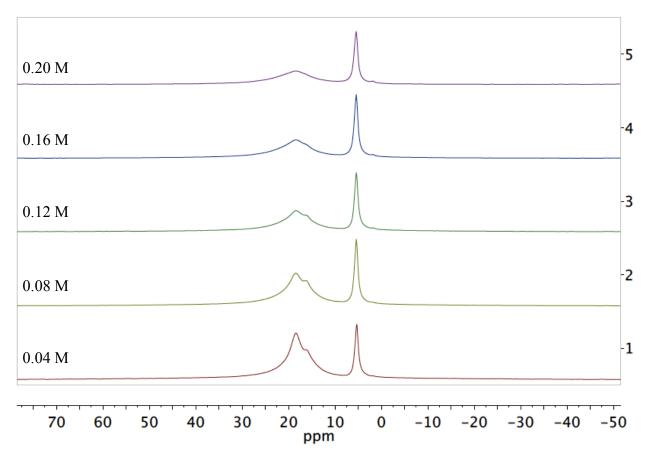



Figure 3.12 cont'd

 \mathbf{C}

and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine **1140** was added to the pre-catalyst as a solution in CDCl₃ (10 mL) for 10 min at 25 °C. Further, an aliquot of 1mL of this resulting CDCl₃ solution was taken for NMR analysis (0.04 M). Entry 2: An additional 0.36 mmol aziridine **1140** was added to the remaining solution (9 mL). Thereafter, an aliquot of 1mL of the resulting CDCl₃ solution was taken for NMR analysis (0.08 M). Entry 3: An additional 0.32

mmol aziridine **1140** was added to the remaining solution (8 mL). Thereafter, an aliquot of 1mL of the resulting CDCl₃ solution was taken for NMR analysis (0.12 M). Entry 4: An additional 0.28 mmol aziridine **1140** was added to the remaining solution (7 mL). Thereafter, an aliquot of 1mL of the resulting CDCl₃ solution was taken for NMR analysis (0.16 M). Entry 5: An additional 0.24 mmol aziridine **1140** was added to the remaining solution (6 mL). Thereafter, an aliquot of 1mL of the resulting CDCl₃ solution was taken for NMR analysis (0.20 M).

The dilution experiments and the increase in concentration experiments provide enough support to conclude that there is an equilibrium operating between these species as the absorptions for the aziridine-catalyst complex increase with increasing concentration as the absorptions for the free ligand and the free aziridine decrease (Figure 3.13A). The reverse is true with decreasing concentration. The ¹¹B NMR spectrum also reveals an increase in the amount of 3-coordinate borate species as the amount of free ligand and free aziridine increases. The identity of these borate species can't be determined from these experiments but certainly could include commercial B(OPh)₃, B1 106, B2 108 (Scheme 3.2) and triphenoxy boroxine 191a (Scheme 3.3). The data in Figures 3.11 and 3.12 are plotted in Figure 3.13B and 3.13C, respectively. Note that in both experiments the same amount of AZIRIDINO-BOROX 239o is observed at 0.2 M and at 0.04 M.

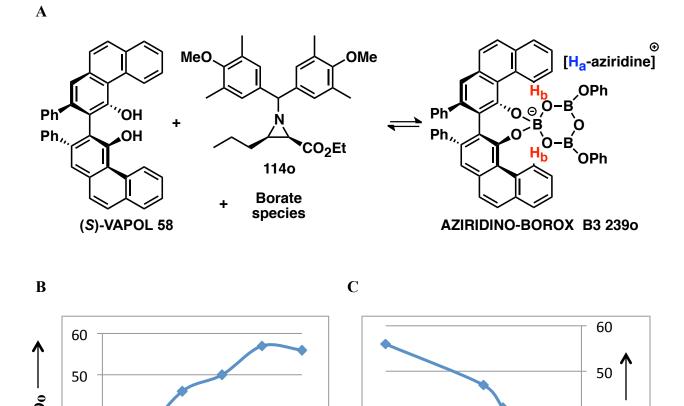

Figure 3.13 (**A**) Equilibrium between boroxinate **2390**, (*S*)-VAPOL **58**, aziridine **1140** and various borate species. (**B**) Plot corresponding to Figure 3.11 (**C**) Plot corresponding to Figure 3.12

Figure 3.13 cont'd

40

30

0

3.2.4 Probing path II of the catalytic cycle

Conc (M)

0.04 0.08 0.12 0.16

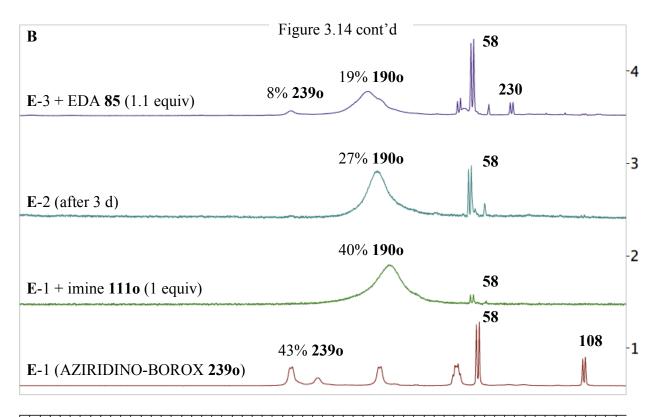
At this point, it is unclear whether "free" BOROX catalyst 23-H exists or not (path I, Scheme 3.3). Hence, we decided to probe path II of the catalytic cycle. In path II, the real question is whether we can observe the depletion of the aziridine-boroxinate complex in the presence of substrate i.e. imine. As shown in entry 1 of Figure 3.14, AZIRIDINO-BOROX complex 2390 is formed in 43% yield. To this mixture was then added one equivalent of imine 1110. The bay region shows the complete replacement of the aziridine-boroxinate complex 2390

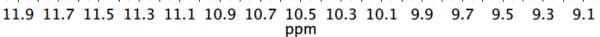
0.2

0.16 0.12 0.08 0.04

Conc (M)

0.2


30


0

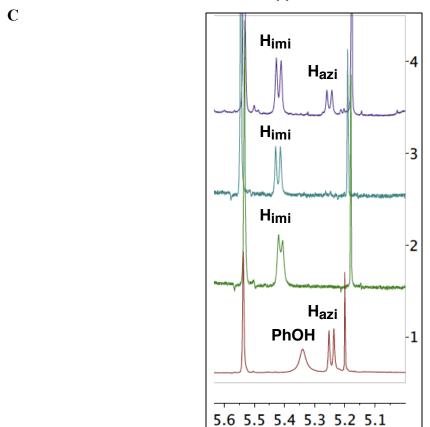
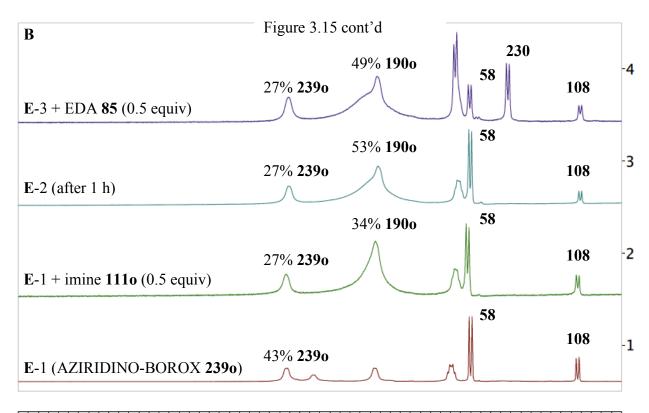

by imine-boroxinate **190o** (Figure 3.14, entry 2). This further support the fact the imine (reactant) has a much higher binding affinity towards the catalyst as compared to the aziridine (product). These boroxinates **239o** and **190o** can also be easily followed by the methine protons H_{azi} and H_{imi} of aziridine and imine respectively (Figure 3.14C). The ratio of the **190o:239o** was found to be >100:1 for entry 2 based on the integration of the methine protons. The stability of the IMINO-BOROX catalyst **190o** was then examined and it was found that it slowly decomposes over a period of three days (Figure 3.14, entry 3). At this juncture, we decided to affect the generation of aziridine by the addition of the ethyl diazoacetate. The interesting part of this experiment is that we were able to observe the co-existence of both the complexes **190o** and **239o** (Figure 3.14, entry 4).

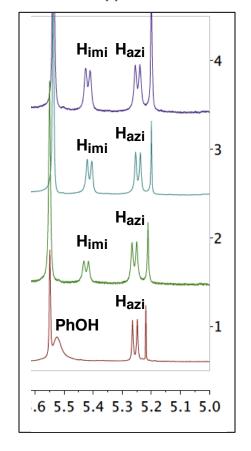
Figure 3.14 (**A**) Probing Path II of the catalytic cycle (part i). (**B**)^a ¹H NMR spectra of the bay and methine region in CDCl₃ with Ph₃CH as internal standard. (**C**) The methine region in the ¹H NMR spectra of the **2390** and **1900** corresponding to ¹H NMR spectra in Figure 3.14B

A



^a Note for Figure 3.14B: Entry 1: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine **1140** was added to the pre-catalyst as a solution in CDCl₃ (1 mL) for 10 min at 25 °C. Entry 2: 1 equiv of imine **1110** was added to entry 1. Entry 3: entry 2 after 3 days. Entry 4: 1.1 equiv EDA **85** was added to entry 3.

An experiment was performed by the addition of 0.5 equivalent of imine 1110 to the aziridine-catalyst complex 2390 in order to observe the co-existence of 1900 and 2390 in a clean fashion. The results are shown in entry 2 of Figure 3.15. However at this point, it must be remembered that there is still a lot of unreacted VAPOL and some unreacted borate species in the mixture. Hence, after 1 h, the amount of imine-boroxinate increased from 34% to 53% showcasing higher binding affinity of imines (Figure 3.15, entries 2 and 3). Finally, the amount of imine complex 1900 started decreasing upon the addition of ethyl diazoacetate, possibly, due to the reaction between the imine 1110 and EDA (Figure 3.15, entry 4).


Figure 3.15 (**A**) Probing Path II of the catalytic cycle (part ii). (**B**)^a ¹H NMR spectra of the bay and methine region in CDCl₃ with Ph₃CH as internal standard. (**C**) The methine region in the ¹H NMR spectra of the **2390** and **1900** corresponding to ¹H NMR spectra in Figure 3.15B

A

2.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 ppm

^a Note for Figure 3.15B: Entry 1: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine **1140** was added to the pre-catalyst as a solution in CDCl₃ (1 mL) for 10 min at 25 °C. Entry 2: 0.5 equiv of imine **1110** was added to entry 1. Entry 3: entry 2 after 1 h. Entry 4: 0.5 equiv EDA **85** was added to entry 3.

3.2.5 Termination of the catalytic cycle of the aziridination reaction

When the reaction approaches completion; a mono-alkylated derivative of VAPOL i.e. 230 is often observed (Scheme 3.4 and 3.5). The alkylated VAPOL-derivative 230 has characteristic set of bay proton doublets at $\delta = 9.55$ ppm and $\delta = 9.83$ ppm in CDCl₃ ($\delta = 9.74$ ppm and $\delta = 9.99$ ppm in d8-toluene). The various components present in the mixture near the end of the reaction are as follows: AZIRIDINO-BOROX 239, VAPOL 58, aziridine 114, unreacted ethyl diazoacetate 85 and a mixture of boron compounds (Scheme 3.5). There are two possible pathways that might lead to the formation of the VAPOL-derivatve 230. These pathways could also be functioning in tandem. The alkylated ligand 230 is formed from the reaction of the AZIRIDINO-BOROX species 2390 with EDA perhaps mediated by an unspecified borate species. The second path Y involves the direct reaction between the free VAPOL ligand and EDA mediated by some borate species. Both pathways were considered and examined and are discussed below.

Scheme 3.5 Termination of the catalytic cycle and the aziridination reaction

Path X

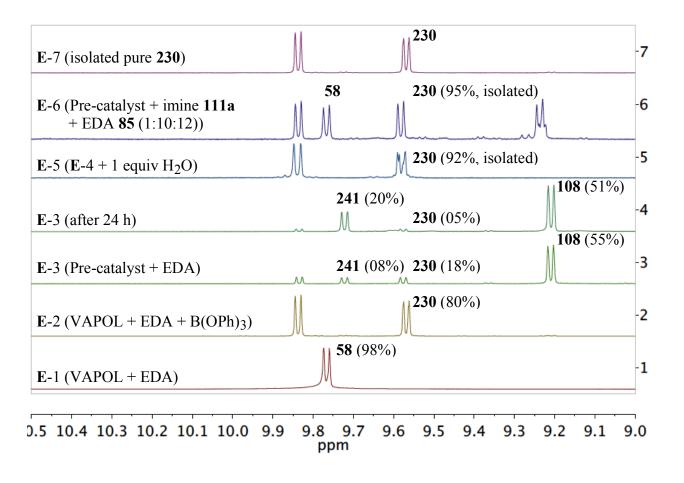
85

58

To probe path X, boroxinate **2390** was first generated from aziridine **1140** in 43% yield (Figure 3.16, entry 1). A decrease to 26% was observed when 0.5 equiv of EDA was added to

230

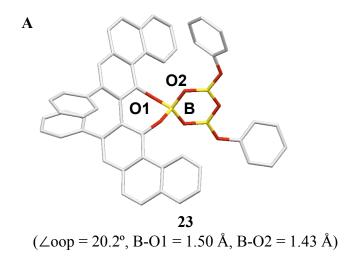
this AZIRIDINO-BOROX **2390** solution after 10 min (Figure 3.16, entry 2). This further decreased to 19% upon the addition of a second 0.5 equiv of EDA (Figure 3.16, entry 4). During this experiment, the spectra suggest that the direct alkylation of free VAPOL is faster than the decomposition of boroxinate **2390** (Figure 3.16, entries 1-4). In fact, both path X and Y appear to be operating at the same time. *It was strongly suspected that there is no decomposition of IMINO-BOROX 190 into alkylated adduct 230 in order to get the turnover*. In order to test this, a simple experiment was carried out. Aziridination with imine **111h** (R = 4-NMe₂-C₆H₄) was attempted. No aziridine was observed along with no signs of **230**.


Figure 3.16 Probing path X for the generation of the adduct **230**. **(A)** ¹H NMR spectra of the bay region in CDCl₃ with Ph₃CH as internal standard. Entry 1: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 3 equiv H₂O were heated at 80 °C in THF for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of aziridine **1140** was added to the pre-catalyst as a solution in CDCl₃ (1 mL) for 10 min at 25 °C. Entry 2: 0.5 equiv of EDA **85** was added to entry 1. Entry 3: entry 2 after 30 min. Entry 4: 0.5 equiv EDA **85** was added to entry 3. Entry 5: entry 3 after 90 min. Entry 6: entry 3 after 200 min. Entry 7: entry 3 after 3 days. **(B)** ¹H NMR spectra of the methyl and methoxy region corresponding to ¹H NMR spectra in Figure 3.16A.

As of now, it is quite evident that path Y is also operating. So we decided to further examine this pathway in a separate experiment. First of all, it was found that (S)-VAPOL 58 and EDA 85 do not react in absence of boron compounds (Figure 3.17, entry 1). However, both of them react quickly in the presence of commercial B(OPh)₃ at room temperature by simple mixing all of them together in CDCl₃ to afford 230 in 80% yield within 10 minutes (Figure 3.17, entry 2). It was also found that if a mixture of (S)-VAPOL 58 and commercial B(OPh)₃ was heated prior to treating with EDA 85, then the reaction is slow in generating only 18% of 230 in 10 minutes (Figure 3.17, entry 3). An unknown compound **241** with a peak at $\delta = 9.71$ ppm (CDCl₃) is also observed in 8% yield. After 24 h, the unknown compound increases up to 20% yield where as 230 decreases to 5% yield (Figure 3.17, entry 4). Treatment of this mixture with one equiv of H₂O gave a 92% isolated yield of 230 (Figure 3.17, entry 5). As discussed earlier, an aziridination reaction between imine 111a and 1.2 equiv of EDA 85 is also monitored (Figure 3.17, entry 6). After quenching, a 95% yield of 230 was isolated from the crude reaction mixture. It must be noted that (S)-VAPOL 58 can be easily recovered from 230 using SmI₂. ^{5a} Figure 3.17 Probing path Y for the generation of 230. H NMR spectra of the bay region in CDCl₃ with Ph₃CH as internal standard and the yields of the respective species in the parenthesis. Entry 1: (S)-VAPOL (0.1 mmol) plus 2 equiv EDA 85 at 25 °C for 10 min. Entry 2: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ and 2 equiv EDA 85 at 25 °C for 10 min. Entry 3: (S)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 2

Figure 3.17 cont'd

equiv of EDA **85** and CDCl₃ (1 mL) was added to the pre-catalyst at 25 °C for 10 min. Entry 4: entry 3 after 24 h. Entry 5: entry 4 plus 1 equiv of H₂O. Entry 6: (*S*)-VAPOL (0.1 mmol) plus 3 equiv commercial B(OPh)₃ were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 10 equiv of imine **111a** and 12 equiv of EDA **85** were added to the pre-catalyst at 25 °C and kept for 95 min (Scheme 3.2). Entry 7: ¹H NMR spectrum of the bay region of the pure **230** in CDCl₃.


3.2.6 Possibility of 'free' BOROX complex 23-H

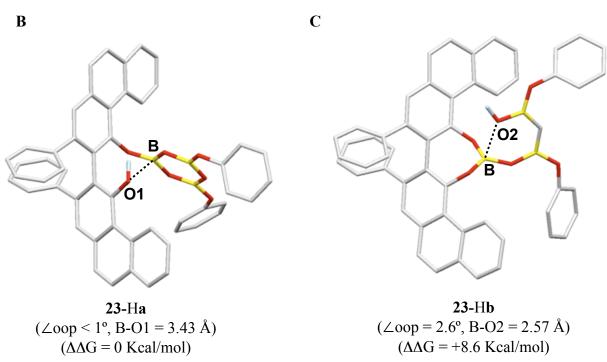
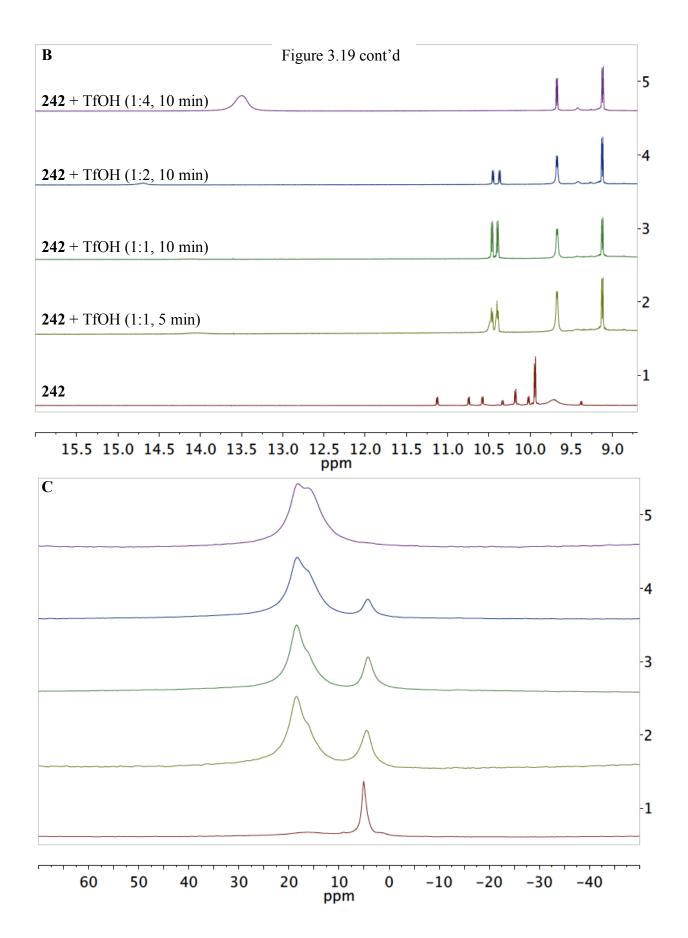

Path I of the catalytic cycle involves the possibility of free BOROX 23-H (Scheme 3.3). Hence, we were interested in finding the support for the existence of the free BOROX catalyst 23-H. So far, there is no evidence for the existence of such kind of species either by NMR or Xray crystallography. The help of computational chemistry was then sought. To begin, the energy minimized structure of the boroxinate anion 23 was computed by DFT calculations using Gaussian '03⁶ at B3LYP/6-31g* level of theory and the result is shown in Figure 3.18A. A free proton was then placed on either of the two oxygens O1 and O2 as they were found to posses the maximum electron densities. Interestingly, in both cases, the spiro-borate ring was no longer favorable and the tetra-coordinate boron transformed itself into a tri-coordinate boron (Figure 3.18B and 3.18C). This suggests that protonated form of 23 might not exist or they might have very short lifetimes. In both the cases, the distance (B-O1 or B-O2) between the O1/O2 and former tetra-coordinate boron was found to more than 2.5 Å (Figure 3.18B and 3.18C). Additionally, the former tetra-coordinate boron is found to be out of the plane by $\sim <1-2.6^{\circ}$ (Figure 3.18B and 3.18C). Out of both the structures 23-Ha is found to be more stable than 23-Hb by +8.6 kcal/mol. In the case of the boroxinate anion, the ∠oop and B-O2 was found to be 20.2° and 1.43 Å respectively (Figure 3.18A).

Figure 3.18 All calculations are performed using Gaussian '03 at B3LYP/6-31g* level of theory. All structures are visualized by the Mercury program (C, gray; O, red; B, yellow; H, light blue). Hydrogens are omitted for clarity (except O-H). ∠oop = angle out of plane for the current/former tetra-coordinate boron, B-O2 = the distance between O-2 and the former tetra-

Figure 3.18 cont'd

coordinate boron. B-O1 = the distance between O-1 and the current/former tetra-coordinate boron. (A) Calculated structure of BOROX anion 23 (B) Calculated structure of the neutral BOROX catalyst 23-Ha resulting from protonation of 23 on O1. (C) Calculated structure of the neutral BOROX catalyst 23-Hb resulting from protonation of 23 on O2.



It was then undertaken to prepare the boroxinate anion in vitro followed by its protonation in order to observe 23-H. Hence, the boroxinate anion core was prepared utilizing tetra-methyl ammonium acetate as the base to generate BOROX 242. See Several equivalents of TfOH were added to 242 (Figure 3.19B). Two new pair of doublets were observed at $\delta = 10.40$ ppm and $\delta = 10.46$ ppm in CDCl₃ (Figure 3.19B, entries 3 and 4). However, a free BOROX catalyst 23-H would be expected to give a single doublet for a spiro structure due to the fast exchange of the free proton. Species 23a-H and 23b-H would be expected to exist as two doublets. Protonation of 242 does result in significant changes in the bay region of 1 H NMR spectrum but the structure of this protonated species is still uncertain. The next chapter has been devoted to address this issue.

Figure 3.19 (**A**) Design of the experiment to observe the free neutral BOROX **23**-H. (**B**)^a ¹H NMR spectra of the bay region in CDCl₃. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 3.19B

A ⊕ [NMe₄] 1. **B(OPh)**₃ (3 equiv) **H₂O** (3 equiv) THF, 80 °C, 1 h TfOH ЮH Ph, Ph, OH 2. 0.1 mm Ha 80 °C, 0.5 h 3. Me₄NOAc (1equiv) CDCI₃ (S)-VAPOL 58 free BOROX **BOROX B3** 25 °C, 10 min 242 **23**-H

and 3 equiv H₂O were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1 equiv of Me₄NOAc and CDCl₃ (1 mL) was added to the precatalyst at 25 °C for 10 min. Entry 2: 1 equiv of TfOH was added to entry 1 at 25 °C for 5 min. Entry 3: 1 equiv of TfOH was added to entry 1 at 25 °C for 5 min. Entry 4: 2 equiv of TfOH was added to entry 1 at 25 °C for 5 min.

3.3 Conclusions

In this chapter, we have been able to characterize species in which a substrate is bound to the catalyst (S-BA) and in which a product is bound to the catalyst (P-BA) utilizing NMR spectroscopy. Also, their equilibrium was studied. Finally, it was possible to qualitatively and quantitatively analyze the process of depletion of the P-BA in presence of the substrate. The binding affinity of the substrate (imine) was found to be very high compared to that of the product (aziridine). All the above-mentioned observations have been achieved for the first time in case of a Brønsted acid catalyzed aziridination reaction.

Given the results from the present work, it should be possible to study the relative binding of various imines and of various aziridines as well as the relative binding between imines and aziridines and to probe the dynamics of their interchange.

APPENDIX

3.4 Experimental

3.4.1	General Information	236
3.4.2	Synthesis of Imines 111a, 111o, 111v, 111w and 114o' and triphenoxyboroxine 191a	236
3.4.3	Synthesis of aziridines 114a, 114o, 114v, 114w and 115o'	238
3.4.4	NMR analysis of a mixture of VAPOL, B(OPh) ₃ and imines 111a , 1110 and 1140 '	with
and wi	ithout water (pre-catalyst methods A and B, Figure 3.2)	241
3.4.5	Monitoring the AZ reaction with imine 111a by NMR spectroscopy (Table 3.1)	244
3.4.6	NMR analysis of a mixture of VAPOL, B(OPh) ₃ and aziridines 114a, 114o, 114v, 1	14w
and 11	50' (pre-catalyst method B, Figure 3.5 and 3.10)	245
3.4.7	NMR analysis of a mixture of VAPOL, boron sources & aziridine 1140 (Table 3.2)	247
3.4.8	NMR analysis of a mixture of VAPOL, B(OPh) ₃ and a base (111a, 111o, 114a and 1	14o)
by sim	aple mixing at room temperature (Figure 3.9)	248
3.4.9	Temperature studies of 239a & 239o and recovery of 114o (<i>Figure 3.4, 3.7, 3.8</i>)	249
3.4.10	Equilibrium studies of 2390 , 58 and boron compounds (<i>Figure 3.11 and 3.12</i>)	251
3.4.11	Probing the path II of the catalytic cycle (Figure 3.14 and 3.15)	253
3.4.12	Termination of the catalytic cycle i.e. Path X and path Y (Figure 3.16 and 3.17)	254
3.4.13	NMR analysis of the addition of TfOH to boroxinate 242 (<i>Figure 3.19</i>)	258
3.4.14	DFT calculations (Figure 3.6)	259

3.4.1 General Information

Same as Chapter 2.

3.4.2 Synthesis of Imines 111a, 111o, 111v, 111w and 114o' and triphenoxyboroxine 191a

See Chapter 2 for the synthesis for the imine 111a and triphenoxyboroxine 191a. Imine 114o' was prepared according to published procedure. All aldehydes were distilled prior to use.

N-Cyclohexylmethylidene-*bis*(3,5-dimethyl-4-methoxyphenyl) methylamine 111v: Imine 111v was prepared according to the procedure described in Chapter 2 for imine 111a. Crystallization (1: 60 EtOAc/hexanes) and collection of the first crop afforded 111v as white solid crystals (mp 108-109 °C) in 71% isolated yield (1.40 g, 3.55 mmol).

Spectral data for **111v**: ¹H NMR (CDCl₃, 300 MHz) δ 1.17-1.34 (m, 5H), 1.64-1.84 (m, 5H), 2.19-2.35 (m, 1H), 2.23 (s, 12H), 3.67 (s, 6H), 5.05 (s, 1H), 6.91 (s, 4H), 7.59 (d, 1H, J = 5.1 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 16.19, 25.42, 26.01, 29.79, 43.51, 59.59, 77.44, 127.74, 130.49, 139.39, 155.69, 168.59; IR (thin film): 2926s, 1665m, 1483s 1221s, 1142m, 1017s cm⁻¹; Mass spectrum m/z (% rel intensity) 393 M+ (0.22), 283 (100), 268 (15), 163 (54), 142 (24), 134 (15), 77 (11), 44 (10). These spectral data match those previously reported for this compound. ^{5c}

N-(1,1'-dimethylethylidene)-bis(4-methoxy-3,5-dimethyl phenyl)methylamine 111w: Imine 111w was prepared according to the procedure described above for imine 111a. Crystallization (1: 100 CH₂Cl₂/hexanes) and collection of the first crop afforded 111w as white solid crystals (mp 90-91 °C) in 85% isolated yield (1.56 g, 4.25 mmol).

Spectral data for **111w**: 1 H NMR (CDCl₃, 300 MHz) δ 1.09 (s, 9H), 2.23 (s, 12H), 3.68 (s, 6H), 5.08 (s, 1H), 6.91 (s, 4H), 7.61 (s, 1H); 13 C NMR (CDCl₃, 75 MHz) δ 16.22, 27.04, 36.33, 59.59, 76.75, 127.71, 130.41, 139.63, 155.62, 171.11; IR (thin film): 2955vs, 1663m, 1483s, 1221s, 1017s cm⁻¹; Mass spectrum m/z (% rel intensity) 367 M+(0.8), 283 (100), 268 (22), 253 (12), 210 (11), 195 (14), 178 (8), 141 (34), 133 (11), 118 (19), 41 (10). These spectral data match those previously reported for this compound. 5c

$$MeO$$
 H_2N
 OMe
 $A\mathring{A}MS$
 $Toluene$
 $25 °C, 3 h$
 OMe
 OMe

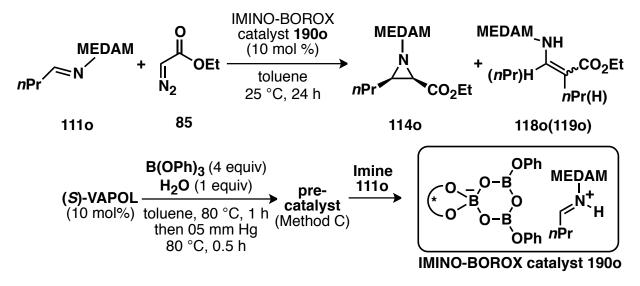
(*E*)-*N*-butylidene-1,1-bis(4-methoxy-3,5-dimethylphenyl)methanamine 111o: To a 50 mL flame-dried round bottom flask filled with argon was added bis(2,6-di-methyl-4-methoxyphenyl)methylamine 126c (1.49 g, 5.00 mmol), 4 Å Molecular Sieves (1.2 g, freshly dried) and dry toluene (5 mL). After stirring for 10 min, *n*-butanal 127o (473 μL, 5.25 mmol, 1.05 equiv, freshly distilled) was added. The reaction mixture was stirred at room temperature for 3 h. The reaction mixture was filtered through Celite and the Celite bed was washed with

CH₂Cl₂ (10 mL × 3) and then the filtrate was concentrated by rotary evaporation to give the crude imine as an off-white solid. Crystallization (hexanes) and collection of the first crop afforded **1110** as white solid crystals (mp 102-103 °C) in 80 % isolated yield (1.4 g, 4.0 mmol). Spectral data for **1110**: 1 H NMR (CDCl₃, 500 MHz) δ 0.94 (t, 3H, J = 7.3 Hz), 1.58 (sextet, 2H, J = 7.3 Hz), 2.23 (s, 12H), 2.28-2.32 (m, 2H), 3.67 (s, 6H), 5.09 (s, 1H), 6.92 (s, 4H), 7.75 (t, 1H, J = 4.9 Hz); 13 C NMR (125 MHz, CDCl₃) δ 13.81, 16.17, 19.50, 37.84, 59.59, 77.71, 127.75, 130.55, 139.24, 155.73, 164.88; HRMS (ESI-TOF) m/z 354.2433 [(M+H⁺); calcd. for $C_{23}H_{32}NO_2$: 354.2433]. These spectral data match those previously reported for this compound. 5c

3.4.3 Synthesis of aziridines 114a, 114o, 114v, 114w and 115o'

All aziridines but **1150'** have been prepared using procedure IV (pre-catalyst method C) of Table 2.1 in Chapter 2. The representative procedures for two aziridines **114a** and **114o** are given here and the details for the aziridines **114v** and **114w** can be found in reference 5c. Aziridine **115o'** have been prepared using procedure I (pre-catalyst method A) and is already reported. ^{5b}

Synthesis of aziridine 114a using imine 111a:


(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: Imine 111a (387 mg, 1 mmol) was reacted according to the general procedure IV (pre-catalyst method C) described above (Chapter 2) with (S)-VAPOL (5 mol%) as the ligand. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 114a as a white solid (mp 107-108 °C on 99.8% ee material) in 98 % isolated yield (464 mg, 0.980 mmol); cis/trans: >50:1. Enamine side products: 1 % yield of 118a and 1 % yield of 119a. The optical purity of 114a was determined to be 99.8 % ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.26$ min (major enantiomer, 114a) and $R_t = 12.52$ min (minor enantiomer, ent-114a).

Spectral data for **114a**: $R_f = 0.42$ (1:9 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.98 (t, 3H, J = 7.1 Hz), 2.18 (s, 6H), 2.24 (s, 6H), 2.55 (d, 1H, J = 6.8 Hz), 3.10 (d, 1H, J = 6.6 Hz), 3.62 (s, 3H), 3.66 (s, 1H), 3.68 (s, 3H) 3.87-3.97 (m, 2H), 7.09 (s, 2H), 7.18 (s, 2H), 7.21-7.24

(m, 3H), 7.36 (d, 2H, J = 7.3 Hz); 13 C (CDCl₃, 125 MHz) δ 14.01, 16.16, 16.22, 46.26, 48.20, 59.52, 59.58, 60.47, 77.04, 127.21, 127.41, 127.70, 127.80,127.85, 130.59, 130.60, 135.33, 137.79, 137.96, 155.95, 156.10, 168.01; IR (thin film) 2961 vs, 1750 vs, 1414 vs, 1202 vs cm⁻¹; Mass spectrum: m/z (% rel intensity) 473 M+ (0.27), 284(78), 283 (100), 268 (34), 253 (20), 237 (11), 210(10), 117 (18), 89 (11); Anal calcd for C₃₀H₃₅NO₄: C, 76.08; H, 7.45; N, 2.96. Found: C, 76.31; H, 7.28; N, 2.82; $[\alpha]_D^{23}$ +41.3 (c 1.0, EtOAc) on 99% ee material (HPLC). These spectral data match those previously reported for this compound. 5c

Synthesis of aziridine 1140 using imine 1110:

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 1140: Imine **1110** (353 mg, 1 mmol) was reacted according to the general procedure IV (pre-catalyst method C) described above (Chapter 2) with (S)-VAPOL (10 mol%) as the ligand. Purification of the crude aziridine by silica gel chromatography (20 mm × 250 mm

column, 4:2:0.1 hexanes/CH₂Cl₂/EtOAc, gravity column) afforded pure *cis*-aziridine **1140** as a yellow oil in 64 % isolated yield (281 mg, 0.640 mmol); *cis/trans*: not determined. Enamine side products: not observed. The optical purity of **1140** was determined to be 93% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 4.73$ min (major enantiomer, **1140**) and $R_t = 5.68$ min (minor enantiomer, *ent-***1140**).

Spectral data for **114o**: $R_f = 0.28$ (4:2:0.1 hexanes/CH₂Cl₂/EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 0.72 (t, 3H, J = 7.6 Hz), 0.98-1.08 (m, 1H), 1.11-1.20 (m, 1H), 1.23 (t, 3H, J = 7.1 Hz), 1.38-1.45 (m, 1H), 1.49-1.55 (m, 1H), 1.95 (q, 1H, J = 6.6 Hz), 2.18 (d, 1H, J = 6.8 Hz) 2.22 (s, 12H), 3.39 (s, 1H), 3.65 (s, 3H), 3.67 (s, 3H), 4.12-4.23 (m, 2H), 6.99 (s, 2H), 7.07 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 13.57, 14.33, 16.09, 16.16, 20.33 29.93, 43.53, 46.76, 59.56, 59.60, 60.64, 77.32, 127.41, 128.07, 130.44, 130.47, 137.75, 138.18, 155.81, 156.12, 169.69; IR (thin film) 2957vs, 1744s, 1483s, 1221s, 1182vs cm⁻¹; HRMS (ESI-TOF) m/z 440.2817 [(M+H⁺); calcd. for C₂₇H₃₈NO₄ : 440.2801]; $[\alpha]_D^{23}$ +95.3 (c 1.0, EtOAc) on 97 % ee material (HPLC). These spectral data match those previously reported for this compound. ^{5c}

3.4.4 NMR analysis of a mixture of VAPOL, commercial B(OPh)₃ and imines 111a, 111o and 114o' with and without water (pre-catalyst methods A and B, *Figure 3.2*)

As shown in Figure 3.2 of this chapter, a mixture of (*S*)-VAPOL **58** and commercial $B(OPh)_3$ **187a** gives different yields of unreacted VAPOL **58**, mesoborate B1 **106** and pyroborate B2 **108** employing different reaction conditions (pre-catalyst methods A and B). Also, it was evident from the 1H NMR and ^{11}B NMR that no boroxinate B3 **190a** was formed unless imine **111a** was added irrespective of the methods used. The characteristic peaks i.e. δ 10.2-10.4 and δ 5.5-5.7 were missing in 1H NMR and ^{11}B NMR respectively. The same observation was made when alkyl imines **111o** and **114o'** were used. Unless otherwise noted, commercial $B(OPh)_3$ is used in all the experiments. Also, Ph_3CH is used as the internal standard.

Experimental:

Entry 1, Figure 3.2: The pre-catalyst was made using method A (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (87 mg, 0.3 mmol). To the flask containing the pre-catalyst was first added the Ph₃CH (12.22 mg, 0.05 mmol) and then CDCl₃ (1

mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The off-white colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 2, Figure 3.2:

The pre-catalyst was made using method A (see Chapter 2) employing (*S*)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (87 mg, 0.3 mmol). To the flask containing the pre-catalyst was first added the imine **111a** (39 mg, 0.1 mmol), Ph₃CH (12.22 mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 3, Figure 3.2: Same as entry 1 except that the pre-catalyst was made using method B (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol), commercial B(OPh)₃ (87 mg, 0.3 mmol) and H_2O (5.4 μ L, 0.3 mmol).

Entry 4, Figure 3.2: Same as entry 2 except that the pre-catalyst was made using method B (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol), commercial B(OPh)₃ (87 mg, 0.3 mmol) and H_2O (5.4 μ L, 0.3 mmol).

Entry 5, Figure 3.2: Same as entry 4 except that imine 1110 (1 equiv) was used.

Entry 6, Figure 3.2: Same as entry 4 except that imine 114o' (1 equiv) was used.

3.4.5 Monitoring the aziridination reaction with imine 111a by NMR spectroscopy (*Table 3.1*)

Procedure (i)

The pre-catalyst was made using method A (see Chapter 2) employing (*S*)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (87 mg, 0.3 mmol). To the flask containing the pre-catalyst was first added the imine **111a** (78 mg, 0.2 mmol), Ph₃CH (12.22 mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to 1 H NMR and 11 B NMR analysis. After initial analysis, EDA **85** (25 μ L, 0.24 mmol) was added to the NMR tube and the NMR tube was shaken for 1 min. Thereafter the NMR was taken at regular intervals. The reaction with 1.0 mmol was followed in the similar way. All details are given in Table 3.1 of the Chapter.

Procedure (ii)

Same as procedure (i) except that the pre-catalyst was made using method D (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol) and triphenoxyboroxine **191a** (360 mg, 0.1 mmol). All details are given in Table 3.1 of the Chapter.

Procedure (iii)

To a 10 mL flame-dried round bottom flask, equipped with a stir bar, filled with argon was added (*S*)-VAPOL **58** (54 mg, 0.1 mmol, 1 equiv.), commercial B(OPh)₃ (87 mg, 0.3 mmol, 3 equiv.), imine **111a** (387 mg, 1.00 mmol, 10 equiv.), Ph₃CH (12.22 mg, 0.05 mmol) and CDCl₃(1 mL). The resultant mixture was stirred for 10 min at room temperature. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis. After initial analysis, EDA **85** (124 μL, 1.2 mmol) was added to the NMR tube and the NMR tube was shaken for 1 min. Thereafter the NMR was taken at regular intervals. All details are given in Table 3.1 of the Chapter.

3.4.6 NMR analysis of a mixture of VAPOL, commercial B(OPh)₃ and aziridines 114a, 114o, 114v, 114w and 115o' (pre-catalyst method B, *Figure 3.5 and 3.10*)

The pre-catalyst was made using method B (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol), commercial B(OPh)₃ (87 mg, 0.3 mmol) and H₂O (5.4 μL, 0.3 mmol). To the flask containing the pre-catalyst was first added the Ph₃CH (12.22 mg, 0.05 mmol) and then the aziridine 114o (44 mg, 0.1 mmol) as a solution in CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The yellow colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis. A similar analysis was performed in d₈-toluene. Other aziridines (114a, 114v, 114w and 115o') were also examined following the same procedure.

2400' (aziridine = 1150', R = Et and P = BUDAM)

3.4.7 NMR analysis of a mixture of VAPOL, different boron sources and aziridine 1140 (pre-catalyst methods C, D and E, *Table 3.2*)

Entry 4, Table 3.2 (method C): The pre-catalyst was made using method C (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol), commercial B(OPh)₃ (116 mg, 0.4 mmol) and H₂O (1.8 μ L, 0.1 mmol). To the flask containing the pre-catalyst was first added the Ph₃CH (12.22 mg, 0.05 mmol) and then the aziridine 114o (44 mg, 0.1 mmol) as a solution in CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The yellow colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis. All details are given in Table 3.2 of the Chapter.

Entry 5, Table 3.2 (method D): Same as entry 4 except that the pre-catalyst was made using method D (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol), and triphenoxyboroxine 191a (360 mg, 0.1 mmol). All details are given in Table 3.2 of the Chapter.

Entry 6, Table 3.2 (method E): Same as entry 4 except that the pre-catalyst was made using method E (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol) and BH₃•Me₂S (150 μL, 0.3 mmol, 2.0 M in toluene), PhOH (18.8, 0.2 mmol) and H₂O (5.4 μL, 0.3 mmol). All details are given in Table 3.2 of the Chapter.

3.4.8 NMR analysis of a mixture of VAPOL, commercial B(OPh)₃ and a base (111a, 111o, 114a and 114o) by simple mixing at room temperature (*Figure 3.9*)

Entry 1, Figure 3.9: To a 10 mL flame-dried round bottom flask, equipped with a stir bar, filled with argon was added (S)-VAPOL 58 (54 mg, 0.1 mmol, 1 equiv.), commercial B(OPh)₃ (87 mg,

0.3 mmol, 3 equiv.), Ph₃CH (12.22 mg, 0.05 mmol) and CDCl₃(1 mL). The resultant mixture was stirred for 10 min at room temperature. The off-white colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 2, Figure 3.9: To a 10 mL flame-dried round bottom flask, equipped with a stir bar, filled with argon was added (S)-VAPOL 58 (54 mg, 0.1 mmol, 1 equiv.), commercial B(OPh)₃ (87 mg, 0.3 mmol, 3 equiv.), imine 111a (78 mg, 0.2 mmol, 2 equiv.), Ph₃CH (12.22 mg, 0.05 mmol) and CDCl₃(1 mL). The resultant mixture was stirred for 10 min at room temperature. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 3, Figure 3.9: Same as entry 2 with the imine 1110 (2 equiv).

Entry 4, Figure 3.9: Same as entry 2 with the aziridine 111a (2 equiv).

Entry 5, Figure 3.9: Same as entry 2 with the aziridine 1110 (2 equiv). In this case, aziridine 1140 was added as solution in CDCl₃ (1mL).

3.4.9 Temperature studies of AZIRIDINO-BOROX 239a and 239o and the recovery of the aziridine 114o via hydrolysis of 239o (*Figure 3.4, 3.7 and 3.8*)

Temperature Studies:

The pre-catalyst was made using method B (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol), commercial B(OPh)₃ (87 mg, 0.3 mmol) and H₂O (5.4 μL, 0.3 mmol). To the flask containing the pre-catalyst was first added the Ph₃CH (12.22 mg, 0.05 mmol) and then the aziridine **114o** (44 mg, 0.1 mmol) as a solution in d₈-toluene (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The yellow colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis at various temperatures. A similar analysis was performed for boroxinate **239a**.

Recovery of aziridine 1140 via hydrolysis of 2390:

[aziridine-H]⁺
OPh
$$OPh$$
 OPh
 O

Entry 1, Figure 3.8: The boroxinate is formed in 43% yield in CDCl₃ using the protocol shown in section 3.4.6.

Entry 2-4, Figure 3.8: 1, 2 and 4 equiv of the H₂O is added to the NMR tube (entry 1) for entries 2, 3 and 3 respectively.

Entry 5, Figure 3.8: 10 equiv of the H₂O is added to the NMR tube and then the aziridine 1140 was recovered in 85% yield by silica gel chromatography.

3.4.10 Equilibrium studies of 2390, (S)-VAPOL 58 and boron compounds (Figure 3.11 and 3.12)

A) via dilution of 239o:

Entry 1, Figure 3.11: The boroxinate is formed in 56% yield in d₈-toluene using the protocol shown in section 3.4.6. The concentration of the solution is 0.2 M as 0.2 mmol of (S)-VAPOL 58 was used in 1 mL of d₈-toluene.

Entry 2, Figure 3.11: entry 1 after 24 h.

Entry 3, Figure 3.11: An additional 1 mL of d₈-toluene was added to entry 2 and the NMR was taken. The concentration is 0.1 M.

Entry 4, Figure 3.11: The boroxinate is formed in 47% yield in d₈-toluene using the protocol shown in section 3.4.6.

Entry 5, Figure 3.11: entry 4 after 24 h.

Entry 6-8, Figure 3.11: An additional 0.25 mL, 0.75 mL and 0.5 mL of d₈-toluene was added to entry 5, 6 and 7 respectively and then the NMR was taken. The concentration of the solution (with respect to the ligand 58) is 0.08 M, 0.05 M and 0.04 M for entries 6,7 and 8 respectively.

B) via increase in the concentration of aziridine 1140:

Entry 1, Figure 3.12: The boroxinate is formed in 35% yield in CDCl₃ using the protocol shown in section 3.4.6. The concentration of the solution is 0.4 M as 0.4 mmol of (S)-VAPOL 58 was used in 10 mL of CDCl₃. An aliquot of 1mL of this solution was withdrawn for NMR analysis.

Entry 2-5, Figure 3.12: An additional 0.36 mmol, 0.32 mmol, 0.28 mmol and 0.24 mmol of aziridine 1140 was added to the remaining solution in entries 1, 2, 3, and 4 respectively. After each addition, an aliquot of 1mL of the resulting CDCl₃ solution was withdrawn and subjected to NMR analysis. The concentration of the solution (with respect to aziridine 1140) is 0.04 M, 0.08 M, 0.12 M, 0.16 M and 0.2 M for entries 1-5 respectively.

3.4.11 Probing the path II of the catalytic cycle i.e. the depletion of 2390 in the presence of 1110 (*Figure 3.14 and 3.15*)

253

Entry 1, Figure 3.14 and Entry 1, Figure 3.15: The boroxinate 2390 is formed in 43% yield in CDCl₃ using the protocol shown in section 3.4.6.

Entry 2, Figure 3.14: 1 equiv of imine 1110 (36 mg, 0.1 mmol) was added to entry 1 of Figure 3.14.

Entry 2, Figure 3.15: 0.5 equiv of imine 1110 (18 mg, 0.1 mmol) was added to entry 1 of Figure 3.15.

Entry 4, Figure 3.14: 1.1 equiv of EDA 85 (12 μL, 0.1 mmol) was added to entry 2 of Figure 3.14, which was stored for 24 h (entry 3, Figure 3.14) prior to the addition.

Entry 4, Figure 3.15: 0.5 equiv of EDA **85** (5.2 μL, 0.05 mmol) was added to entry 2 of Figure 3.15, which was stored for 1 h (entry 3, Figure 3.15) prior to the addition.

3.4.12 Termination of the catalytic cycle i.e. Path X and path Y (Figure 3.16 and 3.17)

A) Path X: Treatment of AZIRIDINO-BOROX 2390 with EDA 85:

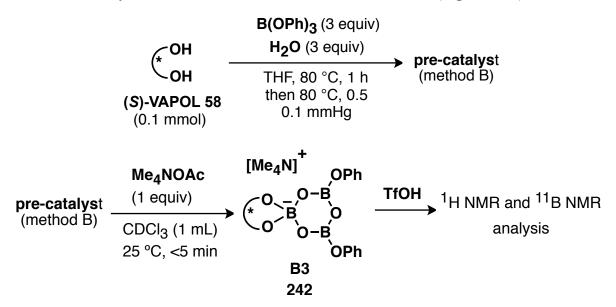
The boroxinate **2390** is formed in 43% yield in CDCl₃ using the protocol shown in section 3.4.6. Thereafter, 0.5 equiv of EDA **85** (5.2 μ L, 0.05 mmol) was added after 10 min. Another 0.5 equiv of EDA **85** (5.2 μ L, 0.05 mmol) was added after 30 min. The NMR spectra were recorded at regular time intervals. All details are given in Figure 3.16.

B) Path Y: Reaction between (S)-VAPOL 58 and EDA 85 under various conditions:

Entry 1, Figure 3.17: To a 10 mL flame-dried single-necked round bottom flask, equipped with a stir bar and a rubber septum and filled with argon was added (*S*)-VAPOL 58 (54 mg, 0.10 mmol, 1.0 equiv) and EDA 85 (21 μL, 0.20 mmol, 2.0 equiv), Ph₃CH (12.2 mg, 0.500 mmol) and CDCl₃ (1 mL). The resultant mixture was stirred for 10 min at room temperature. The resulting solution was then directly transferred to a quartz NMR tube (freshly flame-dried) and was subjected to NMR analysis.

Entry 2, Figure 3.17: Same as entry 1 except that commercial B(OPh)₃ (87 mg, 0.30 mmol, 3.0 equiv) was aslo added.

Entry 3, Figure 3.17: The precatalyst was made by method A (see Chapter 1) employing (S)-VAPOL 58 (54 mg, 0.10 mmol) and commercial B(OPh)₃ (87 mg, 0.30 mmol, 3.0 equiv). To the flask containing the pre-catalyst was first added the Ph₃CH (12.22 mg, 0.05 mmol) and then the CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The off-white colored solution was then directly transferred to a quartz NMR tube and was subjected to 1 H NMR and 11 B NMR analysis. After initial analysis, EDA 85 (21 μ L, 0.20 mmol, 2.0 equiv) was added and the mixture was shaken for 5 min.


Entry 4, Figure 3.17: Entry 4 after 24 h.

Entry 5, Figure 3.17: 1 equiv of H_2O (1.8 μL , 0.1 mmol) was added to the NMR tube containing entry 4.

Entry 6, Figure 3.17: The pre-catalyst was made using method A (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (87 mg, 0.3 mmol). To the flask containing the pre-catalyst was first added the imine 111a (387 mg, 1.00 mmol), Ph₃CH (12.22 mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis. After initial analysis, EDA 85 (124 μL, 1.20 mmol) was added to the NMR tube and the NMR tube was shaken for 2 min. Thereafter the NMR sample was kept for 90 min. The NMR sample was then poured into a 25 mL round bottom flask containing 6 mL of hexanes. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the adduct as a white solid. Purification of the mono-alkylated adduct 230 by silica gel chromatography (35 mm × 400 mm column, 9:1 hexanes/EtOAc as eluent, under gravity) afforded pure 230 as a white solid (mp. 101-102 °C) in 95% isolated yield (59.3 mg, 0.095 mmol).

Spectral data for **230**: $R_f = 0.25$ (1:9 EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 0.77 (t, 3H, J = 7.1Hz), 1.25 (brs, 1H), 2.74-3.68 (m, 2H), 4.40 (dd, 2H, J = 14.8, 37.6Hz), 6.70 (s, 1H), 6.79-6.85 (m, 4H), 6.93-7.12 (m, 6H), 7.44 (s, 1H), 7.56-7.82 (m, 8H), 7.88-7.94 (m, 2H), 9.55-9.58 (m, 1H), 9.83 (d, 1H, J = 8.5 Hz); ¹³C NMR (CDCl₃, 75 Hz) δ 13.48, 60.91, 68.44, 120.48, 123.01, 123.19, 125.97, 126.35, 126.50, 126.67, 126.91, 126.96, 127.13, 127.48, 127.55, 127.64, 127.76, 128.19, 128.36, 128.66, 128.90, 129.08, 129.19, 129.33, 130.66, 132.79, 133.08, 134.41, 135.05, 139.37, 140.10, 140.62, 142.27, 152.26, 155.04, 167.66 (four sp² carbons not located). These spectral data match those previously reported for this compound. ^{5a,9}

3.4.13 NMR analysis of the addition of TfOH to boroxinate 242 (Figure 3.19)

The pre-catalyst was made using method B (see Chapter 2) employing (S)-VAPOL (54 mg, 0.1 mmol) commercial B(OPh)₃ (87 mg, 0.3 mmol) and H₂O (5.4 μL, 0.3 mmol). To the flask containing the pre-catalyst was first added the Me₄NOAc (13.3 mg, 0.100 mmol), Ph₃CH (12.22

mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis. Thereafter, 1–4 equivalents of TfOH were added at regular intervals. All details are given in Figure 3.19.

3.4.14 DFT calculations:

All quantum mechanical calculations were performed using the GAUSSIAN 03.⁶ The B3LYP¹⁰ density functional was used along with 6-31G* basis sets.

3.4.14.1 Prediction of the structure of AZIRIDINO-BOROX complex 2390 (Figure 3.6)

Coordinates of AZIRIDINO-BOROX complex 2390:

B3LYP/6-31G*

Energy = -4011.05566039 hartrees Number of Imaginary frequencies = none

Zero-point correction= 1.348532 (Hartree/Particle) Thermal correction to Energy= 1.432808 Thermal correction to Enthalpy= 1.433753 Thermal correction to Gibbs Free Energy= 1.218432 Sum of electronic and zero-point Energies= -4009.707128 Sum of electronic and thermal Energies= -4009.622852 Sum of electronic and thermal Enthalpies= -4009.621908 Sum of electronic and thermal Free Energies= -4009.837228

E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 899.101 326.353 453.179

Standard orientation:

Cen	ter Atomi	c Atoi	mic Coordinates (Angstroms)			
No.	No.	Тур	e X	Y	Z	
1	6	0	-5.656871	-1.810910	1.301347	
2	6	0	-5.779938	-0.423740	1.114612	
3	6	0	-7.050565	0.097013	0.820102	
4	6	0	-8.161181	-0.739691	0.711535	
5	6	0	-8.023670	-2.116351	0.896119	
6	6	0	-6.766367	-2.647549	1.192164	
7	6	0	-4.614247	0.481173	1.322858	
8	6	0	-3.321972	0.231947	0.775601	
9	6	0	-2.213056	0.969017	1.227232	
10	6	0	-2.370229	2.107515	2.086394	
11	6	0	-3.708035	2.434593	2.472247	
12	6	0	-4.779456	1.588010	2.135707	
13	6	0	-3.983901	3.624281	3.223757	
14	6	0	-2.995268	4.486392	3.567917	
15	6	0	-1.629756	4.189433	3.254573	
16	6	0	-1.293501	2.982118	2.558122	
17	6	0	-3.151532	-0.777075	-0.313738	
18	6	0	-2.257700	-1.839405	-0.104913	
19	6	0	-2.207654	-2.974464	-0.972578	
20	6	0	-2.994768	-2.897671	-2.161739	
21	6	0	-3.804018	3 -1.773740	-2.412434	
22	6	0	-3.915217	-0.719652	-1.515636	
23	6	0	-1.438766	-4.194177	-0.719443	
24	6	0	-1.414657	-5.215657	-1.724417	
25	6	0	-2.165825	-5.052168	-2.935579	
26	6	0	-2.937352	-3.952410	-3.133652	
27	8	0	-1.471940	-1.778585	0.994567	
28	5	0	-0.454976	-0.716368	1.080922	
29	8	0	-0.982213	0.618355	0.747225	
30	6	0	-4.772541	0.437364	-1.904912	
31	6	0	-4.345129	1.767531	-1.745208	
32	6	0	-5.123524	2.832578	-2.198237	
33	6	0	-6.351519		-2.819202	
34	6	0	-6.794462	1.281257	-2.977725	
35	6	0	-6.015134		-2.524666	
36	8	0	0.651373	-0.984195	0.094745	
37	5	0	1.651458	-1.838704	0.462054	
38	8	0	1.876094	-2.167880	1.776496	

39	5	0	1.114217	-1.539989	2.762942
40	8	0	1.567557	-1.769810	4.043265
41	6	0	0.984483	-1.390519	5.231192
42	6	0	-0.380727	-1.120382	5.375559
43	6	0	-0.877616	-0.786924	6.636726
44	6	0	-0.036237	-0.723809	7.748638
45	6	0	1.323633	-1.000501	7.593445
46	6	0	1.834285	-1.334793	6.340547
47	8	0	2.457592	-2.320575	-0.555043
48	6	0	3.481020	-3.236516	-0.482465
49	6	0	4.428031	-3.189684	-1.513124
50	6	0	5.467170	-4.119743	-1.550014
51	6	0	5.574035	-5.099907	-0.560577
52	6	0	4.623921	-5.141156	0.461560
53	6	0	3.574999	-4.220661	0.508644
54	8	0	0.066312	-0.761212	2.445162
55	6	0	1.897877	0.677720	-3.157298
56	6	0	0.581119	1.357114	-2.933875
57	6	0	2.121507	-0.733296	-3.646884
58	8	0	3.120762	-1.022987	-4.271529
59	8	0	1.130044	-1.551183	-3.308054
60	6	0	1.267959	-2.969655	-3.637504
61	7	0	1.389023	0.890563	-1.775546
62	6	0	2.080216	1.819364	-0.762784
63	6	0	3.331440	1.156530	-0.206967
64	6	0	3.419637	0.999530	1.179900
65	6	0	4.543958	0.443028	1.799316
66	6	0	5.608069	0.031814	0.982906
67	6	0	5.563513	0.184567	-0.414052
68	6	0	4.417716	0.738549	-0.990487
69	6	0	4.597780	0.290213	3.299642
70	8	0	6.757613	-0.479140	1.550200
71	6	0	6.714002	-1.880713	1.845762
72	6	0	6.740879	-0.231652	-1.260898
73	6	0	2.228670	3.237816	-1.288713
74	6	0	3.350644	3.690653	-1.994588
75	6	0	3.435530	5.005144	-2.462746
76	6	0	2.368644	5.880031	-2.196259
77	6	0	1.225433	5.460833	-1.495534
78	6	0	1.179110	4.136158	-1.050910
79	6	0	4.636851	5.481831	-3.242860
80	8	0	2.433713	7.165858	-2.698240
81	6	0	2.911274	8.152883	-1.781839
82	6	0	0.078885	6.406563	-1.232452
83	1	0	2.724014	1.331274	-3.412184

84	1	0	4.336808	-2.425866	-2.278714
85	1	0	6.191017	-4.077927	-2.360026
86	1	0	6.381588	-5.826025	-0.590249
87	1	0	4.690375	-5.902861	1.234351
88	1	0	2.842105	-4.257675	1.303036
89	1	0	2.887333	-1.561104	6.202469
90	1	0	1.992070	-0.958736	8.449756
91	1	0	-0.435471	-0.462724	8.724812
92	1	0	-1.937987	-0.573601	6.744701
93	1	0	-1.034015	-1.156912	4.513182
94	1	0	-3.215883	5.401734	4.112042
95	1	0	-5.018020	3.828795	3.490054
96	1	0	-5.759389	1.804708	2.551771
97	1	0	-7.159946		0.651763
98	1	0	-9.133697	-0.314777	0.475590
99	1	0	-8.888239	-2.769771	0.811574
100	1	0	-6.648507	-3.717026	1.346625
101	1	0	-4.687393	-2.229548	1.551979
102	1	0	-6.382308	-0.799215	-2.626283
103	1	0	-7.754692	1.081778	-3.446636
104	1	0	-6.958476		-3.170177
105	1	0	-4.768016	3.851200	-2.064542
106	1	0	-3.396753	1.967352	-1.257374
107	1	0	-4.343907	-1.731812	-3.354066
108	1	0	-3.534712	-3.849105	-4.036656
109	1	0	-2.129681	-5.846463	-3.677836
110	1	0	1.332201	1.845827	0.030790
111	1	0	1.022148	0.042802	-1.267929
112	1	0	0.652943	2.436334	-3.040879
113	1	0	4.193967	3.028464	-2.160287
114	1	0	5.226206	6.212945	-2.675768
115	1	0	4.332749	5.974579	-4.171996
116	1	0	5.298128	4.646201	-3.490501
117	1	0	2.930150	9.096883	-2.330862
118	1	0	3.923774	7.916091	-1.430830
119	1	0	2.248766	8.252533	-0.913349
120	1	0	-0.855997	5.856095	-1.091362
121	1	0	-0.046901	7.110643	-2.059945
122	1	0	0.244274	6.994559	-0.320405
123	1	0	0.307364	3.800544	-0.493782
124	1	0	2.589210	1.309814	1.806834
125	1	0	5.630317	0.314437	3.657635
126	1	0	4.146732	-0.658615	3.616026
127	1	0	4.035921	1.089742	3.793170
128	1	0	7.682591	-2.126545	2.287327

130 1 0 5.917307 -2.114922 2.561158 131 1 0 6.867238 -1.320351 -1.261966 132 1 0 7.671519 0.198757 -0.877098 133 1 0 6.608766 0.088450 -2.299147 134 1 0 4.394266 0.818742 -2.072582 135 6 0 0.750667 -3.252143 -5.036825 136 1 0 2.317592 -3.242696 -3.524549 137 1 0 0.676383 -3.469507 -2.871362 138 1 0 0.818726 -4.327931 -5.233798 139 1 0 -0.298864 -2.957345 -5.132989 140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235	129	1	0	6.561135	-2.476638	0.938853
131 1 0 6.867238 -1.320351 -1.261966 132 1 0 7.671519 0.198757 -0.877098 133 1 0 6.608766 0.088450 -2.299147 134 1 0 4.394266 0.818742 -2.072582 135 6 0 0.750667 -3.252143 -5.036825 136 1 0 2.317592 -3.242696 -3.524549 137 1 0 0.676383 -3.469507 -2.871362 138 1 0 0.818726 -4.327931 -5.233798 139 1 0 -0.298864 -2.957345 -5.132989 140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983						
132 1 0 7.671519 0.198757 -0.877098 133 1 0 6.608766 0.088450 -2.299147 134 1 0 4.394266 0.818742 -2.072582 135 6 0 0.750667 -3.252143 -5.036825 136 1 0 2.317592 -3.242696 -3.524549 137 1 0 0.676383 -3.469507 -2.871362 138 1 0 0.676383 -3.469507 -2.871362 138 1 0 0.818726 -4.327931 -5.233798 139 1 0 -0.298864 -2.957345 -5.132989 140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983			-			
133 1 0 6.608766 0.088450 -2.299147 134 1 0 4.394266 0.818742 -2.072582 135 6 0 0.750667 -3.252143 -5.036825 136 1 0 2.317592 -3.242696 -3.524549 137 1 0 0.676383 -3.469507 -2.871362 138 1 0 0.818726 -4.327931 -5.233798 139 1 0 -0.298864 -2.957345 -5.132989 140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.316217 0.402385 -5.322222						
134 1 0 4.394266 0.818742 -2.072582 135 6 0 0.750667 -3.252143 -5.036825 136 1 0 2.317592 -3.242696 -3.524549 137 1 0 0.676383 -3.469507 -2.871362 138 1 0 0.818726 -4.327931 -5.233798 139 1 0 -0.298864 -2.957345 -5.132989 140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222						
135 6 0 0.750667 -3.252143 -5.036825 136 1 0 2.317592 -3.242696 -3.524549 137 1 0 0.676383 -3.469507 -2.871362 138 1 0 0.818726 -4.327931 -5.233798 139 1 0 -0.298864 -2.957345 -5.132989 140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
136 1 0 2.317592 -3.242696 -3.524549 137 1 0 0.676383 -3.469507 -2.871362 138 1 0 0.818726 -4.327931 -5.233798 139 1 0 -0.298864 -2.957345 -5.132989 140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
137 1 0 0.676383 -3.469507 -2.871362 138 1 0 0.818726 -4.327931 -5.233798 139 1 0 -0.298864 -2.957345 -5.132989 140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -3.250276 1.020766 -4.610842 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-			
138 1 0 0.818726 -4.327931 -5.233798 139 1 0 -0.298864 -2.957345 -5.132989 140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -3.250276 1.020766 -4.610842 150 1 0 -2.633933 0.610762 -6.222097 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
139 1 0 -0.298864 -2.957345 -5.132989 140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -3.250276 1.020766 -4.610842 150 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.674836 -7.157182 -2.296485 </td <td></td> <td></td> <td></td> <td></td> <td>-4.327931</td> <td></td>					-4.327931	
140 1 0 1.346173 -2.729013 -5.791144 141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -3.250276 1.020766 -4.610842 150 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
141 6 0 -0.781836 0.783951 -3.244349 142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -3.250276 1.020766 -4.610842 150 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.755577 -7.545704 -0.176115 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
142 1 0 -0.846828 -0.266350 -2.955235 143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -3.250276 1.020766 -4.610842 150 1 0 -3.250276 1.020766 -4.610842 150 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td>			0			
143 1 0 -1.525223 1.329267 -2.652983 144 6 0 -1.073287 0.953351 -4.747687 145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.00675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 <td>142</td> <td></td> <td>0</td> <td>-0.846828</td> <td>-0.266350</td> <td>-2.955235</td>	142		0	-0.846828	-0.266350	-2.955235
145 1 0 -0.957943 2.011241 -5.023776 146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -3.250276 1.020766 -4.610842 150 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.679315 -6.404617 -1.510788 152 1 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
146 1 0 -0.316217 0.402385 -5.322222 147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -3.250276 1.020766 -4.610842 150 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.679315 -6.404617 -1.510788 152 1 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 <td>144</td> <td>6</td> <td>0</td> <td>-1.073287</td> <td>0.953351</td> <td>-4.747687</td>	144	6	0	-1.073287	0.953351	-4.747687
147 6 0 -2.470012 0.471412 -5.147777 148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -3.250276 1.020766 -4.610842 150 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.679315 -6.404617 -1.510788 152 1 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908	145	1	0	-0.957943	2.011241	-5.023776
148 1 0 -2.598160 -0.592062 -4.919789 149 1 0 -3.250276 1.020766 -4.610842 150 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.679315 -6.404617 -1.510788 152 1 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.906136 5.988701 4.190223	146	1	0	-0.316217	0.402385	-5.322222
149 1 0 -3.250276 1.020766 -4.610842 150 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.679315 -6.404617 -1.510788 152 1 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 <	147	6	0	-2.470012	0.471412	-5.147777
150 1 0 -2.633933 0.610762 -6.222097 151 6 0 -0.679315 -6.404617 -1.510788 152 1 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 <	148	1	0	-2.598160	-0.592062	-4.919789
151 6 0 -0.679315 -6.404617 -1.510788 152 1 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 <td>149</td> <td>1</td> <td>0</td> <td>-3.250276</td> <td>1.020766</td> <td>-4.610842</td>	149	1	0	-3.250276	1.020766	-4.610842
152 1 0 -0.674836 -7.157182 -2.296485 153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	150	1	0	-2.633933	0.610762	-6.222097
153 6 0 -0.751162 -4.466972 0.491882 154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	151	6	0	-0.679315	-6.404617	-1.510788
154 1 0 -0.798258 -3.741946 1.289630 155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	152	1	0	-0.674836	-7.157182	-2.296485
155 6 0 -0.000675 -6.624847 -0.328926 156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	153	6	0	-0.751162	-4.466972	0.491882
156 1 0 0.555577 -7.545704 -0.176115 157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	154	1	0	-0.798258	-3.741946	1.289630
157 6 0 -0.054963 -5.649451 0.681123 158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	155	6	0	-0.000675	-6.624847	-0.328926
158 1 0 0.447388 -5.822824 1.629240 159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	156	1	0	0.555577	-7.545704	-0.176115
159 6 0 0.087638 2.706430 2.398078 160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	157	6	0	-0.054963	-5.649451	0.681123
160 1 0 0.366416 1.760571 1.963908 161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	158	1	0	0.447388	-5.822824	1.629240
161 6 0 -0.612605 5.077432 3.673579 162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	159	6	0	0.087638	2.706430	2.398078
162 1 0 -0.906136 5.988701 4.190223 163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	160	1	0	0.366416	1.760571	1.963908
163 6 0 1.065880 3.587989 2.829128 164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	161	6	0	-0.612605	5.077432	3.673579
164 1 0 2.114005 3.337452 2.688351 165 6 0 0.720854 4.796101 3.456925	162	1	0	-0.906136	5.988701	4.190223
165 6 0 0.720854 4.796101 3.456925	163		0	1.065880	3.587989	2.829128
166 1 0 1.493018 5.484811 3.789402						3.456925
	166	1	0	1.493018	5.484811	3.789402

REFERENCES

REFERENCES

- (1) (a) Tokunaga, N.; Yoshida, K.; Hayashi, T. *Proc. Nat. Acad. Sci. U.S.A* **2004**, *101*, 5445-5449. (b) Uyeda, C.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2011**, *133*, 5062-5075.
- (2) (a) Amarante, G. W.; Benassi, M.; Milagre, H. M. S.; Braga, A. A. C.; Maseras, F.; Eberlin, M. N.; Coelho, F. *Chem.–Eur. J.* **2009**, *15*, 12460-12469. (b) Schrader, W.; Handayani, P. P.; Zhou, J.; List, B. *Angew. Chem., Int. Ed.* **2009**, *48*, 1463-1466.
- (3) (a) Daniel, C.; Koga, N.; Han, J.; Fu, X. Y.; Morokuma, K. *J. Am. Chem. Soc.* **1988**, *110*, 3773-3787. (b) Kozuch, S.; Martin, J. M. L. *ACS Catal.* **2011**, *1*, 246-253. (c) Kozuch, S.; Martin, J. M. L. *Chem. Commun.* **2011**, *47*, 4935-4937.
- (4) (a) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W.; Atodiresei, I. Angew. Chem., Int. Ed. 2011, 50, 6706-6720. (b) Schenker, S.; Zamfir, A.; Freund, M.; Tsogoeva, S. B. Eur. J. Org. Chem. 2011, 2209-2222. (c) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chem. Soc. Rev. 2011, 40, 4539-4549. (d) List, B.; Kampen, D.; Reisinger, C. M. Top Curr Chem 2010, 291, 395-456. (e) Rueping, M.; Koenigs, R. M.; Atodiresei, I. Chem.—Eur. J. 2010, 16, 9350-9365. (f) Sohtome, Y.; Nagasawa, K. Synlett 2010, 1-22. (g) Terada, M. Synthesis 2010, 1929-1982. (h) Terada, M. Bull. Chem. Soc. Jpn. 2010, 83, 101-119. (i) Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S. B. Org. Biomol. Chem. 2010, 8. (j) Yamamoto, H.; Payette, J. N. In Hydrogen Bonding in Organic Synthesis; Wiley-VCH 2009, p 73-140. (k) Terada, M. Chem. Commun. (Cambridge, U. K.) 2008, 4097-4112. (l) Yu, X.; Wang, W. Chem.—Asian. J. 2008, 3, 516-532. (m) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713-5743. (n) Akiyama, T. Chem. Rev. 2007, 107, 5744-5758. (o) Taylor, M. S. J., E. N. Angew. Chem., Int. Ed. 2006, 45, 1520-1543. (p) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999-1010. (q) Connon, S. J. Angew. Chem., Int. Ed. 2006, 45, 3909-3912.
- (5) (a) Zhang, Y.; Desai, A.; Lu, A.; Hu, G.; Ding, Z.; Wulff, W. D. Chem. –Eur. J. 2008, 14, 3785-3803. (b) Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429-5432. (c) Mukherjee, M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. J. Org. Chem. 2010, 75, 5643-5660. (d) Ren, H.; Wulff, W. D. Org. Lett. 2010, 12, 4908-4911. (e) Hu, G.; Huang, L.; Huang, R. H.; Wulff, W. D. J. Am. Chem. Soc. 2009, 131, 15615-15617. (f) Hu, G.; Gupta, A. K.; Huang, R. H.; Mukherjee, M.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 14669–14675. (g) Gupta, A. K.; Mukherjee, M.; Wulff, W. D. Org. Lett. 2011, 13, 5866-5869. (h) Newman, C. A.; Antilla, J. C.; Chen, P.; Predeus, A. V.; Fielding, L.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7216-7217. (i) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13100-13103. (j) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13104-13107. (k) Desai, A. A.; Morán-Ramallal, R.; Wulff, W. D. Org. Synth. 2011, 88, 224-237. (l) Ren, H.; Wulff, W. D. J. Am. Chem. Soc. 2011, 133, 5656-5659. (m) Desai, A. A.; Ren, H.; Mukherjee, M.; Wulff, W. D. Org. Process Res. Dev. 2011, 15, 1108-1115.

- (6) Gaussian 03, Revision D.01 M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004
- (7) (a) Nishio, M. *Tetrahedron* **2005**, *61*, 6923-6950. (b) Nishio, M. H., M.; Umezawa, Y. *The CH/π Interaction: Evidence, Nature, and Consequences*; Wiley-VCH, 1998. (c) Plevin, M. J.; Bryce, D. L.; Boisbouvier, J. *Nat Chem* **2010**, *2*, 466-471.
- (8) This work was presented at the 241th American Chemical Society National Meeting, Anaheim (2011), ORGN 648.
- (9) Lu, Z.; Zhang, Y.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7185-7194.
- (10) (a) Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098. (b) Lee, C. Y., W.; Parr, R. G. *Phys. Rev. B* **1988**, *37*, 785.

CHAPTER 4

CAN "FREE" PROTON BE THE COUNTER CATION OF CHIRAL BORATE ANIONS IN THE ABSENCE OFA BASE IN NON-AQUEOUS MEDIA

If you think that this is wrong then you should give it a shot and nail it! I hate to publish anything, which is wrong even accidently!!!

-William D. Wulff

4.1 Introduction

In the preceding Chapter 3, various intermediates were characterized of the proposed catalytic cycle (Scheme 3.3, Chapter 3) of the Brønsted acid catalyzed aziridination reaction 1 between imines and stabilized diazo compounds. In the process, for the first time, the existence of the AZIRIDINO-BOROX complex 239 was demonstrated where product is bound to the catalyst (Scheme 3.3, Chapter 3). While discussing path II of the catalytic cycle, the possible existence of "free" Brønsted Acid 23-H was proposed (Figure 4.1A). As discussed earlier (Chapter 3), there is no NMR or X-ray evidence in the support of the existence of 23-H as of this time. Additionally, the calculated structure of 23-H reveals that a species with a tri-coordinate boron is energetically more favorable than one with a tetra-coordinate boron (Figure 3.18, Chapter 3). It was then decided to revisit the literature to find if anything similar has ever been reported. This was extremely important, as it would help to find an optimum protocol for generating a species like 23-H. Two such systems were identified which were reported from the field of asymmetric catalysis. One of such system includes the spiroborates (SB) 20-H² and 21-H^{2e,2f} and the other is the fused-spiroborate (FSB) **22**-H³ (Figure 4.1B). Both kinds of borates

were reported to posses a tetra-coordinate boron and a "free" proton as the counter cation. In search of an optimized protocol to generate **23**-H, the cases of **20**-H and **22**-H were examined in more detail. In order to examine these systems, techniques including computational chemistry, NMR spectroscopy and X-ray crystallography were used.

Figure 4.1 (A) Free BOROX 23-H. (B) Spiroborates 20-H and 21-H and Fused-spiroborate 22-H

В

In the present work, ¹¹B NMR spectroscopy has been used as one of the most important tools to characterize borate intermediates. Out of all the borates shown in Figure 4.1, the only protonated neutral borate for which ¹¹B NMR spectrum is reported is for the fused-spiroborate

22-H.^{3a} In the ¹¹B NMR analysis of borate anions, the chemical shift depends on the cation, concentration and the solvent. Hence, a list of ¹¹B NMR chemical shifts for some known achiral and chiral borate anions is given in Figure 4.2.⁴ This provides us an idea of the general range of the chemical shift values for different types of borate anions and would help in the identification of the three systems listed in Figure 4.1. The detailed analysis of each system is described in subsequent sections.

Figure 4.2 ¹¹B NMR chemical shifts of B(OPh)₃ **187a**, triphenoxy boroxine **191a**, various achiral and chiral borate anions.

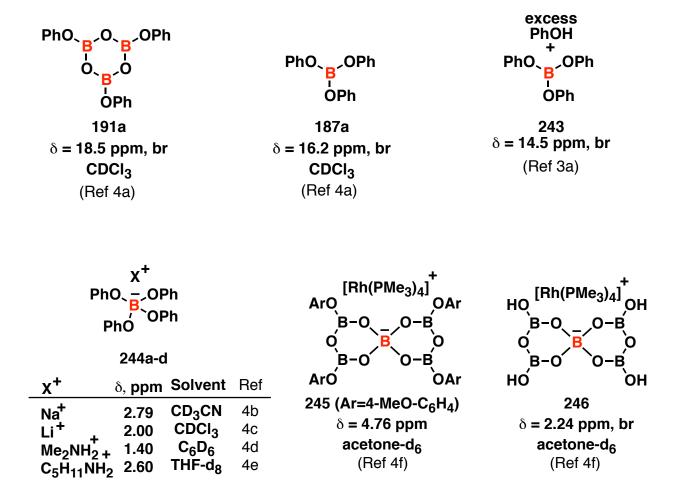
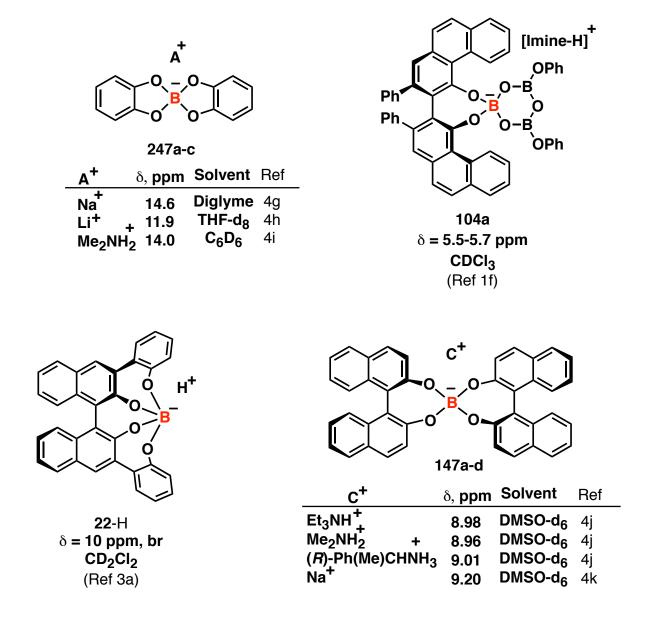



Figure 4.2 cont'd

4.2 The case of the chiral spiroborates 20-H and 21-H

In 1994, Yamamoto and co-workers reported the preparation of the spiroborate **20**-H and its utilization for Mannich reactions ^{2a-2c} (Scheme 4.1A) and heteroatom Diels-Alder reactions of imines (Scheme 4.1B). ^{2a,2d} In the year 1997, the same catalyst was purported to effect an

asymmetric Pictet-Spengler reaction (Scheme 4.1C). In all three reactions, excellent yields and enantioselectivities and diasteroselectivities were obtained, although stoichiometric amounts of the catalyst were required.

Scheme 4.1 Asymmetric reactions reported to be catalyzed by 20-H

A Asymmetric imino-aldol reaction ^{2a-2c}

Scheme 4.1 cont'd

B Asymmetric heteroatom Diels-Alder reaction ^{2a,2d}

C Asymmetric Pictet-Spengler reaction ^{2e,2f}

catalyst 20-H or 21-H (200 mol %)

N R R A MS,
$$CH_2CI_2$$
25 °C, 48 h

84

R = Ph, p -OMe-C₆H₄, p -NO₂-C₆H₄, Me, 'Bu, 1-naphthyl,

catalyst 20-H or 21-H (200 mol %)

4 Å MS, CH_2CI_2
25 °C, 48 h

84

6 examples yield = 39 – 94% ee = 15 – 94%

The reported structure represents the catalyst as a Brønsted acid **20**-H containing a tetra-coordinate boron atom (Scheme 4.2). However, the mode of catalysis of **20**-H was proposed to be as a Brønsted acid assisted Lewis acid (BLA) catalysis. The catalytic function of **20**-H was proposed to be as a chiral Lewis acid where interaction with a Lewis base disrupts one of the boron-oxygen bonds to give the Lewis acid-Lewis base complex **71/71'** (Scheme 4.2). ^{2a,2e}

Scheme 4.2 Proposed catalytic activity of 20-H

(BLA)

In the present work, the structure of **20**-H was then investigated with the help of computational chemistry. The proposed structure **20**-H was computed by DFT calculations using Gaussian '03 at B3LYP/6-31g* level of theory. First, the structure of spiroborate anion **20** was optimized (Figure 4.3A) which was then followed by optimization of **20**-H by putting a proton on each of the four oxygen atoms of the anion **20** (Figure 4.3B). Surprisingly, the calculations suggested the presence of a tri-coordinate boron atom instead of a tetra-coordinate boron atom as proposed in the original structure (Figure 4.3B *vs.* Figure 4.1B). Interestingly, the optimization converged to only one structure **72** (Figure 4.3B). In the calculated structure **72**, there is a hydrogen bonding (2.33 Å) between the O1-H of one of the BINOL units and an oxygen (O2) on the other BINOL unit (Figure 4.3B). As shown in Figure 4.3B, there is another

possibility 72' (an isomer of 72) where the H-bond is between the O1-H group on one of the BINOL units and an oxygen (O3) on that same BINOL unit. In this case, in order to obtain a geometry corresponding to the 72', calculation was initiated with the proton attached to O1 in proximity to O3, with the distance of the proton to O2 fixed at 3 Å. Starting from the optimized geometry 72' (H-bond = 1.86 Å) from the fixed distance calculation and releasing the proton-O2 distance resulted in a new optimized geometry 72'' where the H-bond (3.72 Å) is almost lost. The relative energy of each species either from complete minimization or fixed distance minimization is shown in Figure 4.3.

Figure 4.3 Calculated structures of **20**-H, **72** and **72**′ obtained using Gaussian '03 at B3LYP/6-31g* level of theory. All structures are visualized by the Mercury program (C, gray; O, red; B, yellow; H, light blue). Hydrogens are omitted for clarity (except O-H). All the bond distances are in Angstrom and energies in kcal/mol. \angle oop = angle out of plane for the current/former tetracoordinate boron, B-On = the distance between O-n and the current/former tetra-coordinate boron where n = 1-4. (A) Calculated structure of Spiroborate anion **20**. (B) Calculated structures **72**, **72**′ (from fixed distance calculation) and **72**′′ obtained by putting a proton on any one of the four oxygen atoms.

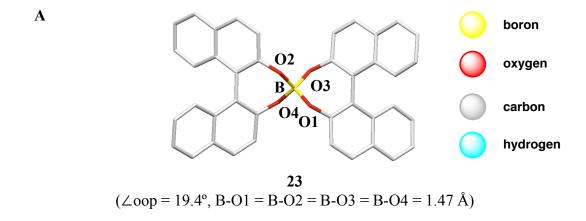
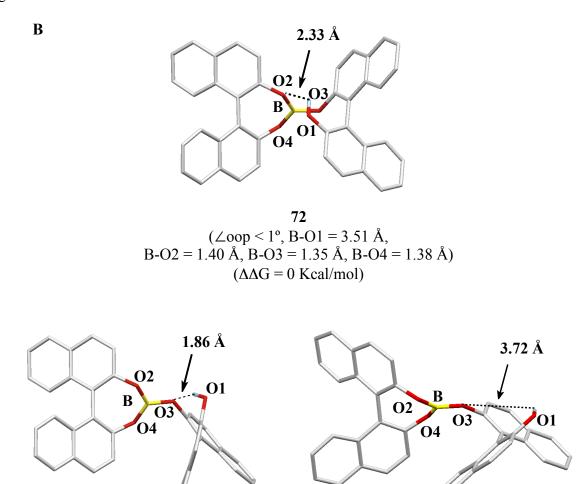



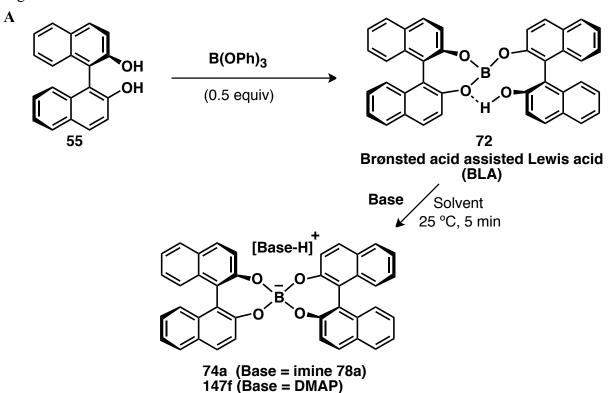
Figure 4.3 cont'd

72'
$$(\angle oop < 1^{\circ}, B-O1 = 3.50 \text{ Å}, B-O2 = 1.37 \text{ Å}, B-O3 = 1.37 \text{ Å}, B-O4 = 1.37 \text{ Å})$$

$$(\Delta \Delta G = +4.2 \text{ kcal/mol})$$
* fixed distance calculation (O2-H = 3Å)

Based on these computational results, the possibility of the existence of spiroborate **20**-H seems unlikely. It must be noted that various salts have been reported which contain the spiroborate anion **20** and these include those with protonated amines ^{4j,6} or metal cations ^{4k} in the

ion-pair (Figure 4.2). The ¹¹B NMR spectrum of these salts revealed the chemical shift of the tetra-coordinated boron atom to be ~ 9 ppm. Hence, it was thought that the ^{11}B NMR spectrum of the proposed structure would give a similar observation. At this point, it must be noted that Gang Hu, a former group member, performed the NMR studies presented in the first 5 entries in Figure 4.4. The entry 6 of Figure 4.4 is the part of this doctoral research. The reaction of B(OPh)₃ with two equivalents of BINOL was performed following Yamamoto's protocol^{2a} for the preparation of the spiroborate 20-H which involves stirring the two in CD₂Cl₂ over 4 Å molecular sieves for 1 h at room temperature. The solution was filtered and subjected to NMR analysis. The ¹H NMR and ¹¹B NMR spectra are shown in Figure 4.4B (entry 2) and Figure 4.4C (entry 1), respectively. The ¹H NMR spectrum reveals a complex mixture of species most of which have not been identified, but the ¹¹B NMR spectrum shows a broad absorption at 16.0 ppm that would be expected for any kind of three coordinate borate ester. Phenol should be present in the mixture as a result of exchange with BINOL. However, this should not be considered as indicative of the extent of exchange since it is our experience that most commercial B(OPh)₃ samples contains 20-30 percent phenol (see Figure 4.13, entry 5). In contrast, the reaction of VAPOL and B(OPh)3 shows no reaction under the same conditions. 1f


Our observations with the reactions of imines catalyzed by borate derivatives of VANOL and VAPOL are that the actual catalyst species is not formed until the imine is added. The *meso*-borate **106** (B1) and the *pyro*-borate **108** (B2) are pre-catalysts that are converted into the *poly*-

borate (BOROX) catalyst **188/189** by the imine **78** (Scheme 2.1, Chapter 2). Thus, it was decided to examine the effect of added imine on this mixture of BINOL and B(OPh)₃. When the mixture of 2 equivalents of BINOL and one equivalent of B(OPh)₃ is treated with one equivalent of the imine **78a**, the complex mixture of compounds is converted cleanly into a single compound within the time that it takes to load an NMR tube and take the ¹H NMR and ¹¹B NMR spectra (Figure 4.4B, entry 3 and Figure 4.4C, entry 2). This compound is assigned as the ion-pair **74a** comprised of a spiroborate anion **20** and the protonated form of imine **78a** (Figure 4.4A). The four coordinate anionic borate unit in **74a** displays a characteristic sharp absorption at $\delta = 8.9$ ppm in the ¹¹B NMR spectrum (Figure 4.4C, entry 2) and reveals the complete disappearance of the broad three coordinate borate absorption at $\delta = 16$ ppm, suggesting the formation of **74a** in near quantitative yield. Also, similar observations were made when (*S*)-**55** was used instead of (*R*)-**55** (not shown here). Further, the formation of ion-pair **74a/147f** was observed when different bases or NMR solvents were used (Figure 4.4B, entries 4-6).

Figure 4.4 (**A**) NMR Analysis of a mixture of (*R*)-55 with B(OPh)₃ and imine 78a or DMAP.

(**B**)^a ¹H NMR spectra (aromatic region) of the reaction mixture in CD₂Cl₂ or CDCl₃. (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 4.4B starting from entry 2.

Figure 4.4 cont'd

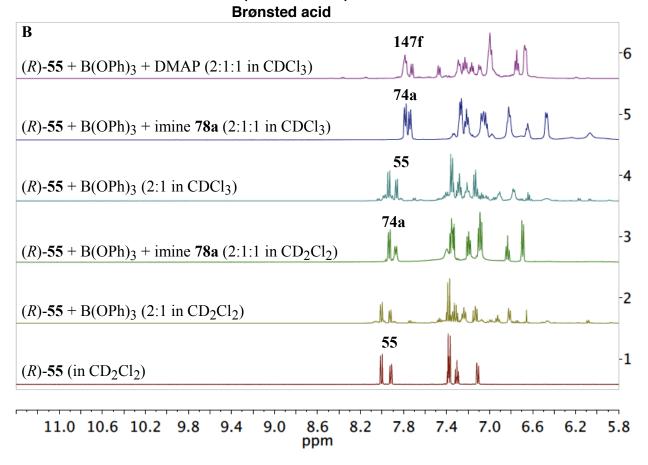
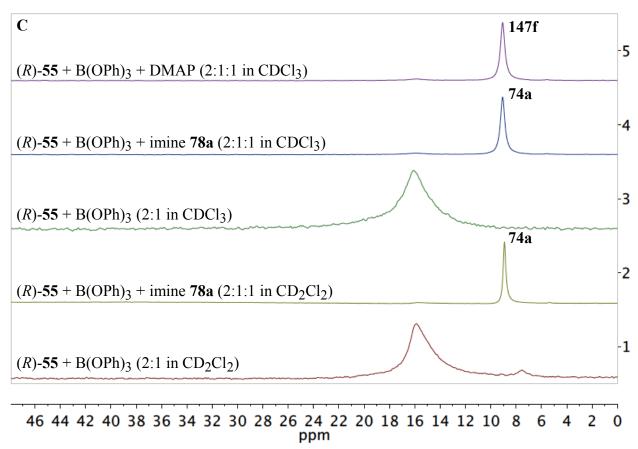
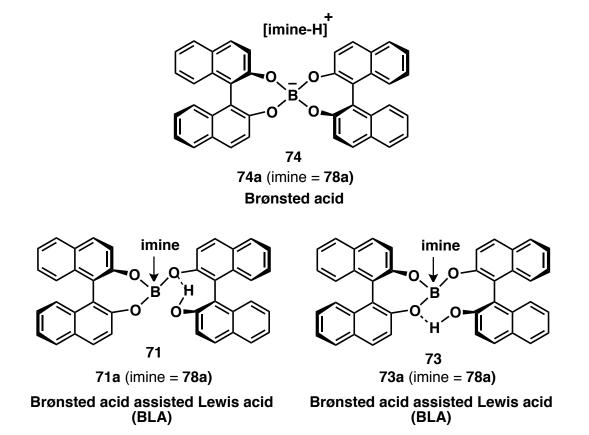



Figure 4.4 cont'd



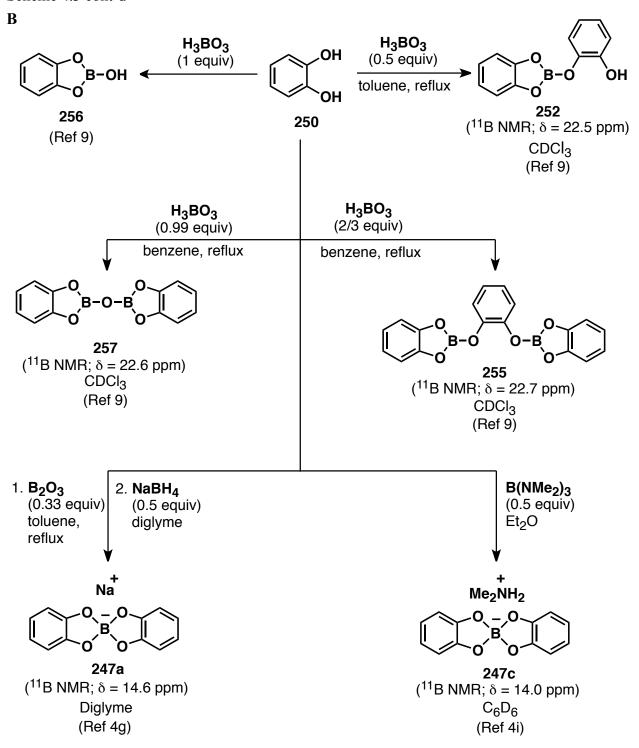
^a Note for Figure 4.4B: Entry 1: pure BINOL (*R*)-55 in CD₂Cl₂. Entry 2: (*R*)-55 (0.1 mmol) plus 0.5 equiv B(OPh)₃ and powdered 4Å Molecular Sieves (150 mg) were stirred for 1 h in CD₂Cl₂ (3 mL) at 25 °C. Entry 3: 0.5 equiv imine 78a was added to the entry 2 for 10 min at 25 °C. Entry 4: Same as entry 2 in CDCl₃. Entry 5: Same as entry 3 in CDCl₃. Entry 6: 0.5 equiv DMAP was added to the entry 4 for 10 min at 25 °C.

It is of course possible that the compound with the proposed structure **74a** could also have the structure **71a** or **73a** in which there is a Lewis acid-Lewis base complex which contains a tetra-coordinate boron atom (Figure 4.5). Support for the structure **74a** containing a

spiroborate anion and an iminium cation comes from the work of Yamamoto and coworkers who have previously studied heteroatom Diels-Alder and Mannich reactions of imines mediated by a stoichiometric amount of a catalyst prepared from two equivalents of BINOL and one equivalent of B(OPh)₃.^{2a} In support of a spiroborate core in their catalyst they were able isolate and determine the X-ray structure of the complex **248** although no spectral data for **248** was presented (Figure 4.6).^{2a} This complex consists of the spiroborate anion, a molecule of phenol and the protonated form of imine (*S*)-**139a** (Figure 4.6). There is no direct H-bonding between the protonated iminium and the spiroborate anion, but rather the protonated iminium is H-bonded to the phenol, which in turn is H-bonded to the spiroborate anion. This crystal was of the miss-

Figure 4.5 Bronsted acid 74a and Brønsted acid assisted Lewis acid 71a or 73a (imine = 78a)

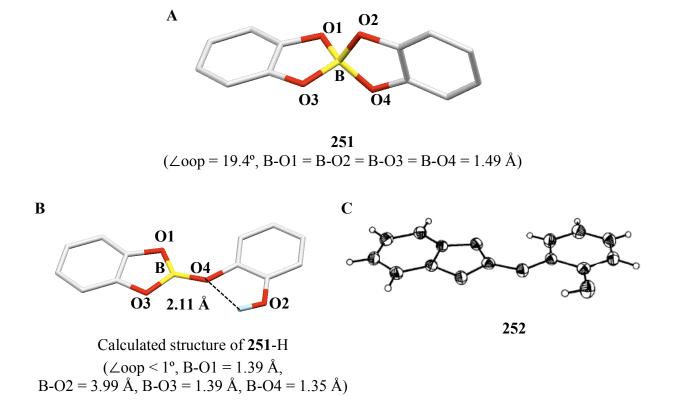
matched pair of (S)-BINOL 55 and (S)-139a and perhaps in the matched pair non-covalent contacts between the (S)-BINOL core and protonated (R)-139a would be more favorable. While studying the NMR spectra of the complex 74a with (S)-BINOL 55, Gang Hu observed that a few yellow crystals serendipitously formed in the NMR tube, which provided an opportunity to determine the crystal structure of the ion-pair 74a. It was hoped that non-covalent interactions between the spiroborate core and the iminium could be found in 74a since the imine 78a from which it is derived is not chiral. The complex 74a also crystallized with a molecule of phenol but an X-ray diffraction analysis of these crystals revealed that non-covalent interactions present in complex 249 are much different than in Yamamoto's complex 248 (Figure 4.6). The details about the crystal structure 249 can be found in Gang Hu's dissertation (Figure 4.6). Also, the crystal structures of the other salts containing the spiroborate anion 20 and a) protonated amines, be metal ions 4k are given in literature.


Figure 4.6 Schematic drawing of imine (S)-139a, Yamamoto's structure 248^{2a} and Gang Hu's structure 249^{7}

Based on the above discussion, it is quite clear that there is no spectroscopic evidence for the existence of spiroborate **20**-H. The data taken as a whole suggests that perhaps there is no tetra-coordinate boron species unless an imine is added to deprotonate the hydroxyl group in the BINOL **55**.

Although our interests are in chiral spiroborate species, an achiral spiroborate **251**-H similar to **20**-H has been reported as a protonated neutral species with a tetra-coordinate boron and was prepared from the reaction between boric acid and 2 equiv of catechol **250** (Scheme 4.3A). However, there was no spectroscopic characterization provided for this compound. After almost a decade, Nöth and co-workers reported a different compound **252** for the same reaction and with the same conditions. They characterized this compound by NMR spectroscopy and X-ray crystallography. As shown in Scheme 4.3A, there is no tetra-coordinate boron atom in **252** which is consistent with the chemical shift observed in the ¹¹B NMR spectrum ($\delta = 22.5$ ppm, CDCl₃). This is in agreement with our observations for the spiroborate **20**-H.

Scheme 4.3 Common borate esters of catechol 250


Scheme 4.3 cont'd

At this point, it was thought that the structure of 251-H could be used to calibrate our computational method. Ideally, after the optimization of the proposed structure of 251-H, the

finalized energy minimum structure should be close to that of the X-ray structure of **252**. This would validate our calculation method. In fact, the calculated structure was found to be essentially the same as the X-ray structure of **252** (Figure 4.7).

Figure 4.7 Calculated structures of **251** and **251**-H obtained using Gaussian '03 at B3LYP/6-31g* level of theory. All structures are visualized by the Mercury program (C, gray; O, red; B, yellow; H, light blue). Hydrogens are omitted for clarity (except O-H). All the bond distances are in Angstroms and energies in kcal/mol. \angle oop = angle out of plane for the current/former tetra-coordinate boron, B-On = the distance between O-n and the current/former tetra-coordinate boron where n = 1-4. (A) Calculated structure of spiroborate anion **251** (B) Calculated structures of possible spiroborate **251**-H obtained by putting a proton on any one of the four oxygen atoms (C) X-ray structure of **252**.

Importantly, two compounds **253** and **254** were reported when a mixture containing catechol and boric acid (0.5 equiv) was subjected to NMR analysis in aqueous solutions (Scheme 4.3A). In the ¹¹B NMR spectrum, two peaks at $\delta = 7.6$ ppm and $\delta = 13.1$ ppm were reported for **253** and **254**, respectively, at pH = 11. This result was expected as the analysis was performed under aqueous conditions where water is acting as the base. Also, a variety of other products were reported that were a function of the different ratios of both the components (Scheme 4.3B). Similar compounds have also been reported and observed for BINOL **55** (Scheme 5.4, Chapter 5). As shown in Scheme 4.3B, a salt **247c** derived from catechol **250**, B(NMe₂)₃ (0.5 equiv) is found to exhibit a peak at $\delta = 14.0$ ppm (in C₆D₆) in the ¹¹B NMR spectrum. A number of similar spiroborates from different diols have been reported in the literature.

In the end, the results suggest that the spiroborate **20**-H is unlikely to exist in the the absence of base. At the same time, ion-pair **74** can be generated as soon as imine is added. However, different ligands might behave differently. Hence, a second case was then examined involving the fused-spiroborate **22**-H (Figure 4.1B).

4.3 The case of the chiral fused-spiroborate 22-H

As discussed earlier, the fused-spiroborate (FSB) **22**-H is another example of a published neutral chiral borate containing a tetra-coordinate borate anion and a "free" proton as the counterion (Scheme 4.1). In 1994, Yamamoto and co-workers reported chiral catalyst **22**-H for the first time. ^{3a} They used this catalyst for the asymmetric Diels-Alder reaction between dienes

and enals/alkynals (Scheme 4.4A and 4.4B). It must be noted that no spectroscopic data was provided for the catalyst 22-H except a 11 B NMR spectrum ($\delta = 10$ ppm).

Scheme 4.4 Asymmetric reactions reported to be catalyzed by 22-H

 ${\bf A}$ Asymmetric Diels-Alder reactions of dienes and enals $^{3a\text{-}3c}$

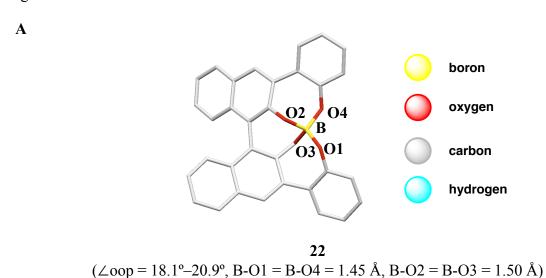
B Asymmetric Diels-Alder reactions of dienes and alkynals^{3d}

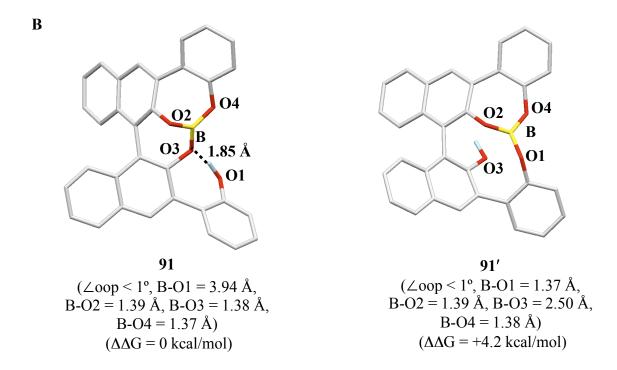
C Formal [4+3] cycloaddition ^{3e}

96b 97 CHO
$$\frac{R^1}{2}$$
 CHO $\frac{R^2}{2}$ CHO \frac

In the year 2006, Davies and coworkers introduced a formal [4+3] cycloaddition by a tandem Diels Alder reaction/ring expansion using **22**-H as the catalyst (Scheme 4.4C). ^{3e}

The catalyst **22**-H was prepared by the reaction of the tetra-phenol **89** with 1 equiv of commercial B(OPh)₃ and its structure was proposed to contain a tetra-coordinate borate anion that was protonated at some unspecified location (Scheme 4.5). Similar to the case of **20**-H, the mode of catalysis of **22**-H was proposed to be that of a Brønsted acid assisted Lewis acid (BLA) catalyst which means that it behaves as a chiral Lewis acid where interaction with a Lewis base disrupts one of the boron-oxygen bonds to give Lewis acid-Lewis base complex **90**' (Scheme 4.5). This case study is more likely to give **22**-H, perhaps, due to the presence of all four oxygens in the same molecule.


Scheme 4.5 Proposed catalytic activity of 22-H


In the current work, the first step in characterization of the proposed structure **22**-H was the optimization by DFT calculations using Gaussian '03 at B3LYP/6-31g* level of theory. After the optimization of the fused-spiroborate anion **22**, energy minimization of **22**-H was performed

by putting a proton on each oxygens. The two structures **91** and **91'** were obtained where structure **91'** was found to be lying +4.3 kcal/mol higher in energy (Figure 4.8B). Additionally, structure **91** is stabilized by an extra hydrogen bond of the OH at O1 to one of the oxygen of the 3-coordinate borate ester. However, in both cases, the calculations revealed the presence of a tricoordinate boron atom instead of a tetra-coordinate boron atom as proposed in the original structure of **22-**H. The observation is in agreement with that seen for the case of spiroborate **20-**H. However, this computational result is not consistent with the fact that a peak at $\delta = 10$ ppm is reported for the ¹¹B NMR spectrum of **22-**H. This chemical shift lies in the range of a tetra-coordinate boron as was observed in the case of BINOL derivatives (Figure 4.2). The calculated value of the chemical shift of boron in **91** (Figure 4.8B) is found to be 19 ppm using Gaussian '03. Hence, to address this discrepancy it was deemed important to experimentally reproduce Yamamoto's synthesis of **22-**H as it might lead us to a better understanding of finding a protocol towards the trapping of protonated form of VAPOL boroxinate i.e. **23-**H.

Figure 4.8 Calculated structures of **22**, **91** and **91**' obtained using Gaussian '03 at B3LYP/6-31g* level of theory. All structures are visualized by the Mercury program (C, gray; O, red; B, yellow; H, light blue). Hydrogens are omitted for clarity (except O-H). \angle oop = angle out of plane for the current/former tetra-coordinate boron, B-On = the distance between O-n and the current/former tetra-coordinate boron where n = 1-4. (A) Calculated structure of fused-spiroborate anion **22** (B) Calculated structure **91** obtained by putting a proton on O1 (C) Calculated structure **91**' obtained by putting a proton on O3

Figure 4.8 cont'd

The BINOL derivative (R)-89 was prepared by Suzuki coupling of (R)-259 with 2-methoxyphenylboronic acid 260 in the presence of $Pd(PPh_3)_4$ and subsequent demethylation (Scheme 4.6)

Scheme 4.6 Preparation of BINOL derivative 89

In order to independently characterize the structure 22-H proposed by Yamamoto, the synthesis of 22-H was performed following Yamamoto's protocol, which involves the reaction of the BINOL derivative (R)-89 (0.05 mmol) with one equiv of B(OMe)₃. According to the procedure, both of the components were refluxed at 60 °C in CD₂Cl₂ (3 mL) for 2 h during which the methanol was removed using 4Å Molecular Sieves (pellets) in a Soxhlet thimble. A white precipitate was observed. Thereafter, it was then stirred vigorously for 0.5 h after the addition of extra CD₂Cl₂ (1.5 mL). Most of the white precipitate was dissolved and the resulting turbid solution was subjected to NMR analysis. The 1 H NMR spectrum reveals a complex mixture of species (Figure 4.9C, entry 2). Interestingly, no peak at $\delta = 10$ ppm was observed in the 11 B NMR spectrum. In fact, the 11 B NMR spectrum shows a broad absorption

at 19.5 ppm that is very similar to that observed for **20**-H and which would be expected for a tricoordinate borate species (Figure 4.9B, entry 2).

Figure 4.9 (**A**) NMR Analysis of a mixture of **89** with various boron sources and imine **78a**. (**B**)^a

11B NMR spectra of the reaction mixture in CD₂Cl₂. (**C**) ¹H NMR spectra (aromatic region)

corresponding to the ¹¹B NMR spectra in Figure 4.9B.

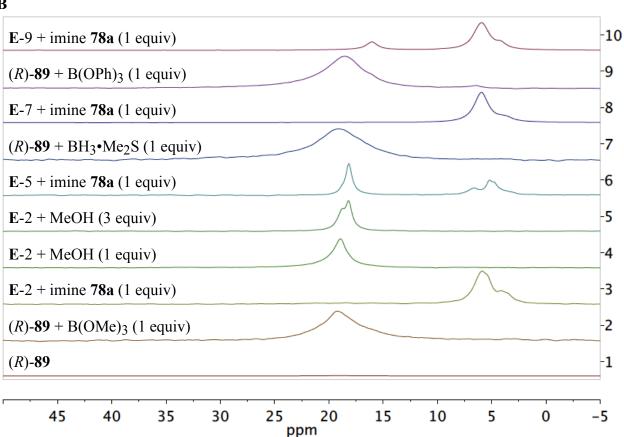
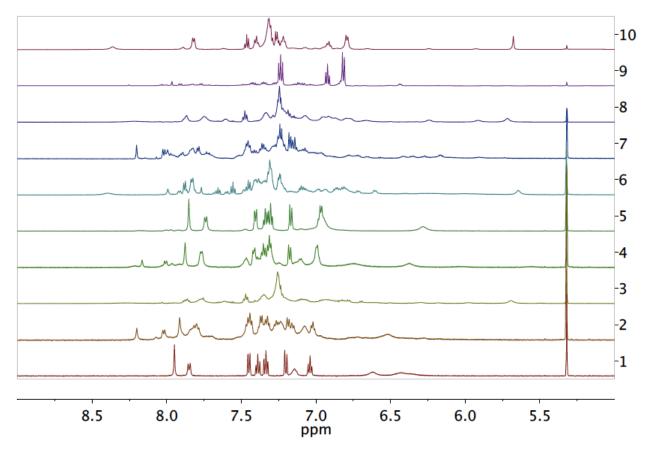



Figure 4.9 cont'd

 \mathbf{C}

^a Note for Figure 4.9B: Entry 1: pure BINOL derivative (*R*)-89. Entry 2: (*R*)-89 (0.05 mmol) plus 1 equiv B(OMe)₃ were refluxed at 60 °C in CD₂Cl₂ (3 mL) for 2 h. The methanol was removed using 4Å Molecular Sieves (pellets) in a Soxhlet thimble. After cooling to 25 °C, additional 1.5 mL of CD₂Cl₂ added and then stirred vigorously for 0.5 h and directly subjected to NMR analysis (**Method I**). Entry 3: 1.0 equiv imine 78a was added to the entry 2 for 10 min at 25 °C. Entry 4: 1.0 equiv MeOH was added to the entry 2 for 10 min at 25 °C. Entry 5: 3.0 equiv MeOH was added to the entry 2 for 10 min at 25 °C. Entry 6: 1.0 equiv imine 78a was

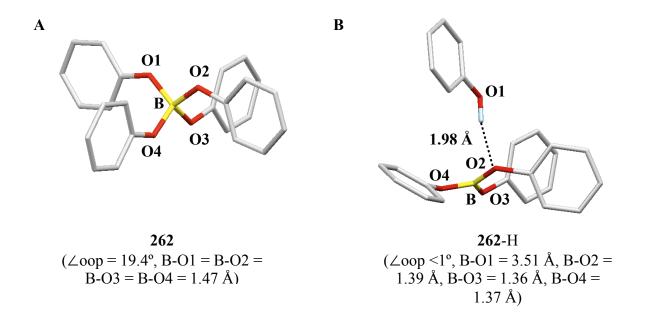
added to the entry 5 for 10 min at 25 °C. Entry 7: (*R*)-89 (0.05 mmol) plus 1 equiv BH₃•Me₂S were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h (**Method II**). Entry 8: 1.0 equiv imine 78a was added to the entry 7 for 10 min at 25 °C. Entry 9: (*R*)-89 (0.05 mmol) plus 1 equiv B(OPh)₃ and powdered 4Å Molecular Sieves (150 mg) were stirred for 1 h in CD₂Cl₂ (1.5 mL) at 25 °C (**Method III**). Entry 10: 1.0 equiv imine 78a was added to the entry 9 for 10 min at 25 °C.

These results from the 11 B NMR spectrum suggests that a species like 22-H, if formed at all, are highly unstable and can only be observed by NMR spectroscopy in the presence of a base. Although, the Diels-Alder reaction is performed with enals, which are weak bases, it was decided to use the imine 78a as the base to generate the fused-spiroborate 92a. In fact, a peak at $\delta = 5.93$ ppm in the 11 B NMR spectrum appeared when one equivalent of imine 78a was added to the 1:1 mixture of ligand 89 and B(OMe)₃ (Figure 4.9B, entry 3). This compound is assigned as the ion-pair 92a comprised of a fused-spiroborate anion 22 and the protonated form of imine 78a. These observations further supports the hypothesis that a base is needed to induce the formation of these complexes under non-aqueous conditions. It is worth mentioning that methanol is reported to be involved in adduct formation with trimethylborate. An explanation of the peak observed at $\delta = 10$ ppm in the 11 B NMR spectrum of the compound that Yamamoto assigned as 22-H (Scheme 4.5) is that a residual amount of methanol might be functioning as a coordinating ligand in the original experiment reported by Yamamoto. To test this an additional

equivalent of the methanol was added to the mixture containing ligand 89 and B(OMe)₃. The increase in sharpness of the peak in the ¹¹B NMR spectrum revealed that the electrophilic boron centre might be experiencing a tetragonal environment (Figure 4.9B, entry 4). However, there was no change in the chemical shift and hence the possibility of the coordination of methanol was considered unlikely. In fact, when excess methanol (3 equiv) was added, the reaction furnished pure ligand (Figure 4.9B and 4.9C, entry 5). Addition of 1 equiv of imine 78a to this mixture resulted in the generation of 92a (Figure 4.9B and 4.9C, entry 6). Yamamoto and coworkers have also employed B(OPh)₃ and ligand 89 for catalyst formation in a Diels-Alder reaction. As shown by the ¹¹B NMR spectrum, no formation of a tetra-coordinate boron species occurs until a base (imine in this case) is added irrespective of the boron source being used (Figure 4.9B, entries 7 and 9 vs. 8 and 10). It must noted that a large amount of phenol was observed in the case of catalyst formation with B(OPh)₃ (Figures 4.9B and 4.9C, entry 9). This is thought to be due to the exchange of phenol in B(OPh)₃ by the ligand. The results from the analysis of 20-H and 22-H suggests that these species have similar structures. Although, no Xray structure was obtained for 92a, its structure was assigned as that shown in Figure 4.10 based on spectral similarities with 74a and the X-ray structure of 74a (Figure 4.5). However, a Lewis acid Lewis base complex of the type 90a cannot be definitively ruled out (Figure 4.9). It must be noted that the original Diels-Alder reaction was performed with enals instead of imines. Hence, since an aldehyde is thought not be basic enough to form an ion-pair of the type 90, it may very well be likely that a Lewis acid Lewis base complex of type 90 may be involved with reactions with enals.

Figure 4.10 Brønsted acid 92 and Brønsted acid assisted Lewis acid 90

The results to this point indicate that the compounds **20**-H and **22**-H do not exist as protonated neutral species to any great extent. However, it is interesting to observe the common trend that theses complexes can be generated upon the addition of bases. Although this study is focused on chiral systems, it was decided to examine at least one achiral system. The structure of the tetraphenoxyborate **262**-H (Figure 4.11A) was examined and a discussion of the results is given below.

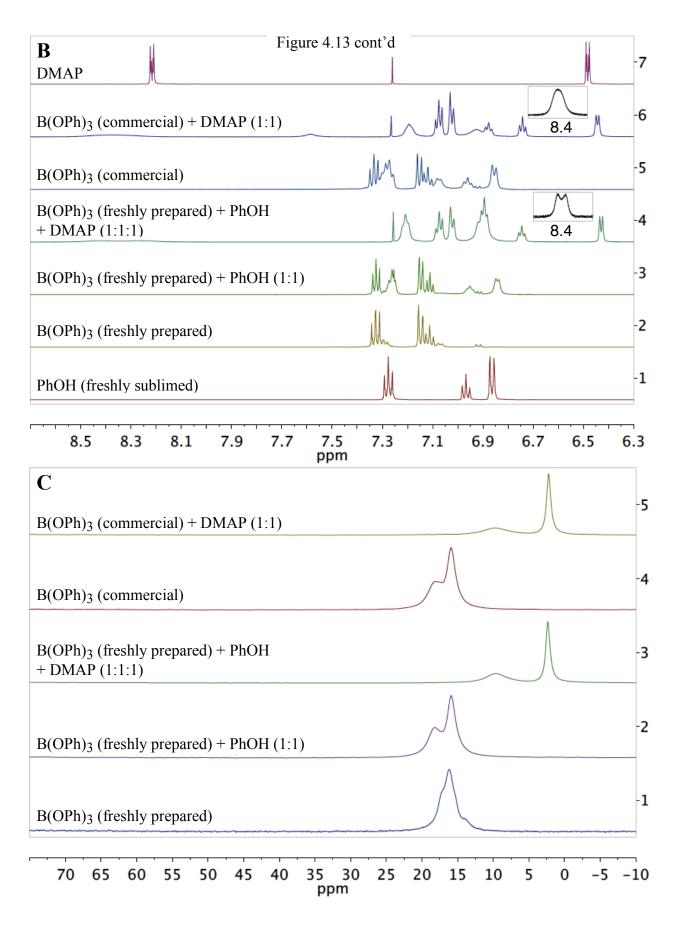

4.4 The case of the achiral tetraphenoxyborate 262-H

Although there is no literature precedent for **262**-H, various salts have been reported which have **262** as their anion (Figure 4.11C). These salts usually have metal ions like Na⁺, K⁺, Li⁺ and nitrogen bases as the counter cations (Figure 4.11C).

Figure 4.11 (**A**) tetraphenoxyborate anion **262** (**B**) proposed structure for **262**-H (**C**) common tetraphenoxyborates **244** (**D**) piperdine-B(OPh)₃ **244d'** (Lewis acid-Lewis base adduct) (**E**) proposed structure for [imine-H]⁺[B(OPh)₄] - complex **263/264**

The proposed structure **262**-H was examined theoretically by computing the energy minimum for the anion **262** followed by a similar analysis of the protonated form **262**-H. Based on similar results with **20**-H and **22**-H it was not a surprise that **262**-H was found to be highly unstable and dissociated into B(OPh)₃ and phenol **182a** where phenol is held by hydrogen bonding to B(OPh)₃ (Figure 4.12B).

Figure 4.12 Calculated structures of **262** and **262**-H obtained using Gaussian '03 at B3LYP/6-31g* level of theory. All structures are visualized by the Mercury program (C, gray; O, red; B, yellow; H, light blue). Hydrogens are omitted for clarity (except O-H). \angle oop = angle out of plane for the current/former tetra-coordinate boron, B-On = the distance between O-n and the current/former tetra-coordinate boron where n = 1-4. (A) Calculated structure of tetraphenoxyborate anion **262** (B) Calculated structure of **262**-H, the protonated tetraphenoxyborate anion **262**.

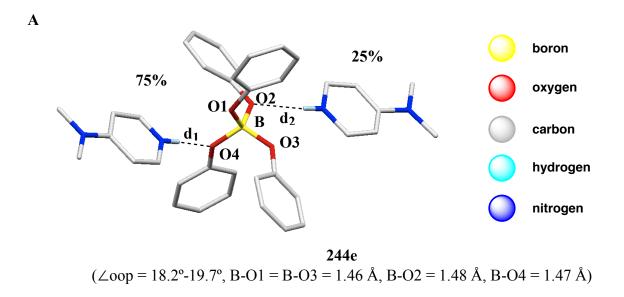


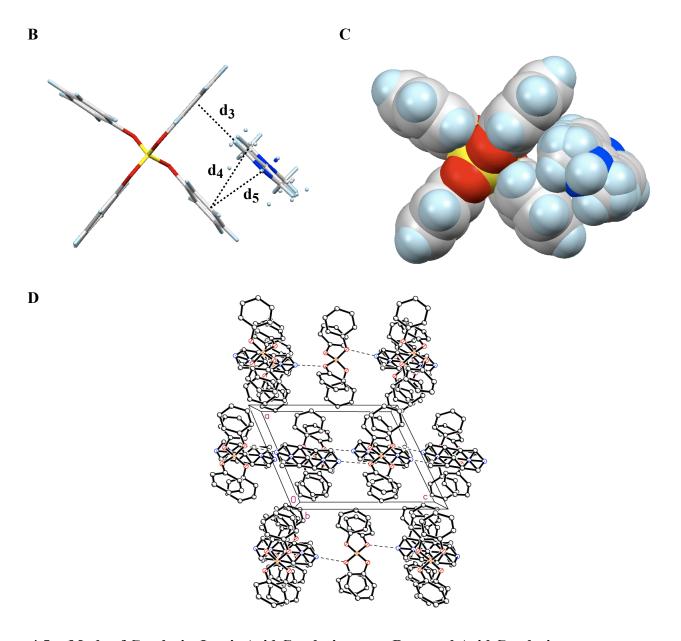
In order to further confirm that the presence of base is needed for the generation of tetraphenoxyborate anion 262, a detailed study based on NMR experiments was performed. A fresh sample of B(OPh)₃ was prepared from BH₃•Me₂S and PhOH (see experimental). When one equiv of PhOH 194a was added to freshly prepared B(OPh)3, there is no significant change in the ¹H or the ¹¹B NMR spectra (Figure 4.13, entry 3). However, when one equivalent of DMAP was added to this mixture. ¹H NMR spectrum revealed the upfield shift in the doublet for the ortho hydrogens of the phenol component from 7.15 ppm to 7.03 ppm (Figure 4.13, entry 4). Additionally, appearance of a peak at $\delta = 2.24$ ppm in the ¹¹B NMR spectrum is suggestive of the formation of **244e**. Similar observations were reported when piperidine was used as the base to form **244d** ($\delta = 2.6$ ppm (THF-d₈), ¹¹B NMR) (Figure 4.11C). ^{4e} However, in the same work, it had been reported that a Lewis acid-base adduct (piperidine->B(OPh)₃) **241d'** ($\delta = 2.3$ ppm (nitrobenzene), ¹¹B NMR) is generated from the reaction between piperidine and B(OPh)₃ in absence of phenol (Figure 4.11D). ^{4e} Hence, the ¹¹B NMR data is similar for the ion-pair **244d** and adduct 244d'. Similar can be assumed for the complexes generated for the reaction between DMAP and freshly prepared B(OPh)₃. However, the presence of the ion-pair 244e was supported by X-ray analysis described later. In the past, we have observed that commercial B(OPh)₃ always has some percentage of phenol in its composition (Figure 4.11, entry 2 vs. 3 and 5). An observation similar to entry 4 of Figure 4.13B and 4.13C was made when one equivalent of DMAP was added to commercial B(OPh)3 (entry 6). In fact, a peak at $\delta \sim 2\text{--}3$ ppm in the ^{11}B

NMR spectrum has been occasionally observed during the formation of an IMINO-BOROX catalyst from a mixture of a vaulted ligand, B(OPh)₃ and an imine. Hence, a similar ion-pair **263/264** can be assumed to be generated when commercial B(OPh)₃ and imines **78/111** interact with each other (Figure 4.11E). A racemic reaction between imine **78a** and EDA **85** mediated by commercial B(OPh)₃ results in 78% yield of aziridine **86a**. This is probably a racemic reaction catalyzed by the racemic Brønsted acid **264**.

Figure 4.13 (**A**) NMR Analysis of a mixture of PhOH **194a** with B(OPh)₃ **187a** and DMAP **216c**. (**B**)^a ¹H NMR spectra of the reaction mixture in CDCl₃ (aromatic region). (**C**) ¹¹B NMR spectra corresponding to the ¹H NMR spectra in Figure 4.13B

A




a Note for Figure 4.13B: Entry 1: freshly sublimed PhOH **194a**. Entry 2: freshly prepared B(OPh)₃; BH₃•Me₂S (0.1 mmol) plus 3 equiv PhOH were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Entry 3: 1.0 equiv PhOH **194a** was added to the entry 2 for 10 min at 25 °C. Entry 4: 1.0 equiv DMAP **216c** was added to the entry 5 for 10 min at 25 °C. Entry 7: pure DMAP **216c**

A literature search revealed that there are several ion pairs comprised of the tetraphenoxyborate anion **262** and a protonated nitrogen base with 11 B NMR spectroscopic data given in some cases (Figure 4.2). Although, salts derived from **262** and metal ions have been characterized by X-ray crystallography, no X-ray analysis has been reported for ion-pairs generated from nitrogen bases. To our delight, a few colorless crystals of **244e** serendipitously formed in the NMR tube during the analysis of boroxinate complex **217c** (Chapter 2, Table 2.9) generated from a mixture of (*S*)-VAPOL **58**, B(OPh)₃ and DMAP (this work). This provided an opportunity to confirm our proposed structure for the ion-pair **244e**. The X-ray structure of **244e** revealed the presence of protonated DMAP in two positions in 75% and 25% probabilities (Figure 4.14A). The key interaction is the hydrogen bond between the protonated nitrogen and one of the oxygens of the tetraphenoxyborate anion ($d_1 = 1.99 \text{ Å}$, $d_2 = 2.18 \text{ Å}$, Figure 4.14A). The complete proton transfer to nitrogen was further confirmed by the N-H bond of 0.81 Å. There also appears to be a π - π stacking interaction ($d_5 = 3.23 \text{ Å}$) between one of the phenoxy

rings of the tetraphenoxyborate anion and the pyridinium ion of the protonated DMAP. In addition, there appears to be a CH- π interaction (d₃ = 3.64 Å) between an ortho hydrogen on the DMAP ring and a different phenoxy ring (Figure 4.14B). Another CH- π interaction (d₄ = 3.71 Å) is between one of the methyl groups on the protonated DMAP and a phenoxy ring.

Figure 4.14 (**A**) Solid state structure of the tetraphenoxyborate **244e** visualized by the Mercury program (C, gray; O, red; B, yellow; H, light blue). Calculated hydrogen atoms and solvent molecules were omitted for clarity. Hydrogen attached to nitrogen is shown to highlight the hydrogen bonding ($d_1 = 1.99$ Å and $d_2 = 2.18$ Å). \angle oop = angle out of plane for the current/former tetra-coordinate boron, B-On = the distance between O-n and the current/former tetra-coordinate boron where n = 1-4. (**B**) Some secondary interactions were proposed and highlighted: $d_3 = 3.64$ Å (CH $-\pi$); $d_4 = 3.71$ Å (CH $-\pi$) and $d_5 = 3.23$ Å (π – π stack). (**C**) Space-filling model of the complex **244e**. The color scheme is given in Figure 4.14A. (**D**) Drawing of the packing along the axis where the dotted lines represent potential hydrogen bonding.

4.5 Mode of Catalysis: Lewis Acid Catalysis verses Brønsted Acid Catalysis

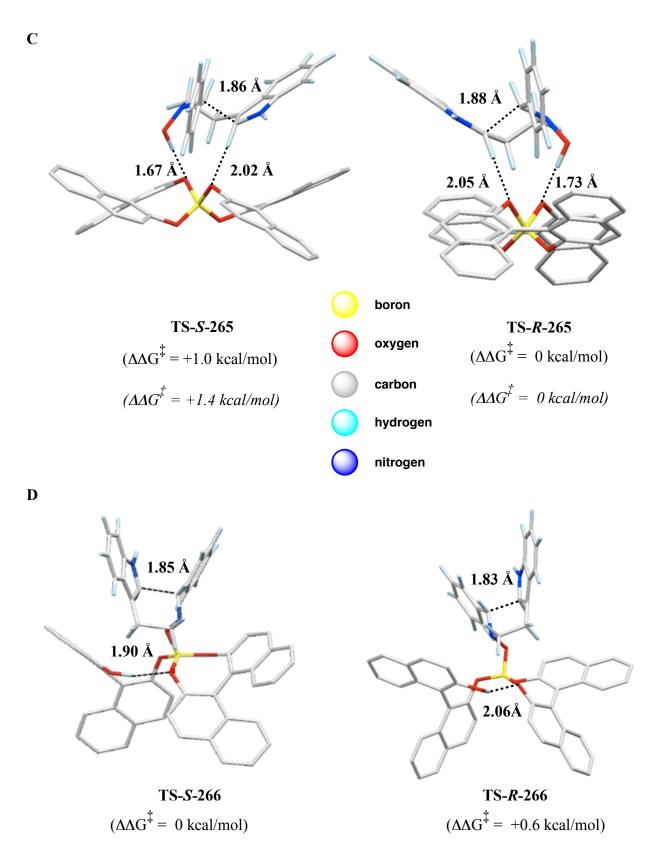
Based on the above ¹H NMR and computational analysis, it is quite clear that the protonated neutral spiroborates **20**-H, **21**-H and **22**-H are not favorable species. The data suggests that there is no tetra-coordinate boron species unless an imine is added to deprotonate the hydroxyl group in the BINOL **55** or BINOL derivative **89**. At this point, it became

interesting to explore the mode of catalysis for reactions that have been reported for these chiral catalysts.

4.5.1 Asymmetric Imino-aldol reaction and heteroatom Diels-Alder reactions catalyzed by 20-H

As shown in Scheme 4.1, the catalyst **20**-H has been proposed to be the active catalyst in asymmetric imino-aldol reactions and in heteroatom Diels Alder reactions. In both cases, the mode of catalysis has been assumed to be as a Brønsted acid assisted Lewis acid (BLA) catalysis (Scheme 4.2). After we collected evidence that suggests that the catalyst is an ion-pair **74** consisting of a chiral borate anion and a protonated iminium ion (Figure 4.5), we became interested as to whether the mode of catalysis for these reactions involves a Brønsted acid (BA) or a Brønsted acid assisted Lewis acid (BLA) catalysis. Another current group member, namely Dr. Mathew Vetticat, initiated theoretical calculations to investigate the transition states for the asymmetric imino-aldol reaction. He found out that it indeed occurs *via* a Brønsted acid (BA) catalyzed reaction contrary to the proposed Brønsted acid assisted Lewis acid (BLA) mechanism.¹⁴ The energy difference between the BA (TS-**263**) and BLA (TS-**264**) type transition states leading to the favored enantiomer was found to be +12 kcal/mol. Furthermore, it must be noted that a similar behavior has been assumed in case of heteroatom Diels-Alder reaction.

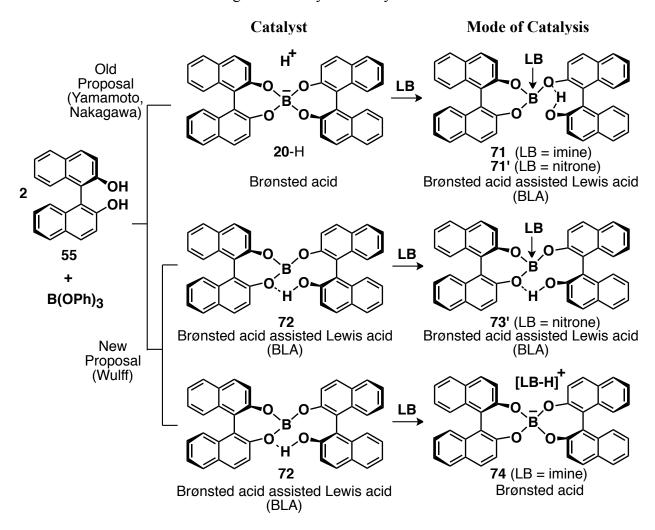
Figure 4.15 (A) Asymmetric imino-aldol reaction of imine **78a** catalyzed by **20**-H (B) Diagrammatic representation of TS-**263** and TS-**264** for BA and BLA type mechanism respectively.


4.5.2 Asymmetric Pictet-Spengler reaction catalyzed by 20-H and 21-H.

The asymmetric Pictet-Spengler reaction is another reaction that has been reported with the catalyst **20**-H but requires the use of two equivalents of **20**-H.^{2e,2f} This reaction was performed using nitrones instead of imines. Hence, the question arises of whether this reaction occurs *via* BA or BLA type catalysis. As a part of this doctoral research, the transition states for each mode of catalysis were located using Gaussian '03 and are presented in Figure 4.16. In

order to reduce the computational cost, the hydrid DFT:Semi-emperical ONIOM method was implemented. The division of layers for the ONIOM calculations is illustrated by the given color scheme in Figure 4.7A. All the calculated distances are reported in angstroms and the reported energies are $\Delta\Delta G^{\ddagger}$ for fully optimized geometries from the ONIOM calculations.

Figure 4.16 (**A**) Asymmetric Pictet-Spengler reaction of nitrone **83a** catalyzed by **20**-H. (**B**) Division of layers for the ONIOM(B3LYP/6-31g**:AM1) level of calculations. (**C**) 3D structures and relative energies of TS-*S*-**265** and TS-*R*-**265** for BA type mechanism. The relative energies given in italics are the energies computed from the full DFT B3LYP/6-31g*. (**D**) 3D structures and relative energies of TS-*S*-**266** and TS-*R*-**266** for BLA type mechanism.


Figure 4.16 cont'd

In case of the BA type mechanism, the most stable transition state for the formation of both the R and S products from the (S, S)-catalyst were located and are given in Figure 4.16B. Other than the hydrogen bonding (1.67 Å, Figure 4.16B), there was one additional important interaction, a CH-O interaction between the hydrogen in the 2-position of the indole and oxygen of the spiroborate (2.02 Å, Figure 4.16B) in case of S-enantiomer formation. Unfortunately, these calculations do not match the experimental findings as the minor enantiomer (R) is found to be the one with lowest energy. Based of the ONIOM calculations, the major enantiomer (S) is found to be +1.0 kcal/mol higher in energy. In fact, calculations using full DFT (B3LYP/6-31g*) also predict a similar outcome with S-product formation favored by +1.4 kcal/mol. (Figure 4.16B).

It was found that transition state TS-S-265 (BA type mechanism) leading to the favored enantiomer (S) was found to be +5.4 kcal/mol higher in energy than TS-S-266 (BLA type mechanism) also leading to the S-enantiomer of the product (Figure 4.16B and 4.16C). Upon location of the two transition states 266 for the formation of both the R and S products via the BLA mechanism, it was found that the TS leading to the minor enantiomer (R) is 0.6 kcal/mol higher in energy than that for the major enantiomer (S). Single-point energies were then calculated and it was found that the disfavored enantiomer is +2 kcal/mol higher in energy. Hence, these computational studies suggest that a BLA mechanism is operational in case of nitrones for an asymmetric Pictet-Spengler reaction. Thus, a summary of the mode of catalysis for the reactions with 20-H is presented in Scheme 4.7.

Scheme 4.7 Current understanding of the catalytic activity of 20-H

4.5.3 Asymmetric Diels-Alder reaction catalyzed by 22-H.

Although no evidence could be gained for the existence of 22-H by NMR spectroscopy, the mode of catalysis is thought to be more likely to be as a Brønsted acid assisted Lewis acid catalyst in the case of the Diels-Alder reaction between α -methylacrolein 94a and cyclopentadiene 93a (Figure 4.17A). This is possibly due to high acidity of protonated aldehydes.

Figure 4.17 (**A**) Asymmetric Diels-alder reaction of **94a** catalyzed by **22**-H. (**B**) Diagrammatic representation of TS-**267** and TS-**268** for BA and BLA type mechanism respectively.

В

Dr. Mathew Vetticatt, a current group member, found from computational studies that indeed in this reaction between enals and dienes the catalyst appears to be operating as a Brønsted acid assisted Lewis acid (Figure 4.17B). Hence, the current understanding of this reaction is presented in Scheme 4.8.

Scheme 4.8 Current understanding of the catalytic activity of 22-H

4.6 Conclusions

In the end, it is quite evident that ion-pairs 20-H, 21-H, 22-H, and 262-H, if they exist at all, are unfavorable with regard to alternative structures not containing a tetra-coordinate boron. In contrast, the ion-pairs 102a, 74a, 90a and 244e have been characterized by NMR spectroscopy and X-ray crystallography. As of now, there is no evidence for the protonated form of the VAPOL boroxinate 23-H, but rather that like the case of 20-H–22-H it appears to be unstable with respect to other structures. One of the biggest advantages of the above-discussed case studies is that it has provided a better understanding of the structure and function of variety of chiral Brønsted acids derived from chiral borate anions from both vaulted and linear biaryl ligands.

APPENDIX

4.7 Experimental

4.6.1	General information	14
4.6.2	Synthesis of imine 78a , B(OPh) ₃ 187a and (<i>R</i>)-3,3'-(2-OH-C ₆ H ₄) ₂ -BINOL 89	14
4.6.3	NMR analysis of a mixture of BINOL 55 , commercial B(OPh) ₃ and imine 78a or DMA	ΑP
	216c (<i>Figure 4.4</i>)	20
4.6.4	NMR analysis of a mixture of (R) -3,3'-(2-OH-C ₆ H ₄) ₂ -BINOL 89 , various boron sources	ces
	and imine 78a (<i>Figure 4.9</i>)	21
4.6.5	NMR analysis of a mixture of Phenol 194a, commercial and freshly prepared B(OPI	n)3
	and DMAP 216c (<i>Figure 4.14</i>)	24
4.6.6	DFT calculations 3	25

4.6.1 General information

The general information of this chapter is similar to that of Section 2.6.1 of Chapter 2. All reagents were purified by simple distillation or crystallization with simple solvents unless otherwise indicated. BINOL **55**, commercial B(OPh)₃ (stored in dessicators), and benzhydrylamine **126a** (distilled prior to use) obtained from Aldrich Chemical Co., Inc. and used as received.

4.6.2 Synthesis of Imine 78a, B(OPh)₃ 187a and (R)-3,3'-(2-OH-C₆H₄)₂-BINOL 89

a) Imine 78a: The synthesis of imine 78a is given in section 2.6.2 of Chapter 2

b) B(OPh)₃ 187a:

Triphenylborate 187a: To a flame dried home-made Schlenk flask equipped with a stir bar and flushed with argon was added PhOH 194a (28.2 mg, 0.300 mmol) and BH₃•Me₂S (50 μL, 0.10 mmol, 2.0 M in toluene,). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added. The flask was sealed by closing the Teflon valve, and then placed in an oil bath (80 °C) for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles are removed completely, a

full vacuum is applied and is maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature yielding the B(OPh)₃ **187a** as white solid. The resulting freshly prepared B(OPh)₃ was directly used for NMR analysis.

Spectral data for B(OPh)₃ **187a**: 1 H NMR (CDCl₃, 500 MHz) δ 7.13 (t, 3H, J = 7.5 Hz), 7.16 (d, 6H, J = 9.0 Hz), 7.34 (t, 6H, J = 7.5 Hz). 13 C NMR (CDCl₃, 125 MHz) δ 120.21, 123.52, 129.26, 152.86. These spectral data match those previously reported for this compound. 4a

c) (R)-3,3'-(2-OH-C₆H₄)₂-BINOL 89:

(R)-2,2'-Dimethoxy-1,1'-binaphthalene 258: To 250 mL flame-dried round bottom flask was added (R)-55 (2.5 g, 8.7 mmol) and acetone (80 mL). To this solution were added potassium

carbonate (4.0 g, 29 mmol) and methyl iodide (4.94 g, 2.17 mL, 35 mmol), and the mixture was set to reflux for 24 h. Additional methyl iodide (2.07 g, 0.910 mL, 14.6 mmol) was then added and reflux was continued for next 12 h. The solvent was then evaporated to leave a volume of 15 mL and treated with water (80 mL). The mixture was then stirred for 8 h, and the resulting solid was washed with water and dried under vacuum first at 25 °C and then at 95 °C (0.1 mm Hg, for 12 h) to afford (*R*)-258 as white powder (mp. 225-226 °C) in 90% yield (2.25 g, 7.83 mmol).

Spectral data for (*R*)-**258:** ¹H NMR (CDCl₃, 300 MHz) δ 3.75 (s, 6H), 7.10 (d, J = 8.4 Hz, 2H), 7.17-7.24 (m, 2H), 7.28-7.33 (m, 2H), 7.45 (d, J = 9.0 Hz, 2H), 7.86 (d, J = 8.1 Hz, 2H), 7.97 (d, J = 9.0 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 154.97, 134.00, 129.37, 129.21, 129.90, 126.28, 125.25, 123.48, 119.61, 114.25, 56.89; $[\alpha]_D^{25}$ +54.5 (c 1.0, CHCl₃). These spectral data match those previously reported for this compound.

(*R*)-3,3'-diiodo-2,2'-dimethoxy-1,1'-binaphthalene (*R*)-259: In a 50 mL flame-dried three-necked round bottomed flask equipped with a N₂-inlet were placed dry Et₂O (15 mL) and TMEDA (349 mg, 0.450 mL, 3.00 mmol). To this solution was added ⁿBuLi (1.2 mL, 3.0 mmol, 2.5 M in hexanes). The solution was stirred for 30 min at room temperature. To this solution was added solid (*R*)-258 (314 mg, 1.00 mmol) in one portion and the reaction mixture was stirred for 12 h. The resulting suspension was cooled to -78 °C, and a solution of I₂ (1.7 g, 6.5 mmol) in THF (4 mL) was added *via* syringe over a period of 10 min. The solution was stirred for 1 h at

–78 °C and then allowed to warm to room temperature and was left stirring for 18 h. The reaction was quenched with saturated Na₂S₂O₃ solution (10 mL) and stirred for 30 min. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (10 mL × 3). The combined organic solution was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to afford crude product. Purification by silica gel column chromatography (35 mm × 350 mm column, 4:1 hexanes/CH₂Cl₂ as eluent, after elution of the first fraction, the eluent was changed to 1:1 hexanes/CH₂Cl₂) afforded (*R*)-259 as yellow solid crystals (mp. 191-192 °C) in 71% yield (402 mg, 0.710 mmol).

Spectral data for (*R*)-**259**: $R_f = 0.5$ (4:1 hexanes/CH₂Cl₂); ¹H NMR (CDCl₃, 300 MHz) δ 3.39 (s, 6H), 7.05 (d, J = 8.5 Hz, 2H), 7.25 (dt, J = 1.2 Hz, 8.3 Hz, 2H), 7.39 (dt, J = 1.2 Hz, 8.3 Hz, 2H), 7.77 (d, J = 8.3 Hz, 2H), 8.51 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 61.10, 92.31, 125.39, 125.64, 125.79, 126.97, 127.07, 132.20, 133.89, 139.92, 154.54; $[\alpha]_D^{25}$ –30.0 (*c* 1.0, CHCl₃). These spectral data match those previously reported for this compound.

(*R*)-2,2'-dimethoxy-3,3'-bis(2-methoxyphenyl)-1,1'-binaphthalene (*R*)-261: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*R*)-3,3'-diiodo-2,2'-dimethoxy-1,1'-binaphthalene (*R*)-259 (1.1 g, 2.0 mmol), 2-methoxyphenylboronic acid 260 (760 mg, 5 mmol), and barium hydroxide octahydrate (1.58 g, 5 mmol). Under an argon flow through the side-arm of the Schlenk flask, DME-H₂O (6:1, 21 mL) was added through the top of the Teflon valve to dissolve the two reagents. To this mixture was

added palladium(II) acetate (22.4 mg, 0.100 mmol) and tris-o-tolylphosphine (60.9 mg, 0.2 mmol). The resulting reaction mixture was degassed three times and charged with argon. The flask was sealed by closing the Teflon valve, and then placed in an 80 °C oil bath for 2 h. The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. Thereafter, the reaction mixture was filtered through a Celite pad and the filtrate was diluted with saturated NH4Cl (aq) and extracted twice with ether. The combined extracts were dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification of the crude product by silica gel chromatography (35 mm × 400 mm column, 9:1 hexanes/EtOAc as eluent, under gravity) afforded pure (*R*)-261 as a white solid (mp. 97-100 °C) in 95% isolated yield (1.0 g, 1.9 mmol).

Spectral data for (*R*)-**261**: $R_f = 0.39$ (9:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 600 MHz) δ 3.19 (s, 6H), 3.76 (s, 6H), 6.99 (dd, J = 8.3, 1.0 Hz, 2H), 7.05 (td, J = 7.4, 1.0 Hz, 2H), 7.24-7.28 (m, 2H), 7.33 (d, J = 8.3 Hz, 2H), 7.34-7.39 (m, 4H), 7.46 (dd, J = 7.5, 1.8 Hz, 2H), 7.87 (d, 2H, J = 8.3 Hz), 7.89 (s, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 55.71, 60.58, 111.01, 120.41, 124.53, 124.77, 125.85, 125.91, 127.88, 128.48, 128.81, 130.48, 130.81, 131.28, 132.53, 133.82, 154.94, 157.24; $[\alpha]_D^{20}$ +84.0 (c 1.0, CH₂Cl₂). These spectral data match those previously reported for this compound. ^{3e}

(*R*)-3,3'-bis(2-hydroxyphenyl)-[1,1'-binaphthalene]-2,2'-diol 89: To a 50 mL flame-dried round bottom flask was added (*R*)-260 (790 mg, 1.5 mmol) and CH₂Cl₂ (10 mL). To this solution at -78 °C was added BBr₃ (12 mL, 1.0 M in CH₂Cl₂) drop-wise. The reaction was

allowed to warm to 0 °C. The reaction mixture was stirred for 0.5 h at 0 °C and then was allowed to warm to room temperature. After stirring at room temperature for 1 h, the reaction was quenched by the slow addition of the distilled water (15 mL). The aqueous layer was extracted with CH_2Cl_2 (10 mL × 3). The combined extracts were then washed with water, brine and then dried over $MgSO_4$, filtered, and concentrated *in vacuo*. Purification of the yellow colored crude product by silica gel chromatography (35 mm × 400 mm column, 3:1 hexanes/EtOAc as eluent, under gravity) afforded pure (R)-89 as a white solid (mp. 144-145 °C) in 85 % isolated yield (600 g, 1.28 mmol).

Spectral data for (*R*)-89: $R_f = 0.19$ (4:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 600 MHz) δ 6.03 (br s, 2H), 6.79 (br s, 2H), 6.90 (t, J = 7.7 Hz, 2H), 7.13-7.18 (m, 2H), 7.25-7.30 (m, 4H), 7.34 (dd, J = 7.7 Hz, 1.7 Hz, 2H), 7.64 (d, J = 7.8 Hz, 2H), 7.75 (s, 2H), (4 protons cannot be located); ¹³C NMR (CDCl₃, 150 MHz) δ 114.37, 116.40, 121.10, 124.27, 124.39, 124.98, 127.11, 127.74, 128.43, 129.44, 129.83, 131.47, 132.18, 133.48, 149.66, 152.27; $[\alpha]_D^{25} -105$ (c 1.0, CHCl₃). These spectral data match those previously reported for this compound. ^{3c,3e}

4.6.3 NMR analysis of a mixture of BINOL 55, commercial B(OPh)₃ and imine 78a or DMAP 216c

Entry 1, Figure 4.4: The NMR of pure BINOL 55 was taken in CD₂Cl₂.

Entry 2, Figure 4.4: To a flame dried 25 mL round bottom flask equipped with a stir bar and flushed with argon was added 4Å Molecular Sieves (150 mg). The sieves were then flame dried in the same flask. To the same flask was added BINOL 55 (28.6 mg, 0.100 mmol), B(OPh)₃ (14.5 mg, 0.050 mmol) and CD₂Cl₂ (3 mL). The resulting mixture was then stirred for 1 h. The sample was then filtered and transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 3, Figure 4.4: Imine **78a** (136 mg, 0.05 mmol, 0.5 equiv) was added to the NMR tube containing entry 2. The NMR tube was shaken for 2 min before the analysis.

Entry 4 and 5, Figure 4.4: Same as entry 2 and 3 respectively where CDCl₃ is used as the NMR solvent.

Entry 6, Figure 4.4: Same as entry 4 where DMAP 216c is used as the base.

4.6.4 NMR analysis of a mixture of (R)-3,3'-(2-OH-C₆H₄)₂-BINOL 89, various boron sources and imine 78a

Entry 1, Figure 4.9: The NMR of pure BINOL derivative 89 was taken in CD₂Cl₂.

Entry 2, Figure 4.4: To a flame dried 25 mL round bottom flask equipped with a stir bar and a 10 mL pressure-equalized addition funnel (containing a cotton plug and ca. 4 g of 4Å Molecular Sieves (pellets) and functioning as a Soxhlet extractor) surmounted by a reflux condenser was added BINOL derivative 89 (23.5 mg, 0.050 mmol), B(OMe)₃ (0.5 mL, 0.1 M solution in

CD₂Cl₂, 0.050 mmol) and CD₂Cl₂ (3 mL). An argon atmosphere was secured and the solution was refluxed at 60 °C for 2 h. The reaction was cooled to room temperature and the addition funnel and condenser were quickly removed and replaced with septum. After cooling to 25 °C, an additional 1.5 mL of CD₂Cl₂ was added and then stirred vigorously for 0.5 h. Most of the white precipitate was dissolved and the resulting turbid solution was directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 3, Figure 4.9: Imine 78a (136 mg, 0.05 mmol, 1.0 equiv) was added to the NMR tube containing the sample from entry 2. The NMR tube was shaken for 2 min before the analysis. An appearance of yellow color was observed.

Entry 4 and 5, Figure 4.9: 1 and 3 equiv of methanol is added to the NMR tube (containing the sample from entry 2) for entries 4 and 5 respectively.

Entry 6, Figure 4.4: Same as entry 3 where imine 78a (136 mg, 0.05 mmol, 1.0 equiv) is added to the entry 5.

Entry 7, Figure 4.9: To a flame dried 25 mL home made Schlenck flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added BINOL derivative 89 (23.5 mg, 0.050 mmol) and toluene (1 mL). Under an argon flow through the side-arm of the Schlenk flask, BH₃•Me₂S (25 μL, 2.0 M solution in toluene, 0.05 mmol) was added through the top of the Teflon valve. The flask was sealed by closing the Teflon valve, and then placed in an 100 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full

vacuum was applied and maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. The resulting solid was then dissolved in 1.5 mL of CD₂Cl₂. The sample was then filtered and transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 8, Figure 4.9: Imine 78a (136 mg, 0.05 mmol, 1.0 equiv) was added to the NMR tube containing the sample from entry 7. The NMR tube was shaken for 2 min before the analysis. An appearance of yellow color was observed.

Entry 9, Figure 4.9: To a flame dried 25 mL round bottom flask equipped with a stir bar and flushed with argon was added 4Å Molecular Sieves (150 mg). The sieves were then flame dried in the same flask. To the same flask was added BINOL derivative 89 (23.5 mg, 0.050 mmol), B(OPh)₃ (14.5 mg, 0.050 mmol) and CD₂Cl₂ (1.5 mL). The resulting mixture was then stirred for 1 h. The sample was then filtered and transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 10, Figure 4.9: Imine 78a (136 mg, 0.05 mmol, 1.0 equiv) was added to the NMR tube containing the sample from entry 9. The NMR tube was shaken for 2 min before the analysis. An appearance of yellow color was observed.

4.6.5 NMR analysis of a mixture of Phenol 194a, commercial and freshly prepared B(OPh)₃ and DMAP 216c

Entry 1, Figure 4.13: The NMR of freshly sublimed Phenol 194a was taken in CDCl₃.

Entry 2, Figure 4.13: The NMR of freshly made B(OPh)₃ prepared using the procedure shown in section 4.6.2.

Entry 3, Figure 4.13: To the home-made Schlenck flask containing the freshly prepared B(OPh)₃ (entry 2) was added freshly sublimed PhOH 194a (9.4 mg, 0.10 mmol, 1.0 equiv). The mixture was dissolved in CDCl₃ (1 mL) transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 4, Figure 4.13: DMAP **216c** (12.2 mg, 0.100 mmol, 1.00 equiv) was added to the NMR tube containing the sample from entry 3. The NMR tube was shaken for 2 min before the analysis. An appearance of yellow color was observed.

Entry 5 and 7, Figure 4.13: The NMR of commercial B(OPh)₃ and DMAP was taken in CDCl₃ respectively.

Entry 6, Figure 4.13: DMAP **216c** (12.2 mg, 0.100 mmol, 1.00 equiv) was added to the NMR tube containing the sample from entry 5. The NMR tube was shaken for 2 min before the analysis. An appearance of yellow color was observed.

4.6.6 DFT Calculations

All quantum mechanical calculations were performed using the Gaussian '03.⁵ The B3LYP¹⁶ and BHandHLYP¹⁷ density functional were used along with 6-31G* basis sets. The coordinates were provided to Prof. Wulff as a separate file.

REFERENCES

REFERENCES

- (1) (a) Zhang, Y.; Desai, A.; Lu, A.; Hu, G.; Ding, Z.; Wulff, W. D. Chem. –Eur. J. 2008, 14, 3785-3803. (b) Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429-5432. (c) Mukherjee, M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. J. Org. Chem. 2010, 75, 5643-5660. (d) Ren, H.; Wulff, W. D. Org. Lett. 2010, 12, 4908-4911. (e) Hu, G.; Huang, L.; Huang, R. H.; Wulff, W. D. J. Am. Chem. Soc. 2009, 131, 15615-15617. (f) Hu, G.; Gupta, A. K.; Huang, R. H.; Mukherjee, M.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 14669–14675. (g) Gupta, A. K.; Mukherjee, M.; Wulff, W. D. Org. Lett. 2011, 13, 5866-5869. (h) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13100-13103. (i) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13104-13107. (j) Desai, A. A.; Morán-Ramallal, R.; Wulff, W. D. Org. Synth. 2011, 88, 224-237.
- (2) (a) Ishihara, K.; Miyata, M.; Hattori, K.; Tada, T.; Yamamoto, H. *J. Am. Chem. Soc.* **1994**, *116*, 10520-10524. (b) Ishihara, K.; Kuroki, Y.; Yamamoto, H. *Synlett* **1995**, 41-42. (c) Kuroki, Y.; Ishihara, K.; Hanaki, N.; Ohara, S.; Yamamoto, H. *Bull. Chem. Soc. Jpn.* **1998**, *71*, 1221-1230. (d) Cros, J. P.; Pérez-Fuertes, Y.; Thatcher, M. J.; Arimori, S.; Bull, S. D.; James, T. D. *Tetrahedron: Asymmetry* **2003**, *14*, 1965-1968. (e) Kawate, T.; Yamada, H.; Matsumizu, M.; Nishida, A.; Nakagawa, M. *Synlett* **1997**, 761-762. (f) Yamada, H.; Kawate, T.; Matsumizu, M.; Nishida, A.; Yamaguchi, K.; Nakagawa, M. *J. Org. Chem.* **1998**, *63*, 6348-6354.
- (3) (a) Ishihara, K.; Yamamoto, H. *J. Am. Chem. Soc.* **1994**, *116*, 1561-1562. (b) Ishihara, K.; Kurihara, H.; Yamamoto, H. *J. Am. Chem. Soc.* **1996**, *118*, 3049-3050. (c) Ishihara, K.; Kurihara, H.; Matsumoto, M.; Yamamoto, H. *J. Am. Chem. Soc.* **1998**, *120*, 6920-6930. (d) Ishihara, K.; Kondo, S.; Kurihara, H.; Yamamoto, H.; Ohashi, S.; Inagaki, S. *J. Org. Chem.* **1997**, *62*, 3026-3027. (e) Dai, X.; Davies, H. M. L. *Adv. Synth. Catal.* **2006**, *348*, 2449-2456.
- (4) (a) Cole, T. E.; Quintanilla, R.; Rodewald, S. *Synth. React. Inorg. Met.-Org. Chem.* **1990**, *20*, 55-63. (b) Malkowsky, I. M.; Frohlich, R.; Griesbach, U.; Putter, H.; Waldvogel, S. R. *Eur. J. Inorg. Chem.* **2006**, 1690-1697. (c) Cole, T. E.; Bakshi, R. K.; Srebnik, M.; Singaram, B.; Brown, H. C. *Organometallics* **1986**, *5*, 2303-2307. (d) Linti, G.; Loderer, D.; Nöth, H.; Polborn, K.; Rattay, W. *Chem. Ber.* **1994**, *127*, 1909-1922. (e) Wilson, J. W. *J. Chem. Soc., Dalton Trans.* **1973**, 1628-1630. (f) Nishihara, Y.; Nara, K.; Osakada, K. *Inorg. Chem.* **2002**, *41*, 4090-4092. (g) Mannig, D.; Noth, H. *J. Chem. Soc., Dalton Trans.* **1985**, 1689-1692. (h) Knizek, J. r.; Nöth, H. *J. Organomet. Chem.* **2000**, *614*, *Äi615*, 168-187. (i) Lawlor, F. J.; Norman, N. C.; Pickett, N. L.; Robins, E. G.; Nguyen, P.; Lesley, G.; Marder, T. B.; Ashmore, J. A.; Green, J. C. *Inorg. Chem.* **1998**, *37*, 5282-5288. (j) Carter, C.; Fletcher, S.; Nelson, A. *Tetrahedron: Asymmetry* **2003**, *14*, 1995-2004. (k) Raskatov, J. A.; Brown, J. M.; Thompson, A. L. *Crystengcomm* **2011**, *13*, 2923-2929.

- (5) Gaussian 03, Revision D.01 M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004
- (6) Tu, T.; Maris, T.; Wuest, J. D. Cryst. Growth Des. 2008, 8, 1541-1546.
- (7) Hu, G. PhD Dissertation, Michigan State University, 2007.
- (8) Taube, R.; Weckmann, E.; Böhme, P.; Gehrke, J. P. Z. Anorg. Allg. Chem. 1989, 577, 245-254.
- (9) Lang, A.; Knizek, J.; Nöth, H.; Schur, S.; Thomann, M. Z. Anorg. Allg. Chem. 1997, 623, 901-907.
- (10) (a) Bishop, M.; Shahid, N.; Yang, J.; Barron, A. R. *Dalton Trans.* **2004**, 2621-2634. (b) Pasdeloup, M.; Brisson, C. *Org. Magn. Reson.* **1981**, *16*, 164-167.
- (11) Steinberg, H. *Organoboron Chemistry*; Wiley Interscience: New York, N.Y., 1964; Vol. 1, ch. 15.
- (12) Schlesinger, H. I.; Brown, H. C.; Mayfield, D. L.; Gilbreath, J. R. J. Am. Chem. Soc. 1953, 75, 213-215.
- (13) Hu, G.; Huang, L.; Huang, R. H.; Wulff, W. D. J. Am. Chem. Soc. 2009, 131, 15615-15617.
- (14) Vetticatt, M.; Wulff, W. D., Unpublished results.

- (15) (a) Wipf, P.; Jung, J.-K. *J. Org. Chem.* **2000**, *65*, 6319-6337. (b) Lingenfelter, D. S.; Helgeson, R. C.; Cram, D. J. *J. Org. Chem.* **1981**, *46*, 393-406. (c) Gobbi, L.; Seiler, P.; Diederich, F.; Gramlich, V. *Helv. Chim. Acta* **2000**, *83*, 1711-1723.
- (16) (a) Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098. (b) Lee, C. Y., W.; Parr, R. G. *Phys. Rev. B* **1988**, *37*, 785.
- (17) (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 1372-1377. (b) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. **2005**, 1, 415-432. (c) Yu, W.; Liang, L.; Lin, Z.; Ling, S.; Haranczyk, M.; Gutowski, M. J. Comput. Chem. **2009**, 30, 589-600.

CHAPTER 5

AN EXAMINATION OF VARIOUS CHIRAL DIOLS AS LIGANDS FOR ASYMMETRIC AZIRIDINATION REACTION AND THEIR IMPACT ON THE STRUCTURE OF THE BOROX CATALYST

I think that we should pursue it a little more!

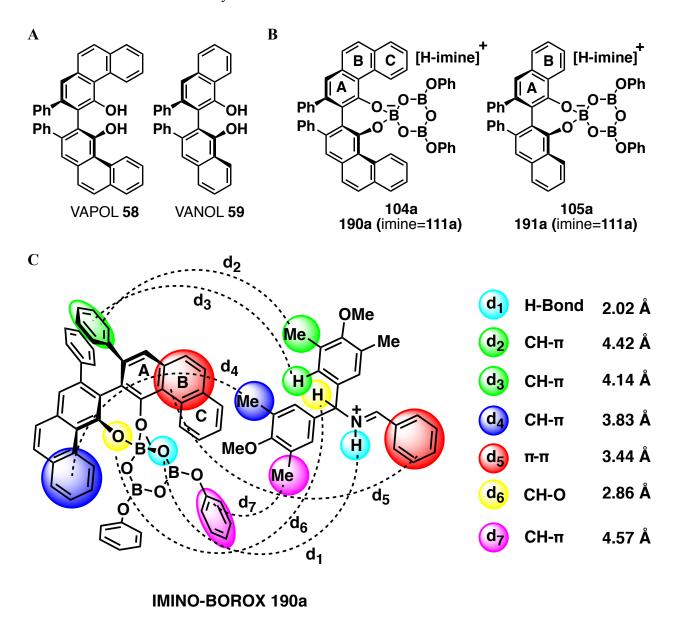
-William D. Wulff

5.1 Introduction

Over the past few years, the Wulff group has developed a universal catalytic asymmetric aziridination reaction of imines utilizing a catalyst derived from the vaulted ligands VAPOL 58 or VANOL **59** and commercial B(OPh)₃ (Chapter 1, Scheme 1.12). The actual catalyst **190** is a complex consisting of a protonated imine and a chiral counteranion in the form of a boroxinate anion (Chapter 2 and Figure 5.1C). This boroxinate catalyst has been termed as the IMINO-BOROX catalyst 190. As discussed in section 2.1.1.3 of chapter 2, these BOROX catalysts can be very diverse in nature. Diversity can be achieved by altering the *ligand*, the alcohol source and the N-substituent of the imine. Based on these variations, a large pool of catalysts can be generated. These catalysts could be very different in structure and reactivity for a given asymmetric reaction. The aim of the work in this chapter is to explore a novel family of catalysts by employing different ligands and to study the change in the mechanistic behavior of these catalysts. The vaulted biaryl ligand ISOVAPOL 197 and the linear biaryl ligand BINOL 55 and its derivatives of type 56 as well as TADDOL 61a were examined for efficacy in the catalytic asymmetric aziridination reaction. In addition, in order to investigate the structure of the catalyst, NMR experiments were performed on these novel catalysts.

5.2 ISOVAPOL: a new entry to the family of vaulted biaryl ligands

In 1993, we introduced a new family of chiral diols in the form of the vaulted biaryl ligands. Two of the most studied and prominent members of this family of ligands are VAPOL 58 and VANOL 59 (Figure 5.1A). These vaulted biaryl ligands have been demonstrated to be useful in a variety of important asymmetric reactions including Diels-Alder reactions. Mannich reactions, Baeyer-Villiger reactions, the Petasis reaction, the hydroarylation of alkenes, the hydrogenation of alkenes, ⁷ asymmetric chlorination and Michael reactions of oxindoles, ⁸ benzoyloxylation of aryloxindoles, aza-Darzens reaction, propargylation of ketones, and hydroacylation of alkenes. 12 Specifically, the BOROX catalyst derived from VAPOL and VANOL ligands have been used in *cis*-aziridination of imines, ^{1a-1f,1j} trans-aziridination of imines, 1h,1i multicomponent aziridination of aldehydes, 1g heteroatom Diels-Alder reactions of imines, ¹³ aminoallylation of aldehydes, ¹⁴ [3+2] cycloaddition of imines, ¹⁵ and epoxidation of aldehydes. 15 More recently, chiral phosphoric acids 35 and 36 (Chapter 1) derived from these ligands have been used in the amidation ¹⁶ and imidation ¹⁷ of imines, the asymmetric reduction of imines, ¹⁸ pinacol rearrangement, ¹⁹ desymmetrization of aziridines ²⁰ and reduction of $aminals. \\^{21}$


In search of more diversity in the BOROX catalyst, in greater mechanistic understanding of its mode of catalysis and in an improvement in aziridination of benzhydryl imines 78, we

envisioned the possibility of a new chiral ligand **197** as shown in Figure 5.2 (an isomer of VAPOL, hereafter abbreviated as ISOVAPOL).

5.2.1 Rational design of ISOVAPOL 197

In the past, a series of VAPOL and VANOL derivatives have been prepared 2d,22 and examined in the asymmetric aziridination reaction of imines. 22a Some of these modified ligands were used as chiral Lewis acids in asymmetric Diels-Alder reaction, ^{2d} and Mannich reaction. ^{22b} However, these modifications were made, in most of cases, without any understanding of how the catalyst functions. Now, with the help of the information about the structure of the BOROX catalyst, rational design of new vaulted ligands is possible. One of the most puzzling aspects of the aziridination reaction is that the BOROX catalysts derived from both the VANOL and VAPOL ligands have a nearly identical profile of asymmetric induction over the same range of imine substrates. 1c We were able to rationalize this observation with the help of the knowledge of the structure of the catalyst. The structure of the BOROX catalyst 190a reveals that the π - π stacking interaction of the phenyl group of the imine is primarily over the central ring (B) of the phenanthrene unit of the VAPOL 58 (Figure 5.1C). This corresponds to the B ring of the VANOL boroxinate catalyst 191a (Figure 5.1B). Although, an X-ray structure of the catalyst derived from VANOL has not vet been obtained. ¹H NMR studies suggest that the structure is analogous to the BOROX catalyst 190a (Figure 5.1B). Thus, it appears that the extra benzene ring of VAPOL is not needed, at least in the catalyst for the aziridination reaction.

Figure 5.1 (**A**) Different chiral diols from vaulted biaryl ligands. (**B**) Different BOROX catalysts derived from VAPOL and VANOL. (**C**) Diagrammatic representation of X-ray structure of the BOROX catalyst **190a**.

As evident from the structure of the catalyst-substrate complex **190a**, π - π stacking may be important for asymmetric induction in the case of aromatic aldehydes. However, the case of aliphatic aldehydes is interesting due to the absence of this π - π interaction. Also, as is revealed

in the structure of the catalyst; there are numerous CH- π interactions (Figure 5.1C). The mode of the docking of imines generated from aliphatic aldehydes to the catalyst is unknown. As there is no difference in the enantioinduction when either VAPOL or VANOL is used, the orientation of the alkyl group could be indifferent to the presence of ring C. However, it the alkyl group have been orienting in a way such that there are $CH-\pi$ interactions with the imaginary ring C' (Figure 5.2A). If this were true, moving the C ring to the 9 and 10-positions of VAPOL (or adding another benzene ring at the 5 and 6-positions of VANOL) would lead to the rational design of our new chiral ligand ISOVAPOL 197 (Figure 5.2B). The aim of making ISOVAPOL is multifaceted. One of the reasons to consider ISOVAPOL 197 is its potential lower cost to make than VAPOL. The starting material for the synthesis of ISOVAPOL, 1-naphthyl acetic acid **284** is 10 times cheaper (~\$50/Kg) than 2-naphthyl acetic acid 269 (~\$540/Kg), which is the starting material for the most convenient synthesis of VAPOL. 23 The former is manufactured on large scale as a plant growth regulator. Recently, we reported a new optimal method for VAPOL and hopefully, a direct application of this method towards the synthesis of ISOVAPOL can be undertaken.²³ Hence, in conjunction with our efforts to probe the mechanistic underpinning of the asymmetric induction observed for BOROX catalysts and to expand the members of the family of vaulted ligands, a project was initiated to synthesize and evaluate ISOVAPOL 197.

Figure 5.2 (**A**) Possible orientation of the imine over the boroxinate core. (**B**) Rational design of the new vaulted ligand ISOVAPOL **197**

Figure 5.2 cont'd

5.2.2 Preparation of ISOVAPOL 197

Recently, we reported a very efficient and convenient large-scale synthesis of VAPOL 58.²³ This synthesis of VAPOL involves the preparation of the monomer 263 followed by its oxidative coupling and resolution to get highly optically pure ligand. The key step in the

synthesis of the monomer **272** is a cycloaddition/electrocyclic ring-opening (CAEC)/electrocyclic ring- closure/tautomerization cascade (Scheme 5.1). Also, this cascade produces a byproduct that was identified as 2-(2-naphthyl)-3,5-diphenylphenol **273** obtained in <10% yield. The branch point between the two products is the ketene **277** and involves the competition between a [2 + 2] cycloaddition with phenylacetylene **270** giving **281** and an electrocyclic ring closure leading to the formation of **278** (Scheme 5.1B). The cyclobutenone **281** could be expected to begin its own electrocyclization cascade that is initiated with an electrocyclic ring opening to give the dienyl ketene **282** and then an electrocyclic ring closure to give the cyclohexadienone **283** and finally tautomerization to the byproduct **273** (Scheme 5.1B).

Scheme 5.1 (A) Preparation of the monomer 272 of VAPOL. (B) Proposed mechanism

Scheme 5.1 cont'd

In the case of ISOVAPOL, the monomer **285** is expected to result from the acid chloride of **284** with phenyl acetylene in accord with the one-step protocol for the large scale synthesis of VAPOL **58** (Scheme 5.2). First, 1-naphthyl acetyl chloride was prepared by reacting 1-naphthyl acetyl acid **284** with thionyl chloride at 90 °C for 1 h. Second, the procedure involves heating 1-naphthyl acetyl chloride (used without purification) in the presence of phenyl acetylene **270**. This initiates the [2+2] cycloaddition of an *in-situ* generated ketene and then electrocyclic ring opening of the resulting cyclobutenone and then finally, an electrocyclic ring closure of the vinyl ketene. The phenol product is trapped by the iso-butyric anhydride to give an ester. Hydrolysis gave the ISOVAPOL monomer **285** in 26–30% overall yield from acid **284** (Scheme 5.2). The low yield can be partially attributed to the formation of the by-product **286** that is

similar to the by-product **273** obtained in the synthesis of the monomer **272** for VAPOL (Scheme 5.2). Interestingly, another by-product **287** (structure not known) was also obtained.

Scheme 5.2 Preparation of the ISOVAPOL monomer 285

The synthesis of the *rac*-ISOVAPOL was carried out *via* oxidative coupling by stirring the monomer **285** in mineral oil at 190 °C in the presence of air (Scheme 5.3). This gave the dimer *rac*-ISOVAPOL in 70% yield. The optically pure ligand (*S*)-**197** was then readily obtained by the deracemization protocol ^{22c} developed in the group in 95% yield and > 99% *ee* (Scheme 5.3).

Scheme 5.3 Preparation of the rac-197 and (S)-ISOVAPOL (S)-197

5.2.3 Asymmetric aziridination reaction catalyzed by BOROX catalyst derived from ISOVAPOL

After the development of a successful synthesis of ISOVAPOL, the stage was set for the examination of its effectiveness in the catalytic aziridination reaction. As a control, we decided to perform each reaction with ISOVAPOL and VANOL to have a better measure of the consequences of the structural differences. One of the first sets of experiments was the examination of ISOVAPOL derived catalyst with various *N*-protecting groups (Table 5.1) in the aziridination reaction. The new ligand 197 showed results very similar to (*R*)-VANOL for imines with the four different protecting groups. These results suggested that the binding of the imine with the catalyst prepared from the new ligand 197 might be similar to that from VAPOL or VANOL derived catalysts. Since the aziridination reaction is already well established with MEDAM protecting groups for aryl and alkyl substituents (up to 99% ee), it was decided to choose to the benzhydryl (Bh) protecting group for further study as the model system (lowest asymmetric induction among other *N*-protecting groups for aryl and alkyl substituents). It must be noted that the benzhydryl amine 126a is commercially available whereas MEDAM amine

Table 5.1 Screening of ISOVAPOL **197** with different *N*-protected imines

Table 5.1 cont'd

#	Cat	Ligand	Ar ₂ CH	azi	Yield azi (%)	ee azi (%)	c:t d	Yield enamine (%)
$\frac{1}{2}^f$	199a 189a	(S)-ISOVAPOL (R)-VANOL	Bh Bh	86a	82 87	92 –89	50:1 >50:1	3/7 <1/<1
3 ^f 4	288a 289a	(S)-ISOVAPOL (R)-VANOL	DAM DAM	113a	91 89	96 -92	50:1 >50:1	6/<1 1/<1
5 6	290a 191a	(S)-ISOVAPOL (R)-VANOL	MEDAM MEDAM	114a	96 98	98 –97	>50:1 50:1	2/1 1/1
7 8	291a 292a	(S)-ISOVAPOL (R)-VANOL	BUDAM BUDAM	115a	97 98	96 -96	>50:1 50:1	<1/<1 <1/<1

Unless otherwise specified, all reactions were performed with 1 mmol of imine in toluene (0.5 M in imine) with 1.2 equiv of **85** and 5 mol% of the catalyst at 25 °C. The pre-catalyst was prepared by heating 1 equiv of ligand with 4 equiv of commercial B(OPh)₃ and 1 equiv of H₂O in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C.

Bisolated Yield.

Circ Determined by Chiral HPLC.

Ratio determined by integration of the methine protons of cis- and trans- aziridine in the H NMR spectrum of the crude reaction mixture.

Determined by integration of the NH signals of enamines relative to the methine proton of cis aziridine in the H NMR spectrum of the crude reaction mixture.

Percent conversion is determined by integration of the methine proton of cis-aziridine relative to the sp²-CH proton of the unreacted imine in the H NMR spectrum of the crude reaction mixture.

Prior to examining the substrate scope, it was thought to screen various solvents to observe any significant change in the yield or ee. While the reaction gave high asymmetric induction with halogenated solvents and with toluene, lower ees, in the range of 80, were obtained in case of oxygenated solvents like ether and EtOAc (Table 5.2). In the end, toluene was selected as the optimum solvent as it gave the highest enantioinduction and less toxic

compared to the other solvents. Also, the asymmetric induction was similar with benzhydryl imine **78a** for both ligands ISOVAPOL and VANOL in toluene (entries 1 and 2, Table 5.2).

Table 5.2 AZ reaction with imines **78** using (S)-ISOVAPOL and various solvents ^a

#	Cat	Ligand	Solvent	% conv	Yield 86a (%) c	ee 86a (%)	c:t e	Yield 87a/88a (%) ^f
1 2	199a	(S)-ISOVAPOL	Toluene	94	82	92	50:1	3/7
	189a	(R)-VANOL	Toluene	100	87	-89	>50:1	<1/<1
3	199a	(S)-ISOVAPOL	Ether	95	83	80	>50:1	5/6
4	189a	(R)-VANOL	Ether	96	83	-84	>50:1	4/5
5	199a	(S)-ISOVAPOL	Dichloromethane	94	79	91	25:1	4/9
6	189a	(R)-VANOL	Dichloromethane	100	83	-89	50:1	4/8
7	199a	(S)-ISOVAPOL	Dichloroethane	94	81	91	>50:1	4/8
8	189a	(R)-VANOL	Dichloroethane	100	83	-90	>50:1	4/8
9	199a	(S)-ISOVAPOL	EtOAc	45	36	81	20:1	5/4
10	189a	(R)-VANOL	EtOAc	55	43	-84	>50:1	7/4

^a Unless otherwise specified, all reactions were performed with 1 mmol of imine **78a** in toluene (0.5 M in imine **78a**) with 1.2 equiv of **85** and 5 mol% of the catalyst at 25 °C. The pre-catalyst was prepared by heating 1 equiv of ligand with 4 equiv of commercial B(OPh)₃ and 1 equiv of H₂O in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. ^b Percent conversion is determined by integration

Table 5.2 cont'd

of the methine proton of *cis*-aziridine relative to the sp^2 -CH proton of the unreacted imine in the 1 H NMR spectrum of the crude reaction mixture. c Isolated Yield. d Determined by HPLC. e Ratio determined by integration of the methine protons of *cis*- and *trans*-aziridine in the 1 H NMR spectrum of the crude reaction mixture. f Determined by integration of the NH signals of enamines relative to the methine proton of *cis*-aziridine in the 1 H NMR spectrum of the crude reaction mixture.

After the initial screening of the solvents, we moved on to examine the effect of (S)-ISOVAPOL 197 on the reactions of various aryl and alkyl imines 78. Unfortunately, there was no improvement observed in the asymmetric inductions obtained using the ISOVAPOL catalyst for aryl imines as compared to the VANOL catalyst (Table 5.2). The results were quite similar and within the range of experimental error. In fact, both the ligands exhibited similar ees for the reactions of alkyl substituted imines as well (entries 9-12, Table 5.2).

Table 5.3 AZ reaction with imines **78** using (S)-ISOVAPOL AND (R)-VANOL^a

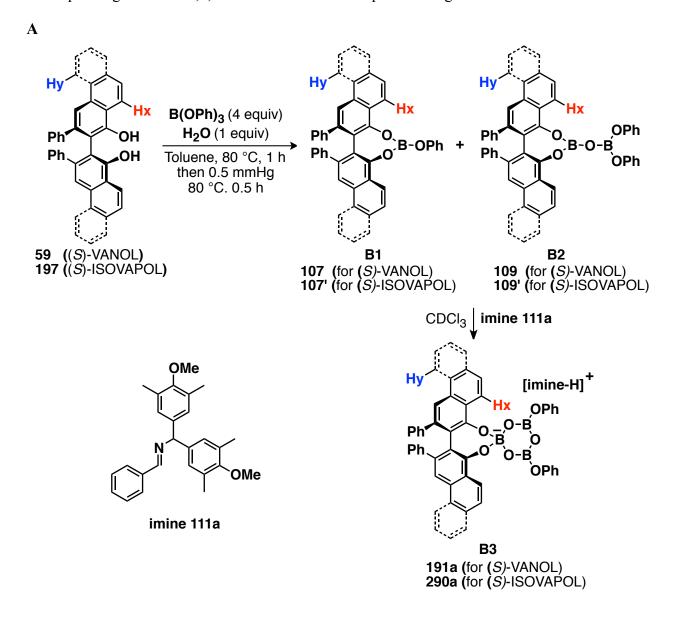
Table 5.3 cont'd

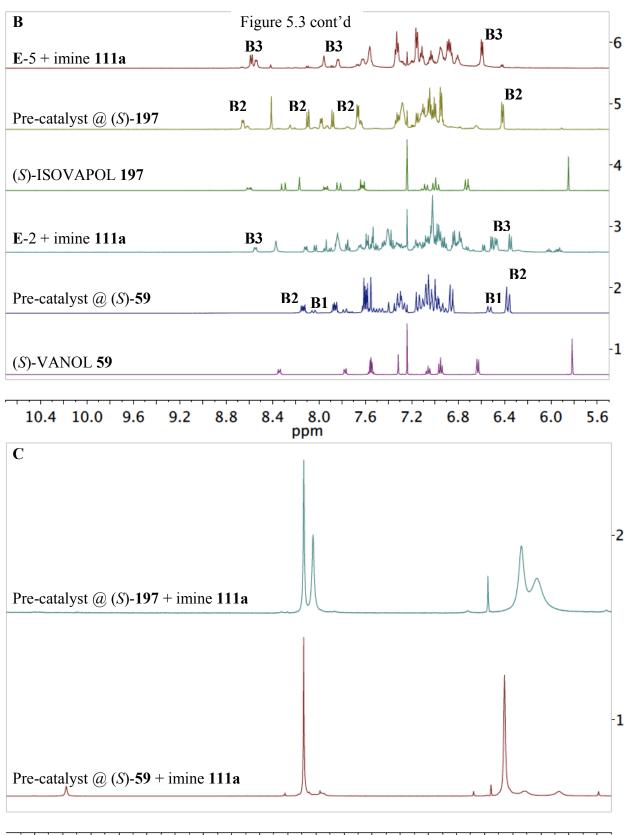
#	Cat	Ligand	R	% conv b	Yield 86 (%) c	ee 86 (%) ^d	c:t e	Yield 87(88) (%) ^f
1	199a	(S)-ISOVAPOL	C_6H_5	94	82	92	50:1	3/7
2	189a	(R)-VANOL	C_6H_5	100	87	-89	>50:1	<1/<1
3	199b	(S)-ISOVAPOL (R)-VANOL	4-Me-C ₆ H ₄	94	82	94	>50:1	3/7
4	189b		4 -Me-C $_6$ H $_4$	100	79	-92	>50:1	3/6
5	199c	(S)-ISOVAPOL	4-MeO-C ₆ H ₄	94	62	89	9:1	<1/6
6	189c	(R)-VANOL	4-MeO-C ₆ H ₄	100	62	-91	10:1	<1/3
7	199d	(S)-ISOVAPOL	4 -Br-C $_6$ H $_4$	94	80	94	>50:1	2/6
8	189d	(R)-VANOL	4 -Br-C $_6$ H $_4$	100	83	-9 1	50:1	4/6
9	199e	(S)-ISOVAPOL	<i>t</i> -Bu	97	83	84	>50:1	6/<1
10	189e	(R)-VANOL	<i>t</i> -Bu	100	86	-84	>50:1	<1/8
11	199f	(S)-ISOVAPOL	Су	100	72	79	>50:1	9/4
12	189f	(R)-VANOL	Cy	100	70	–77	>50:1	5/4

Unless otherwise specified, all reactions were performed with 1 mmol of imine 78 in toluene (0.5 M in imine 78) with 1.2 equiv of 85 and 5 mol% of the catalyst at 25 °C. The pre-catalyst was prepared by heating 1 equiv of ligand with 4 equiv of commercial B(OPh)₃ and 1 equiv of H₂O in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Percent conversion is determined by integration of the methine proton of *cis*-aziridine relative to the sp^2 -CH proton of the unreacted imine 78 in the ¹H NMR spectrum of the crude reaction mixture. Isolated Yield. Determined by HPLC. Ratio determined by integration of the methine protons of *cis*- and *trans*- aziridine in the ¹H NMR spectrum of the crude reaction mixture. Determined by integration of the NH signals of enamines relative to the methine proton of *cis* aziridine in the ¹H NMR spectrum of the crude reaction mixture.

In conclusion, the new chiral ligand ISOVAPOL 197 was found to be equally good as VANOL and also is potentially less expensive than VAPOL or VANOL. Of course, it may very well behave differently from VAPOL or VANOL in asymmetric reactions other than aziridination. Finally, it adds to the library of the family of vaulted biaryl ligands in our group.

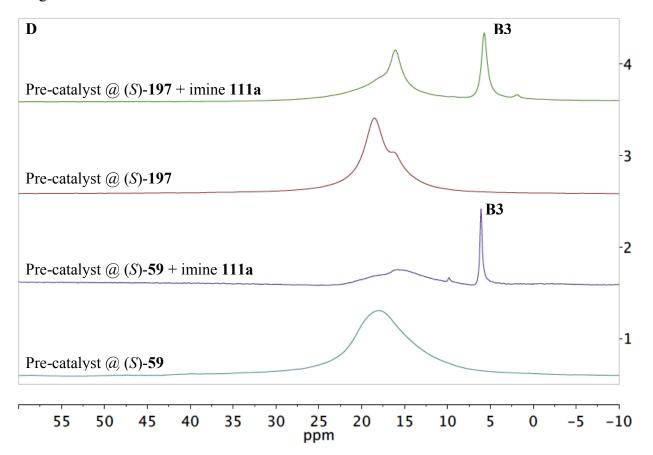
Incidentally, more recently, another group member namely Yong Guan was able to increase the stereoinduction (up to 98% ee) of aziridines from benzhydryl imines **78** by synthesizing a derivative of VANOL called to be 7,7′-*t*Bu₂-VANOL **198** (Chapter 2, Table 2.3).


5.2.4 NMR investigation of the BOROX catalysts 191a and 290a


In order to gain the evidence for the generation of the BOROX catalysts **191a** and **290a** from the VANOL and ISOVAPOL ligands, respectively, a series of NMR experiments were performed (Figure 5.3). Various species were identified based on the characteristic peaks i.e. Hx and Hy for VANOL **59** and ISOVAPOL **197** respectively (Figure 5.3A).

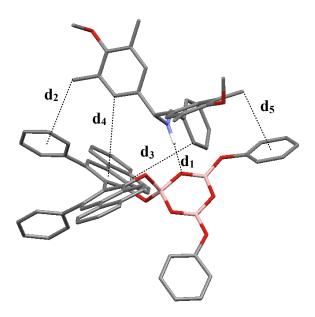
The study was started with VANOL **59**. The chemical shift of the proton Hx for VANOL **59** is at $\delta = 8.35$ ppm (m, CDCl₃). The method for precatalyst formation involves heating (*S*)-VANOL with 4 equiv of commercial B(OPh)₃ and 1 equiv of H₂O of at 80 °C (pre-catalyst method C). This resulted in the generation of a mixture of pyroborate B2 **109** (δ Hx = 8.14 ppm, m, CDCl₃), meso-borate B1 **107** (δ Hx = 8.04 ppm, d, CDCl₃) and unreacted VANOL **59** in 2.9:1:<0.1 ratio (entry 2, Figure 5.3B). Treatment of this mixture with 1 equiv of the imine **111a** at room temperature within a few minutes results in the conversion of the colorless solution of **107** and **109** to a red solution of boroxinate **191a** (δ Hx = 8.55 ppm, d, J = 9.0 Hz, CDCl₃) (entry 3, Figure 5.3B). Also, the IMINO-BOROX catalyst **191a** has a sharp absorption at δ = 6.09 ppm in ¹¹B NMR (entry 2, Figure 5.3D). It must be noted that the ratio of B2 **109**: B1 **107**: unreacted VANOL **59** are 2.8:1:<0.1, 2.2:1:0.5 and 2.0:1:0.3 with pre-catalyst methods A (ligand:B(OPh)₃

= 1:3) , B (ligand:B(OPh) $_3$:H $_2$ O = 1:3:3) and D (ligand:BH $_3$ •Me $_2$ S:PhOH:H $_2$ O = 1:2:3:1) respectively (not shown here).


Figure 5.3 (**A**) Treatment of (*S*)-**59** and (*S*)-**197** with B(OPh)₃ and imine **111a**. (**B**)^a ¹H NMR spectra of the reaction mixture in CDCl₃. (**C**) ¹H NMR spectra (methyl and methoxy region) corresponding to the entry 3 and 6 in ¹H NMR spectra in Figure 5.3B. (**D**) ¹¹B NMR spectra corresponding to entries 2,3,5 and 6 in the ¹H NMR spectra in Figure 5.3B.

5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 ppm

Figure 5.3 cont'd


a Note for Figure 5.3B: Entry 1: pure (S)-59. Entry 2: (S)-59 (0.1 mmol) plus 4 equiv B(OPh)₃ and 1 equiv H₂O were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Entry 3: 1.0 equiv of imine 111a was added to the entry 2 (pre-catalyst) for 10 min at 25 °C. Entry 4: pure (S)-197. Entry 5: (S)-197 (0.1 mmol) plus 4 equiv B(OPh)₃ and 1 equiv H₂O were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Entry 6: 1.0 equiv of imine 111a was added to the entry 2 (pre-catalyst) for 10 min at 25 °C.

Similarly, we were able to identify pyroborate B2 109' (δ Hy = 8.65 ppm, CDCl₃) for ISOVAPOL 197 (entry 5, Figure 5.3B) using precatalyst method C (ligand:B(OPh)3:H2O = 1:4:1). A new doublet was observed at $\delta = 8.58$ ppm (J = 8.8 Hz, CDCl₃) for proton Hy for the boroxinate 290a when 1 equiv of imine 111a was added (entry 6, Figure 5.3B). There are many other characteristic peaks in boroxinate 290a and are shown in entry 6 of Figure 5.3B. Additionally, a peak at $\delta = 5.72$ ppm in the ¹¹B NMR spectrum further supports the formation of 290a (entry 4, Figure 5.3D). The presence of a single doublet in the both boroxinate complexes indicates that the exchange of the iminium ion from the top face of the catalyst to the bottom is fast on the NMR time scale. A striking difference between the two boroxinates 191a and 290a was that the splitting in the methyl and methoxy region of the MEDAM group was missing in the case of VANOL ligand derived catalyst 191a (Figure 5.3C). The splitting of methyl and methoxy into two singlets has been observed for VAPOL derived catalysts (Chapter 2). The chemical shifts of the protons associated with the nitrogen of the protonated imines in the complexes 191a and **290a** are $\delta = 13.74$ ppm and $\delta = 13.67$ ppm respectively.

5.2.5 Calculated structure of BOROX catalyst 290a derived from ISOVAPOL (S)-197

The structure of the IMINO-BOROX **290a** was explored using DFT calculations. Calculations were performed using Gaussian '03 at B3LYP/6-31g* level of theory. The predicted structure is shown in Figure 5.4. Several non-covalent interactions (CH- π and π - π) between imine and arene rings of the ISOVAPOL **197** are observed (Figure 5.4).

Figure 5.4 Calculated structure of IMINO-BOROX catalyst **290a** using Gaussian '03. Calculated B3LYP/6-31g* structure visualized by the Mercury Program (C, gray; O, red; N, blue; B, pink). Hydrogen atoms omitted for clarity (except N-H). Some secondary interactions are highlighted: $d_1 = 1.72$ Å (H-bonding), $d_2 = 4.02$ Å (CH-π), $d_3 = 4.10$ Å (CH-π or π-π stack), $d_4 = 4.54$ Å (CH-π), $d_5 = 4.02$ Å (CH-π).

5.2.6 X-ray crystal structure of ISOVAPOL (S)-197 and VANOL (R)-59

Normally, ISOVAPOL is purified by silica gel chromatography rather than crystallization. In the process of purification of the ISOVAPOL, a few crystals were formed serendipitously. The crystals were then subjected to the X-ray diffraction analysis. The ORTEP diagram of the crystal structure of ISOVAPOL (*S*)-197 is shown in Figure 5.5A. As was the case in the crystal structure of VAPOL (*S*)-58, the solid state form of ISOVAPOL (*S*)-197 lacks intermolecular hydrogen bonding that prevails for BINOL. The dihedral angle between the phenanthrene rings of the (*S*)-197 is 70.6°. It varies from 80.1° to 88.5° in the case of VAPOL. The dihedral angle is <90° corresponds to the cisoid conformation, which alters

the preferred packing motif. Also, as in the case of VAPOL, ²⁵ the hydroxyl groups are buried in the pocket created by the phenanthrene rings of the (*S*)-197. The steric repulsion of these phenanthrene groups inhibits possible hydrogen bonding. Similar observation was made with the X-ray crystal structure of VANOL (*R*)-59. Three conformations of the unit cell were observed with the dihedral angles 69.6°, 74.6°, 76.9° respectively (Figure 5.5B). This classifies VANOL (*R*)-59 to be a cisoid conformation and also, like VAPOL and ISOVAPOL, it lacks inter molecular hydrogen bonding.

Figure 5.5 (A) ORTEP drawing of X-ray crystal structure of (S)-197 and ORTEP drawing of crystal packing of (S)-197 along b-axis. (B) ORTEP drawing of X-ray crystal structure of all three conformations (in the unit cell) of (R)-59 and ORTEP drawing of crystal packing of (R)-59 along b-axis.

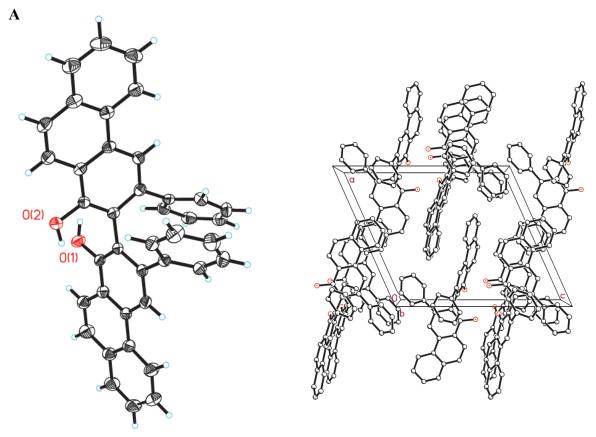
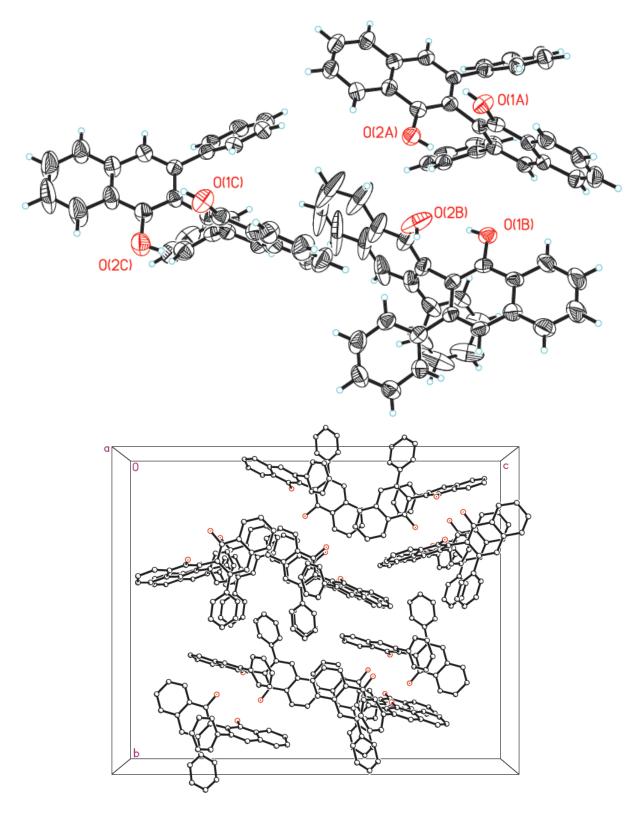



Figure 5.5 cont'd

B

It must be remembered that in the case of BINOL, hydrogen bonding occurs in both the enantiopure and racemic crystal structures. The dihedral angle between the naphthalenes of all known solid-state forms of BINOL is >90° which is referred to transoid conformation. The structure of BINOL is >90° which is referred to transoid conformation.

5.3 BINOL and its derivatives

Up till now, our efforts have revealed the very important role that BOROX catalysts have in chemistry of vaulted biaryl ligands. Thereafter, it was deemed important to examine the role that linear biaryl ligands can play in BOROX catalysis. Prior to the evolution of vaulted biaryl ligands, BINOL 55, a C2-symmetric linear biaryl ligand, has been widely used in a variety of asymmetric reactions. However, one of the major reasons for the ineffectiveness of BINOL in inducing high asymmetric inductions in many reactions is the positioning of the major groove directly opposite to the active site containing the phenol functions (Figure 5.6C). This led us to design a new family of vaulted biaryl ligands where there is a substantially larger pocket around the active site due to the relocation of the major groove (Figure 5.6C). Previous solutions to this limitation of BINOL involved enhancing the chiral pocket around the active site. This approach involves the introduction of the substituents at 3- and 3'- positions of BINOL thereby generating the new BINOL derivatives 56 (Figure 5.6C).

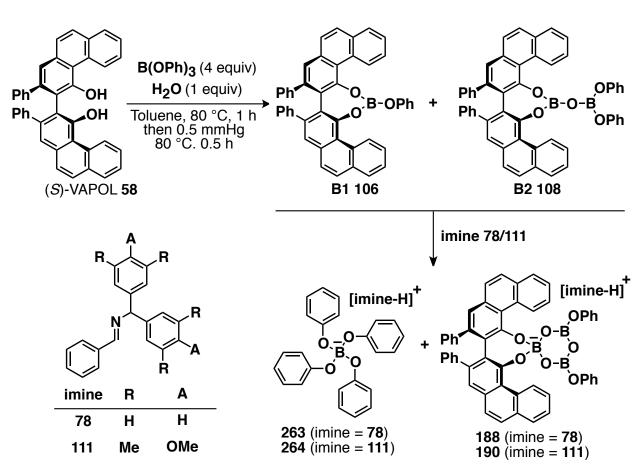
Figure 5.6 (**A**) Vaulted biaryl ligands (**B**) Linear biaryl ligands (**C**) Location of major and minor groove in vaulted and linear biaryl ligands.

A few of the most common structural types reported for borate esters of BINOL and its derivatives are shown in Scheme 5.4. The reaction of BINOL with 1 equiv of B(OPh)₃ has been

reported to give a compound for which the most probable structure was suggested to be the mesoborate **293** but other possible structures could not be excluded (Scheme 5.4A). This compound has been examined as a catalyst for Mannich and heteroatom Diels-Alder reactions of imines, 31,33 the heteroatom Diels-Alder reactions of aldehydes, 34 Diels-Alder reactions and aldol reactions. The reaction of BINOL with 0.5 equiv of B(OPh)₃ or B(OMe)₃ has been reported to give the spiroborate 20-H (Scheme 5.4A). As discussed in Chapter 4, the structure 20-H has been suggested to function as a chiral Lewis acid catalyst for a number of reactions including Mannich reactions, ^{33g,37} heteroatom Diels-Alder reactions of imines, ^{33g,38} and Pictet-Spengler reaction.³⁹ The catalytic function of **20**-H was proposed to be as a chiral Lewis acid where interaction with a Lewis base disrupts one of the boron-oxygen bonds to give the Lewis acid-Lewis base complex 71 (LB = imine) or 71' (LB = nitrone). 33g,39a It must be noted evidence was presented that this complex functions as a Brønsted acid catalyst in reactions with imines and as Lewis acid in reactions of nitrones (Chapter 4). There has been considerable interest in the chiral anion unit in 20-H and the sources of interest include use as a vehicle for the resolution of BINOL, 40 as a structural unit in solution and in the solid state, 41 as a chiral shift reagent, 42 and also as a chiral counterion catalyst in aziridination reactions, 43 in cyclopropanation reactions, 43 in Friedel-Crafts reactions, 44 in hydrogenations, 45 and in ringopening of meso aziridiniums.⁴⁴

Scheme 5.4 Common borate esters of (A) BINOL 55 and (B) BINOL derivatives 55 and 89

The intriguing propeller-like structure 297 was discovered by Kaufmann and Boese when they reacted BINOL with 1 equiv of BH₂Br•SMe₂ complex (Scheme 5.4A).³⁵ This bis-triaryl borate was isolated in nearly quantitative yield and contains a [6.6.6]-propellane unit composed of three units of BINOL and two borons and was characterized by X-ray diffraction. This complex has been shown to give high asymmetric inductions in Diels-Alder reactions as a chiral Lewis acid, however, as might be expected, the rates of reaction are quite slow. 35,46 A very similar structure **296** (an isomer of **297**) is reported by De-jun and coworkers (Scheme 5.4A). 47 This compound was also found to be composed of three units of BINOL and two borons and was characterized by NMR spectroscopy. It was reported to be formed due to the decomposition of the allyl-boronate **295** on being kept for several days. Another interesting structure that has been reported is the pyroborate 294, which was reported to form upon refluxing BINOL with 1.1 equiv of boric acid in toluene (Scheme 5.4A). The pyroborate **294** was characterized by combustion analysis and by IR spectroscopy and was used in the resolution of BINOL. The veracity of the structural assignment of 294 has been called into question as it has been reported that heating BINOL and 0.66 equiv of boric acid in benzene gives rise to the Kaufmann's propeller 297. 40a There are some examples of the borates derived from BINOL derivatives (Scheme 5.4B). In this case, perhaps the earliest and most widely used class of triaryl borates are those that have internal chelation of the boron to a quinone moiety. Kelly first prepared borates of the type 298 in 1986 for the purpose of effecting an asymmetric Diels-Alder reactions on naphthoquinones (Scheme 5.4B).⁴⁹ Also, the reaction between the BINOL derivative **89** and 1 equiv of B(OPh)₃ or B(OMe)₃ has been reported to give the fused-spiroborate 22-H (Scheme


5.4B and Chapter 4).⁵⁰ Similar to **20**-H, the structure **22**-H has been suggested to function as a chiral Lewis acid catalyst for asymmetric Diels-Alder reaction between dienes and enals/alkynals.⁵⁰

Gang Hu, one of the former group members, initiated the study of BINOL derived BOROX catalysts and this is summarized in Scheme 5.5B (method C).⁵¹ Analogous to the reaction of the vaulted ligand VAPOL (Scheme 5.5A), he obtained the borate species B2 299a/299b in major quantities (Scheme 5.5B) when BINOL 55 was subjected to the conditions optimized for the generation of B2 borate of VAPOL (ligand:B(OPh)₃:H₂O = 1:4:1, method C, Chapter 2). Although a single species, NMR and mass spectroscopic analysis could not distinguish between the alternatives structures of 299a and 299b. A mixture of B3 BOROX catalyst 300 (imine = 78) /301 (imine = 111) and spiroborate ion-pair 302 (imine = 78) /303 (imine = 111) was obtained upon the addition of 1 equiv of imine 78/111 to the species B2. It was suggested that, the presence of more than one catalytic species explains the low asymmetric induction (13-20% ee) obtained in the case of the aziridination reaction with imine 78a with BINOL as the ligand (Table 5.4, entries 1-2). When the conditions optimized for B1 (ligand:B(OPh)₃ = 1:1 or ligand:BH₃•Me₂S:PhOH = 1:1:1) were applied, Gang Hu found that a complex mixture of B1 293, B2 299a/299b and Kaufmann's propeller 297 was formed. A clean generation of B2 299a/299b was obtained employing B2 conditions on (ligand:BH₃•Me₂S:PhOH:H₂O = 1:2:3:1). In the absence of PhOH (ligand:BH₃•Me₂S = 1:1 or 1:0.5 or 1:0.66), Kaufmann's propeller **297** is observed as the primary product. Up till this point,

all the observations were made by Gang Hu. As the boroxinate involves three boron atoms, we then thought to use 3 equivalents of BH₃•Me₂S. As a part of this doctoral research, it was found that employing conditions (ligand:BH₃•Me₂S:PhOH:H₂O = 1:3:2:3) optimal for B3 generation also resulted in the formation of B2 as the major species prior to the addition of imine **111a** (Figure 5.12A, entry 4). Also, as a part of this doctoral research, the structure of **263/264** was deduced based on the X-ray analysis of similar compound (Chapter 4).

Scheme 5.5 BOROX catalysts from (A) (S)-VAPOL 58 and (B) (R)-BINOL 55

Scheme 5.5 cont'd

В

Later on, another former group member namely Li Huang, was able to obtain the BOROX catalyst in a clean fashion when employing 3,3'-Ph₂-BINOL derivative **56a** as the ligand. Also, a significant increase in asymmetric induction (75-76% ee) was observed when **56a** was used as the ligand in asymmetric aziridination relative to unsubstituted BINOL **55** (Table 5.5, entries 3-4). However, in 2011, Chen and coworkers reported a huge drop in enantioinduction (34% ee) when they performed the Wulff asymmetric aziridination reaction between EDA and imine **78x** derived from p-(methylsulfonyl)benzaldehyde and benzhydryl amine **126a** using the BOROX catalyst derived from ligand **56a** (Table 5.4, entry 3). In this case, it must be noted that the reaction was performed at -10 °C using B(OH)₃ as the boron source. In the search for more diversity in the BOROX catalyst, for increased mechanistic

understanding and for improvement in the aziridination with benzhydryl imines **78**, we decided to screen several BINOL derivatives of the type **56**. The synthesis of these ligands and their effect on the aziridination reaction is discussed below.

Table 5.4 AZ reaction with the catalysts derived from various ligands (Chen's work) ^a

#	Ligand	Cat	Yield ent-86x (%)	ee <i>ent-</i> 86x (%) ^c	cis:trans ^d
1	(R)-VAPOL 58	188x	92	84	>50:1
2	(R)-VANOL 59	189x	93	85	>50:1
3	(R)-3,3'-Ph ₂ -BINOL 56a	304x	85	34	>50:1
4	(<i>R</i>)- 3,3′-(9-anthracenyl) ₂ -BINOL 56i	305x	86	0	>50:1
5 ^e	(<i>R</i>)- 3,3′-(SiPh ₃) ₂ -BINOL 56g	306x	_	_	_
6 ^e	(<i>R</i> , <i>R</i>)- TADDOL 61a	307x	_	_	_

Unless otherwise specified, all reactions were performed with 1 mmol of imine 78x in toluene (0.5 M in imine 78x) with 1.1 equiv of 85 and 10 mol% of the catalyst at -10 °C. Isolated yield. Determined by HPLC. Ratio determined by integration of the methine protons of *cis* aziridine in the 1 H NMR spectrum of the crude reaction mixture. The reaction mixture was stirred at -10 °C for 18 h and then at 25 °C for another 18 h.

5.3.1 Preparation of BINOL derivatives

Based on both steric and electronic factors, we chose the five BINOL derivatives **56a**, **56d**, **56e**, **56f** and **56i** in our study (Scheme 5.7-5.9). Their syntheses all began with the protection of the hydroxyl units in BINOL by reaction with methyl iodide in the presence of a base. The resulting dimethoxy BINOL **258** was then treated with *n*BuLi to afford the bisortho-metalated intermediate, which was further reacted with I_2 or Br_2 to give **259**⁵⁶ or **308**^{49b,55} in high yields. Thereafter, BINOL derivatives **56d**⁵⁷ (R = Br) and **56e**⁵⁸ (R = I) were easily obtained by subsequent demethylation using BBr_3 (Scheme 5.7).

Scheme 5.6 Preparation of dimethoxy-BINOL 258

Scheme 5.7 Preparation of BINOL derivatives 56d (R = Br) and 56e (R = I)

Utilizing Kumada's coupling in the presence of Ni(PPh₃)₂Cl₂, BINOL derivatives $\bf{56a}^{49b,55}$ (R = Ph) and $\bf{56f}^{59}$ (R = TRIP) were prepared in good yields after demethylation of the coupled products (Scheme 5.8).

Scheme 5.8 Preparation of BINOL derivative (A) 56a (R = Ph) and (B) 56f (R = TRIP)

Finally, BINOL derivative **56i** (R = 9-phenanthryl) was prepared in 71% yield by Suzuki coupling of **259** with 9-phenanthryl boronic acid **311** in the presence of Pd(PPh₃)₄ (Scheme 5.9). During the time of this doctoral research, there was no synthesis documented for **56i** despite being a well-used ligand. Hence, we used the procedure reported for the analogous ligand **56j** (R = 9-anthracenyl). However, very recently, Gong and Hu reported the synthesis of **56i** using

the same strategy where they employed bis-MOM protected 3,3'-I₂-BINOL derivative instead of (R)-259.

Scheme 5.9 Preparation of BINOL derivative **56i** (R = 9-phenanthryl)

OMe OMe OMe OMe
$$\frac{1. \text{Pd}(\text{PPh}_3)_4, \text{ArB}(\text{OH})_2}{\text{Na}_2\text{CO}_3, \text{EtOH, rt, 12h}}$$

$$\frac{1. \text{Pd}(\text{PPh}_3)_4, \text{ArB}(\text{OH})_2}{\text{Na}_2\text{CO}_3, \text{EtOH, rt, 12h}}$$

$$\frac{2. \text{BBr}_3, \text{CH}_2\text{Cl}_2, \text{rt, 12h}}{71\%}$$

$$\frac{71\%}{311}$$

$$\frac{311}{311}$$

5.3.2 Screening of BINOL and its derivatives on aziridination reaction

The success of the BOROX catalyst derived from the 3,3'-Ph₂-BINOL derivative **56a** in the aziridination reaction (Table 5.5, entries 3-4) encouraged us to screen other substituted BINOL derivatives of type **56**. At the same period, Wipf and co-workers reported a screening of various 3,3' di-substituted BINOL derivatives for the Wulff catalytic asymmetric aziridination reaction. In their case, the optimized ligand was BINOL derivative **56b** ($R = 4-\beta$ -Np-C₆H₄), which gave results (Table 5.5, entry 6) similar to the simple phenyl derivative **56a** shown in entries 3 and 4 of Table 5.5. Interestingly, Wipf and coworkers never screened ligand **56a** (R = 1). Since this was a collaborative project, screening of ligands **56d**, **56g** and **56j** was carried out by Li Huang, a former group member. So, we decided to examine the effect of the electronic

and steric changes in the BINOL derivatives on the catalytic aziridination reaction. Ligands **56d** (R = Br) and **56e** (R = I) were used to probe the electronic effect. Both gave asymmetric inductions in the range of 50's (Table 5.4, entries 8 - 9).

Table 5.5 Asymmetric aziridination with the catalysts derived from various BINOL derivatives ^a

П	Га	h	حا	5	5	c	^1	1	٠,	A	ı
	la.	D	е	.)	.)	CO)I	וו		(1	ı

1 autc	J.J Cont a	Į.							
7	(R)- 56c	-}-	313a	A'	68	69	>50:1	-	P. Wipf ⁶²
8	(R)- 56d	∳-Br	314a	C	89	55	>50:1	4/3	L. Huang ⁵³
9	(R)- 56e	<u>-</u> }−I	315a	C	80	51	>50:1	6/6	This work
10 11 12	(R)- 56f		316a	A' C _ h	59 78 55	-1.3 -2.0 -0.4	>50:1 >50:1 >50:1	7/9 5/9 8/10	This work This work This work
13	(R)- 56g	₹SI	306a	С	80	1	>50:1	2/2	L. Huang ⁵³
14	(R)- 56h	-}-	317a	A'	63	58	>50:1	_	P. Wipf ⁶²
15	(R)- 56i	- 19-0	305a	С	50	13	15:1	10/11	This work
16	(R)- 56j	-3-	318a	C	75	3	25:1	13/10	L. Huang ⁵³

Unless otherwise specified, all reactions were performed with 1 mmol of imine **78a** in toluene (0.5 M in imine **78a**) with 1.2 equiv of **85** and 10 mol% of the catalyst at 25 °C. Method A: The pre-catalyst was prepared by heating 1 equiv of ligand with 3 equiv of commercial B(OPh)₃ in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Method A': The pre-catalyst was prepared by heating 1 equiv of ligand with 3 equiv of commercial B(OPh)₃ in CH₂Cl₂ at 55 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 55 °C. Method C: Same as Method A except 4 equiv of commercial B(OPh)₃ and 1 equiv of H₂O was used. Isolated yield. Determined by chiral HPLC. Ratio determined by integration of the methine protons of *cis* aziridine in the HNMR spectrum of the crude reaction

Table 5.5 cont'd

mixture. ^f Determined by integration of the NH signals of enamines relative to the methine proton of *cis*- and *trans*- aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^g Reaction was performed in CH₂Cl₂. ^h In this case, catalyst is directly generated by heating a mixture of 1 equiv of ligand **56f**, 4 equiv of commercial B(OPh)₃ and 10 equiv of imine **78a** in toluene at 80 °C for 0.5 h.

An analysis of the ligands screened by Wipf and co-workers revealed that no ligand was examined bearing an ortho substituted aryl ring at the 3,3′ positions. Therefore, we decided to screen ligand **56f** (R = TRIP). Unfortunately, it gave almost no induction irrespective of the method being used (Table 5.5, entries 10-12). This could be due to an inhibition of the formation of a boroxinate complex resulting for catalyst formation from steric hindrance from the ligand. This was further confirmed as a similar result was obtained when ligand **56g** (R = SiPh₃) was employed (Table 5.5, entry 13). Chen and coworkers reported no aziridine obtained in the case of the reaction between EDA and the imine **78x** derived from p-(methylsulfonyl)benzaldehyde and benzhydryl amine **126a** using the BOROX catalyst **306x** derived from ligand **56g** (Table 5.4, entry 5).

Although no ligand with an ortho-substituted aryl ring at the 3,3' positions was screened by Wipf and co-workers, they did screen ligand **56h** (R = 2-naphthyl) with meta-substitution that gave 58% ee (Table 5.5, entry 14). In order to validate the observation that ortho substitution would have a detrimental effect on asymmetric induction, we decided to screen ligands **56i** (R = 9-phenanthryl) and **56j** (R = 9-anthracenyl) and as expected, they gave diminished results possibly due to lack of formation of a BOROX catalyst (Table 5.5, entries 15-16). Additionally,

Chen and coworkers reported aziridine **86x** (Table 5.4, entry 4) in 86% yield and 0% ee obtained from reaction between EDA and the imine derived from p-(methylsulfonyl)benzaldehyde and benzhydryl amine **126a** using the BOROX catalyst **305x** derived from ligand **56j** (R = 9-anthracenyl).

As discussed earlier (Chapter 2), high asymmetric inductions were obtained in the case of the aziridination reaction mediated by the BOROX catalyst derived from vaulted ligands. Over the years, our aziridination reaction has been further optimized by the fine-tuning of the *N*-protecting group of imines. In the past, these protecting groups have been tested with BINOL as the ligand. With BINOL (*R*)-55, the maximum induction obtained was 67% with the BUDAM phenyl imine 112a (Table 5.6, entry 3). An increase in asymmetric induction was obtained for the imines 78a, 111a and 112a when ligand 56a was used to make the catalyst (Table 5.6, entries 4-6). Surprisingly, an asymmetric induction up to 90% was obtained with the BUDAM phenyl imine 112a when the boron source was switched from B(OPh)₃ to BH₃•Me₂S (Table 5.6, entry 9). However, no significant change was observed for the imines 78a and 111a.

Table 5.6 Aziridination with different N-protected Imines using (R)-55 and (R)-56a as ligands a

Table 5.6 cont'd

#	Cat	Ligand	Ar ₂ CH	Pre-cat. (met) ^b	Yield azi (%)	ee azi (%)	c:t e	Yield enamines (%)
1^{g} 2^{h} 3^{i}	300a 301a 319a	(R)-BINOL	Bh MEDAM BUDAM	A' C ^j A'	61 72 71	20 38 67	17:1 17:1 nd	13/9 14/10 nd
4	304a	(<i>R</i>)-3,3′Ph ₂ -BINOL	Bh	C	90	76	>50:1	4/6
5	320a		MEDAM	C	89	79	>50:1	2/6
6	321a		BUDAM	C	88	76	>50:1	4/8
7	304a	(R)-3,3'Ph ₂ -BINOL	Bh	D	89	76	50:1	4/7
8	320a		MEDAM	D	85	78	25:1	5/9
9	321a		BUDAM	D	90	90	>50:1	1/7

Unless otherwise specified, all reactions were performed with 1 mmol of imine in toluene (0.5 M in imine) with 1.2 equiv of **85** and 5 mol% of the catalyst at 25 °C. Method A': The pre-catalyst was prepared by heating 1 equiv of ligand with 3 equiv of commercial B(OPh)₃ in CH₂Cl₂ at 55 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 55 °C. Method C: The pre-catalyst was prepared by heating 1 equiv of ligand with 4 equiv of commercial B(OPh)₃ and 1 equiv of H₂O in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Method D: The pre-catalyst was prepared by heating 1 equiv of (S)-VAPOL, 3 equiv of BH₃•Me₂S, 2 equiv of PhOH and 3 equiv of H₂O in toluene at 100 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 100 °C. nd = not determined. Isolated Yield. Determined by HPLC. Ratio determined by integration of the methine protons of cis- and trans- aziridine in the ¹H NMR spectrum of the crude reaction mixture. Reference 1b. HNMR spectrum of the crude reaction mixture. Reference 1b. Reference 1b. Solonomy for the crude reaction mixture.

5.3.3 NMR studies on substrate induced BOROX catalyst formation from BINOL and BINOL derivatives by imine 209h

In order to gain an insight into the structures of various species, a detailed NMR study was carried out with imine 111h (derived from p-dimethylamino-benzaldehyde and MEDAM amine 126c). As discussed in Scheme 5.5, Gang Hu found that BINOL (R)-55 formed a mixture of BOROX catalyst 301h (imine = 111h), spiroborate ion-pair 303h (imine = 111h) and an unidentified complex 264h (imine = 111h) following the same protocol, which is employed for our vaulted ligands i.e. VAPOL and VANOL (Figure 5.7B, entry 7). This possibly explains the low asymmetric induction obtained with (R)-55 (Table 5.5, entries 1-3). As a part of this doctoral research, the structure of unidentified complex 264h was found to be a imine-borate complex 264h based on the X-ray analysis of a similar compound 244e in which DMAP is used as the base (Figure 4.14, Chapter 4, δ (¹¹B NMR) = 1.5–2.5 ppm). Although the NMR experiments with BINOL (R)-55 were performed by Gang Hu, the ¹H NMR spectra were neither reported nor analyzed in his dissertation. Hence, after obtaining the spectra from Gang Hu as a personal communication, a detailed critical analysis of these spectra was performed and is presented in Figure 5.7 (entries 1-7). It must be noted that B2 299a/299b is the major species in the presence of excess B(OPh)₃ prior to the addition of imine 111h (Figure 5.7B and 5.7C, entry 6). Also, the presence of spiroborate 303h was also identified during ¹H NMR analysis (Figure 5.7B and 5.7C, entry 5). Li Huang, a former group member has shown the clean generation of BOROX catalyst 323h when ligand 56a was used. Although the NMR experiments with ligand (R)-56a (Figure 5.7, entries 8-9) were performed by Li Huang, the ¹H NMR spectra were neither reported nor analyzed in her dissertation. Hence, after obtaining the spectra from Li Huang as a personal communication, a detailed critical analysis of these spectra was performed and is

presented in Figure 5.7 (entries 8-9). A careful ¹H NMR analysis reveal that the conversion of B2 322a/322b derived from 56a to BOROX catalyst 323h is small (Figure 5.7C, entries 8 and 9). This was further confirmed from the ¹¹B NMR where the ratio of tetra-coordinate boron: tri-coordinate boron is 1:6 instead of 1:2 (Figure 5.7B, entry 9). However, the chiral pocket of 323h might be good enough to provide increased enantioselectivity compared to catalysts derived from other BINOL derivatives.

Figure 5.7 (**A**) Treatment of (*R*)-**55** and (*R*)-**56a** with commercial B(OPh)₃ and imine **111h**. (**B**)^a ¹¹B NMR spectra of the reaction mixture in CDCl₃. (**C**) ¹H NMR spectra (aromatic region) corresponding to the ¹¹B NMR spectra in Figure 5.7B and entry 11 is pure (*R*)-**56a**. (**D**) ¹H NMR spectra (methyl and methoxy) corresponding to entries 2,5,7,9 and 10 in the ¹¹B NMR spectra in Figure 5.7B.

A [imine-H] [imine-H] imine 111h $B(OPh)_3$ OH CDCI₃ rt, 5 min **55** (R=H) **301h** (R=H) **323h** (R=Ph) **303h** (R=H) **56a** (R=Ph) **324h** (R=Ph) [imine-H] **MEDAM** Ar = 4-NMe₂-C₆H₄ 264h

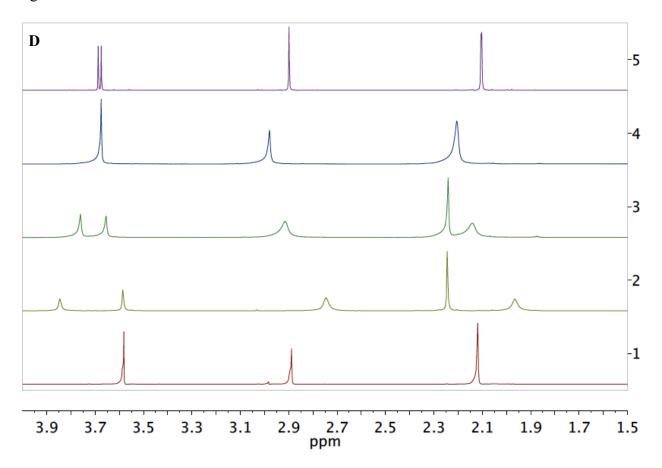



Figure 5.7 cont'd

a Note for Figure 5.7B: Entry 1: neat B(OPh)₃. Entry 2: commercial B(OPh)₃ plus imine 111h (1 equiv) for 5 min at 25 °C. Entry 3: pure BINOL (*R*)-55. Entry 4: (*R*)-55 (0.2 mmol) plus 0.5 equiv commercial B(OPh)₃ for 5 min at 25 °C. Entry 5: (*R*)-55 (0.2 mmol) plus 0.5 equiv commercial B(OPh)₃ plus imine 111h (0.5 equiv) for 5 min at 25 °C. Entry 6: (*R*)-55 (0.1 mmol) plus 4 equiv commercial B(OPh)₃ and 1 equiv H₂O were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Entry 7: 1.0 equiv of imine 111h was added to the entry 6 (pre-catalyst) for 10 min at 25 °C. Entry 8: same as entry 6 except (*R*)-56a is used instead of (*R*)-55. Entry 9: 1.0 equiv of imine 111h was added to the entry 8 (pre-

catalyst) for 10 min at 25 °C. Entry 10: (*R*)-**56a** (0.1 mmol) plus 3 equiv commercial B(OPh)₃ plus imine **111h** (1 equiv) for 10 min at 25 °C.

As a result of work in this thesis (Chapter 2), it was envisioned that the direct generation of the boroxinate catalyst 323h could be achieved without the generation of any pre-catalyst. Indeed, it was delightful to observe the generation of the boroxinate catalyst 323h in greater amounts by simple mixing 56a, commercial B(OPh)₃ and imine 111h at room temperature (Figure 5.7B and 5.7C, entry10). The ¹H NMR spectrum shows that there is no formation of B2 322a/322b under these conditions similar to that observed for VAPOL. Additionally, the splitting in the methyl and methoxy regions (Figure 5.7D, entry10) is also observed similar to cases involving vaulted ligand, VAPOL (Chapter 2). 1f Also, we have been able to perform the aziridination reaction with the BOROX catalyst 323h generated by simple mixing of the The result is comparable to that obtained by employing the BOROX catalyst components. generated via pre-catalyst (75% ee, Scheme 5.10 vs. 76% ee, Table 5.6, entries 4 and 7). While good inductions were observed in the aziridination reaction of imine 78a with the BOROX catalysts derived from the BINOL derivative 56a, lower enantioselectivities were obtained when B1 catalysts of type $74a^{51}$ and 92a (this work) were utilized (Scheme 5.10B).

Scheme 5.10 (A) One-pot aziridination with imine **78a** using (*R*)-**55** and (*R*)-**56a** as the ligands. (B) aziridination with **B1** catalysts.

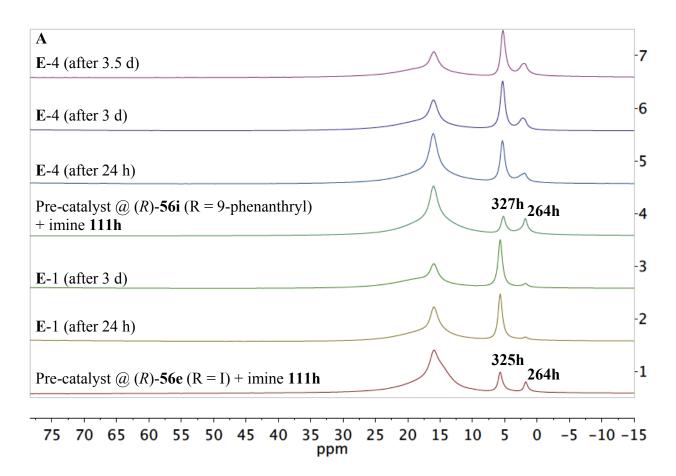
A

В

Ligand catalyst	solvent	Yield <i>ent-</i> 86a (%)	ee ent -86a (%)	cis:trans	Yield 87a(88a) (%)
(S)- 55 (S,S)- 74a (R)- 89 (R)- 92a	CH ₂ Cl ₂	47	40	2:1	24(23)
	Toluene	80	48	>100:1	6(8)

The focus was then shifted towards NMR studies of BOROX catalysts from BINOL derivatives of type **56** other than **56a**. A detailed NMR study was carried out for ligands **56e**, **56f**, **56i** and **56j** (Scheme 5.11). The results with ligands **56e** and **56i** are presented in Figure 5.5. **Scheme 5.11** NMR study of the BOROX catalysts using (*R*)-**56** as the ligand

$$\begin{array}{c} \text{[imine-H]}^{+} \\ \text{OH} \\ \text{OH$$


A careful NMR study shows that the boroxinate catalyst 325h was generated from ligand 56e (R = I) (Figure 5.8, entries 1-3). A very interesting observation was made in the case of BINOL derivative 56i. It must be remembered that only 13% ee was observed in the aziridination with a catalyst generated from 56i (Table 5.4, entry 15). A small amount of BOROX catalyst 327h was observed along with some amount of achiral borate imine complex 264h (Figure 5.8, entry 4). It seems like the formation of the catalyst 327h is slow as the absorption at δ (11 B NMR) \cong 5 ppm increases with longer time periods (Figure 5.8, entries 4-7). Additionally, the splitting of the methyl and methoxy absorptions is also observed similar to observations involving vaulted ligands (Figure 5.8B). Further, the characteristic peak (δ , 1 H NMR = 8.75-8.83 ppm, multiplet) of the ligand 56i was found to be shifted upfield to δ = 8.40 ppm, doublet (Figure 5.8C, entries 4-7). No spiroborate catalyst of the type 74a was observed in

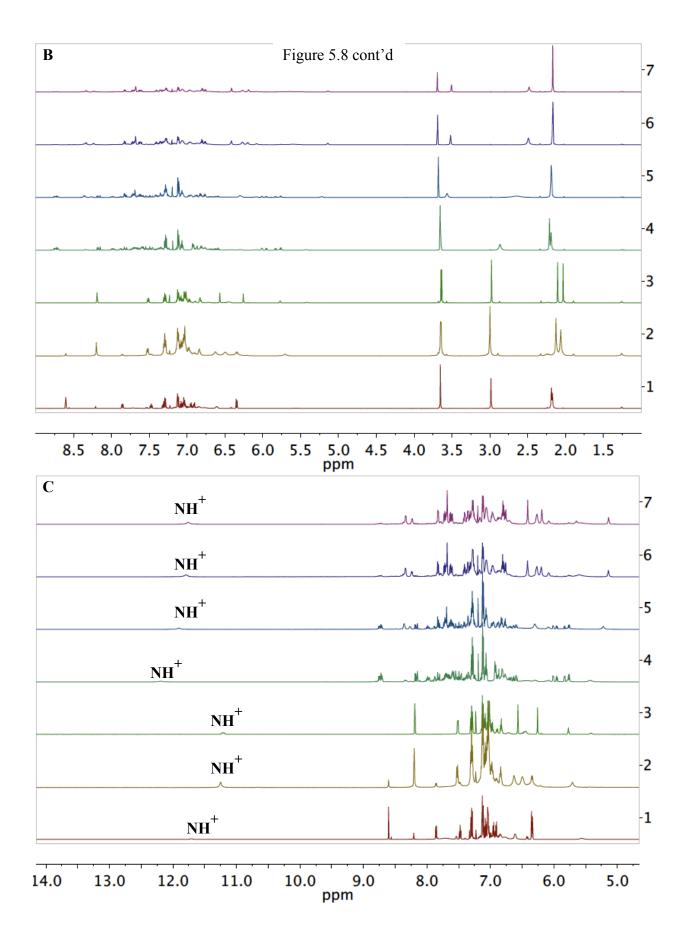
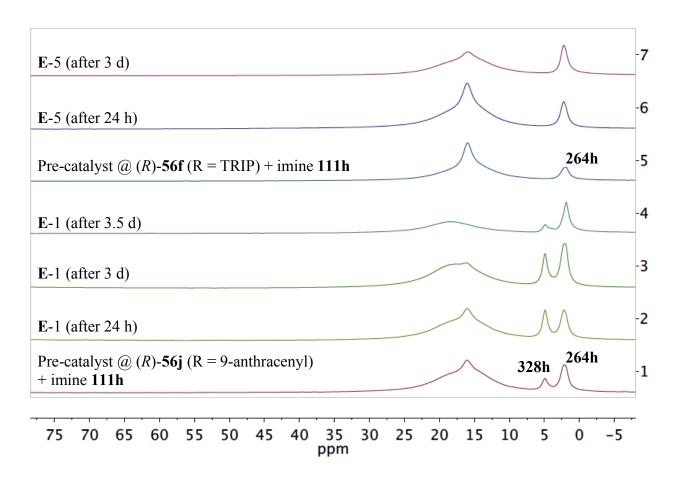

these cases due to the absence of an absorption at δ (11 B NMR) \cong 10 ppm. In most cases, a peak at $\delta \cong 11.7$ ppm was observed for the proton attached to the nitrogen of the iminium ion (Figure 5.8C). All observations made for ligand **56i** were also made for ligand **56e**. In the case of ligand **56e**, the characteristic peak (δ , 1 H NMR = 8.52 ppm, singlet) of the ligand **56i** was found to be shifted upfield to $\delta = 8.12$ ppm, singlet (Figure 5.8C, entries 1-3).

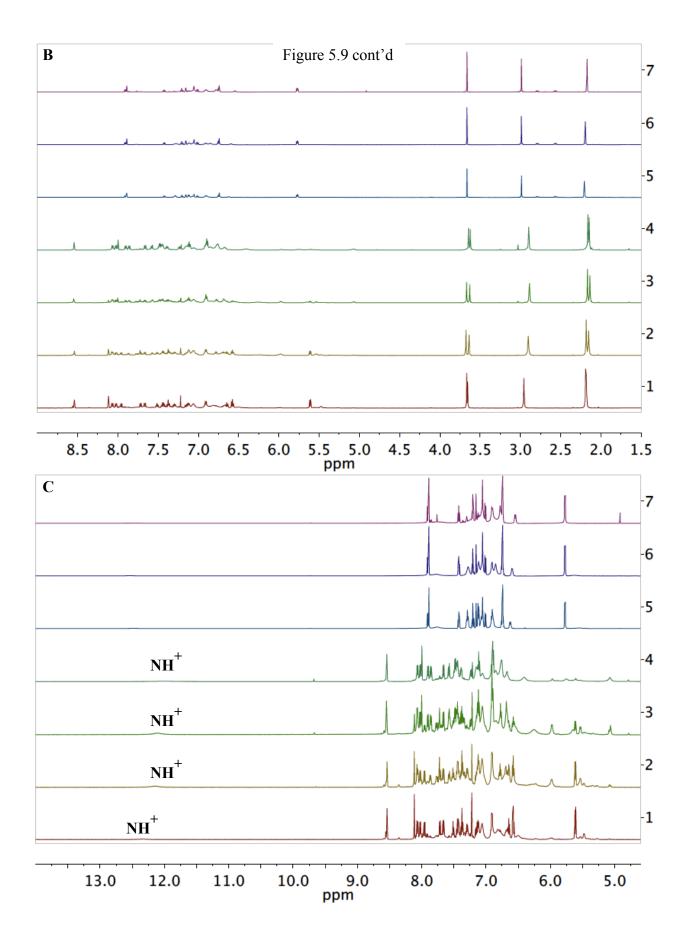
Figure 5.8 Treatment of (*R*)-56e and (*R*)-56i with commercial B(OPh)₃ and imine 111h. (A)^a

11 B NMR spectra of the reaction mixture in CDCl₃. (B) ¹H NMR spectra corresponding to the

11 B NMR spectra in Figure 5.8A. (C) ¹H NMR spectra showing the NH⁺ region corresponding to the ¹¹B NMR in Figure 5.8A.

a Note for Figure 5.8A: Entry 1: (*R*)-**56e** (0.1 mmol) plus 4 equiv commercial B(OPh)₃ and 1 equiv H₂O were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of imine **111h** was added at 25 °C. Entry 2 and 3: entry 1 after 24 h and 3 days respectively. Entry 4: (*R*)-**56i** (0.1 mmol) plus 4 equiv commercial B(OPh)₃ and 1 equiv H₂O were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of imine **111h** was added at 25 °C. Entry 5: entry 4 after 24 h. Entry 6: entry 1 after 3 days. Entry 7: entry 1 after 3.5 days.

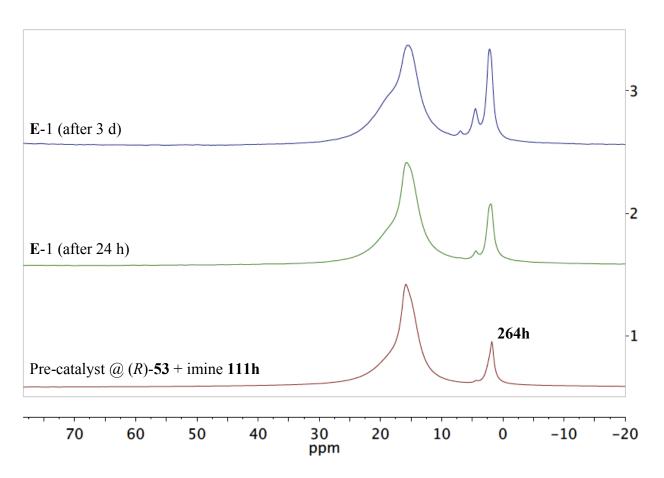

A small amount of BOROX catalyst **328h** and a large amount of the achiral borate-imine complex **264h** was observed when ligand **56j** (R = anthracenyl) was subjected to NMR analysis (Figure 5.9, entries 1-4). This could explain the low asymmetric induction in this case. In fact, a 78% yield of aziridine **86a** is obtained when imine **78a** is reacted with EDA in the presence of 40 mol% B(OPh)₃ only suggesting that the reaction is catalyzed by an achiral Brønsted acid of type **264a** [imine-H]⁺ [B(OPh)₄]⁻. In the case of ligand **56f** (R = TRIP), there was no sign of boroxinate catalyst. Instead, a lot of the achiral borate-imine complex **264h** was obtained which increased with time (Figure 5.9, entries 5-7). The NMR study of the boroxinate catalysts generated from BINOL derivatives **56** supports the results obtained in the Wulff catalytic asymmetric aziridination reaction (Figure 5.7-5.9 and Table 5.5).

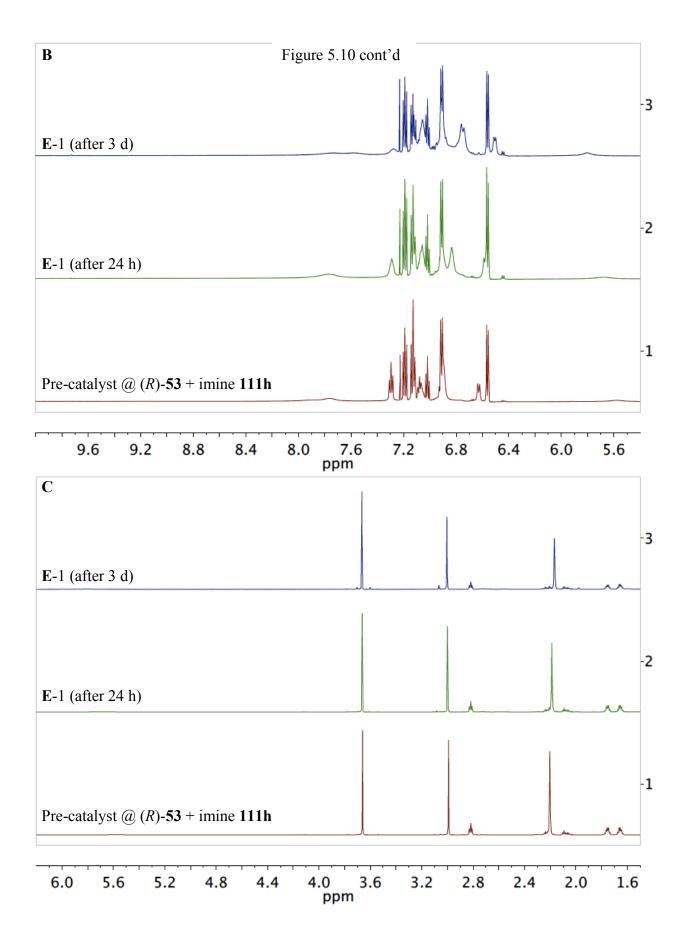

Figure 5.9 Treatment of (*R*)-56f and (*R*)-56j with commercial B(OPh)₃ and imine 111h. (A)^a

11B NMR spectra of the reaction mixture in CDCl₃. (B) ¹H NMR spectra corresponding to the

11B NMR spectra in Figure 5.9A. (C) ¹H NMR spectra showing the NH⁺ region corresponding to the ¹¹B NMR spectra in Figure 5.9A.

A

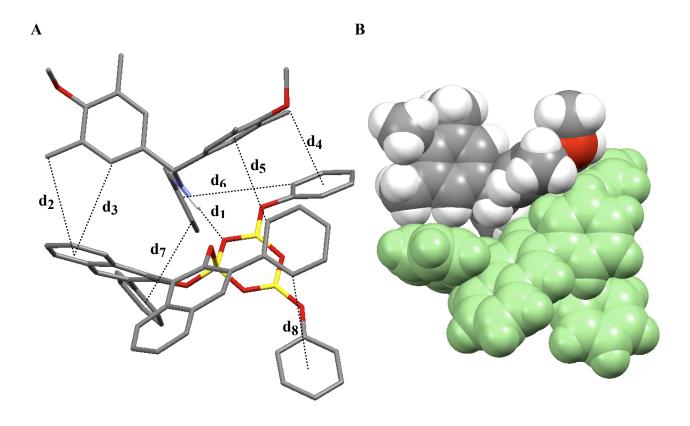



a Note for Figure 5.9A: Entry 1: (*R*)-**56j** (0.1 mmol) plus 4 equiv commercial B(OPh)₃ and 1 equiv H₂O were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of imine **111h** was added at 25 °C. Entry 2: entry 1 after 24 h. Entry 3: entry 1 after 3 days. Entry 4: entry 1 after 3.5 days. Entry 5: (*R*)-**56f** (0.1 mmol) plus 4 equiv commercial B(OPh)₃ and 1 equiv H₂O were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of imine **111h** was added at 25 °C. Entry 6: entry 4 after 24 h. Entry 7: entry 4 after 3 days.

We have observed that BINOL (*R*)-55 formed a mixture of BOROX catalyst 301h, spiroborate ion-par 303h, and achiral imine-borate complex 264h following the same protocol, which was employed for our vaulted ligands i.e. VAPOL and VANOL (Figure 5.7B, entry 7). The interesting question then arises as to whether H8-BINOL (*R*)-53 would give clean formation of boroxinate or not? Unfortunately, only the achiral borate-imine complex 264h was observed when the reaction of H8-BINOL (*R*)-53 with B(OPh)₃ and imine 111h was subjected to NMR analysis (Figure 5.10, entries 1-3). The achiral complex 264h increased with time and a very small amount of boroxinate catalyst was observed in the ¹¹B NMR spectrum after 3 days (Figure 5.10A, entry 3). It is interesting to notice the completely different behavior of H8-BINOL (*R*)-53 compared to BINOL (*R*)-55.

Figure 5.10 Treatment of (*R*)-53 and commercial B(OPh)₃ and imine 111h. (A) ¹¹B NMR spectra of the reaction mixture in CDCl₃. Entry 1: (*R*)-53 (0.1 mmol) plus 4 equiv commercial B(OPh)₃ and 1 equiv H₂O were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Thereafter, 1.0 equiv of imine 111h was added at 25 °C. Entry 2: entry 1 after 24 h. Entry 3: entry 1 after 3 days. (B) ¹H NMR spectra corresponding to the ¹¹B NMR spectra in Figure 5.10A. (C) ¹H NMR spectra showing the methyl and methoxy region corresponding to the ¹¹B NMR spectra in Figure 5.10A.

A



5.3.4 Calculated structure of BOROX catalyst 323a derived from 3,3'-Ph₂-BINOL 56a

We have observed many non-covalent interactions between the iminium ion and arene rings of the vaulted ligands with the aid of an X-ray crystal structure of the BOROX catalyst 190a generated from (S)-VAPOL and imine 111a (Figure 5.1C). 1f We were not able to obtain single crystals of 323a (imine = 111a and ligand = (S)-56a) suitable for X-ray analysis. In an attempt to gain an insight into the nature of any non-covalent interactions in the IMINO-BOROX 323a, computational methods were undertaken to explore its structure. Calculations were performed using Gaussian '03 at B3LYP/6-31g* level of theory. ²⁴ The calculated lowest energy structure is shown in Figure 5.11. Similar to the structure of 190a, there are many non-covalent interactions suggested by the calculated structure of 323a. In addition to the hydrogen bond (d_1 = 1.70 Å), there are several CH- π interactions: one is between one of the MEDAM methyl groups and one of the naphthalene rings ($d_2 = 4.42 \text{ Å}$) and another is between a methyl group on the other MEDAM ring and a phenyl ring from the phenol component ($d_4 = 4.30 \text{ Å}$). There are several other CH- π interactions including those between the ortho hydrogen on one aryl ring and the π -system of another aryl ring ($d_3 = 4.28 \text{ Å}$, $d_5 = 3.97 \text{ Å}$ and $d_6 = 4.58 \text{ Å}$). Another important interaction between the catalyst and the substrate is a π - π stacking interaction between the protonated iminium moiety and one of the phenyl rings at the 3,3' positions of the ligand ($d_7 =$ 3.75 Å). In addition, another π - π stacking interaction was found between one of the phenyl rings from the phenol component and the other phenyl ring at the 3,3' positions of the ligand (d_8 = 4.44 Å). These possible interactions suggest that the iminium is tightly bound in the chiral

pocket and this might be responsible for higher asymmetric induction observed for the ligand 56a (Table 5.5). However, it must be remembered that this is only a prediction for the catalyst substrate complex and does not represent a transition state for the aziridination reaction since the diazo compound is not involved.

Figure 5.11 Calculated structure of IMINO-BOROX catalyst **323a** using Gaussian '03. **(A)**^a Calculated B3LYP/6-31g* structure visualized by the Mercury Program (C, gray; O, red; N, blue; B, yellow; H, white). Hydrogen atoms omitted for clarity (except N-H). **(B)** Space-filling rendition of **323a** with the same orientation and showing hydrogens. The boroxinate anion is given in green and the iminium cation is in traditional colors.

^a Note for Figure 5.11A: Some secondary interactions are highlighted: $d_1 = 1.70$ Å (H-bonding), $d_2 = 4.42$ Å (CH-π), $d_3 = 4.28$ Å (CH-π), $d_4 = 4.30$ Å (CH-π), $d_5 = 3.97$ Å (CH-π), $d_6 = 4.58$ Å (CH-π), $d_7 = 3.75$ Å (CH-π or π-π stack), $d_8 = 4.44$ Å (CH-π or π-π stack).

5.4 Generation of BOROX catalyst 329 with BINOL 55 using DMSO as the base.

We have seen that DMSO is capable of generating the boroxinate catalyst in the case of vaulted ligands (Chapter 2). Hence, the thought was entertained as to whether or not DMSO would behave in a same manner with linear biaryl ligands. Meanwhile, another group member namely, Wynter Osminski found that a mixture of BINOL and commercial B(OPh)3 in the ratio of 2:1 in d₆-DMSO would generate the spiroborate **330** (Figure 5.12, entry 2). As a part of this work, we mixed one equiv of BINOL 55 with 3 equiv of commercial B(OPh)₃ in d₆-DMSO. Surprisingly, boroxinate 329 was observed as the major species with only a small amount of the spiroborate 330 (Figure 5.12, entry 3). This is in stark contrast to the use of imine as the base, which gives a mixture of spiroborate and boroxinate catalyst (Figure 5.7). An appreciable amount of the achiral [DMSOH]⁺[B(OPh)₄]⁻ complex **244f** was also observed (Figure 5.12, entry 3). Thereafter, we performed these experiments in CDCl₃ with 1-5 equivalents of DMSO. This was done to quantify the amount needed to generate the boroxinate catalyst using DMSO. It seems that at least 5 equivalents of DMSO is needed to drive the reaction in the forward direction towards the generation of boroxinate catalyst **329** (Figure 5.12, entries 5 and 6). must be noted that spiroborate 330 appears not to have been formed due to the lack of an absorption at δ (¹¹B NMR) \approx 10 ppm (Figure 5.12B, entry 6).

Figure 5.12 (**A**) Treatment of BINOL (*R*)-**55** and DMSO with different boron sources. (**B**)^{a 11}B NMR spectra of the reaction mixture. (**C**) ¹H NMR spectra corresponding to the ¹¹B NMR spectra in Figure 5.12B except that the entry 1 is pure (*R*)-**55** in d₆-DMSO.

B

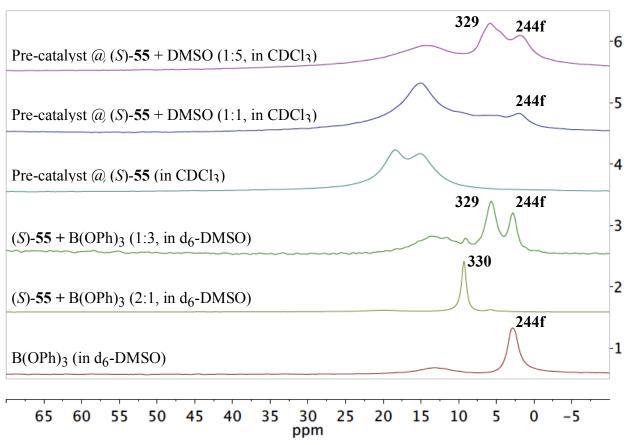
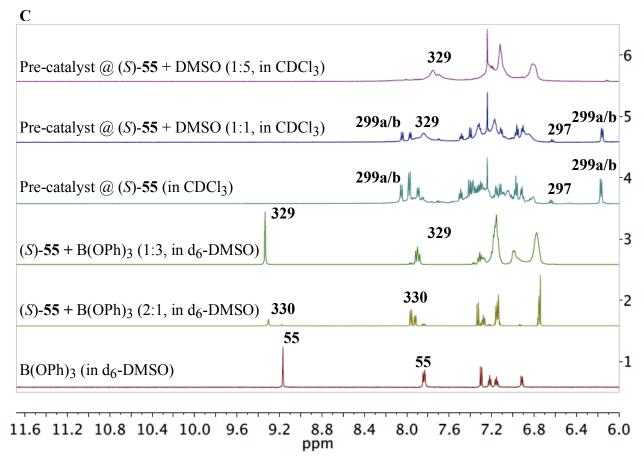



Figure 5.12 cont'd

a Note for Figure 5.12B: Entry 1: commercial B(OPh)₃ in d₆-DMSO. Entry 2: (*R*)-55 (0.1 mmol) plus 0.5 equiv commercial B(OPh)₃ stirred in d₆-DMSO (1 mL) for 1 h in presence of 150 mg 4Å Molecular Sieves. Entry 3: (*R*)-55 (0.1 mmol) plus 3 equiv commercial B(OPh)₃ stirred in d₆-DMSO (1 mL) for 1 h. Entry 4: (*R*)-55 (0.1 mmol) plus 3 equiv BH₃•Me₂S, 2 equiv of PhOH and 3 equiv H₂O were heated at 100 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. The NMR was taken in CDCl₃. Entry 5: 1.0 equiv of DMSO was added to entry 4 at 25 °C. Entry 5: 5.0 equiv of DMSO was added to entry 4 at 25 °C.

5.5 TADDOL and its effect on the Wulff catalytic asymmetric aziridination reaction

TADDOL is one of the most common chiral diols used in the field of asymmetric catalysis. Hence, we decided to screen TADDOL (R,R)-61a as a ligand substitute for VANOL or VAPOL for our aziridination reaction. Unfortunately, while aziridine 86a was obtained in 73% yield, no asymmetric induction was observed (Scheme 5.12).

Scheme 5.12 Aziridination with imine **78a** using (R,R)-**61a** as the ligand.

It is assumed that this result is due to the background reaction. A 78% yield of aziridine **86a** is obtained when imine **78a** is reacted with EDA in the presence of 40 mol% B(OPh)₃ only suggesting that the reaction is catalyzed by an achiral Brønsted acid of type **264a** [imine-H]⁺ $[B(OPh)_4]^-$. The result with TADDOL (R,R)-**61a** was further supported by NMR analysis that failed to detect any boroxinate with TADDOL (R,R)-**61a** when imine **111h** was added (Figure

5.13, entry 3). No change was observed even after 12 h (Figure 5.13, entry 4). The only tetracoordinate species observed is the achiral [imine-H]⁺ [B(OPh)₄]⁻ **264h**.

Figure 5.13 Treatment of (R,R)-61a and commercial B(OPh)₃ with imine 111h. (A) ¹¹B NMR spectra of the reaction mixture in CDCl₃. Entry 1: pure B(OPh)₃. Entry 2: (R,R)-61a (0.1 mmol) plus 4 equiv commercial B(OPh)₃ and 1 equiv H₂O were heated at 80 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Entry 3: 1.0 equiv of imine 111h was added to the entry 3 (pre-catalyst) for 10 min at 25 °C. Entry 4: entry 3 after 12 h. (B) ¹H NMR spectra corresponding to the ¹¹B NMR spectra in Figure 5.13A expect that the entry 1 is pure (R,R)-61a.

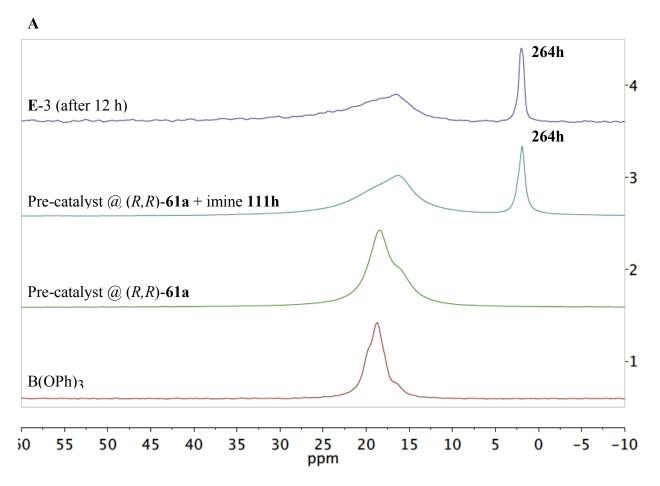
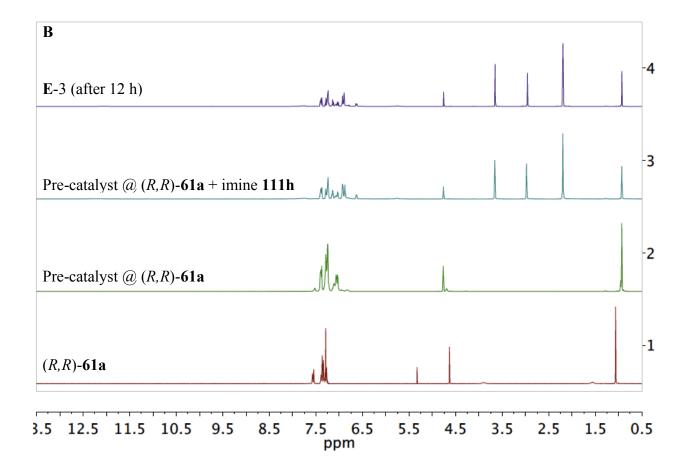



Figure 5.13 cont'd

It must be noted that Chen and coworkers reported no aziridine **86x** (not shown) from reaction between EDA and imine derived from p-(methylsulfonyl)benzaldehyde and benzhydryl amine **126a** using the catalyst **307x** derived from TADDOL (R,R)-**61a**, B(OH)₃ and PhOH. ⁵⁴ In this case, they performed the reaction at -10 °C (see Table 5.4, entry 6).

5.6 Conclusions

The diversity of the novel BOROX catalysts was explored by altering the chiral diol component in the boroxinate catalyst. In the process, a potentially inexpensive ligand ISOVAPOL 197 was developed and was found to be equally efficient as the other vaulted ligands that have been evaluated for the Wulff aziridination reaction. Also, linear biaryl ligands were screened for the first time. BINOL 55 and BINOL derivatives 56 generated boroxinate catalysts in various amounts depending on the sterics and electronics of the substituents at the 3,3′ positions. A detailed NMR study helped to reveal the favorable and unfavorable conditions for generation of the BOROX catalyst. Hopefully, the information gained from the experiments described in this chapter will help in designing new catalytic systems for other asymmetric reactions.

APPENDIX

5.7 Experimental

5.7.1	General information	395
5.7.2	Synthesis of imines 78, 110a, 111a, 111h and 112a	395
5.7.3	Synthesis of ISOVAPOL (S)-197 (Scheme 5.2 and 5.3)	400
5.7.4	Synthesis of aziridines 86, 113a, 114a and 115a using (S)-ISOVAPOL and (R)-VAN	NOL
(Table	5.1, 5.2 and 5.3)	406
5.7.5	NMR analysis of a mixture of VANOL, B(OPh) ₃ , and imine 111a (Figure 5.3)	415
5.7.6	NMR analysis of a mixture of ISOVAPOL, B(OPh) ₃ , and imine 111a (Figure 5.3)	417
5.7.7	Synthesis of BINOL derivatives 258 , 259 , 308 , 56a , 56d-f and 56i (<i>Scheme 5.6-5.9</i>)	417
5.7.8	Asymmetric aziridination with BINOL 55, BINOL derivatives 56 and TADDOL	61a
(Table	5.4-5.6 and Scheme 5.12)	428
5.7.9	One-Pot asymmetric aziridination with 3,3'-Ph ₂ -BINOL (R)-56a and aziridination	with
B1 cata	alyst (R)- 92a (Scheme 5.10)	431
5.7.10	NMR analysis of a mixture of B(OPh) ₃ , imine 111h and BINOL 56a (<i>Figure 5.7</i>)	433
5.7.11	NMR analysis of a mixture of B(OPh) ₃ , imine 111h with BINOL derivatives (<i>R</i>)-5	6 or
H8-BI	NOL (R)-53 or TADDOL (R,R)-61a (Figure 5.8-5.10 and 5.13)	434
5.7.12	NMR analysis of a mixture of B(OPh) ₃ , DMSO and BINOL (<i>R</i>)-55 (<i>Figure 5.12</i>)	435
5 7 13	DFT calculations	437

5.7.1 General Information

Same as Chapter 2.

5.7.2 Synthesis of imines 78, 110a, 111a, 111h and 112a

General Procedure for the synthesis of aldimines – Illustrated for the synthesis of *N*-benzylidene-1,1-diphenylmethanamine 78a.

N-benzylidene-1,1-diphenylmethanamine 78a: To a 50 mL flame-dried round bottom flask filled with argon was added benzhydryl amine 126a (0.92 g, 5.00 mmol), MgSO₄ (1.0 g, 8.4 mmol, freshly flame-dried) and dry CH₂Cl₂ (15 mL). After stirring for 10 min, benzaldehyde 127a (0.54 g, 5.05 mmol, 1.01 equiv) was added. The reaction mixture was stirred at room temperature for 24 h. The reaction mixture was filtered through Celite and the Celite bed was washed with CH₂Cl₂ (10 mL × 3) and then the filtrate was concentrated by rotary evaporation to give the crude imine as an off-white solid. Crystallization (1:5 ethyl acetate/hexanes) and collection of the first crop afforded 78a as white solid crystals (mp. 99-101 °C) in 80% isolated yield (1.09 g, 4 mmol).

Spectral data for **78a**: ¹H NMR (CDCl₃, 300 MHz) δ 5.64 (s, 1H), 7.20-7.90 (m, 15H), 8.46 (s, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 77.62, 126.69, 127.40, 128.15, 128.19, 128.24, 130.47, These spectral data match those previously reported for this 136.07, 143.64, 160.48. $compound.^{1a}\\$

Imine 78d was prepared according to the procedure described above for imine **78a**. Crystallization (1:5 ethyl acetate/hexanes) and collection of the first crop afforded 78d as white solid

78d:

N-(4-methylbenzylidene)-1,1-diphenylmethanamine

crystals (mp. 73-74 °C) in 80% isolated yield (1.14 g, 4 mmol).

Spectral data for **78d**: ¹H NMR (CDCl₃, 300 MHz) δ 2.44 (s, 3H), 5.64 (s, 1H), 7.26-7.48 (m, 12H), 7.80 (d, J = 8 Hz, 2H), 8.45 (s, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 21.50, 76.57, 126.89, 127.66, 128.38, 128.41, 129.21, 133.88, 141.01, 143.98, 160.67. These spectral data match those previously reported for this compound. 1a

mmol).

N-(4-methoxybenzylidene)-1,1-diphenylmethanamine Imine 78e was prepared according to the procedure described above for imine **78a**. Crystallization (1:5 ethyl acetate/hexanes) and collection of the first crop afforded 78e as white solid crystals (mp. 108-109 °C) in 80% isolated yield (1.21 g, 4

Spectral data for **78e**: 1 H NMR (CDCl₃, 300 MHz) δ 3.82 (s, 3H), 5.55 (s, 1H), 6.91 (d, J = 8.8 Hz, 2H), 7.28-7.40 (m, 10H), 7.78 (d, J = 8.8 Hz, 2H), 8.34 (s, 1H); 13 C NMR (CDCl₃, 75 Hz) δ 55.32, 77.77, 113.88, 126.85, 127.67, 128.37, 129.99, 144.11, 160.01. These spectral data match those previously reported for this compound. 1a

N-(4-bromobenzylidene)-1,1-diphenylmethanamine 78g:
Imine 78g was prepared according to the procedure described above for imine 78a. Crystallization (1:5 ethyl acetate/hexanes) and collection of the first crop afforded 78g as white solid crystals (mp. 96-97 °C) in 75% isolated yield (1.31 g, 3.75 mmol).

Spectral data for **78g**: 1 H NMR (CDCl₃, 300 MHz) δ 5.23 (s, 1H), 7.15-7.35 (m, 10H), 7.47 (d, J = 7 Hz, 2H), 7.64 (d, J = 7 Hz, 2H), 8.28 (s, 1H); 13 C NMR (CDCl₃, 75 Hz) δ 77.85, 127.05, 127.60, 128.46, 129.84, 131.75, 143.62, 159.51. These spectral data match those previously reported for this compound. 1 a

N-(cyclohexylmethylene)-1,1-diphenylmethanamine 78v: Imine **78v** was prepared according to the procedure described above for imine **78a**. Crystallization (1:5 ethyl acetate/hexanes) and collection of the first crop afforded **78v** as white solid crystals (mp. 49-51 °C) in 70% isolated yield (0.97 g, 3.5 mmol).

Spectral data for **78v**: 1 H NMR (CDCl₃, 300 MHz) δ 1.10-1.90 (m, 10H), 2.20 (bs, 1H), 5.21 (s, 1H), 7.00-7.60 (m, 10H), 7.59 (d, J = 5.5 Hz, 1H); 13 C NMR (CDCl₃, 75 Hz) δ 25.82, 26.41, 30.13, 43.91, 78.35, 127.20, 127.97, 128.73, 144.41, 169.51. These spectral data match those previously reported for this compound. 1 a

78w

N-(2,2-dimethylpropylidene)-1,1-diphenylmethanamine 78w: Imine 78w was prepared according to the procedure described above for imine 78a. Crystallization (1:9 ethyl acetate/hexanes) and collection of the first crop afforded 78w as white solid crystals (mp. 51-52 °C) in 50% isolated yield (0.63 g, 0.25 mmol).

Spectral data for **78w**: 1 H NMR (CDCl₃, 300 MHz) δ 1.27 (s, 9H), 5.50 (s, 1H), 7.34 (t, J = 7 Hz, 2H), 7.44 (t, J = 7 Hz, 4H), 7.49 (d, J = 7 Hz, 4H), 7.85 (s, 1H); 13 C NMR (CDCl₃, 75 Hz) δ 26.94, 36.38, 77.36, 126.68, 127.44, 128.25, 144.23, 171.48. These spectral data match those previously reported for this compound. 1 a

N-benzylidene-bis(4-methoxyphenyl)methylamine 110a: See Chapter 2

N-phenylmethylidene-bis(4-methoxy-3,5-dimethylphenyl)methylamine 111a: See Chapter 2
N-benzylidene-1,1-bis(3,5-di-tert-butyl-4-methoxyphenyl)methanamine 112a: See Chapter 2

N-(4-dimethylaminobenzylidene)-bis(4-methoxy-3,5-dimethylphenyl)methylamine 111h: Imine 111h was prepared according to the procedure described above for imine 78a except following differences: (1) the scale of the reaction was 10 mmol; (2) 4 Å molecular sieves (6

g, freshly dried) were used instead of MgSO₄; (3) 1.03 equiv of aldehyde was used; (4) the reaction time was 1 week (the reaction was followed by ¹H NMR). Crystallization (1:3 EtOAc/hexanes) and collection of the first crop afforded **111h** as yellow solid crystals (mp 167-169 °C) in 51% isolated yield (2.20 g, 5.10 mmol).

Spectral data for **111h**: 1 H NMR (CDCl₃, 300 MHz) δ 2.25 (s, 12H), 3.00 (s, 6H), 3.68 (s, 6H), 5.30 (s, 1H), 6.69 (d, J = 9.0 Hz, 2H), 7.00 (s, 4H), 7.70 (d, J = 9.0 Hz, 2H), 8.24 (s, 1H); 13 C NMR (CDCl₃, 75 MHz) δ 16.21, 40.26, 59.59, 77.30, 111.83, 125.37, 128.16, 129.93, 130.44, 134.00, 152.36, 155.96, 160.09; IR (thin film) 2926w, 2824w, 1636w, 1606s, 1526 m cm⁻¹; Mass spectrum (NPOE, +FAB): m/z (% rel intensity) 430 M⁺ (52), 283 (100). Anal calcd for C₂₈H₃₄N₂O₂: C, 78.10; H, 7.96; N, 6.51; Found: C, 77.98; H, 8.17; N, 6.90. These spectral data match those previously reported for this compound. 1 f

5.7.3 Synthesis of ISOVAPOL (S)-197 (Scheme 5.2 and 5.3)

5.7.3.1 Preparation of ISOVAPOL monomer 285:

3-phenylphenanthren-1-ol 284: To a 250 mL flame-dried round bottom flask equipped with a large stirrer bar and a condenser filled with argon was added 1-naphthylacetic acid 284 (14.23 g, 76.42 mmol) and thionyl chloride (20 mL, 274 mmol). The mixture was heated to reflux for 1 h (oil bath temperature: 90 °C), and then all of the volatiles were carefully removed by high vacuum (0.5 mmHg) with 2nd trap to protect the pump. To the flask containing the resulted brown oil was added phenylacetylene 270 (11.00 mL, 100.2 mmol) and isobutyric anhydride 271 (25.00 mL, 146.2 mmol) under argon, and the resulting mixture was heated and stirred at 190 °C for 48 h with gentle nitrogen flow across top of the condenser. The brown reaction mixture was cooled down to below 100 °C (about 80 °C, oil bath temperature), and then 4.5 N KOH (100 mL) was added. The reaction was then allowed to stir at 100 °C (oil bath temperature) for 15 h. The brown solution was then cooled to room temperature and ether (100 mL) was added and stirred for 10 min. The organic layer was separated. The aqueous layer was extracted twice with ether (100 mL × 2) and the combined organic layer was washed with brine (100 mL) and dried over MgSO₄, filtered. The dark-colored solution (crude product) was then combined with silica

gel (100 mL). A piece of cotton was inserted into the neck of the trap of the rotary evaporator before removing the solvents. Both the flask and trap was then put on high vacuum (0.5 mm Hg) for 30 min. A silica gel chromatography column (60×350 mm) was prepared by filling the column with hexanes followed by the addition of the silica gel slurry in hexanes. The dried silica gel with the pre-adsorbed crude product was then loaded onto the column carefully. The column was then eluted with a 1:2 mixture of CH₂Cl₂/hexanes under gravity for approximately 6 h. A void volume of about 700 mL was collected and discarded. A second fraction was collected containing the first byproduct **286** (1.66 g, $R_f = 0.71$ in 1:3 EtOAc: hexane, orange, mp. 82-84 °C) indicated by TLC. It was followed by second byproduct **287** (1.44 g, $R_f = 0.68$ in 1:3 EtOAc: hexane, red, the structure is not known). When the byproducts had finished eluting, elution was continued under N₂ pressure (1:1 CH₂Cl₂/hexanes) to afford the pure monomer **285** as a yellow solid (mp. 177-178 °C) in 26-30 % yield (5.47-6.19 g, 19.9-22.9 mmol)

Spectral data for **285**: $R_f = 0.65$ (1:3 EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 5.37 (s, 1 H), 7.2 (s, 1 H), 7.41-7.38 (m, 1 H), 7.49 (t, 2 H, J = 7.3 Hz), 7.66-7.58 (m, 2 H), 7.75-7.73 (m, 3 H), 7.89 (d, 1 H, J = 7.8 Hz), 8.13 (d, 1 H, J = 9.0 Hz), 8.72 (d, 1 H, J = 8.1 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 110.12, 114.144, 119.76, 121.06, 123.15, 126.26, 126.62, 126.84, 127.49, 127.54, 128.70, 128.89, 130.20, 132.08, 132.48, 139.74, 141.32, 152.23; IR (KBr disc) 3521 s, 3059 w, 1619 w, 1601 m, 1569 w, 1405 w, 1277 w, 1227 w, 1152 w, 1138 m, 1076 m, 821 m, 749 s cm⁻¹; Mass spectrum m/z (% rel intensity) 270 (100) M⁺, 241 (27), 165 (11), 135 (19), 120 (22), 77(10); Anal calcd for $C_{20}H_{14}O$: C, 88.86; H, 5.22; Found: C, 88.84; H, 5.21.

Spectral data for **286**: R_f = 0.71 in 1:3 EtOAc: hexane; ¹H NMR (CDCl₃, 600 MHz) δ 7.00-7.03 (m, 2H), 7.05-7.07 (m, 2H), 7.31 (dd, J = 7.0, 1.0 Hz, 1H), 7.36 (dd, J = 12.4, 1.8 Hz, 2H), 7.39-7.43 (m, 2H), 7.45 (td, J = 7.6, 1.3 Hz, 1H), 7.47-7.50 (m, 4H), 7.70-7.74 (m, 3H), 7.83 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H); ¹³C NMR (CDCl₃, 151 MHz) δ 112.89, 121.32, 123.76, 125.54, 125.68, 126.30, 126.56, 126.87, 127.12, 127.53, 127.63, 128.50, 128.75, 128.83, 128.86, 129.86, 132.05, 132.36, 133.75, 140.47, 141.12, 142.26, 143.66, 153.88; IR (thin film) 3532 br, 3059 w, 1614 w, 1599 m, 1569 w, 1496 w, 1390 m, 1298 m, 1172 m cm⁻¹; HRMS (ESI-TOF) m/z 395.1405 [(M+Na⁺); calcd. for C₂₈H₂₀ONa : 395.1412]

5.7.3.2 Preparation of racemic ISOVAPOL rac-197 and (S)-ISOVAPOL (S)-197:

3,3'-diphenyl-2,2'-biphenanthrene-1,1'-diol *rac-***197:** To a 500 mL three-neck round bottom flask equipped with a stir bar and a 400 mm Allihn water cooled condenser was added 3-phenylphenanthren-1-ol **285** (4.02 g, 14.9 mmol) and light mineral oil (25 mL). The flask was

transferred to oil bath at 190 °C. The stir bar in the oil bath was stopped before the flask was put into it to warm up for about 30 min till solid melted without any disturbance. A thick needle was introduced into the flask *via* the second neck to about 5 cm above the surface of reaction mixture and was used to provide a stream of house air, which was maintained at a flow rate of 0.15 – 0.20 L/min. The third neck was sealed with a rubber septum. Air flow was then introduced into the flask with a vigorous stirring of the reaction mixture. The reaction was kept at same temperature for 36 h. The flask was then cooled down to ambient temperature followed by the addition of hexanes (250 mL). The mixture was then stirred for 30 min. It was then kept at –20 °C for 12 h followed by suction filtration. It was then dried on high vacuum (0.5 mm Hg) for 2 h to afford the crude product as a yellow powder.

Purification by Crystallization: The crude product was then transferred to a 500 mL round bottom flask equipped with a condenser. The residue was rinsed with toluene (50 mL × 2) and transferred to the 500 mL round bottom flask. The resulted mixture was stirred and heated to boil while more toluene was added in 50 mL fraction till solid dissolved. The dark-brown solution was then cooled down to room temperature and kept at -20 °C overnight. The top solution was filtered without disturbing the precipitate over vacuum. A piece of new filter paper was then used to collect the brown crystal *via* suction filtration, washed by hexanes (20 mL × 2) and dried over vacuum to afford the first crop product *rac*-197 as an off- white solid (mp. 312-313 °C) in 50% yield (2.00 g, 3.73 mmol). The mother liquor was dried and the residue was crystallized in toluene (150mL) and cooled down to room temperature for 12 h followed by -20 °C overnight to afford second crop product *rac*-197 as an off-white solid (mp. 312-313 °C) in 20% yield (0.8 g, 1.49 mmol). The combined yield was 70% (2.80 g, 5.22 mmol).

Spectral data for rac-197: $R_f = 0.33$ (1:9 EtOAc/hexanes) 1 H NMR (CDCl₃, 300 MHz) δ 5.85 (s, 2 H), 6.73 (d, J = 7.1 Hz, 4H), 6.99 (t, J = 7.4 Hz, 4H), 7.06-7.11 (m, 2H), 7.59-7.65 (m, 4H), 7.83 (d, J = 9.1 Hz, 2H), 7.92-7.97 (m, 2H), 8.17 (s, 2H), 8.30 (d, J = 9.1 Hz, 2H), 8.58-8.62 (m, 2H); 13 C NMR (DMSO, 125 MHz) δ 114.98, 119.37, 121.15, 121.25, 123.15, 125.12, 126.16, 126.61, 126.64, 126.96, 128.31, 128.90, 129.63, 130.27, 131.70, 141.48, 141.68, 152.38; IR (KBr disc) 3521 vs, 3468 vs, 3059 w, 1616 w, 1594 m, 1566 w, 1509 w, 1482 w, 1393 m, 1362 m, 1253 m, 1224 s, 1195 w, 1141 m, 1076 w, 931 w, 866 w, 823 s, 752 s, 700 s cm⁻¹; Mass spectrum m/z (% rel intensity) 538 (44) M⁺, 537 (23), 370 (15), 269 (76), 241 (78), 231 (100), 215 (44), 77(2). Anal calcd for $C_{40}H_{26}O_2$: C, 89.19; H, 4.87; Found: C, 89.17; H, 4.89.

(S)-3,3'-diphenyl-2,2'-biphenanthrene-1,1'-diol (S)-197: To a 50 mL round bottomed flask was added CuCl (155 mg, 1.60 mmol), (-)-sparteine (760 mg, 3.20 mmol) and MeOH (30 mL). The reaction mixture was open to air and sonicated in an ultrasonic water bath for 0.5 h to afford a deep green solution. The flask was then sealed with a rubber septum and deoxygenated by purging with argon for 1 h (30 min in the solution and 30 min above the solution). To another 500 mL round bottomed flask equipped with a stir bar was added rac-197 (500 mg, 1.14 mmol) and CH₂Cl₂ (120 mL). The solution was purged with argon for 1 h as well (30 min in the solution and 30 min above the solution). The prepared Cu-sparteine complex solution was then transferred through a cannula to the solution of rac-197. The mixed solution was then sonicated for 10 min and the flask was then covered with aluminum foil and allowed to stir at room temperature under slow constant flow of argon for 3 h. To the reaction mixture was added saturated NaHCO₃ solution (10 mL) and the resulting mixture was stirred for 5 min. The

mixture was then poured into a 500 mL separatory funnel with water (50 mL). The aqueous layer was then extracted with CH_2Cl_2 (50 mL × 3). The combined organic layer was dried over anhydrous Na_2SO_4 . The solution was then filtered through a short plug of dry silica gel (40 × 50 mm column) which was flushed with CH_2Cl_2 (100 mL) to give a light yellow solution with the Cu residue remaining on the top. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 30 min to afford the crude product as a dark yellow solid. Purification of the crude product by silica gel chromatography (40 mm × 300 mm column, 9:1 hexanes / EtOAc as eluent, dry loading) afforded pure (S)-ISOVAPOL 197 as an orange solid (mp. 315-316 °C) in 95% yield (474 mg, 1.08 mmol). The optical purity of 197 was determined to be greater than 99% ee by HPLC analysis (Pirkle D-phenylglycine column, 75:25 hexane/iPrOH at 260nm, flow-rate: 2.0 mL/min). Retention times; $R_t = 20.01$ min ((S)-ISOVAPOL 197) and $R_t = 22.05$ min ((R)-ISOVAPOL 197).

Spectral data for (*S*)-**197**: $R_f = 0.33$ (1:9 EtOAc/hexanes) ¹H NMR (CDCl₃, 300 MHz) δ 5.85 (s, 2 H), 6.73 (d, J = 7.1 Hz, 4H), 6.99 (t, J = 7.4 Hz, 4H), 7.06-7.11 (m, 2H), 7.59-7.65 (m, 4H), 7.83 (d, J = 9.1 Hz, 2H), 7.92-7.97 (m, 2H), 8.17 (s, 2H), 8.30 (d, J = 9.1 Hz, 2H), 8.58-8.62 (m, 2H); ¹³C NMR (DMSO, 125 MHz) δ 114.98, 119.37, 121.15, 121.25, 123.15, 125.12, 126.16, 126.61, 126.64, 126.96, 128.31, 128.90, 129.63, 130.27, 131.70, 141.48, 141.68, 152.38; IR (KBr disc) 3521 vs, 3468 vs, 3059 w, 1616 w, 1594 m, 1566 w, 1509 w, 1482 w, 1393 m, 1362 m, 1253 m, 1224 s, 1195 w, 1141 m, 1076 w, 931 w, 866 w, 823 s, 752 s, 700 s cm⁻¹; Mass spectrum m/z (% rel intensity) 538 (44) M⁺, 537 (23), 370 (15), 269 (76), 241 (78), 231 (100),

215 (44), 77(2); Anal calcd for $C_{40}H_{26}O_2$: C, 89.19; H, 4.87; Found: C, 89.22; H, 4.86; $[\alpha]_D^{20}$ – 200.5 (*c* 1.0, EtOAc) on 99% ee material (HPLC).

5.7.4 Synthesis of aziridines 86, 113a, 114a and 115a using (S)-ISOVAPOL and (R)-VANOL (*Table 5.1, 5.2 and 5.3*)

General Procedure for performing aziridination – Illustrated for the synthesis of (2R,3R)-ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a using pre-catalyst method C.

(2R,3R)- ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (S)-ISOVAPOL (27 mg, 0.05 mmol), commercial B(OPh)₃ (58 mg, 0.2 mmol) and water (0.9 μL, 0.05 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to dissolve the two reagents. The flask was sealed by closing the Teflon valve, and then placed in an 80 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove

the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask containing the pre-catalyst (made from method C) was first added the aldimine 78a (271 mg, 1 mmol) and then dry toluene (2 mL) under an argon flow through sidearm of the Schlenk flask. The reaction mixture was stirred for 5 min to give a light orange solution. To this solution was rapidly added ethyl diazoacetate (EDA) 85 (124 µL, 1.2 mmol) followed by closing the Teflon valve. The resulting mixture was stirred for 24 h at room temperature. Immediately upon addition of ethyl diazoacetate the reaction mixture became an intense yellow, which changed to light yellow towards the end of the reaction. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with dichloromethane (5 mL × 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid.

A measure of the extent to which the reaction went to completion was estimated from the 1 H NMR spectrum of the crude reaction mixture by integration of the aziridine ring methine protons relative to either the imine methine proton or the proton on the imine carbon. The *cis/trans* ratio was determined by comparing the 1 H NMR integration of the ring methine protons for each aziridine in the crude reaction mixture. The *cis* (J = 7-8 Hz) and the *trans* (J = 2-3 Hz) coupling constants were used to differentiate the two isomers. The yields of the acyclic enamine side products **87a** and **88a** were determined by 1 H NMR analysis of the crude reaction mixture

by integration of the *N*-H proton relative to the that of the *cis*-aziridine methine protons with the aid of the isolated yield of the *cis*-aziridine. Purification of the crude aziridine by silica gel chromatography (35 mm \times 400 mm column, 19:1 hexanes/EtOAc as eluent, under gravity) afforded pure cis-aziridine **86a** as a white solid (mp. 127.5-128.5 °C on 92% ee material) in 82% isolated yield (293 mg, 0.820 mmol); *cis/trans*: 50:1. Enamine side products: 3% yield of **87a** and 7% yield of **88a**. The optical purity of **86a** was determined to be 92% *ee* by HPLC analysis ((CHIRALCEL OD-H column, 90:10 hexanes/*i*PrOH at 222 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.01$ min (major enantiomer, **86a**) and $R_t = 4.67$ min (minor enantiomer, *ent-***86a**). The same reaction afforded aziridine **86a** in 87% yield and 89% ee using the (*R*)-VANOL boroxinate catalyst **189a**.

Spectral data for **86a**: $R_f = 0.3$ (1:9 EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 0.95 (t, 3H, J = 7.3 Hz), 2.64 (d, J = 6.8 Hz, 1H), 3.19 (d, J = 6.8 Hz, 1H), 3.91 (q, J = 7.1 Hz, 2H), 3.93 (s, 1H), 7.16-7.38 (m, 11H), 7.47 (d, J = 7.1 Hz, 2H), 7.58 (d, J = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 75 Hz) δ 13.93, 46.36, 48.01, 60.57, 77.68, 127.18, 127.31, 127.39, 127.52, 127.76, 127.78, 128.48, 135.00, 142.37, 142.49, 167.75; $[\alpha]_D^{20} + 33.4$ (c 1.0, CH₂Cl₂) on 91% ee material (HPLC). These spectral data match those previously reported for this compound. ^{1a}

(2R,3R)-ethyl 1-benzhydryl-3-p-tolylaziridine-2- carboxylate 86d: Imine 78d (286 mg, 1.00 mmol) was reacted according to the general procedure described above with (S)-ISOVAPOL as the ligand. Purification of the crude aziridine by silica gel

chromatography (35 mm × 350 mm column, 9:1 hexanes / EtOAc as eluent) afforded pure aziridine **86d** as a white solid (mp. 148-149 °C) in 82% isolated yield (304 mg, 0.820 mmol). cis/trans: \geq 50:1. Enamine side products: 3% yield of **87d** and 7% yield of **88d**. The optical purity of **86d** was determined to be 94% ee by HPLC analysis (CHIRALCEL OD-H column, 90:10 hexanes/*i*PrOH at 222 nm, flow-rate: 0.7 mL/min). Retention times, $R_t = 8.54$ min (major enantiomer, **86d**) and $R_t = 4.46$ min (minor enantiomer, *ent-***86d**).

Spectral data for **86d:** $R_f = 0.30$ (1:9 EtOAc/hexanes). ¹H NMR (CDCl₃, 300 MHz) δ 0.99 (t, J = 7.3 Hz, 3H), 2.27 (s, 3H), 2.62 (d, J = 6.8 Hz, 1H), 3.16 (d, J = 6.6 Hz, 1H), 3.91 (s, 1H), 3.93 (q, J = 7.3 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 7.15-7.34 (m, 8H), 7.46 (d, J = 6.8 Hz, 2H), 7.57 (d, J = 6.8 Hz, 2H); ¹³C NMR (CDCl₃, 75 Hz) δ 13.97, 21.12, 46.32, 48.00, 60.53, 77.72, 127.15, 127.20, 127.34, 127.51, 127.64, 128.45, 131.94, 136.88, 142.42, 142.53, 167.82; $[\alpha]_D^{20}$ +24.6 (c 1.0, CH₂Cl₂) on 94% ee material. These spectral data match those previously reported for this compound. ^{1a}

(2R,3R)-ethyl 1-benzhydryl-3-(4-methoxyphenyl)aziridine-2-carboxylate $86e^2$: Imine 78e (302 mg, 1.00 mmol) was reacted according to the general procedure described above with (S)-ISOVAPOL as ligand. The silica gel for column chromatography was pre-conditioned by preparing a slurry in a 1:9 mixture of

Et₃N:CH₂Cl₂ which was loaded into a column (35 mm \times 350 mm), the solvent was drained and then the silica gel was dried by flushing with nitrogen for one hour. The silica gel column was

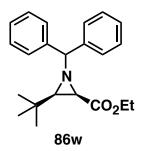
then saturated with a 1:9 mixture of ethyl acetate:hexanes, the crude aziridine was loaded onto the column and then elution with the same solvent afforded pure aziridine **86e** as a white solid (mp. 136-137 °C) in 62% isolated yield (240 mg, 0.620 mmol). *cis/trans*: 9:1. Enamine side products: <1% yield of **87e** and 6% yield of **88e**. The optical purity of **86e** was determined to be 89 % ee by HPLC analysis (CHIRALCEL OD-H column, 95:5 hexanes/*i*PrOH at 222 nm, flowrate: 0.7 mL/min). Retention times, $R_t = 15.52$ min (major enantiomer, **86e**) and $R_t = 7.14$ min (minor enantiomer, *ent-***86e**).

Spectral data for **86e**: $R_f = 0.2$ (1:9 EtOAc/hexanes). ¹H NMR (CDCl₃, 300 MHz) δ 1.00 (t, J = 7.3 Hz, 3H), 2.60 (d, J = 6.8 Hz, 1H), 3.14 (d, J = 6.9 Hz, 1H), 3.74 (s, 3H), 3.91 (s, 1H), 3.93 (q, J = 7.1 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H), 7.14-7.32 (m, 8H), 7.45 (d, J = 6.9 Hz, 2H), 7.57 (d, J = 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.99, 46.29, 47.70, 55.13, 60.52, 77.66, 113.18, 127.06, 127.15, 127.18, 127.34, 127.49, 128.44, 128.86, 142.39, 142.54, 158.85, 167.85; $[\alpha]_D^{20}$ +24.0 (c 1.0, CH₂Cl₂) on 89% ee material. These spectral data match those previously reported for this compound. ^{1a}

(2R,3R)-ethyl 1-benzhydryl-3-(4-bromophenyl)aziridine-2-carboxylate 86g: Imine 78g (350 mg, 1.00 mmol) was reacted according to the general procedure described above with (S)-ISOVAPOL as ligand. Purification of the crude aziridine by silica gel chromatography (35 mm × 350 mm column, 9:1 hexanes/EtOAc

as eluent) afforded pure aziridine 86g as a white solid (mp. 150-151 °C) in 80% isolated yield

(175 mg, 0.4 mmol). cis/trans: $\geq 50:1$. Enamine side products: 2% yield of **87g** and 6% yield of **88g**. The optical purity of **86g** was determined to be 94% ee by HPLC analysis (CHIRALCEL OD-H column, 98:2 hexanes/*i*PrOH at 222 nm, flow-rate: 1.0 mL/min). Retention times, $R_t = 14.31 \text{ min}$ (major enaniomer, **86g**) and $R_t = 5.56 \text{ min}$ (minor enantiomer, *ent-***86g**).


Spectral data for **86g**: $R_f = 0.33$ (1:9 EtOAc/hexanes). ¹H NMR (CDCl₃, 500 MHz) δ 1.00 (t, J = 7.1 Hz, 3H), 2.66 (d, J = 6.8 Hz, 1H), 3.12 (d, J = 6.6 Hz, 1H), 3.92 (s, 1H), 3.93 (q, J = 7.1 Hz, 2H), 7.16-7.37 (m, 10H), 7.43 (d, J = 6.8 Hz, 2H), 7.56 (d, J = 6.9 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 13.98, 46.46, 47.33, 60.73, 77.58, 121.33, 127.12, 127.28, 127.41, 127.50, 128.52, 128.54, 129.54, 130.89, 134.03, 142.13, 142.30, 167.43; $[\alpha]_D^{20} + 9.1$ (c 1.0, CH₂Cl₂) on 94% ee material. These spectral data match those previously reported for this compound. ^{1a}

CO₂Et

1-benzhydryl-3-cyclohexylaziridine-2-carboxylate 86v: Imine **78v** (278 mg, 1.00 mmol) was reacted according to the general procedure described above with (*S*)-ISOVAPOL as ligand. Purification of the crude aziridine by silica gel chromatography (35 mm

× 350 mm column, 15:1 hexanes /EtOAc as eluent) afforded pure aziridine **86v** as a white solid (mp. 162.5-163 °C) in 72% isolated yield (262 mg, 0.72 mmol). cis/trans: \geq 50:1. Enamine side products: 9% yield of **87v** and 4% yield of **88v**. The optical purity of **86v** was determined to be 79 % ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexanes/*i*PrOH at 222 nm, flowrate: 1.0 mL/min). Retention times, $R_t = 6.88$ min (major enaniomer, **86v**) and $R_t = 3.41$ min (minor enantiomer, *ent-***86v**).

Spectral data for **86v**: $R_f = 0.2$ (1:15 EtOAc/hexanes). ¹H NMR (CDCl₃, 500 MHz) δ 0.49 (dq, J = 10 Hz, 3 Hz, 1H), 0.90-1.66 (m, 10H), 1.23 (t, J = 7.1 Hz, 3H), 1.78 (dd, J = 7.1 Hz, 3.0 Hz, 1H), 2.24 (d, J = 6.8 Hz, 1H), 3.59 (s, 1H), 4.13-4.26 (m, 2H), 7.18-7.34 (m, 8H), 7.47 (d, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 14.28, 25.35, 25.53,26.12, 30.10, 30.70, 36.26, 43.40, 52.12, 60.70, 78.17, 126.89, 127.05, 127.49, 128.27, 128.30, 128.36, 142.31, 142.71, 169.65; $[\alpha]_D^{20}$ +112.6 (c 1.0, CH₂Cl₂) on 79% ee material. These spectral data match those previously reported for this compound. ^{1a}

(2R,3R)-ethyl 1-benzhydryl-3-tert-butylaziridine-2-carboxylate 86w:

Imine 78w (252 mg, 1.00 mmol) was reacted according to the general procedure described above with (S)-ISOVAPOL as ligand. Purification of the crude aziridine by silica gel chromatography (35 mm \times 350 mm

column, 9:1 hexanes / EtOAc as eluent) afforded pure aziridine **86w** as a white solid (mp. 149-150 °C) in 83% isolated yield (280 mg, 0.83 mmol). cis/trans: $\geq 50:1$. Enamine side products: 6% yield of **87w** and <1% yield of **88w**. The optical purity of **86w** was determined to be 84 % ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexanes/*i*PrOH at 222 nm, flow-rate: 1.0 mL/min). Retention times, $R_t = 10.64$ min (major enaniomer, **86w**) and $R_t = 3.74$ min (minor enantiomer, *ent-***86w**).

Spectral data for **86w**: $R_f = 0.33$ (1:9 EtOAc/hexanes). ¹H NMR (CDCl₃, 300 MHz) δ 0.73 (s, 9H), 1.33 (t, J = 7.1 Hz, 3H), 1.79 (d, J = 7.3 Hz, 1H), 2.10 (d, J = 7.1 Hz, 1H), 3.63 (s, 1H), 4.07-4.18 (m, 1H), 4.22-4.33 (m, 1H), 7.21-7.37 (m, 6H), 7.43 (d, J = 6.8 Hz, 2H), 7.70 (d, J = 6.8 Hz, 2H)

7.0 Hz, 2H); 13 C NMR (CDCl₃, 75 MHz) δ 14.09, 27.39, 31.60, 43.37, 56.05, 60.59, 79.19, 126.84, 127.24, 127.37, 128.17, 128.20, 128.27, 142.60, 143.44, 169.74; $[\alpha]_D^{20}$ +133.0 (c 1.0, CH₂Cl₂) on 84% ee material. These spectral data match those previously reported for this compound. 1a

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl) -2-carboxyethyl-3-phenylaziridine 113a. Imine 110a (332 mg, 1.00 mmol) was reacted according to the general procedure described above with (S)-ISOVAPOL as ligand. Purification of the crude aziridine by silica gel chromatography (35 mm ×

350 mm column, 9:1 hexanes / EtOAc as eluent, after elution of the first fraction, which contains EDA and / or enamine side products **116a** and **117a**, the eluent was changed to 5:1 hexanes / EtOAc) afforded pure aziridine **113a** as a white solid (mp 89.5-90.5 °C) in 90% isolated yield (376 mg, 0.900 mmol); cis/trans: 50:1. Enamine side products: 6% yield of **116a** and <1% yield of **117a**. The optical purity of **113a** was determined to be 96% ee by HPLC analysis (CHIRALPAK AD column, 90:10 hexanes/iPrOH at 226nm, flow-rate: 1.0 mL/min): retention times; $R_t = 8.78$ min (major enantiomer, **113a**) and $R_t = 15.49$ min (minor enantiomer, ent-**113a**).

Spectral data for 113a: See experimental of Chapter 2

(2R,3R)-Cis-1-(N-1-bis(4-methoxy-3,5-dimethylphenyl) methyl)-2-carboxyethyl-3-phenylaziridine 114a: Imine 111a (388 mg, 1.00 mmol) was reacted according to the general procedure described above with (S)-ISOVAPOL as ligand. Purification of the crude aziridine by silica gel

chromatography (35 mm \times 350 mm column, 9:1 hexanes / EtOAc as eluent, after elution of the first fraction, which contains EDA and / or enamine side products **118a** and **119a**, the eluent was changed to 5:1 hexanes / EtOAc) afforded pure aziridine **114a** as a white solid (mp 107-108 °C) in 96 % isolated yield (454 mg, 0.96 mmol).; cis/trans: \geq 50:1. Enamine side products: 2% yield of **118a** and 1% yield of **119a**. The optical purity of **114a** was determined to be 98% ee by HPLC (CHIRALCEL OD-H column, 99:1 hexanes/iPrOH at 226 nm, flow-rate: 0.7 mL/min). Retention times; $R_t = 8.96$ min (major enantiomer, **114a**) and $R_t = 12.85$ min (minor enantiomer, ent-**114a**).

Spectral data for **114a**: R_f = 0.42 (1:9 EtOAc/hexane). ¹H NMR (CDCl₃, 500 MHz) δ 0.98 (t, J = 7.1 Hz, 3H), 2.18 (s, 6H), 2.24 (s, 6H), 2.55 (d, J = 6.8 Hz, 1H), 3.10 (d, J = 6.6 Hz, 1H), 3.62 (s, 3H), 3.66 (s, 1H), 3.68 (s, 3H) 3.87-3.97 (m, 2H), 7.09 (s, 2H), 7.18 (s, 2H), 7.21 (d, J = 7.6 Hz, 2H), 7.35-7.37 (m, 3H); ¹³C (CDCl₃, 125 MHz) δ 14.01, 16.16, 16.22, 46.26, 48.20, 59.52, 59.58, 60.47, 77.04, 127.21, 127.41, 127.70, 127.80,127.85, 130.59, 130.60, 135.33, 137.79, 137.96, 155.95, 156.10, 168.01. $[\alpha]_D^{20}$ +41.3 (c 1.0, EtOAc) on 99% ee material (HPLC). These spectral data match those previously reported for this compound. ^{1c}

MeO MeO OMe

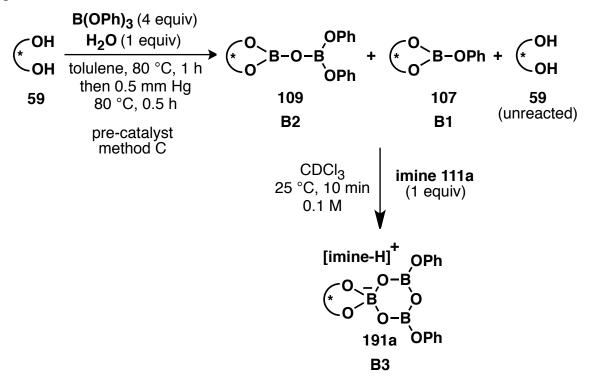
tBu tBu

tBu

tBu

CO₂Et

(2R,3R)-ethyl-1-(bis(3,5-di-tert-butyl-4-methoxyphenyl) methyl)-3-phenylaziridine-2-carboxylate 115a: Imine 112a (278 mg, 0.5 mmol) was reacted according to the general procedure described above with (S)-ISOVAPOL as ligand. Purification of the crude aziridine by silica gel chromatography


(35 mm × 350 mm column, 20:1 hexanes/EtOAc as eluent) afforded pure aziridine **115a** as a white solid (mp. 156-158 °C) in 97% isolated yield (652 mg, 0.97 mmol).; cis/trans: \geq 50:1. Enamine side products: <1% yield of **120a** and <1% yield of **121a.** The optical purity of **115a** was determined to be 96% ee by HPLC (Pirkle covalent (R,R) Whelk-O 1 column, 99:1 hexanes/iPrOH at 225 nm, flow-rate: 1.0 mL/min). Retention times; $R_t = 9.72$ min (major enantiomer, **115a**) and $R_t = 5.38$ min (minor enantiomer, ent-**115a**).

Spectral data for **115a**: $R_f = 0.26$ (20:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 300 MHz) $\delta = 0.97$ (t, J = 7.1 Hz, 3H), 1.31 (s, 18H), 1.39 (s, 18H), 2.64 (d, J = 6.8 Hz, 1H), 3.15 (d, J = 6.8 Hz, 1H), 3.59 (s, 3H), 3.65 (s, 3H), 3.82 (s, 1H), 3.84-3.96 (m, 2H), 7.16-7.19 (m, 1H), 7.22-7.25 (m, 2H), 7.31 (s, 2H), 7.41 (s, 2H), 7.46 (d, J = 7.1 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.95, 32.04, 32.13, 35.71, 35.78, 46.35, 48.78, 60.50, 63.93, 64.01, 125.37, 125.49, 127.23, 127.58, 128.15, 135.35, 136.69, 136.85, 143.00, 143.08, 158.23, 158.25, 168.27 (one sp^3 carbon not located). [α]²⁰ +5.5 (c 1.0, EtOAc) on 96% ee material (HPLC). These spectral data match those previously reported for this compound. ^{1b}

5.7.5 NMR analysis of a mixture of VANOL, B(OPh)₃, and imine 111a (Figure 5.3)

As shown in Figure 5.3 of this chapter, a mixture of (*S*)-VANOL **59** and B(OPh)₃ **187a** results in mesoborate B1 **107** and pyroborate B2 **109** and unreacted VANOL **59** when subjected to the pre-catalyst method C. Also, it was evident from the 1 H NMR and 11 B NMR that no boroxinate B3 **191a** was formed unless imine **111a** was added (characteristic peaks i.e. δ 8.55-8.56 ppm and δ 5.5-5.7 were missing in 1 H NMR and 11 B NMR respectively). Unless otherwise noted, commercial B(OPh)₃ is used in all the experiments. Also, Ph₃CH is used as the internal standard.

Experimental:

Entry 1, Figure 5.3: The ¹H NMR of pure (S)-VANOL taken in CDCl₃.

Entry 2, Figure 5.3: The pre-catalyst was made using method C employing (S)-VANOL (44 mg, 0.1 mmol), commercial B(OPh)₃ (116 mg, 0.4 mmol) water (1.8 μL, 0.1 mmol). To the flask containing the pre-catalyst was first added the Ph₃CH (12.22 mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The off-white colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 3, Figure 5.3:

The pre-catalyst was made using method C employing (*S*)-VANOL (44 mg, 0.1 mmol), commercial B(OPh)₃ (116 mg, 0.4 mmol) water (1.8 μL, 0.1 mmol). To the flask containing the pre-catalyst was first added the imine **111a** (39 mg, 0.1 mmol), Ph₃CH (12.22 mg, 0.05 mmol) and then CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

5.7.6 NMR analysis of a mixture of ISOVAPOL, B(OPh)₃, and imine 111a (*Figure 5.3*)

Same as section 5.7.5 using (S)-ISOVAPOL instead of (S)-VANOL.

- 5.7.7 Synthesis of BINOL derivatives 258, 259, 308, 56a, 56d, 56e, 56f and 56i (*Scheme* 5.6-5.9)
- **5.7.7.1** Synthesis of BINOL derivative 258: See experimental of Chapter 4

5.7.7.2 Synthesis of BINOL derivative 259: See experimental of Chapter 4

5.7.7.3 Synthesis of BINOL derivative 308:

OMe
$$\frac{\text{Et}_2\text{O}, 3 \text{ h}}{2) \text{ Br}_2, 4 \text{ h}}{70\%}$$

(R)-258

(R)-3,3'-dibromo-2,2'-dimethoxy-1,1'-binaphthalene (R)-308: In a 50 mL flame-dried threenecked round bottomed flask equipped with a N2-inlet were placed dry Et2O (20 mL) and TMEDA (256 mg, 0.330 mL, 2.20 mmol). To this solution was added ⁿBuLi (1.2 mL, 3.0 mmol, 2.5 M in hexanes). The solution was stirred for 30 min at room temperature. To this solution was added solid (R)-258 (314 mg, 1.00 mmol) in one portion and the reaction mixture was stirred for 3 h. The resulting light brown suspension was cooled to -78 °C, and Br₂ (1.9 g, 0.62 mL, 12 mmol) was added via syringe over a period of 10 min. The solution was then allowed to warm to room temperature and was left stirring for 4 h. The reaction was quenched with saturated Na₂S₂O₃ solution (10 mL) and stirred for 30 min. The organic layer was separated, and the aqueous layer was extracted by CH₂Cl₂ (10 mL × 3). The combined organic solution was dried over anhydrous MgSO₄, filtered and concentrated in vacuo to afford crude product. Purification by silica gel column chromatography (35 mm × 350 mm column, 8:1 hexanes/EtOAc as eluent) afforded (R)-308 as yellow solid (mp. 174-175 °C) in 70% yield (331 mg, 0.700 mmol).

Spectral data for (*R*)-**308**: $R_f = 0.55$ (4:1 hexanes/CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz) δ 3.51 (s, 6H), 7.09 (d, J = 8.5 Hz, 2H), 7.27 (ddd, J = 8.4, 6.9, 1.3 Hz, 2H), 7.41-7.44 (m, 2H), 7.82 (d, J = 8.2 Hz, 2H), 8.27 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 61.08, 117.48, 125.75, 125.84, 126.52, 126.83, 127.11, 131.43, 132.97, 133.07, 152.53; $[\alpha]_D^{20}$ +71.4 (*c* 1.4, THF). These spectral data match those previously reported for this compound.

5.7.7.4 Synthesis of BINOL derivative (R)-56a:

(*R*)-3,3'-diphenyl-[1,1'-binaphthalene]-2,2'-diol (*R*)-56a: In a 50 mL flame-dried round bottomed flask equipped with a N₂-inlet were placed (*R*)-308 (236 mg, 0.500 mmol) and Ni(PPh₃)₂Cl₂ (26 mg, 0.04 mmol) and dry Et₂O (10 mL). To this suspension was added PhMgBr 309 (1.0 mL, 3.0 mmol, 3.0 M in ether) over a period of 10 min. The reaction mixture was heated at reflux for 20 h, cooled to 0 °C, and quenched with water (1 mL). After addition of 1 N HCl solution (20 mL), the mixture was stirred for 10 min and extracted with ether. The

ether layer was washed with brine, dried (Na₂SO₄), and concentrated *in vacuo*. Purification by silica gel column chromatography (35 mm \times 350 mm column, 10:1 hexanes/EtOAc as eluent) afforded the coupling product as colorless solid in 75% yield (175 mg, 0.375 mmol). To a solution of this coupling product (175 mg, 0.375 mmol) in CH₂Cl₂ (10 mL) was added BBr₃ (1.5 mL, 1.5 mmol, 1.0 M in CH₂Cl₂) drop-wise at -78 °C. The reaction was allowed to warm to 0 °C. The reaction mixture was stirred for 0.5 h at 0 °C and then was allowed to warm to room temperature. After stirring at room temperature for 24 h, the reaction was quenched by the slow addition of the distilled water (1.5 mL) in an ice bath. The aqueous layer was extracted with CH₂Cl₂ (5 mL \times 3). The combined extracts were then washed with water, brine and then dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification of the yellow colored crude product by silica gel chromatography (20 mm \times 200 mm column, 8:1 hexanes/EtOAc as eluent, under gravity) afforded pure (*R*)-56a as a white solid (mp. 202-203 °C) in 70% isolated yield (154 mg, 0.350 mmol, over two steps).

Spectral data for (*R*)-**56a**: $R_f = 0.36$ (8:1 hexanes/CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz) δ 5.30 (s, 2H), 7.16-7.54 (m, 12H), 7.82 (d, J = 7.5 Hz, 4H), 7.90 (d, J = 8.0 Hz, 2H), 8.00 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 112.30, 124.23, 124.30, 127.32, 127.74, 128.42, 128.46, 129.40, 129.57, 130.61, 131.38, 132.86, 137.40, 150.08; $[\alpha]_D^{20}$ +106.2 (c 1.0, THF). These spectral data match those previously reported for this compound.

5.7.7.5 Synthesis of BINOL derivative 56d:

(R)-3,3'-dibromo-[1,1'-binaphthalene]-2,2'-diol (R)-56d: In a 50 mL flame-dried round bottomed flask equipped with a N₂-inlet were placed (R)-308 (472 mg, 1.0 mmol) and dry CH₂Cl₂ (10 mL). To this solution was added BBr₃ (6.0 mL, 6.0 mmol, 1.0 M in CH₂Cl₂) dropwise at 0 °C. The reaction was allowed to warm to room temperature. After stirring at room temperature for 12 h, the reaction was quenched by the slow addition of the distilled water (10 mL) in an ice bath. The aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined extracts were then washed with water, brine and then dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification of the crude product by silica gel chromatography (35 mm × 400 mm column, 15:1 hexanes/EtOAc as eluent) afforded pure (R)-56d as a white solid (mp. 245-246 °C) in 97 % isolated yield (431 mg, 0.970 mmol).

Spectral data for (*R*)-**56d:** $R_f = 0.31$ (9:1 hexanes/ EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 5.54 (s, 2H), 7.12 (d, J = 8.5 Hz, 2H), 7.24-7.42 (m, 4H), 7.82 (d, J = 8.0 Hz, 6H), 8.25 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 112.22, 114.57, 124.60, 124.86, 127.39, 127.58, 129.70, 132.73,

132.75, 147.98; $[\alpha]_D^{20}$ + 98.6 (c 1.0, THF). These spectral data match those previously reported for this compound.⁵⁷

5.7.7.6 Synthesis of BINOL derivative 56e:

(R)-3,3'-diiodo-[1,1'-binaphthalene]-2,2'-diol (R)-56e: In a 50 mL flame-dried round bottomed flask equipped with a N₂-inlet were placed (R)-259 (567 mg, 1.0 mmol) and dry CH₂Cl₂ (10 mL). To this solution was added BBr₃ (6.0 mL, 6.0 mmol, 1.0 M in CH₂Cl₂) drop-wise at 0 °C. The reaction was allowed to warm to room temperature. After stirring at room temperature for 12 h, the reaction was quenched by the slow addition of the distilled water (10 mL) in an ice bath. The aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined extracts were then washed with water, brine and then dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification of the crude product by silica gel chromatography (35 mm × 400 mm column, 1:1 hexanes/CH₂Cl₂ as eluent) afforded pure (R)-56e as a yellow solid (mp. 312-315 °C) in 97 % isolated yield (527 mg, 0.980 mmol).

Spectral data for (*R*)-**56d:** $R_f = 0.54$ (1:1 hexanes/ CH₂Cl₂); ¹H NMR (CDCl₃, 300 MHz) δ 5.42

(brs, 2H), 7.07 (d, J = 8.2 Hz, 2H), 7.31 (ddd, J = 8.2, 6.9, 1.3 Hz, 2H), 7.38 (ddd, J = 8.2, 6.9, 1.3 Hz, 2H), 7.79 (d, J = 7.7 Hz, 2H), 8.52 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 86.51, 112.52, 124.34, 124.61, 127.11, 127.78, 130.63, 133.09, 140.20, 150.01; $[\alpha]_D^{20}$ +101.0 (c 1.0, THF). These spectral data match those previously reported for this compound. ⁵⁸

5.7.7.7 Synthesis of BINOL derivative 56f:

OMe OMe OMe
$$\frac{\text{ArMgBr}, Et_2O, 24h}{2. \text{BBr}_3, CH_2Cl_2, rt, 12h}}{2. \text{BBr}_3, CH_2Cl_2, rt, 12h}}$$

ArMgBr $\equiv i\text{Pr}$

MgBr (R) -56f

2-bromo-1,3,5-triisopropylbenzene 310': In a flame-dried 25 mL three-neck flask equipped with a condenser, was placed 1,3,5-triisopropylbenzene (3.07 g, 3.6 mL, 15 mmol), carbon tetrachloride (2 mL) and iron powder (0.12 g). The reaction vessel was cooled in an ice-salt bath and light was excluded by wrapping the flask in tin foil and covering it with a towel. Bromine (2.4 g, 0.77 mL, 15 mmol) in carbon tetrachloride (2 mL) was added dropwise over a 10-min period. Hydrogen Bromide evolved was led off through the condenser and absorbed in water. The reaction mixture was allowed to stand overnight. The mixture was then washed with water (10 mL × 2), 20% sodium hydroxide (5 mL × 2), and water (10 mL). The resulting solution was

then dried over anhydrous $CaCl_2$ and concentrated *in vacuo* to afford the crude product. Benzylic halide impurities in the product were destroyed by adding the crude concentrate to a solution obtained by dissolving sodium (0.5 g) in absolute ethanol (15 mL). The reaction mixture was then allowed to stand overnight followed by the dilution with water (50 mL). The organic layer was separated, and the aqueous layer was extracted with CCl_4 (10 mL × 3). The combined organic layers were washed with water (10 mL × 2), brine (10 mL) and then dried over anhydrous $CaCl_2$. It was then filtered and concentrated *in vacuo* to give crude product. Purification by distillation furnished **310'** (bp. 96 – 97 °C at 0.1 mm Hg) as a colorless oil in 70 % yield (2.97 g, 10.54 mmol).

Spectral data for **310'**: ¹H NMR (CDCl₃, 300 MHz) δ 1.29-1.32 (m, 18 H), 2.87 (sept, J = 6.8 Hz, 1H), 3.48 (sept, J = 6.8 Hz, 2H), 6.98 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 23.1, 24.03, 33.54, 34.05, 122.26, 147.36, 147.79.

(2,4,6-triisopropylphenyl)magnesium Bromide 310: A three-neck round-bottom flask containing Mg (301 mg, 12.4 mmol, 20 mesh) was equipped with a condenser and an addition funnel. A 1.0 mL portion of a 1.4 M solution of 2,4,6-triisopropylphenyl bromide 310′ (1.98 g in 5 mL of Et₂O, 7 mmol) was added to the flask through the addition funnel. After 5 min, 0.02 mL (0.0002 mmol) of 1,2-dibromoethane was added to the mixture. Once the solution began to reflux, the remaining 2,4,6-triisopropylphenyl-bromide solution was slowly added over 1 h. After the addition was complete, the reaction was allowed to reflux for 12 h. The resulting Grignard reagent was directly in the next step.

(R)-3,3'-Bis(2,4,6-triisopropylphenyl)-2,2'-dihydroxy-1,1'-dinaphthyl 56f: In a 50 mL flame-

dried round bottomed flask equipped with a N₂-inlet were placed (R)-259 (567 mg, 1.0 mmol) and Ni(PPh₃)₂Cl₂ (106 mg, 0.15 mmol) and dry Et₂O (12 mL). To this suspension was added freshly prepared Grignard reagent 310 (7.0 mmol) over a period of 10 min. The reaction mixture was stirred for 10 min at room temperature and then heated at reflux for 24 h. The reaction mixture was then cooled to 0 °C, and quenched slowly by the addition of HCl (6 mL, 1 M). After addition of 1 N HCl solution (6 mL), the mixture was stirred for 10 min and extracted with ether (10 mL × 3). The ether layer was washed with brine, dried (Na₂SO₄), and concentrated in vacuo. Purification by silica gel column chromatography (35 mm × 350 mm column, 9:1 hexanes/ CH₂Cl₂ as eluent) afforded the coupling product as colorless solid in 76% yield (547 mg, 0.76 mmol). To a solution of this coupling product (547 mg, 0.76 mmol) in CH₂Cl₂ (20 mL) was added BBr₃ (5.3 mL, 5.3 mmol, 1.0 M in CH₂Cl₂) drop-wise at 0 °C. The reaction was allowed to room temperature. After stirring at room temperature for 12 h, the reaction was quenched by the slow addition of the distilled water (7 mL) in an ice bath. The aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined extracts were then washed with water, brine and then dried over MgSO₄, filtered, and concentrated in vacuo. Purification of the brown colored crude product by silica gel chromatography (35 mm × 400 mm column, 5:1 hexanes/ CH₂Cl₂ as eluent) afforded pure (R)-56f as a white solid (mp. 134-135 °C) in 73% isolated yield (504 mg, 0.73 mmol, over two steps). Sometimes, (R)-56f has been obtained as yellow solid. In that case, it was washed with hexanes and white compound was obtained after the washings.

Spectral data for (*R*)-**56f**: $R_f = 0.25$ (5:1 hexanes/ CH₂Cl₂); ¹H NMR (CDCl₃, 300 MHz) δ 1.01(d, J = 6.8 Hz, 6H), 1.08 (t, J = 6.8 Hz, 12H), 1.17 (d, J = 6.8 Hz, 6H), 1.29 (d, J = 6.8 Hz, 12H), 2.66 (sept, J = 6.8 Hz, 2H), 2.82 (sept, J = 6.8 Hz, 2H), 2.94 (sept, J = 6.8 Hz, 2H), 4.90 (s, 2H), 7.10 (s, 2H), 7.12 (s, 2H), 7.25-7.38 (m, 6H), 7.74 (s, 2H), 7.84 (d, J = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 23.71, 23.91,23.96, 24.04, 24.27, 24.30, 30.85, 30.90, 34.34, 113.18, 121.17, 121.22, 123.75, 124.53, 126.53, 126.60, 128.23, 129.07, 129.14, 130.39, 130.65, 133.49, 147.77, 147.84, 149.15, 150.64; $[\alpha]_D^{20} + 79.0$ (c 2.0, THF). These spectral data match those previously reported for this compound. ⁵⁹

5.7.7.8 Synthesis of BINOL derivative 56i:

OMe OMe OMe
$$\frac{1. \text{ Pd(PPh}_{3})_{4}, \text{ ArB(OH)}_{2}}{2. \text{ BBr}_{3}, \text{ CH}_{2}\text{Cl}_{2}, \text{ rt, 12h}}$$

$$71\%$$

$$ArB(OH)_{2} = 311$$

$$\frac{1. \text{ Pd(PPh}_{3})_{4}, \text{ ArB(OH)}_{2}}{\text{Na}_{2}\text{CO}_{3}, \text{ EtOH, rt, 12h}}$$

$$\frac{1. \text{ Pd(PPh}_{3})_{4}, \text{ ArB(OH)}_{2}}{\text{OH}}$$

$$\frac{1. \text{$$

(R)-3,3'-di(phenanthren-9-yl)-[1,1'-binaphthalene]-2,2'-diol (R)-56i: In a 50 mL flame-dried home-made Schlenk (see Figure 2.26) flask equipped with a N₂-inlet were placed (R)-259 (567 mg, 1.00 mmol) and 9-phenanthranylboronic acid 311 (922 mg, 4.15 mmol), dry toluene (8 mL),

ethanol (4 mL) and aqueous Na₂CO₃ (4 mL, 2M). The suspension was purged with nitrogen for 30 min. Under the flow of nitrogen, Pd(PPh₃)₄ (116 mg, 0.100 mmol) was added. The flask was sealed by closing the Teflon valve and then placed in an 90 °C oil bath for 14 h. The reaction mixture was cooled to room temperature and was filtered followed by the addition of CH_2Cl_2 (10 mL) and water (5 mL). The aqueous layer was extracted with CH_2Cl_2 (10 mL × 3). The combined extracts were then washed with brine and then dried over MgSO₄, filtered, and concentrated in vacuo. The resulting crude coupling product was dissolved in CH₂Cl₂ (15 mL). To this solution was added BBr₃ (2.7 mL, 2.7 mmol, 1.0 M in CH₂Cl₂) drop-wise at 0 °C. The reaction was allowed to warm to room temperature. After stirring at room temperature for 12 h, the reaction was quenched by the slow addition of the distilled water (5 mL) in an ice bath. The aqueous layer was extracted with CH₂Cl₂ (5 mL × 3). The combined extracts were then washed with water, brine and then dried over MgSO₄, filtered, and concentrated in vacuo. Purification of the yellow colored crude product by silica gel chromatography (35 mm × 400 mm column, 4:1 hexanes/ CH₂Cl₂ as eluent, under gravity) afforded pure (R)-56i as a yellow solid (mp. 148-150 °C, decomposition) in 71 % isolated yield (454 mg, 0.710 mmol, over two steps).

Spectral data for (*R*)-**56i**: $R_f = 0.57$ (4:1 hexanes/CH₂Cl₂); ¹H NMR (CDCl₃, 600 MHz) δ 5.22, 5.23, 5.28, 5.33, (4 singlets, combined integration: 2H), 7.42-7.80 (m, 15H), 7.88-7.92 (m, 2H), 7.95-8.00 (m, 5H), 8.10-8.12 (m, 2H), 8.75-8.83 (m, 4H); ¹³C NMR (CDCl₃, 150 MHz) δ 113.07, 113.17, 113.48, 122.82, 122.85, 123.10, 123.14, 123.21, 123.24, 124.50, 124.53, 124.71,

124.74, 124.93, 125.00, 126.94, 127.01, 127.05, 127.13, 127.16, 127.22, 127.28, 127.53, 127.59, 128.60, 128.71, 129.01, 129.07, 129.19, 129.41, 129.52, 129.54, 129.66, 129.67, 129.77, 130.63, 130.66, 130.69, 130.76, 130.78, 130.81, 131.29, 131.34, 131.35, 131.39, 131.66, 131.68, 131.70, 131.71, 132.26, 132.32, 133.79, 133.82, 133.92, 133.94, 133.99, 134.20, 150.80, 150.85, 150.87; $[\alpha]_D^{20}$ +45.5.0 (*c* 1.0, CHCl₃). These spectral data match those previously reported for this compound.⁶¹

5.7.8 Asymmetric aziridination with BINOL 55, BINOL derivatives 56 and TADDOL 61a (Table 5.4-5.5 and Scheme 5.12)

General Procedure for performing aziridination – Illustrated for the synthesis of (2S,3S)-ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a using <u>pre-catalyst method C</u> and 3,3'-Ph₂-BINOL (R)-56a as the ligand.

(2S,3S)- ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate ent-86a: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon

was added (R)-56a (44 mg, 0.1 mmol), commercial B(OPh)₃ (116 mg, 0.4 mmol) and water (1.8 μ L, 0.1 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to dissolve the two reagents. The flask was sealed by closing the Teflon valve, and then placed in an 80 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the After the volatiles were removed completely, a full vacuum was applied and volatiles. maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask containing the pre-catalyst (made from method C) was first added the aldimine 78a (271 mg, 1 mmol) and then dry toluene (2 mL) under an argon flow through sidearm of the Schlenk flask. The reaction mixture was stirred for 5 min to give a light orange solution. To this solution was rapidly added ethyl diazoacetate (EDA) 85 (124 µL, 1.2 mmol) followed by closing the Teflon valve. The resulting mixture was stirred for 24 h at room temperature. Immediately upon addition of ethyl diazoacetate the reaction mixture became an intense yellow, which changed to light yellow towards the end of the reaction. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with dichloromethane (5 mL × 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid.

A measure of the extent to which the reaction went to completion was estimated from the ¹H NMR spectrum of the crude reaction mixture by integration of the aziridine ring methine

protons relative to either the imine methine proton or the proton on the imine carbon. The cis/trans ratio was determined by comparing the ¹H NMR integration of the ring methine protons for each aziridine in the crude reaction mixture. The cis (J = 7-8 Hz) and the trans (J = 2-3 Hz) coupling constants were used to differentiate the two isomers. The yields of the acyclic enamine side products 87a and 88a were determined by ¹H NMR analysis of the crude reaction mixture by integration of the N-H proton relative to the that of the cis-aziridine methine protons with the aid of the isolated yield of the cis-aziridine. Purification of the crude aziridine by silica gel chromatography (35 mm × 400 mm column, 19:1 hexanes/EtOAc as eluent, under gravity) afforded pure cis-aziridine ent-86a as a white solid (mp. 127.5-128.5 °C) in 90% isolated yield (322 mg, 0.900 mmol); cis/trans: >50:1. Enamine side products: 4% yield of 87a and 6% yield The optical purity of ent-86a was determined to be 76% ee by HPLC analysis ((CHIRALCEL OD-H column, 90:10 hexanes/iPrOH at 222 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.01$ min (minor enantiomer, 86a) and $R_t = 4.67$ min (major enantiomer, ent-86a).

Spectral data for *ent*-**86a**: $R_f = 0.3$ (1:9 EtOAc/hexanes); 1 H NMR (CDCl₃, 500 MHz) δ 0.95 (t, 3H, J = 7.3 Hz), 2.64 (d, J = 6.8 Hz, 1H), 3.19 (d, J = 6.8 Hz, 1H), 3.91 (q, J = 7.1 Hz, 2H), 3.93 (s, 1H), 7.16-7.38 (m, 11H), 7.47 (d, J = 7.1 Hz, 2H), 7.58 (d, J = 7.6 Hz, 2H); 13 C NMR (CDCl₃, 75 Hz) δ 13.93, 46.36, 48.01, 60.57, 77.68, 127.18, 127.31, 127.39, 127.52, 127.76, 127.78, 128.48, 135.00, 142.37, 142.49, 167.75; $[\alpha]_D^{20}$ –29.6 (c 1.0, CH₂Cl₂) on 76% ee material (HPLC). These spectral data match those previously reported for this compound. 1a

The Wulff asymmetric aziridination reaction was performed following the above described procedure (precatalyst method C) using ligands (*R*)-56a, 56e, 56f, 56i and (*R*,*R*)-61a. Also imines 111a and 112a were subjected to the asymmetric aziridination reaction using pre-catalyst methods C and D (see chapter 2 for details for pre-catalyst methods) and 10 mol% of liagand (*R*)-56a. The purification details and spectral data for resulting aziridines 114a and 115a has been described in section 5.7.4.

5.7.9 One-pot asymmetric aziridination with 3,3'-Ph₂-BINOL (*R*)-56a and aziridination with B1 catalyst (*R*)-92a (*Scheme 5.10*)

a) One-pot aziridination:

(2S,3S)- ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate ent-86a: To a 25 mL flame-dried round bottom flask filled with argon was added (R)-56a (44 mg, 0.1 mmol), commercial B(OPh)₃ (87 mg, 0.3 mmol) and aldimine 78a (271 mg, 1.00 mmol). The mixture was dissolved in toluene (1 mL) at room temperature. The reaction mixture was stirred for 5 min to give a light orange solution. To this solution was rapidly added EDA 85 (124 μ L, 1.20 mmol) and the resulting mixture was stirred for 24 h at room temperature. The reaction was diluted by the addition of 6 mL hexane. The reaction mixture was then transferred to a 100 mL round bottom

flask. The reaction flask was rinsed with dichloromethane (5 mL \times 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (as discussed above) afforded pure aziridine **86a** as a white solid in 84% yield and 75% ee.

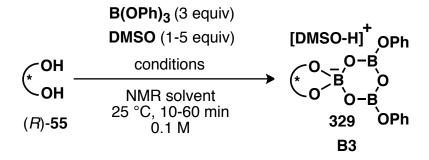
b) Aziridination with B1 catalyst (R)-92a:

(2S,3S)- ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate *ent*-86a: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*R*)-89 (47 mg, 0.1 mmol) and BH₃•Me₂S (50 μL, 0.2 mmol, 2.0 M in toluene).

Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to dissolve the two reagents. The flask was sealed by closing the Teflon valve, and then placed in an 100 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask containing the pre-catalyst was first added the aldimine 78a (271 mg, 1 mmol) and then dry toluene (2 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was stirred for 5 min to give a light orange solution. To this solution was rapidly added ethyl diazoacetate (EDA) 85 (124 µL, 1.2 mmol) followed by closing the Teflon valve. The resulting mixture was stirred for 24 h at room temperature. The reaction was diluted by the addition of 6 mL hexane. The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with dichloromethane (5 mL × 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (as discussed above) afforded pure aziridine **86a** as a white solid in 80% yield and 48% ee.

5.7.10 NMR analysis of a mixture of B(OPh)₃, imine 111h and BINOL 56a (Figure 5.7)

The details for entries 1-9 of Figure 5.7 can be found in the theses of Gang Hu and Li Huang. The entry 10 of Figure 5.7 is part of this doctoral research and is described below.


To a 10 mL flame-dried round bottom flask, equipped with a stir bar, filled with argon was added 3,3'-Ph₂-BINOL (*R*)-**56a** (44 mg, 0.1 mmol, 1 equiv.), commercial B(OPh)₃ (87 mg, 0.3 mmol, 3 equiv.), imine **111h** (43 mg, 0.1 mmol, 1 equiv.), Ph₃CH (12.22 mg, 0.05 mmol) and CDCl₃(1 mL). The resultant mixture was stirred for 10 min at room temperature. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

5.7.11 NMR analysis of a mixture of B(OPh)₃, imine 111h with BINOL derivatives (R)-56 or H8-BINOL (R)-53 or TADDOL (R,R)-61a (Figure 5.8-5.10 and 5.13)

$$\begin{array}{c} \text{OH} \\ \text{OH} \\ \text{OH} \\ \text{Ligand} \end{array} \begin{array}{c} \text{1)} \ \, \text{B(OPh)}_3 \, (\text{4 equiv}) \\ \text{H}_2\text{O} \, (\text{1 equiv}) \\ \hline \\ \text{tolulene, 80 °C, 1 h} \\ \text{80 °C, 0.5 h} \\ \text{2)} \ \, \text{imine 111h} \, (\text{1 equiv}) \\ \text{CDCl}_3, 25 °C, 10 min} \\ \text{0.1 M} \\ \end{array} \begin{array}{c} \text{[imine-H]}^+ \, \text{OPh} \\ \text{OPh} \\ \text{OPh} \\ \text{OPh} \\ \text{Me}_2\text{N} \end{array} \begin{array}{c} \text{MEDAM} \\ \text{Me}_2\text{N} \\ \text{111h} \\ \text{Me}_2\text{N} \\ \text{OPh} \\ \text{OPh}$$

To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (R)-56e (54 mg, 0.1 mmol), commercial B(OPh)₃ (116 mg, 0.4 mmol) and water (1.8 µL, 0.1 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to dissolve the two reagents. The flask was sealed by closing the Teflon valve, and then placed in an 80 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask containing the pre-catalyst (made from method C) was first added the imine 111h (43 mg, 0.1 mmol) and then and CDCl₃(1 mL) under an argon flow through side-arm of the Schlenk flask. The resultant mixture was stirred for 10 min at room temperature. The red colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis. The NMR tube was covered with aluminum foil and the cap was taped with Teflon for storage for longer time periods. Ligands 56f, 56i, 56j, 53 and 61a were subjected to NMR analysis following the above-described procedure.

5.7.12 NMR analysis of a mixture of B(OPh)₃, DMSO and BINOL (R)-55 (Figure 5.12)

Entry 1, Figure 5.12: The ¹H NMR of commercial B(OPh)₃ has been taken in d₆-DMSO.

Entry 2, Figure 5.12: To a 10 mL flame-dried round bottom flask, equipped with a stir bar, filled with argon was added BINOL (*R*)-55 (29 mg, 0.1 mmol, 1 equiv.), commercial B(OPh)₃ (14.5 mg, 0.050 mmol, 0.5 equiv), 4Å MS (150 mg, freshly flame dried) and d₆-DMSO (1 mL). The resultant mixture was stirred for 1 h at room temperature. The resulting solution was then filtered and then transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 3, Figure 5.12: To a 10 mL flame-dried round bottom flask, equipped with a stir bar, filled with argon was added BINOL (*R*)-55 (29 mg, 0.1 mmol, 1 equiv), commercial B(OPh)₃ (87 mg, 0.3 mmol, 3 equiv) and d₆-DMSO (1 mL). The resultant mixture was stirred for 1 h at room temperature. The resulting solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 4, Figure 5.12: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added BINOL (*R*)-55 (29 mg, 0.1 mmol, 1 equiv), and BH₃•Me₂S (150 μL, 0.3 mmol, 2.0 M in toluene), PhOH (18.8, 0.2 mmol) and H₂O (5.4 μL, 0.3 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to dissolve the two reagents. The flask was sealed by closing the Teflon valve, and then placed in an 100 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the

volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask containing the pre-catalyst was added CDCl₃ (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The off-white colored solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 5, Figure 5.12: Same as entry 4 except that DMSO (7 μ L, 0.1 mmol, 1 equiv) was added prior to that analysis.

Entry 6, Figure 5.12: Same as entry 4 except that DMSO (35 μ L, 0.5 mmol, 5 equiv) was added prior to that analysis.

5.7.13 DFT Calculations

All quantum mechanical calculations were performed using the Gaussian '03.²⁴ The coordinates were provided to Prof. Wulff as a separate file.

REFERENCES

REFERENCES

- (1) (a) Zhang, Y.; Desai, A.; Lu, A.; Hu, G.; Ding, Z.; Wulff, W. D. Chem. –Eur. J. 2008, 14, 3785-3803. (b) Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429-5432. (c) Mukherjee, M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. J. Org. Chem. 2010, 75, 5643-5660. (d) Ren, H.; Wulff, W. D. Org. Lett. 2010, 12, 4908-4911. (e) Hu, G.; Huang, L.; Huang, R. H.; Wulff, W. D. J. Am. Chem. Soc. 2009, 131, 15615-15617. (f) Hu, G.; Gupta, A. K.; Huang, R. H.; Mukherjee, M.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 14669-14675. (g) Gupta, A. K.; Mukherjee, M.; Wulff, W. D. Org. Lett. 2011, 13, 5866-5869. (h) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13100-13103. (i) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13104-13107. (j) Desai, A. A.; Morán-Ramallal, R.; Wulff, W. D. Org. Synth. 2011, 88, 224-237. (k) Desai, A. A.; Ren, H.; Mukherjee, M.; Wulff, W. D. Org. Process Res. Dev. 2011, 15, 1108-1115.
- (2) (a) Bao, J. M.; Wulff, W. D.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 3814-3815. (b) Bao, J. M.; Wulff, W. D. Tetrahedron Lett. 1995, 36, 3321-3324. (c) Heller, D. P.; Goldberg, D. R.; Wulff, W. D. J. Am. Chem. Soc. 1997, 119, 10551-10552. (d) Heller, D. P.; Goldberg, D. R.; Wu, H. Q.; Wulff, W. D. Can. J. Chem. 2006, 84, 1487-1503.
- (3) Xue, S.; Yu, S.; Deng, Y.; Wulff, W. D. Angew. Chem., Int. Ed. 2001, 40, 2271-2274.
- (4) Bolm, C.; Frison, J. C.; Zhang, Y.; Wulff, W. D. Synlett 2004, 1619-1621.
- (5) Lou, S.; Schaus, S. E. J. Am. Chem. Soc. 2008, 130, 6922-6923.
- (6) Harada, H.; Thalji, R. K.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2008, 73, 6772-6779.
- (7) van Leeuwen, P. W. N. M.; Rivillo, D.; Raynal, M.; Freixa, Z. J. Am. Chem. Soc. **2011**, 133, 18562-18565.
- (8) Zheng, W.; Zhang, Z.; Kaplan, M. J.; Antilla, J. C. J. Am. Chem. Soc. **2011**, 133, 3339-3341.
- (9) Zhang, Z.; Zheng, W.; Antilla, J. C. Angew. Chem., Int. Ed. 2011, 50, 1135-1138.
- (10) Larson, S. E.; Li, G.; Rowland, G. B.; Junge, D.; Huang, R.; Woodcock, H. L.; Antilla, J. C. *Org. Lett.* **2011**, *13*, 2188-2191.

- (11) Barnett, D. S.; Schaus, S. E. Org. Lett. 2011, 13, 4020-4023.
- (12) Hoffman, T. J.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 10670-10674.
- (13) Newman, C. A.; Antilla, J. C.; Chen, P.; Predeus, A. V.; Fielding, L.; Wulff, W. D. J. Am. Chem. Soc. **2007**, 129, 7216-7217.
- (14) Ren, H.; Wulff, W. D. J. Am. Chem. Soc. 2011, 133, 5656-5659.
- (15) Gupta, A. K.; Wulff, W. D., Unpublished results.
- (16) Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. *J. Am. Chem. Soc.* **2005**, *127*, 15696-15697.
- (17) Liang, Y.; Rowland, E. B.; Rowland, G. B.; Perman, J. A.; Antilla, J. C. *Chem. Commun.* **2007**, 4477-4479.
- (18) Li, G.; Liang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2007, 129, 5830-5831.
- (19) Snyder, S. A.; Thomas, S. B.; Mayer, A. C.; Breazzano, S. P. Angew. Chem., Int. Ed. **2012**, *51*, 4080-4084.
- (20) (a) Rowland, E. B.; Rowland, G. B.; Rivera-Otero, E.; Antilla, J. C. *J. Am. Chem. Soc.* **2007**, *129*, 12084-12085. (b) Larson, S. E.; Baso, J. C.; Li, G. L.; Antilla, J. C. *Org. Lett.* **2009**, *11*, 5186-5189. (c) Della, S. G.; Lattanzi, A. *Org. Lett.* **2009**, *11*, 3330-3333.
- (21) Chen, M.-W.; Chen, Q.-A.; Duan, Y.; Ye, Z.-S.; Zhou, Y.-G. *Chem. Commun.* **2012**, *48*, 1698-1700.
- (22) (a) Loncaric, C.; Wulff, W. D. *Org. Lett.* **2001**, *3*, 3675-3678. (b) Rampalakos, K. PhD Thesis, Michigan State University, 2008. (c) Hu, G.; Holmes, D.; Gendhar, B. F.; Wulff, W. D. *J. Am. Chem. Soc.* **2009**, *131*, 14355-14364.
- (23) Ding, Z.; Osminski, W. E. G.; Ren, H.; Wulff, W. D. *Org. Process Res. Dev.* **2011**, *15*, 1089-1107 and references therein.

- (24) Gaussian 03, Revision D.01 M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004
- (25) Price, C. P.; Matzger, A. J. J. Org. Chem. 2005, 70, 1-6.
- (26) The terms cisoid and transoid describe biaryl dihedral angles of <90° and >90°, respectively.
- (27) (a) Kerr, K. A.; Robertso, J. M. *J Chem Soc B* **1969**, 1146-1149. (b) Kress, R. B.; Duesler, E. N.; Etter, M. C.; Paul, I. C.; Curtin, D. Y. *J. Am. Chem. Soc.* **1980**, *102*, 7709-7714.
- (28) (a) Mori, K.; Masuda, Y.; Kashino, S. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1993**, 49, 1224-1227. (b) Toda, F.; Tanaka, K.; Miyamoto, H.; Koshima, H.; Miyahara, I.; Hirotsu, K. *J. Chem. Soc., Perkin Trans.* 2 **1997**, 1877-1885.
- (29) (a) Brunel, J. M. Chem. Rev. **2005**, 105, 857-897. (b) Brunel, J. M. Chem. Rev. **2007**, 107, PR1-PR45.
- (30) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155-3211.
- (31) Hattori, K.; Yamamoto, H. J. Org. Chem. 1992, 57, 3264-3265.
- (32) The preparation of **294** has been called into doubt due to failure at the preparation of related compounds, see: Chong, J. M.; Shen, L.; *J. Am. Chem. Soc.* **2009**, *131*, 12882-12883
- (33) (a) Hattori, K.; Miyata, M.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 1151-1152. (b) Hattori, K.; Yamamoto, H. Tetrahedron 1993, 49, 1749-1760. (c) Hattori, K.; Yamamoto, H.

- Synlett 1993, 129-130. (d) Hattori, K.; Yamamoto, H. Synlett 1993, 239-240. (e) Hattori, K.; Yamamoto, H. Bioorg. Med. Chem. Lett. 1993, 3, 2337-2342. (f) Hattori, K.; Yamamoto, H. Tetrahedron 1994, 50, 2785-2792. (g) Ishihara, K.; Miyata, M.; Hattori, K.; Tada, T.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 10520-10524. (h) Lock, R.; Waldmann, H. Tetrahedron Lett. 1996, 37, 2753-2756. (i) Lock, R.; Waldmann, H. Chem.—Eur. J. 1997, 3, 143-151. (j) Banerjee, A.; Schepmann, D.; Kohler, J.; Wurthwein, E. U.; Wunsch, B. Bioorg. Med. Chem. 2010, 18, 7855-7867.
- (34) Momiyama, N.; Tabuse, H.; Terada, M. J. Am. Chem. Soc. 2009, 131, 12882-12883.
- (35) Thormeier, S.; Carboni, B.; Kaufmann, D. E. J. Organomet. Chem. 2002, 657, 136-145.
- (36) Zimmer, R.; Peritz, A.; Czerwonka, R.; Schefzig, L.; Reissig, H. U. Eur. J. Org. Chem. **2002**, 3419-3428.
- (37) (a) Ishihara, K.; Kuroki, Y.; Yamamoto, H. *Synlett* **1995**, 41-42. (b) Kuroki, Y.; Ishihara, K.; Hanaki, N.; Ohara, S.; Yamamoto, H. *Bull. Chem. Soc. Jpn.* **1998**, 71, 1221-1230.
- (38) Cros, J. P.; Pérez-Fuertes, Y.; Thatcher, M. J.; Arimori, S.; Bull, S. D.; James, T. D. *Tetrahedron: Asymmetry* **2003**, *14*, 1965-1968.
- (39) (a) Kawate, T.; Yamada, H.; Matsumizu, M.; Nishida, A.; Nakagawa, M. *Synlett* **1997**, 761-762. (b) Yamada, H.; Kawate, T.; Matsumizu, M.; Nishida, A.; Yamaguchi, K.; Nakagawa, M. *J. Org. Chem.* **1998**, *63*, 6348-6354.
- (40) (a) Periasamy, M.; Venkatraman, L.; Sivakumar, S.; Sampathkumar, N.; Ramanathan, C. R. *J. Org. Chem.* **1999**, *64*, 7643-7645. (b) Periasamy, M.; Ramanathan, C. R.; Kumar, N. S. *Tetrahedron: Asymmetry* **1999**, *10*, 2307-2310. (c) Periasamy, M.; Kumar, N. S.; Sivakumar, S.; Rao, V. D.; Ramanathan, C. R.; Venkatraman, L. *J. Org. Chem.* **2001**, *66*, 3828-3833. (d) Liu, D.; Shan, Z.; Liu, F.; Xiao, C.; Lu, G.; Qin, J. *Helv. Chim. Acta* **2003**, *86*, 157-163.
- (41) (a) Green, S.; Nelson, A.; Warriner, S.; Whittaker, B. *J. Chem. Soc., Perkin Trans. 1* **2000**, 4403-4408. (b) Tu, T.; Maris, T.; Wuest, J. D. *Cryst. Growth Des.* **2008**, *8*, 1541-1546. (c) Raskatov, J. A.; Brown, J. M.; Thompson, A. L. *Crystengcomm* **2011**, *13*, 2923-2929.
- (42) Llewellyn, D. B.; Arndtsen, B. A. Can. J. Chem. 2003, 81, 1280-1284.
- (43) Llewellyn, D. B.; Adamson, D.; Arndtsen, B. A. Org. Lett. 2000, 2, 4165-4168.

- (44) Carter, C.; Fletcher, S.; Nelson, A. Tetrahedron: Asymmetry 2003, 14, 1995-2004.
- (45) Chen, D.; Sundararaju, B.; Krause, R.; Klankermayer, J.; Dixneuf, P. H.; Leitner, W. ChemCatChem 2010, 2, 55-57.
- (46) Kaufmann, D.; Boese, R. Angew. Chem., Int. Ed. 1990, 29, 545-546.
- (47) De-jun, L.; Zi-xing, S.; Guo-ping, W.; Jin-gui, Q. Wuhan University Journal of Natural Sciences 2003, 8, 1138-1142.
- (48) Shan, Z. X.; Xiong, Y.; Li, W. Z.; Zhao, D. J. Tetrahedron: Asymmetry 1998, 9, 3985-3989.
- (49) (a) Kelly, T. R.; Whiting, A.; Chandrakumar, N. S. *J. Am. Chem. Soc.* **1986**, *108*, 3510-3512. (b) Wipf, P.; Jung, J.-K. *J. Org. Chem.* **2000**, *65*, 6319-6337. (c) Landells, J. S.; Larsen, D. S.; Simpson, J. *Tetrahedron Lett.* **2003**, *44*, 5193-5196. (d) Snyder, S. A.; Tang, Z. Y.; Gupta, R. *J. Am. Chem. Soc.* **2009**, *131*, 5744-5745.
- (50) (a) Ishihara, K.; Yamamoto, H. *J. Am. Chem. Soc.* **1994**, *116*, 1561-1562. (b) Ishihara, K.; Kurihara, H.; Yamamoto, H. *J. Am. Chem. Soc.* **1996**, *118*, 3049-3050. (c) Ishihara, K.; Kurihara, H.; Matsumoto, M.; Yamamoto, H. *J. Am. Chem. Soc.* **1998**, *120*, 6920-6930. (d) Ishihara, K.; Kondo, S.; Kurihara, H.; Yamamoto, H.; Ohashi, S.; Inagaki, S. *J. Org. Chem.* **1997**, *62*, 3026-3027.
- (51) Hu, G. PhD Dissertation, Michigan State University, 2007.
- (52) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39, 4518-4521.
- (53) Huang, L. PhD Dissertation, Michigan State University, 2011.
- (54) Wang, Z. H.; Li, F.; Zhao, L.; He, Q. Q.; Chen, F. E.; Zheng, C. *Tetrahedron* **2011**, *67*, 9199-9203.
- (55) Lingenfelter, D. S.; Helgeson, R. C.; Cram, D. J. J. Org. Chem. 1981, 46, 393-406.
- (56) (a) Tsang, W. C. P.; Schrock, R. R.; Hoveyda, A. H. *Organometallics* **2001**, *20*, 5658-5669. (b) Gobbi, L.; Seiler, P.; Diederich, F.; Gramlich, V. *Helv. Chim. Acta* **2000**, *83*, 1711-1723.

- (57) O'Dell, R.; McConville, D. H.; Hofmeister, G. E.; Schrock, R. R. J. Am. Chem. Soc. 1994, 116, 3414-3423.
- (58) Kickova, A.; Donovalova, J.; Kasak, P.; Putala, M. New J. Chem. 2010, 34, 1109-1115.
- (59) Zhu, S. S.; Cefalo, D. R.; La, D. S.; Jamieson, J. Y.; Davis, W. M.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 8251-8259.
- (60) Singh, R.; Czekelius, C.; Schrock, R. R.; Mueller, P.; Hoveyda, A. H. *Organometallics* **2007**, *26*, 2528-2539.
- (61) Hu, W.; Zhou, J.; Xu, X.; Liu, W.; Gong, L. Org. Synth. 2011, 88, 406-417.
- (62) Wipf, P.; Lyon, M. A. ARKIVOC 2007, xii, 91-98.
- (63) Lu, Z.; Zhang, Y.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7185-7194.
- (64) (a) Pellissier, H. *Tetrahedron* **2008**, *64*, 10279-10317. (b) Seebach, D.; Beck, A. K.; Heckel, A. *Angew. Chem., Int. Ed.* **2001**, *40*, 92-138.

CHAPTER 6

DIRECT IMINO-BOROX CATALYSIS ASYMMETRIC AZIRIDINATION, [3+2] CYCLOADDITION, UGI REACTION AND KINETIC RESOLUTION OF IMINES

You should never ignore the crude weight and the crude NMR especially if the reaction fails to give the desired product.

-William D. Wulff

6.1 Catalytic asymmetric one-pot aziridination

In the present section of this chapter, the asymmetric catalytic aziridination reaction (AZ reaction) of imines derived from dianisylmethyl (DAM) amine was examined with the IMINO BOROX catalysts. As a result, a new one-pot procedure was developed for the aziridination reaction.

Apart from asymmetric aziridination reactions using chiral auxiliaries, ¹ considerable advances have been made in the field of catalytic asymmetric aziridination over the past few years. ² Primarily, there are two main approaches that have been taken towards catalytic asymmetric aziridination: a) addition of nitrogen to olefins *via* nitrene transfer with organometallic catalysts ³ or organocatalysis ⁴ b) addition of carbon to imines *via* metal-carbene transfer (carbene generated from diazo compound or sulfur ylides) ⁵ or the reaction of a diazo compound with an imine activated by either Lewis acid ⁶ or Brønsted acid. ⁷ It must noted that the asymmetric aziridination reaction between the imines and diazo compounds in the presence

of an acid catalyst must not be mistaken for Aza-Darzens reaction as both are mechanistically distinct.^{2a} In fact, an asymmetric Aza-Darzens reaction has only been reported with chiral auxiliaries. ^{2a} As discussed in previous chapters, our aziridination protocol is a Brønsted acid catalyzed reaction.⁸ Over the last several years we have developed a general method for the catalytic asymmetric synthesis of aziridines that is based on the reaction of diazo compounds with imines and which is mediated by asymmetric catalysts generated from the VANOL and VAPOL ligands and various boron compounds. 8-9 Early on it was determined that with imines derived from benzhydryl (Bh) amine 126a and catalysts derived from triphenylborate, aziridines could be obtained in high yields and asymmetric inductions from the reaction of ethyl diazoacetate and other diazo compounds. 10 The reactions are also highly diastereoselective giving cis-2,3-disubstituted aziridines and in most cases only trace amounts of the trans-aziridine can be detected. The scope of the reaction is broad and includes imines derived from a variety of aldehydes including electron-rich and electron-poor aromatic aldehydes and 1°, 2° and 3° aliphatic aldehydes. 9a The imines from aromatic aldehydes gave aziridines with 90-95% ee and imines from aliphatic aldehydes gave aziridines with 77-87% ee. 9a Interestingly, both VANOL and VAPOL derived catalysts are equally effective and give nearly the same asymmetric inductions for each substrate across the entire range of 12 substrates examined. ^{9a}

During the studies directed toward mapping the active site of the chemzyme in this reaction, it was revealed that while the use of a diphenylmethyl group on the imine is essential to the success of this reaction, it does not represent the optimal substituent since it was found that

various diarylmethyl groups were far more effective. A collection of 14 different diarylmethyl substituents was screened for the reaction of imines derived from benzaldehyde and the optimal selectivity (99% ee) was found for the *tetra-t*-butyldianisylmethyl (BUDAM) group. With the identification of the BUDAM substituent as optimal for the imine from benzaldehyde, this substituent was in turn screened with imines prepared from BUDAM amine 126d and eleven different aldehydes. The reactions of BUDAM imines from aromatic aldehydes were definitely superior to their benzhydryl analogs giving 98-99% ee for most substrates with VAPOL derived catalysts; however, the reactions of BUDAM imines from aliphatic aldehydes were not significantly different from their benzhydryl analogs giving ee's generally in the 80's. Thus, the goal of the present work is to identify the optimal diarylmethyl substituent that will provide universal access to optically pure aziridines from the AZ reaction irrespective of the substrate.

One of the great advantages of the BUDAM substituent is that it can be easily cleaved under acidic conditions without opening the aziridine ring when the aziridine is treated with 4 equivalents of triflic acid in anisole at room temperature. The corresponding benzhydryl aziridines leads to ring opening under all acidic conditions that were screened. The facile cleavage of the BUDAM group under acidic conditions can be attributed to the fact that a significantly more stable diarylmethyl cation is formed during the cleavage. Thus, in seeking the ideal diarylmethyl substituent for the imine, one of the characteristics that would be most desired would be its ability to be removed from the aziridine without causing any deleterious effects to the aziridine. One of the other diarylmethyl groups that was identified in our previous work as superior to the unsubstituted diphenylmethyl (benzhydryl or Bh) group in the AZ reaction is the

dianisylmethyl (DAM) group. ¹¹ The presence of the methoxyl substituents in the DAM group is sufficient to provide for the clean cleavage of the DAM group under acidic conditions. ¹¹ We have previously examined the scope of the aziridination of DAM imines from a variety of aldehydes and found that these imines tend to give slightly improved yields and asymmetric inductions than the corresponding benzhydryl imines. ¹¹ However, this survey was conducted with methylene chloride and carbon tetrachloride as solvent. Since we have subsequently found that toluene is in many respects superior to either methylene chloride and carbon tetrachloride for the AZ reaction, ^{9a} we decided to revisit the scope of the AZ reaction of DAM imines.

Meanwhile, a lot of mechanistic studies were carried out in our group regarding the identification of the active catalyst structures. Prior to these studies, it was believed that the active catalyst is B1 106/107 (Scheme 2.1, Chapter 2) that was generated from VAPOL or VANOL when reacted with triphenyl borate. This proposed structure was based on studies by Yamamoto, however no spectroscopic evidence existed for such catalyst structures. Further, Dr. Yu Zhang, one of the previous group members, found out that there are two boron species B2 108/109 and B1 106/107 on the basis of NMR and MS studies (Scheme 2.1, Chapter 2). Additionally, it was found that the catalyst enriched with B2 108/109 gives higher asymmetric induction and higher rates in the aziridination reaction compared to a catalyst mixture enriched with B1 106/107. In the continuing effort to probe the mechanistic rationale for the asymmetric induction observed for catalysts generated from VAPOL and VANOL, a major breakthrough was the identification of the active boroxinate catalyst 188/189 (imine =

benzhydryl imines **78**) which contains three boron atoms (Scheme 2.1, Chapter 2). Surprisingly, the catalyst proved to be a Brønsted acid catalysis in operation contrary to the common belief of that the aziridination reaction involved Lewis-acid catalysis. Furthermore, it was found that the boroxinate **188/189** is formed by the reaction of the pyroborate **108** with the imine **78**, with or without the presence of an additional equivalent of B(OPh)₃. Hence, the catalytic mixture obtained by mixing ligand (1 equiv), B(OPh)₃ (4 equiv) and H₂O (1 equiv) is actually a "pre-catalyst" (Method C, Table 2.1, entry 4, Chapter 2 and Scheme 6.2B). The protocol for the aziridination reaction using pre-catalyst made by method C is termed as procedure IV (Table 2.1, entry 4, Chapter 2 and Scheme 6.2B).

The shortcoming of the optimized protocol for the aziridination of imines include the need to generate a pre-catalyst (mixture of B1 106/107 and B2 108/109) from the VAPOL or VANOL ligand and B(OPh)₃. In the pre-catalyst protocol, the exposure to high vacuum at 80 °C is not sufficient to remove the third equivalent of B(OPh)₃ after the pyroborate 108/109 is formed, although the phenol produced in the alkoxy exchange between the ligand and B(OPh)₃ is removed. However, the major difficulty of the protocol is the removal of the volatiles during the preparation of the pre-catalyst. Removing the solvent and other volatiles at 80 °C under high vacuum often occurs with splattering and loss of the pre-catalyst. Henceforth, the secondary aim of the work was to simplify the overall procedure, thus developing a one-pot aziridination reaction avoiding the generation of the pre-catalyst.

In the process of the optimization, a simplified procedure II (Table 2.1, entry 2, Chapter 2 and Scheme 6.1) was devised using benzhydryl phenyl imine **78a**. The procedure II involves the direct generation of the boroxinate catalyst **188a** by mixing 1 equiv of (S)-VAPOL, 3 equiv of

B(OPh)₃ and 20 equiv of imine **78a** in toluene at 25 °C for 5 min. Thereafter, EDA **85** (24 equiv) is added and the resulting mixture is stirred for 24 h at 25 °C. The reaction was performed open to air. It gave aziridine **86a** in 82% yield and 92% ee. A number of solvents (hexanes, dioxane, toluene, ether, DME etc.) were also examined.⁸

Scheme 6.1 Catalytic asymmetric aziridination of imine 78a using procedure II

The application of procedure II to the reaction of *N*-DAM imines **110** was then tested (Table 6.1). Unfortunately, low conversions were observed when the reaction was performed open to air (Table 6.1, entries 1,3,5,7). It was then thought to carry out the reaction under argon atmosphere. Although a slight improvement was observed, the reactions were still far from complete (Table 6.1, entries 2,4,6,8). To our delight, high yield and high enantioselectivity were observed (Table 6.1, entry 7) on increasing the catalyst loading from 5 mol% to 10 mol% for imine **110g** (R = 4-Br-C₆H₄). This modified procedure seemed to be a much simplified procedure when compared to that which employs pre-catalyst preparation.

Table 6.1 One-pot aziridination reaction of *N*-DAM imines **110** using procedure II.

Table 6.1 cont'd

#	Series	Conditions	R	Conversion (%)	Yield 113 (%)	ee 113 (%) ^d
1	a	open to air	Ph	27	_	_
2	a	under argon	Ph	80	_	_
3	d	open to air	4-Me-C ₆ H ₄	20	_	_
4	d	under argon	4 -Me-C $_6$ H $_4$	26	_	_
5	f	open to air	$4-NO_2-C_6H_4$	28	_	_
6	f	under argon	$4-NO_2-C_6H_4$	44	_	_
7	g	open to air	4-Br-C ₆ H ₄	15	_	_
8	g	under argon	4-Br-C ₆ H ₄	23	_	_
9 ^e	g	under argon	4-Br-C ₆ H ₄	100	90	95

^a Unless otherwise specified, all reactions were performed with 5 mol% of catalyst **212** with 0.50 mmol imine **110** (1.0 equiv, 0.5 M in toluene) and 0.6 mmol of EDA **85** (1.2 equiv) at room temperature. ^b Percent conversion is determined by integration of the methine proton of the *cis*-aziridine relative to the sp^2 -CH proton of the unreacted imine **110** in the ¹H NMR spectrum of the crude reaction mixture. ^c Isolated Yield. ^d Determined by HPLC. ^e 10 mol% catalyst used.

Since one of the aims of the work was to utilize as of a low catalyst loading as possible, another procedure II' was employed. The catalyst was generated by stirring a mixture of (S)-VAPOL (0.025 mmol), B(OPh)₃ (0.1 mmol) and imine 110g (R = 4-Br-C₆H₄, 0.25 mmol) in toluene for 0.5 h. In this way, the catalyst loading was 10 mol% with respect to imine 110g during the preparation of the catalyst. The actual catalyst loading was reduced to 5 mol% by adding imine 110g (0.25 mmol) after 0.5 h. Unfortunately, this trick did not work and the reaction only went to 16 % conversion (Scheme 6.2A).

Scheme 6.2 Catalytic asymmetric aziridination of imine **110g** (R = 4-Br- C_6H_4) using (**A**) procedure II' (**B**) procedure IV (**C**) procedure V' (**D**) procedure V

A

R N DAM

110g

(0.25 mmol)

(S)-VAPOL

(5 mol%)

R N DAM

110g

(0.25 mmol)

toluene

25 °C, 0.5 h

under argon

16% conversion

B

 \mathbf{C}

Scheme 6.2 cont'd

D

Furthermore, we thought of performing the reaction using procedure V' where a precatalyst is made. The difference between the procedure IV and V' was that there was no removal of the volatiles under reduced pressure (Scheme 6.2B vs 6.2C). An improved conversion of 39 % (compared to 16% conversion with procedure II') was observed for imine 110g using 5 mol% This increase in conversion speaks to the necessity of the high catalyst (Scheme 6.2C). temperature for generation of an effective catalyst system. Since it is known that the generation of the active catalyst occurs only after the addition of imine, it was thought to heat the ligand, borate and imine altogether (procedure V, Scheme 6.2D). Using procedure V, the reaction of imine 110g with 5 mol% catalyst loading gave 100% conversion affording aziridine 113g in 89% yield and 97% ee (Scheme 6.2D). The basic aspect of procedure V is that the ligand, B(OPh)₃ and all of imine for the reaction (Scheme 6.2D) are heated together in toluene at 80 °C for 1 h and then upon cooling to room temperature, the reaction is initiated by the addition of ethyl diazoacetate. Another significant incorporated into procedure V is that the step involving the removal of volatiles has been deleted and this did not have any adverse effect on the outcome of the reaction. This aids in the objective to simplify the system. Additionally, it was observed that

the presence of phenol does not significantly affect the outcome of the AZ reaction (Table 6.4). Finally, it should be noted that the water was left out of procedure V. Although the formation of a boroxinate does require three equivalents of water, studies on the efficiency of the formation of boroxinate by ¹H and ¹¹B NMR spectroscopy revealed that there is sufficient partial hydrolysis in commercial B(OPh)₃ to provide the equivalent of three molecules of water.⁸ We have never encountered a bottle of commercial B(OPh)3 that was pure. This fact, and the consistency of the impure nature of commercial B(OPh)₃ over the years has been responsible for the success and reproducibility of the AZ reaction. The reason that four equivalents of B(OPh)₃ is used in procedure IV and V is to compensate for the fact that B(OPh)3 in not pure as supplied from commercial suppliers. In reality, we have not seen any significant difference in the catalyst prepared with either three or four equivalents of B(OPh)₃ either in reaction outcome or in its characterization by ¹H or ¹¹B NMR spectroscopy. ¹³ Even with two equivalents of B(OPh)₃ the reaction outcome is not significantly affected. All of this suggests that all of the boron that happens to be present is converted to the chiral boroxinate even if this leaves some of the ligand unreacted, and if any boron is left over, it not does interfere in terms of background reaction. 13

The catalytic asymmetric aziridinations of the DAM imines 110 derived from aromatic aldehydes were screened in toluene following procedures IV and V and the results are presented in Table 6.2. All of the reactions were carried out for 24 h with 2-5 mol% catalyst but not all substrates required 24 h to go to completion. The reaction of the phenyl imine 110a was complete in 2 h with 3 mol% catalyst (Table 6.2, entry 1). In all cases the reaction went to

completion except for entry 11 which went to 97% completion in 24 h with 2 mol% catalyst. The catalyst with VANOL was used for the *para*-methoxyl substrate 110e since it had been found in our previous studies on DAM imines that this is the slowest substrate and that the VANOL catalyst is approximately twice as fast as the VAPOL catalyst. One of the clear findings of this study is that, at least for DAM imines derived from aryl aldehydes, there is no difference in yields or asymmetric inductions between procedures IV and V for catalyst formation. This is an important observation since procedure V is experimentally much more simple as it does not involve the removal of solvent from the catalyst at high temperature under vacuum. Unfortunately, the asymmetric inductions in toluene do not represent a significant improvement over those previously observed with DAM imines from aryl aldehydes in carbon tetrachloride solvent. This is not to ignore the fact that toluene is a much more desirable solvent than carbon tetrachloride for reasons of both safety and cost.

Table 6.2 Asymmetric Aziridination with Aryl DAM imines **110**. ^a

#	Serie s	R	Ligand	Cat. x mol%	Yield 113 (%) b	ee 113 (%)	cis/trans	Enamine (%) ^e
1 f	a	Ph	(R)-VAPOL	IV (5)	95	-92	50:1	1(1)
2^g	a	Ph	(S)-VAPOL	V (3)	90	94	>50:1	2.7(2.7)
3	b	1-napthyl	(S)-VAPOL	V (3)	80	98	>50:1	1.6(1.6)
4	c	2-Me-C ₆ H ₄	(S)-VAPOL	V (3)	70	93	>50:1	1.4 (1.1)

Table 6.2 cont'd

5	d	4-Me-C ₆ H ₄	(S)-VAPOL	IV (5)	90	94	>50:1	1(1)
6	d	4-Me-C ₆ H ₄	(S)-VAPOL	V (3)	90	94	>50:1	1(1)
7	e	$4\text{-MeO-C}_6\text{H}_4$	(R)-VANOL	IV (5)	80	-93	>50:1	2(1)
8	e	4-MeO-C ₆ H ₄	(S)-VANOL	V (3)	80	93	50:1	3.2(1.6)
9	f	4-NO ₂ -C ₆ H ₄	(S)-VAPOL	IV (5)	85	94	33:1	1.6(1.6)
10	f	$4-NO_2-C_6H_4$	(S)-VAPOL	V (3)	85	95	50:1	<1(<1)
11	\mathbf{g}	4 -Br- C_6 H $_4$	(S)-VAPOL	IV (5)	90	97	50:1	<1(<1)
12	\mathbf{g}	4 -Br- C_6 H $_4$	(S)-VAPOL	IV (3)	90	97	50:1	<1(<1)
13^h	g	4 -Br- C_6 H $_4$	(S)-VAPOL	IV (3)	94	97	50:1	<1(<1)
14^{i}	g	4 -Br- C_6H_4	(S)-VAPOL	IV (2)	87	97	50:1	1(1)
15	g	4 -Br- C_6H_4	(S)-VAPOL	V(5)	89	97	33:1	4.5(2.7)

^a Unless otherwise specified, all reactions were performed with x mol% of catalyst 212/212′ with 0.50 mmol imine 110 (1.0 equiv, 0.5 M in toluene) and 0.6 mmol of EDA 85 (1.2 equiv) at room temperature and went to completion. Procedure IV or V (Scheme 6.2B and 6.2D) were followed for the aziridination reaction. ^b Isolated Yield. ^c Determined by HPLC. Ratio determined by integration of the methine protons of cis- and trans-aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^e Determined by integration of the NH signals of enamines relative to the methine proton of cis aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^f This reaction was complete in 2 h with 5 mol% catalyst. ^g This reaction was complete in 8 h. ^h Pre-catalyst made using Procedure IV except that water was excluded during the catalyst preparation. ⁱ 97% complete.

At this point we had not yet addressed the critical issue of whether the DAM imines would provide higher inductions for imines from aliphatic aldehydes since we had only screened the aryl imines shown in Table 6.2. The aziridinations of the aliphatic DAM imines 110 using procedure IV and V were carried out as indicated in Table 6.3 in toluene at room temperature for 24 h. Considering previous observations that alkyl substituted imines are generally slower, 5-10 mol% catalyst was used for imines 110o, 110v and 110w. Unfortunately, the results from the

alkyl substituted DAM imines 110 do not represent an improvement in the asymmetric inductions over those of the corresponding benzhydryl imines **78** and in fact are slightly lower. ^{9a} In addition, the aziridination of the primary alkyl substituted imine 1100 essentially fails in the case of the DAM imine (Table 6.2, entries 1-4). This reaction produces a very complex mixture with both VANOL and VAPOL catalysts and at both room temperature and at 0 °C. A similar complex mixture was produced with DAM imine 1100 in carbon tetrachloride solvent with the VAPOL catalyst where the aziridine 1130 was isolated in 11% yield and in 63% ee. 11 This is to be compared to the corresponding reaction of the benzhydryl imine **78o** (R = n-Pr) prepared from n-butanal which gave the corresponding aziridine **860** in 40% yield and 81% ee. ^{9a} The crude ${}^{1}H$ NMR spectrum of the reaction of imine 1100 in entries 1-4 in Table 6.3 reveals the presence of a small amount of aziridine 1130 (6-14%) and small amounts of the unreacted imine 1100 and of the non-cyclized enamine products 1160 and 1170. The only other product that was prominent in the crude ¹H NMR was, identified after some effort, as the vinyl imine 3330 whose structure was confirmed by independent synthesis (see experimental). This compound presumably results from an aldol type condensation of two molecules of imine 1100 (via an enamine). In contrast, high yields of aziridines were obtained with the 2° and 3° aliphatic imines 110v and 110w, but unfortunately, the asymmetric inductions were not significantly different than those previously observed in carbon tetrachloride. 11 Thus our attempts to improve the asymmetric inductions with aliphatic imines by employing the dianisylmethyl (DAM) substituted imines were surceased. Later on, tetramethyldianisylmethyl (MEDAM) protecting was found to be optimum

for both aromatic and aliphatic imines. 9c Nonetheless, a very simplified one-pot aziridination protocol was identified in these studies with DAM imines.

Table 6.3 Asymmetric Aziridination with Alkyl DAM imines **110**.

#	Series	R	Ligand	Cat. x mol%	Yield 113 (%)	ee 113 (%)	cis/trans	Enamine (%) ^e
1^f	0	<i>n</i> -propyl	(R)-VANOL	V (10)	nd	nd	nd	3(1)
2	0	<i>n</i> -propyl	(R)-VANOL	IV (10)	14	-52	nd	3(1)
3 ^g	0	<i>n</i> -propyl	(S)-VAPOL	IV (10)	11	73	nd	<1(2)
4^g	0	<i>n</i> -propyl	(R)-VANOL	IV (10)	10	-66	nd	2(1)
5	V	cyclohexyl	(S)-VANOL	V (5)	83	82	50:1	<1(<1)
6^h	V	cyclohexyl	(R)-VANOL	IV (5)	88	-80	50:1	<1(<1)
7 ⁱ	\mathbf{w}	<i>t</i> -butyl	(S)-VANOL	V (10)	60	70	20:1	<1(<1)
8 h	W	<i>t</i> -butyl	(R)-VANOL	IV (10)	87	-83	50:1	<1(<1)

unless otherwise specified, all reactions were performed with x mol% of catalyst 212/212′ with 0.50 mmol imine 110 (1.0 equiv, 0.5 M in toluene) and 0.6 mmol of EDA 85 (1.2 equiv) at room temperature. Procedure IV or V (Scheme 6.2B and 6.2D) were followed for the aziridination reaction. The NMR yields of 332o are 7, 4, 7, 8 for entries 1-4 respectively. The NMR yield for unreacted imine 110 are 4, 2, 10, 7, <1, <1, 25, <1 for entries 1-8 respectively. The NMR yield is determined from ¹H NMR spectrum of the crude reaction mixture with Ph₃CH as internal standard. ^b Isolated Yield. ^c Determined by HPLC. ^d Ratio determined by integration of the methine protons of cis- and trans- aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^e Determined by integration of the NH signals of enamines relative to the methine proton of cis aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^f The NMR yield of the aziridine 113o is 6%. ^g This reaction was performed with at 0 °C for 48 h. ^h Reaction time = 48 h. ⁱ Reaction time = 55 h.

Following the procedure V (Scheme 6.2D), a study of the effect of various additives on the aziridination reaction was performed (Table 6.4). The additives (one equivalent with respect to the imine) were added prior to the addition of ethyl diazoacetate 85. Low conversions were obtained when water and 4-pentylbicyclo [2.2.2]octane-1-carboxylic acid 334b were used as additives (entries 1-2). A drop of 22% ee was observed when benzoic acid 334a was added (entry 3). However, addition of phenol **194a** did not alter the result (entry 4).

Table 6.4 Effect of various additives on the aziridination reaction.

#	imine	P	Additive b	Conv (%)	Yield azi (%)	ee azi (%) ^e	cis/trans	Enamine (%) g
1^{h}	78a	CHPh ₂	H_2O	43	nd	nd	nd	nd
2	111a	MEDAM	H_2O	15	nd	nd	nd	nd
3	111a	MEDAM	4-pentylbicyclo [2.2.2]octane-1-carboxylic acid	22	nd	nd	nd	nd
4	111a	MEDAM	PhCO ₂ H	88	77	78	33:1	5(2)
5	111a	MEDAM	PhOH	100	98	96	50:1	4(5)

^a Unless otherwise specified, all reactions were performed with 3 mol% of catalyst with 0.50 mmol imine 78a/111a (1.0 equiv, 0.5 M in toluene) and 0.6 mmol of EDA 85 (1.2 equiv) at room temperature and went to completion. Procedure V (Scheme 6.2D) was followed for the aziridination reaction. ^b One equivalent of the additive was added with respect to the imine. ^c Percent conversion is determined by integration of the methine proton of the cis-aziridine relative to the sp^2 -CH proton of the unreacted imine in the ¹H NMR spectrum of the crude reaction mixture. ^d Isolated Yield. ^e Determined by HPLC. ^f Ratio determined by integration

Table 6.4 cont'd

of the methine protons of *cis*- and *trans*- aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^g Determined by integration of the NH signals of enamines relative to the methine proton of *cis* aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^h Procedure IV (Scheme 6.2B) was followed for the aziridination reaction with 5 mol% catalyst.

6.2 Racemic Aziridination with various Lewis/Brønsted acids

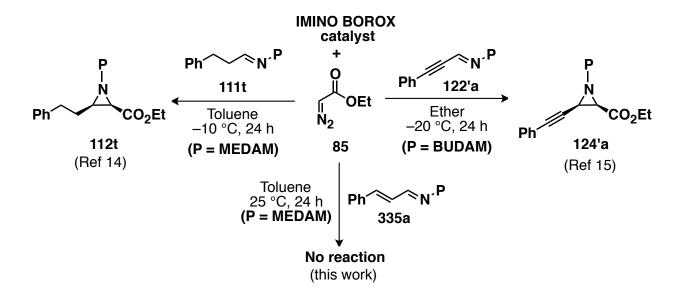
During one of the studies, we found that the MEDAM group, which is the optimum for our aziridination reaction, is not as good as benzhydryl protecting group for a racemic aziridination with various Lewis or Brønsted acids (Table 6.5). We already know that the rate-limiting step in the case of the Wulff catalytic asymmetric aziridination reaction is the ring-closure step and carbon-carbon bond formation step for MEDAM imine 111a and benzhydryl imine 78a respectively. It would be interesting to find out the rate-limiting step in the case Yb(OTf)₃ catalyzed racemic aziridination reaction using benzhydryl imine 78a. An experiment was performed (Table 6.5, entry 8) at a 10 mmol scale and the KIE studies were on progress at the time of writing of this dissertation.

Table 6.5 Racemic Aziridination with various Lewis/Brønsted acids.

Table 6.5 cont'd

#	imine	P	catalyst (x mol%)	Conc (M)	solvent	Yield azi (%)	cis/trans c	Enamine (%)
1 e	111a	MEDAM	BF ₃ •Et ₂ O (10)	0.055	toluene	5	3.8:1	3(1)
2^{e}	111a	MEDAM	BF ₃ •Et ₂ O (10)	0.4	toluene	6	6.3:1	<1(<1)
3 ^e	111a	MEDAM	BF ₃ •Et ₂ O (100)	0.4	toluene	24	9.9:1	2(<1)
4 ^e	111a	MEDAM	TfOH (25)	0.2	toluene	29	6.9:1	7(8)
5	111a	MEDAM	Yb(OTf) ₃ (10)	0.1	hexanes	33	7.6:1	<1(<1)
6	78a	CHPh ₂	Yb(OTf) ₃ (10)	0.1	hexanes	63	16:1	<1(4)
7^f	78a	CHPh ₂	Yb(OTf) ₃ (20)	0.1	hexanes	68	20:1	5(6)
8	78a	CHPh ₂	Yb(OTf) ₃ (20)	0.1	hexanes	72	17:1	5(5)
9^f	78a	CHPh ₂	Yb(OTf) ₃ (10)	0.1	toluene	42	7.7:1	10(13)
10	78a	CHPh ₂	Yb(OTf) ₃ (10)	0.1	toluene	41	6.6:1	8(11)
11	78a	CHPh ₂	B(OPh) ₃ (40)	0.5	toluene	78	>50:1	8(2)

Unless otherwise specified, all reactions were performed with x mol% of catalyst with 0.50 mmol imine **78a/111a** (1.0 equiv, C M in solvent) and 0.6 mmol of EDA **85** (2 equiv) at room temperature. The amount of unreacted imine **78a/111a** was 90%, 75%, 40%, 22%, 63%, 7%, <1%, <1%, 2%, 13% and <1% for entries 1-11 respectively. ^b Determined from ¹H NMR of crude reaction mixture with Ph₃CH as the internal standard. ^c Ratio determined by integration of the methine protons of *cis*- and *trans*-aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^d Determined by integration of the NH signals of enamines relative to the methine proton of *cis*-aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^e 1.2 equiv EDA used. ^f EDA added at 0 °C.


6.3 Catalytic asymmetric [3+2] cycloaddition

Over the last several years we have developed a general method for the catalytic asymmetric synthesis of aziridines that is based on the reaction of stabilized diazo compounds with imines and which is mediated by asymmetric catalysts generated from the VANOL and

VAPOL ligands and various boron compounds. 8-9 The reactions are also highly diastereoselective giving cis- and trans-2,3-disubstituted aziridines depending upon the kind of diazo compounds used. The scope of the reaction is broad and includes imines derived from a variety of aldehydes including electron-rich and electron-poor aromatic aldehydes and 1°, 2° and 3° aliphatic aldehydes. 9a It must be noted that while aziridines 114t¹⁴ and 124'a¹⁵ are obtained in high yields and ees from the reaction between imines 111t (derived from dihydrocinnaldehyde 127t) and 122'a (derived from 3-phenyl-2-propynal 102a) and EDA, imine 335a (derived from cinnamaldehyde 336a) failed to give any aziridine when reacted with EDA under aziridination reaction conditions (Scheme 6.3A). In this case, starting material i.e. imine was recovered. A similar trend was observed when diazoacetamide 123a was utilized for aziridination reaction with imines 112z^{9f} and 122z¹⁵ and likewise, there was no reaction with the imine 335z (derived from trans-crotonaldehyde 336c) (Scheme 6.3B). The reason for the failure of the aziridination reaction with imines derived from α,β -unsaturated aldehydes has not been determined. However, there are six different products possible from the reaction between the imine 335 and ethyl diazoacetate 85 as shown in Scheme 6.3C. Apart from aziridines 337 and enamines 338-339, the products include the diazo compound 340, the pyrazoline 341 and the cyclopropane 342.

Scheme 6.3 (A) Reaction between EDA and different imines (B) Reaction between diazoacetamide and different imines (C) Possible products from the reaction between EDA and conjugated imine 335

 \mathbf{A}

B

IMINO BOROX catalyst

H₃C
$$\sim$$
 N.P

Toluene
0 °C, 24 h

(P = BUDAM)

Toluene
25 °C, 24 h
(P = MEDAM)

No reaction
(this work)

Scheme 6.3 cont'd

IMINO BOROX catalyst

P
OEt

335
$$N_2$$
 N_2
 N_3
 N_2
 N_3
 N_4
 N_2
 N_2
 N_2
 N_3
 N_4
 N_4
 N_5
 N_5
 N_6
 N

It must be pointed out that there is no prior report of a reaction between a diazo compound and imine derived from α,β -unsaturated aldehydes. However, pyrazolines and cyclopropanes have been observed from the reaction between α,β -unsaturated aldehydes and EDA with the outcome depending upon the substitution pattern of the aldehyde and the reaction conditions (Scheme 6.4 and 6.5). With no alpha substitution, it has been reported that [3+2] adduct is the major product which polymerizes very quickly (Scheme 6.4A and 6.4B). However, in the year 2006, Hossain and coworkers showed that cyclopropanes can be obtained in high yields from these aldehydes if the reaction is performed in the presence of HBF₄ at -78 °C. In 2006, Maruoka and coworkers reported the formation of a chiral all-carbon quaternary center *via* TfOH catalyzed insertion of aryldiazoacetates into an sp² carbon–CHO bond (Scheme 6.4C). Nonetheless, based on the reported observations with aldehydes (Scheme 6.4), a similar outcome

can be assumed in the cases of the reaction between imine 335 derived from α,β -unsaturated aldehydes 336 and EDA. In other words, probably, a very small amount of the imine 335 undergoes [3+2] cycloaddition and the resulting adduct might bind to the catalyst thereby completely killing the reaction.

Scheme 6.4 (A) Reaction between EDA and unsubstituted acroleins $^{16-17}$ (B) Reaction between EDA and β -substituted acroleins $^{16-17}$ (C) Reaction between di-substituted aryldiazoacetate and β -disubstituted acroleins 18

A

Hexanes

HN-N

EtO₂C

CH₂Cl₂, -78 °C

HN-N

EtO₂C

CH₂Cl₂, -78 °C

HN-N

EtO₂C

CH₂Cl₂

Trans:cis=1.5:1

В

Hexanes
$$HN-N$$

or

 CCI_4
 SCI_4
 $SIII_{CHO}$

OEt

 $SIII_{CHO}$
 $SIII_{CHO}$

Scheme 6.4 cont'd

C

O

Ph
OR
N₂

Toluene
-78 °C, 30 min

346
89% y, 87% de

R = Ph

While [3+2] adducts¹⁹ have been observed from the reaction of mono-substituted diazo compounds with α -substituted acroliens, di-substituted diazo compounds have been reported to form cyclopropanes²⁰ for the same reaction (Scheme 6.5). There are several other [3+2] cycloadditions reported using acroleins²¹ and other carbonyl compounds.²²

Scheme 6.5 (A) Reaction between **348** or EDA and α -substituted acroleins **347** (B) Reaction between EDA and α , β -substituted acroleins **352** (C) Reaction between di-substituted aryldiazoacetate and α -substituted acroleins **347**

Scheme 6.5 cont'd

$$\begin{array}{c} \textbf{B} \\ \textbf{R}^{1} \\ \textbf{R}^{2} \\ \textbf{O} + \\ \textbf{N}_{2} \\ \textbf{S}^{5} \\ \textbf{O} \\ \textbf{E}^{6} \\ \textbf{O} \\ \textbf{O} \\ \textbf{E}^{6} \\ \textbf{O} \\ \textbf{O} \\ \textbf{E}^{6} \\ \textbf{O} \\$$

Given the reported reactions of α,β -unsaturated aldehydes described above, the thought then arose to attempt the reaction of an imine generated from α -substituted acroleins with ethyl diazoacetate in the presence of IMINO-BOROX catalyst. At this point, it must be remembered that we did obtain a conjugated imine **3330** as the byproduct during the aziridination reaction of imine **1100** with EDA (Table 6.3, entry 1-4). This was found to be one of the reasons for the low yields obtained from the aziridination reaction with aliphatic imines. We then thought to react the imine **3330** with EDA, and surprisingly, we observed the [3+2] adduct **3560** in 41% yield in the presence of IMINO-BOROX catalyst **3570**. The asymmetric induction could not be measured. In HPLC analysis, multiple absorption peaks were observed, probably, due to the decomposition of the [3+2] adduct **3560**. There was no sign of any aziridine from NMR analysis

of the crude reaction mixture. This was unexpected and lead to the discovery of a novel and unprecedented [3+2] cycloaddition reaction catalyzed by our IMINO BOROX catalyst derived from vaulted ligands.

Scheme 6.6 [3+2] cycloaddition reaction between EDA and imine 3280

Thereafter, as a part of optimization, we subjected the reaction of the imine derived from (E)-2-methylbut-2-enal 352b with ethyl diazoacetate 85 to different conditions (Table 6.6). Low yields were obtained with both VANOL and VAPOL catalysts when imine 359a, derived from MEDAM amine 126c, was employed (entries 1-2). However, imine 358a derived from BUDAM amine 126d gave the [3+2] adduct 360a in 59% yield and 50% ee using the VAPOL catalyst (entry 4). The results in the table show that the reaction performed with the VAPOL catalyst

gives a higher yield than the reaction with the VANOL catalyst (entry 4 vs. 3). There was no reaction observed in the absence of catalyst or in the presence of only (S)-VAPOL as the catalyst (entries 5-6). Not much improvement was observed upon changing the solvent to dichloromethane and performing the reactions at -78 °C (entries 7-10). Even lowering the concentration to 0.1 M did not assist in any improvement of the yield (entry 10). A common observation in the reactions in dichloromethane is that there was an unknown side-product 366a present in the reaction mixture. The structure of the unknown side-product is suspected to be cyclopropane, however, this was not confirmed.

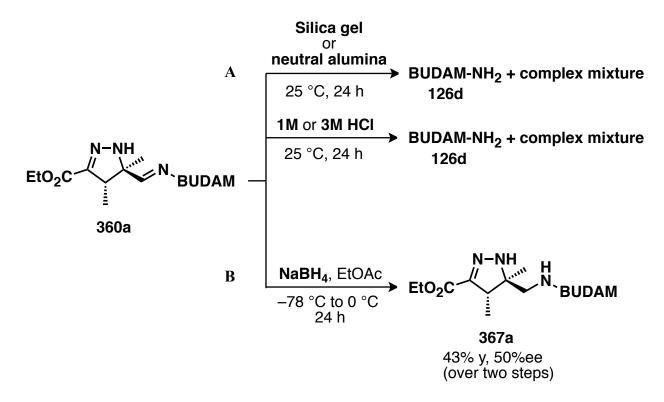
Table 6.6 Initial optimization of the [3+2] cycloaddition reaction.

#	Cat.	Ligand	P	Temp (°C)	Solvent	Prod.	Yield (%)	ee (%) ^c
1	362a	(S)-VANOL	MEDAM	25	toluene	361a	35	nd
2	363a	(S)-VAPOL	MEDAM	25	toluene	361a	33	nd
3	364a	(S)-VANOL	BUDAM	25	toluene	360a	34	52 ^d
4	365a	(S)-VAPOL	BUDAM	25	toluene	360a	59	50^{d}
5 ^e	58	(S)-VAPOL only	BUDAM	25	toluene	360a	<1	_
6 ^f	_	no catalyst	BUDAM	25	toluene	360a	<1	_
7 ^g	365a	(S)-VAPOL	BUDAM	-78	CH ₂ Cl ₂	360a	50	50^{d}

Table 6.6 cont'd

8 ^h	365a	(S)-VAPOL	BUDAM	-78	CH_2Cl_2	360a	21	nd
9 ⁱ	365a	(S)-VAPOL	BUDAM	-78	CH_2Cl_2	360a	25	nd
10^{j}	365a	(S)-VAPOL	BUDAM	-78	CH ₂ Cl ₂	360a	46	nd

^a Unless otherwise specified, all reactions were performed with 10 mol% of catalyst with 0.20 mmol imine **358a/359a** (1.0 equiv, 0.4 M in toluene) and 0.4 mmol of EDA **85** (2 equiv) at room temperature. The pre-catalyst is made using method C (Chapter 2). ^b The NMR yield is determined by the ¹H NMR spectra of the crude reaction mixture with Ph₃CH as internal standard. ^c Determined by HPLC. ^d The sample was prepared by passing the crude product through a plug of neutral Al₂O₃ using 10:1 hexanes:EtOAc as the eluent. ^e The reaction was performed in presence of (S)-VAPOL only. ^f No catalyst was used for the reaction. ^g This reaction was allowed to warm to 25 °C and then stirred for 15 min at 25 °C followed by dilution with hexanes. ^h Reaction time = 3 h. An unknown product **366a** (40%) was observed along with 18% of unreacted imine **358a**. ⁱ A small amount of unknown side product **366a** was observed. ^f The concentration of the reaction is 0.1 M. A small amount of unknown side product **366a** was also observed.


To our delight, the [3+2] cycloaddition reaction was also found to give comparable results when the reaction was performed in a multicomponent fashion (Scheme 6.7).

Scheme 6.7 Multicomponent [3+2] cycloaddition reaction.

In an attempt to purify and isolate the product, we decided to either hydrolyze or reduce the resulting [3+2] adduct 360a which itself is an imine. Several conditions were tried for

hydrolysis, however, a complex mixture of products was obtained along with the BUDAM amine **1126d** (Scheme 6.8A). Nonetheless, it was observed that the [3+2] adduct **360a** can be easily reduced to amine **367a** using NaBH₄ (Scheme 6.8B).

Scheme 6.8 Attempts towards the (A) hydrolysis of adduct 360a (B) reduction of adduct 360a.

In the end, an unprecedented multicomponent [3+2] cycloaddition has been discovered and presented here. The project is still in an infant state and has the potential to broaden the scope of our BOROX catalysis. Hopefully, this methodology would provide an easy access to Manzacidins ^{19a} and the family of bromopyrrole alkaloids namely, Clathramides. ²³ Also, it is worth mentioning that this work is a perfect example of why a crude NMR spectrum should never be ignored even if the reaction fails to give the desired product.

6.4 Attempts towards catalytic asymmetric Ugi 3CR, Ugi-type 2CR and Ugi-type 3CR.

In the process of the broadening the scope of our BOROX catalyst, we decided to explore the possible applications of the catalyst on other asymmetric reactions. One of such reactions is the Ugi four component coupling reaction (Ugi-4CR). The Ugi-4CR is one of the most widely used multicomponent reactions. An enantioselective variant of this fundamental reaction is still unknown. The Ugi reaction, discovered by Ivar Ugi in 1959, is classified as an isocyanide-based multicomponent reaction. It allows the formation of an α -N-acylamino amide **E** (peptide derivatives) by the coupling of isocyanides **D** with carbonyl compounds (usually an aldehyde of type **A**), primary amine **B** and carboxylic acid **C** (Scheme 6.9X). It introduces a high degree of diversity yielding compounds which can serve as scaffolds for the synthesis of natural products, therapeutic agents, and combinatorial libraries.

Mechanistically, the first step involves the condensation of aldehyde **A** and amine **B**, followed by the protonation of the imine **F** by acid **C** (Scheme 6.9Y). The next step involves the nucleophilic addition of isocyanide **D** to activated iminium **G**, followed by the trapping of the nitrilium species **H** by the carboxylate anion. The final irreversible acyl transfer (known as the Mumm rearrangement) results in the formation of the α -N-acylamino amide **E**.

Scheme 6.9 (X) Ugi-4CR reaction (Y) Proposed mechanism

Scheme 6.9 cont'd

Y
$$R^{1} H + H_{2}N-R^{2} \xrightarrow{-H_{2}O} R^{1} H$$

$$R^{2} H \xrightarrow{R^{2}} R^{1} H$$

$$R^{3} H \xrightarrow{R^{2}} R^{4} H$$

$$R^{3} H \xrightarrow{R^{2}} R^{4} H$$

$$R^{4} H \xrightarrow{R^{2}} R^{3} H$$

$$R^{4} H \xrightarrow{R^{4}} R^{4} H$$

$$R^{4} H \xrightarrow{R^{4}} R^{4} H$$

$$R^{4} H \xrightarrow{R^{4}} R^{4} H$$

It was thus envisioned to examine the reaction using our IMINO-BOROX catalyst **104a** or chiral VAPOL phosphoric acid **35** (Scheme 6.10). The proposed Ugi reaction would involve the pre-formed imine **F** instead of an amine and aldehyde, thereby making it as a three component coupling (3CR) instead of four component coupling (4CR).

Scheme 6.10 Proposed Ugi-3CR

Finding a chiral inductor or catalyst for Ugi reaction would represent a major achievement not only for organic synthesis but also for the pharmaceutical industry. As stated by Ugi, "until today the problem of control of the newly formed stereocenter has not been solved conclusively". Thus, the aim of this project is to find a chiral variant of the Ugi reaction.

6.4.1 Attempts towards catalytic asymmetric Ugi -3CR

In the initial screening, the Ugi-3CR reaction was performed using benzoic acid 334a and t-butyl isocyanide **368a**. The results are summarized in Table 6.7 (entries 1-5). A 20% yield of amide 369a was obtained in the absence of any kind of catalyst (entry 1). The background reaction must have been facilitated by the benzoic acid as the promoter of the reaction. In the first experiment using 10 mol% IMINO-BOROX catalyst **190a**, an increase in the yield (40%) was observed at room temperature (entry 2). Unfortunately, no enantioselectivity was observed. As the carboxylic acid itself can catalyze the Ugi reaction, it was then thought that the uncatalyzed background reaction might be competing with the asymmetric reaction. In order to suppress the background reaction, if any, a stoichiometric amount of the catalyst was used. The ¹H NMR analysis of the crude reaction mixture shows no sign of the desired product (entry 3). Even the slow addition of the carboxylic acid **334a** over a period of 3 h did not bring any change in the outcome (entry 4). Meanwhile, an 8% yield of the racemic product 369a was obtained when (R)-VAPOL phosphoric acid 35 was employed as the Brønsted acid catalyst (entry 5). It must be noted that compound 370a, which could result from the reaction of imine 119a and isocyanide **368a**, has not been observed in the first five entries of the Table 6.7.

Table 6.7 Preliminary results towards the Ugi-3CR reaction.

IMINO-BOROX

N Ph	Ar Ar + Csh R4	catalyst 190a or VAPOL-PO ₃ H 35 (x mol%)	→ Ar	R ³ O O N * Ar Ph	`R ⁴ + ^A `N [*] H	Y Y	O N R ⁴ h
11	11a 368			369		37	70
-	+				3,5-Me ₂ -4- CH = MEDA	•	4
#	R^3	R ⁴	Temp	Cat. x mol%	Product	Yield 369 (%) ^b	ee 369 (%)
1	Ph	<i>t</i> Bu	25	none	369a	20	_
2	Ph	<i>t</i> Bu	25	10	369a	40	<1
3	Ph	<i>t</i> Bu	25	100	369a	<1	_
4^{d}	Ph	<i>t</i> Bu	25	100	369a	<1	_
5 ^e	Ph	<i>t</i> Bu	25	20	369a	8	<1
6	4-pentylbicyclo [2.2.2]octyl	2-Naphthyl	25	none	369b	<1	_
7 ^f	4-pentylbicyclo [2.2.2]octyl	2-Naphthyl	25	10	369b	<1	_
8	4-pentylbicyclo [2.2.2]octyl	2-Naphthyl	25	20	369b	<1	_
9	4-pentylbicyclo [2.2.2]octyl	2-Naphthyl	40	20	369b	<1	_

Unless otherwise specified, all reactions were performed with x mol% of catalyst **190a** with 0.50 mmol imine **111a** (1.0 equiv, 0.3 M in toluene), 0.5 mmol acid **334** (1.0 equiv) and 0.5 mmol of isocyanide **368** (1.0 equiv) at room temperature. The acid component **334** was added after 5 min of the addition of the isocyanide **368**. PhCOOH was sublimed prior to use. Ar₂CH = MEDAM. Isolated Yield. Determined by HPLC. The acid component **334a** was added slowly over a period of 3 h *via* syringe pump. $^e(R)$ -VAPOL-PO₃H **35** was used as the catalyst. Reaction time = 48 h. f 26% yield of **370b** was isolated.

In order to suppress the background reaction, it was envisioned to utilize a weaker acid than benzoic acid. Hence, 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid 334b (pKa of bicyclo[2.2.2]octane-1-carboxylic acid = 6.75)²⁶ was examined. At the same time, the isocvanide component was switched to a weak and unreactive 2-napthyl isocvanide 368b. As expected, there was no reaction observed in the absence of the catalyst (Table 6.7, entry 6). A complex mixture of six different compounds was obtained when the reaction was performed with 10 mol% IMINO-BOROX catalyst 190a (entry 7). One of the fractions was isolated as an orange solid **370b** (72 mg, 26%). The ¹H NMR analysis of this compound revealed the absence of the acid component suggesting that this compound could be a product of imine 111a and 2naphthyl isocyanide 368b. The compound was then completely characterized (see experimental). The asymmetric induction of 370b was found to be 8% ee. The next two reactions were attempted with 20 mol % catalyst, one at room temperature and the other at 40°C (entries 8-9). The ¹H NMR spectrum of both the crude reaction mixtures were very much similar to that of the reaction with 10 mol% catalyst.

6.4.2 Attempts towards catalytic asymmetric Ugi-type 2CR and Ugi-type 3CR

We have seen that α -amino amide **370b** (Table 6.7, entry 7 and Table 6.8, entry 1) is formed, possibly, due to the reaction between imine **111a** and isocyanide **368b**. Based on this observation, we decided to examine an Ugi-type two-component reaction (Ugi-type-2CR) as shown in Scheme 6.11. Unfortunately, no α -amino amide **370** or **371** was observed when imine

111a or 78a was reacted with isocyanides 368a or 368b using our IMINO-BOROX catalyst (Table 6.8, entries 2-4). The starting materials were recovered instead.

Scheme 6.11 Proposed Ugi-type 2CR

Table 6.8 Preliminary results towards the Ugi-2CR and Ugi-3CR.

#	R^1	R^2	R^3	R^4	Product	Yield (%)	ee (%) ^c
1 <i>d,e</i>	Ph	MEDAM	Н	2-naphthyl	370b	26	8
2^{d}	Ph	MEDAM	Н	2-naphthyl	370b	<1	_
3^d	Ph	MEDAM	Н	<i>t</i> Bu	370a	<1	_
4^{d}	Ph	Ph ₂ CH	Н	<i>t</i> Bu	371a	<1	_
5	Ph	Ph ₂ CH	Н	<i>t</i> Bu	371a	<1 (<1) ^g	- (-) ^g
6^f	Ph	PhCH ₂	$PhCH_2$	<i>t</i> Bu	372a	$74 (44)^{h}$	$17(19)^h$
7^f	Ph	PhCH ₂	PhCH ₂	<i>t</i> Bu	372a	76 (72) ⁱ	18 (40) ⁱ

^a Unless otherwise specified, all reactions were performed with 20 mol% of (S)-VAPOL-B(OPh)₃ catalyst with 0.50 mmol amine **126** (1.0 equiv, 0.1 M in toluene), 0.50 mmol aldehyde **127** (1.0 equiv) and 0.50 mmol of isocyanide **368** (1.0 equiv) at room temperature for 24 h. The (S)-VAPOL-B(OPh)₃ catalyst was prepared by heating 1 equiv of (S)-VAPOL, 4 equiv of B(OPh)₃ and 1 equiv of H₂O in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. ^b Isolated Yield. ^c Determined

Table 6.8 cont'd

by HPLC. ^d Reaction performed with pre-formed imines **78a** and **111a**. ^d 0.50 mmol of acid **334b** also added to the reaction mixture; same as entry 7 of Table 6.7. ^g Yield/ee in parenthesis is given for the reaction performed in presence of 4 Å MS. ^f Ratio of **126:127:368** = 2:1:1.5. Reactions were performed by Li Huang. ^h Yield/ee in parenthesis is given for the reaction performed in presence of 3 Å MS. ⁱ Yield/ee is given for the reaction where the catalyst was prepared by 1 equiv of (S)-VAPOL, 3 equiv of BH₃•Me₂S, 2 equiv of phenol and 3 equiv of H₂O in toluene at 100 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 100 °C. Yield/ee in parenthesis is given for the reaction where 2 equiv of 2,4,6-Me₃-C₆H₂OH is used for the catalyst preparation.

While the current work was in progress, List and co-workers reported an example of a catalytic achiral three-component Ugi-type reaction between an amine 126, aldehyde 127 and isocyanide 368. Although *p*-methoxyaniline was their optimized amine, they did screen benzhydryl amine 126c to afford 373b in 36% yield when benzaldehyde 127a and *tert*-butyl isocyanide 368a were used as the other components (Scheme 6.12). However, they were able to obtain an asymmetric induction up to 18% only when they utilized 3,3'-TRIP-BINOL-PO₃H 376. ²⁷

Scheme 6.12 Catalytic Ugi-type three-component reaction. ²⁷

Scheme 6.12 cont'd

R ²	catalyst	% yield	% ee
PhCH ₂	374	42	_
Ph ₂ CH	374	36	_
4-MeO-C ₆ H ₄	374	91	_
4-MeO-C ₆ H ₄	375	90	04
4-MeO-C ₆ H ₄	376	15	18

The work reported by List and coworkers prompted us to screen our proposed Ugi-2CR reaction as a Ugi-3CR reaction starting from an amine and an aldehyde instead of an imine. This was important, as water is ostensibly needed as the nucleophile to attack the nitrilium ion. However, no desired product **371a** was obtained even when the reaction was done in a multicomponent fashion (Table 6.8, entry 5). To our surprise and delight, Li Huang, a former group member, was able to obtain the α -amino amide **372a** when a secondary amine **126h** was used instead of a primary amine (entries 6-7).²⁸ However, the asymmetric induction was found only to be 18%. After a lot of initial optimization, an improved result of 40% ee was obtained. Based on the failure of the reaction with a primary amine and success with secondary amine, a mechanism involving an aminal intermediate has been proposed. A detailed discussion can be found in Li Huang's dissertation.²⁹ It must be noted that there are some secondary amine related

Ugi-type three-component reactions in both racemic³⁰ and asymmetric³¹ forms reported prior to List's work. Recently, Maruoka and coworkers reported a catalytic asymmetric Ugi-type reaction involving azomethine imines.³²

6.5 Attempts towards catalytic asymmetric Passerini reaction

One of the early examples of a multicomponent reaction is the Passerini reaction.³³ It is a three-component reaction involving an aldehyde, acid and an isocyanide resulting in the formation of the acyloxycarboxamides (Scheme 6.13X). Apart from diastereoselective Passerini reactions, there have been few reports of asymmetric versions of this reaction.³⁴ A few of Passerini-type reactions have also been reported where the acid component has either been left out³⁵ or been replaced by acids other than carboxylic acids.³⁶ Prior to the work reported by Wang and and co-workers,^{34c} all the reported examples needed an aldehyde with at least one chelating site. Hence, it was then thought to examine VAPOL phosphoric acids to find a general asymmetric Passerini reaction. The reaction involving benzaldehyde 127a, benzoic acid 334a and *tert*-butyl isocyanide 368a afforded acyloxycarboxamide 377a in 35% yield and 6% ee (Scheme 6.13Y). Due to time constraints, this reaction was not studied further.

Scheme 6.13 (X) Passerini reaction (Y) Attempts towards the asymmetric Passerini reaction.

Scheme 6.12 cont'd

6.6 Attempts towards kinetic resolution of imines

Up to this point, we have performed the aziridination reaction between imines derived from achiral amines and EDA **85** using IMINO-BOROX catalysts. It would be interesting to see the effect of chiral imines on the catalytic asymmetric aziridination reaction. The reaction with chiral imines would present an opportunity for the matched and mismatched cases. Chiral imines can be prepared either by using chiral aldehydes with achiral amines or by using chiral amines and achiral aldehydes. The former case has been examined by a current group member namely Munmun Mukherjee and she found that the reaction is primarily a catalyst controlled reaction.³⁷ The latter study had been initiated by Dr. Yu Zhang, a former group member, and was studied in detail by another former group member, namely Li Huang.³⁸ During the studies of aziridination reaction performed with chiral imine (*S*)-378, Dr. Yu Zhang found a strong matched and mismatched case depending upon the ligand used (Table 6.9).³⁸ As shown in Table

6.9, the matched case is where the (S)-enantiomer of the imine is matched with the (R)-enantiomer of the ligand (R with S and S with R). Only a single diastereomer **380** was obtained in the matched case. For the mismatched case, the diastereomeric ratio was found to be 69:31 and 52:48 in the case of the VAPOL and VANOL catalysts, respectively. Nonetheless, the presence of such a strong matched case prompted us to examine this reaction in more detail as it might provide an access to chiral imines/amines *via* possible kinetic resolution of racemic imines/amines.

Table 6.9 Matched and mis-matched aziridinations of the phenylneopentyl imine (S)-378.

#	Ligand	379 : 380 ^b	Yield 379 (%) ^c	Yield 380 (%) ^d	Enamines (%)
1	(S)-VAPOL	69 : 31	56	25	nd
2	(R)-VAPOL	<2:98	$<2^d$	80 ^c	<2
3	(S)-VANOL	52:48	36	33	11/2
4	(R)-VAPOL	<2:98	$<2^d$	85 ^c	<2
5	B(OPh) ₃ only	8:92	nd	nd	nd

This set of data is taken from thesis of Dr. Yu Zhang. Unless otherwise specified, all reactions were performed with 10 mol% of IMINO-BOROX catalyst with 1 mmol imine (S)-378 (1.0 equiv, 0.5 M in toluene) and 1.1 mmol of EDA 85 (1.1 equiv) at room temperature for 24 h. The pre-catalyst catalyst was prepared by heating 1 equiv of ligand and 3 equiv of B(OPh)₃ in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. nd = not determined. The *cis:trans* selectivity was >50:1 in all cases. ^b Determined from the ¹H NMR spectrum of the crude reaction mixture. ^c Isolated Yield. ^d Yield from ¹H NMR spectrum of the crude reaction mixture and based on the isolated yield of 379 or 380.

There are not many methods available for kinetic resolution of amines. Most of the methods are based on the utilization of the enzymes.³⁹ In terms of asymmetric methods using catalysts other than enzymes, the normal practice is the selective derivatization of the amines, usually by an acetyl-transfer reagent.⁴⁰ Based on the results obtained from diastereoselective aziridination reaction, it was envisioned that a protocol for kinetic resolution of imines could possibly be developed. Hence it was then proposed that the reaction between racemic imine *rac*-378 and a substoichiometric amount of EDA, in presence of catalyst derived from (*S*)-ligand, would lead to the chiral aziridine *ent*-380 and chiral amine (*S*)-384 after the hydrolysis of the unreacted imine (*S*)-378 (Scheme 6.14A). Hence, the experiments related to the proposed kinetic resolution were performed and presented in Table 6.10 and 6.11. The *s*-factor was calculated based on the equation given in Scheme 6.14B. The *s*-factor is equal to the ratio of the rate of faster reacting enantiomer and the rate of slower reacting enantiomer.⁴¹

Scheme 6.14 (**A**) Proposed Kinetic resolution of imine *rac-***378**. (**B**) Equation for the calculation of *s* factor.

A

Scheme 6.14 cont'd

B

$$s = \frac{\ln \left[(1-C)(1-ee_{SM}) \right]}{\ln \left[(1-C)(1+ee_{SM}) \right]}$$

$$ee_{SM} = ee \text{ of the unreacted starting material}$$

$$ee_{P} = ee \text{ of the product formed}$$

$$C = ee_{SM} / ee_{SM} + ee_{P}$$

In the first experiment, the reaction between rac-378 and 0.5 equiv of EDA afforded the chiral aziridine ent-380 in 33% yield and 94% ee (Table 6.10, entry 2). The diastereomeric ratio of ent-380:379 was found to be 20:1. Subsequent hydrolysis of the unreacted imine (S)-378 by dilute HCl resulted in chiral amine (S)-384 in 34% yield and 66% ee (Table 6.10, entry 2). The s-factor calculated according to equation in Scheme 6.14B is 43 (C = Conv = 42). The observed ee of the amine (S)-384 was moderate and was found to be directly proportional to the amount of the EDA used (Table 6.10, entries 1-3). However, the yield of (S)-384 was substantially decreased as the equiv of EDA was increased. However, this survey was conducted with carbon tetrachloride as solvent. Since we have subsequently found that toluene is in many respects superior to carbon tetrachloride for the AZ reaction, 9a we decided to re-examine the possibility of kinetic resolution where toluene as the solvent. Also, we decided to protect the resultant amine (S)-384 with Boc₂O in order to avoid any loss in the yield during the isolation of the amine. 42

Table 6.10 Kinetic resolution of phenylneopentyl imine *rac-***378** furnishing amine (S)-**384**.

#	EDA (x equiv)	Conv b	Yield <i>ent-</i> 380 (%) ^c	ee <i>ent-</i> 380 (%) ^d	Yield 384 (%) ^c	ee 384 (%) ^d	ent- 380 : 379 ^e
1	0.4	32	30	94	38	48	50:1
2	0.5	50	33	94	34	66	20:1
3	0.6	51	41	94	26	80	13:1

^a Unless otherwise specified, all reactions were performed with 10 mol% of IMINO-BOROX catalyst (derived from (S)-VAPOL) with 1 mmol imine *rac-*378 (1.0 equiv, 0.5 M in toluene) and x mmol of EDA 85 (x equiv) at room temperature for 24 h. The pre-catalyst catalyst was prepared by heating 1 equiv of ligand and 3 equiv of B(OPh)₃ in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Percent conversion is determined by integration of the methine proton of *cis-*aziridine relative to the *sp*²-CH proton of the unreacted imine *rac-*378 in the ¹H NMR spectrum of the crude reaction mixture. C Isolated yield after chromatography on silica gel. Determined by HPLC. Petermined from the ¹H NMR spectrum of the crude reaction mixture.

As discussed earlier, the AZ reaction was performed in toluene with 0.5 equiv of EDA and it resulted in chiral aziridine *ent-*380 in 35% yield and 97% ee (Table 6.11, entry2). The diastereomeric ratio of *ent-*380:379 was found to be 10:1 which is a little lower than in CCl₄ (Table 6.10). After hydrolysis of imine (S)-378 and subsequent protection of the resulting amine, the Boc protected amine (S)-385 was obtained in 44% yield and 54% ee (Table 6.11, entry 2). The s-factor calculated according to equation in Scheme 6.14B is 84 (C = Conv = 36). Although a high s-factor was observed in this case, the overall trend is similar to that in Table 6.10, i.e. the ee of the amine (S)-385 was moderate and directly proportional to the amount of the EDA used (Table 6.11, entries 1-4). It must be pointed out that the isolation of amine after boc protection has greatly simplified the analysis and no column chromatography is needed, as the resulting amine is quite pure. Hence, this project needs a little more optimization in order to increase the enantioselectivity of the amine (S)-385.

Table 6.11 Kinetic resolution of phenylneopentyl imine *rac-***378** furnishing amine *(S)-***385**.

Table 6.11 cont'd

#	EDA (x equiv)	Conv ^b	Yield <i>ent-</i> 380 (%) ^c	ee <i>ent-</i> 380 (%) ^d	Yield 385 (%) ^e	ee 385 (%) ^d	ent- 380 : 377 ^f
1	0.4	36	28	97	54	43	10:1
2	0.5	44	35	97	44	54	10:1
3	0.6	54	45	96	34 (32)	77	10:1
4	0.7	61	50	97	26	89	8:1

^a Unless otherwise specified, all reactions were performed with 10 mol% of IMINO-BOROX catalyst (derived from (S)-VAPOL) with 1 mmol imine *rac-*378 (1.0 equiv, 0.5 M in toluene) and x mmol of EDA 85 (x equiv) at room temperature for 24 h. The pre-catalyst catalyst was prepared by heating 1 equiv of ligand and 4 equiv of B(OPh)₃ and 1 equiv of H₂O in toluene at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Percent conversion is determined by integration of the methine proton of *cis*-aziridine relative to the *sp*²-CH proton of the unreacted imine *rac-*378 in the ¹H NMR spectrum of the crude reaction mixture. Isolated yield after chromatography on silica gel. Determined by HPLC. Isolated yield after purification by extraction. Yield in parenthesis is the isolated yield after purification by chromatography on silica gel. Determined from the ¹H NMR spectrum of the crude reaction mixture.

6.7 Conclusions

The present chapter includes some failed and some successful catalytic asymmetric reactions. Nonetheless, this chapter serves as the stepping-stone towards the broadening of the scope of the unique BOROX catalysis developed in the Wulff group. Hopefully, reactions like [3+2] cycloadditions, Ugi-type reactions and kinetic resolution of imines will be developed in near future and thereby expanding the breath of our catalyst system. Additionally, two more reactions have been developed using the indirect IMINO-BOROX catalysis and SULFOX-BOROX catalysis respectively and these are the first true multicomponent aziridination reaction (Chapter 7) and the asymmetric epoxidation of aldehydes (Chapter 8)

APPENDIX

6.8 Experimental

6.8.1	General information	490
6.8.2	Synthesis of amines 126b and <i>rac-</i> 384 and imines 110a-w , 111a , 333o , 358a , 359 a	and
	rac-378	490
6.8.3	Different procedures for aziridination with imine 110g (Table 6.1 and Scheme 6.2)	503
6.8.4	Synthesis of aziridines 113g (Table 6.2-6.3)	509
6.8.5	[3+2] cycloaddition of imine 3330 , 358a and 359a (<i>Scheme 6.6 and Table 6.6</i>)	519
6.8.6	Multicomponent [3+2] cycloaddition of aldehyde 352a (<i>Scheme 6.7</i>)	523
6.8.7	Hydrolysis and reduction of [3+2] adduct 360a (<i>Scheme 6.8</i>)	524
6.8.8	Attempts towards catalytic asymmetric Ugi 3CR, Ugi -type 2CR and Ugi -type 3Cl	R and
	Passerini reaction (Table 6.7-6.8 and Scheme 6.13)	526
6.8.9	Attempts towards kinetic resolution of imines (<i>Table 6.10-6.11</i>)	533

6.8.1 General Information

Same as Chapter 2

6.8.2 Synthesis of amines 126b and *rac-*384 and imines 110a-w, 111a, 333o, 358a, 359a and *rac-*378

a) Synthesis of DAM amine 126b

Bis(4-methoxyphenyl)methanol 332: To a 500 mL flame-dried round bottom flask filled with argon was added LiAlH₄ (3.3 g, 88 mmol) and dried THF (250 mL) in an ice bath followed by stirring for 1 h. Simultaneously, 4,4'-dimethoxyl benzophenone 331 (19.4g, 80.0 mmol) and dried THF (350 mL) was added in a separate 1000 mL flame-dried round bottom flask filled with argon at 0 °C. LiAlH₄ solution has been transferred to the ketone solution *via* cannula under the argon pressure. The flask containing LiAlH₄ solution was washed with dry THF (25 mL × 2). The reaction mixture was stirred at room temperature for 4 h followed by reflux for 12 h. The

reaction was cooled to room temperature and then to 0 °C. To the reaction mixture was added dropwise H₂O (3.5 mL), 4 N NaOH (3.5 mL) and H₂O (8.8 mL). The reaction mixture was further diluted by adding Et₂O (300 mL). The reaction mixture was then filtered through Celite and the Celite bed was washed with CH₂Cl₂ (10 mL × 3). The filtrate was dried using anhydrous MgSO₄, filtered and concentrated *in vacuo* to afford the crude alcohol. Purification by silica gel chromatography (1:2 EtOAc/hexanes as eluent) afforded **332** as white solid (mp. 69-70 °C) in 95% yield (18.6 g, 76.0 mmol).

Spectral data for **332**: $R_f = 0.42$ (1:3 EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 2.08 (d, 1H, J = 2.3 Hz), 3.76 (s, 6H), 5.76 (d, 1H, J = 2.3 Hz), 6.84 (d, 4H, J = 9.0 Hz), 7.25 (d, 4H, J = 8.8 Hz); ¹³C (CDCl₃, 75 MHz) δ 55.22, 75.30, 113.79, 127.76, 136.47, 158.91. These spectral data match those previously reported for this compound.

Bis(4-methoxyphenyl)methylamine 126b: To a 500 mL flame-dried three-neck round bottom flask equipped with a condenser filled with argon was added 4,4'-dimethoxybenzhydrol 332 (19.1 g, 78.2 mmol) and THF (250 mL). Et₃N (10.3 g, 101.7 mmol) was added dropwise at −78 °C followed by dropwise addition of mesylchloride (11.62 g, 101.7 mmol) *via* syringe with vigorous stirring. The mixture was warmed up to −20 °C and stirred for 40 min at this temperature, then cooled to −78 °C. Gaseous ammonia was introduced at a rate such that a dryice cooled condenser provided steady drop-wise addition of liquid NH₃ and this addition was continued for a period of 20 min. The reaction mixture was allowed to warm gradually to

ambient temperature after which it was stirred for an additional 20 h. The reaction was quenched by the addition of concentrated NH₄OH (200 mL) then extracted with EtOAc (100 mL × 3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated *in vacuo* to afford crude amine as a white solid. The amine **126b** was purified by chromatography on a column (65 mm × 400 mm, with pre-neutralized (2% Et₃N) silica gel, 1:1 EtOAc/hexanes as eluent). An initial band containing a yellow impurity along with a small amount of alcohol **332** was discarded and elution continued to give the product **126b** as white solid (mp. 60-61°C) in 79% yield (15 g, 62 mmol).

Spectral data for **126b**: $R_f = 0.17$ (1:1 hexanes/EtOAc). ¹H NMR (CDCl₃, 300 MHz) δ 1.78 (br s, 2H), 3.82 (s, 6H), 5.18 (s, 1H), 6.90 (d, 4H, J = 8.8 Hz), 7.33 (d, 4H, J = 8.5 Hz); ¹³C (CDCl₃, 75 MHz) δ 55.14, 58.39, 113.67, 127.74, 138.11, 158.35. These spectral data match those previously reported for this compound. ¹¹

b) Synthesis of amine rac-384

α-tert-butylbenzylamine rac-384: To a 250 mL flamed-dried three-neck round bottom flask filled with argon was added PhMgBr 309 (20 mL, 60 mmol, 3M in Et₂O) and dry Et₂O (40 mL) via syringe. Trimethyl acetonitrile 382 (4.24 g, 50.0 mmol) was added to the flask drop-wise via

syringe with the stirring of the Grignard reagent. The solution was the heated to reflux after addition was complete. After 4 h, a solution of LiAlH₄ (2.4 g, 60.0 mmol) in dry THF (40 mL) was transferred to the reaction flask via cannula. The solution was then heated and refluxed for another 20 h. After 20 h, the solution was allowed to cool to room temperature. To the flask was carefully added H₂O (2.5 mL), 20% NaOH solution (2.5 mL) and then H₂O (7.5 mL) in an ice bath. The white mud-like mixture was then filtered, the residue was washed with Et₂O until there was no presence of detectable amine in the filtered Et₂O (monitored by TLC spotting). The ether layer was dried over anhydrous Na₂SO₄. It was then filtered and concentrated *in vacuo* to give a light yellow liquid as the crude product. Purification by distillation furnished *rac-384* (bp. 47 – 48 °C at 0.15 mm Hg) as a colorless oil in 80% yield (6.53 g, 40 mmol).

Spectral data for *rac-***384:** ¹H NMR (CDCl₃, 300 MHz) δ 10.89 (s, 9H), 1,42 (brs, 2H), 3.69 (s, 1H), 7.20-7.29 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ 26.42, 34.89, 65.20, 126.60, 127.37, 128.13, 143.68. These spectral data match those previously reported for this compound. ⁴⁴

c) Synthesis of imines 110a-w, 111a, 333o, 358a, 359a and rac-378

All liquid aldehydes were distilled before use and the solid aldehydes were used as purchased from Aldrich.

General Procedure for the synthesis of aldimines – Illustrated for the synthesis of *N*-benzylidene-bis-(4-methoxyphenyl)methylamine 110a.

N-benzylidene-bis-(4-methoxyphenyl)methylamine 110a: To a 50 mL flame-dried round bottom flask filled with argon was added DAM amine 126b (2.43 g, 10.00 mmol), MgSO₄ (2.0 g, 16.7 mmol, freshly flame-dried) and dry CH_2Cl_2 (30 mL). After stirring for 10 min, benzaldehyde 127a (1.07 g, 10.1 mmol, 1.01 equiv) was added. The reaction mixture was stirred at room temperature for 24 h. The reaction mixture was filtered through Celite and the Celite bed was washed with CH_2Cl_2 (10 mL × 3) and then the filtrate was concentrated by rotary evaporation to give the crude imine as an off-white solid. Crystallization (1:25 CH_2Cl_2 /hexanes) and collection of the first crop afforded 110a as white solid crystals (mp. 60-61 °C) in 91% isolated yield (3.02 g, 9.1 mmol).

Spectral data for **110a**: 1 H NMR (CDCl₃, 300 MHz) δ 3.76 (s, 6H), 5.51(s, 1H), 6.84 (d, 4H, J = 8.8 Hz), 7.25-7.27 (m, 4H), 7.37-7.40 (m, 3H), 7.79–7.82 (m, 2H), 8.37 (s, 1H); 13 C (CDCl₃, 75

MHz) δ 55.17, 76.55, 113.71, 128.35, 128.43, 128.61, 128.70, 130.60, 136.28, 158.43, 160.24. These spectral data match those previously reported for this compound. ¹¹

N-(1-naphthylidene)-bis(4-methoxyphenyl)methylamine 110b: Imine 110b was prepared according to the procedure described above for imine 110a. Crystallization (1:8 CH₂Cl₂/hexanes) and collection of the first crop afforded 110b as white solid (mp. 92.5-93.5 °C) in 82% isolated yield

(3.12 g, 8.20 mmol).

Spectral data for **110b**: 1 H NMR (CDCl₃, 300 MHz) δ 3.77 (s, 6H), 5.60 (s, 1H), 6.86 (d, J = 8.8 Hz, 4H), 7.35 (d, J = 8.5 Hz, 4H), 7.47-7.58 (m, 3H), 7.85-7.95 (m, 3H), 9.02 (s, 1H), 9.09 (d, J = 8.5 Hz, 1H); 13 C (CDCl₃, 75 MHz) δ 55.20, 77.98, 113.79, 113.88, 124.68, 125.16, 125.98, 127.16, 128.56, 128.65, 128.74, 129.66, 131.10, 133.81, 136.48, 158.48, 160.35. These spectral data match those previously reported for this compound. 11

mmol).

N-(*o*-tolylbenzylidene)-bis(4-methoxyphenyl)methylamine 110c: Imine 110c was prepared according to the procedure described above for imine 110a. Crystallization (1:8 CH₂Cl₂/hexanes) and collection of the first crop afforded 110c as white solid crystals (mp 64-65 °C) in 80% isolated yield (2.76 g, 8.00

Spectral data for **110c:** 1 H NMR (CDCl₃, 300 MHz) δ 2.55 (s, 3H), 3.78 (s, 6H), 5.53 (s, 1H), 6.88 (d, J = 8.8 Hz, 4H), 7.14-7.16 (m, 1H), 7.21-7.25 (m, 2H), 7.29 (d, J = 8.5 Hz, 4H), 7.95-7.98 (m, 1H), 8.72 (s, 1H); 13 C (CDCl₃, 75 MHz) δ 19.64, 55.21, 77.41, 113.73, 126.02, 128.28, 128.55, 130.15, 130.78, 134.22, 136.57, 137.79, 158.43, 159.09. These spectral data match those previously reported for this compound. 11

N-(4-methylbenzylidene)-bis(4-methoxyphenyl) methyl amine 110d: Imine 110d was prepared according to the procedure described above for imine 110a. Crystallization (1:5 CH₂Cl₂ / hexanes) and collection of the first crop afforded 110d as white solid crystals (mp 110-111 °C) in

94% isolated yield (3.24 g, 9.40 mmol).

Spectral data for **110d**: 1 H NMR (CDCl₃, 300 MHz) δ 2.36 (s, 3H), 3.76 (s, 6H), 5.50 (s, 1H), 6.84 (d, J = 8.8 Hz, 4H), 7.19 (d, J = 7.8 Hz, 2H), 7.28 (d, J = 8.3 Hz, 4H), 7.70 (d, J = 8.0 Hz, 2H), 8.34 (s, 1H); 13 C (CDCl₃, 75 MHz) δ 21.48, 55.24, 76.51, 113.76, 128.39, 128.69, 129.20, 133.85, 136.50, 140.89, 158.49, 160.19; IR (thin film, cm $^{-1}$) 2834 m, 1638 m, 1609 m, 1509 vs, 1246 vs, 1171 s, 1035 s, 815 w; Mass spectrum, m/z (% rel intensity) 345 M $^{+}$ (2), 227 (100), 212 (30), 169 (41), 141 (39), 115 (31). HRMS calcd for C₂₃H₂₄NO₂ (M+H) m/z 346.1807, mass 346.1816. These spectral data were not reported before.

N-(4-methoxybenzylidene)-bis(4-methoxyphenyl) methyl amine 110e: Imine 110e was prepared according to the procedure described above for imine 110a. Crystallization (1:8 CH₂Cl₂/hexanes) and collection of the first crop afforded 110e as white solid crystals (mp

129.5-130.5 °C) in 92% isolated yield (3.32 g, 9.20 mmol).

Spectral data for **110e**: 1 H NMR (CDCl₃, 300 MHz) δ 3.76 (s, 6H), 3.81 (s, 3H), 5.47 (s, 1H), 6.83 (d, J = 8.8 Hz, 4H), 6.89 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.5 Hz, 4H), 7.75 (d, J = 8.8 Hz, 2H), 8.29 (s, 1H); 13 C (CDCl₃, 75 MHz) δ 55.20, 55.29, 76.40, 113.68, 113.81, 128.47, 128.63, 129.92, 136.52, 158.37, 159.54, 161.30. These spectral data match those previously reported for this compound. 11

N-(4-nitrobenzylidene)-bis(4-methoxyphenyl)methyl amine 110f: Imine 110f was prepared according to the procedure described above for imine 110a. Crystallization (1:5 EtOAc/hexanes) and collection of the first crop afforded 110f as a light yellow solid (mp 99-

100 °C) in 91% isolated yield (3.42 g, 9.10 mmol).

Spectral data for **110f**: 1 H NMR (CDCl₃, 300 MHz) δ 3.76 (s, 6H), 5.57 (s, 1H), 6.85 (d, J = 8.8 Hz, 4H), 7.26 (d, J = 8.8 Hz, 4H), 7.96 (d, J = 8.8 Hz, 2H), 8.24 (d, J = 8.8 Hz, 2H), 8.44 (s, 1H);

¹³C (CDCl₃, 75 MHz) δ 55.19, 76.75, 113.84, 123.73, 128.55, 129.01, 135.52, 141.73, 148.95, 157.98, 158.65. These spectral data match those previously reported for this compound. ¹¹

N-(4-bromobenzylidene)-bis(4-methoxyphenyl)methyl amine 110g: Imine 110g was prepared according to the procedure described above for imine 110a. Crystallization (1:10 CH₂Cl₂/ hexanes) and collection of the first crop afforded 110g as white solid crystals (mp 125.5-126.5 °C)

in 85% isolated yield (3.49 g, 8.50 mmol).

Spectral data for **110g:** ¹H NMR (CDCl₃, 300 MHz) δ 3.76 (s, 6H), 5.51 (s, 1H), 6.85 (d, J = 8.8 Hz, 4H), 7.26 (d, J = 8.8 Hz, 4H), 7.52 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 8.5 Hz, 2H), 8.31 (s, 1H); ¹³C (CDCl₃, 75 MHz) δ 55.20, 76.56, 113.77, 125.02, 128.58, 129.78, 131.70, 135.20, 136.02, 158.51, 159.01. These spectral data match those previously reported for this compound. ¹¹

8.40 mmol).

N-cyclohexylmethylidene-bis(4-methoxyphenyl)methyl amine 110v: Imine 110v was prepared according to the procedure described above for imine 110a. Crystallization (hexanes) and collection of the first crop afforded 110v as white solid crystals (mp 77.5-78.5 °C) in 84% isolated yield (2.83 g,

Spectral data for **110v**: ¹H NMR (CDCl₃, 300 MHz) δ 1.25-1.37 (m, 6H), 1.68-1.90 (m, 4H), 2.31-2.33 (m, 1H), 3.82 (s, 6H), 5.27 (s, 1H), 6.87 (d, J = 8.8 Hz, 4H), 7.22 (d, J = 8.8 Hz, 4H), 7.68 (d, J = 5.1 Hz, 1H); ¹³C (CDCl₃, 75 MHz) δ 25.34, 25.94, 29.67, 43.39, 55.09, 76.58, 113.58, 128.46, 136.39, 158.28, 168.48. These spectral data match those previously reported for this compound. ¹¹

110w: Imine 110w was prepared according to the procedure described above for imine 110a. Crystallization (hexanes) and collection of the first crop afforded 110w as white solid crystals

(mp. 75.5-76.5 °C) in 76% isolated yield (2.37 g, 7.60 mmol).

N-(1,1-dimethylethylidene)-bis(4-methoxyphenyl)methylamine

Spectral data for **110w**: 1 H NMR (CDCl₃, 300 MHz) δ 1.08 (s, 9H), 3.76 (s, 6H), 5.24 (s, 1H), 6.81 (d, J = 8.8 Hz, 4H), 7.18 (d, J = 8.8 Hz, 4H), 7.62 (s, 1H); 13 C (CDCl₃, 75 MHz) δ 26.94, 36.31, 55.16, 75.99, 113.59, 128.43, 136.70, 158.25, 171.09. These spectral data match those previously reported for this compound. 11

Synthesis of imine 111a: See Chapter 2

(E)-N-((E)-2-ethylhex-2-en-1-ylidene)-1,1-bis(4-methoxyphenyl) methanamine 3330: To a 10 flame-dried round bottom flask filled with added bis(4mLargon was methoxyphenyl)methylamine **126b** (243 mg, 1.00 mmol), 4Å MS (250 mg, freshly flame-dried) and dry toluene (1 mL). After stirring for 10 min, (E)-2-ethylhex-2-enal 352b (126 mg, 1.05 mmol, purchased from Frinton Laboratories Inc.) was added. The reaction mixture was stirred at room temperature for 12 days. The resulting imine 3330 was used directly for the next step. A sample was isolated utilizing the filter syringe (Corning® syringe filters, Aldrich) in order to obtain spectral data.

Spectral data for **3330**: 1 H NMR (CDCl₃, 500 MHz) δ 0.92 (t, J = 7.0 Hz, 3H), 1.04 (t, J = 7.5 Hz, 3H), 1.43 (sextet, J = 7.0 Hz, 2H), 2.19 (q, J = 7.0 Hz, 2H), 2.45 (q, J = 7.0 Hz, 2H), 3.76 (s, 6H), 5.3 (s, 1H), 5.76 (t, J = 7.0 Hz, 3H), 6.82 (d, J = 7.5 Hz, 4H), 7.22 (d, J = 7.5 Hz, 2H), 7.82 (s, 1H); 13 C (CDCl₃, 125 MHz) δ 13.79, 13.86, 19.33, 22.45, 30.20, 55.14, 76.32, 113.63, 128.44, 137.08, 141.58, 142.34, 158.30, 163.79; HRMS (ESI-TOF) m/z 352.2273 [(M+H $^{+}$); calcd. for C₂₃H₃₀NO₂: 352.2277]

Synthesis of imine 358a:

(E)-1,1-bis(3,5-di-tert-butyl-4-methoxyphenyl)-N-((E)-2-methylbut-2-en-1-ylidene)methanamine 358a: Imine 358a was prepared according to the procedure described above for imine 110a except for the following differences: a) 1.5 equiv of

aldehyde **352a** used; b) the reaction was performed in benzene (40 mL). The reaction was monitored by ¹H NMR. Crystallization (hexanes) and collection of the first crop afforded **358a** as white solid crystals (mp. 131-132 °C) in 80% isolated yield (4.27 g, 8.00 mmol).

Spectral data for **358a**: 1 H NMR (CDCl₃, 500 MHz) δ 1.39 (s, 36H), 1.85 (dd, J = 6.9, 1.0 Hz, 3H), 1.95 (t, J = 1.1 Hz, 3H), 3.67 (s, 6H), 5.28 (s, 1H), 5.96-6.00 (m, 1H), 7.17 (s, 4H), 7.99 (s, 1H); 13 C (CDCl₃, 125 MHz) δ 11.50, 14.20, 32.09, 35.76, 64.10, 77.55, 125.95, 135.96, 137.31, 138.02, 142.91, 158.11, 164.70; IR (thin film, cm⁻¹) 2961vs, 2870s, 1649m, 1628m, 1446m, 1412s, 1221s, 1115m; HRMS (ESI-TOF) m/z 534.4298 [(M+H⁺); calcd. for C₃₆H₅₆NO₂: 534.4311];

Synthesis of imine 359a:

(*E*)-1,1-bis(4-methoxy-3,5-dimethylphenyl)-*N*-((*E*)-2-methylbut-2-en-1-ylidene)methanamine 359a: Imine 359a was prepared according to the procedure described above for imine 110a except for the following differences: a) 1.5 equiv of aldehyde 352a used; b) the reaction was performed in benzene

(40 mL). The reaction was monitored by ¹H NMR. Crystallization (hexanes) and collection of the first crop afforded **359a** as white solid crystals (mp. 101-103 °C) in 75% isolated yield (2.74 g, 7.50 mmol).

Spectral data for **359a**: 1 H NMR (CDCl₃, 500 MHz) δ 1.84 (dd, J = 6.9, 0.7 Hz, 3H), 1.96 (s, 3H), 2.27 (s, 12H), 3.70 (s, 6H), 5.20 (s, 1H), 5.93-5.97 (m, 1H), 6.98 (s, 4H), 7.91 (s, 1H); 13 C (CDCl₃, 125 MHz) δ 11.51, 14.15, 16.19, 59.56, (one sp^{3} carbon not located), 127.76, 130.45, 136.22, 137.26, 139.72, 155.65, 164.68; IR (thin film, cm⁻¹) 2941vs, 2860s, 1645s, 1626vs, 1483vs, 1221s, 1144vs; HRMS (ESI-TOF) m/z 366.2439 [(M+H⁺); calcd. for C₂₄H₃₂NO₂: 366.2433];

Synthesis of imine *rac-*378:

rac-378

N-benzylidene-2,2-dimethyl-1-phenylpropan-1-amine *rac-*378:

Imine *rac-*378 was prepared according to the procedure described above for imine 110a. Crystallization (hexanes) and collection of the first crop afforded *rac-*378 as white solid crystals (mp. 69-70 °C) in

80% isolated yield (2.01 g, 8.00 mmol).

Spectral data for *rac-***378**: ¹H NMR (CDCl₃, 300 MHz) δ 0.94 (s, 9H), 3.93 (s, 1H), 7.18-7.43 (m, 8H), 7.75-7.78 (m, 2H), 8.23 (s, 1H); ¹³C (CDCl₃, 75 MHz) δ 26.98, 35.73, 84.85, 126.58, 127.42, 128.21, 128.42, 128.87, 130.29, 136.68, 142.44, 159.27. These spectral data match those previously reported for the (*S*)-**378**. ³⁸

6.8.3 Different procedures for aziridination with imine 110g (*Table 6.1 and Scheme 6.2*)

Procedure II:

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-p-bromophenyl

aziridine 113g: To a 25 mL oven-dried round bottom flask was added (*S*)-VAPOL (13.5 mg, 0.025 mmol), B(OPh)₃ (29 mg, 0.1 mmol) and aldimine 110g (205 mg, 0.5 mmol). The mixture was dissolved in toluene (1 mL) at room temperature. The reaction mixture was stirred for 5 min to give a light orange solution. To this solution was rapidly added EDA 85 (62 μL, 0.60 mmol) and the resulting mixture was stirred for 24 h at room temperature. The reaction was quenched by addition of 6 mL hexane. The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed twice with 5 mL of dichloromethane and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 5 min to afford the crude aziridine as an off-white solid. While the reaction gave 15% conversion with 5 mol% catalyst loading and open to air, 23% conversion was obtained when the reaction was performed under argon with 5 mol% catalyst loading. However, the reaction gave complete conversion using 10 mol% catalyst loading under argon.

The conversion was determined from the ¹H NMR spectrum of the crude reaction mixture by integration of the aziridine ring methine protons relative to either the imine methine proton or the proton on the imine carbon. The cis/trans ratio was determined by comparing the ¹H NMR integration of the ring methine protons for each aziridine in the crude reaction mixture. The cis (J = 7-8 Hz) and the trans (J = 2-3 Hz) coupling constants were used to differentiate the two isomers. The yields of the acyclic enamine side products 116g and 117g were determined by ¹H NMR analysis of the crude reaction mixture by integration of the N-H proton relative to the that of the cis-aziridine methine protons with the aid of the isolated yield of the cis-aziridine. Purification of the crude aziridine by silica gel chromatography (20 mm × 200 mm column, 9:1 hexanes/EtOAc as eluent, after elution of the first fraction, which contains EDA and / or enamine side products 116g and 117g, the eluent was changed to 5:1 hexanes / EtOAc) afforded pure aziridine 113g as a white solid (mp. 49-50 °C) in 90% isolated yield (223 mg, 0.45 mmol). cis/trans: 50:1. Enamine side products: <1 % yield of 116g and <1% yield of 117g. The optical purity of 113g was determined to be 97% ee by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/iPrOH at 226nm, flow-rate: 1.0 mL/min). Retention times, $R_t = 8.27$ min (major enaniomer, 113g) and $R_t = 26.32$ min (minor enantiomer, *ent-*113g).

Spectral data for **113g:** $R_f = 0.25$ (1:5 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 1.00 (t, J = 7.1 Hz, 3H), 2.62 (d, J = 6.6 Hz, 1H), 3.07 (d, J = 6.6 Hz, 1H), 3.71 (s, 3H), 3.76 (s, 3H), 3.83 (s, 1H), 3.93 (q, J = 7.1 Hz, 2H), 6.76 (d, J = 8.3 Hz, 2H), 6.84 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.8 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H); ¹³C

(CDCl₃, 75 MHz) δ 13.99, 46.46, 47.34, 55.12, 55.19, 60.68, 76.32, 113.82, 121.27, 128.08, 128.37, 129.54, 130.86, 134.16, 134.67, 134.88, 158.65, 158.75, 167.51 (one sp^2 carbon not located); $[\alpha]_D^{20}$ +15.0 (c 1.0, EtOAc) on 97% ee material (HPLC). These spectral data match those previously reported for this compound. 11

Procedure II':

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-p-bromophenyl

aziridine 113g: To a 25 mL flame-dried Schlenk flask was added (*S*)-VAPOL (13.5mg, 0.025 mmol), B(OPh)₃ (29 mg, 0.1 mmol) and aldimine 110g (102.5 mg, 0.25 mmol). The mixture was dissolved in dry toluene (0.5 mL) at room temperature. The reaction mixture was stirred for 0.5 h. To this solution was added aldimine 110g (102.5 mg, 0.25 mmol) and dry toluene (0.5 mL) at room temperature. The reaction mixture was stirred for 5 min. To this solution was rapidly added EDA 85 (62 μL, 0.6 mmol) and the resulting mixture was stirred for 24 h at room temperature. The reaction was quenched by addition of 6 mL hexane. The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed twice with 5 mL of dichloromethane and the rinse was added to the 100 mL round bottom flask. The resulting

solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 5 min to afford the crude aziridine as an off-white solid. The reaction gave 16 % conversion only.

Procedure IV:

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-p-bromophenyl

varidine 113g: To a 25 mL flame-dried Schlenk flask flushed with argon was added (*S*)-VAPOL (13.5 mg, 0.025 mmol) and B(OPh)₃ (29 mg, 0.1 mmol). Under an argon flow, dry toluene (2 mL) was added to dissolve the two reagents and this was followed by the addition of water (0.45 μ L, 0.025 mmol). The flask was sealed, and then placed in an 80 °C for 1 h. After 1 hour, a vacuum (0.5 mm Hg) was applied carefully to remove the volatiles. The vacuum is maintained for a period of 30 min at a temperature of 80 °C. The flask was then filled with argon and the catalyst mixture was allowed to cool to room temperature.

To the flask containing the catalyst was first added the aldimine 110g (205 mg, 0.50 mmol) and then dry toluene (1 mL). The reaction mixture was stirred for 5 min to give a light orange solution. To this solution was rapidly added EDA 85 (62 μ L, 0.60 mmol) and the resulting mixture was stirred for 24 h at room temperature. Immediately upon addition of ethyl

diazoacetate the reaction mixture became an intense yellow and the formation bubbles from the release of nitrogen was noted. The reaction was quenched by addition of 6 mL hexane. The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed twice with 5 mL of dichloromethane and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 5 min to afford the crude aziridine as an off-white solid. The reaction resulted **113g** in 95% yield and 92% ee following the standard purification procedure.

Procedure V':

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-p-bromophenyl

variority To a 25 mL flame-dried Schlenk flask flushed with argon was added (*S*)-VAPOL (13.5 mg, 0.025 mmol) and B(OPh)₃ (29 mg, 0.1 mmol). Under an argon flow, dry toluene (0.5 mL) was added to dissolve the two reagents. The flask was sealed, and then placed in an 80 °C for 1 h. The pre-catalyst mixture was then allowed to cool to room temperature and filled with argon. To the flask containing the pre-catalyst was first added the aldimine **110g** (205 mg, 0.5 mmol) and then dry toluene (0.5 mL). The reaction mixture was stirred for 5 min to give a light orange solution. To this solution was rapidly added EDA **85** (62 μL, 0.6 mmol) and the resulting mixture was stirred for 24 h at room temperature. The reaction was quenched by addition of 6 mL hexane. The reaction mixture was then transferred to a 100 mL round bottom

flask. The reaction flask was rinsed twice with 5 mL of dichloromethane and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 5 min to afford the crude aziridine as an off-white solid. The reaction gave 39 % conversion only.

Procedure V:

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-p-bromophenyl

aziridine 113g: To a 25 mL flame-dried Schlenk flask was added (S)-VAPOL (8 mg, 0.015 mmol), B(OPh)₃ (17.4 mg, 0.06 mmol) and aldimine 110g (205 mg, 0.5 mmol). The mixture was dissolved in dry toluene (1 mL) at room temperature. The flask was sealed, and then placed in an 80 °C for 1 h. The catalyst mixture was then allowed to cool to room temperature and filled with argon. To this solution was rapidly added EDA 85 (62 μL, 0.60 mmol) and the resulting mixture was stirred for 24 h at room temperature. The reaction was quenched by addition of 6 mL hexane. The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed twice with 5 mL of dichloromethane and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 5 min to afford the crude aziridine as an off-white

solid. The reaction resulted **113g** in 89% yield and 94% ee following the standard purification procedure.

6.8.4 Synthesis of aziridines 113g (*Table 6.2-6.3*)

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-phenylaziridine 113a. Imine 110a (166 mg, 0.500 mmol) was reacted according to the general procedure V described above with (S)-VAPOL as ligand. After purification, the product was afforded as white solid (mp 89-

90 °C) in 90% isolated yield (188 mg, 0.450 mmol); cis/trans: \geq 50:1. Enamine side products: 2.7% yield of **116a** and 2.7% yield of **117a**. The optical purity of **113a** was determined to be 94% ee by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/2-propanol at 226nm, flowrate: 1.0 mL/min): retention times; $R_t = 8.80$ min (major enantiomer, **113a**) and $R_t = 15.70$ min (minor enantiomer, ent-**113a**)

Spectral data for **113a**: $R_f = 0.28$ (1:5 EtOAc/hexanes). ¹H NMR (CDCl₃, 500 MHz) δ 0.93 (t, 3H, J = 7.1 Hz), 2.59 (d, 1H, J = 6.8 Hz), 3.13 (d, 1H, J = 6.8 Hz), 3.67 (s, 3H), 3.75 (s, 3H), 3.81 (s, 1H), 3.91-3.98 (m, 2H), 6.74 (d, 2H, J = 8.8 Hz), 6.82 (d, 2H, J = 8.8 Hz), 7.14-7.24 (m, 3H), 7.31-7.35 (m, 4H), 7.43 (d, 2H, J = 8.8 Hz); ¹³C (CDCl₃, 75 MHz) δ 13.94, 46.39, 48.02, 55.15, 55.22, 60.54, 76.44, 113.80, 127.27, 127.75, 127.79, 128.16, 128.49, 134.93, 135.13, 135.16, 158.61, 158.71, 167.83 (one sp^2 carbon not located); $[\alpha]_D^{20}$ +36.5 (c 1.0, EtOAc) on

94% ee material (HPLC). These spectral data match those previously reported for this compound. 11

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-1-naphthylaziridine 113b: Imine 110b (191 mg, 0.500 mmol) was reacted according to the general procedure V described above with (S)-VAPOL as ligand. After purification, the product was obtained as a white solid

(mp. 154.5-155 °C) in 80% isolated yield (187 mg, 0.4 mmol); cis/trans: \geq 50:1. Enamine side products: 1.6% yield of **116b** and 1.6% yield of **117b**. The optical purity of **113b** was determined to be 98% ee by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/*i*PrOH at 226nm, flow-rate: 1.0 mL/min); Retention times: $R_t = 14.84$ min (major enantiomer, **113b**) and $R_t = 18.62$ min (minor enantiomer, *ent-***113b**).

Spectral data for **113b**: $R_f = 0.22$ (1:5 EtOAc/hexanes); 1 H NMR (CDCl₃, 300 MHz) δ 0.62 (t, 3H, J = 7.3 Hz), 2.88 (d, 1H, J = 6.8 Hz), 3.66 (d, 1H, J = 6.6 Hz), 3.72 (s, 3H), 3.70-3.74 (m, 2H), 3.78 (s, 3H), 3.99 (s, 1H), 6.81 (d, 2H, J = 8.5 Hz), 6.88 (d, 2H, J = 8.5 Hz), 7.35-7.47 (m, 5H), 7.53 (d, 2H, J = 8.8 Hz), 7.64-7.70 (m, 2H), 7.79 (d, 1H, J = 7.4 Hz), 8.09 (d, 1H, J = 7.7 Hz); 13 C (CDCl₃, 125 MHz) δ 13.57, 46.08, 46.40, 55.14, 55.21, 60.30, 76.72, 113.88, 113.91, 123.00, 125.33, 125.38, 125.79, 126.57, 127.54, 128.16, 128.49, 128.86, 130.71, 131.49, 133.09, 134.81, 135.17, 158.69, 158.94, 167.85; $[\alpha]_D^{20} + 4.5$ (c 1.0, EtOAc) on 98% ee material (HPLC). These spectral data match those previously reported for this compound. 11

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-o-tolylaziridine 113c: Imine 110c (173 mg, 0.500 mmol) was reacted according to the general procedure V described above with (S)-VAPOL as ligand. After purification, the product was obtained as a white solid (mp.

123-124 °C) in 70% isolated yield (151 mg, 0.35 mmol). cis/trans: \geq 50:1. Enamine side products: 1.4% yield of **116c** and 1.1% yield of **117c**. The optical purity of **113c** was determined to be 93% ee by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/*i*PrOH at 226nm, flow-rate: 1.0 mL/min); retention times: $R_t = 7.14$ min (major enantiomer, **113c**) and $R_t = 10.83$ min (minor enantiomer, *ent-***113c**).

Spectral data for **113c**: $R_f = 0.26$ (1:5 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.87 (t, 3H, J = 7.1 Hz), 2.27 (s, 3H), 2.67 (d, 1H, J = 6.8 Hz), 3.14 (d, 1H, J = 6.8 Hz), 3.72 (s, 3H), 3.77 (s, 3H), 3.84 (s, 1H), 3.87 (q, 2H, J = 7.1 Hz), 6.78 (d, 2H, J = 8.8 Hz), 6.84 (d, 2H, J = 8.5 Hz), 7.01-7.08 (m, 3H), 7.37 (d, 2H, J = 8.8 Hz), 7.47 (d, 3H, J = 9.0 Hz); ¹³C (CDCl₃, 125 MHz) δ 13.83, 18.75, 45.72, 46.91, 55.17, 55.23, 60.38, 76.72, 113.86, 113.90, 125.34, 127.09, 128.14, 128.55, 128.69, 129.09, 133.29, 134.99, 135.25, 136.02, 158.67, 158.89, 168.03; $[\alpha]_D^{20}$ +38.6 (c 1.0, EtOAc) on 93% ee material (HPLC). These spectral data match those previously reported for this compound. ¹¹

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-p-tolylaziridine 113d: Imine 17c (173 mg, 0.500 mmol) was reacted according to the general procedure V described above with (S)-VAPOL as ligand. After purification, the product was obtained as a white solid in 90%

isolated yield (194 mg, 0.450 mmol). cis/trans: $\geq 50:1$. Enamine side products: 1% yield of **116d** and 1 % yield of **117d**. The optical purity **113d** was determined to be 94 % ee by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/iPrOH at 226nm, flow-rate: 1.0 mL/min); retention times: $R_t = 7.85$ min (major enantiomer, **113d**) and $R_t = 15.25$ min (minor enantiomer, ent-**113d**).

Spectral data for **113d**: $R_f = 0.34$ (1:5 EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 1.01 (t, 3H, J = 7.1 Hz), 2.29 (s, 3H), 2.63 (d, 1H, J = 6.8 Hz), 3.16 (d, 1H, J = 6.8 Hz), 3.71 (s, 3H), 3.77 (s, 3H), 3.86 (s, 1H), 3.95 (q, 2H, J = 7.1 Hz), 6.78 (d, 2H, J = 8.8 Hz), 6.87 (d, 2H, J = 8.8 Hz), 7.06 (d, 2H, J = 7.8 Hz), 7.29 (d, 2H, J = 8.0 Hz), 7.37 (d, 3H, J = 8.8 Hz), 7.49 (d, 3H, J = 8.5 Hz); ¹³C (CDCl₃, 75 MHz) δ 13.93, 21.06, 46.33, 47.98, 55.04, 55.12, 60.42, 76.44, 113.73, 127.61, 128.14, 128.40, 128.42, 132.07, 134.96, 135.13, 136.77, 158.57, 158.65, 167.83 (one sp^2 carbon not located); IR (thin film, cm⁻¹) 2995 w, 1745 m, 1609 w, 1510 vs, 1301 w, 1247 s, 1175 s, 1035 m, 825 w; HRMS calcd for C₂₇H₂₉NO₄Na m/z 454.1994, mass 454.1988; $[\alpha]_D^{20}$ +22.2 (c 1.0, EtOAc) on 94% ee material (HPLC).

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-p-methoxyphenyl aziridine 113e: Imine 110e (181 mg, 0.500 mmol) was reacted according to the general procedure V described above with (R)-VANOL as ligand. The silica gel for column chromatography was pre-

conditioned by preparing a slurry in a 1:9 mixture of Et₃N:CH₂Cl₂ which was loaded into a column (35 mm × 350 mm), the solvent was drained and then the silica gel was dried by flushing with nitrogen for one hour. The silica gel column was then saturated with a 1:9 mixture of ethyl acetate:hexane, the crude aziridine was loaded onto the column and then elution with the same solvent mixture until the elution of the first fraction, which contains EDA and / or enamine side products 116e and 117e, the eluent was changed to 5:1 hexanes / EtOAc) afforded pure aziridine 113e as a semi solid in 80% isolated yield (179 mg, 0.4 mmol); *cis/trans*: 50:1. Enamine side products: 3.2% yield of 116e and 1.6% yield of 117e. The optical purity of 113e was determined to be 93% ee by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/iPrOH at 226nm, flow-rate: 1.0 mL/min); retention times, R_t = 10.69 min (major enantiomer, 113e) and R_t = 32.38 min (minor enantiomer, *ent*-113e).

Spectral data for **113e**: $R_f = 0.2$ (1:5 EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 1.02 (t, 3H, J = 7.1 Hz), 2.61 (d, 1H, J = 6.6 Hz), 3.14 (d, 1H, J = 6.6 Hz), 3.70 (s, 3H), 3.74 (s, 3H), 3.76 (s, 3H), 3.85 (s, 1H), 3.95 (q, 2H, J = 7.1 Hz), 6.79 (dd, 4H, J = 8.8 Hz, 2.4 Hz), 6.86 (d, 2H, J = 8.8 Hz), 7.32 (d, 2H, J = 8.8 Hz); 7.36 (d, 2H, J = 8.5 Hz), 7.48 (d, 2H, J = 8.5 Hz); ¹³C (CDCl₃, 75 MHz) δ 13.94, 46.26, 47.67, 55.01, 55.04, 55.08, 60.43, 76.34, 113.11, 113.68,

113.70, 127.14, 128.09, 128.38, 128.79, 134.89, 135.10, 158.51, 158.59, 158.76, 167.90; $[\alpha]_D^{20}$ +27.1 (*c* 2.0, EtOAc) on 95% ee material (HPLC). These spectral data match those previously reported for this compound. ¹¹

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-p-nitrophenylaziridine 113f: Imine 110f (188 mg, 0.500 mmol) was reacted according to the general procedure V described above with (S)-VAPOL as ligand. After purification, the product was obtained as a yellow

powder (mp. 56-57 °C) in 85% isolated yield (197 mg, 0.430 mmol); cis/trans: 50:1. Enamine side products: <1% yield of **116f** and <1% yield of **117f**. The optical purity of **113f** was determined to be 95% ee by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/*i*PrOH at 226nm, flow-rate: 1.0 mL/min), Retention times: $R_t = 16.47$ min (major enantiomer, **113f**) and $R_t = 54.59$ min (minor enantiomer, *ent-***113f**).

Spectral data for **113f**: $R_f = 0.15$ (1:5 EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 0.99 (t, 3H, J = 7.1 Hz), 2.74 (d, 1H, J = 6.6 Hz), 3.20 (d, 1H, J = 6.8 Hz), 3.70 (s, 3H), 3.77 (s, 3H), 3.88 (s, 1H), 3.92 (q, 2H, J = 7.3 Hz), 6.77 (d, 2H, J = 8.8 Hz), 6.85 (d, 2H, J = 8.8 Hz), 7.31 (d, 2H, J = 8.8 Hz), 7.44 (d, 2H, J = 8.5 Hz), 7.57 (d, 2H, J = 8.5 Hz), 8.09 (d, 2H, J = 8.8 Hz); ¹³C (CDCl₃, 125 MHz) δ 14.01, 46.96, 47.09, 55.16, 55.24, 60.88, 76.37, 113.99, 123.04, 128.08, 128.38, 128.78, 134.37, 134.64, 142.68, 147.34, 158.87, 158.98, 167.05 (one sp^2 carbon not

located); $[\alpha]_D^{20}$ -1.4 (c 1.0, EtOAc) on 95% ee material (HPLC). These spectral data match those previously reported for this compound.

$$(S)-VAPOL \xrightarrow{H_2O (10 \text{ mol}\%)} \xrightarrow{H_2O (10 \text{ mol}\%)} \xrightarrow{0.5 \text{ mm Hg}} \text{pre-catalyst} \\ (10 \text{ mol}\%) \xrightarrow{\text{toluene, } 80 \text{ °C, } 1.0 \text{ h}} \xrightarrow{0.5 \text{ mm Hg}} \xrightarrow{\text{pre-catalyst}} \xrightarrow{(10 \text{ mol}\%)} \xrightarrow{\text{toluene, } 0 \text{ °C}} \xrightarrow{\text{toluene, } 0 \text{ °C, } 25 \text{ h}} \xrightarrow{\text{Pr}} \xrightarrow{\text{CO}_2\text{Et}} \xrightarrow{\text{Pr}} \xrightarrow{\text{N}} \xrightarrow{\text{N}}$$

(*E*)-*N*-butylidene-1,1-bis(4-methoxyphenyl)methanamine 1100: To a 10 mL flame-dried round bottom flask filled with argon was added *bis*(4-methoxyphenyl)methylamine 126b (243 mg, 1 mmol), 4Å MS (250 mg, freshly dried) and dry toluene (1.5 mL). After stirring for 10 min, butanal 127o (78 mg, 1.05 mmol, freshly distilled) was added. The reaction mixture was stirred at room temperature for 6 h. The resulting imine 110o was used without further purification.

Spectral data for **111o**: 1 H NMR (CDCl₃, 500 MHz) δ 0.95 (t, 3H, J = 7.5 Hz), 1.57 (sextet, 2H, J = 7.5 Hz), 2.26-2.33 (m, 2H), 3.75 (s, 6H), 5.25 (s, 1H), 6.80-6.83 (m, 4H), 7.16-7.19 (m, 4H), 7.83 (t, 1H, J = 5.0 Hz).

(2*R*,3*R*)-ethyl 1-(bis(4-methoxyphenyl)methyl)-3-propylaziridine-2-carboxylate 113o: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*S*)-VAPOL (54 mg, 0.1 mmol) and B(OPh)₃ (116 mg, 0.4 mmol).

Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added to dissolve the two reagents and this was followed by the addition of water (1.8 μL, 0.1 mmol). The flask was sealed by closing the Teflon valve, and then placed in an 80 °C (oil bath) for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles are removed completely, a full vacuum is applied and is maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and open to argon through side-arm of the Schlenk flask.

The toluene solution of imine 1100 (296 mg, 1 mmol, prepared as described above) was then directly transferred from the reaction flask in which it was prepared to the flask containing the catalyst (precooled at 0 °C) utilizing a filter syringe (Corning® syringe filters, Aldrich) to remove the 4Å Molecular Sieves. The flask, which had imine 1100, was then rinsed with toluene (0.5 mL) and the rinse was transferred to the flask containing the catalyst under argon flow through side-arm of the Schlenk flask. The reaction mixture was stirred for 5 min to give a light yellow solution. To this solution was rapidly added EDA 85 (124 μL, 1.2 mmol) at 0 °C followed by closing the Teflon valve. The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with dichloromethane (5 mL × 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as a pale yellow semi solid. Purification of the crude aziridine by silica gel chromatography (35 mm × 400 mm column, 9:1 hexanes/EtOAc as eluent) afforded pure cisaziridine 1130 as a white solid (mp 99-100 °C on 66% ee material) in 11% isolated yield (42 mg,

0.11 mmol); *cis/trans*: not determined. Enamine side products: <1% yield of **1160** and 2% yield of **1170**. The amount of byproduct **3330** was determined to be 7% by integration of the 1 H NMR spectrum of the crude reaction mixture relative to the aziridine **1160** with aid of the authentic sample of **3330** prepared as described above. The optical purity of **1130** was determined to be 73% *ee* by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/2-propanol at 226nm, flowrate: 1.0 mL/min): retention times; $R_t = 5.9$ min (major enantiomer, **1130**) and $R_t = 8.3$ min (minor enantiomer, *ent-***1130**).

Spectral data for **113o**: $R_f = 0.28$ (1:5 EtOAc/hexanes). ¹H NMR (CDCl₃, 500 MHz) δ 0.74 (t, 3H, J = 7.4 Hz), 1.02-1.16 (m, 2H), 1.23 (t, 3H, J = 7.1 Hz), 1.40-1.54 (m, 2H), 1.99 (q, 1H, J = 6.6 Hz), 2.23 (d, 1H, J = 6.9 Hz), 3.56 (s, 1H), 3.74 (s, 6H), 4.11-4.21 (m, 2H), 6.77-6.82 (m, 4H), 7.26 (d, 2H, J = 8.5 Hz), 7.34 (d, 2H, J = 8.8 Hz); ¹³C (CDCl₃, 75 MHz) δ 13.65, 14.26, 20.35, 29.91, 43.35, 46.74, 55.16, 60.65, 76.70, 113.61, 113.67, 128.09, 128.81, 134.98, 135.46, 158.47, 158.73, 169.60 (one sp^3 carbon not located); $[\alpha]_D^{20}$ +70.7 (c 1.0, EtOAc) on 73% ee material (HPLC). These spectral data match those previously reported for this compound. ¹¹

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-carboxyethyl-3-cyclohexylaziridine 113v: Imine 110v (169 mg, 0.500 mmol) was reacted according to the general procedure V described above with (S)-VANOL as ligand. After purification, the product was obtained as a white solid

(mp. 119.5-121 °C) in 83% isolated yield (176 mg, 0.42 mmol); cis/trans: 50:1. Enamine side products: < 1% yield of **116v** and < 1% yield of **117v**. The optical purity of **113v** was determined to be 82% ee by HPLC analysis (CHIRALPAK AD column, 98:2 hexane/*i*PrOH at 226nm, flow-rate: 1.0 mL/min); Retention times: $R_t = 11.61$ min (major enantiomer, **113v**) and $R_t = 17.90$ min (minor enantiomer, *ent-***113v**).

Spectral data for **113v**: $R_f = 0.3$ (1:5 EtOAc/hexanes). ¹H NMR (CDCl₃, 300 MHz) δ 0.50-0.53 (m, 1H), 0.89-1.11 (m, 4H), 1.22 (t, 3H, J = 7.1 Hz), 1.22-1.24 (m, 2H), 1.31-1.66 (m, 4H), 1.75 (dd, 1H, J = 6.9, 9.0 Hz), 2.20 (d, 1H, J = 6.9 Hz), 3.50 (s, 1H), 3.74 (s, 6H), 4.12-4.24 (m, 2H), 6.78 (d, 2H, J = 8.8 Hz), 6.80 (d, 2H, J = 8.8 Hz), 7.21 (d, 2H, J = 8.5 Hz), 7.34 (d, 2H, J = 8.5 Hz); ¹³C (CDCl₃, 75 MHz) δ 14.25, 25.35, 25.52, 26.11, 30.10, 30.80, 36.29, 43.35, 52.21, 55.17, 60.64, 76.99, 113.53, 113.62, 127.97, 129.26, 134.82, 135.41, 158.36, 158.78, 169.71; $[\alpha]_D^{20}$ +116.3 (c 1.0, EtOAc) on 99% ee material (HPLC). These spectral data match those previously reported for this compound. ¹¹

113w

carboxyethyl-3-1,1-dimethylethyl aziridine 113w: Imine 110w (156 mg, 0.500 mmol) was reacted according to the

general procedure V described above with (S)-VANOL as

(2R,3R)-Cis-1-(N-1-bis(4-methoxyphenyl)methyl)-2-

ligand. After purification, the product was obtained as a white solid (mp. 81-83 °C) in 60% isolated yield (119 mg, 0.3 mmol); *cis/trans*: 20:1. Enamine side products: <1% yield of **116w** and <1% yield of **117w**. The optical purity of **113w** was determined to be 70% ee by HPLC

analysis (CHIRALCEL OD-H column, 99:1 hexane/iPrOH at 226nm, flow-rate: 0.7 mL/min); Retention times: $R_t = 14.21$ min (major enantiomer, 113w) and $R_t = 11.54$ min (minor enantiomer, ent-113w).

Spectral data for **113w**: $R_f = 0.65$ (1:5 EtOAc/hexanes); ¹H NMR (CDCl₃, 300 MHz) δ 0.75 (s, 9H), 1.33 (t, 3H, J = 7.1 Hz), 1.78 (d, 1H, J = 7.2 Hz), 2.18 (d, 1H, J = 7.2 Hz), 3.55 (s, 1H), 3.79 (s, 3H), 3.80 (s, 3H), 4.09-4.31 (m, 2H), 6.83-6.89 (m, 4H), 7.33 (d, 2H, J = 8.7 Hz), 7.60 (d, 2H, J = 8.7 Hz); ¹³C (CDCl₃, 75 MHz) δ 14.15, 27.54, 31.71, 43.46, 55.22, 56.26, 60.65, 78.03, 113.64, 128.26, 129.13, 135.30, 136.25, 158.46, 158.84, 170.01 (one sp^2 carbon and one sp^3 carbon not located); $[\alpha]_D^{20}$ +142.4 (c 1.0, EtOAc) on 99% ee material (HPLC). These spectral data match those previously reported for this compound. ¹¹

6.8.5 [3+2] Cycloaddition of imine 3330, 358a and 359a (Scheme 6.6 and Table 6.6)

$$\begin{array}{c} \text{Et} \\ \text{Pr} \\ \end{array} \\ \text{NDAM} \\ + \\ \\ \text{$$

(4*S*,5*R*)-ethyl-5-((*E*)-((bis(4-methoxyphenyl)methyl)imino)methyl)-5-ethyl-4-propyl-4,5-dihydro-1*H*-pyrazole-3-carboxylate 3560: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*S*)-VANOL (44 mg, 0.1 mmol) and B(OPh)₃ (116 mg, 0.4 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added to dissolve the two reagents and this was followed by the addition of water (1.8 μ L, 0.1 mmol). The flask was sealed by closing the Teflon valve, and then placed in an 80 °C (oil bath) for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles are removed completely, a full vacuum is applied and is maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and open to argon through side-arm of the Schlenk flask.

The toluene solution of imine 333o (352 mg, 1 mmol, prepared as described above) was then directly transferred from the reaction flask in which it was prepared to the flask containing the catalyst utilizing a filter syringe (Corning® syringe filters, Aldrich) to remove the 4Å Molecular Sieves. The flask, which had imine 330o, was then rinsed with toluene (0.5 mL) and the rinse was transferred to the flask containing the catalyst under argon flow through side-arm of the Schlenk flask. The reaction mixture was stirred for 5 min to give a light yellow solution. However, the solution became turbid after 10 min. To this solution was rapidly added EDA 85 (124 μ L, 1.2 mmol) followed by closing the Teflon valve. The resulting mixture was stirred for 48 h at room temperature. The color of solution became brown after 1 h. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with dichloromethane (5 mL \times 2) and the

rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as a pale yellow semi solid. Purification of the crude [3+2] adduct by neutral alumina chromatography (20 mm \times 200 mm column, 3:1 hexanes/EtOAc as eluent) afforded pure adduct **3560** as a yellow semi-solid in 41% isolated yield (191 mg, 0.41 mmol); dr: not determined. The optical purity of **3560** could not be determined due to messy HPLC signals.

Spectral data for **3560**: $R_f = 0.29$ (1:3 EtOAc/hexanes). ¹H NMR (CDCl₃, 500 MHz) δ 0.80 (t, J = 7.5 Hz, 3H), 0.89 (t, J = 7.3 Hz, 3H), 1.32-1.39 (m, 5H), 1.58-1.71 (m, 2H), 1.78-1.87 (m, 2H), 3.18 (t, J = 6.2 Hz, 1H), 3.76 (s, 3H), 3.77 (s, 3H), 4.25-4.30 (m, 2H), 5.39 (s, 1H), 6.78-6.84 (m, 5H), 7.13 (dd, J = 16.8, 8.6 Hz, 4H), 7.50 (s, 1H); ¹³C (CDCl₃, 75 MHz) δ 8.87, 14.24, 14.31, 20.50, 23.21, 28.63, 48.41, 55.18, 60.96, 74.72, 74.99, (one sp^3 carbon not located), 113.66, 113.74, 113.81, 128.20, 128.53, 135.66, 135.80, 147.45, 158.52, 162.57, 164.36; IR (thin film, cm⁻¹) 3331 br, 2961m, 2836w, 1701m, 1608w, 1510vs, 1464w, 1246vs; HRMS (ESI-TOF) m/z 466.2703 [(M+H⁺); calcd. for C₂₇H₃₆N₃O₄: 466.2706]

(4*S*,5*R*)-ethyl-5-((*E*)-((bis(3,5-di-*tert*-butyl-4-methoxyphenyl)methyl)imino)methyl)-4,5-dimethyl-4,5-dihydro-1*H*-pyrazole-3-carboxylate 360a: Imine 358a (107 mg, 0.200 mmol) was reacted according to the procedure described above for imine 333o with (*S*)-

VAPOL as ligand except with the following differences; a) the reaction is 0.4 M in imine 358a,

b) 2 equiv of EDA used, c) purified imine **358a** was added in neat form. The reaction resulted adduct **360a** in 59% NMR yield which was determined by 1 H NMR spectra with Ph₃CH as the internal standard. The resulting crude [3+2] adduct **360a** could not be purified on either neutral alumina or silica gel chromatography. However, a sample was prepared by quickly passing the crude product through a plug of neutral alumina for HPLC analysis. The optical purity of **360a** was determined to be 50% *ee* by HPLC analysis (CHIRALCEL OD column, 99:01 hexane/*i*PrOH at 222nm, flow-rate: 0.7 mL/min). Retention times, $R_t = 11.82$ min (major enantiomer, **360a**) and $R_t = 17.27$ min (minor enantiomer, *ent-***360a**).

Spectral data for **360a**: $R_f = 0.29$ (1:3 EtOAc/hexanes). ¹H NMR (CDCl₃, 500 MHz) δ 1.26 (d, J = 7.0 Hz, 3H), 1.35-1.42 (m, 42H), 3.36 (q, J = 7.2 Hz, 1H), 3.70 (s, 3H), 3.70 (s, 3H), 4.29 (q, J = 7.2 Hz, 2H), 5.34 (s, 1H), 6.72 (s, 1H), 7.06 (s, 2H), 7.08 (s, 2H), 7.75 (s, 1H). This compound was not characterized as it's being in crude form. However, it was further reduced to amine **367a** and thereafter the amine **367a** is completely characterized and given below.

VAPOL as ligand except with the following differences; a) the reaction is 0.4 M in imine **359a**, b) 2 equiv of EDA used, c) purified imine **359a** was added in neat form. The reaction resulted adduct **361a** in 33% NMR yield which was determined by ¹H NMR spectra with Ph₃CH as the

internal standard. The resulting crude [3+2] adduct **361a** could not be purified on either neutral alumina or silica gel chromatography. No further attempt was made to isolate or analyze adduct **361a**.

6.8.6 Multicomponent [3+2] Cycloaddition of aldehyde 352a (Scheme 6.7)

(4S,5R)-ethyl-5-((E)-((bis(3,5-di-tert-butyl-4-methoxyphenyl)methyl)imino)methyl)-4,5-

dimethyl-4,5-dihydro-1*H*-pyrazole-3-carboxylate 360a: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*S*)-VAPOL 58 (11 mg, 0.02 mmol), commercial B(OPh) $_3$ (17.4 mg, 0.060 mmol) and amine 126d (94 mg, 0.2 mmol) and toluene (0.5 mL). The flask was sealed by closing the Teflon valve, and then placed in an 80 °C (oil bath) for 1 h. The flask was then allowed to cool to room temperature and open to argon through side-arm of the Schlenk flask. To this flask was then added 4Å MS (50 mg, freshly flame-dried) and aldehyde 352a (19 mg, 0.22 mmol, 1.1 equiv). The resulting mixture was stirred for 5 min at room temperature. To this solution was rapidly added EDA 85 (42 μ L, 0.4 mmol). The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with

dichloromethane (5 mL \times 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as a pale yellow semi solid. The reaction resulted adduct **360a** in 60% NMR yield which was determined by 1 H NMR spectra with Ph₃CH as the internal standard. A sample was prepared by quickly passing the crude product through a plug of neutral alumina for HPLC analysis. The optical purity of **360a** was determined to be 50% *ee* by HPLC analysis (CHIRALCEL OD column, 99:01 hexane/*i*PrOH at 222nm, flow-rate: 0.7 mL/min). Retention times, $R_t = 11.82$ min (major enantiomer, **360a**) and $R_t = 17.27$ min (minor enantiomer, *ent-***360a**).

6.8.7 Hydrolysis and reduction of [3+2] adduct 360a (Scheme 6.8)

a) *Hydrolysis*: To a 50 mL round bottom flask was taken the crude [3+2] adduct from the 0.25 mmol scale reaction and THF (1 mL). To this solution was added HCl (0.1 mL, 1 M) dropwise and the resulting mixture stirred for 24 h. A continuous stirring was maintained during the addition of the acid. After 24 h, the reaction mixture was extracted with ether (15 mL × 3) to get crude product. The combined organic layer was then washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to afford the crude reaction mixture. A complex

mixture of compounds along with BUDAM amine **126d** was observed based on the ¹H NMR analysis of crude reaction mixture.

b) *Reduction:* To a 50 mL round bottom flask was taken the crude [3+2] adduct from the 0.25 mmol scale reaction and EtOAc (1 mL). To this solution was added NaBH₄ (11 mg, 0.28 mmol) at -78 °C and the resulting mixture allowed to warm to 0 °C over a period of 30 min. The reaction was stirred for 24 h at 0 °C. After 24 h, the reaction was quenched by the addition of aqueous NH₄Cl (3 mL) and extracted with EtOAc (5 mL × 3). The combined organic layer was then washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to afford crude amine 367a. Purification by silica gel chromatography (20 mm × 200 mm column, 8:1 hexanes/EtOAc as eluent) afforded pure amine 367a as a white foamy solid in 43% isolated yield (70 mg, 0.11 mmol, over two steps). The optical purity of 367a was determined to be 50% *ee* by HPLC analysis (CHIRALCEL OD column, 99:01 hexane/*i*PrOH at 222nm, flow-rate: 0.7 mL/min). Retention times, $R_t = 6.66$ min (major enantiomer, 367a) and $R_t = 12.04$ min (minor enantiomer, *ent-*367a).

Spectral data for **367a**: $R_f = 0.31$ (1:8 EtOAc/Hexanes) ¹H NMR (CDCl₃, 500 MHz) δ 1.15 (d, J = 7.3 Hz, 3H), 1.17 (s, 3H), 1.35-1.37 (m, 39H), 2.51 (d, J = 12.1 Hz, 1H), 2.56 (d, J = 12.1

Hz, 1H), 3.13 (q, J = 7.3 Hz, 1H), 3.66 (s, 6H), 4.24-4.30 (m, 2H), 4.62 (s, 1H), 7.16 (s, 2H), 7.19 (s, 2H), 7.73 (s, 1H); 13 C NMR (CDCl₃, 125 MHz) δ 11.39, 14.25, 18.27, 31.99, 32.02, 32.04, 32.08, 32.10, 35.73, 35.93, 44.11, 55.04, 60.73, 64.04, 64.06, 64.36, 67.60, 69.42, (one sp^3 carbon not located), 125.45, 125.56, 129.00, 132.32, 143.19, 143.27, 158.30, 158.33, 162.81, 163.24. IR (thin film, cm⁻¹) 3332br, 2961m, 1701m, 1653w, 1559m, 1456s, 1412s, 1223vs; HRMS (ESI-TOF) m/z 650.4890 [(M+H⁺); calcd. for C₄₀H₆₄N₃O₄: 650.4897].

6.8.8 Attempts towards catalytic asymmetric Ugi 3CR, Ugi-type 2CR and Ugi-type 3CR and Passerini reaction (*Table 6.7-6.8 and Scheme 6.13*)

a) Ugi-3CR:

i) with isocyanide 368a and acid 334a

N-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-N-(2-

(tert-butylamino)-2-oxo-1-phenylethyl)benzamide 369a:

To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) flushed with argon was added imine **111a** (194 mg, 0.500 mmol), (*S*)-VAPOL (27 mg, 0.05 mmol) and

B(OPh)₃ (58 mg, 0.2 mmol) and toluene (1 mL). The stopcock was sealed, and the flask was

then placed in an 80 °C oil bath for 1 h. The flask was then cooled to room temperature. Isocyanide 368a (57 μ L, 0.50 mmol) was then added and the mixture was stirred for 5 min at room temperature. Benzoic acid 334a (61 mg, 0.5 mmol) was then added in one portion followed by the addition of toluene (0.5 mL). The reaction mixture was then stirred for 24 h. After 24 h, the reaction was quenched by the addition of water (3 mL). The solution was diluted with EtOAc (2 mL). The organic layer was then separated, and the aqueous layer was extracted by EtOAc (5 mL × 3). The combined organic solution was then washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford crude product. Purification by silica gel chromatography (35 mm × 350 mm column, 5:1 hexanes/EtOAc as eluent) afforded pure amide 369a (mp. 174-176 °C) as a white solid in 40% isolated yield (119 mg, 0.20 mmol). The optical purity of 369a was determined to be <1% *ee* by HPLC analysis (CHIRALCEL OD column, 99:01 hexane/*i*PrOH at 222nm, flow-rate: 0.7 mL/min). Retention times, $R_t = 23.61$ min (369a) and $R_t = 31.49$ min (*ent-*369a).

Spectral data for **369a**: $R_f = 0.21$ (1:5 EtOAc/Hexanes) ¹H NMR (CDCl₃, 500 MHz) δ 1.20 (s, 9H), 1.94 (s, 6H), 2.29 (s, 6H), 3.50 (s, 3H), 3.76 (s, 3H), 4.87 (s, 1H), 5.55 (s, 1H), 6.06 (s, 1H), 6.42 (s, 2H), 7.01 (s, 4H), 7.38-7.31 (m, 6 H), 7.48-7.45 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 15.79,16.33, 28.44, 51.07, 59.36, 59.65, 65.87, 66.81, 126.5, 127.12, 127.68, 128.39, 128.61, 128.95, 129.67, 130.14, 130.52, 130.75, 134.05, 134.28, 136.81, 155.95, 156.24, 168.47, 172.72; IR (thin film, cm⁻¹) 3424m, 2928m, 1682s, 1637s, 1487s, 1419m, 1223s; Mass spectrum m/z (% rel intensity) 592.7 (100) M⁺, 278.4, 260.4. Anal. calcd for C₃₈H₄₄N₂O₄: C, 77.00; H, 7.48; N, 4.73. Found: C, 76.04; H, 7.84; N, 4.26.

ii) with isocyanide 368b and acid 334b

The reaction was performed as described above with acid **334b** and isocyanide **368b**. A complex mixture of six different compounds was obtained. None of them was **369b**. One of the fractions obtained was amide **370b**.

N-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-N-(2-(naphthalene-2-ylamino)-2-oxo-1-phenyl ethyl)-4-pentyl bicyclo[2.2.2]octane-1-carboxamide 369b:

There was no sign of 360a based on ¹H NMR analysis of crude reaction mixture.

2-((bis(4-methoxy-3,5-dimethylphenyl)methyl) amino)-N-(naphthalen-2-yl)-2-phenyl acetamide 370b: Purification by silica gel chromatography (35 mm × 350 mm column, 5:1 hexanes/EtOAc as eluent) afforded pure amide 370b (mp. 87-89 °C) as

a yellow solid in 26% isolated yield (72 mg, 0.13 mmol). The optical purity of **370b** was determined to be 8% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:01 hexane/*i*PrOH at 222nm, flow-rate: 0.7 mL/min). Retention times, $R_t = 50.17$ min (major enantiomer, **370b**) and $R_t = 89.96$ min (minor enantiomer, *ent-***370b**).

Spectral data for **370b**: $R_f = 0.55$ (1:5 EtOAc/Hexanes) ¹H NMR (CDCl₃, 500 MHz) δ 2.28 (s, 6H), 2.29 (s, 6H), 3.65 (s, 3H), 3.73 (s, 3H), 4.37 (s, 1H), 4.74 (s, 1H), 6.97 (s, 2H), 7.04 (s, 2H), 7.33-7.42 (m, 7H), 7.45-7.48 (m, 1H), 7.49 (dd, J = 8.8, 2.1 Hz, 1H), 7.79 (t, J = 9.2 Hz, 3H), 8.26 (d, J = 1.6 Hz, 1H), 9.51 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 16.23, 16.27, 59.53, 59.64, 64.90, 66.11, 116.07, 119.46, 124.89, 126.47, 127.47, 127.49, 127.58, 127.71, 128.28, 128.68, 128.99, 130.58, 131.07, 131.08, 133.85, 135.05, 137.68, 137.96, 139.21, 156.19, 170.55 (two sp^2 carbon not located); IR (thin film, cm⁻¹) 3312br, 2926m, 1684s, 1632m, 1603m, 1529s, 1485s, 1221s; HRMS (ESI-TOF) m/z 559.2961 [(M+H⁺); calcd. for C₃₇H₃₉N₂O₃: 559.2961]. [α]²⁰ -0.8 (c 1.0, CH₂Cl₂) on 8% ee material.

b) Ugi-type-2CR:

 $Ar = 3,5-Me_2-4-OMe-C_6H_4$ $Ar_2CH = MEDAM$

2-((bis(4-methoxy-3,5-dimethylphenyl)methyl) amino)-N-(naphthalen-2-yl)-2-phenyl acetamide 370b: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) flushed with argon was added imine 111a (194 mg, 0.500 mmol), (S)-

VAPOL (27 mg, 0.05 mmol) and B(OPh)₃ (58 mg, 0.2 mmol) and toluene (1 mL). The stopcock was sealed, and the flask was then placed in an 80 °C oil bath for 1 h. The flask was then cooled to room temperature. Isocyanide **368b** (77 mg, 0.5 mmol) was then added and the mixture was stirred for 5 min at room temperature. The reaction mixture was then stirred for 24 h. After 24 h, the reaction was quenched by the addition of water (3 mL). The solution was diluted with EtOAc (2 mL). The organic layer was then separated, and the aqueous layer was extracted by EtOAc (5 mL × 3). The combined organic solution was then washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford crude reaction mixture.

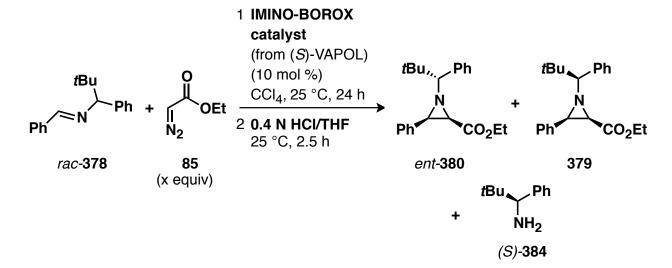
Unfortunately, no **370b** was observed based on the ¹H NMR analysis of the crude reaction mixture.

c) Ugi-type-3CR:

2-(benzhydrylamino)-*N*-(*tert*-butyl)-2-phenylacetamide: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*S*)-VAPOL (54 mg, 0.1 mmol) and commercial B(OPh)₃ (116 mg, 0.1 mmol) and water (1.8 μL, 0.1 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve. The flask was sealed by closing the Teflon valve, and then placed in an 80 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask containing the precatalyst was added amine 127a (92 mg, 0.50 mmol), benzaldehyde 126a (51 μL, 0.50 mmol), isocyanide 368a (57 μL, 0.50 mmol) and toluene (1 mL). The stopcock was sealed, and the reaction mixture was then stirred for 24 h. After 24 h, the reaction was quenched by the addition of water (3 mL). The solution was diluted with EtOAc (2 mL). The organic layer was then

separated, and the aqueous layer was extracted by EtOAc (5 mL \times 3). The combined organic solution was then washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford crude reaction mixture. Unfortunately, no **371a** was observed based on the 1 H NMR analysis of the crude reaction mixture. The imine **78a** was observed.

d) Passerini reaction


2-(*tert***-butylamino)-2-oxo-1-phenylethyl benzoate 377a:** To a 25 mL flame-dried Schlenk flask flushed with argon was added (*S*)-VAPOL Phosphoric acid **35** (0.1 mmol) and toluene (1 mL). To the catalyst solution was added benzaldehyde **126a** (51 μL, 0.50 mmol), isocyanide **368a** (57 μL, 0.50 mmol) and the mixture was stirred for 5 min at room temperature. Benzoic acid **334a** (61 mg, 0.50 mmol) was then added in one portion followed by the addition of toluene (0.5 mL). The mixture was then stirred for 48 h. The reaction was quenched by the addition of

sat. NaHCO₃ (3 mL). The solution was diluted with EtOAc (2 mL). The organic layer was then separated, and the aqueous layer was extracted by EtOAc (5 mL × 3). The combined organic solution was then washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford crude product. Purification by silica gel chromatography (35 mm × 350 mm column, 9:1 hexanes/EtOAc as eluent) afforded product **377a** (mp. 149-150 °C) as a white solid in 35% isolated yield (54.5 mg, 0.175 mmol). The optical purity of **377a** was determined to be 6% ee by HPLC analysis (CHIRALCEL OD column, 99:01 hexanes/*i*PrOH at 222 nm, flow-rate: 0.7 mL/min). Retention times, $R_t = 42.42$ min (major enaniomer, **377a**) and $R_t = 52.24$ min (minor enantiomer, *ent-***377a**).

Spectral data for **377a**: $R_f = 0.24$ (1:9 EtOAc/Hexanes) ¹H NMR (CDCl₃, 300 MHz) δ 1.35 (s, 9 H), 5.98 (br s, 1H), 6.20 (s, 1H), 7.34-7.52 (m, 7H), 7.59 (t, 1H, J = 7.5 Hz), 8.07 (d, 2H, J = 7.2 Hz); ¹³C (CDCl₃, 75 MHz) δ 28.69, 51.63, 76.09, 164.87, 167.30. These spectral data match those previously reported for this compound.

6.8.9 Attempts towards kinetic resolution of imines (*Table 6.10-6.11*)

a) Kinetic resolution of phenylneopentyl imine rac-378 furnishing amine (S)-384

Aziridination: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (S)-VAPOL (54 mg, 0.1 mmol) and B(OPh)₃ (87 mg, 0.3 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added to dissolve the two reagents. The flask was sealed by closing the Teflon valve, and then placed in an 80 °C (oil bath) for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles are removed completely, a full vacuum is applied and is maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and open to argon through side-arm of the Schlenk flask. To the flask containing the pre-catalyst was added aldimine rac-378 (mg, 1.00 mmol) and CCl₄ (2 mL) under argon flow through sidearm of the Schlenk flask. The reaction mixture was stirred for 5 min to give a light yellow solution. To this solution was rapidly added EDA 85 (52 µL, 0.5 mmol) followed by closing the Teflon valve. The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then transferred to a 100 mL round bottom flask. The reaction flask was rinsed with dichloromethane (5 mL × 2) and the rinse was added to the 100 mL round bottom flask. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude mixture. The conversion was 50% of rac-378 as determined by the ¹H NMR of the crude reaction mixture.

Hydrolysis: To a 50 mL round bottom flask was taken the crude reaction mixture and THF (10 mL). To this solution was added HCl (2 mL, 0.4 N) dropwise and the resulting mixture stirred

for 2.5 h. A continuous stirring was maintained during the addition of the acid. After 2.5 h, the reaction mixture was extracted with ether (15 mL \times 3) to get crude aziridine *ent-380*. The aqueous layer was treated with saturated aqueous Na₂CO₃ to bring the solution up to pH = 9. The resulting aqueous layer was further extracted with ether (10 mL \times 8). The combined organic layer was then washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to afford the crude amine (S)-384.

Purification:

a) aziridine *ent-***380**: Purification of the crude aziridine by silica gel chromatography (20 mm \times 200 mm column, 35:1 hexanes/EtOAc as eluent) afforded pure *cis-*aziridine *ent-***380** as a white solid (mp 47-52 °C) in 41% isolated yield (138 mg, 0.41 mmol); dr (*ent-***380**:379) = 20:1. The optical purity of *ent-***380** was determined to be 94% *ee* by HPLC analysis (CHIRALPAK AD column, 99.5:0.5 hexane/2-propanol at 225nm, flow-rate: 1.0 mL/min): retention times; $R_t = 6.8$ min (major enantiomer, *ent-***380**) and $R_t = 8.8$ min (minor enantiomer, **380**).

Spectral data for *ent*-**380**: $R_f = 0.12$ (1:35 EtOAc/hexanes). ¹H NMR (CDCl₃, 300 MHz) δ 0.99 (t, J = 7.1 Hz, 3H), 1.03 (s, 9H), 2.60 (s, 1H), 2.68 (d, J = 6.6 Hz, 1H), 2.73 (d, J = 6.6 Hz, 1H), 3.95 (q, J = 7.1 Hz, 2H), 7.11-7.39 (m, 10H); ¹³C (CDCl₃, 75 MHz) δ 13.94, 27.27, 36.45, 44.52, 51.73, 60.43, 83.47, 126.84, 126.93, 127.22, 127.48, 127.68, 129.22, 135.54, 140.12, 167.82; $[\alpha]_D^{20}$ +82.5 (c 1.0, CHCl₃ on 94% ee material (HPLC). These spectral data match those previously reported for this compound. ³⁸

b) amine (S)-384: Purification of the crude amine by silica gel chromatography (20 mm \times 200 mm column, 4:1:0.1 hexanes/EtOAc/MeOH as eluent) afforded pure amine (S)-384 as a colorless oil in 34% isolated yield (56 mg, 0.34 mmol). The optical purity of (S)-384 was determined to be 66% ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 250nm, flow-rate: 1.0 mL/min): retention times; $R_t = 7.9$ min (major enantiomer, (S)-384) and $R_t = 4.2$ min (minor enantiomer, (R)-384).

Spectral data for (*S*)-384: $R_f = 0.24$ (4:1:0.1 hexanes/EtOAc/MeOH). ¹H NMR (CDCl₃, 300 MHz) δ 10.89 (s, 9H), 1,42 (brs, 2H), 3.69 (s, 1H), 7.20-7.29 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ 26.42, 34.89, 65.20, 126.60, 127.37, 128.13, 143.68. These spectral data match those previously reported for this compound.

b) Kinetic resolution of phenylneopentyl imine rac-378 furnishing amine (S)-385

Aziridination: Same as above except that the pre-catalyst was made using (S)-VAPOL (54 mg, 0.1 mmol), B(OPh)₃ (116 mg, 0.4 mmol) and water (1.8 μ L, 0.1 mmol). The reaction was

performed in toluene. The conversion was 44% of rac-378 as determined by the ¹H NMR of

the crude reaction mixture. dr (ent-380:379): 10:1.

Hydrolysis and Boc protection: To a 50 mL round bottom flask was taken the crude reaction

mixture and THF (10 mL). To this solution was added HCl (4 mL, 0.4 N) dropwise and the

resulting mixture stirred for 3 h. A continuous stirring was maintained during the addition of the

acid. After 2.5 h, the reaction mixture was extracted with ether (15 mL × 3) to get crude

aziridine ent-380. The aqueous layer was treated with saturated aqueous Na₂CO₃ to bring the

solution up to pH = 9. The resulting aqueous layer was further extracted with ether (10 mL \times 8).

The combined organic layer was then washed with brine, dried over anhydrous MgSO₄, filtered

and concentrated in vacuo to afford the crude amine (S)-384. To the flask containing crude

amine was added H₂O (0.5 mL). The resulting mixture was stirred for 5 min at room

temperature. To this mixture was added Boc₂O (126 µL, 0.55 mmol) at room temperature.

Transparent droplets were formed and after stirring the reaction mixture, a white emulsion

appeared on the surface of the walls of the flask with slow effervescence. A white solid settled

down and indicated the completion of the reaction (time = 3 h). The resulting was extracted with

EtOAc (5 mL × 3). The combined organic layer was then washed with brine, dried over

anhydrous MgSO₄, filtered and concentrated *in vacuo* to afford the pure amine (S)-385.

Purification:

a) aziridine ent-380: Same as above

537

b) amine (S)-385: No purification was carried as the obtained amine was very pure. The reaction afforded pure amine (S)-385 (mp. 111-112 °C on 77% ee material) as a white solid in 44% isolated yield (116 mg, 0.44 mmol). The optical purity of (S)-385 was determined to be 54% ee by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 99:1 hexane/2-propanol at 225nm, flow-rate: 1.0 mL/min): retention times; $R_t = 9.83$ min (major enantiomer, (S)-385) and $R_t = 27.17$ min (minor enantiomer, (R)-385).

Spectral data for (*S*)-385: $R_f = 0.28$ (1:9 EtOAc/hexanes). ¹H NMR (DMSO-d₆, 500 MHz) δ 0.83 (s, 9H), 1.37 (s, 9H), 4.39 (d, J = 10.1 Hz, 1H), 7.20 (t, J = 6.8 Hz, 2H), 7.26-7.30 (m, 3H), 7.37 (d, J = 10.0 Hz, 1H); ¹³C (DMSO-d₆, 125 MHz) δ 26.57, 28.28, 34.84, 62.94, 77.57, 126.42, 127.24, 128.43, 140.97, 155.41.; IR (thin film, cm⁻¹) 3285br, 2972s, 1899vs, 1495m, 1366s, 1173s; HRMS (ESI-TOF) m/z 264.1960 [(M+H⁺); calcd. for C₁₆H₂₆NO₂ : 264.1964]; $[\alpha]_D^{20}$ -21.3 (*c* 1.0, EtOAc) on 77% ee material (HPLC).

REFERENCES

REFERENCES

- (1) Osborn, H. M. I.; Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693-1715.
- (2) (a) Pellissier, H. *Tetrahedron* **2010**, *66*, 1509-1555. (b) Müller, P.; Fruit, C. *Chem. Rev.* **2003**, *103*, 2905-2919.
- (3) (a) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. *J. Am. Chem. Soc.* **1993**, *115*, 5328-5329. (b) Li, Z.; Conser, K. R.; Jacobsen, E. N. *J. Am. Chem. Soc.* **1993**, *115*, 5326-5327. (c) Noda, K.; Hosoya, N.; Irie, R.; Ito, Y.; Katsuki, T. *Synlett* **1993**, 469-471. (d) Kawabata, H.; Omura, K.; Uchida, T.; Katsuki, T. *Chem.–Asian. J.* **2007**, *2*, 248-256. (e) Subbarayan, V.; Ruppel, J. V.; Zhu, S.; Perman, J. A.; Zhang, X. P. *Chem. Commun.* **2009**, 4266-4268.
- (4) Deiana, L.; Dziedzic, P.; Zhao, G. L.; Vesely, J.; Ibrahem, I.; Rios, R.; Sun, J. L.; Cordova, A. *Chem.–Eur. J.* **2011**, *17*, 7904-7917.
- (5) (a) Hansen, K. B.; Finney, N. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 1995, 34, 676-678.
 (b) Aggarwal, V. K.; Alonso, E.; Fang, G. Y.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem., Int. Ed. 2001, 40, 1433-1436.
 (c) Aggarwal, V. K.; Ferrara, M.; O'Brien, C. J.; Thompson, A.; Jones, R. V. H.; Fieldhouse, R. J. Chem. Soc., Perkin Trans. 1 2001, 1635-1643.
 (d) Aggarwal, V. K.; Winn, C. L. Acc. Chem. Res. 2004, 37, 611-620.
- (6) (a) Casarrubios, L.; Perez, J. A.; Brookhart, M.; Templeton, J. L. J. Org. Chem. 1996, 61, 8358-8359. (b) G. Rasmussen, K.; Anker Jorgensen, K. J. Chem. Soc., Perkin Trans. 1 1997, 1287-1292. (c) Juhl, K.; G. Hazell, R.; Anker Jorgensen, K. J. Chem. Soc., Perkin Trans. 1 1999, 2293-2297. (d) Mayer, M. F.; Hossain, M. M. J. Organomet. Chem. 2002, 654, 202-209. (e) Morales, D.; Pérez, J.; Riera, L.; Riera, V.; Corzo-Suárez, R.; García-Granda, S.; Miguel, D. Organometallics 2002, 21, 1540-1545. (f) Krumper, J. R.; Gerisch, M.; Suh, J. M.; Bergman, R. G.; Tilley, T. D. J. Org. Chem. 2003, 68, 9705-9710. (g) Redlich, M.; Hossain, M. M. Tetrahedron Lett. 2004, 45, 8987-8990.
- (7) (a) Williams, A. L.; Johnston, J. N. *J. Am. Chem. Soc.* **2004**, *126*, 1612-1613. (b) Wipf, P.; Lyon, M. A. *ARKIVOC* **2007**, *xii*, 91-98. (c) Hashimoto, T.; Uchiyama, N.; Maruoka, K. *J. Am. Chem. Soc.* **2008**, *130*, 14380-14381. (d) Akiyama, T.; Suzuki, T.; Mori, K. *Org. Lett.* **2009**, *11*, 2445-2447. (e) Zeng, X.; Zeng, X.; Xu, Z.; Lu, M.; Zhong, G. *Org. Lett.* **2009**, *11*, 3036–3039. (f) Johnston, J. N.; Muchalski, H.; Troyer, T. L. *Angew. Chem., Int. Ed.* **2010**, *49*, 2290-2298.

- (8) Hu, G.; Gupta, A. K.; Huang, R. H.; Mukherjee, M.; Wulff, W. D. J. Am. Chem. Soc. **2010**, 132, 14669–14675.
- (9) (a) Zhang, Y.; Desai, A.; Lu, A.; Hu, G.; Ding, Z.; Wulff, W. D. *Chem. –Eur. J.* **2008**, *14*, 3785-3803. (b) Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. *Org. Lett.* **2008**, *10*, 5429-5432. (c) Mukherjee, M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. *J. Org. Chem.* **2010**, *75*, 5643-5660. (d) Ren, H.; Wulff, W. D. *Org. Lett.* **2010**, *12*, 4908-4911. (e) Hu, G.; Huang, L.; Huang, R. H.; Wulff, W. D. *J. Am. Chem. Soc.* **2009**, *131*, 15615-15617. (f) Desai, A. A.; Wulff, W. D. *J. Am. Chem. Soc.* **2010**, *132*, 13100-13103. (g) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. *J. Am. Chem. Soc.* **2010**, *132*, 13104-13107. (h) Desai, A. A.; Morán-Ramallal, R.; Wulff, W. D. *Org. Synth.* **2011**, *88*, 224-237.
- (10) (a) Antilla, J. C.; Wulff, W. D. *Angew. Chem., Int. Ed.* **2000**, *39*, 4518-4521. (b) Deng, Y. H.; Lee, Y. R.; Newman, C. A.; Wulff, W. D. *Eur. J. Org. Chem.* **2007**, 2068-2071.
- (11) Lu, Z.; Zhang, Y.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7185-7194.
- (12) Hattori, K.; Yamamoto, H. J. Org. Chem. 1992, 57, 3264-3265.
- (13) Hu, G. PhD Dissertation, Michigan State University, 2007.
- (14) Gupta, A. K.; Mukherjee, M.; Wulff, W. D. Org. Lett. 2011, 13, 5866-5869.
- (15) Guan, Y.; Wulff, W. D., Unpublished results.
- (16) Noels, A. F.; Braham, J. N.; Hubert, A. J.; Teyssie, P. *Tetrahedron* **1978**, *34*, 3495-3497.
- (17) Branstetter, B.; Hossain, M. M. Tetrahedron Lett. 2006, 47, 221-223.
- (18) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 2434-2435.
- (19) (a) Kano, T.; Hashimoto, T.; Maruoka, K. *J. Am. Chem. Soc.* **2006**, *128*, 2174-2175. (b) Gao, L.; Hwang, G. S.; Lee, M. Y.; Ryu, D. H. *Chem. Commun.* **2009**, 5460-5462.
- (20) Hashimoto, T.; Naganawa, Y.; Kano, T.; Maruoka, K. Chem. Commun. 2007, 5143-5145.

- (21) (a) Kano, T.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. **2005**, 127, 11926-11927. (b) Chen, W.; Yuan, X. H.; Li, R.; Du, W.; Wu, Y.; Ding, L. S.; Chen, Y. C. Adv. Synth. Catal. **2006**, 348, 1818-1822.
- (22) (a) Sibi, M. P.; Stanley, L. M.; Soeta, T. *Org. Lett.* **2007**, *9*, 1553-1556. (b) Sibi, M. P.; Stanley, L. M.; Soeta, T. *Adv. Synth. Catal.* **2006**, *348*, 2371-2375.
- (23) (a) Cafieri, F.; Fattorusso, E.; Taglialatela-Scafati, O. *J Nat Prod* **1998**, *61*, 122-125. (b) Cafieri, F.; Fattorusso, E.; Mangoni, A.; TaglialatelaScafati, O. *Tetrahedron* **1996**, *52*, 13713-13720.
- (24) (a) El Kaim, L.; Grimaud, L. *Tetrahedron* **2009**, *65*, 2153-2171. (b) Domling, A. *Chem. Rev.* **2006**, *106*, 17-89. (c) Zhu, J. *Eur. J. Org. Chem.* **2003**, *2003*, 1133-1144. (d) Domling, A.; Ugi, I. *Angew. Chem., Int. Ed.* **2000**, *39*, 3169-3210.
- (25) Ugi, I. Angew. Chem., Int. Ed. 1962, 1, 8-21.
- (26) Braude, E. A.; Nachod, F. C.; Phillips, W. D.; Zuckerman, J. J. *Determination of Organic Structures by Physical Methods*; Academic Press: New York, 1955.
- (27) Pan, S. C.; List, B. Angew. Chem., Int. Ed. 2008, 47, 3622-3625.
- (28) Huang, L.; Wulff, W. D., Unpublished results.
- (29) Mukherjee, M. PhD Dissertation, Michigan State University, 2012.
- (30) (a) McFarland, J. W. J. Org. Chem. 1963, 28, 2179-2181. (b) Keung, W.; Bakir, F.; Patron, A. P.; Rogers, D.; Priest, C. D.; Darmohusodo, V. Tetrahedron Lett. 2004, 45, 733-737. (c) Giovenzana, G. B.; Tron, G. C.; Paola, S. D.; Menegotto, I. G.; Pirali, T. Angew. Chem., Int. Ed. 2006, 45, 1099-1102. (d) Diorazio, L. J.; Motherwell, W. B.; Sheppard, T. D.; Waller, R. W. Synlett 2006, 2006, 2281,2283. (e) Tanaka, Y.; Hasui, T.; Suginome, M. Org. Lett. 2007, 9, 4407-4410. (f) Tanaka, Y.; Hidaka, K.; Hasui, T.; Suginome, M. Eur. J. Org. Chem. 2009, 1148-1151.
- (31) Yue, T.; Wang, M.-X.; Wang, D.-X.; Masson, G.; Zhu, J. Angew. Chem., Int. Ed. 2009, 48, 6717-6721.

- (32) Hashimoto, T.; Kimura, H.; Kawamata, Y.; Maruoka, K. Angew. Chem., Int. Ed. 2012, ASAP.
- (33) Passerini, M. Gazz. Chim. Ital. 1921, 51, 126.
- (34) (a) Kusebauch, U.; Beck, B.; Messer, K.; Herdtweck, E.; Dömling, A. *Org. Lett.* **2003**, *5*, 4021-4024. (b) Andreana, P. R.; Liu, C. C.; Schreiber, S. L. *Org. Lett.* **2004**, *6*, 4231-4233. (c) Wang, S. X.; Wang, M. X.; Wang, D. X.; Zhu, J. P. *Angew. Chem., Int. Ed.* **2008**, *47*, 388-391.
- (35) (a) Yue, T.; Wang, M.-X.; Wang, D.-X.; Masson, G.; Zhu, J. J. Org. Chem. **2009**, 74, 8396-8399. (b) Denmark, S. E.; Fan, Y. J. Org. Chem. **2005**, 70, 9667-9676. (c) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. **2003**, 125, 7825-7827.
- (36) Yue, T.; Wang, M. X.; Wang, D. X.; Zhu, J. P. Angew. Chem., Int. Ed. 2008, 47, 9454-9457.
- (37) Mukherjee, M.; Wulff, W. D., Unpublished results.
- (38) Huang, L.; Zhang, Y.; Staples, R. J.; Huang, R. H.; Wulff, W. D. *Chem.–Eur. J.* **2012**, *18*, 5302-5313.
- (39) (a) Lee, J. H.; Han, K.; Kim, M. J.; Park, J. Eur. J. Org. Chem. **2010**, 999. (b) Turner, N. J. Nat. Chem. Biol. **2009**, 5, 567. (c) Höhne, M.; Bornscheuer, U. T. ChemCatChem **2009**, 1, 42. (d) Gotor-Fernandez, V.; Gotor, V. Curr. Opin. Drug Discovery Dev. **2009**, 12, 784.
- (40) (a) Fu, G. C.; Arp, F. O. *J. Am. Chem. Soc* **2006**, *128*, 14264-14265. (b) Anstiss, M.; Nelson, A. *Org. Biomol. Chem.* **2006**, *4*, 4135. (c) Fu, G. C.; Arai, S.; Bellemin-Laponnaz, S. *Angew. Chem., Int. Ed.* **2001**, *40*, 234-236. (d) Yang, X.; Bumbu, V. D.; Birman, V. B. *Org. Lett.* **2011**, *13*, 4755. (e) Birman, V. B.; Jiang, H.; Li, X.; Guo, L.; Uffman, E. W. *J. Am. Chem. Soc.* **2006**, *128*, 6536-6537. (f) Fowler, B. S.; Mikochik, P. J.; Miller, S. J. *J. Am. Chem. Soc.* **2010**, *132*, 2870. (g) Binanzer, M.; Hsieh, S. Y.; Bode, J. W. *J. Am. Chem. Soc.* **2011**, *133*, 19698. (h) Mioskowski, C.; Sabot, C.; Subhash, P. V.; Valleix, A.; Arseniyadis, S. *Synlett* **2008**, 268-272. (i) List, B.; Hoffmann, S.; Nicoletti, M. *J. Am. Chem. Soc* **2006**, *128*, 13074-13075. (j) Backvall, J. E.; Paetzold, J. *J Am Chem Soc* **2005**, *127*, 17620-17621. (k) Mioskowski, C.; Srseniyadis, S.; Valleix, A.; Wagner, A. *Angew. Chem., Int. Ed.* **2004**, *43*, 3314-3317. (l) Krasnov, V. P.; Levit, G. L.; Andreeva, I. N.; Grishakov, A. N.; Charushin, V. N.; Chupakhin, O. N. *Mendeleev Commun.* **2002**, *12*, 27-28. (m) Mittal, N.; Sun, D. X.; Seidel, D. *Org. Lett.* **2012**, *14* 3084–3087.
- (41) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249.

- (42) Chakraborti, A. K.; Chankeshwara, S. V. Org. Lett. 2006, 8, 3259-3262.
- (43) Denegri, B.; Kronja, O. J. Org. Chem. 2007, 72, 8427-8433.
- (44) Dalmolen, J.; Tiemersma-Wegman, T. D.; Nieuwenhuijzen, J. W.; van der Sluis, M.; van Echten, E.; Vries, T. R.; Kaptein, B.; Broxterman, Q. B.; Kellogg, R. M. *Chem.–Eur. J.* **2005**, *11*, 5619-5624.
- (45) Lagiakos, H. R.; Aguilar, M.-I.; Perlmutter, P. J. Org. Chem. 2009, 74, 8001-8003.

CHAPTER 7

INDIRECT IMINO-BOROX CATALYSIS MULTICOMPONENT CATALYTIC ASYMMETRIC AZIRIDINATION (MCAZ)

I would like you to do one reaction for the grant!

-William D. Wulff

7.1 Introduction

In recent times, multicomponent reactions have been quite extensively studied and applied in the field of asymmetric catalysis. An ideal multicomponent reaction is one which a) involves readily available starting materials and catalyst, b) is experimentally simple to perform, c) time and cost effective, d) atom-economical, e) is not effected by a diverse range of functionalities in the substrates. Other than the aforementioned criteria; the reaction also has to be regio- and chemoselective enough such that the compatibility of the several components is matched to the point that any formation of the side products resulting from unwanted reactions between various components is avoided.

Apart from asymmetric aziridinations using chiral auxiliaries, ² considerable advances have been made in the field of catalytic asymmetric aziridination over the past few years. ³ Primarily, there are two main approaches towards catalytic asymmetric aziridination: a) addition of nitrogen to olefins *via* nitrene transfer with organometallic catalysts ⁴ or organocatalysis ⁵ b) addition of carbon to imines *via* metal-carbene transfer (carbene generated from diazo compound or sulfur ylides) ⁶ or the reaction of a diazo compound with an imine activated by either Lewis

acid⁷ or Brønsted acid.⁸ It must noted that the asymmetric aziridination reaction between the imines and diazo compounds in the presence of an acid catalyst must not be mistaken for Aza-Darzens reaction as both are mechanistically distinct. ^{3a} In fact, asymmetric Aza-Darzens reaction is reported with chiral auxiliaries. ^{3a} As discussed in previous chapters, our aziridination protocol is a Brønsted acid catalyzed reaction (Figure 7.1A). However, to the best of our knowledge, no example of a multicomponent catalytic asymmetric aziridination has been reported. 1,10 Nishimura and coworkers have reported a stoichiometric asymmetric multicomponent aziridination of olefins. 11 A true multicomponent reaction involves the reaction of three or more reagents added simultaneously. Multi-component reactions that involve reaction between two reagents and then interception of the resulting intermediate by the addition of a third reagent are sequential component reactions. ^{1,8d} Herein, we report the first multi-component catalytic asymmetric aziridination (MCAZ) which satisfies all the criteria discussed above and incorporates the most simplified protocol yet developed for our catalytic asymmetric aziridination reaction (Figure 7.1B). 12

Figure 7.1 (**A**) Catalytic asymmetric aziridination of imines. (**B**) three-component catalytic asymmetric aziridination. (**C**) five-component catalyst assembly/catalytic asymmetric aziridination.

Figure 7.1 cont'd

В

unsolved challenge

 \mathbf{C}

new finding

In the course of studying factors that affect catalyst formation and in investigating the processes involved in the three-component catalytic asymmetric aziridination, and in examining the relationship between these two processes, we have discovered that this reaction is actually a five-component process in which the catalyst is assembled by the amine from the ligand and B(OPh)₃ and then the catalyst causes imine formation and then finally, aziridine formation (Figure 7.1C).

7.2 The real need for a true multicomponent aziridination reaction

Up to this point, all of the aziridination reactions we have reported have involved preformed imines. A drawback to the use of imines of course is the requirement of an additional step. The difficulty in the purification of imines can vary from drawback to limitation. The method of choice for purification is crystallization since most imines tend to decompose on silica gel or upon distillation. For non-crystalline imines this usually necessitates the use of nonpurified imines. This is especially true for imines from unbranched aliphatic aldehydes and, as a result, lower yields and inductions are often observed. A more serious stricture is that for some unbranched alphatic imine substrates, no aziridines are observed at all. ¹⁴ After a rigorous analysis of the ¹H NMR spectra of the crude reaction mixtures from aziridination reactions performed in our lab over the last five years, we found that in the cases of imines derived unbranched alkyl aldehydes, the imines undergo self-condensation to give rise to a conjugated imine under the aziridination reaction conditions. For example, when imine 1100 was reacted with EDA 85, the crude reaction mixture reveals the formation of the aziridine 1130 and vinyl imine **3330** whose structure was confirmed by independent synthesis (Scheme 7.1A and 7.1B). 9c This mixture of species appears to kill the catalyst and this may very well be due to the amine **126b**, which is released in the formation of the condensation product **333o**. More importantly, in some cases, the imine can't be generated in a clean fashion. For example, when aldehyde **127t** is treated with amine **126c**, long before complete formation of the imine **111t** can be realized, self-condensation of the imine begins to occur which gives rise to the conjugated imine **386t** along with release of amine **126c** (Scheme 7.1B and 7.1C). This imposes a serious limitation on the implementation of the AZ reaction in organic synthesis and the molecules in Figure 7.2 are illustrative of the point. ¹⁵

Scheme 7.1 (**A**) Self-condensation of imine **1100** during aziridination. (**B**) Self condensation of imine **111t** during imine formation. (**C**) 1 H NMR spectra of the formation of imine **111t** at t = 4 h and 21 h

Scheme 7.1 cont'd

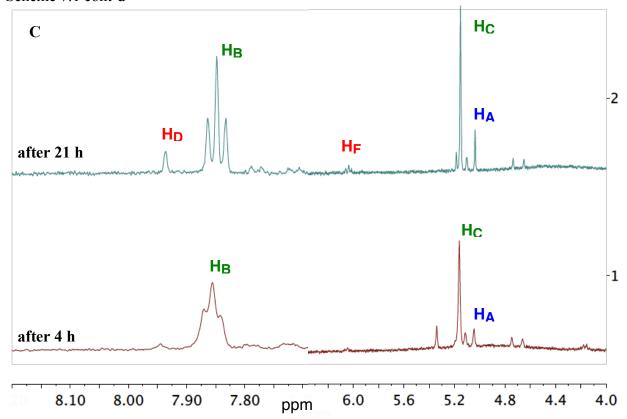
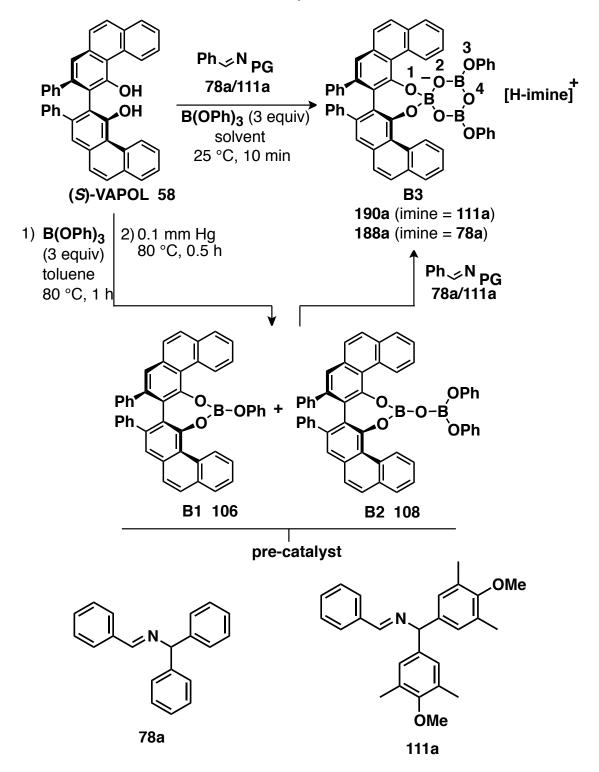


Figure 7.2 (A) Biologically important alkyl aziridines. 387: antimicrobial activity against Grampositive bacteria. 15b 388 and 389: cytotoxic and antimicrobial activity. 15c 390: inhibitor of arachidonate epoxygenase. 15d (B) Sphinganine family (391-394) of biologically important compounds resulting from the ring-opening from alkyl aziridines. 15e


Additionally, an ideal multicomponent reaction is supposed to be experimentally simple to perform. The shortcoming of the optimized protocol for the catalytic asymmetric aziridination reaction include the need to generate a pre-catalyst (mixture of B1 106/107 and B2 108/109, Scheme 7.2) from the VAPOL or VANOL ligand and B(OPh)₃. Henceforth, the secondary aim of the work was to simplify the overall procedure, thus developing a multicomponent aziridination reaction avoiding the generation of the pre-catalyst and thus validating its practical utility.

7.3 Can any or all the components of the proposed MCAZ reaction generate the boroxinate catalyst?

The VAPOL ligand and commercial B(OPh)₃ will react when heated to give a pre-catalyst which is a mixture of the mesoborate 106 (B1) and the pyroborate 108 (B2) with the latter typically predominating in ratios ranging from 4:1 to 20:1 depending on the exact protocol for catalyst formation (Scheme 7.2).^{9a} Treatment of the mixture of 106 and 108 with imine 78a/111a at room temperature leads to the formation of the chiral boroxinate 188a/190a (B3).^{9f,9h} Since this species has a boroxine ring as its core, we have decided to classify this family of catalysts as *BOROX* catalysts (Chapter 2). The BOROX species 188a/190a is an ion pair consisting of a protonated base (imine) as the cation and a chiral borate as the anion in the form of a boroxinate: a boroxine in which one of the borons is four-coordinate. It has been shown that the active catalyst in the catalytic aziridination reaction ^{9f,9h} is an IMINO-BOROX catalyst 188a/190a. This BOROX species is presumed to be the active catalyst in an aza-Diels-Alder reaction as well.¹⁶ We have recently reported that the chiral boroxinate 188a/190a (B3) can also be generated upon treatment of a mixture of the VAPOL ligand 58 and 3 equivalents of

 $B(OPh)_3$ with the imine 78a/111a at room temperature in a few minutes, conditions under which VAPOL and $B(OPh)_3$ do not react. 9f

Scheme 7.2 Generation of IMINO-BOROX catalysts 190a and 188a

The proposed multicomponent aziridination reaction involves amine 126, aldehyde 127 and EDA 85 (Figure 7.1B). The question then naturally arises: whether an amine would induce chiral boroxinate complex, and if yes, then whether other species like aldehyde 127 and EDA 85 would also generate a boroxinate which, in turn, could interfere the boroxinate formation from the amine? A series of NMR experiments were then carried out in search of the answers to these proposed questions. In the absence of a base, mixing (*S*)-VAPOL and B(OPh)₃ does not result in any detectable amount of a boroxinate (B3) species (Chapter 2). Given the greater basicity of an amine versus an imine, it was anticipated that the MEDAM amine 126c could also generate the boroxinate catalyst 215b (Scheme 7.3) from VAPOL and B(OPh)₃ in much the same way as does imine 111a (Scheme 7.2) and indeed this was confirmed by NMR analysis (Table 2.7 and Figure 2.9, Chapter 2). In fact, primary, secondary and tertiary amines all induce the formation of an AMINO-BOROX catalyst of the type 215 (B3) which displays a characteristic bay region proton doublet at δ ~10.3 ppm in ¹H NMR and a sharp resonance in the ¹¹B NMR spectrum at δ ~5-6 ppm (Table 2.7 and Figure 2.9, Chapter 2).

Scheme 7.3 Generation of AMINO-BOROX catalysts 215a and 215b

Aldehydes 127 are not strong enough bases to induce boroxinate formation (Figure 2.19, Chapter 2). Ethyl diazoacetate (EDA) does not induce the formation of a boroxinate, but, nonetheless there is a very rapid reaction (≤10 min) leading to the alkylation of one of the phenol functions of VAPOL via a formal insertion of a carbene into the O-H bond which results in the formation of the ester 230 in 80% yield (Scheme 7.4A). It seems like the initial analysis indicates the feasibility of the first multicomponent aziridination reaction. However, there are certain possible complications for the reaction and these are described below.

7.4 Possible complications for the five-component catalyst assembly/aziridination

As discussed above, the mono-alkylated VAPOL derivative **230** is formed upon treatment of VAPOL with EDA in the presence of B(OPh)₃ (Scheme 7.4A). However, there is no reaction between VAPOL and EDA in the absence of B(OPh)₃. Nonetheless, this presents at least one potential problem in a five-component catalyst assembly/aziridination of the type shown in Figure 7.1C. The VAPOL ligand could be disenabled by a B(OPh)₃ induced reaction with EDA before the amine can assemble the catalyst from the ligand and B(OPh)₃.

Scheme 7.4 (**A**) Alkylation of the VAPOL by EDA. (**B**) Common products obtained from the reaction between benzaldehyde and EDA.

Scheme 7.4 cont'd

B

A second possible complication is an unwanted reaction between the aldehyde and EDA. In fact, several different products are known from the reaction of benzaldehyde and EDA mediated by Lewis or Brønsted acids. ¹⁷ Indeed, in a control experiment, the reaction of benzaldehyde and 1.14 equiv of ethyl diazoacetate mediated by 14 mol% B(OPh)₃ gave the five products shown in Scheme 7.4B with the major component as the β -keto ester **396a** and its tautomer **397a** in a total of 55% yield. In a separate control experiment it was found that there is no reaction between benzaldehyde and EDA in the presence of VAPOL. Nor is there any reaction between benzaldehyde and EDA in either the presence or absence of 4 Å molecular sieves at 25 °C after 24 h. Thus the possible reaction between the aldehyde and EDA mediated by B(OPh)₃ is a real concern for the success of the multi-component catalyst assembly/aziridination outlined in Figure 7.1C.

7.5 Optimization and substrate scope of aryl substrates in the MCAZ reaction

With the demonstration that an amine can induce catalyst assembly, the possibility of a multi-component aziridination (MCAZ) was then explored (Table 7.1). Given the problems with aliphatic aldehydes described above, the multi-component aziridination was first examined with aromatic substrates.

7.5.1 Different protocols for the multicomponent *cis*-aziridination (MCAZ)

During optimization, various protocols were examined for the MCAZ reaction. A few selected protocols are presented in Table 7.1. In the first experiment, the VAPOL ligand A (58) was mixed with 3 equiv of B(OPh)₃ B (187a) and 20 equiv of amine C (126c) and stirred in toluene at 80 °C for 0.5 h to ensure formation of the boroxinate catalyst and thus avoid any possibility of alkylation of VAPOL by the EDA. This was followed by the addition of the benzaldehyde D (127a) and 4 Å MS which was stirred for 2 h to ensure imine formation. Upon addition of EDA E (85) the mixture was stirred at 25 °C for 24 h to give the aziridine 114a in 92% yield and 95% ee (procedure I).

A true multi-component reaction involves the reaction of three or more reagents added simultaneously. ^{1c,1d} Multi-component reactions that involve reaction between two reagents and then interception of the resulting intermediate by the addition of a third reagent are sequential component reactions. ^{1c,1d,8d,10-11} Hence, procedure I in Table 7.1 can be viewed as an example of a sequential component aziridination reaction as the addition of EDA was delayed for 2 h to ensure formation of the imine. ^{8d} However, when EDA was added immediately after the aldehyde, essentially the same results were obtained (procedures I vs IIA). This suggests that the

present work is an example of a true MCAZ. The data in Table 7.1 reveals that essentially the same results are obtained whether the pre-catalyst is first generated and employed in the multicomponent aziridination or whether the boroxinate catalyst is directly generated by treating a mixture of VAPOL and B(OPh)₃ with the amine C (procedures IIA vs. IIB). It was also revealed that no advantage is to be gained by generating the AMINO-BOROX catalyst by heating to 80 °C rather than simply stirring at room temperature (procedures IIA vs. IIIA and IIB vs. IIIB). The use of the aldehyde **D** as the limiting reagent (0.6 equiv) leads to the complete shutdown of the reaction (procedure IIIC). This suggests that the amine C is a competitive inhibitor of the imine in binding to the boroxinate catalyst and this issue will be taken up in greater detail below (Tables 7.8 and 7.9). A comment is needed about the water added for catalyst generation in procedures IIB and IIIB in Table 7.1. Three equivalents of H₂O are required to create the three B-O-B linkages in the boroxinate 215b from B(OPh)₃. The addition of three equivalents of H₂O is absolutely required if the B(OPh)3 is pure but, commercial B(OPh)3 contains sufficient water that the addition of additional water is typically not needed and indeed, our original procedure shown in Scheme 7.2 does not include the addition of H₂O. 9f The addition of 3 equivalents of H₂O to commercial B(OPh)₃ in procedures IIB and IIIB was done to compensate for any variation in quality of commercial B(OPh)₃.

Table 7.1 Protocol dependence of the multicomponent aziridination ^a

(S)-VAPOL + B(OPh)₃ + Ar Ar Ph H +
$$OO$$
 Et NH₂ + Ph H + OO Et NH₂ + OO Et NH₂

#	Proc		Rea		Yield 114a (%)	ee 114a (%)	
1	I	A+B+C	1) toluene 80 °C, 0.5 h	2) D , 4Å MS 25 °C, 2 h	3) E 25 °C, 24 h	92	95
2	IIA	A+B+C	1) toluene 80 °C, 0.5 h	2) D , 4Å MS E , 25 °C, 24 h		97	98
3	IIB	A+B	1) toluene H ₂ O (15 mol%) 80 °C, 1 h then 0.5 mm Hg 80 °C, 0.5 h	2) C , toluene 80 °C, 0.5 h	3) D , 4Å MS E , 25 °C, 24 h	98	98
4	IIIA	A+B+C	1) toluene 25 °C, 1 h	2) D , 4Å MS E , 25 °C, 24 h		98	98

Table 7.1 cont'd

1) toluene

H₂O (15 mol%)

3) **C**, toluene

3) **D**, 4Å MS

5 IIIB A+B
$$\frac{\text{H}_2\text{O (15 mol\%)}}{80 \,^{\circ}\text{C, 1 h}} \xrightarrow{25 \,^{\circ}\text{C, 1 h}} \frac{3) \,\text{C, toluene}}{25 \,^{\circ}\text{C, 1 h}} \xrightarrow{25 \,^{\circ}\text{C, 24 h}} 94$$
 98 80 °C, 0.5 h

7.5.2 Catalyst loading, N-substituent and ligand screening

The catalytic asymmetric synthesis of aziridines from imines and diazo compounds has been honed with both benzhydryl and bis-(3,5-dimethylanisyl)methyl (MEDAM) substituents on the imine nitrogen. Thus, prior to the substrate scope, the multi-component aziridination was examined with both benzhydryl amine 126a and the MEDAM amine 126c and the results with benzaldehyde are shown in Table 7.2. In addition, the reactions of both amines were screened with both VANOL and VAPOL catalysts and the catalyst loading profile was explored as well. As was found for the reactions of the corresponding imines, ^{9c} the multi-component aziridination of benzaldehyde with MEDAM amine 126c gives higher yields and asymmetric inductions than the benzhydryl amine 126a. Nonetheless, the aziridines from benzhydryl amines can in most cases be crystallized to ≥ 99% ee which is important to note upon considering that benzhydryl

^a Unless otherwise specified, all reactions were performed with 0.025 mmol (S)-VAPOL A (5 mol%), 0.075 mmol B(OPh)₃ B (15 mol%), 0.50 mmol amine C (1.0 equiv), 0.525 mmol benzaldehyde D (1.05 equiv) and 0.60 mmol of EDA E (1.2 equiv) in 1.0 mL toluene (0.5 M in amine) at 25 °C for 24 h. In each case, 150 mg powdered 4Å MS was added immediately preceding benzaldehyde. ^b Isolated Yield. Analysis of the crude reaction mixture indicates >50:1 cis:trans selectivity for 114a. In each case <1% 118a and 119a are formed. ^c Determined by HPLC.

amine 126a is commercially available while the MEDAM amine 126c is not. 9a,9i During this work, another current group member, namely Yong Guan, developed a new ligand (S)-tBu-VANOL 198 which proved to be the optimal ligand for aziridination with benzhydryl imines It was found that the multicomponent aziridination works well with this ligand giving results better than VAPOL and VANOL (Table 7.2, entry 8). However, as was observed with the corresponding imines, the multi-component aziridinations with VAPOL and VANOL catalysts are very similar with a slight edge in asymmetric induction to the VAPOL catalyst. 9a,9i The optimal catalyst loading for the reaction with the MEDAM amine is 3-5 mol%. This reaction does not go to completion in 24 h with 1 mol% of either the VANOL or VAPOL catalyst but both go to completion with a 3 mol% catalyst loading. The reaction is severely impeded by the absence of molecular sieves and gives only a 35% yield of the aziridine 114a along with a 52% yield of the unreacted imine 111a generated from amine 126c and benzaldehyde (entry 14). Finally, in the optimization studies it was noted that 4 Å molecular sieves was superior to 5 Å molecular sieves which gives more unknown side-products and a lower yield of the aziridine (entries 14 vs. 15).

Table 7.2 Catalyst Loading, *N*-substituent and Ligand Screening ^a

Table 7.2 cont'd

#	Ligand	PG	Cat. x mol%	Yield 86a/114a (%)	ee 86a/114a (%)	cis/trans	Enamines (%) ^e
1	(S)-VAPOL	Bh	10 ^f	75	92	33:1	7
2	(R)-VANOL	Bh	10^f	78	-88	50:1	15
3	(S)-VAPOL	Bh	10	85	91	25:1	9
4	(R)-VANOL	Bh	10	77	-88	50:1	15
5	(S)-VAPOL	Bh	5	77	92	50:1	6
6	(R)-VANOL	Bh	5	72	91	50:1	7
7	(S)-VAPOL	Bh	5	77 ^g	86	50:1	7
8	(S)-tBu-VANOL	Bh	5	80	97	> 50:1	6
9	(S)-VAPOL	MEDAM	10^f	90	98	> 50:1	<1
10	(R)-VANOL	MEDAM	10^f	93	-96	> 50:1	<1
11	(S)-VAPOL	MEDAM	5^f	97	98	> 50:1	<1
12	(R)-VANOL	MEDAM	5^f	90	-96	> 50:1	<1
13	(S)-VAPOL	MEDAM	5	98	98	> 50:1	<1
14	(S)-VAPOL	MEDAM	5	$(35)^{h,i}$	_	> 50:1	<1
15	(S)-VAPOL	MEDAM	5	70^{j}	98	> 50:1	2
16	(S)-VANOL	MEDAM	5	95	95	> 50:1	<1
17	(S)-VAPOL	MEDAM	3	92	98	> 50:1	5
18	(S)-VANOL	MEDAM	3	94	97	> 50:1	6
19	(S)-VAPOL	MEDAM	1	(20)	_	> 50:1	<1
20	(R)-VANOL	MEDAM	1	(31)	_	> 50:1	<1
21	(S)-VAPOL	MEDAM	1	$(48)^g$	_	> 50:1	4
22	(R)-VANOL	MEDAM	1	$(29)^g$	_	> 50:1	<1

^a Unless otherwise specified, all reactions were performed with procedure IIIA in Table 7.1 with 0.50 mmol amine **126a** or **126c** (1.0 equiv, 0.5 M), 0.525 mmol benzaldehyde **127a** (1.05 equiv) and 0.60 mmol of EDA **85** (1.2 equiv) and went to 100% completion. ^b Isolated Yield. Yield in parenthesis determined by ¹H NMR spectra with Ph₃CH as internal standard. ^c Determined by HPLC. ^d Ratio determined by integration of the methine protons of *cis*- and *trans*-aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^e Determined by integration of the NH signals of enamines relative to the methine proton of *cis* aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^f Reaction performed with procedure IIA in Table 7.1. ^g 8 equiv EDA used. ^h Reaction performed without 4 Å MS. ⁱ The ¹H NMR spectra of the crude reaction mixture indicates the presence of 52% unreacted imine **111a**. ^j Reaction performed with 5 Å MS.

7.5.3 Substrate scope for aromatic aldehydes

The general screen for the multi-component (MCAZ) was taken forward with the MEDAM amine 126c since it gives aziridines with both higher yields and asymmetric inductions (Table 7.2) and a 12-fold increased rate over reactions with pre-formed imines. ^{9b} Likewise, the screen of the MCAZ reaction was pursued with VAPOL 58 since it gave small, but consistently higher inductions than VANOL 59 (Table 7.2). Excellent yields and asymmetric inductions were observed for a number of substituted benzaldehydes including those with both electronwithdrawing and electron-donating groups (Table 7.3). The reaction with benzaldehyde 127a was complete in 1 h with 5 mol% catalyst as monitored by ¹H NMR but no attempt was made to determine minimum reaction times with the other substrates. Excellent inductions could also be obtained with hetero-aryl aldehydes giving aziridines 114i - 114n in 90 - 97% ee. The yields for the reactions of 2-thiophenyl and 2-furyl carboxaldehydes 127k and 127l were moderate but this could be substantially improved by employing excess EDA. There was no attempt made to optimize the amount of EDA. However, the corresponding pyrrole-2-carboxaldehyde 127m did not give any aziridine (entry 20). It is interesting that pyridine-2-carboxaldehyde 127i was an effective substrate, ^{8a} whereas, pyridine-3-carboxaldehyde **127j** failed to give any aziridine (entry 11). The results obtained from MCAZ were comparable to those obtained with imines. 9c

Table 7.3 Multicomponent aziridination of aryl and hetero-aryl aldehydes ^a

Table 7.3 cont'd

#	R	series	Yield 114 (%) ^b	ee 114 (%) ^c	cis/trans d	Enamines (%)
1	. (98	98	50:1	<1
2	-} <u>{_</u> >	a	97 ^f	98	50:1	<1
3	/ >		96	>99	50:1	3
4	_ \$_ /\	b	94 ^f	99	50:1	4
	' <u> </u> /					
	Me					
5	- ş- {/_}}	c	96	>99	50:1	3
6	-{-√\\>_Me	d	95	99	50:1	5
O	-3	u	75	,,,	30.1	3
7	· // \	•	70	00	20.1	5
7	−§-{ <u> </u> }—OMe	e	78	98	20:1	3
	, // \					
8	-}_NO₂	f	92	99	50:1	3
9	_\$_/\\	i	96	90	>50:1	<1
10	, N=\	-	90 ^f	94	>50:1	<1
11	_8_/\	•	<1			
11	_3_/=N	j	\1	_	_	_
11			52	93	12.5:1	<1
12	٤ [[]]		88 ^g	97	25:1	<1
13	S S	k	$(62)^f$	_	9:1	<1
14			$(19)^{f,h}$	_	50:1	<1
15			51 ⁱ	94	8.3:1	<1
16	~		65 ^{g, i}	95	8.5:1	<1
17	-{{√}]	l	$40^{f, g, h}$	96	8.3:1	<1
18	0		57 ^j	89	9.3:1	1
19			55 ^{g, j}	95	7.0:1	3

Table 7.3 cont'd

^a Unless otherwise specified, all reactions were performed with procedure IIIA in Table 7.1 with 0.50 mmol amine 126c (1.0 equiv, 0.5 M), 0.525 mmol aldehyde 127 (1.05 equiv) and 0.60 mmol of EDA 85 (1.2 equiv) and went to 100% completion. b Isolated Yield. Yield in parenthesis determined by ¹H NMR spectra with Ph₃CH as internal standard. ^c Determined by HPLC. d Ratio determined by integration of the methine protons of cis- and transaziridine in the ¹H NMR spectrum of the crude reaction mixture. ^e Determined by integration of the NH signals of enamines relative to the methine proton of cis aziridine in the ¹H NMR spectrum of the crude reaction mixture. f Reaction performed with procedure IIA in Table 7.1. ^g 8 equiv EDA used. ^h Reaction performed at -10 °C. ⁱ The aldehyde was added at -10 °C followed by the addition of EDA at -10 °C and the mixture was stirred at -10 °C for 2 h prior to warming to room temperature. ¹ The pre-formed and purified imine 1111, made from MEDAM-NH₂ 126c and aldehyde 126l, was used and EDA was added at -10 °C. The mixture was stirred at -10 °C for 2 h prior to warming to room temperature. Refer Scheme 7.5. k The aldehyde was added at -10 °C followed by the addition of EDA was carried out at -10 °C and the mixture was stirred at −10 °C for 15 min prior to warming to room temperature.

The efficacy of the multicomponent reaction is shown in Scheme 7.5. We have compared the preparation of aziridine **114l** by the MCAZ method described here with that of a two-step method involving the isolation of the imine from aldehyde **127l** and amine **126c**. Substantial material loss is encountered in the two-step method as a result of purification of the imine. Also, the asymmetric induction was found to drop by 6 percentage points (Table 7.3, entries 15 vs. 18 and Scheme 7.5).

Scheme 7.5 (A) Preparation of Imine 1111 (B) Synthesis of aziridine 1141 via two-step method

7.6 Optimization and substrate scope of alkyl substrates in the MCAZ reaction

Since the whole idea was envisioned to find a general solution for alkyl aziridination, we then decided to examine the MCAZ reaction with *n*-butanal **1270**. However, the procedure optimized for aromatic substrates was found to be non-applicable and further optimization was then carried out and is described below.

7.6.1 Initial optimization using *n*-butanal and *n*-hexadecanal

The problem of imine self-condensation was encountered in the MCAZ of *n*-butanal 1270. The aziridination of *n*-butanal with MEDAM amine 126c at room temperature with 5 mol% VANOL catalyst under the conditions in entry 1 of Table 7.4 gives only a 25% yield of aziridine 1140 along with a 20% yield of the condensation product 3860 as well as a 38% yield of the imine 1110 which was generated in-situ but did not undergo complete reaction. The formation of the side-product 3860 was found to be disfavored at lower temperatures. The same reaction with 5 mol% VANOL catalyst at 0 °C gives a 50% yield of 1140 with only a 6% yield of 3860 (Table 7.4, entry 2). The yield of the aziridine 1140 increases to 80% for reaction at –10 °C with 10 mol% VANOL catalyst (entry 4) but the reaction slows at –30 °C and only gives 45% yield under the same conditions and goes to only 61% completion in 24 h (entry 6). With VAPOL catalyst, the yield of the reaction can be increased to 94% (96% ee) and at the same time the catalyst loading can be lowered to 5 mol% catalyst if 8 equiv of EDA is used and in this case no detectable amount of 3860 was observed (Table 7.4, entry 9). Further optimization found that the reaction of *n*-butanal with only 3 mol% catalyst and 2 equiv of EDA can provide 2.4 g (6 mmol) of aziridine 1140 in 92% yield and 96% ee (entry 12).

Table 7.4 Optimization of the multicomponent aziridination reaction of *n*-butanal ^a

Table 7.4 cont'd

#	Ligand	Proc.	Cat. x mol%	T (°C)	Equiv 85	Yield 1140 (%)	ee 1140 (%) ^c	Yield 3860 (%) ^d	Yield 1110 (%) ^e
1	(R)-VANOL	ША	5	25	1.2	(25)	_	20	38
2	(R)-VANOL	IIIA	5	0	1.2	(50)	-	6	21
3	(R)-VANOL	IIA	5	0	1.2	(53)	-	6	17
4	(R)-VANOL	IIA	10	0	1.2	74	-95	2	<1
5	(R)-VANOL	IIA	10	-10	1.2	80	-96	<1	<1
6	(R)-VANOL	IIA	10	-30	1.2	45 ^f	-96	11	30
7	(S)-VAPOL	IIA	10	-10	1.2	82	98	<1	<1
8	(S)-VAPOL	IIA	5	-10	8	91	96	<1	<1
9	(S)-VAPOL	ША	5	-10	8	94	96	<1	<1
10	(S)-VAPOL	IIIA	5	-10	3	85	96	<1	<1
11	(S)-VAPOL	IIIA	4	-10	6	97 ^g	95	<1	<1
12	(S)-VAPOL	IIIA	3	-10	2	92 ^h	96	<2	<2

^a Unless otherwise specified, all reactions were performed with procedure IIIA or IIA in Table 7.1 with 0.50 mmol amine **126c** (1.0 equiv, 0.5 M), 0.525 mmol *n*-butanal **127o** (1.05 equiv) and 0.60 mmol of EDA **85** (1.2 equiv) and went to 100% completion. ^b Isolated Yield. Yield in parenthesis determined by ¹H NMR spectra with Ph₃CH as internal standard. ^c Determined by HPLC. ^d Determined by integration of the γ-sp²-CH signals of vinyl imine in ¹H NMR spectra with Ph₃CH as internal standard. ^e Determined by integration of the sp²-CH signals of the imine in ¹H NMR spectra with Ph₃CH as internal standard. ^f Reaction went to 61% completion. ^g Reaction on 2.5 mmol scale. ^h Reaction on 6.0 mmol scale.

The real advantage of the MCAZ over two-step method aziridination is shown in Table 7.5. It must be noted that this study was performed by another current group member namely, Munmun Mukherjee (Entry 4 is part of this doctoral research work). When the reaction was performed with pre-formed imine **111p** (derived from *n*-hexadecanal **127p**) using traditional

method of aziridination, low yields and asymmetric inductions were observed (Table 7.5, entries 1-2). However, a significant increase in yield and ee was observed when MCAZ protocol was utilized (Table 7.5, entries 3-4). Another group member, Yubai Zhou found that the reaction gave ee up to 98% using (*S*)-*t*Bu-VANOL **198** ligand (entry 8).²⁰

Table 7.5 Optimization of the multicomponent aziridination reaction of n-hexadecanal 127p a

MEDAM NH ₂ 126c	B(OPh)₃ (3x mo	%) ol %) ol.5 h	O 13 127p Å MS DA 85 C, 24 h	MEDA N 114p	+ CO ₂ Et (Ņ	(C ₁₅ H ₃₁) (H)	MEDAM NH H— CO_2Et $C_{15}H_{31}$ 8p(119p)
#	Ligand	Cat. x mol%	T (°C)	Equiv 85	Yield 114p (%)	ee 114p (%) ^c	Yield 386p (%) ^d	Yield 118p+119p (%) ^e
1	(S)-VAPOL	10	25	1.2	40	88	20	_
2 ^g	(S)-VAPOL	10	0	1.2	60	90	18	4
3	(S)-VAPOL	10	0	1.2	70	95	6	15
4^h	(S)-VAPOL	10	-10	1.2	82	96	<1	6
5 ⁱ	(S)-VAPOL	10	-10	2.0	85 ^j	95	<1	3
6 ⁱ	(S)-VAPOL	10	-10	2.0	90	95	<1	2
7 ⁱ	(S)-VANOL	10	-10	2.0	85	95	<1	2
$8^{i,k}$	(S)-tBu-VANOL	10	-10	2.0	95	98	<1	<1

Unless otherwise specified, all reactions were performed with procedure IIA in Table 7.1 with 0.50 mmol amine **126c** (1.0 equiv, 0.5 M), 0.525 mmol *n*-hexadecanal **127p** (1.05 equiv) and 0.60 mmol of EDA **85** (1.2 equiv) and went to 100% completion. ^b Isolated Yield. Yield in parenthesis determined by 1 H NMR spectra with Ph₃CH as internal standard. ^c Determined by Chiral HPLC. ^d Determined by integration of the γ -sp²-CH signals of vinyl imine **386p** relative to the methine proton of *cis*-aziridine in the 1 H NMR spectra of the crude reaction mixture. ^e Determined by integration of the NH signals of the enamines relative to the methane proton of *cis*-aziridine in the 1 H NMR spectra of the crude reaction mixture.

Table 7.5 cont'd

Reaction was performed with pre-formed imine 111p (derived from n-hexadecanal 127p). The imine was isolated and dried under high vacuum ($\sim 0.2 \text{ mmHg}$) for 0.5 h and the resulting oil was redissolved in toluene followed by its transfer to pre-catalyst (method C, Chapter 2).

Reaction was performed with pre-formed imine 111p (derived from n-hexadecanal 127p). The imine was not isolated and transferred directly to the pre-catalyst (method C, Chapter 2) using a filter syringe.

This work.

The concentration of the reaction = 0.2 M and aldehyde 127p was added as a solution in toluene.

Reaction on 4.5 mmol scale.

Data provided by Yubai Zhou.

7.6.2 Substrate scope for aliphatic aldehydes

A series of nine aliphatic aldehydes were screened in the multi-component aziridination reaction (Table 7.6). Excellent asymmetric inductions were observed for the aziridination of a number of functionalized unbranched, α -branched and α , α -branched aliphatic aldehydes. These include a number of "problem" aldehydes that have failed to give aziridines via in-situ generated imines such as dihydrocinnamyl aldehyde 127t, phenyl acetaldehyde 127u and ethyl-5oxopentanoate 127r due to the problem pertaining to condensation product formation (Scheme 7.1). Even with the optimized MCAZ protocol, the aziridination of aldehyde **127t** proceeds to give only a 24% yield of the aziridine 114t (entry 10). The yield of aziridine 114t can be increased to 96% if excess (8 equiv) of EDA is used and this is interpreted to mean that the imine undergoes aziridination before it can self condense (entry 11). A similar profile is noted with the phenyl acetaldehyde 127u (entries 13-15). The "problem" aldehyde 127r can be directly taken to the aziridine 114r in 70% yield and with excess EDA the yield can be increased to 82% of material with 97% ee optical purity (entry 6, 7). However, in both cases, no attempt was made to optimize the amount of EDA. The MCAZ is also readily scalable as aziridines 114p and 114o are obtained with essentially the same induction and in slightly higher yield when the scale is increased ten-fold (Table 7.6, entries 3 vs 4) and twelve-fold (Table 7.4, entries 9 vs 12). The

side-reactions noted for α -unbranched aldehydes are not as severe for other types of aliphatic aldehydes and for this reason their reactions can be run at room temperature. The multi-component asymmetric catalytic aziridination of cyclohexane carboxaldehyde **127v** at room temperature gives the aziridine **114v** in 95% yield and 90% ee which is within experimental error of the results obtained from the aziridination of the cooresponding imine at either room temperature or at 0 °C. Likewise the MCAZ of the α , α -branched pivaldehyde **127w** gives the aziridine **114w** in 89% yield and 94% ee at room temperature which is to be compared with 95% yield and 94% ee from the aziridination of the pre-formed imine at the same temperature. ^{9c}

Table 7.6 Multicomponent aziridination of alkyl aldehydes ^a

#	R	series	Proc	Cat. x mol%	Equiv 85	Yield 114 (%)	ee 114 (%) c
1 2	ž	0	IIA IIIA	10 5	1.2	82 94	98 96
3 4	;\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	p	IIA IIA	10 10	1.2	82 85	96 95 ^d
5	ÿ ⁵ ∕∕∕ ₄ otbs	q	IIA	10	1.2	80	98
6 7	و کیکی OEt	r	IIA IIIA	10 5	1.2	70 82	94 97
8 9	je s	s	IIA IIIA	10 5	1.2	55 50	93 90

Table 7.6 cont'd

10 11 12	je do de la companya	t	IIA IIA IIIA	10 10 5	1.2 8 8	24 ^e 96 91	nd 97 96
13 14 15	is to the second	u	IIA IIA IIIA	10 10 5	1.2 8 8	19 ^e 94 86	nd 98 98
16 ^f	je ^t C	v	IIIA	5	1.2	95	90
17 ^f 18 ^f 19 ^f	ž ⁱ <	W	IIA IIIA IIIA	10 10 10	1.2 2 8	89 95 97	94 92 90

^a Unless otherwise specified, all reactions were performed with procedure IIA or IIIA in Table 7.1 with 0.50 mmol amine **126c** (1.0 equiv, 0.5 M), 0.525 mmol aldehyde **127** (1.05 equiv) and 0.60 mmol of EDA **85** (1.2 equiv) and went to 100% completion with a cis/trans ratio of >50:1 for aziridine **114**. Small amounts of enamine products were observed for some reactions (<1 to 6%). ^b Isolated Yield. ^c Determined by HPLC. ^d Reaction on 5.0 mmol scale. ^e Determined by ¹H NMR spectra with Ph₃CH as internal standard. nd = not determined. ^f Reaction performed at 25 °C.

7.7 Mechanistic study towards the five-component catalyst assembly/catalytic asymmetric aziridination

While studying the mechanistic aspects involving the order of the addition of the various components, we have discovered that this reaction is actually a five-component process in which the catalyst is assembled by the amine from the ligand and B(OPh)₃ and then the catalyst causes imine formation and then finally, aziridine formation (Figure 7.1C).¹³ The possible combinations of all of the outcomes of all the different known reactions between the five species shown in Figure 7.1C would lead to a mixture of 10 different products (Figure 7.3) and yet a

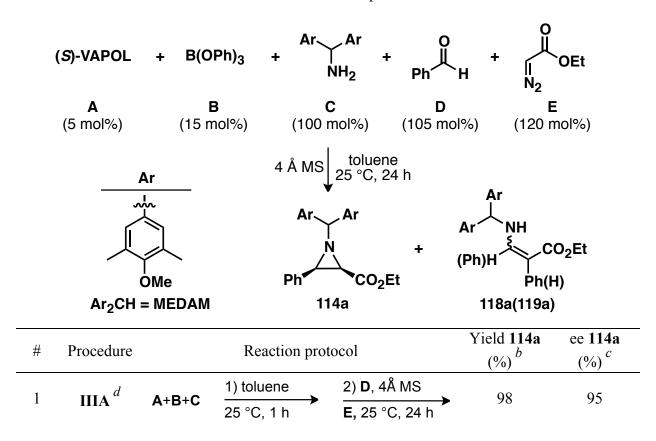

solution of these five-species leads to the formation of the aziridine in very high yields and enantioselectivies. The purpose of the present work is to provide an insight to and support for the operation of this five-component catalyst assembly/catalytic asymmetric aziridination.

Figure 7.3 Chemoselectivity in the five-component catalyst assembly/catalytic asymmetric aziridination

7.7.1 Effects of the order of addition on the multicomponent *cis*-aziridination

That the aziridination reaction of focus here is in fact a true multi-component reaction is indicated by the results shown by procedures V, VI and VII in Table 7.7. First of all, procedure IV reveals that all the components can be added followed by the addition of the solvent. Hence, 1 h of stirring is not required as in procedure IIIA. The successful aziridination from the reaction where the EDA (E) is added before the aldehyde (D) reveals that imine formation can occur in the presence of EDA (procedure V and VI). The VAPOL ligand is not alkylated by the EDA under these conditions (Table 7.7, procedures V and VI) as might have been expected from the results in Scheme 7.4A. This reveals that once the VAPOL boroxinate B3 catalyst 215b is generated, the VAPOL ligand is protected from alkylation.

Table 7.7 Effect of order of addition on the multi-component aziridination reaction ^a

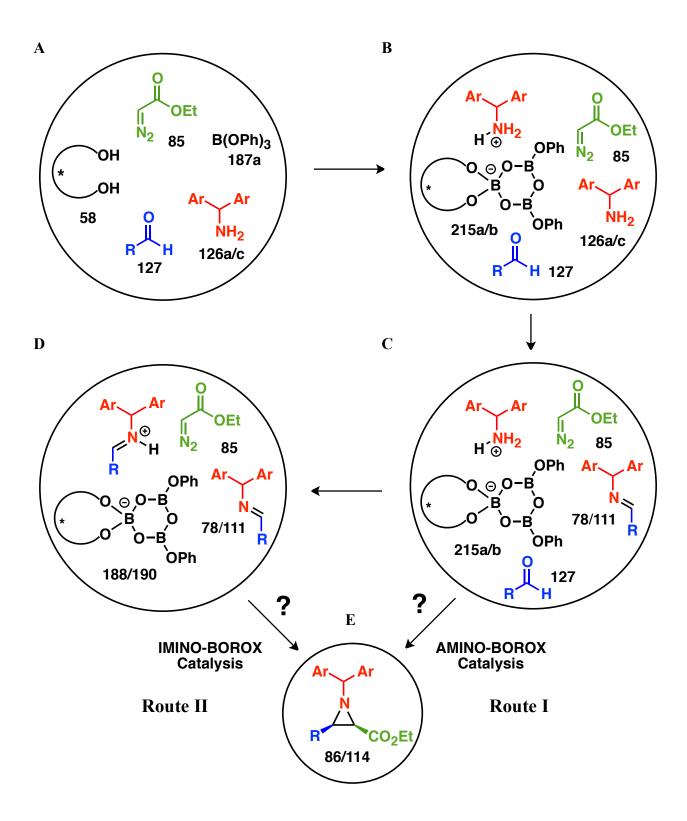
Table 7	.7 cont'd					
2	IV ^e	A+B+C	D, 4Å MS	1) E, toluene 25 °C, 24 h	88	98
3	\mathbf{v}^f	A+B+C	1) E, toluene 25 °C, 1 h	2) D , 4Å MS 25 °C, 24 h	94	98
4	VI ^g	A+B+C	E, toluene	1) D , 4Å MS 25 °C, 24 h	94	98
5	VII h	A+B	D, 4Å MS E, then C	1) toluene 25 °C, 24 h	85 ⁱ	98
6	\mathbf{VIII}^{j}	A+B	1) D, 4Å MS E, toluene 2 min	2) C 25 °C, 24 h	<1	_
7	\mathbf{IX}^{k}	A+B	D, 4Å MS	1) E , toluene 25 °C, 24 h	-	_

Unless otherwise specified, all reactions were performed with procedure IIIA or IV-XI with 0.025 mmol (S)-VAPOL A (58), 0.075 mmol B(OPh)₃ B (187a), 0.50 mmol amine C (126c) (1.0 equiv, 0.5 M), 0.525 mmol aldehyde **D** (127) (1.05 equiv) and 0.60 mmol of EDA E (85) (1.2 equiv) and went to 100% completion with a cis/trans ratio of >50:1 for aziridine 114. In each case, 150 mg powdered 4Å MS was added immediately preceding benzaldehyde. ^b Isolated Yield. ^c Determined by HPLC. ^d See Table 7.1. ^e A mixture of **A**, **B**, **C**, 4 Å MS, D, and E, added in that order, was dissolved in toluene and the resulting solution allowed to stir for 24 h at 25 °C. The diazo compound E is added to a mixture of A, B and C and then toluene is added and the mixture stirred at 25 °C for 1 h after which powdered 4 Å MS and D are added and the mixture stirred for 24 h at 25 °C. g A mixture of A, B, C, E, 4 Å MS, and **D**, added in that order, was dissolved in toluene and the resulting solution allowed to stir for 24 h at 25 °C. h A mixture of A, B, 4 Å MS, D, E, and C, added in that order, was dissolved in toluene and the resulting solution allowed to stir for 24 h at 25 °C. i A 3% yield of enamines 118a and 119a was observed. ^j A mixture of A, B, 4 Å MS, D and E, added in that order, was dissolved in toluene and the resulting solution allowed to stir for 2 min at 25 °C before C was added and the resulting solution stirred for 24 h at 25 °C. The products of this reaction are shown in Figure 7.4. ^k Same as procedure VIII except that C was not added. The products from this reaction are **395a** (5%), **396a** (38%), **397a** (11%), **398a** (5%), **399a** (<1%) and 230 (37%).

The results from procedure VII in Table 7.7 where the amine C is added last reveals that this is a five-component reaction where both the catalyst assembly and the aziridination reaction can be carried out simultaneously. Since the amine is added last, considerable concern arose from the results in Scheme 7.4A that suggest that the VAPOL ligand may be alkylated before the catalyst is generated. That is why in procedure VII all five of the components were added in the order shown without solvent, and at the end, solvent was added to effect dissolution. That this provides for a successful aziridination indicates that the amine, which is added last, can quickly assemble the catalyst such that the ligand is protected from alkylation by the EDA. The speed at which catalyst assembly occurs is indicated by procedure VIII in Table 7.7. When the first four components including EDA are dissolved in toluene and then 2 min later the amine is added, no aziridine formation is observed. A very complex reaction mixture is observed and the products are indicated in Figure 7.4 and include products from the reaction of EDA with both the aldehyde and the imine, however, no detectable amount of the aziridine 114a could be observed. The major product is the imine 111a (34%) and there is also a considerable amount of the unreacted amine 126c (40%). Since the aldehyde is partially consumed in the formation of the β -keto ester 396a (23%) and its tautomer 397a (5%), the presence of the unreacted amine 126c may lead to its selective binding to the catalyst thus preventing aziridination of the imine if indeed any boroxinate catalyst was formed at all in this reaction. As a control, the same reaction in which the amine is not added at all was also carried out (Table 7.7, procedure IX) and this gave a product mixture that was shown to have a very similar profile to the reaction of benzaldehyde 127a and ethyl diazoacetate 85 promoted by B(OPh)₃ (Scheme 7.4B). The combined results from procedures VII and VIII in Table 7.7 make it clear that the assembly of the catalyst by the amine is exceedingly fast. The events that occur in the two minutes prior to

amine addition in procedure VIII are sufficient to completely thwart catalyst assembly and aziridination.

Figure 7.4 Products from the reaction with procedure VIII in Table 7.7


7.7.2 Mode of catalysis and sequence of the final steps in the five-component catalyst assembly/aziridination

The simultaneous presence of the five chemical species shown in Figure 7.5A together in the same solution could have lead to several possible outcomes. There could have been reaction between the VAPOL ligand 58 and the EDA 85 mediated by B(OPh)₃ to give the alkylated product 230 (Scheme 7.4A) or there could have been a reaction between the aldehyde 127 and EDA 85 mediated by B(OPh)₃ to give the series of products indicated in Scheme 7.4B. The data in Table 7.7 indicates that instead there is a very rapid assembly of a boroxinate species from the VAPOL ligand and B(OPh)₃ mediated by the amine 126a/126c which gives rise to the AMINO-

BOROX species 215a/215b. At this point the question arises as to the subsequent order of events. In one extreme, a small amount of imine 78/111 could be formed and then immediately converted to aziridine 86/114 before the rest of the imine is formed (Route I, C to E in Figure 7.5). This would suggest that the reaction is catalyzed by AMINO-BOROX species 215a/215b, thereby resulting in AMINO-BOROX catalysis as the mode of the catalysis. In the other extreme, the process could first proceed to give complete conversion of the amine and aldehyde to the imine 78/111 and only then does the imine 78/111 react with EDA 85 under the ageis of the IMINO-BOROX catalyst 188/190 to give the aziridine 86/114 (Route II, D to E in Figure 7.5). The last entry in Table 7.1 suggests that it is the latter since the presence of excess amine over aldehyde (0.6 equiv) results in the complete suppression of aziridine formation. This issue was further probed with additional experiments and the results are presented in Tables 7.8 and 7.9.

Figure 7.5 Time course of events in the five-component catalyst assembly/aziridination reaction. (A) Time zero. (B) Assembly of AMINO-BOROX 215a/215b. (C) Start of formation of imine 78/111 (78a/111a when R = Ph) in presence of AMINO-BOROX 215a/215b. (D) Formation of IMINO-BOROX catalyst 188/190 (188a/190a when R = Ph). (E) Catalytic asymmetric aziridination.

Figure 7.5 cont'd

The multi-component aziridination of benzaldehyde 127a with benzhydryl amine 126a was examined with different amounts of benzaldehyde ranging from 0.6 to 1.0 equiv and the results are presented in Table 7.8. Just as with the reaction of the MEDAM amine 126c with 0.6 equiv of benzaldehyde (Table 7.1, entry 6), the reaction of benzhydryl amine 126a with 0.6 equiv of benzaldehyde results in essentially no formation of aziridine 86a (1%) even though benzaldehyde is essentially completely transformed into the imine 78a and 98% of this imine remains unreacted after 24 h (Table 7.8, entry 5). The amount of aziridine 86a formed with 0.9 equiv of benzaldehyde (entry 2) is nearly the same as with 1.0 equiv (entry 1). However, it should be noted that with 0.9 equiv, 8% of the imine 78a remains unreacted, whereas with 1.0 equiv of benzaldehyde, the imine 78a is nearly completely consumed (1% unreacted). This suggests there is an equilibrium between the boroxinate 215a containing a protonated amine and the boroxinate **188a** containing a protonated imine (Scheme 7.6). Given the fact that imines are $\sim 10^3$ times less basic than amines, ²¹ even when the amount of excess amine is equal to the amount of catalyst (0.9 equiv 127a added, entry 2), there appears to be enough of the IMINO-BOROX catalytst 188a present in solution containing the activated imine to allow the reaction to proceed in 24 h.

Table 7.8 Multicomponent aziridination with a deficiency of benzaldehyde ^a

Table 7.8 cont'd

#	127a x equiv	Yield 86a (%) ^{b,c}	ee 86a (%) ^d	cis/trans ^e	Yield 87a+88a (%) ^f	Unreacted 78a (%)
1	1.0	77 (78)	90	25:1	9	1
2	0.9	75 (73)	89	25:1	8	8
3	0.8	6	_	50:1	<1	94
4	0.7	4	_	> 50:1	<1	96
5	0.6	1	_	50:1	<1	98

^a Unless otherwise specified, all reactions were performed with procedure IIIA in Table 7.1 with 0.50 mmol amine **126a** (1.0 equiv, 0.5 M), benzaldehyde **127a** (x equiv) and 0.60 mmol of EDA **85** (1.2 equiv) and went to 100% completion. ^b Determined by ¹H NMR spectra of crude reaction mixture with Ph₃CH as internal standard. ^c Yield in parentheses are after isolation by silica gel chromatography. ^d Determined by HPLC on purified aziridine. ^e Ratio determined by integration of the methine protons of *cis*- and *trans*-aziridine in the ¹H NMR spectrum of the crude reaction mixture. ^f Determined by integration of the NH signals of enamines relative to the methine proton of *cis* aziridine in the ¹H NMR spectrum of the crude reaction mixture.

It should be pointed out that factors other than basicity may affect the equilibrium of AMINO-BOROX and IMINO-BOROX species (see below, Table 7.9). Even if the equilibrium between 215a and 188a is facile (Figure 7.5 and Scheme 7.6), the reaction greatly slows when equal amounts of amine 126a and imine 78a are present since the amount of unreacted imine 78a is 8% when the reaction with 10% excess amine 126a is stopped after 24 h (Table 7.8, entry 2). This suggests that the greater base strength of the amine 126a greatly favors the AMINO-BOROX species 215a over that of the IMINO-BOROX 188a when the concentrations of the amine and imine are similar. In the normal protocol for the multi-component catalytic asymmetric aziridination (Table 7.1), a slight excess of aldehyde (1.05 equiv) is typically used which assures

complete consumption of the amine and avoidance of a slow down during the end of the reaction.

Scheme 7.6 An equilibrium between (A) AMINO-BOROX catalyst 215a/b and (B) IMINO-BOROX catalyst 188/190

To futher examine the effect of the base strength of other species present in the reaction mixture, the aziridination of the pre-formed imine **78a** was carried out in the presence of varying amounts of four different nitrogen bases and the results are presented in Table 7.9. In the absence of any added base, the reaction gives aziridine **86a** in 85% isolated yield and 90% ee which is nearly the same as has been previously reported for this reaction in chloroform. ^{9a} In these reactions, a boroxinate species is assembled by treating VAPOL and 3 equiv of B(OPh)₃ with the base at room temperature for 1 h and then adding the imine **78a** and the EDA to consummate the reaction. These conditions directly generate the situation indicated in Figure 7.5D where only the imine and EDA substrates are present. The difference is that the reaction in

Table 7.9 begins with an AMINO-BOROX catalyst rather than an IMINO-BOROX catalyst. The reaction in the presence of 10 mol% of benzhydryl amine 126a (Table 6, entry 5) gives nearly the same yield as the reaction without base, and this mirrors the result in entry 2 of Table 7.8. The only difference is that none of the imine 78a remains unreacted at the end in case of the reaction with the pre-formed imine. However, the reaction with 20 mol% of benzhydryl amine 126a slows the reaction dramatically and 86% of the imine 78a remains after 24 h. Similar results are seen with 10 mol% Et₃N and 10 mol% benzhydryl amine 126a (entries 2 vs 5), however, with 20 mol% Et₃N the reaction is completely stopped and no detectable amount of the aziridine is observed (entries 2 & 3). These results further suggest that an equilibrium is present between an AMINO-BOROX and an IMINO-BOROX species (Scheme 7.6). The fact that there is nearly complete reaction when 10 mol% Et₃N or 10 mol% Ph₂CHNH₂ are added, suggests that at the point when the ratio of amine to imine is 1:1, there is still enough of the IMINO-BOROX species present such that the reaction can still go forward.

Table 7.9 Aziridination reaction of pre-formed imine **78a** with added bases.

#	pKa	Base b	Base x mol%	Yield 86a (%) c,d	ee 86a (%) ^e	cis/trans	Yield 87a+88a (%) ^g	Unreacted 78a (%)
1	_	none	0	83 (85)	90	100:1	10	1

Tab	le.	79	cont'	ď
I uu		1.,	COIIC	u

2 3 4	10.75	Et ₃ N	10 20 40	71 (77) <1 <1	86 - -	25:1 _ _	9 - -	6 89 92
5 6	10.60	BhNH ₂	10 20	77 (80) 10	89 -	27:1 12:1	10 2	<1 86
7 8	9.20	DMAP	10 20	<1 <1	_ _	_ _	- -	96 80
9 10	4.60	PhNH ₂	10 20	73 (78) 17 (20)	88 86	33:1 23:1	8	5 68

unless otherwise specified, the boroxinate catalyst **215** was prepared in CHCl₃ from 10 mol% (S)-VAPOL, 30 mol% B(OPh)₃ and x mol% of a base to induce the boroxinate formation. After 1 h at 25 °C, 100 mol% of imine **78a** and 120 mol% EDA **85** were added to the catalyst and the aziridination reaction carried out with 1.0 mmol of imine (0.5 M) for 24 h at 25 °C. All bases were purified by distillation or sublimation. Determined by HNMR spectra of crude reaction mixture with Ph₃CH as internal standard. Yield in parentheses are after isolation by silica gel chromatography. Determined by HPLC on purified aziridine. Ratio determined by integration of the methine protons of cis- and trans-aziridine in the HNMR spectrum of the crude reaction mixture. Determined by integration of the NH signals of enamines relative to the methine proton of cis aziridine in the HNMR spectrum of the crude reaction mixture.

Aniline is a weaker base than aliphatic amines and this can be correlated with its decreased ability to slow the reaction since even with 20 mol% aniline there is 32% conversion of the imine giving a 20% isolated yield of aziridine 86a (entry 10). The formation of aziridine in only 20% yield is surprising given the fact that aniline is a much weaker base than either the aliphatic amines or the imine 78a. This suggests that equilibrium is shifted towards AMINO-BOROX species in spite of aniline being a weaker base. To this point, the reader's attention should be brought to the fact that although these reactions were performed with 10 mol%

catalyst, the aziridination reaction with benzhydryl imines 78 can be effected under these conditions with as little as 0.25 mol% catalyst. 9a

The ability of the amine to inhibit the reaction does correlate to some degree with the basicity of the amine, but there are obviously other factors that must contribute to the magnitude of the equilbrium constant indicated in Scheme 7.6. This is most clear in the reaction with added DMAP. Although less basic than aliphatic amines, DMAP completely stops the reaction upon addition of just 10 mol% (Table 7.9, entry 7). In this case, any equilibrium between the AMINO-BOROX and IMINO-BOROX species may be determined by more than just the relative basicity of the amine and the imine. This equilibrium may be shifted to the AMINO-BOROX further than might be predicted from the basicity alone. The crystal structure of the AMINO-BOROX spieces containing DMAP reveals the presence of non-covalent interactions in addition to the H-bond between the protonated base and the boroxinate anion. 9e Specifically, there is a π - π stacking interaction between the pyridinium cation and one of the phenanthrene rings of the VAPOL ligand and there is a CH- π interaction between one of the ortho-hydrogen of the pyridinium cation and one of the phenoxy groups of the boroxinate core. 9e These results are consistent with the view that the catalytic cycle for the multi-component catalyst assembly/aziridination involves the complete (or nearly complete) formation of the imine before the aziridination reaction can commence (Route II, C to D then to E, Figure 7.5).

7.8 Multiplex diversity: evolution of a seven-component catalyst assembly/catalytic asymmetric aziridination

As discussed earlier, the diversity in BOROX catalyst can be achieved by replacing B(OPh)₃ with a combination of borane, water and different alcohols (Table 2.3, Chapter 2).

These variations would generate a large pool of catalyst and thereby provide new opportunities in asymmetric catalysis. Up to this point, we have only used these variations for aziridination reaction with imines. Hence, it was wondered that whether a seven-component catalyst assembly/catalytic asymmetric aziridination can be realized by using borane along with phenol and water. We have been able to achieve this goal by employing either BH₃•Me₂S or BH₃•THF as the boron source and the results are described below.

7.8.1 Using BH₃•Me₂S as the boron source

Considering the structure of the BOROX catalyst, the boroxinate catalyst can be assembled from a molecule of the ligand, three molecules of BH3•Me2S complex, three molecules of water and two molecules of a phenol or alcohol (Figure 2.5, Chapter 2). To start with, procedure I' which is similar to procedure IIIA was used where a mixture of the ligand A (58/59), 2 equiv phenol B (194a), 20 equiv amine C (126a), 3 equiv BH₃•Me₂S D (192a), 3 equiv H₂O E was stirred in toluene at 25 °C for 1 h (Scheme 7.7). This was followed by the addition of the 4 Å MS, benzaldehyde F (127a) and EDA G (85) in the given order. The resulting mixture was stirred at 25 °C for 24 h. Unfortunately, no aziridine 86a was observed (Table 7.10, entries 1-2). Procedure I was then examined which involved heating a mixture of A-E at 100 °C for 1 h (procedure I, Scheme 7.7) followed by the addition of 4Å MS, benzaldehyde F (127a) and EDA G (85) at 25 °C. The resulting mixture was stirred at 25 °C for 24 h to give aziridine 86a in 82% yield and 95% ee (Table 7.10, entry 3). While the VAPOL catalyst gave complete conversion with procedure I leading to aziridine in high yields in 24 h, the VANOL catalyst gave incomplete conversion (70%) under the same conditions (entry 4).

This is the first time that there was any significant difference observed between these ligands in the aziridination reaction. Surprisingly, a similar but larger trend was observed in case of the MEDAM amine 126c (Table 7.10, entries 5-6). Only a 17% conversion was observed in case of the reaction involving MEDAM amine 126c and VANOL catalyst (entry 6). The reason for the failure of procedure I with the VANOL catalyst is not known yet. However, essentially optically pure aziridine 114a was obtained with the VAPOL catalyst (entry 5).

Scheme 7.7 Various protocols for multicomponent aziridination reaction using BH₃•Me₂S.

Table 7.10 Multicomponent aziridination using BH₃•Me₂S as the boron source ^a

#	Procedure	catalyst x mol%	Ligand	PG	Yield azi (%)	Ee azi (%)
1	I'	10	(S)-VAPOL	Bh	<1	_
2	I'	10	(S)-VANOL	Bh	<1	_
3	I	10	(S)-VAPOL	Bh	82	95
4	I	10	(S)-VANOL	Bh	62 (70)	88
5	I	5	(S)-VAPOL	MEDAM	99	99.3
6	I	5	(S)-VANOL	MEDAM	-(17)	_
7	II	5	(S)-VAPOL	MEDAM	90	97
8	II	5	(S)-VANOL	MEDAM	85	95
9	III	5	(S)-VAPOL	MEDAM	89	97
10	III	5	(S)-VANOL	MEDAM	82	95

^a Unless otherwise specified, all reactions were performed with procedures **I'-III** in Scheme 7.7 with 1 mmol of amine **126a/126c** in toluene (0.5 M in imine) with 1.05 equiv of aldehyde **127a** and 1.2 equiv of **85** and went to 100% completion and gave aziridine **86a/114a** with cis/trans ratio of >50:1. Small amount of enamine side-products were observed for some reactions (<1 to 9%). Isolated Yield. Number in parenthesis is the percent conversion. Percent conversion is determined by integration of the methine proton of *cis*-aziridine relative to the sp^2 -CH proton of the unreacted imine in the ¹H NMR spectrum of the crude reaction mixture. ^c Determined by HPLC.

In the process of further optimization, we tried to mimic the procedure that has been used for imines by replacing it with amine. Hence, the pre-catalyst was made by heating a mixture of A, B, D and E at 100 °C for 1 h (procedure II, Scheme 7.7). This was followed by stirring the resulting mixture with amine 126c for 1 h at 25 °C. Subsequent addition of 4Å MS, benzaldehyde F (127a) and EDA G (85) followed by stirring the reaction mixture for 24 h at 25 °C afforded aziridine 114a in high yields and enantioselectivity (entries 7-8). Although a small drop in ee was encountered, the reaction seemed to have worked equally as well for the VANOL catalyst. In addition, no change in ee was observed when the pre-catalyst was kept under vacuum for 0.5 h at 100 °C prior to treatment with the amine 126c (procedure III, Table 7.10, entries 9-10). The results in Table 7.10 establish the feasibility of a higher order seven-component catalyst assembly/catalytic asymmetric aziridination reaction. *Inspired by the procedure III of MCAZ, aza-Cope rearrangement was performed by Hong Ren, a current group member, using procedure III with a slight modification (heating of amine with the pre-catalyst instead of stirring at room temperature)*. It must be noted that the aza-Cope rearrangement was already optimized with imines prior to the evolution of the procedure III of MCAZ.

7.8.2 Using BH₃•THF as the boron source

With the demonstration that the reaction with seven components can be successfully realized with BH₃•Me₂S, the focus was then shifted to the further simplification by removing the heating unit operation in the procedure. It was thought that this could be possible with BH₃•THF **D** (192b) as it was reported earlier that it works very well with imines at room temperature (Table 2.1, entry 9 in Chapter 2). Procedure I was then employed where **A**-**E** were mixed and stirred for 1 h at 25 °C (Scheme 7.8). This was followed by the subsequent addition of 4Å MS,

benzaldehyde **F** (**127a**) and EDA **G** (**85**) and the resulting mixture was stirred for 24 h at 25 °C. Unexpectedly, both the VAPOL and VANOL catalysts gave incomplete conversions (78% for VAPOL and 46% for VANOL, Table 7.10, entries 1-2). In case of VAPOL, a 72% yield of aziridine **86a** was isolated with 92% ee. Another current group member, Wynter Osminski was able to obtain nearly complete conversion by adding PhCO₂H to the mixture (PhCO₂H: ligand = 1:2) and using excess aldehyde (1.5 equiv) (entries 3-5).

Scheme 7.8 Various protocols for multicomponent aziridination reaction using BH3•THF

Ligand +
$$\frac{H}{Ph}$$
 $\stackrel{\circ}{O}$ + $\frac{Ph}{NH_2}$ + $\frac{BH_3 \cdot THF}{NH_2}$
A B C D Ph Ph $\frac{Ph}{NH_2}$ + $\frac{A \cdot MS}{A \cdot MS}$ + $\frac{A \cdot M$

Procedure II in Scheme 7.8 is analogous to the procedure II in Scheme 7.7 except that the mixture of **A**, **B**, **D** and **E** are stirred at room temperature rather than at 100 °C. After stirring a mixture of **A**, **B**, **D** and **E** at 25 °C for 15 min the amine **C** (126a) is added and the resulting mixture was stirred for 1 h at 25 °C (procedure II, Scheme 7.8). Then 4Å MS, benzaldehyde **F** (127a) and EDA **G** (85) are added and the reaction mixture was stirred for 24h at 25 °C. The aziridine 86a was obtained in 80% yield and 90% ee when VAPOL was used as the ligand (entry 6). Interestingly, complete conversion was also obtained with the VANOL catalyst using procedure II (entry 7). A slightly better result was obtained when the pre-catalyst was kept under vacuum for 0.5 h at 25 °C prior to treatment with the amine 126a (procedure III, Table 7.11, entries 8-9).

Table 7.11 Multicomponent aziridination using BH₃•THF as the boron source ^a

#	Procedure	Cat. loading	Ligand	Yield 86a (%) ^b	ee 86a (%)
1	I	10	(S)-VAPOL	72 (78)	92
2	I	10	(S)-VANOL	- (46)	_
3	I	10	(S)-VAPOL	94 (98) ^d	95
4	I	10	(S)-VANOL	$-(29)^{d}$	_
5	I	5	(S)-VAPOL	88 (90) ^d	96
6	II	10	(S)-VAPOL	80	90
7	II	10	(S)-VANOL	75	87
8	III	10	(S)-VAPOL	85	91
9	III	10	(S)-VANOL	82	89

Table 7.11 cont'd

Unless otherwise specified, all reactions were performed with procedures I-III in Scheme 7.8 with 1 mmol of amine **126a** in toluene (0.5 M in imine) with 1.05 equiv of aldehyde **127a** and 1.2 equiv of **85** and went to 100% completion and gave aziridine **86a** with cis/trans ratio of >50:1. Small amount of enamine side-products were observed for some reactions (3 to 9%). All the reactions were performed with a new bottle of BH₃•THF. The data represents the average of two runs for each entry. Isolated Yield. Number in parenthesis is the percent conversion. Percent conversion is determined by integration of the methine proton of *cis*-aziridine relative to the sp^2 -CH proton of the unreacted imine **78a** in the ¹H NMR spectrum of the crude reaction mixture. Determined by HPLC. PhCO₂H was used as an additive (PhCO₂H: ligand = 1:2) during the stirring of **A-E** for 1 h at 25 °C. Also, 1.5 equiv of aldehyde **127a** used. Data provided by Wynter Osminski.

The results presented in Table 7.11 are the average of two runs using a new bottle of BH₃•THF. However, it was found that the results did vary depending the quality of the BH₃•THF used in the reaction. The quality of BH₃•THF cannot be controlled as it decomposes over a period of time. Sometimes, the results were found to be unsatisfactory even if a new bottle of BH₃•THF was used.

7.9 Initial attempts towards a multicomponent *trans*-aziridination reaction

In the year 2010, our group reported the first examples of *trans*-aziridination using our IMINO-BOROX catalyst. ^{9g} The evolution of the *trans*-aziridination has been a step towards the universal aziridination as our protocol now provides easy access to both *cis*- and *trans*-aziridines from the same catalyst and the same imine. After successful completion of the project related to the first multicomponent *cis*-aziridination, it was thought to extend the methodology by expanding to include the first multicomponent *trans*-aziridination. This reaction was to found to be extremely substrate specific. The results are presented in Table 7.12.

Table 7.12 Multicomponent *trans*-aziridination of aldehydes ^a

(S)-VANOI

	(5)-VANC (10 mol% B(OPh)) DAM (30 mol% 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	129	CONH (X = Ph) (X = Bu) (X = Bn)	+ X R ^{w.} 1 1	EDAM N 	Bu)
#	Aldehyde 127	Diazo	Yield trans- azi (%)	ee trans- azi (%)	Yield cis- azi (%)	ee cis- azi (%)	t/c ^d
1 2 e 3 e	Ph-CHO	128a (X = Bu) 123a (X = Ph) 123a (X = Ph)	<1 $(20)^{f,g,h}$ $(43)^{f,i}$	– nd nd	$-(11)^{j}$ $(20)^{j}$	– nd nd	- 1.8:1 2.2:1
4 5 6	CHO CHO	128a (X = Bu) 128b (X = Bn) 123a (X = Ph)	65 ^{k,l} 50 ^{k,m} 35 ^{k,m}	92 82 57	<1 <1 <1	- - -	nd nd nd
7 8	Ph CHO CHO	128a (X = Bu) 128a (X = Bu)	<1 <1	-	<1 <1	-	_
9 10	$Ph CHO$ $C_5H_{11} CHO$	128a (X = Bu) 128a (X = Bu)	5 <1	-	89 70	88 88	1:18 nd
11	TIPS——CHO	128a (X = Bu)	<1	_	93	88	1:50

^a Unless otherwise specified, all reactions were performed with procedure IIA in Table 7.1 with 0.5 mmol of amine **126c** in toluene (0.2 M in imine) with 1.05 equiv of aldehyde **127** and 1.2 equiv of **123a** (X = Ph) or **128a** (X = Bu) or **128b** (X = Bn) and went to 100% completion. Small amount of enamine side-products were observed for some reactions (1 to 9%). Isolated Yield. Yield in parentheses is determined by ${}^{1}H$ NMR spectra of crude reaction mixture with Ph₃CH as internal standard. c Determined by HPLC. d Ratio determined by integration of the methine protons of *cis*- and *trans*-aziridine in the ${}^{1}H$ NMR spectrum of the

Table 7.12 cont'd

crude reaction mixture. ^e The amount of epoxide **426a**, enamines and unreacted imine **111a** are 9%, 16%, 43% and 9%, 2%, 3% for entry 2 and 3 respectively. ^f The mixture of ligand, B(OPh)₃ and amine **126c** was stirred at 25 °C for 1 h. ^g Reaction temp = 0 °C. ^h 5 mol% catalyst loading and concentration = 0.3 M. ⁱ The mixture containing the AMINO-BOROX **215b**, aldehyde and 4Å MS was stirred for 1 h prior to the addition of diazoacetamide **123a**. ^j The opposite enantiomer of **124** was observed. ^k The AMINO-BOROX specie **215b** was prepared in 0.4 M. Aldehyde **127p** was added as a solution in toluene. ^l A 70% yield and 93% ee was obtained when the reaction was performed at -10 °C. ^m Data provided by Munmun Mukherjee.

While the reaction between benzaldehyde 127a and diazoacetamide 128a (X = Bu) gave no aziridines, a 20% yield of trans-aziridine 125a was obtained when diazoacetamide 123a (X =Ph) was employed (Table 7.11, entries 1-2). Incomplete conversions and poor selectivities were obtained for the multicomponent trans-aziridination with benzaldehyde irrespective of the method used i.e. true multicomponent or sequential multicomponent reaction (entry 2 vs 3). Additionally, a small amount of epoxide 426a (9%) resulting from the reaction between benzaldehyde and diazoacetamide 123a was observed in both cases. To our delight and surprise, the same reaction between n-hexadecanal 127p and diazoacetamide 128a (X = Bu) yielded aziridine 129p in 65% yield and 92% ee (entry 4). The same reaction gave an yield of 70% and an ee of 93% at -10 °C. Later on, another group member, Munmun Mukherjee found that the reaction with n-hexadecanal 127p is highly dependent on the kind of diazoacetamide used (entries 5-6). Since the reactions seemed to be highly dependent on the kind of substrate used, we decided to screen some alkenyl and alkynyl aldehydes. No reaction was obtained with cinnamaldehye or crotonaldehyde. It must be noted that it is also the case that no reaction was observed between the imines derived from these aldehydes and ethyl diazoacteate 85 (Chapter 6). Later, another current group member, Yong Guan, found that the aziridination reaction between imines derived from alkynyl aldehydes and diazoacetamide **123a** afforded *cis*-aziridines **124** in high yields and ees (Chapter 1). More interestingly, the same reaction with the same enantiomer of the ligand afforded the opposite enantiomer of *cis*-aziridine **124** when ethyl diazoacetate **85** was employed (Chapter 1). As a part of this doctoral research, we attempted theses reactions in a multicomponent fashion and we were able to obtain *cis*-aziridine **130** in high yields and ees when the reaction was performed with alkynyl aldehydes and diazoacetamide **128a** (entries 9-11). Although, the multicomponent *trans*-aziridination works well with aliphatic aldehydes, there is obviously still work needed to optimize the reaction with aromatic aldehydes.

7.10 Determination of absolute stereochemistry of *cis*- and *trans*-aziridines using circular dichroism

As a part of further understanding, we decided to determine the absolute chemistry of the *cis*-aziridines **124** and **130** and *trans*-aziridines **125**, **125**′, **129** and **400**. In this regard, the absolute configuration was established by the excellent method developed by Borhan and coworkers using circular dichroism. This work was done in collaboration with Carmin Burrell, a current graduate student in Borhan group. The method was applied to a number of aziridines as listed in Figure 7.6A and 7.7A.

The absolute stereochemistry of the *cis*-aziridines was confirmed through evaluation by exciton coupled circular dichroism (ECCD). The sign of the observed ECCD curve is a reflection of the stereochemistry of the aziridines in that a pair of enantiomeric molecules will

exhibit ECCD signals with opposite sign. Each aziridine was titrated into a $1\mu M$ solution of the porphyrin tweezer, Zn-C₅-TPFP-Tz, in hexanes at 0 °C. Below is a summary of the ECCD data and the mnemonic to explain the signs of the observed ECCD signals.

Figure 7.6 Determination of absolute stereochemistry of *cis*-aziridines 124 and 130. (A) Observed ECCD amplitudes for chiral *cis*-aziridines. All measurements were performed with 1μM tweezer in hexanes at 0 °C. (B) Proposed mnemonic explaining the signs of the observed ECCD signals.

A

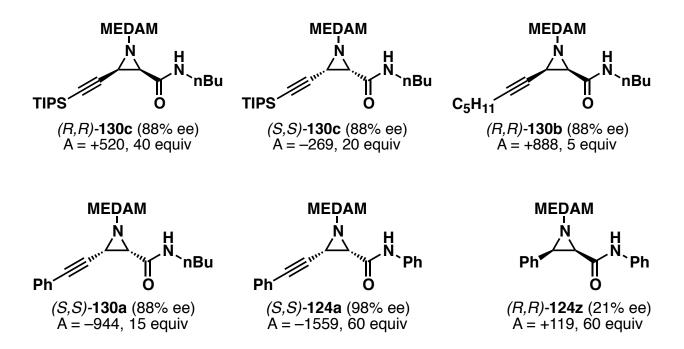


Figure 7.6 cont'd

The host-guest, aziridine-tweezer, complex is formed by coordination of the nitrogen and the oxygen of the amide carbonyl to the zinc centers of the porphyrin tweezer. In the case of *cis*-aziridines, it is believed that the protecting group of the *cis*-aziridine nitrogen (PG) will reside opposite of the *cis*-aziridine substituents. Therefore, as shown in Figure 7.6B, the front porphyrin P1 binds to the *cis*-aziridine to the same face as the substituents and remains essentially static. The rear porphyrin P2 binds to the carbonyl of the amide and rotates away from the *cis*-aziridine. Hence, a positive ECCD signal is expected for the (R,R)-aziridines and a negative signal for the (S,S)-aziridines. It was delightful to observe the correct prediction of the absolute stereochemistry of *cis*-aziridines when compared to the already established absolute stereochemistry of (S,S)-124a¹⁸ and (R,R)-124z^{9g} via chemical derivatization.

In the case of *trans*-aziridines, the shown absolute configuration (Figure 7.7A) is based on a hypothetical mnemonic that will require conformation by other means. It is conjectured that for the *trans*-azridines, when bound to the porphyrin tweezer, the nitrogen is pyramidalized such that the lone pair electrons of the nitrogen are opposite to the amide functionality. As shown in Figure 7.7B, the rear porphyrin P2 binds to the nitrogen and rotates away from the R group. The front porphyrin P1 binds to the carbonyl of the amide and rotates toward the hydrogen. Therefore, substrates with an (S,R) configuration are expected to give a positive ECCD signal and a negative signal would be observed for the substrates with an (S,R) configuration.

Figure 7.7 Determination of absolute stereochemistry of *trans*-aziridines 125, 125′, 129 and 400.

(A) Observed ECCD amplitudes for chiral *trans*-aziridines. All measurements were performed with 1μM tweezer in hexanes at 0 °C. (B) Proposed mnemonic explaining the signs of the observed ECCD signals.

A

Figure 7.7 cont'd

B

The absolute stereochemistry of (S,R)-125a (R = Ph, R' = Ph, Figure 7.7B, aziridine not shown here) was established via chemical derivatization. The same stereochemistry has been assumed for other *trans*-aziridines prepared from same enantiomer of the ligand. It was delightful to observe the correct prediction of the absolute stereochemistry of *trans*-aziridines when compared to the already established absolute stereochemistry of (S,R)-125a (not shown

here). Unfortunately, the proposed mnemonic for the three aziridines (*R*,*S*)-125′z, (*R*,*S*)-125p and (*R*,*S*)-129a did not match to the experimental results (shown in red color in Figure 7.7A). It must be noted that the absolute stereochemistry of these substrates was not determined by any other means and the stereochemistry indicated in the Figure 7.7A is based on the expected configuration from the ligand employed for their synthesis. In these cases, the ECCD sign is opposite to what is predicted by proposed mnemonic. The result obtained from ECCD indicates either these three particular substrates behave differently with ligands or the substrate-tweezer complex favors a different conformation for these substrates, which is affecting the outcome of ECCD. Hence, to determine the cause of the incorrect ECCD sign, the stereochemistry of these substrates should be confirmed by other means and a screen of ECCD conditions should be conducted. Further probe is underway during the time of the writing of this dissertation.

7.11 Gram scale catalysis and large scale synthesis

The real application of any methodology lies in its easy adaption towards the large-scale synthesis. The multicomponent aziridination was easily applicable to gram scale without any detrimental effect on the yields or ee (Scheme 7.9).

Scheme 7.9 Gram scale asymmetric catalysis

Scheme 7.9 cont'd

tetra-methyldianisylmethyl (MEDAM) amine 126c is the optimal protecting group in the case of the Wulff catalytic asymmetric cis-9c and trans-aziridination 9g reaction. Unfortunately, the MEDAM amine 126c is not commercially available. Hence, we decided to develop an easy and economic route to prepare amine 126c from the commercially available starting materials. The synthesis of tetra-methyldianisylmethyl (MEDAM) amine 126c shown in Scheme 7.10 follows that previously reported and was scaled up to 58 mmol on the commercially available bromide 403. The nitrile 404 can be obtained from the bromide 403 by the Shechter modification of the Rosenmund-Van Braun reaction. The key step in the synthesis of amine 126c involves the reaction of the nitrile 404 with the in-situ generated Grignard reagent 405. The subsequent *in-situ* reduction of the resulting imine intermediate 405' provides the amine 126c in 66% yield from the nitrile 404. The entire process of preparation of MEDAM amine 126 was carried out efficiently without the use of any column chromatography purification. It must be noted that this project was initiated by Munmun Mukherjee. The modifications that were made in the reaction sequence are as follows: a) commercially available bromide 403 was used, b) the nitrle 404 was used in the Grignard reaction without any

purification and c) MEDAM amine•HCl salt was made using dry HCl gas instead of a 12 M HCl solution during the purification of final product **126c**.

Scheme 7.10 Large scale synthesis of MEDAM amine 126c

7.12 Application of multicomponent aziridination reaction in organic synthesis

The real advantage of any methodology lies in its practical application in the field of organic synthesis. Henceforth, we decided to apply the newly developed multicomponent aziridination reaction in organic synthesis. It must be pointed out that another current group member Munmun Mukherjee has done the following work shown in Scheme 7.11A-C. Following the MCAZ protocol, we have been able to accomplish the synthesis of all four diastereomers of sphinganines in good yield in four steps from amine **126c** (Scheme 7.11B). Also, the MCAZ reaction has been found to be useful in the diastereoselective aziridination of chiral aldehydes (Scheme 7.11A). Further, we have been able to perform a direct

transformation of benzaldehyde **127a** to β -hydroxy- α -amino ester **408** and α -amino ester **409** in a one-pot fashion (Scheme 7.11C). Last, but not the least, a direct access to β -lactam **411** from aldehydes was possible in 58% overall yield as shown in Scheme 7.11D.

Scheme 7.11 Application of MCAZ reaction in organic synthesis

A Studies towards enantioselective synthesis of phytosphingosines

MEDAM
$$\begin{array}{c} \text{MEDAM} \\ \text{NH}_2 \\ 126c \\ \text{O} \\ \text{H} \\ \text{OTBS} \\ \text{V}_2 \\ \text{V}_2 \\ \text{H} \\ \text{OEt} \\ \end{array} \begin{array}{c} \text{(R)-VAPOL-B3} \\ \text{(10 mol\%)} \\ \text{V}_2 \\ \text{OEt} \\ \text{V}_3 \\ \text{OEt} \\ \text{V}_4 \\ \text{MS, toluene} \\ -10 \,^{\circ}\text{C}, 24 \, \text{h} \\ \text{V}_2 \\ \text{OTBS} \\ \text{O} \\$$

B Enantioselective synthesis of sphinganines

Scheme 7.11 cont'd

C One-pot synthesis of β -hydroxy- α -amino ester **408** and α -amino ester **409**

D One-pot synthesis of β -lactam **410**

7.13 Future applications: multicomponent intra-molecular aziridination reaction

The Wulff group has been working on intra-molecular aziridination for quite a while. The initial idea is presented in Scheme 7.12A. However, the synthesis and stability of imine **411** was not known. Also, the possibility of self-condensation of the imine **411** under traditional aziridination conditions cannot be ruled out. The development of MCAZ protocol has taken the idea one step further. Hence, the stability of the imine and the possibility of aldol-adduct would not be a problem in the case of proposed multicomponent intra-molecular aziridination reaction (Scheme 7.12B). However, there is the daunting task of making the aldehyde **413**. It is an

unknown compound and might be highly unstable due to the presence of the diazo component. It was then envisioned that this problem could be solved by using compounds like **417** and **418** (Scheme 7.12B). The 2-(2-pyridyl)Propane-1,3-diol **416** is a mild protecting group and can be easily deprotected under mild basic conditions. Although, we were able to make diol **416**, several attempts towards the generation of **417** and **418** were not successful and are not presented here. However, based on the information obtained from the multicomponent aziridination reaction described in this work, it is reasonable to expect that the intra-molecular aziridination reaction will be accomplished in the near future provided that the compounds **417** and **418** are available.

Scheme 7.12 Proposed intramolecular aziridination reaction via (**A**) Traditional aziridination (**B**) Multicomponent aziridination reaction.

Scheme 7.12 cont'd

OH OH
$$N_2$$

$$416$$

$$417$$

$$418$$

7.14 Conclusions

The practicing chemist now has at one's avail a multi-component asymmetric catalytic method for the preparation of aziridines directly from aldehydes, an amine and a diazo compound.¹² The chiral catalyst for this reaction has a boroxinate core comprised of a chiral polyborate that is assembled *in-situ* from a vaulted biaryl ligand (VANOL or VAPOL) and three equivalents of B(OPh)₃ by the amine substrate. The present work shows that this is actually a rather unique five-component process involving both catalyst assembly and a catalytic asymmetric aziridination reaction.¹³ A solution of these five components has the potential to create a chaotic array of products and yet there is order since aziridines are formed in very high yields, diastereoselectivities and enantioselectivities. This order is imposed by the amine in causing an exceedingly fast assembly of the boroxinate catalyst from the ligand and B(OPh)₃. Once the catalyst is assembled, it is protected from alkylation by the diazo compound and since the B(OPh)₃ is consumed, the epoxidation reaction of the diazo compound and the aldehyde is thwarted. This then permits the formation of an imine from the aldehyde and amine and the

resulting imine binds in its protonated form to the boroxinate catalyst. This is followed by binding of the diazo compound to the chiral boroxinate catalyst in such proximity to the bound iminium that an aziridine is formed with high diastereo- and enantioselection. In addition, a seven-component catalyst assembly/catalytic asymmetric aziridination was also realized. Further, the methodology was used as the key step in the enantioselective synthesis of the sphinganine family of biologically important compounds. In the synthesis of phytosphingosines, a diastereoselective aziridination was performed as the key step following the MCAZ protocol. All in all, the MCAZ reaction incorporates a very simplified protocol and it provides an effective solution to the catalytic asymmetric syntheses of alkyl-substituted aziridines which have remained elusive until now. Also, it is quite general for a wide range of aldehydes bearing a variety of functional groups. More recently, the practical viability of this methodology has been highlighted in reputed magazines and journals.

APPENDIX

7.15 Experimental

7.15.1	General Information 6	09
7.15.2	Synthesis of amine 126c, imines 78a, and diazoacetamides 123a, 128a and 128b 6	09
7.15.3	Attempt to make imine 111t from aldehyde 127t (Scheme 7.1)	16
7.15.4	Possible complications for the five-component catalyst assembly/aziridination (Sche	те
	7.4)	17
7.15.5	Different protocols for MCAZ: procedures (I, IIA-B, IIIA-C) (Table 7.1)	21
7.15.6	Synthesis of aryl and heteroaryl MEDAM aziridines 114a-n (via Procedure IIIA, Tak	ble
	7.3)	30
7.15.7	Synthesis of alkyl MEDAM aziridines 1140-w (via Procedure IIIA, Table 7.6) 6	42
7.15.8	Synthesis of MEDAM imine 1111 and aziridine 1141 (aziridination with preform	ıed
	imine, Scheme 7.5) 6	53
7.15.9	Mechanistic study of MCAZ	56
7.15.10	MCAZ using BH ₃ •Me ₂ S as the boron source: Procedures (I'-III) (<i>Table 7.10</i>) 6	68
7.15.11	MCAZ using BH ₃ •THF as the boron source: Procedures (I-III) (<i>Table 7.11</i>)	73
7.15.12	Initial attempts towards multi-component <i>trans</i> -aziridination (<i>Table 7.12</i>)	75

7.15.1 General Information

Same as Chapter 2

7.15.2 Synthesis of amine 126c, imines 78a, and diazoacetamides 123a, 128a and 128b

a) Large scale synthesis of MEDAM amine 126c

4-methoxy-3,5-dimethylbenzonitrile 404: A 500-mL three-necked round-bottomed flask, sealed with rubber septums at two necks and equipped with a big stir bar and a 24/40 vacuum adapter at the middle neck, was flame-dried and cooled under nitrogen. To this flask was added CuCN (6.27 g, 70 mmol, 1.2 equiv.) through one of the necks. During addition, a continuous flow of nitrogen was maintained at the middle neck *via* vacuum adapter along with an outlet of nitrogen (in the form of a bubbler) at the other neck. It was followed by the addition of 5-bromo-2-methoxy-1,3-dimethylbenzene **403** (9.3 mL, 12.54 g, 58.3 mmol) and anhydrous DMF (125 mL, freshly distilled and stored over 4Å MS) using 10 mL syringe and 60 mL syringe

respectively. The vacuum adapter, on the middle neck, was then replaced by a rubber septum with a nitrogen-filled balloon. Thereafter, the reaction mixture was purged with nitrogen under the surface of the solution for next 15 min via left neck of the flask utilizing the long metal needle attached directly to the nitrogen source. During purging, an outlet of nitrogen (in the form of a bubbler) was maintained through the other (right) neck. Immediately, an oven-dried Vigreux air condenser (25 mm × 350 mm) followed by an oven-dried water condenser (17 mm × 220 mm) was placed on the middle neck along with a Teflon sleeve at the joint. The source of nitrogen was then changed to a nitrogen-filled balloon on the top of the condenser through a rubber septum stopper. Thereafter, the rubber septums, at the other two necks, were replaced by teflon stoppers and all the necks were further sealed by Teflon tape. The mixture was then heated to reflux in an oil bath (178 °C) for 12 h (the reaction was followed by TLC until the disappearance of the starting material). During the refluxing, the solid CuCN dissolved after approximately 15 min and a light green precipitate of CuBr was observed which further dissolves to give a brown colored solution in due course of time. The reaction mixture was then cooled gradually to room temperature and after cooling down, it was a dark green solution with little light green precipitate of copper salt at the bottom of the flask. Beyond this point, all the operations were carried out under the hood. The reaction mixture was then slowly poured into a 2 L Erlenmeyer flask containing an aqueous solution of ethylenediamine (25 mL ethylene diamine in 620 mL water) along with a big stir bar at 0 °C (ice-bath). During addition, a continuous stirring was maintained. The three-neck round-bottomed flask was washed with 20 mL of an aqueous solution of ethylene diamine (25 mL ethylene diamine in 620 mL water). The resulting purple colored reaction mixture was then allowed to warm gradually to room temperature. It was then followed by the addition of benzene (200 mL) and the resulting mixture

was stirred vigorously at room temperature for 20 min and then transferred directly into a 2 L separatory funnel. The top organic layer (mud colored) was separated. The purple colored aqueous layer was then extracted with benzene (80 mL × 4). The combined organic layer was washed with 1.22 M NaCN solution (100 mL) and a change in color from mud to murky white was observed. The resulting solution was then washed with water (110 mL × 2), dried over MgSO₄ and filtered (washed with benzene (50 mL × 2)) to a 1 L round bottom flask. The yellow solution was then subjected to rotary evaporation (25 °C, 20 mmHg) to afford the crude product 2 as pale yellow oil, which became a murky white solid (8.93 g, 95% crude yield) on being kept under vacuum overnight. It was used in next step without any further purification.

Bis-(2,6-di-methyl-4-methoxyphenyl)methineamine 126c: A 500-mL three-necked round-bottomed flask, sealed with rubber septums at two necks and equipped with a big stir bar and a 24/40 vacuum adapter at the middle neck, was flame-dried and cooled under nitrogen. To this flask was added magnesium (3.6 g, 148.4 mmol, 2.8 equiv, 20 mesh) through one of the necks utilizing powder funnel. Next, anhydrous THF (125 mL, freshly distilled) and a few crystals of iodine (2 crystals, 92 mg) were added. During addition, a continuous flow of nitrogen was maintained at the middle neck *via* vacuum adapter. The vacuum adapter, on the middle neck, was then replaced by an oven-dried water condenser (33 mm × 470 mm) placed on the middle neck along with a Teflon sleeve at the joint and sealed with Teflon Tape. The source of nitrogen was then changed to a nitrogen-filled balloon on the top of the condenser through a rubber septum stopper. It was followed by the addition of 4-bromo-2,6-dimethylanisole 403 (9.3 mL, 12.54 g, 58.3 mmol, 1.1 equiv) using 10 mL syringe. During addition a continuous stirring was maintained Thereafter, the rubber septums, at the other two necks, were replaced by teflon stoppers and all the necks were further sealed by Teflon tape. The red color mixture was then

heated to reflux in an oil bath (78 °C) for 4 h. The resulting clear grey solution was allowed to cool down to room temperature. One of the Teflon stoppers was then replaced by a rubber septum. Meanwhile, to a flame-dried 250 mL round-bottomed flask, filled with nitrogen, was added 4-methoxy-3,5-dimethylbenzonitrile 404 (8.54 g, 53 mmol, 1.0 equiv) and THF (100 mL, freshly distilled). This yellowish orange solution was then transferred (dropwise) via cannula to the 500 mL three-necked round-bottomed flask containing the freshly prepared Grignard reagent 405 over a period of 20 min at room temperature. The flask containing 4-methoxy-3,5dimethylbenzonitrile 404 was then rinsed with THF (10 mL, freshly distilled) and the rinse was transferred to the flask containing Grignard reagent 405. The resulting mixture was heated to reflux in an oil bath (78 °C) for 7 h under nitrogen. A reddish brown colored solution was obtained and then allowed to cool down to room temperature, and then to 0 °C (ice-bath). Meanwhile, a suspension of LiAlH₄ (2.2 g, 58.3 mmol, 1.1 equiv) in THF (55 mL, freshly distilled) was prepared in a flame-dried 1 L round-bottomed flask filled with nitrogen and precooled at 0 °C. Next, the in-situ generated imine 405' was transferred to 1 L round-bottomed flask containing LAH suspension via cannula at 0 °C. The flask containing in-situ generated imine 405' was then rinsed with THF (10 mL, freshly distilled) and the rinse was transferred to the flask containing LiAlH₄ suspension. The ice bath was then removed and the same water condenser (along with the Teflon sleeve), utilized in the synthesis of Grignard reagent, was placed on the 1 L round-bottomed flask containing the reaction mixture. The joint was further sealed by Teflon tape. Thereafter, the resulting greenish yellow reaction mixture was heated to reflux in an oil bath (78 °C) for 20 h under nitrogen. The reaction flask was cooled down to room temperature and then to 0 °C, and carefully quenched (under hood) by the slow addition of water (2.2 mL), then 3.75 M NaOH solution (2.2 mL), and water (6.6 mL) over a period of 10 min. The

resulting green colored suspension was filtered through a Celite (503) pad into a 1 L roundbottomed flask and washed with ether (100 mL). The remaining filter cake was then transferred to a 1 L beaker along with a big stir bar. Thereafter, ether (150 mL) was added to it. The resulting suspension was stirred vigorously for 10 min. The top of the beaker was covered with aluminum foil during stirring. Meanwhile, the filtrate, after first washing, was concentrated using rotatory evaporation (25 °C, 20 mm Hg). The suspension, in 1 L beaker, was then filtered to 1 L round-bottomed flask containing the crude product. The beaker was then washed with ether (50 mL) and then filtered through the same Celite pad. The above process was repeated eight times using ether ((150 + 50) mL \times 8). Subsequently, the filter cake was washed with ether (100 mL \times 3) during the last filtration process. The color of the filter cake changed from grey to white. The filtrate was concentrated by rotary evaporation (25 °C, 20 mm Hg) to afford yellow solid (18.87 g, 119% crude yield) on being kept under vacuum overnight. The light yellow solid was then dissolved in EtOAc (100 mL) and stirred for 30 min. Further, the flask was cooled to 0 °C. A stream of in-situ generated dry HCl gas was gradually passed into the Erlenmeyer flask containing the amine until the pH \sim 2 (determined by pH paper) resulting in the appearance of yellowish white precipitate. It takes 20 min approximately. During the addition, a continuous stirring was maintained. After addition, the mixture was stirred for 10 min at room temperature. Thereafter, it was allowed to stand still for 1 h at room temperature. The flask was covered with aluminum foil during this period. The resulting yellow colored suspension was filtered through a Buchner Funnel into a 250 mL round-bottomed flask and washed with hexanes (50 mL × 2). The obtained filter cake (amine salt) was then transferred back to a 100 mL beaker with a big stir bar. To this beaker was added EtOAc (40 mL) and the resulting suspension was stirred for 10 min at 0 °C. The resulting yellow colored suspension was filtered through a Buchner Funnel into

the same 250 mL round-bottomed flask and washed with hexanes (50 mL). The above procedure was repeated once more. The resulting off-white cake (amine salt) was transferred to preweighed 500 mL round bottom flask and was dried overnight at 0.01 mmHg to provide amine salt as an off-white solid (14.67 g). The filtrate was subjected to rotary evaporation (30 °C, 20 mm Hg) to afford an orange solid (2.55 g) on being kept under vacuum overnight. Meanwhile, a stir bar was added to flask containing amine salt (14.67 g) followed by the addition of the ether (125 mL) and the resulting mixture was cooled to 0 °C. To this solution was added pre-cooled (0 °C) 6 M NaOH (50 mL) was added portion-wise (~ 5 mL each time) till the pH (water layer) ~ 13. A continuous stirring should be maintained during the addition of the base. The flask was covered with aluminum foil before addition of base. After pH ~ 13, the mixture was stirred under nitrogen for 0.5-1 h so as to dissolve the entire solid. The reaction mixture was then transferred to 250 mL separatory funnel. The flask was washed with ether (30 mL) and the washing was transferred to the separatory funnel. The organic layer was separated and aqueous layer was washed with ether (60 mL × 4), dried over MgSO₄, filtered (washed with ether (50 mL × 3) into a 1 L round-bottom flask. The resulting filtrate was reduced to approximately 100 mL by rotary evaporation (25 °C, 20 mm Hg). It was then transferred to a pre-weighed 250 mL round-bottom flask and concentrated to afford a pale yellow solid (12.71 g, 80.09 % crude yield) on being kept under vacuum overnight.

Purification: The crude amine **126c** was purified by crystallization. A sample of crude product (~ 5 mg) was saved to use as the seeding crystals later on. The 250 mL round-bottomed flask containing the crude solid (12.71 g) was then equipped with reflux condenser sealed with rubber septum having a nitrogen balloon at the top. The solid was then dissolved in hot hexanes (12 mL, 70 °C) and left to cool to room temperature. Thereafter, it was seeded by the sample of crude

product (~ 2 mg) and left overnight at room temperature under nitrogen. Thereafter, the mother liquor was decanted to another pre-weighed 100 mL round-bottomed flask using a 12 inch long pipette. The pipette was washed with hexanes (3 mL) directly into the same pre-weighed 100 mL round-bottomed flask. Now, to the flask containing the resulting pale yellow crystals was added ice-cold hexanes (2 mL × 2) and was decanted to the flask containing the mother liquor. The color of the crystals was changed to off-white. The crystals were dried overnight at 0.01 mmHg to provide 126c as an off-white crystalline solid in 22.1 % yield (3.500 g, 11.66 mmol, first crop, mp. 60-61 °C). The mother liquor along with the washings was then subjected to rotary evaporation (25 °C, 20 mmHg) to afford the crude product as a yellow solid (8.90 g). The resulting crude product was then subjected to re-crystallization using hot hexanes (8 mL, 70 °C) as discussed above. Likewise earlier, the mother liquor was decanted to another pre-weighed 100 mL round-bottomed flask using a 12 inch long pipette. The pipette was washed with hexanes (3 mL) directly into the same pre-weighed 100 mL round-bottomed flask. Now, to the flask containing the resulting pale yellow crystals was added ice-cold hexanes (3 mL × 1 and 2 mL × 2) and was decanted to the flask containing the mother liquor. The color of the crystals was changed to off-white. The crystals were dried overnight at 0.01 mmHg to provide 126c as an offwhite crystalline solid in 25.2 % yield (4.000 g, 13.36 mmol, second crop, mp. 59-60 °C). The crude product (4.80 g) obtained after rotary evaporation (25 °C, 20 mmHg) was subjected to recrystallization using hot hexanes (5 mL, 70 °C). Following the above discussed procedure, an 18.9 % yield (3.000 g, 10.02 mmol, third crop, mp. 59-61 °C) of 126c was obtained after the washing with ice-cold hexanes (3 mL \times 1 and 2 mL \times 2). The resulting crude product (1.8 g, dark red) was not further purified. After three crystallizations, the combined yield of 126c was 66.2% (10.50 g, 35.04 mmol).

Spectral Data for **126c**: R_f = 0.3 (5:1:0.2 EtOAc/Hexanes/MeOH). ¹H-NMR (CDCl₃, 300 MHz) δ 1.73 (s, 2H), 2.26 (s, 12H), 3.69 (s, 6H), 5.00 (s, 1H), 7.01 (s, 4H); ¹³C-NMR (CDCl₃, 75 MHz) δ 16.10, 58.77, 59.50, 126.96, 130.56, 140.88, 155.65; IR (thin film) 3376m, 3306m, 2943vs, 1493s cm⁻¹; Mass spectrum: m/z (% rel intensity) 299 M⁺ (35), 298 (54), 283 (47), 268 (94), 163 (100); Anal calcd for C₁₉H₂₅NO₂: C, 76.22; H, 8.42; N, 4.68. Found: C, 75.89; H, 8.54; N, 4.62. These spectral data match those previously reported for this compound. ^{9c}

- **b)** Synthesis of imine 78a: see chapter 2 (experimental)
- c) Synthesis of diazoacetamides 123a, 128a and 128b: see Chapter 8 (experimental)

7.15.3 Attempt to make imine 111t from aldehyde 127t (Scheme 7.1)

Ph H₂N H_a 126c

$$\frac{4 \text{ Å MS}}{\text{toluene, 25 °C, t h}}$$
 Ph H_b Ar + H_f H_d Ar + Ph Ph Ph Ar + H₂N H_a 126c

To a 5 mL flame-dried single-necked round bottom flask, equipped with a stir bar, filled with argon was added MEDAM amine **126c** (59.9 mg, 0.200 mmol), 4Å MS (50 mg, freshly dried) and dry toluene (1 mL). After stirring for 10 min, aldehyde **127t** (28.2 mg, 0.210 mmol, 1.05 equiv) was added. The reaction mixture was stirred at room temperature. The crude reaction

mixture was then monitored at different time intervals by ¹H NMR. The result is described in the chapter.

7.15.4 Possible complications for the five-component catalyst assembly/aziridination (Scheme 7.4)

A) Alkylation of the ligand:

To a 10 mL flame-dried round bottom flask, equipped with a stir bar and a rubber septum and filled with argon was added (S)-VAPOL **58** (54 mg, 0.10 mmol, 1.0 equiv), B(OPh)₃ (87 mg, 0.30 mmol, 3.0 equiv), ethyl diazoacetate **85** (0.20 mmol, 2.0 equiv.), Ph₃CH (12.2 mg, 0.500 mmol) and CDCl₃ (1 mL). The resultant mixture was stirred for 10 min at room temperature. The resulting solution was then directly transferred to a quartz NMR tube (freshly flame-dried) and was subjected to NMR analysis. The reaction furnished the mono-alkylated adduct **230** in

80% yield as determined by integration against an internal standard (Ph₃CH) and with the aid of the spectral data previously published for this compound. ^{9a,30}

B) NMR analysis of a mixture of PhCHO 127a and EDA 85 in different reaction conditions:

As discussed in the chapter, benzaldehyde and ethyl diazoacetate react with each other in presence of Lewis acids and Brønsted acids resulting in the formation of several products. It was thought to examine the possibility of these products under the reaction conditions of a possible multicomponent aziridination (MCAZ).

(a) with B(OPh)₃:

B(OPh)₃

$$(14 \text{ mol\%})$$
CDCl₃

$$25 \text{ °C, 10 min}$$

$$(1.14 \text{ equiv})$$

$$OEt N_2 OEt N_2 OET$$

To a 10 mL flame-dried single-necked round bottom flask, equipped with a stir bar and a rubber septum and filled with argon was added B(OPh)₃ (22 mg, 0.075 mmol, 0.14 equiv), benzaldehyde **127a** (52.0 μL, 0.525 mmol, 1.00 equiv), ethyl diazoacetate **85** (62.0 μL, 0.600 mmoL, 1.14 equiv), Ph₃CH (12.2 mg, 0.500 mmol) and CDCl₃ (1 mL). The resultant mixture was stirred for 24 h at room temperature. The resulting solution was then directly transferred to a NMR tube and was then subjected to NMR analysis. Several products were observed as shown

in the reaction. The presence of each product was confirmed by characteristic peaks (δ 3.83 $395a^{31}$, δ 5.91 $399a^{17h}$, δ 12.20 $398a^{17j}$, δ 12.61 $397a^{32}$, δ 3.98 $396a^{17j}$) in the ¹H NMR previously published for these compounds and the amount of each was quantified by integration against an internal standard (Ph₃CH). There was also 5% of unreacted benzaldehyde **127a**.

(b) with (S)-VAPOL:

To a 10 mL flame-dried single-necked round bottom flask, equipped with a stir bar and a rubber septum and filled with argon was added (*S*)-VAPOL **58** (14 mg, 0.025 mmol, 0.048 equiv), benzaldehyde **127a** (52.0 μL, 0.525 mmol, 1.00 equiv), ethyl diazoacetate **85** (62.0 μL, 0.600 mmoL, 1.14 equiv), Ph₃CH (12.2 mg, 0.500 mmol) and CDCl₃ (1 mL). The resultant mixture was stirred for 24 h at room temperature. The resulting solution was then directly transferred to a NMR tube and was then subjected to NMR analysis. The crude NMR revealed the presence of unreacted starting materials.

(c) with 4 Å Molecular Seives:

To a 10 mL flame-dried single-necked round bottom flask, equipped with a stir bar and a rubber septum and filled with argon was added 4Å Molecular Seives (150 mg, freshly flame-dried), benzaldehyde **127a** (52.0 μL, 0.525 mmol, 1.00 equiv.), ethyl diazoacetate **85** (62.0 μL, 0.600 mmol, 1.14 equiv), Ph₃CH (12.2 mg, 0.500 mmol) and CDCl₃ (1 mL). The resultant mixture was stirred for 24 h at room temperature. The resulting solution was then directly transferred to a NMR tube utilizing a filter syringe (Corning® syringe filters, Aldrich) to remove the 4Å Molecular Sieves. It was then subjected to NMR analysis. The ¹H NMR of the crude reaction mixture revealed the presence of unreacted starting materials.

(d) without any catalyst/additive:

To a 10 mL flame-dried single-necked round bottom flask, equipped with a stir bar and a rubber septum and filled with argon was added benzaldehyde **127a** (52.0 μ L, 0.525 mmol, 1.00 equiv.), ethyl diazoacetate **85** (62.0 μ L, 0.600 mmoL, 1.14 equiv), Ph₃CH (12.2 mg, 0.500 mmol) and CDCl₃ (1 mL). The resultant mixture was stirred for 24 h at room temperature. The resulting solution was then directly transferred to a NMR tube and was then subjected to NMR analysis. The ¹H NMR of the crude reaction mixture revealed the presence of unreacted starting materials.

7.15.5 Different protocols for MCAZ: procedures (I, IIA-B, IIIA-C) (Table 7.1)

Procedure I: Catalyst @ 80 °C, 0.5 h and EDA 85 added after 2 h after the addition of aldehyde 127a.

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: To a 10 mL flame-dried home-made Schlenk flask, prepared from a single-necked 25 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve, equipped with a stir bar and filled with argon was added (*S*)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol) and amine 126c (149.7 mg, 0.5000 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added. The flask was sealed by closing the Teflon valve, and then placed in an oil bath (80 °C) for 0.5 h. The flask was then allowed to cool to room temperature and open to argon through side-arm of the Schlenk flask. To the flask containing the catalyst was added the 4Å Molecular Sieves (150 mg, freshly flame-dried) and aldehyde 127a (52.0 μL, 0.525 mmoL, 1.05 equiv). The resulting mixture was allowed to stir for 2 h at ambient temperature. Thereafter, ethyl diazoacetate (EDA) 85 (62 μL, 0.60 mmoL, 1.2 equiv) was added. The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was

then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL \times 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid.

The *cis/trans* ratio was determined by comparing the 1 H NMR integration of the ring methine protons for each aziridine in the crude reaction mixture. The *cis* (J = 7-8 Hz) and the *trans* (J = 2-3 Hz) coupling constants were used to differentiate the two isomers. The yields of the acyclic enamine side products **118a** and **119a** were determined by 1 H NMR analysis of the crude reaction mixture by integration of the *N*-H proton relative to the that of the *cis*-aziridine methine protons with the aid of the isolated yield of the *cis*-aziridine. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure *cis*-aziridine **114a** as a white solid (mp 107-108 °C on 99.8% ee material) in 92% isolated yield (218 mg, 0.460 mmol); *cis/trans*: >50:1. Enamine side products: <1 % yield of **118a** and <1% yield of **119a**. The optical purity of **114a** was determined to be 95% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.26$ min (major enantiomer, **114a**) and $R_t = 12.52$ min (minor enantiomer, *ent*-**114a**). 9c

Spectral data for **114a**: $R_f = 0.42$ (1:9 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.98 (t, 3H, J = 7.1 Hz), 2.18 (s, 6H), 2.24 (s, 6H), 2.55 (d, 1H, J = 6.8 Hz), 3.10 (d, 1H, J = 6.6 Hz), 3.62 (s, 3H), 3.66 (s, 1H), 3.68 (s, 3H) 3.87-3.97 (m, 2H), 7.09 (s, 2H), 7.18 (s, 2H), 7.21-7.24 (m, 3H), 7.36 (d, 2H, J = 7.3 Hz); ¹³C (CDCl₃, 125 MHz) δ 14.01, 16.16, 16.22, 46.26, 48.20,

59.52, 59.58, 60.47, 77.04, 127.21, 127.41, 127.70, 127.80,127.85, 130.59, 130.60, 135.33, 137.79, 137.96, 155.95, 156.10, 168.01; IR (thin film) 2961 vs, 1750 vs, 1414 vs, 1202 vs cm⁻¹; Mass spectrum: m/z (% rel intensity) 473 M+ (0.27), 284(78), 283 (100), 268 (34), 253 (20), 237 (11), 210(10), 117 (18), 89 (11); Anal calcd for C₃₀H₃₅NO₄: C, 76.08; H, 7.45; N, 2.96. Found: C, 76.31; H, 7.28; N, 2.82; $[\alpha]_D^{23}$ +41.3 (c 1.0, EtOAc) on 99% ee material (HPLC). These spectral data match those previously reported for this compound.

Procedure IIA: Catalyst @ 80 °C, 0.5 h and EDA 85 added immediately after the addition of the aldehyde 127a.

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: To a 10 mL flame-dried home-made Schlenk flask, prepared from a single-necked 25 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve, equipped with a stir bar and filled with argon was added (*S*)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol) and amine 126c (149.7 mg, 0.5000 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added.

The flask was sealed by closing the Teflon valve, and then placed in an oil bath (80 °C) for 0.5 h. The flask was then allowed to cool to room temperature and open to argon through side-arm of the Schlenk flask. To the flask containing the catalyst was added the 4Å Molecular Sieves (150 mg, freshly flame-dried) and aldehyde 127a (52.0 µL, 0.525 mmoL, 1.05 equiv). To this solution was rapidly added ethyl diazoacetate (EDA) 85 (62 µL, 0.60 mmoL, 1.2 equiv). The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 114a as a white solid (mp 107-108 °C on 99.8% ee material) in 97% isolated yield (230 mg, 0.485 mmol); cis/trans: >50:1. Enamine side products: <1% yield of 118a and <1% yield of 119a. The optical purity of 114a was determined to be 98% ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.26 \text{ min}$ (major enantiomer, 114a) and $R_t = 12.52$ min (minor enantiomer, *ent-*114a).

Procedure IIB: Pre-catalyst followed by the addition of amine 6 and stirring @ 80 °C, 0.5 h and then EDA 2 added immediately after the addition of the aldehyde 7a.

(S)-VAPOL
$$\frac{3 \text{ equiv B(OPh)}_3}{3 \text{ equiv H}_2\text{O}} \xrightarrow[\text{toluene, 80 °C, 1 h}]{0.1 \text{ mm Hg}} \text{ pre-catalyst}$$

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: To a 10 mL flame-dried home-made Schlenk flask, prepared from a singlenecked 25 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve, equipped with a stir bar and filled with argon was added (S)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to dissolve the two reagents and this was followed by the addition of water (1.4 μ L, 0.075 mmol). The flask was sealed by closing the Teflon valve, and then placed in an 80 °C (oil bath) for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles are removed completely, a full vacuum is applied and is maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask containing the pre-catalyst was added the amine 126c (149.7 mg, 0.5000 mmol) and then dry toluene (1 mL) under an argon flow through side-arm of the Schlenk flask. The flask was sealed by closing the Teflon valve, and then placed in an oil bath (80 °C) for 0.5 h. The flask was then allowed to cool to room temperature and open to argon through side-arm of the Schlenk flask. To

the flask containing the pre-catalyst was added the 4Å Molecular Sieves (150 mg, freshly flamedried) and aldehyde 127a (52.0 µL, 0.525 mmoL, 1.05 equiv). To this solution was rapidly added ethyl diazoacetate (EDA) 85 (62 µL, 0.60 mmoL, 1.2 equiv). The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 114a as a white solid (mp 107-108 °C on 99.8% ee material) in 98% isolated yield (232 mg, 0.490 mmol); cis/trans: >50:1. Enamine side products: <1% yield of 118a and <1% yield of 119a. The optical purity of 114a was determined to be 98 % ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; R_t = 9.26 min (major enantiomer, 114a) and R_t = 12.52 min (minor enantiomer, *ent-***114a**).

Procedure IIIA: Catalyst @ 25 °C, 1 h and EDA 85 added immediately after the addition of the aldehyde 127a.

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added (S)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol) and amine 126c (149.7 mg, 0.5000 mmol). Dry toluene (1 mL) was added under an argon atmosphere to dissolve the reagents. The flask was fitted with a rubber septum and a nitrogen balloon. The reaction mixture was stirred at room temperature for 1 h. Thereafter, 4Å Molecular Sieves (150 mg, freshly flame-dried) was added followed by the addition of the aldehyde 127a (52.0 µL, 0.525 mmoL, 1.05 equiv). To this solution was rapidly added ethyl diazoacetate (EDA) 85 (62 μL, 0.60 mmoL, 1.2 equiv). The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 114a as a white solid (mp 107-108 °C on 99.8% ee material) in 97% isolated yield (230 mg, 0.490 mmol); cis/trans: >50:1. Enamine side products: <1% yield of 118a and <1% yield of 119a. The optical purity of 114a was determined to be 98% ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.26$ min (major enantiomer, 114a) and $R_t = 12.52$ min (minor enantiomer, ent-114a).

Procedure IIIB: Pre-catalyst followed by the addition of amine 126c and stirring @ 25 °C, 1 h and then EDA 85 added immediately after the addition of the aldehyde 127a.

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: To a 10 mL flame-dried home-made Schlenk flask, prepared from a single-necked 25 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve, equipped with a stir bar and filled with argon was added (*S*)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to dissolve the two reagents and this was followed by the addition of water (1.4 μL, 0.075 mmol). The flask was sealed by closing the Teflon valve, and then placed in an 80 °C (oil bath) for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles are removed completely, a full vacuum is applied and is maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask

containing the pre-catalyst was added the amine 126c (149.7 mg, 0.5000 mmol) and then dry toluene (1 mL) under an argon flow through side-arm of the Schlenk flask. The flask was sealed by closing the Teflon valve, and then the resulting mixture was allowed to stir at room temperature for 1 h. The flask was then open to argon through side-arm of the Schlenk flask. To the flask containing the catalyst was added the 4Å Molecular Sieves (150 mg, freshly flamedried) and aldehyde 127a (52.0 µL, 0.525 mmoL, 1.05 equiv). To this solution was rapidly added ethyl diazoacetate (EDA) 85 (62 µL, 0.60 mmoL, 1.2 equiv). The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 114a as a white solid (mp 107-108 °C on 99.8% ee material) in 94% isolated yield (223 mg, 0.470 mmol); cis/trans: >50:1. Enamine side products: <1% yield of 118a and <1% yield of 119a. The optical purity of 114a was determined to be 98% ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; R_t = 9.26 min (major enantiomer, 114a) and R_t = 12.52 min (minor enantiomer, *ent-***114a**).

Procedure IIIC: Catalyst @ 25 °C, 1 h and EDA 85 added immediately after the addition of the aldehyde 127a (0.6 equiv with respect to amine 126c).

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: The procedure is exactly similar to procedure IIIA except that 0.6 equiv of benzaldehyde **127a** was added. No aziridine **114a** was observed from the ¹H NMR analysis of crude reaction mixture.

7.15.6 Synthesis of aryl and heteroaryl MEDAM aziridines 114a-n (*via* Procedure IIIA, *Table 7.3*)

(2R, 3R) - ethyl - 1 - (bis(4-methoxy-3, 5-dimethyl phenyl) - 3-phenylaziri dine-2-phenylaziri dine-2-phen

carboxylate 114a: Aldehyde **127a** (52.0 μL, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (*S*)-VAPOL as ligand. Purification of the crude aziridine

by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 114a as a white solid (mp 107-108 °C on 99.8% ee material) in 98% isolated yield (232 mg, 0.490 mmol); cis/trans: >50:1. Enamine side products: <1% yield of 118a and <1 % yield of 119a. The optical purity of 114a was determined to be 98% ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.26$ min (major enantiomer, 114a) and $R_t = 12.52$ min (minor enantiomer, ent-114a). This reaction was repeated and monitored by 1 H NMR Spectroscopy that revealed that the reaction had gone to completion in 1 h. Also, it gave 70 % yield of 114a and 98% ee when the same reaction was carried out utilizing 5Å MS instead of 4Å MS.

Spectral data for **114a**: $R_f = 0.42$ (1:9 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.98 (t, 3H, J = 7.1 Hz), 2.18 (s, 6H), 2.24 (s, 6H), 2.55 (d, 1H, J = 6.8 Hz), 3.10 (d, 1H, J = 6.6 Hz), 3.62 (s, 3H), 3.66 (s, 1H), 3.68 (s, 3H) 3.87-3.97 (m, 2H), 7.09 (s, 2H), 7.18 (s, 2H), 7.21-7.24 (m, 3H), 7.36 (d, 2H, J = 7.3 Hz); ¹³C (CDCl₃, 125 MHz) δ 14.01, 16.16, 16.22, 46.26, 48.20, 59.52, 59.58, 60.47, 77.04, 127.21, 127.41, 127.70, 127.80,127.85, 130.59, 130.60, 135.33, 137.79, 137.96, 155.95, 156.10, 168.01; IR (thin film) 2961 vs, 1750 vs, 1414 vs, 1202 vs cm⁻¹; Mass spectrum: m/z (% rel intensity) 473 M+ (0.27), 284(78), 283 (100), 268 (34), 253 (20), 237 (11), 210(10), 117 (18), 89 (11); Anal calcd for C₃₀H₃₅NO₄: C, 76.08; H, 7.45; N, 2.96. Found: C, 76.31; H, 7.28; N, 2.82; $[\alpha]_D^{23}$ +41.3 (c 1.0, EtOAc) on 99% ee material (HPLC). These spectral data match those previously reported for this compound. ^{9c}

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(naphthalene-1-yl)aziridine-2-carboxylate 114b: Aldehyde 127b (71.0 μL, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as ligand. Purification of the crude aziridine by

silica gel chromatography (30 mm \times 300 mm column, 9:1 hexanes/EtOAc) afforded pure *cis*-aziridine **114b** as a white solid (mp 79-80 °C on 99% ee material) in 96% isolated yield (251 mg, 0.480 mmol); *cis/trans*: 50:1. Enamine side products: 2.9% yield of **118b** and <1% yield of **119b**. The optical purity of **114b** was determined to be 99.3% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 8.15$ min (major enantiomer, **114b**) and $R_t = 16.15$ min (minor enantiomer, *ent-***114b**).

Spectral data for **114b**: $R_f = 0.25$ (9:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 600 MHz) δ 0.65 (t, 3H, J = 7.1 Hz), 2.22 (s, 6H), 2.26 (s, 6H), 2.81 (d, 1H, J = 6.8 Hz), 3.58 (d, 1H, J = 6.8 Hz), 3.63 (s, 3H), 3.69 (s, 3H), 3.69-3.76 (m, 2H), 3.79 (s, 1H), 7.17 (s, 2H), 7.23 (s, 2H), 7.36 (dd, 1H, J = 7.8, 7.6 Hz), 7.40-7.46 (m, 2H), 7.67-7.69 (m, 2H), 7.78 (d, 1H, J = 7.8 Hz), 8.06 (d, 1H, J = 7.6 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ 13.67, 16.18, 16.24, 45.98, 46.63, 59.55, 59.62, 60.33, 77.47, 123.06, 125.31, 125.42, 125.83, 126.61, 127.36, 127.52, 128.12, 128.50, 130.68, 130.71, 130.85, 131.49, 133.08, 137.69, 137.95, 155.95, 156.26, 168.02; IR (thin film) 2942vs, 1748s, 1484s, 1221s, 1186s, 1017m cm⁻¹; HRMS (ESI-TOF) m/z 524.2807 [(M+H⁺); calcd. for C₃₄H₃₈NO₄: 524.2801]; $[\alpha]_D^{20}$ –19.3 (c 1.0, EtOAc) on 99 % ee material (HPLC) of *ent-114b*.

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(o-tolyl)aziridine-2-carboxylate 114c: Aldehyde 127c (61.0 μ L, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as

Purification of the crude aziridine by silica gel

chromatography (30 mm \times 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure *cis*-aziridine **114c** as a white solid (mp 174-175 °C on 99.7% ee material) in 96% isolated yield (234 mg, 0.480 mmol); *cis/trans*: 50:1. Enamine side products: 1.9% yield of **118c** and 1.0% yield of **119c**. The optical purity of **114c** was determined to be >99% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.45$ min (major enantiomer, **114c**) and $R_t = 12.21$ min (minor enantiomer, *ent-***114c**).

Spectral data for **114c**: $R_f = 0.38$ (1:9 EtOAc/hexane); 1 H NMR (CDCl₃, 500 MHz) δ 0.89 (t, 3H, J = 7.1 Hz), 2.20 (s, 6H), 2.24 (s, 6H), 2.26 (s, 3H), 2.61 (d, 1H, J = 6.8 Hz), 3.08 (d, 1H, J = 6.6 Hz), 3.62 (s, 3H), 3.66 (s, 1H), 3.68 (s, 3H), 3.88 (q, 2H, J = 7.1 Hz), 7.01 (d, 1H, J = 6.6 Hz), 7.06-7.09 (m, 2H), 7.13 (s, 2H), 7.18 (s, 2H), 7.53 (d, 1H, J = 6.3 Hz); 13 C (CDCl₃, 125 MHz) δ 13.90, 16.16, 16.22, 18.76, 45.55, 47.15, 59.53, 59.59, 60.36, 77.34, 125.28, 127.05, 127.33, 127.95, 128.62, 129.08, 130.61, 130.63, 133.45, 136.03, 137.85, 138.01, 155.92, 156.18, 168.16; IR (thin film) 2937vs, 1749s, 1485s, 1221s, 1192vs cm⁻¹;HRMS (ESI-TOF) m/z 488.2801 [(M+H⁺); calcd. for C₃₁H₃₈NO₄ : 488.2801]; $[\alpha]_D^{23}$ +46.4 (c 1.0, EtOAc) on 97% ee material (HPLC). These spectral data match those previously reported for this compound. 9c

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(p-tolyl)aziridine-2-carboxylate 114d: Aldehyde 127d (61.0 μ L, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as ligand. Purification of the crude aziridine by silica gel

chromatography (30 mm \times 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure *cis*-aziridine **114d** as a white solid (mp 116-117 °C on 99.5% ee material) in 95 % isolated yield (232 mg, 0.480 mmol); *cis/trans*: 50:1. Enamine side products: 3.8% yield of **118d** and 1.0% yield of **119d**. The optical purity of **114d** was determined to be >99% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.22$ min (major enantiomer, **114d**) and $R_t = 11.62$ min (minor enantiomer, *ent*-**114d**).

Spectral data for **114d**: $R_f = 0.30$ (1:9 EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 1.01 (t, 3H, J = 7.1 Hz), 2.18 (s, 6H), 2.24 (s, 6H), 2.26 (s, 3H), 2.52 (d, 1H, J = 6.6 Hz), 3.07 (d, 1H, J = 6.8 Hz), 3.62 (s, 3H), 3.64 (s, 1H), 3.68 (s, 3H) 3.93 (dq, 2H, J = 3.2 Hz, 7.1 Hz), 7.02 (d, 2H, J = 7.8 Hz), 7.08 (s, 2H), 7.17 (s, 2H), 7.24 (d, 2H, J = 8.0 Hz); ¹³C (CDCl₃, 125 MHz) δ 14.05, 16.16, 16.22, 21.11, 46.20, 48.21, 59.52, 59.58, 60.44, 77.11, 127.43, 127.72, 127.81, 128.41, 130.54, 130.57, 132.28, 136.78, 137.86, 138.00, 155.93, 156.08, 168.10; IR (thin film) 2978vs, 1748s, 1483s, 1221s, 1190vs cm⁻¹; HRMS (ESI-TOF) m/z 488.2806 [(M+H⁺); calcd. for C₃₁H₃₈NO₄ : 488.2801]; $\alpha l_D^{23} + 29.4$ (αl_D 1.0, EtOAc) on 99.8% ee material (HPLC). These spectral data match those previously reported for this compound. ^{9c}

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(4-methoxyphenyl)aziridine-2-carboxylate

114e: Aldehyde 127e (64.0 μ L, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as ligand. Purification of the crude

aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc with 1% Et₃N as eluent, gravity column; the column was set up by making a slurry of silica gel in hexanes with 2 % Et₃N) afforded pure *cis*-aziridine **114e** as a white solid (mp 56-57 °C on 98% ee material) in 78% isolated yield (196 mg, 0.390 mmol); *cis/trans*: 20:1. Enamine side products: <1% yield of **118e** and 4.7% yield of **119e**. The optical purity of **114e** was determined to be 98% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 12.07$ min (major enantiomer, **114e**) and $R_t = 19.20$ min (minor enantiomer, *ent-***114e**).

Spectral data for **114e**: $R_f = 0.28$ (1:9 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 1.02 (t, 3H, J = 7.1 Hz), 2.19 (s, 6H), 2.24 (s, 6H), 2.51 (d, 1H, J = 6.8 Hz), 3.06 (d, 1H, J = 6.8 Hz), 3.63 (s, 3H), 3.65 (s, 1H), 3.68 (s, 3H), 3.74 (s, 3H), 3.89-3.99 (m, 2H), 6.77 (d, 2H, J = 9.5 Hz), 7.09 (s, 2H), 7.18 (s, 2H), 7.29 (d, 2H, J = 8.8 Hz); ¹³C (CDCl₃, 125 MHz) δ 14.08, 16.16, 16.21, 46.20, 47.89, 55.19, 59.52, 59.57, 60.45, 77.05, 113.18, 127.43, 127.79, 128.93, 130.55, 130.57, 137.83, 138.01, 155.93, 156.07, 158.86, 168.14 (one sp^2 carbon not located); IR (thin film) 2942vs, 1743s, 1514s, 1250s, 1180vs cm⁻¹; HRMS (ESI-TOF) m/z 504.2744 [(M+H⁺);

calcd. for $C_{31}H_{38}NO_5$: 504.2750]; $[\alpha]_D^{23}$ +25 (c 1.0, EtOAc) on 96% ee material (HPLC). These spectral data match those previously reported for this compound.

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(4-nitrophenyl)aziridine-2-carboxylate 114f:

Aldehyde 127f (79.3 mg, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as ligand. Purification of the crude

aziridine by silica gel chromatography (30 mm \times 300 mm column, 9:1 hexanes/EtOAc) afforded pure *cis*-aziridine **114f** as a white solid (mp 174-175 °C on 99.7% ee material) in 92% isolated yield (239 mg, 0.460 mmol); *cis/trans*: 50:1. Enamine side products: <1% yield of **118o** and 2.8% yield of **119o**. The optical purity of **114f** was determined to be 99% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 17.12$ min (major enantiomer, **114f**) and $R_t = 27.13$ min (minor enantiomer, *ent-***114f**).

Spectral data for **114f**: R_f = 0.30 (1:9 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 1.02 (t, 3H, J = 7.1 Hz), 2.18 (s, 6H), 2.25 (s, 6H), 2.68 (d, 1H, J = 6.8 Hz), 3.15 (d, 1H, J = 6.8 Hz), 3.62 (s, 3H), 3.68 (s, 3H), 3.71 (s, 1H), 3.93 (dq, 2H, J = 2.2, 7.1 Hz), 7.06 (s, 2H), 7.16 (s, 2H), 7.57 (d, 2H, J = 8.8 Hz), 8.10 (d, 2H, J = 8.8 Hz); ¹³C (CDCl₃, 125 MHz) δ 14.08, 16.19, 16.24, 46.81, 47.26, 59.55, 59.59, 60.85, 76.89, 122.98, 127.26, 127.59, 128.81, 130.81, 130.86, 137.25, 137.48, 142.82, 147.28, 156.13, 156.28, 167.20; IR (thin film) 2984 vs, 1745 vs, 1603 s, 1522 vs,

1221 vs cm⁻¹; HRMS (ESI-TOF) m/z 519.2505 [(M+H⁺); calcd. for C₃₀H₃₅N₂O₆: 519.2495]; $[\alpha]_D^{23}$ –4.8 (c 1.0, EtOAc) on 99.8% ee material (HPLC). These spectral data match those previously reported for this compound. ^{9c}

(2R,3S)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)

methyl)-3-(pyridin-2-yl)aziridine-2-carboxylate 114i:
Aldehyde 127i (50.0 μL, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as ligand. Purification of the crude aziridine by

silica gel chromatography (30 mm × 300 mm column, 4:1 hexanes/EtOAc with 1% Et₃N followed by 2:1 hexanes/EtOAc with 1% Et₃N as eluent, gravity column; the column was set up by making a slurry of silica gel in hexanes with 2 % Et₃N) afforded pure *cis*-aziridine **114i** as a white solid (mp 60-61 °C on 90.2% ee material) in 96% isolated yield (456 mg, 0.480 mmol); cis/trans: >50:1. Enamine side products: not observed. The optical purity of **114i** was determined to be 90% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 16.90$ min (major enantiomer, 114i) and $R_t = 31.83$ min (minor enantiomer, *ent*-114i).

Spectral data for **114i**: $R_f = 0.27$ (2:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 600 MHz) δ 1.01 (t, 3H, J = 7.1 Hz), 2.18 (s, 6H), 2.24 (s, 6H), 2.66 (d, 1H, J = 6.8 Hz), 3.27 (d, 1H, J = 6.8 Hz), 3.62 (s, 3H), 3.68 (s, 3H), 3.73 (s, 1H), 3.91-3.96 (m, 2H), 7.08 (s, 2H), 7.09-7.11 (m, 1H), 7.16

(s, 2H), 7.59-7.60 (m, 2H), 8.42 (td, 1H, J = 1.4, 4.6 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ 14.00, 16.16, 16.23, 45.91, 49.45, 59.54, 59.60, 60.63, 122.29, 122.83, 127.36, 127.79, 130.65, 130.68, 135.87, 137.56, 137.78, 148.57, 155.48, 155.99, 156.12, 167.75 (one sp^3 carbon not located); IR (thin film) 2984s, 1746s, 1591, 1482s, 1221s, 1184s, 1015m cm⁻¹; HRMS (ESI-TOF) m/z 475.2607 [(M+H⁺); calcd. for C₂₉H₃₅N₂O₄ : 475.2597]; [α]_D²⁰ +40.2 (c 1.0, EtOAc) on 90% ee material (HPLC).

(2R,3S)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(thiophen-2-yl)aziridine-2-carboxylate 114k:

Aldehyde 127k (48.0 μL, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as ligand except that an excess of EDA 85 (415 μL,

4.0 mmoL, 8 equiv) was used. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc with 1% Et₃N as eluent, gravity column; the column was set up by making a slurry of silica gel in hexanes with 2% Et₃N) afforded pure *cis*-aziridine **114k** as a white solid (mp 55-56 °C on 97% ee material) in 88% isolated yield (211 mg, 0.440 mmol); *cis/trans*: 25:1. Enamine side products: not observed. The optical purity of **114k** was determined to be 97% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; R_t = 10.54 min (major enantiomer, **114k**) and R_t = 15.27 min (minor enantiomer, *ent*-**114k**).

Spectral data for **114k**: $R_f = 0.21$ (9:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 600 MHz) δ 1.08 (t, 3H, J = 7.1 Hz), 2.21 (s, 6H), 2.24 (s, 6H), 2.58 (d, 1H, J = 6.6 Hz), 3.21 (d, 1H, J = 6.6 Hz), 3.64 (s, 3H), 3.66 (s, 1H), 3.67 (s, 3H), 3.96-4.06 (m, 2H), 6.86 (dd, 1H, J = 3.4, 4.9 Hz), 6.95-6.96 (m, 1H), 7.11 (dd, 1H, J = 1.2, 4.9 Hz), 7.14 (s, 2H), 7.16 (s, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ 14.00, 16.12, 16.17, 43.76, 46.65, 59.51, 59.53, 60.70, 76.93, 124.49, 125.74, 126.38, 127.34, 127.71, 130.59, 130.62, 137.50, 137.63, 139.00, 155.94, 156.07, 167.77; IR (thin film) 2942s, 1748s, 1484s, 1221s, 1190s, 1015m cm⁻¹; HRMS (ESI-TOF) m/z 480.2216 [(M+H⁺); calcd. for C₂₈H₃₄NO₄S : 480.2209]; [α]²⁰ +30.2 (c 1.0, EtOAc) on 97% ee material (HPLC).

(2R,3S)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(furan-2-yl)aziridine-2-carboxylate 114l:

Aldehyde **127l** (44.0 μ L, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (*S*)-VAPOL as ligand except that the addition of aldehyde **127l**

was carried out at -10 °C followed by the addition of EDA **85** (415 μ L, 4.0 mmoL, 8 equiv) at the same temperature. The reaction was stirred for 2 h at -10 °C prior to warming it to room temperature. Purification of the crude aziridine by silica gel chromatography (30 mm \times 300 mm column, 15:1 hexanes/EtOAc with 1% Et₃N as eluent, gravity column; the column was set up by making a slurry of silica gel in hexanes with 2% Et₃N) afforded pure *cis*-aziridine **1141** as a white solid (mp 45-46 °C on 94% ee material) in 65% isolated yield (151 mg, 0.325 mmol); *cis/trans*: 8.3:1. Enamine side products: not observed. The optical purity of **1141** was

determined to be 95% ee by HPLC analysis (CHIRALCEL OD-H column, 99.5:0.5 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 23.6$ min (major enantiomer, 114l) and $R_t = 39.1$ min (minor enantiomer, ent-114l).

Spectral data for **114I**: $R_f = 0.21$ (15:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 600 MHz) δ 1.14 (t, 3H, J = 7.1 Hz), 2.21 (s, 6H), 2.24 (s, 6H), 2.60 (d, 1H, J = 6.6 Hz), 3.03 (d, 1H, J = 6.6 Hz), 3.65 (s, 3H), 3.67 (s, 1H), 3.68 (s, 3H), 4.03-4.13 (m, 2H), 6.28-6.29 (m, 1H), 6.29-6.30 (m, 1H), 7.09 (s, 2H), 7.14 (s, 2H), 7.26-7.27 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 14.05, 16.11, 16.15, 41.73, 45.27, 59.50, 59.52, 60.76, 76.84, 107.97, 110.32, 127.49, 127.64, 130.53, 130.61, 137.34, 137.44, 141.80, 149.77, 156.01, 156.04, 167.70; IR (thin film) 2940s, 1750s, 1485s, 1221s, 1179s, 1013m cm⁻¹; HRMS (ESI-TOF) m/z 464.2441 [(M+H⁺); calcd. for C₂₈H₃₄NO₅: 464.2437]; $[\alpha]_D^{20} - 8.2$ (c 1.0, EtOAc) on 94% ee material (HPLC) of *ent-***114**I.

(2R,3S)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(2-methyloxazol-4-yl)aziridine-2-carboxylate

114n: Aldehyde **127n** (59.0 mg, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as ligand except except that the addition of

aldehyde **127n** was carried out at -10 °C followed by the addition of EDA **85** (415 μ L, 4.0 mmoL, 8 equiv) at the same temperature. The reaction was stirred for 15 min at -10 °C prior to warming it to room temperature. Purification of the crude aziridine by silica gel chromatography

(30 mm \times 300 mm column, 3:1 hexanes/EtOAc with 1% Et₃N as eluent, gravity column; the column was set up by making a slurry of silica gel in hexanes with 2% Et₃N) afforded pure *cis*-aziridine **114n** as a white solid (mp 58-59 °C on 96% ee material) in 98% isolated yield (235 mg, 0.490 mmol); *cis/trans*: >50:1. Enamine side products: not observed. The optical purity of **114n** was determined to be 97% *ee* by HPLC analysis (CHIRALPAK AS column, 93:7 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 7.7$ min (major enantiomer, **114n**) and $R_t = 10.55$ min (minor enantiomer, *ent-***114n**).

Spectral data for **114n**: $R_f = 0.19$ (3:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 600 MHz) δ 1.13 (t, 3H, J = 7.2 Hz), 2.19 (s, 6H), 2.23 (s, 6H), 2.35 (s, 3H), 2.57 (d, 1H, J = 6.6 Hz), 2.94 (d, 1H, J = 6.0 Hz), 3.64 (s, 4H), 3.67 (s, 3H), 4.05 (q, 2H, J = 7.2 Hz), 7.03 (s, 2H), 7.09 (s, 2H), 7.49 (s, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 13.85, 14.12, 16.18, 16.20, 41.75, 45.28, 59.55, 59.58, 60.69, 76.83, 127.40, 127.64, 130.57, 130.64, 135.90, 136.52, 137.44, 137.64, 155.99, 156.08, 160.79, 167.64; IR (thin film) 2936vs, 1746s, 1582s, 1484s, 1223s, 1194s, 1015m cm⁻¹; HRMS (ESI-TOF) m/z 479.2547 [(M+H⁺); calcd. for C₂₈H₃₅N₂O₅ : 479.2546]; [α]²⁰ $_D$ -33.3.0 (c 1.0, EtOAc) on 96% ee material (HPLC) of *ent-***114n**.

7.15.7 Synthesis of alkyl MEDAM aziridines 1140-w (via Procedure IIIA, Table 7.6)

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-propylaziridine-2-

carboxylate 1140: Aldehyde 1270 (46.0 μ L, 38.0 mg, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (*S*)-VAPOL as ligand except that the addition of aldehyde 1270 was carried out at -10 °C followed by the addition of EDA 85 (415 μ L, 4.00 mmoL, 8.00 equiv) at the same temperature. The reaction was stirred at -10 °C for 24 h. Purification of the crude aziridine by silica gel chromatography (20 mm × 250 mm column, 4:2:0.1 hexanes/CH₂Cl₂/EtOAc, gravity column) afforded pure *cis*-aziridine 1140 as a yellow oil in 94% isolated yield (207 mg, 0.490 mmol); *cis/trans*: not determined. Enamine side products: not observed. The optical purity of 1140 was determined to be 96% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 4.73$ min (major enantiomer, 1140) and $R_t = 5.68$ min (minor enantiomer, *ent-*1140).

Spectral data for **114o**: $R_f = 0.28$ (4:2:0.1 hexanes/CH₂Cl₂/EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 0.72 (t, 3H, J = 7.6 Hz), 0.98-1.08 (m, 1H), 1.11-1.20 (m, 1H), 1.23 (t, 3H, J = 7.1 Hz), 1.38-1.45 (m, 1H), 1.49-1.55 (m, 1H), 1.95 (q, 1H, J = 6.6 Hz), 2.18 (d, 1H, J = 6.8 Hz) 2.22 (s,

12H), 3.39 (s, 1H), 3.65 (s, 3H), 3.67 (s, 3H), 4.12-4.23 (m, 2H), 6.99 (s, 2H), 7.07 (s, 2H); 13 C NMR (CDCl₃, 125 MHz) δ 13.57, 14.33, 16.09, 16.16, 20.33 29.93, 43.53, 46.76, 59.56, 59.60, 60.64, 77.32, 127.41, 128.07, 130.44, 130.47, 137.75, 138.18, 155.81, 156.12, 169.69; IR (thin film) 2957vs, 1744s, 1483s, 1221s, 1182vs cm⁻¹; HRMS (ESI-TOF) m/z 440.2817 [(M+H⁺); calcd. for C₂₇H₃₈NO₄ : 440.2801]; $[\alpha]_D^{23}$ +95.3 (c 1.0, EtOAc) on 97% ee material (HPLC). These spectral data match those previously reported for this compound. 9c

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)

methyl)-3-pentadecylaziridine-2-carboxylate 114p:
Aldehyde 127p (126 mg, 0.525 mmol) was reacted according to the general Procedure IIA described above with (S)-

VAPOL as ligand except the following differences: 1) the

addition of aldehyde **127p** was carried out at –10 °C followed by the addition of EDA **85** (62 μL, 0.60 mmoL, 1.2 equiv) at the same temperature; 2) the catalyst loading was 10 mol%. The reaction was stirred at –10 °C for 24 h. Purification of the crude aziridine by neutral alumina chromatography (20 mm × 250 mm column, 2:1:0.1 hexanes/CH₂Cl₂/Et₂O, gravity column) afforded pure *cis*-aziridine **114p** as a white solid (mp 41-42 °C on 95% ee material) in 80% isolated yield (243 mg, 0.400 mmol); *cis/trans*: not determined. Enamine side products: 6% yield of **118p** and 4% yield of **119p**. The optical purity of **114p** was determined to be 96% *ee* by HPLC analysis (PIRKLE COVALENT (R, R) WHELK-O 1 column, 99.5:0.5 hexane/2-propanol

at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 18.26$ min (major enantiomer, **114p**) and $R_t = 33.43$ min (minor enantiomer, *ent-***114p**).

Spectral data for **114p**: $R_f = 0.31$ (2:1:0.2 hexanes/CH₂Cl₂/Et₂O); ¹H NMR (CDCl₃, 500 MHz) δ 0.86 (t, 3H, J = 7.0 Hz), 1.14-1.28 (m, 1H), 1.43-1.50 (m, 26H), 1.93 (q, 1H, J = 6.5 Hz), 2.18 (d, 1H, J = 6.5 Hz) 2.22 (s, 12H), 3.38 (s, 1H), 3.65 (s, 3H), 3.67 (s, 3H), 4.12-4.23 (m, 2H), 6.99 (s, 2H), 7.07 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.09, 14.34, 16.11, 16.16, 22.68, 27.24, 27.96, 29.18, 29.35, 29.51, 29.61, 29.62, 29.65, 29.68, 31.92, 43.56, 47.01, 59.57, 59.58, 60.64, 77.35, 127.41, 128.10, 130.42, 130.47, 137.78, 138.18, 155.81, 156.15, 169.69 (3 sp^3 carbon not located); IR (thin film) 2925vs, 1746s, 1484s, 1221s, 1183vs cm⁻¹; HRMS (ESI-TOF) m/z 608.4683 [(M+H⁺); calcd. for C₃₉H₆₂NO₄: 608.4679]; [α]²⁰ +57.9 (c 1.0, EtOAc) on 95% ee material (HPLC).

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(7- ((tert-butyldimethylsilyl) oxy)heptyl) aziridine-2-carboxylate 114q: Aldehyde 127q (136 mg, 0.525 mmol) was reacted according to the general Procedure IIA described above with (S)-VAPOL as ligand except that

the addition of aldehyde **127q** was carried out at -10 °C followed by the addition of EDA **85** (62 μ L, 0.60 mmoL, 1.2 equiv) at the same temperature and the catalyst loading was 10 mol%. The

reaction was stirred at -10 °C for 24 h. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 1:15 EtOAc/hexanes, gravity column) afforded pure *cis*-aziridine **114q** as a yellow oil in 80% isolated yield (250 mg, 0.400 mmol); *cis/trans*: not determined. Enamine side products: <1% yield of **118q** and 2.8% yield of **119q**. The optical purity of **114q** was determined to be 98% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99.5:0.5 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 5.33$ min (major enantiomer, **114q**) and $R_t = 7.26$ min (minor enantiomer, *ent-***114q**).

Spectral data for **114q**: $R_f = 0.28$ (12:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 0.02 (s, 6H), 0.87 (s, 9H), 1.11-1.21 (m, 8H), 1.24 (t, 3H, J = 7.1 Hz), 1.40-1.50 (m, 4H), 1.94 (q, 1H, J = 6.6 Hz), 2.19 (d, 1H, J = 6.8 Hz) 2.22 (s, 12H), 3.39 (s, 1H), 3.55 (t, 2H, J = 6.8 Hz), 3.65 (s, 3H), 3.67 (s, 3H), 4.12-4.22 (m, 2H), 6.99 (s, 2H), 7.08 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ -5.31, 14.31, 16.08, 16.12, 18.32, 25.62, 25.94, 27.17, 27.88, 29.12, 29.38, 32.80, 43.52, 46.92, 59.51, 59.52, 60.59, 63..22, 77.32, 127.37, 128.07, 130.38, 130.43, 137.74, 138.16, 155.79, 156.13, 169.63; IR (thin film) 2930s, 1746s, 1483s, 1221s, 1183vs cm⁻¹; HRMS (ESI-TOF) m/z 626.4243 [(M+H⁺); calcd. for C₃₇H₆₀NO₅Si : 626.4241]; $[\alpha]_D^{20}$ +54.5 (c 1.0, EtOAc) on 98% ee material (HPLC).

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(4-ethoxy-4-oxobutyl)aziridine-2-carboxylate

114r: Aldehyde 127r (72.0 μL, 76.0 mg, 0.525 mmol) was reacted according to the general Procedure IIIA described

above with (*S*)-VAPOL as ligand except that the addition of aldehyde **127r** was carried out at $-10\,^{\circ}$ C followed by the addition of EDA **85** (415 μ L, 4.0 mmoL, 8 equiv) at the same temperature. The reaction was stirred at $-10\,^{\circ}$ C for 24 h. Purification of the crude aziridine by silica gel chromatography (30 mm \times 300 mm column, 1:40 Et₂O/CH₂Cl₂; 1:30 Et₂O/CH₂Cl₂; 1:20 Et₂O/CH₂Cl₂, gravity column) afforded pure *cis*-aziridine **114r** as a semi solid in 82% isolated yield (210 mg, 0.410 mmol); *cis/trans*: not determined. Enamine side products: not observed. The optical purity of **114r** was determined to be 97% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 11.56$ min (major enantiomer, **114r**) and $R_t = 12.86$ min (minor enantiomer, *ent*-**114r**).

Spectral data for **114r**: R_f = 0.31 (20:1 Et₂O/CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz) δ 1.19 (t, 3H, J= 7.1 Hz), 1.24 (t, 3H, J= 7.1 Hz), 1.31-1.38 (m, 1H), 1.40-1.48 (m, 1H), 1.48-1.56 (m, 2H), 1.95 (q, 1H, J= 6.1 Hz), 2.07 (t, 2H, J= 7.6 Hz), 2.20 (d, 1H, J= 6.8 Hz), 2.22 (s, 12H), 3.39 (s, 1H), 3.65 (s, 3H), 3.66 (s, 3H), 4.04 (q, 2H, J= 7.1 Hz), 4.12-4.21 (m, 2H), 6.98 (s, 2H), 7.07 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.16, 14.28, 16.08, 16.15, 22.51, 27.28, 33.53, 43.43, 46.22, 59.55, 60.12, 60.73, 77.26, 127.31, 128.02, 130.49, 130.57, 137.61, 138.01, 155.81, 156.21, 169.48, 173.21 (one sp^3 carbon not located); IR (thin film) 2940vs, 1738s, 1483s, 1221s, 1183vs cm⁻¹; HRMS (ESI-TOF) m/z 512.3015 [(M+H⁺); calcd. for C₃₀H₄₂NO₆: 512.3012]; $[\alpha]_D^{20}$ -68.5 (c 1.0, EtOAc) on 97% ee material (HPLC) of ent-**114r**.

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl) methyl)-3-(3-phenylpropyl)aziridine-2-carboxylate 114s:
Aldehyde 127s (75.0 μL, 78.0 mg, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as ligand except that the addition of aldehyde

127s was carried out at -10 °C followed by the addition of EDA 85 (415 μ L, 4.0 mmoL, 8 equiv) at the same temperature. The reaction was stirred at -10 °C for 24 h. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 1:9 EtOAc/hexanes, gravity column) afforded pure *cis*-aziridine 114s as a yellow oil in 50% isolated yield (129 mg, 0.250 mmol); *cis/trans*: not determined. Enamine side products: not observed. The optical purity of 114s was determined to be 90% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 7.47$ min (major enantiomer, 114s) and $R_t = 9.52$ min (minor enantiomer, *ent*-114s).

Spectral data for **114s**: $R_f = 0.30$ (1:9 hexanes/EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 1.23 (t, 3H, J = 7.1 Hz), 1.27-1.35 (m, 1H), 1.40-1.48 (m, 1H), 1.50-1.61 (m, 2H), 1.97 (q, 1H, J = 7.1 Hz), 2.19 (s, 6H), 2.21 (d, 1H, J = 6.8 Hz) 2.23 (s, 6H), 2.42 (t, 2H, J = 8.1 Hz), 3.40 (s, 1H), 3.54 (s, 3H), 3.67 (s, 3H), 4.11-4.21 (m, 2H), 6.99-7.00 (m, 4H), 7.09 (s, 2H) 7.10-7.13 (m, 1H), 7.19-7.21 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.32, 16.08, 16.15, 27.69, 29.11, 35.38, 43.60, 46.61, 59.49, 59.56, 60.70, 77.36, 125.58, 127.33, 128.11, 128.16, 128.18, 130.49, 130.50, 137.67, 138.08, 142.30, 155.79, 156.24, 169.61; IR (thin film) 2930vs, 1744s, 1483s, 1221s,

1184vs cm⁻¹; HRMS (ESI-TOF) m/z 516.3115 [(M+H⁺); calcd. for C₃₃H₄₂NO₄ : 516.3114]; $[\alpha]_D^{20}$ +61.7 (c 1.0, EtOAc) on 93% ee material (HPLC).

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)

methyl)-3-phenethylaziridine-2-carboxylate 114t:

Aldehyde **127t** (70.0 μ L, 70.0 mg, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as ligand except that the addition of aldehyde

127t was carried out at -10 °C followed by the addition of EDA 85 (415 μ L, 4.0 mmoL, 8 equiv) at the same temperature. The reaction was stirred at -10 °C for 24 h. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 1:12 EtOAc/hexanes, gravity column) afforded pure *cis*-aziridine 114t as a semi solid in 91% isolated yield (228 mg, 0.460 mmol); *cis/trans*: not determined. Enamine side products: <1% yield of 118t and 1.8 % yield of 119t. The optical purity of 114t was determined to be 96% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 0.5 mL/min): retention times; $R_t = 11.33$ min (major enantiomer, 114t) and $R_t = 12.80$ min (minor enantiomer, *ent*-114t).

Spectral data for **114t**: $R_f = 0.20$ (12:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 1.24 (t, 3H, J = 7.1 Hz), 1.80-1.92 (m, 2H), 1.96 (q, 1H, J = 7.1 Hz), 2.21 (d, 1H, J = 6.8 Hz) 2.24 (s, 6H), 2.27 (s, 6H), 2.29-2.34 (m, 1H), 2.48-2.53 (m, 1H), 3.41 (s, 1H), 3.67 (s, 3H), 3.68 (s, 3H), 4.12-4.20 (m, 2H), 6.91 (d, 2H, J = 7.3 Hz), 7.01 (s, 2H), 7.10 (s, 2H), 7.13 (d, 1H, J = 7.3 Hz),

7.19 (t, 2H, J = 7.3 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 14.29, 16.12, 16.15, 29.59, 33.25, 43.34, 46.13, 59.54, 59.60, 60.71, 77.22, 125.70, 127.26, 128.06, 128.15, 128.36, 130.50, 130.58, 137.77, 138.30, 141.35, 155.80, 156.22, 169.54; IR (thin film) 2934s, 1744s, 1484s, 1221s, 1182vs cm⁻¹; HRMS (ESI-TOF) m/z 502.2962 [(M+H⁺); calcd. for C₃₂H₄₀NO₄: 502.2957]; $[\alpha]_D^{20}$ -62.3 (c 1.0, EtOAc) on 96% ee material (HPLC) of ent-114t.

(2R,3R)-ethyl-3-benzyl-1-(bis(4-methoxy-3,5-dimethyl phenyl)methyl)aziridine-2-carboxylate 114u: Aldehyde 127u (59.0 μL, 63.0 mg, 0.525 mmol) was reacted according to the general Procedure IIIA described above with (S)-VAPOL as ligand except that the addition of aldehyde 127u

was carried out at -10 °C followed by the addition of EDA **85** (415 μ L, 4.0 mmoL, 8 equiv) at the same temperature. The reaction was stirred at -10 °C for 24 h. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 1:12 EtOAc/hexanes, gravity column) afforded pure *cis*-aziridine **114u** as a semi solid in 86% isolated yield (209 mg, 0.430 mmol); *cis/trans*: not determined. Enamine side products: not observed. The optical purity of **114u** was determined to be 98% *ee* by HPLC analysis (PIRKLE COVALENT (R, R) WHELK-O 1 column, 95:5 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 11.53 \text{ min}$ (major enantiomer, **114u**) and $R_t = 16.34 \text{ min}$ (minor enantiomer, *ent-***114u**).

Spectral data for **114u**: $R_f = 0.30$ (12:1 hexanes/EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 1.25 (t, 3H, J = 7.2 Hz), 2.20 (s, 6H), 2.24 (s, 6H), 2.25-2.28 (m, 2H), 2.85 (dd, 1H, J = 6.1, 14.7 Hz), 2.94 (dd, 1H, J = 5.6, 14.9 Hz), 3.45 (s, 1H), 3.68 (s, 3H), 3.69 (s, 3H), 4.16-4.25 (m, 2H), 6.96 (s, 2H), 6.98-6.99 (m, 2H), 7.09 (s, 2H), 7.10-7.15 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.26, 16.09, 16.13, 34.23, 43.04, 47.79, 59.49, 59.52, 60.78, 77.18, 126.01, 127.33, 127.95, 128.08, 128.53, 130.41, 130.49, 137.65, 137.86, 138.58, 155.80, 155.99, 169.59; IR (thin film) 2937s, 1742vs, 1484s, 1221s, 1182vs cm⁻¹; HRMS (ESI-TOF) m/z 440.2808 [(M+H⁺); calcd. for C₃₁H₃₈NO₄ : 488.2801]; $[\alpha]_D^{20}$ -54.2 (c 1.0, EtOAc) on 98% ee material (HPLC) of ent-114u.

phenyl)methyl)-3-cyclohexylaziridine-2-carboxylate 114v: Aldehyde 127v (63.0 μL, 59.0 mg, 0.525 mmol) was reacted according to the general Procedure IIIA described above with

(S)-VAPOL as ligand. Purification of the crude aziridine by

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethyl

silica gel chromatography (30 mm × 300 mm column, 4:2:0.1 hexanes/CH₂Cl₂/Et₂O, gravity column) afforded pure *cis*-aziridine **114v** as a semi solid in 95% isolated yield (229 mg, 0.480 mmol); *cis/trans*: > 50:1. Enamine side products: <1% yield of **118v** and 1.9% yield of **119v**. The optical purity of **114v** was determined to be 90% *ee* by HPLC analysis (CHIRALCEL OD

column, 99:1 hexane/2-propanol at 223 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 10.06$ min (major enantiomer, 114v) and $R_t = 12.37$ min (minor enantiomer, ent-114v).

Spectral data for **114v**: $R_f = 0.21$ (2:1 hexane/CH₂Cl₂); ¹H NMR (CDCl₃, 300 MHz) δ 0.46-0.57 (m, 1H), 0.87-1.19 (m, 4H), 1.21 (t, 3H, J = 7.1 Hz), 1.22-1.32 (m, 2H), 1.40-1.60 (m, 4H), 1.71-1.76 (m, 1H), 2.16 (m, 1H), 2.19 (s, 6H), 2.20 (s, 6H), 3.35 (s, 1H), 3.60 (s, 3H), 3.63 (s, 3H), 4.10-4.25 (m, 2H), 6.95 (s, 2H), 7.10 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.85, 15.56, 15.67, 24.91, 25.09, 25.73, 29.65, 30.38, 35.88, 42.97, 51.76, 59.01, 59.07, 60.12, 77.01, 126.90, 128.10, 129.84, 129.95, 137.16, 137.71, 155.31, 155.83, 169.30; IR (thin film) 2928vs, 1744s, 1483s, 1221s, 1181s, 1017m cm⁻¹; Mass spectrum: m/z (% rel intensity) 479 M+ (0.7), 283 (100), 268 (25), 253 (12), 237 (7), 210 (7), 195 (9), 141 (8), 95 (10), 67 (16), 55 (10), 41 (16); $[\alpha]_D^{23} + 107.9$ (c 1.0, CH₂Cl₂) on 90% ee material (HPLC). These spectral data match those previously reported for this compound. ^{9c}

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethyl phenyl)
methyl)-3-(tert-butyl)aziridine-2-carboxylate 114w:
Aldehyde 127w (58.0 μL, 45.0 mg, 0.525 mmol) was reacted according to the general Procedure IIIA described above with

(S)-VAPOL as ligand except that 2 equiv of EDA 85 was

used. Purification of the crude aziridine by silica gel chromatography (30 mm \times 300 mm column, 4:2:0.1 hexanes/CH₂Cl₂/Et₂O and then 2:1:0.1 hexanes/CH₂Cl₂/Et₂O, gravity column)

afforded pure cis-aziridine **114w** as a semi solid in 95% isolated yield (216 mg, 0.480 mmol); cis/trans: >50:1. Enamine side products: <1% yield of **118w** and <1% yield of **119w**. The optical purity of **114w** was determined to be 92% ee by HPLC by HPLC analysis (CHIRALCEL OD column, 99:1 hexane/2-propanol at 226 nm, flow-rate: 1.0 mL/min): retention times; $R_t = 6.8 \text{ min}$ (major enantiomer, **114w**) and $R_t = 10.55 \text{ min}$ (minor enantiomer, ent-**114w**).

Spectral data for **114w**: $R_f = 0.28$ (1:2 hexane/CH₂Cl₂); ¹H NMR (CDCl₃, 300 MHz) δ 0.72 (s, 9H), 1.29 (t, 3H, J = 7.1 Hz), 1.70 (d, 1H, J = 7.3 Hz), 2.11 (d, 1H, J = 7.2 Hz), 2.24 (s, 6H), 2.26 (s, 6H), 3.38 (s, 1H), 3.63 (s, 3H), 3.66 (s, 3H), 4.05-4.26 (m, 2H), 7.04 (s, 2H), 7.30 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.92, 15.84, 15.96, 27.24, 31.39, 43.16, 55.94, 59.20, 59.27, 60.24, 78.20, 127.30, 128.18, 130.01, 137.77, 138.74, 155.51, 155.98, 169.66 (one sp^2 carbon not located); IR (thin film) 2953vs, 1747s, 1481s, 1221s, 1181s, 1017m cm⁻¹; Mass spectrum: m/z (% rel intensity) 453 M+ (1), 283 (100), 268 (45), 253 (26), 237 (17), 225 (11), 210 (13), 195 (17), 164 (9) 141 (26), 132 (11), 127 (12), 91 (11), 69 (18), 55 (37), 41 (55); α ₂²³ D₃ +110.0 (c 1.0, CH₂Cl₂) on 94% ee material (HPLC). These spectral data match those previously reported for this compound. ^{9c}

7.15.8 Synthesis of MEDAM imine 1111 and aziridine 114l (aziridination with preformed imine, *Scheme 7.5*)

(*E*)-*N*-(furan-2-ylmethylene)-1,1-bis(4-methoxy-3,5-dimethylphenyl)methanamine 1111: To a 25 mL flame-dried round bottom flask, equipped with a stir bar, filled with argon was added MEDAM amine 126c (598.8 g, 2.000 mmol), MgSO₄ (500 mg, freshly flame-dried) and dry CH₂Cl₂ (6 mL). After stirring for 10 min, aldehyde 127l (174 μL, 2.10 mmol, 1.05 equiv) was added. The reaction mixture was stirred at room temperature for 24 h. The reaction mixture was filtered through Celite and the Celite bed was washed with CH₂Cl₂ (3 mL × 3) and then the filtrate was concentrated by rotary evaporation to give the crude imine as an off-white solid. Crystallization (1:25 CH₂Cl₂ / hexanes) and collection of the first crop afforded 111l as a white solid (mp 116-117 °C) in 26% isolated yield (200 mg, 0.520 mmol).

Spectral data for **1111**: 1 H NMR (CDCl₃, 600 MHz) δ 2.23 (s, 12H), 3.67 (s, 6H), 5.31 (s, 1H), 6.45 (dd, 1H, J = 1.7, 3.4 Hz), 6.77 (d, 1H, J = 3.4 Hz), 6.97 (s, 4H), 7.51 (d, 1H, J = 1.7 Hz), 8.13 (s, 1H); 13 C NMR (CDCl₃, 150 MHz) δ 16.16, 59.60, 77.71, 111.60, 114.46, 127.94,

130.66, 138.74, 144.77, 149.19, 151.73, 155.90; IR (thin film) 2944w, 1646s, 1484s, 1221 cm⁻¹; HRMS (ESI-TOF) *m/z* 378.2075 [(M+H⁺); calcd. for C₂₄H₂₈NO₃ : 378.2069]

(2R,3S)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-(furan-2-yl)aziridine-2-

carboxylate 1141: To a 25 mL flame-dried home-made Schlenk flask, prepared from a single-necked 25 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve, equipped with a stir bar and flushed with argon was added (S)-VAPOL (7.00 mg, 0.0125 mmol) and B(OPh)₃ (11.0 mg, 0.0375 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (1 mL) was added through the top of the Teflon valve to dissolve the two reagents. The flask was sealed by closing the Teflon valve, and then placed in an 80 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of

80 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask.

To the flask containing the pre-catalyst was first added the aldimine 1111 (94.4 mg, 0.250) mmol) and then dry toluene (0.5 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was stirred for 5 min to give a light orange solution. The flask was then cooled to -10 °C. To this solution was rapidly added ethyl diazoacetate (EDA) 85 (31 µL, 0.30 mmol) followed by closing the Teflon valve. The resulting mixture was stirred for 2 h at -10 °C It was then warmed to room temperature and stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then transferred to a 50 mL round bottom flask. The reaction flask was rinsed with dichloromethane (3 mL × 2) and the rinse was added to the 50 mL round bottom flask. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 15:1 hexanes/EtOAc with 1% Et₃N as eluent, gravity column; the column was set up by making a slurry of silica gel in hexanes with 2% Et₃N) afforded pure cisaziridine 114l as a white solid (mp 45-46 °C on 94% ee material) in 57% isolated yield (66.0 mg, 0.143 mmol); *cis/trans*: 9.3:1. Enamine side products: 1.3% yield of **118l** and 1% yield of **119l**. The optical purity of 1141 was determined to be 89% ee by HPLC analysis (CHIRALCEL OD-H column, 99.5:0.5 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; R_t = 23.6 min (major enantiomer, 114I) and $R_t = 39.1$ min (minor enantiomer, ent-114I). The spectral data of 1141 matched to those reported above.

7.15.9 Mechanistic study of MCAZ

(A) Different order of addition of reagents in MCAZ: Procedures (IV-IX)

Procedure IV: Catalyst + 4Å MS + 127a + EDA 85 @ 25 °C, 24 h

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added in the following order (*S*)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol), amine 126c (149.7 mg, 0.5000 mmol), 4Å Molecular Sieves (150 mg, freshly flame-dried), aldehyde 127a (52.0 μL, 0.525 mmoL, 1.05 equiv) and ethyl diazoacetate (EDA) 85 (62 μL, 0.60 mmoL, 1.2 equiv). Dry toluene (1 mL) was added under an argon atmosphere to dissolve the reagents. The flask was fitted with a rubber septum and a nitrogen balloon. The reaction mixture was stirred at room temperature for 24 h. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford

the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm \times 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine **114a** as a white solid (mp 107-108 °C on 99.8% ee material) in 88% isolated yield (208 mg, 0.44 mmol); *cis/trans*: >50:1. Enamine side products: <1 % yield of **118a** and <1 % yield of **119a**. The optical purity of **114a** was determined to be 98% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.26$ min (major enantiomer, **114a**) and $R_t = 12.52$ min (minor enantiomer, *ent-***114a**).

Procedure V: Catalyst + EDA 85 @ 25 °C, 1 h and then addition of the aldehyde 127a.

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added in the following order (*S*)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol), amine 126c (149.7 mg, 0.5000 mmol) and ethyl diazoacetate (EDA) 85 (62 μL, 0.60 mmoL, 1.2 equiv). Dry toluene (1 mL) was added under an argon atmosphere to dissolve the reagents. The flask was fitted with a rubber septum and a

nitrogen balloon. The reaction mixture was stirred at room temperature for 1 h. Thereafter, 4Å Molecular Sieves (150 mg, freshly flame-dried) was added followed by the addition of the aldehyde 127a (52.0 μL, 0.525 mmoL, 1.05 equiv). The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 114a as a white solid (mp 107-108 °C on 99.8% ee material) in 94% isolated yield (223 mg, 0.47 mmol); cis/trans: >50:1. Enamine side products: <1% yield of 118a and <1% yield of 119a. The optical purity of 114a was determined to be 98% ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.26$ min (major enantiomer, 114a) and $R_t = 12.52$ min (minor enantiomer, ent-114a).

Procedure VI: Catalyst + EDA 85 + 4Å MS + 127a @ 25 °C, 24 h

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added in the following order (S)-VAPOL (14 mg, 0.025) mmol), B(OPh)₃ (22 mg, 0.075 mmol), amine **126c** (149.7 mg, 0.5000 mmol) and ethyl diazoacetate (EDA) 85 (62 µL, 0.60 mmoL, 1.2 equiv). Dry toluene (1 mL) was added under an argon atmosphere to dissolve the reagents. The flask was fitted with a rubber septum and a nitrogen balloon. Thereafter, 4Å Molecular Sieves (150 mg, freshly flame-dried) was added followed by the addition of the aldehyde 127a (52.0 µL, 0.525 mmoL, 1.05 equiv). The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 114a as a white solid (mp 107-108 °C on 99.8% ee material) in 94% isolated yield (223 mg, 0.47 mmol); cis/trans: >50:1. Enamine side products: <1% yield of 118a and <1% yield of 119a. The optical purity of 114a was determined to be 98% ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.26$ min (major enantiomer, 114a) and $R_t = 12.52$ min (minor enantiomer, ent-114a).

Procedure VII: Amine 126c added at the end prior to the addition of toluene.

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added in following order (S)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol), 4Å Molecular Sieves (150 mg, freshly flame-dried), aldehyde 127a (52.0 μL, 0.525 mmoL, 1.05 equiv), ethyl diazoacetate (EDA) 85 (62 μL, 0.60 mmoL, 1.2 equiv) and amine 126c (149.7 mg, 0.5000 mmol). Dry toluene (1 mL) was added under an argon atmosphere to dissolve the reagents. The flask was fitted with a rubber septum and a nitrogen balloon. The reaction mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cisaziridine 114a as a white solid (mp 107-108 °C on 99.8% ee material) in 85% isolated yield (201 mg, 0.430 mmol); cis/trans: >50:1. Enamine side products: 2% yield of 118a and 1% yield of 119a. The optical purity of 114a was determined to be 98% ee by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.26$ min (major enantiomer, 114a) and $R_t = 12.52$ min (minor enantiomer, ent-114a). A repeat of this reaction also gave 114a in 85% yield. This is the 1 H NMR yield determined by integration against an internal standard (Ph₃CH).

Procedure VIII: Amine 126c added at the end after 2 min stirring of a mixture of VAPOL 58, B(OPh)₃, aldehyde 127a and EDA 85 in toluene.

To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added in the following order (*S*)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol), 4Å Molecular Sieves (150 mg, freshly flame-dried), aldehyde **127a** (52.0 μL, 0.525 mmoL, 1.05 equiv), ethyl diazoacetate (EDA) **85** (62 μL, 0.60 mmoL, 1.2 equiv). Dry

toluene (1 mL) was added under an argon atmosphere to dissolve the reagents. The flask was fitted with a rubber septum and a nitrogen balloon. The mixture was stirred for 2 min followed by the addition of amine 126c (149.7 mg, 0.5000 mmol). The reaction mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude mixture. An internal standard Ph₃CH (12.2 mg, 0.500 mmol) was added and subjected to NMR analysis. The ¹H NMR of crude reaction mixture revealed the presence of several products as shown in the reaction scheme. The presence of each product was confirmed by characteristic peaks (as discussed earlier) in the ¹H NMR previously published for these compounds and the amount of each was quantified by integration against an internal standard (Ph₃CH).

Procedure IX: Same as Procedure VIII except that amine 126c is not added.

To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added in the following order (S)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol), 4Å Molecular Sieves (150 mg, freshly flame-dried), aldehyde 127a (52.0 μL, 0.525 mmoL, 1.05 equiv), ethyl diazoacetate (EDA) 85 (62 μL, 0.60 mmoL, 1.2 equiv). Dry toluene (1 mL) was added under an argon atmosphere to dissolve the reagents. The flask was fitted with a rubber septum and a nitrogen balloon. The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude mixture. An internal standard Ph₃CH (12.2 mg, 0.500 mmol) was added and subjected to NMR analysis. The ¹H NMR of the crude reaction mixture revealed the presence of several products as shown in the reaction scheme. The presence of each product was confirmed by characteristic peaks (as discussed earlier) in the ¹H NMR previously published for these compounds. There was also mono-alkylated (S)-VAPOL derivative 230 in 37% yield (with respect to (S)-VAPOL).

Procedure VIII in CDCl₃: Amine 126c added at the end after 2 min stirring of a mixture of VAPOL 58, B(OPh)₃, aldehyde 127a and EDA 2 in CDCl₃.

This reaction was run in CDCl₃ because the crude reaction mixture in toluene was stripped of volatiles before the ¹H NMR was taken and some of the products many have been lost.

To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added (*S*)-VAPOL in the following order (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol), 4Å Molecular Sieves (150 mg, freshly flame-dried), aldehyde **127a** (52.0 μL, 0.525 mmoL, 1.05 equiv), ethyl diazoacetate (EDA) **85** (62 μL, 0.60 mmoL, 1.2 equiv). Dry CDCl₃ (1 mL) was added under an argon atmosphere to dissolve the reagents. The flask was fitted with a rubber septum and a nitrogen balloon. The mixture was stirred for 2 min followed by the addition of amine **126c** (149.7 mg, 0.5000 mmol). The reaction mixture was stirred for 24 h at room temperature. After 24 h, an internal standard Ph₃CH (12.2 mg, 0.500 mmol) was added. The resulting solution was then directly transferred to a NMR tube utilizing a filter syringe (Corning® syringe filters, Aldrich) to remove the 4Å Molecular Sieves. It was then subjected to NMR analysis. The ¹H NMR of crude reaction mixture revealed the presence of

several products as shown in the reaction scheme. The presence of each product was confirmed by characteristic peaks (as discussed earlier) in the ¹H NMR previously published for these compounds. There was also mono-alkylated (*S*)-VAPOL derivative **230** in 28% yield (with respect to (*S*)-VAPOL).

Procedure IX in CDCl₃: Same as Procedure VIII except that amine 126c is not added (in CDCl₃).

This reaction was run in CDCl₃ because the crude reaction mixture in toluene was stripped of volatiles before the ¹H NMR was taken and some of the products many have been lost.

To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added in the following order (*S*)-VAPOL (14 mg, 0.025 mmol), B(OPh)₃ (22 mg, 0.075 mmol), 4Å Molecular Sieves (150 mg, freshly flame-dried), aldehyde **127a** (52.0 μL, 0.525 mmoL, 1.05 equiv), ethyl diazoacetate (EDA) **85** (62 μL, 0.60 mmoL, 1.2 equiv). Dry CDCl₃ (1 mL) was added under an argon atmosphere to dissolve the reagents. The flask was

fitted with a rubber septum and a nitrogen balloon. The resulting mixture was stirred for 24 h at room temperature. After 24 h, an internal standard Ph₃CH (12.2 mg, 0.5000 mmol) was added. The resulting solution was then directly transferred to a NMR tube utilizing a filter syringe (Corning® syringe filters, Aldrich) to remove the 4Å Molecular Sieves. It was then subjected to NMR analysis. The ¹H NMR of the crude reaction mixture revealed the presence of several products as shown in the reaction scheme. The presence of each product was confirmed by characteristic peaks (as discussed earlier) in the ¹H NMR previously published for these compounds. There was also 26% of unreacted benzaldehyde 127a. There was also monoalkylated (S)-VAPOL derivative 230 in 11% yield (with respect to (S)-VAPOL).

(B) MCAZ with 0.9 equivalents of benzaldehyde 127a and amine 126a (Table 7.8)

(2*R*,3*R*)-ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: Aldehyde 127a (46.0 μL, 0.450 mmol, 0.900 equiv) was reacted according to the general Procedure IIIA described above with (*S*)-VAPOL as ligand. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 19:1 hexanes/EtOAc as eluent, gravity column) afforded pure *cis*-aziridine 86a as a white solid (mp. 127.5-128.5 °C) in 73% isolated yield (117 mg, 0.323 mmol); *cis/trans*: 25:1. Enamine side products: 8% yield of enamines. The optical purity of 86a was

determined to be 89% ee by HPLC analysis (CHIRALCEL OD-H column, 90:10 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.01$ min (major enantiomer, a=4.67 min (minor enantiomer, a=4.67 m

Spectral data for **86a**: $R_f = 0.3$ (1:9 EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 0.95 (t, 3H, J = 7.3 Hz), 2.64 (d, 1H, J = 6.8 Hz), 3.19 (d, 1H, J = 6.8 Hz), 3.91 (q, 2H, J = 7.1 Hz), 3.93 (s, 1H), 7.16-7.38 (m, 11H), 7.47 (d, 2H, J = 7.1 Hz), 7.58 (d, 2H, J = 7.6 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 13.93, 46.36, 48.01, 60.57, 77.68, 127.18, 127.31, 127.39, 127.52, 127.76, 127.78, 128.48, 135.00, 142.37, 142.49, 167.75 (one sp^2 carbon not located); $[\alpha]_D^{20} + 33.4$ (c 1.0, CH₂Cl₂) on 91% ee material (HPLC). These spectral data match those previously reported for this compound.

(C) Aziridination with preformed imine 78a with added bases illustrated by utilizing amine 126a as the base (*Table 7.9*)

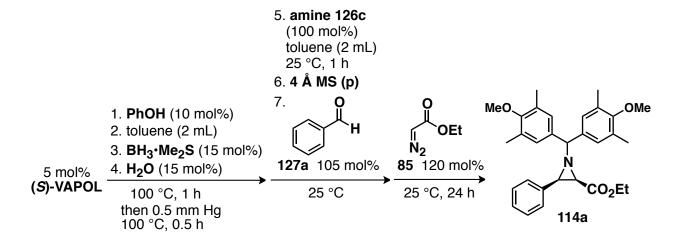
(2R,3R)-ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added (S)-VAPOL (54 mg, 0.10 mmol), B(OPh)₃ (87 mg, 0.30 mmol) and amine **126a** (17.2 μL, 0.10 mmol). Dry toluene (2 mL) was added under an argon atmosphere to dissolve the reagents. The flask was fitted with a rubber septum and a nitrogen balloon. The reaction mixture was stirred at room temperature for 1 h. Thereafter, imine 78a (271 mg, 1.00 mmoL) was added to the catalyst solution and stirred for 5 min. To this solution was rapidly added ethyl diazoacetate (EDA) 85 (124 µL, 1.20 mmoL, 1.2 equiv). The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 19:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 86a as a white solid (mp. 127.5-128.5 °C) in 80% isolated yield (286 mg, 0.800 mmol); cis/trans: 27:1. Enamine side products: 10% yield of enamines. The optical purity of 86a was determined to be 89% ee by HPLC analysis (CHIRALCEL OD-H column, 90:10 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.01$ min (major enantiomer, 86a) and $R_t = 4.67$ min (minor enantiomer, ent-86a). Same procedure was followed to do MCAZ for other bases.

7.15.10 MCAZ using BH₃•Me₂S as the boron source: Procedures (I'-III) (*Table 7.10*)

A) Procedure I':

(2R,3R)-ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: To a 10 mL flame-dried single-necked round bottom flask equipped with a stir bar and filled with argon was added (S)-VAPOL (27 mg, 0.05 mmol), PhOH (9.4 mg, 0.10 mmol) and amine 126a (183.3 mg, 1.00 mmol). Dry toluene (2 mL) was added under an argon atmosphere to dissolve the reagents. The flask was fitted with a rubber septum and a nitrogen balloon. To this mixture was added BH₃•Me₂S (75 μL, 0.15 mmol, 2.0 M in toluene) and H₂O (2.7 μL, 0.15 mmol). The reaction mixture was stirred at room temperature for 1 h. Thereafter, 4Å Molecular Sieves (300 mg, freshly flame-dried) was added followed by the addition of the aldehyde 127a (104 µL, 1.05 mmoL, 1.05 equiv). To this solution was rapidly added ethyl diazoacetate (EDA) 85 (124 µL, 1.20 mmoL, 1.2 equiv). The resulting mixture was stirred for 24 h at room temperature. The reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude reaction mixture. The ¹H NMR analysis of crude reaction mixture revealed no presence of aziridine and only imine 78a was observed.

B) Procedure I:


(2R,3R)-ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: Same as procedure I' except that the temperature of the catalyst preparation was 100 °C. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 19:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 86a as a white solid (mp. 127.5-128.5 °C) in 82% isolated yield (293 mg, 0.820 mmol); cis/trans: 50:1. Enamine side products: 7% yield of enamines. The optical purity of 86a was determined to be 95% ee by HPLC analysis (CHIRALCEL OD-H column, 90:10 hexane/2-propanol at 226 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.01$ min (major enantiomer, 86a) and $R_t = 4.67$ min (minor enantiomer, ent-86a).

C) Procedure II:

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: To a 10 mL flame-dried home-made Schlenk flask, prepared from a singlenecked 25 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve, equipped with a stir bar and filled with argon was added (S)-VAPOL (27 mg, 0.05 mmol), PhOH (9.4 mg, 0.10 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to dissolve the reagents and this was followed by the addition of BH₃•Me₂S (75 µL, 0.15 mmol, 2.0 M in toluene) and H₂O (2.7 μL, 0.15 mmol). The flask was sealed by closing the Teflon valve, and then placed in an 100 °C (oil bath) for 1 h. The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask containing the pre-catalyst was added the amine 126c (299.4 mg, 1.000 mmol) under an argon flow through side-arm of the Schlenk flask. The flask was sealed by closing the Teflon valve, and then the resulting mixture was allowed to stir at room temperature for 1 h. The flask was then open to argon through side-arm of the Schlenk flask. To the flask containing the precatalyst was added the 4Å Molecular Sieves (300 mg, freshly flame-dried) and aldehyde 127a (104 μL, 1.05 mmoL, 1.05 equiv). To this solution was rapidly added ethyl diazoacetate (EDA) 85 (124 µL, 1.20 mmoL, 1.2 equiv). The resulting mixture was stirred for 24 h at room temperature. After 24 h, the reaction was dilluted by addition of hexane (6 mL). The reaction mixture was then filtered through a Celite pad to a 100 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 3) and the rinse was filtered through the same Celite pad. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude aziridine as an off-white solid. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine **114a** as a white solid (mp 107-108 °C on 99.8% ee material) in 90% isolated yield (426 mg, 0.9 mmol); *cis/trans*: >50:1. Enamine side products: <1% yield of **118a** and <1% yield of **119a**. The optical purity of **114a** was determined to be 97% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.26$ min (major enantiomer, **114a**) and $R_t = 12.52$ min (minor enantiomer, *ent-***114a**).

D) Procedure III:

(2R,3R)-ethyl-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-3-phenylaziridine-2-

carboxylate 114a: Same as procedure II except that after 1 h of the stirring of the reaction mixture containing (*S*)-VAPOL (27 mg, 0.05 mmol), PhOH (9.4 mg, 0.10 mmol), BH₃•Me₂S (75 μL, 0.15 mmol, 2.0 M in toluene) and H₂O (2.7 μL, 0.15 mmol), a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles are removed completely, a full vacuum is applied and is maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and

opened to argon through the side-arm of the Schlenk flask. To the flask containing the precatalyst was added the amine 126c (299.4 mg, 1.000 mmol) and toluene (1 mL) under an argon flow through side-arm of the Schlenk flask. The flask was sealed by closing the Teflon valve, and then the resulting mixture was allowed to stir at room temperature for 1 h. The procedure is similar to procedure to II from this point. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 9:1 hexanes/EtOAc as eluent, gravity column) afforded pure cis-aziridine 114a as a white solid (mp 107-108 °C on 99.8% ee material) in 89% isolated yield (422 mg, 0.89 mmol); *cis/trans*: >50:1. Enamine side products: <1% yield of 118a and <1% yield of 119a. The optical purity of 114a was determined to be 97% *ee* by HPLC analysis (CHIRALCEL OD-H column, 99:1 hexane/2-propanol at 226nm, flow-rate: 0.7 mL/min): retention times; R_t = 9.26 min (major enantiomer, 114a) and R_t = 12.52 min (minor enantiomer, *ent-*114a).

7.15.11 MCAZ using BH₃•THF as the boron source: Procedures (I-III) (*Table 7.11*) A) Procedure I:

(2R,3R)-ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: Same as procedure I of 7.14.11 except that the temperature of the catalyst preparation was 25 °C and BH₃•THF was used in place of BH₃•Me₂S.

B) Procedure II:

(2R,3R)-ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: Same as procedure II of 7.14.11 except that the temperature of the catalyst preparation was 25 °C, time of stirring was 15 min, amine 126a was used and BH₃•THF was used in place of BH₃•Me₂S.

C) Procedure III:

(2R,3R)-ethyl 1-benzhydryl-3-phenylaziridine-2-carboxylate 86a: Same as procedure III of 7.14.11 except that the temperature of the catalyst preparation was 25 °C, time of stirring was 15 min, amine 126a was used and BH₃•THF was used in place of BH₃•Me₂S.

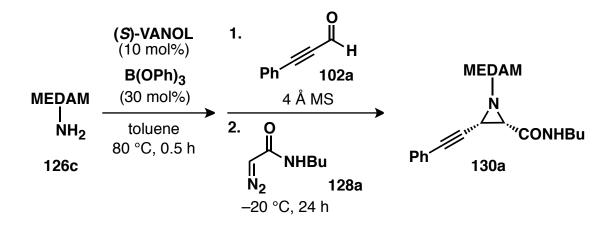
7.15.12 Initial attempts towards multi-component trans-aziridination (Table 7.12)

A) Reaction with benzaldehyde 127a and diazoacetamide 123a:

(2R,3S)-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-N,3-diphenylaziridine-2-

carboxamide: Aldehyde 127a was reacted with diazoacetamide 123a (85 mg, 0.6 mmol, 1.2 equiv) according to the general aziridination Procedure IIIA described above with (S)-VANOL (22 mg, 0.05 mmol, 10 mol%) as ligand at -20 °C, to afford *trans*-aziridine 125a. The mixture containing the catalyst, aldehyde and 4Å MS was stirred for 1 h prior to the addition of diazoacetamide. The ¹H NMR analysis of crude reaction mixture revealed the presence of transaziridine 125a in 43% NMR yield using Ph₃CH as the internal standard. No further attempt was made to isolate the aziridine. The *trans:cis* ratio was found to be 2.2:1.

B) Reaction with *n*-hexadecanal 127p and diazoacetamide 128a:


(2R,3S)-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-N-butyl-3-pentadecylaziridine-2-

carboxamide 129p: Aldehyde 127p was reacted with *N*-butyl-2-diazoacetamide 128a (85 mg, 0.6 mmol, 1.2 equiv) according to the general aziridination Procedure IIA described above with (*S*)-VANOL (22 mg, 0.05 mmol, 10 mol%) as ligand at -10 °C, to afford *trans*-aziridine 129p. The concentration of the reaction is 0.2 M in amine 126c. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 5:1 hexanes/Et₂O as eluent, gravity column) afforded *trans*-aziridine 129p as a colorless viscous liquid in 70% isolated yield (222 mg, 0.350 mmol). The optical purity of 129p was determined to be 93% *ee* by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/2-propanol at 222 nm, flow-rate: 0.7 mL/min): retention times; $R_t = 5.11$ min (major enantiomer, 129p) and $R_t = 8.93$ min (minor enantiomer, *ent-*129p).

Spectral data for **129p:** $R_f = 0.34$ (1:1 Et₂O / hexanes). ¹H-NMR (CDCl₃, 500 MHz): δ 0.88 (t, J = 5.7 Hz, 3H), 0.90 (t, J = 6.0 Hz, 3H), 1.20-1.29 (m, 30H), 1.42 (dd, J = 14.5, 7.4 Hz, 2H), 1.48-1.53 (m, 1H), 2.04 (d, J = 2.9 Hz, 1H), 2.21 (s, 6H), 2.27 (s, 6H), 2.99 (dtd, J = 13.3, 6.8,

5.2 Hz, 1H), 3.34 (dq, J = 13.6, 6.9 Hz, 1H), 3.66 (s, 3H), 3.68 (s, 3H), 4.10 (s, 1H), 6.63 (dd, J = 7.1, 5.0 Hz, 1H), 6.94 (s, 2H), 7.07 (s, 2H); ¹³C-NMR (CDCl₃, 126 MHz): δ 13.71, 14.04, 16.14, 16.22, 19.85, 22.62, 26.03, 28.06, 29.25, 29.29, 29.41, 29.44, 29.58, 29.59, 29.63, 31.81, 31.86, 38.23, 44.79, 47.29, 59.44, 59.52, 67.54, (3 sp^3 carbon not located), 126.88, 127.60, 130.45, 130.63, 138.53, 138.55, 155.76, 156.04, 170.45; IR (thin film) 3312br, 2926vs, 2855vs, 1647s, 1484s, 1221s, 1143s cm⁻¹; HRMS (ESI-TOF) m/z 635.5151 [(M+H⁺); calcd. for $C_{41}H_{67}N_2O_3$: 635.5152]; [α]²⁰ $_{D}$ -22.0 (c 1.0, CH₂Cl₂) on 93% ee material.

C) Reaction with 3-phenylpropiolaldehyde 102a and diazoacetamide 128a:

2-carboxamide 130a: Aldehyde **102a** was reacted with *N*-butyl-2-diazoacetamide **128a** (85 mg, 0.6 mmol, 1.2 equiv) according to the general aziridination Procedure IIA described above with (S)-VANOL (22 mg, 0.05 mmol, 10 mol%) as ligand at –20 °C, to afford *cis*-aziridine **130a**. The concentration of the reaction is 0.2 M in amine **126c**. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 2:1 to 1:1 hexanes/Et₂O as eluent) afforded *cis*-

aziridine **130a** (mp. 68-71 °C on 88% ee material) as a yellow solid in 89% isolated yield (234 mg, 0.450 mmol). The optical purity of **130a** was determined to be 88% *ee* by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/2-propanol at 222nm, flow-rate: 0.7 mL/min): retention times; $R_t = 10.76$ min (major enantiomer, **130a**) and $R_t = 19.48$ min (minor enantiomer, *ent-***130a**).

Spectral data for **130a**: $R_f = 0.07$ (1:5 EtOAc / hexanes). ¹H-NMR (CDCl₃, 500 MHz): δ 0.80 (t, J = 7.3 Hz, 3H), 1.20-1.32 (m, 2H), 1.35-1.52(m, 2H), 2.25 (s, 6H), 2.29 (s, 6H), 2.58 (d, J = 6.6 Hz, 1H), 2.66 (d, J = 6.6 Hz, 1H), 3.25-3.18 (m, 1H), 3.27-3.33 (m, 1H), 3.68 (s, 1H), 3.70 (s, 3H), 3.72 (s, 3H), 6.71 (t, J = 6.1 Hz, 1H), 6.95 (s, 2H), 7.11 (s, 2H), 7.29-7.32 (m, 3H), 7.39 (dd, J = 7.4, 2.1 Hz, 2H); ¹³C-NMR (CDCl₃, 125 MHz): δ 13.62, 16.15, 16.25, 19.90, 31.91, 35.38, 38.63, 46.08, 59.51, 59.57, 75.64, 82.62, 84.44, 122.44, 127.39, 127.78, 128.21, 128.43, 130.68, 130.87, 131.79, 136.74, 136.92, 156.06, 156.38, 167.11. These spectral data matched those previously reported for this compound. ¹⁸

(2S,3S)-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-N-butyl-3-(hept-1-yn-1-yl)aziridine-2-carboxamide 130b:
Aldehyde 102b was reacted with N-butyl-2-diazoacetamide 128a (85 mg, 0.6 mmol, 1.2 equiv) according to the general aziridination Procedure IIA described above with (S)-VANOL

(22 mg, 0.05 mmol, 10 mol%) as ligand at -20 °C, to afford *cis*-aziridine **130b**. The concentration of the reaction is 0.2 M in amine **126c**. Purification of the crude aziridine by silica

gel chromatography (30 mm \times 300 mm column, 2:1 to 1:1 hexanes/Et₂O as eluent) afforded *cis*-aziridine **130b** (mp. 90-92 °C on 88% ee material) as a yellow solid in 70% isolated yield (182 mg, 0.350 mmol). The optical purity of **130b** was determined to be 88% *ee* by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/2-propanol at 222nm, flow-rate: 0.7 mL/min): retention times; $R_t = 12.45$ min (major enantiomer, **130b**) and $R_t = 30.86$ min (minor enantiomer, *ent-***130b**).

Spectral data for **130b**: $R_f = 0.17$ (1:5 EtOAc / hexanes). 1 H-NMR (CDCl₃, 500 MHz): δ 0.90 (td, J = 7.2, 2.9 Hz, 6H), 1.25-1.38 (m, 8H), 1.42-1.50 (m, 4H), 2.16-2.13 (m, 2H), 2.23 (s, 6H), 2.27 (s, 6H), 3.15 (dq, J = 13.1, 6.6 Hz, 1H), 3.31 (dq, J = 13.7, 6.9 Hz, 1H), 3.57 (s, 1H), 3.68 (s, 3H), 3.70 (s, 3H), 6.62 (t, J = 6.1 Hz, 1H), 6.90 (s, 2H), 7.05 (s, 2H); 13 C-NMR (CDCl₃, 125 MHz): δ 13.76, 13.89, 16.15, 16.23, 18.69, 19.91, 22.14, 28.27, 30.91, 31.87, 35.41, 38.52, 45.61, 59.53, 59.58, 74.97, 75.65, 83.50, 127.37, 127.83, 130.58, 130.80, 136.93, 137.10, 155.98, 156.32, 167.42; IR (thin film) 3401br, 2957vs, 2932vs, 2241w, 1680s, 1485s, 1223s, 1147s cm⁻¹; HRMS (ESI-TOF) m/z 519.3597 [(M+H⁺); calcd. for C₃₃H₄₇N₂O₃: 519.3587]; $\alpha |_D^{20} + 23.0$ (c 0.78, CH₂Cl₂) on 88% ee material.

(2S,3S)-1-(bis(4-methoxy-3,5-dimethylphenyl)methyl)-N-butyl-3-(triisopropylsilyl)ethynyl)aziridine-2-carboxamide

130c: Aldehyde 102c was reacted with N-butyl-2-

diazoacetamide **128a** (85 mg, 0.6 mmol, 1.2 equiv) according to the general aziridination Procedure IIA described above with (*S*)-VANOL (22 mg, 0.05 mmol, 10 mol%) as ligand at -20 °C, to afford *cis*-aziridine **130a**. The concentration of the reaction is 0.2 M in amine **126c**. Purification of the crude aziridine by silica gel chromatography (30 mm × 300 mm column, 6:1 hexanes/EtOAc as eluent) afforded *cis*-aziridine **130c** (mp. 62-64 °C on 88% ee material) as a yellow solid in 93% isolated yield (281 mg, 0.465 mmol). The optical purity of **130c** was determined to be 88% *ee* by HPLC analysis (CHIRALPAK AD column, 90:10 hexane/2-propanol at 222nm, flow-rate: 0.7 mL/min): retention times; $R_t = 9.59$ min (major enantiomer, 130c) and $R_t = 6.20$ min (minor enantiomer, *ent*-130c).

Spectral data for **130c**: $R_f = 0.28$ (1:5 EtOAc/ hexanes). ¹H-NMR (CDCl₃, 500 MHz): δ 0.89 (t, J = 7.3 Hz, 3H), 1.02-1.07 (m, 21H), 1.24-1.29 (m, 2H), 1.39-1.49 (m, 2H), 2.19-2.30 (m, 14H), 2.88-2.94 (m, 1H), 3.49 (dt, J = 13.7, 7.0 Hz, 1H), 3.59 (s, 1H), 3.68 (s, 3H), 3.70 (s, 3H), 6.62 (dd, J = 7.5, 4.1 Hz, 1H), 6.90 (s, 2H), 7.08 (s, 2H); ¹³C-NMR (CDCl₃, 125 MHz): δ 11.07, 13.70, 16.11, 16.18, 18.52, 18.54, 19.86, 31.51, 35.77, 38.64, 45.85, 59.50, 59.57, 75.59, 84.13, 102.19, 127.16, 127.81, 130.64, 130.88, 136.81, 137.07, 155.97, 156.41, 166.97; IR (thin film) 3401br, 2943vs, 2866vs, 1680s, 1484s, 1223s, 1147s cm⁻¹; HRMS (ESI-TOF) m/z 605.4129 [(M+H⁺); calcd. for C₃₇H₅₇N₂O₃: 605.4138]; [α]²⁰ +52.1 (c 1.0, CH₂Cl₂) on 88% ee material.

REFERENCES

REFERENCES

- (1) (a) de Graaff, C.; Ruijter, E.; Orru, R. V. A. *Chem. Soc. Rev.* **2012**, *41*, 3969-4009. (b) Guillena, G.; Ramon, D. J.; Yus, M. *Tetrahedron: Asymmetry* **2007**, *18*, 693-700. (c) Ramon, D. J.; Yus, M. *Angew. Chem., Int. Ed.* **2005**, *44*, 1602-1634. (d) *Multicomponent Reactions*; Zhu, J.; Bienayme, H., Eds.; Wiley-VCH: Weinheim, 2005.
- (2) Osborn, H. M. I.; Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693-1715.
- (3) (a) Pellissier, H. *Tetrahedron* **2010**, *66*, 1509-1555. (b) Müller, P.; Fruit, C. *Chem. Rev.* **2003**, *103*, 2905-2919.
- (4) (a) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. *J. Am. Chem. Soc.* **1993**, *115*, 5328-5329. (b) Li, Z.; Conser, K. R.; Jacobsen, E. N. *J. Am. Chem. Soc.* **1993**, *115*, 5326-5327. (c) Noda, K.; Hosoya, N.; Irie, R.; Ito, Y.; Katsuki, T. *Synlett* **1993**, 469-471. (d) Subbarayan, V.; Ruppel, J. V.; Zhu, S.; Perman, J. A.; Zhang, X. P. *Chem. Commun.* **2009**, 4266-4268. (e) Kawabata, H.; Omura, K.; Uchida, T.; Katsuki, T. *Chem.–Asian. J.* **2007**, *2*, 248-256.
- (5) Deiana, L.; Dziedzic, P.; Zhao, G. L.; Vesely, J.; Ibrahem, I.; Rios, R.; Sun, J. L.; Cordova, A. *Chem.–Eur. J.* **2011**, *17*, 7904-7917.
- (6) (a) Hansen, K. B.; Finney, N. S.; Jacobsen, E. N. *Angew. Chem., Int. Ed.* **1995**, *34*, 676-678. (b) Aggarwal, V. K.; Ferrara, M.; O'Brien, C. J.; Thompson, A.; Jones, R. V. H.; Fieldhouse, R. *J. Chem. Soc., Perkin Trans. I* **2001**, 1635-1643. (c) Aggarwal, V. K.; Alonso, E.; Fang, G. Y.; Ferrara, M.; Hynd, G.; Porcelloni, M. *Angew. Chem., Int. Ed.* **2001**, *40*, 1433-1436. (d) Aggarwal, V. K.; Winn, C. L. *Acc. Chem. Res.* **2004**, *37*, 611-620.
- (7) (a) Casarrubios, L.; Perez, J. A.; Brookhart, M.; Templeton, J. L. J. Org. Chem. 1996, 61, 8358-8359. (b) G. Rasmussen, K.; Anker Jorgensen, K. J. Chem. Soc., Perkin Trans. 1 1997, 1287-1292. (c) Juhl, K.; G. Hazell, R.; Anker Jorgensen, K. J. Chem. Soc., Perkin Trans. 1 1999, 2293-2297. (d) Mayer, M. F.; Hossain, M. M. J. Organomet. Chem. 2002, 654, 202-209. (e) Morales, D.; Pérez, J.; Riera, L.; Riera, V.; Corzo-Suárez, R.; García-Granda, S.; Miguel, D. Organometallics 2002, 21, 1540-1545. (f) Krumper, J. R.; Gerisch, M.; Suh, J. M.; Bergman, R. G.; Tilley, T. D. J. Org. Chem. 2003, 68, 9705-9710. (g) Redlich, M.; Hossain, M. M. Tetrahedron Lett. 2004, 45, 8987-8990.
- (8) (a) Williams, A. L.; Johnston, J. N. J. Am. Chem. Soc. **2004**, 126, 1612-1613. (b) Wipf, P.; Lyon, M. A. ARKIVOC **2007**, xii, 91-98. (c) Hashimoto, T.; Uchiyama, N.; Maruoka, K. J. Am.

- Chem. Soc. **2008**, 130, 14380-14381. (d) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. **2009**, 11, 2445-2447. (e) Zeng, X.; Zeng, X.; Xu, Z.; Lu, M.; Zhong, G. Org. Lett. **2009**, 11, 3036–3039. (f) Johnston, J. N.; Muchalski, H.; Troyer, T. L. Angew. Chem., Int. Ed. **2010**, 49, 2290-2298.
- (9) (a) Zhang, Y.; Desai, A.; Lu, A.; Hu, G.; Ding, Z.; Wulff, W. D. *Chem. –Eur. J.* **2008**, *14*, 3785-3803. (b) Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. *Org. Lett.* **2008**, *10*, 5429-5432. (c) Mukherjee, M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. *J. Org. Chem.* **2010**, *75*, 5643-5660. (d) Ren, H.; Wulff, W. D. *Org. Lett.* **2010**, *12*, 4908-4911. (e) Hu, G.; Huang, R. H.; Wulff, W. D. *J. Am. Chem. Soc.* **2009**, *131*, 15615-15617. (f) Hu, G.; Gupta, A. K.; Huang, R. H.; Mukherjee, M.; Wulff, W. D. *J. Am. Chem. Soc.* **2010**, *132*, 13100-13103. (h) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. *J. Am. Chem. Soc.* **2010**, *132*, 13104-13107. (i) Desai, A. A.; Morán-Ramallal, R.; Wulff, W. D. *Org. Synth.* **2011**, *88*, 224-237.
- (10) (a) Nagayama, S.; Kobayashi, S. *Chem. Lett.* **1998**, 685-686. (b) Kubo, T.; Sakaguchi, S.; Ishii, Y. *Chem. Commun.* **2000**, 625-626. (c) Yadav, J. S.; Reddy, B. V. S.; Rao, M. S.; Reddy, P. N. *Tetrahedron Lett.* **2003**, 44, 5275-5278. (d) Yadav, J. S.; Reddy, B. V. S.; Reddy, P. N.; Rao, M. S. *Synthesis* **2003**, 1387-1390. (e) Ishii, Y.; Sakaguchi, S. *Bull. Chem. Soc. Jpn.* **2004**, 77, 909-920.
- (11) (a) Minakata, S.; Ando, T.; Nishimura, M.; Ryu, I.; Komatsu, M. *Angew. Chem., Int. Ed.* **1998**, *37*, 3392-3394. (b) Nishimura, M.; Minakata, S.; Takahashi, T.; Oderaotoshi, Y.; Komatsu, M. *J. Org. Chem.* **2002**, *67*, 2101-2110.
- (12) Gupta, A. K.; Mukherjee, M.; Wulff, W. D. Org. Lett. 2011, 13, 5866-5869.
- (13) Gupta, A. K.; Mukherjee, M.; Hu, G.; Wulff, W. D. J. Org. Chem. 2012, ASAP.
- (14) Wulff, W. D.; Antilla, J. A.; Pulgam, V. R.; Zhang, Y.; Gilson-Osminksi, W., Unpublished results.
- (15) (a) Ismail, F. M. D.; Levitsky, D. O.; Dembitsky, V. M. *Eur. J. Med. Chem.* **2009**, *44*, 3373-3387. (b) Kabara, J.; Vrable, R.; Lie Ken Jie, M. *Lipids* **1977**, *12*, 753-759. (c) Metzger, J. O.; Fürmeier, S. *Eur. J. Org. Chem.* **1999**, 661-664. (d) Falck, J. R.; Manna, S.; Viala, J.; Siddhanta, A. K.; Moustakis, C. A.; Capdevila, J. *Tetrahedron Lett.* **1985**, *26*, 2287-2290. (e) Howell, A. R.; So, R. C.; Richardson, S. K. *Tetrahedron* **2004**, *60*, 11327-11347.
- (16) Newman, C. A.; Antilla, J. C.; Chen, P.; Predeus, A. V.; Fielding, L.; Wulff, W. D. J. Am. Chem. Soc. **2007**, 129, 7216-7217.

- (17) (a) Li, W.; Wang, J.; Hu, X.; Shen, K.; Wang, W.; Chu, Y.; Lin, L.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2010, 132, 8532-8533. (b) Hashimoto, T.; Miyamoto, H.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 11280-11281. (c) Liu, W. J.; Lv, B. D.; Gong, L. Z. Angew. Chem., Int. Ed. 2009, 48, 6503-6506. (d) Trost, B. M.; Malhotra, S.; Fried, B. A. J. Am. Chem. Soc. 2009, 131, 1674-+. (e) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 2434-2435. (f) Hasegawa, K.; Arai, S.; Nishida, A. Tetrahedron 2006, 62, 1390-1401. (g) Dudley, M. E.; Morshed, M. M.; Brennan, C. L.; Islam, M. S.; Ahmad, M. S.; Atuu, M.-R.; Branstetter, B.; Hossain, M. M. J. Org. Chem. 2004, 69, 7599-7608. (h) Yao, W.; Wang, J. Org. Lett. 2003, 5, 1527-1530. (i) Jiang, N.; Wang, J. B. Tetrahedron Lett. 2002, 43, 1285-1287. (j) Mahmood, S. J.; Hossain, M. M. J. Org. Chem. 1998, 63, 3333-3336. (k) Holmquist, C. R.; Roskamp, E. J. J. Org. Chem. 1989, 54, 3258-3260. (l) Zhu, Z.; Espenson, J. H. J. Org. Chem. 1995, 60, 7090-7091. (m) Curini, M.; Epifano, F.; Marcotullio, Maria C.; Rosati, O. Eur. J. Org. Chem. 2002, 1562-1565. (n) Zhu, Z.; Espenson, J. H. J. Am. Chem. Soc. 1996, 118, 9901-9907.
- (18) Guan, Y.; Wulff, W. D., Unpublished results.
- (19) Mukherjee, M.; Gupta, A. K.; Wulff, W. D. Org. Lett. 2012, manuscript in preparation.
- (20) Zhou, Y.; Wulff, W. D., Unpublished results.
- (21) Favrot, J.; Vocelle, D.; Sandorfy, C. Photochem. Photobiol. 1979, 30, 417-421.
- (22) Ren, H.; Wulff, W. D. J. Am. Chem. Soc. **2011**, 133, 5656-5659.
- (23) Gilson-Osminksi, W.; Wulff, W. D., Unpublished results.
- (24) Li, X.; Burrell, C. E.; Staples, R. J.; Borhan, B. J. Am. Chem. Soc. 2012, 134, 9026-9029.
- (25) Friedman, L.; Shechter, H. J. Org. Chem. 1961, 26, 2522-2524.
- (26) Mukherjee, M.; Wulff, W. D., Unpublished results.
- (27) Zhao, W.; Wulff, W. D., Unpublished results.
- (28) Katritzky, A. R.; Fan, W. Q.; Li, Q. L. Tetrahedron Lett. 1987, 28, 1195-1198.

- (29) (a) *Chem. Eng. News.* **2011**, *89*, 25. (b) McLaughlin, M.; Widegren, M.; Ramirez, A.; Richardson, P.; Zlota, A.; Laird, T. *Org. Process Res. Dev.* **2012**, *16*, 3-10.
- (30) Lu, Z.; Zhang, Y.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7185-7194.
- (31) Deng, L.; Jacobsen, E. N. J. Org. Chem. 1992, 57, 4320-4323.
- (32) Bolvig, S.; Hansen, P. E. Magn. Reson. Chem. 1996, 34, 467-478.

CHAPTER 8

SULFOX-BOROX CATALYSIS CATALYTIC ASYMMETRIC EPOXIDATION OF ALDEHYDES

I think you can just a write a small chapter on this and someone else would take it further.

-William D. Wulff

8.1 Introduction

The field of asymmetric catalysis and organic synthesis has been enriched with many breakthrough developments in the last fifty years. One of those moments was the development of the Sharpless asymmetric epoxidation of allylic alcohols for the synthesis of the chiral epoxides. When any modern day synthetic organic chemist ponders the construction of a typical organic molecule, that chemist's thought process will reflexively consider how a disconnection can be sought to a Sharpless asymmetric epoxidation. In addition, this thought process will also include a similar analysis for many of the more recent asymmetric epoxidations including the Jacobsen² and Katsuki³ epoxidations, the Shi epoxidation⁴ and many others.⁵ It is now also instinctive for the synthetic organic chemist to analyze a retro-synthesis in terms any possible asymmetric catalytic kinetic resolution of epoxides due to the great applicability and reliability of the Jacobsen hydrolytic kinetic resolution process. 6 Clearly asymmetric catalysis has had a great impact on the way chemist think about using epoxides in making organic molecules. In all, chiral epoxides are highly versatile synthetic intermediates and for this reason a great deal of effort has been expended over the last three or four decades by both academic and

commercial laboratories to develop more catalytic asymmetric methods for the preparation of epoxides.⁵ The following chapter describes a novel method for the catalytic asymmetric synthesis of epoxides from aldehydes using our new SULFOX-BOROX catalyst.

8.2 Previous approaches towards catalytic asymmetric synthesis of epoxides

With the advent of vast applications of epoxides, a new method for the catalytic asymmetric synthesis of epoxides surfaces at regular intervals. Likewise the case of aziridines, there are primarily two approaches: a) oxidation of olefins using i) metal catalysts $^{1-3,5a,5c,7}$ ii) organocatalysis 4,8 ; oxidation of α,β -unsaturated carbonyl compounds using i) metal catalysts 9 ii) organocatalysis 10 b) addition of carbon to the aldehydes via i) α -halo enolate epoxidation (Darzens reaction) 11 ii) metal-carbene transfer (carbene generated from sulfur ylides) 12 iii) a reaction of a diazo compound with an aldehyde activated by Lewis acid (Scheme 8.1). 13 The former approach of oxidation of olefins has been benefitted from pioneering contributions from Sharpless, 1 Jacobsen 2,7e and Katsuki 3,7e epoxidation using metal catalysis and from Shi epoxidation 4 using organocatalysis. Yamamoto and coworkers have also reported epoxidation of allylic alcohols using various chiral Lewis acids. 7c,7d

Scheme 8.1 Different approaches towards catalytic asymmetric epoxidation

In terms of the addition of carbon to an aldehyde, one of the early approaches is the Darzens reaction, which involves an α -halo enolate. Very recently, Deng and co-workers reported the first example of a highly successful catalytic asymmetric Darzens reaction between α -chloro ketones and aldehydes using a phase transfer catalyst **421** (Scheme 8.2). It must be noted that they obtained *trans*- and tri-substituted epoxides. Prior to Deng's work, Arai and Shiroi have shown the use of cinchona alkaloid derived phase transfer catalyst to obtain only moderate enantioselectivity. Also, in 2007, Jeong and coworkers obtained enantiomeric excess of over 90% for reactions between a highly limited range of aromatic aldehydes and a single nucleophile, α -chloromethyl phenyl sulfone using a phase transfer catalyst.

Scheme 8.2 Catalytic asymmetric Darzens reaction ^{11a}

Aggarwal and coworkers reported asymmetric epoxidation using chiral sulfur ylides as the chiral auxiliaries. However, they did report one example of catalytic asymmetric epoxidation where they utilized chiral sulfide **424** to afford *trans*-epoxides **423** and **425** (Scheme 8.3).

Scheme 8.3 Catalytic asymmetric epoxidation using sulfur ylides ¹²

Ph N Ts + R1 H
$$\frac{Rh_2(OAc)_4 (1 \text{ mol}\%)}{Sulfide 424 (5-20 \text{ mol}\%)}$$
 $\frac{Ph}{N}$ Ts + R1 H $\frac{Rh_2(OAc)_4 (1 \text{ mol}\%)}{Sulfide 424 (5-20 \text{ mol}\%)}$ $\frac{O}{Ph}$ $\frac{O}{N}$ $\frac{O}{N}$

Scheme 8.3 cont'd

Rh₂(OAc)₄ (1 mol%)
Sulfide 424 (5-100 mol%)
Sulfide 424 (5-100 mol%)
BnEt₃N+Cl⁻ (0-20 mol%)
various solvents
20-40 °C

R² = aryl, olefin

Rh₂(OAc)₄ (1 mol%)
Sulfide 424 (5-100 mol%)
Ph
various solvents
20-40 °C

19 examples
Yield = 10-95%
ee = 20-94%
$$t/c$$
 = 1:1 to ≥98:2

More recently, Gong and coworkers reported the first example of asymmetric epoxidation of aldehydes involving diazoacetamides as the nucleophile to afford *cis*-epoxides **426** in high yields and ees (Scheme 8.3). They used chiral Lewis acids derived from either a combination of (R)-BINOL **55** and Ti(OⁱPr)₄ or (R)-3,3'-I₂-BINOL **56e** and Zr(OⁿBu)₄. Interestingly, they observed opposite enantiomers of **426** when they moved from one catalytic system to another using the same enantiomer of the ligands **55** and **56e**.

Scheme 8.4 Catalytic asymmetric epoxidation using diazoacetamides ¹³

The reaction between aldehyde and diazoacetamide 123a reported by Gong and coworkers is mediated by chiral Lewis acids. There are no examples of this reaction with a chiral Brønsted acid. This is probably due to the high acidity (pKa ~ -7) of protonated aldehydes. With the advent of a variety of BOROX catalysts developed during this doctoral research, we decided to examine novel BOROX catalysts in the case of the catalytic asymmetric epoxidation of the aldehydes. Prior to the screening of our catalyst, we decided to perform a background reaction in the presence of B(OPh)₃. It was interesting to observe that the epoxidation reaction is favored with diazoacetamide 123a as compared to diazoester 85 when reacted with benzaldehyde 127a (Scheme 8.5). The reaction of benzaldehyde and 1.14 equiv of ethyl diazoacetate 85 mediated by 14 mol% B(OPh)₃ gave the five products shown in Scheme 8.5A with the major

component as the β -keto ester 396a and its tautomer 397a in a total of 55% yield. A literature search revealed that several different products including the epoxide 395a (*trans*-epoxide is major) are known from the reaction of benzaldehyde and EDA mediated by Lewis or Brønsted acids. The same reaction afforded *cis*-epoxide 426a and β -keto amide 427a in 62% and 9% yield respectively when diazoacetamide 123a was used in the place of diazo ester 85. The *cistrans* ratio was found to be 10:1. It must be noted that there is no report for the racemic reaction between an aldehyde and the diazoacetamides. Moreover, it was found there was no reaction in the presence of VAPOL or VANOL ligand and in the absence of any catalyst. Hence, the challenges in this case were the high background reaction and the formation of the byproduct in the form of the β -keto amide 427a. These issues have been addressed and are discussed in the subsequent sections. Meanwhile, other diazoacetamides 128a and 128c were also tried for the racemic reaction (Scheme 8.5C).

Scheme 8.5 B(OPh)₃ catalyzed reaction between benzaldehyde and (A) diazoester 85 (B) diazoacetamide 123a (C) diazoacetamides 128a and 128c

Scheme 8.5 cont'd

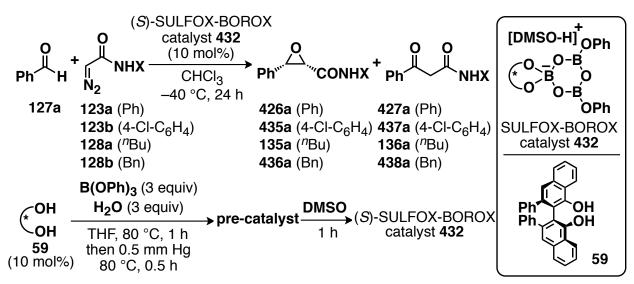
8.3 Initial optimization of catalytic asymmetric epoxidation of aldehydes

Given the result we got from the background reaction mediated by B(OPh)₃, we performed the reaction of diazocetamide **123a** with benzaldehyde in the presence of various BOROX catalysts (10 mol%) derived from the VAPOL ligand (Table 8.1, entries 1-4). Low yields and

ees were obtained employing the catalysts 215k, 220 and 222a derived from aniline 126k, dimethylacetamide 219 and DMSO 221a, respectively (Table 8.1, entries 2-4). In fact, racemic epoxide was obtained in the case of the catalyst 215k derived from aniline. Interestingly, a slight increase in the asymmetric induction was observed when the SULFOX-BOROX catalyst 432 derived from VANOL was used (Table 8.1, entry 5 vs. 4). A huge jump in the enantioinduction was observed at -40 °C using the catalyst 432 derived from DMSO and the VANOL ligand (Table 8.1, entries 6). As a control, the reaction was also, performed without any base using both the ligands (Table 8.1, entries 1 and 9). An ee of 45% in the case of catalyst 434 derived from the VANOL ligand suggests that there is a possibility of the reaction catalyzed by a BOROX catalyst derived from diazoacetamide 123a. Another viable possibility of its being a chiral Lewis acid catalyzed reaction cannot be excluded. Nonetheless, based on the results obtained from Table 8.1, it seems that the realization of an epoxidation reaction using a novel SULFOX-BOROX catalyst was quite possible.

Table 8.1 Initial screening of various BOROX catalysts for asymmetric epoxidation reaction ^a

Ph H NHPh
$$(3)$$
-BOROX catalyst $(10 \text{ mol}\%)$ $(10 \text{ mol}\%)$


Table 8.1 cont'd

#	Ligand	Base	Cat.	Temp (°C)	127a :123a	Yield 426a (%)	ee 426a (%)	c/t d	Yield 427a (%) ^e
1	(S)-VAPOL	none	431	25	1.2:1	20 (25)	13	9:1	5.1
2	(S)-VAPOL	$PhNH_2$	215k	25	1.2:1	35 (36)	<1	8:1	4.2
3	(S)-VAPOL	Me ₂ NCOMe	220	25	1.2:1	29 (31)	13	7:1	2.3
4	(S)-VAPOL	DMSO	222a	25	1.2:1	20 (27)	1	10:1	3.4
5	(S)-VANOL	DMSO	432	25	1.2:1	35 (41)	20	13:1	6.2
6	(S)-VANOL	DMSO	432	-40	1:1.25	50 (56)	63	50:1	15.3
7	(S)-VANOL	Me ₂ NCOMe	433	-40	1:1.25	57 (71)	35	50:1	5.3
8	(S)-VANOL	none	434	-40	1:1.25	40 (48)	45	21:1	8.6

Unless otherwise specified, all reactions were performed with 10 mol% BOROX catalyst. Entries 1-5 were performed with 0.50 mmol diazoacetamide **123a** (1.0 equiv, 0.5 M), 0.6 mmol benzaldehyde **127a** (1.2 equiv) and entries 6-9 were performed with 0.50 mmol diazo **123a** (1.25 equiv), 0.4 mmol benzaldehyde **127a** (1.0 equiv, 0.4 M). The pre-catalyst was prepared by heating 1 equiv of (S)-ligand (10 mol%), 3 equiv of commercial B(OPh)₃ and and 3 equiv of H₂O in THF at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Thereafter, the BOROX catalyst was prepared by stirring the pre-catalyst with 10 mol % base in CDCl₃ for 1 h at 25 °C. Isolated Yield. Yield in parenthesis determined by HNMR spectra with Ph₃CH as internal standard. Characteristic Determined by HPLC. Ratio determined by integration of the methine protons of cis- and trans-epoxide in the HNMR spectrum of the crude reaction mixture. Determined by HNMR spectra with Ph₃CH as internal standard.

After initial success, we then thought to do an initial screening of various diazoacetamides and the results are presented in Table 8.2. Almost similar ees were obtained irrespective of the diazoacetamide used with 10 mol% catalyst loading. We decided to choose diazoacetamide 123a and 128a for further screening. This was done for two reasons: a) one is aromatic and the other one is aliphatic b) diazoacetamide 128a is more soluble than other diazoacetamides.

Table 8.2 Initial screening of various diazoacetamides for asymmetric epoxidation.

#	Diazo (X)	Yield epoxide (%)	ee epoxide (%)	cis/trans d	Yield β-keto amide (%) e
1	C_6H_5	68 (71)	62	40:1	13.6
2	4-Cl-C ₆ H ₄	60 (66)	52	29:1	8.5
3	<i>n</i> -C ₄ H ₉	50 (55)	62	16:1	13.7
4	C ₆ H ₅ CH ₂	55 (59)	62	>50:1	15.5

^a Unless otherwise specified, all reactions were performed with 10 mol % (S)-SULFOX-BOROX catalyst **432** and 0.50 mmol diazoacetamide (1.25 equiv), 0.4 mmol benzaldehyde **127a** (1.0 equiv, 0.4 M) at –40 °C in CHCl₃. The pre-catalyst was prepared by heating 1 equiv of (S)-VANOL (10 mol %), 3 equiv of commercial B(OPh)₃ and 3 equiv of H₂O in THF at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Thereafter, the (S)-SULFOX-BOROX catalyst **432** was prepared by stirring the pre-catalyst with 10 mol % DMSO in CHCl₃ for 1 h at 25 °C. ^b Isolated Yield. Yield in parenthesis determined by ¹H NMR spectra with Ph₃CH as internal standard. ^c Determined by HPLC. ^d Ratio determined by integration of the methine protons of *cis*- and *trans*-epoxide in the ¹H NMR spectrum of the crude reaction mixture. ^e Determined by ¹H NMR spectra with Ph₃CH as internal standard.

We then examined variations in the temperature and concentration of the epoxidation reaction using the two diazoacetamides 123a and 128a and 10 mol% catalyst loading. The results are presented in Table 8.3. On decreasing the concentration from 0.4 M to 0.2 M, a marginal increase in asymmetric induction was observed in the cases of both diazoacetamides (Table 8.3, entries 1-2 verses 3-4). At this point, we decided to change the solvent from CHCl₃ to toluene and a huge increase in the ee up to 91% was observed in the case of diazoacetamide 128a (Table 8.3, entries 4 verses 5). This, probably, can be explained by the assumption that the charged ion-pairs i.e. protonated DMSO (interacting with either of the reactants) and boroxinate anion are more stabilized and separated in a polar solvent (CHCl₃) than a non-polar solvent (toluene) due to solvation. However, similar increase in ee (90%) was observed in the case of CHCl₃ when the concentration of the reaction was further decreased to 0.1 M (Table 8.3, entry 6). It must be noted that the *cis:trans* ratio is also higher when toluene is used as the solvent as compared to CHCl₃. Nonetheless, we were able to obtain ee up to 97% when the reaction was performed in toluene at -60 °C and 0.1 M with diazoacetamide 128a (Table 8.3, entry 7). It must be noted that the amount of β -keto amide 136a was also minimized during this optimization. However, the major concern was the low yield of the epoxide in almost all the cases. Thereafter, further optimization was carried out using diazoacetamide 128a keeping the temperature at -60 °C and concentration at 0.1 M.

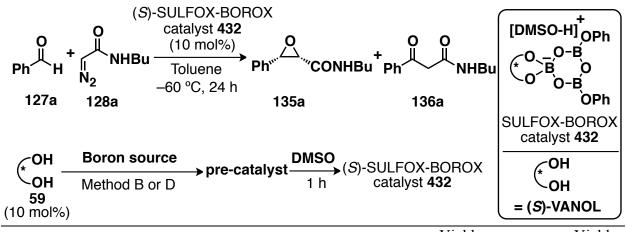
Table 8.3 Screening of diazoacetamides at different concentrations, solvents and temperatures.

#	Diazo (X)	Solvent	Temp (°C)	Conc. (M)	Yield epoxide (%)	ee epoxide (%)	c/t d	Yield β -keto amide $\binom{9}{e}^e$
1	Ph	CHCl ₃	-40	0.4	68 (71)	62	40:1	13.6
2	ⁿ Bu	CHCl ₃	-40	0.4	50 (55)	62	16:1	13.7
3	Ph	CHCl ₃	-40	0.2	44 (45)	70	24:1	20.0
4	ⁿ Bu	CHCl ₃	-40	0.2	55 (59)	73	31:1	9.8
5	ⁿ Bu	PhCH ₃	-40	0.2	46 (50)	91	90:1	7.0
6^f	ⁿ Bu	CHCl ₃	-40	0.1	60 (64)	90	54:1	5.5
7	ⁿ Bu	PhCH ₃	-60	0.1	58 (62)	97	>100:1	7.0

Unless otherwise specified, all reactions were performed with 10 mol % (*S*)-SULFOX-BOROX catalyst **432** and 0.50 mmol diazoacetamide (1.25 equiv), 0.4 mmol benzaldehyde **127a** (1.0 equiv, C M) at temp °C in the solvent. The pre-catalyst was prepared by heating 1 equiv of (*S*)-VANOL (10 mol %), 3 equiv of commercial B(OPh)₃ and 3 equiv of H₂O in THF at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Thereafter, the (*S*)-SULFOX-BOROX catalyst **432** was prepared by stirring the pre-catalyst with 10 mol % DMSO in solvent for 1 h at 25 °C.

Bisolated Yield. Yield in parenthesis determined by HNMR spectra with Ph₃CH as internal standard.

Characteristic performance of the methine protons of cis- and trans-epoxide in the HNMR spectrum of the crude reaction mixture.


Determined by HNMR spectra with Ph₃CH as internal standard.

The ratio of **127a**:**128a** is 2:1.

In order to increase the yield of the epoxide 135a, we then thought to vary the equivalents of both components i.e. diazoacetamide 128a and benzaldehyde 127a (Table 8.4, entries 1-7). A drop of 5% in ee along with increase of 10% in yield was observed when 3 equivalents of diazoacetamide 128a was employed (Table 8.4, entry 2). To our delight, substantial increase in yield was observed when 3 or 5 equivalents of benzaldehyde 127a were employed in asymmetric epoxidation reaction (Table 8.4, entries 4 and 6). Although, high yields were obtained, it is impractical to utilize such a high excess of one reagent. So we decided to utilize 2 equivalents of benzaldehyde, which resulted the epoxide 135a in 65% yield and 98% ee. At this point, it worth mentioning that when the entry 4 of table 8.4 was repeated with the catalyst generated from 3 equivalents of DMSO, only 15% of epoxide was obtained (Table 8.4, entry 5). One of the variation was to utilize the purified B(OPh)₃ to prepare the catalyst. However, a substantial decrease in yield and ee were observed when freshly distilled B(OPh)₃ was employed (Table 8.4, entries 8-9). The reason for this dip is not known yet. At this point of time we decided to utilize BH₃•Me₂S as the boron source in place of B(OPh)₃. Not only this was expected to give better results, but also this would provide us a handle to screen different alcohols facilitating the screening of various boroxinate catalysts. Unfortunately, it resulted epoxide 135a in 60% yield and 94% ee only (Table 8.4, entry 10). One of the important observations was that the diazoacetamide 128a was added as solid which resulted in low solubility of the diazo compound at -60 °C. Hence, we decided to add the diazo as a solution in toluene. An appreciable increase in the yield up to 82% was observed (Table 8.4, entry 11). Thereafter, utilizing 1.1 equiv of benzaldehyde with 10 mol% catalyst 432, we were able to obtain epoxide 135a in 82% yield and 98% ee (Table 8.4, entry 12). To our delight, the reaction resulted in 98% ee with a slight drop

in yield (73%) when 5 mol% catalyst was employed (Table 8.4, entry 13). Last but not least, we tried another variation where diazoacetamide **128a** was added prior to the addition of the benzaldehyde **127a** (Table 8.4, entry 14). This was done to bring the large volume (diazo **128a** was added as a solution) of the toluene to –60 °C before the reaction starts. An improved result of 88% yield and 99.3% ee was obtained and thus this became the procedure of choice (Table 8.4, entry 14). In fact, high yield and ee was obtained with 5 mol% catalyst loading (Table 8.4, entry 15). It must be remembered that in order to screen various diazoaceatmides, which are insoluble in toluene, procedure used in entry 4 of Table 8.4 with either B(OPh)₃ or BH₃•Me₂S would be the procedure of choice.

Table 8.4 Varying the equivalents of aldehydes and boron sources and sequence of events.

#	Boron source	Pre- catalyst (method)	Conc. (M)	127a (equiv)	128a (equiv)	Yield 135a (%)	ee 135a (%)	Yield 136a (%) ^d	_
1	B(OPh) ₃	В	0.1	1	1.25	58 (62)	97	7	
2	B(OPh) ₃	В	0.1	1	3	68 (72)	92	9	
3	$B(OPh)_3$	В	0.1	1	1	60 (63)	98	6	
4	$B(OPh)_3$	В	0.1	3	1	75 (80)	97	9	
5	$B(OPh)_3^e$	В	0.1	3	1	-(15)	_	6	
6	$B(OPh)_3$	В	0.1	5	1	80 (89)	99	8	
7	B(OPh) ₃	В	0.1	2	1	65 (72)	98	9	

Table 8.4 cont'd

8	$B(OPh)_3^f$	В	0.1	2	1	50 (55)	73	10
9	$B(OPh)_3^{f, g}$	В	0.1	2	1	50 (59)	80	8
10	BH ₃ •Me ₂ S	E	0.1	2	1	60 (64)	94	17
11	$\mathrm{BH_3} { ilde{\bullet}} \mathrm{Me_2} \mathrm{S}^{g,h}$	E	0.05	2	1	82 (85)	95	6
12	BH_3 • $Me_2S^{g,h}$	E	0.05	1.1	1	82 (84)	98	1
13	BH_3 • $Me_2S^{g,i}$	E	0.05	1.1	1	73 (75)	98	2
14	BH ₃ •Me ₂ S ^{g,j}	E	0.05	1.1	1	88 (90)	99.3	<1
15	BH ₃ •Me ₂ S ^{g,i,j}	E	0.05	1.1	1	79 (80)	99	2

^a Unless otherwise specified, all reactions were performed with 10 mol % SULFOX-BOROX catalyst 432 and 0.2 mmol diazo 128a (1.0 equiv, C M), benzaldehyde 127a (x equiv) at -60 °C in toluene. The pre-catalyst was prepared either by Method B or Method E. Method B: By heating 1 equiv of (S)-VANOL (10 mol %), 3 equiv of commercial B(OPh)₃ and 3 equiv of H₂O in THF at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Method E: By heating 1 equiv of (S)-VANOL (10 mol %), 3 equiv of BH3•Me2S, 2 equiv of PhOH and 3 equiv of H2O in toluene at 100 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 100 °C. Thereafter, the SULFOX-BOROX catalyst 432 was prepared by stirring the pre-catalyst (prepared by either method B or D) with 10 mol% DMSO in toluene for 1 h at 25 °C. All but entry 8 have shown the *cis:trans* ratio to be >100:1. The *cis:trans* ratio is 45:1 for entry 8. The cis:trans ratio is determined by integration of the methine protons of cis- and transepoxide in the ¹H NMR spectrum of the crude reaction mixture. ^b Isolated Yield. Yield in parenthesis determined by ¹H NMR spectra with Ph₃CH as internal standard. ^c Determined by HPLC. ^d Determined by ¹H NMR spectra with Ph₃CH as internal standard. ^e 3 equivalents of DMSO were added to make the catalyst. f Freshly distilled B(OPh)3 used. Diazoacetamide 128a was added as a solution in toluene. h Reaction time = 1.5 h. i 5 mol% catalyst loading. ^j Diazoacetamide **128a** was added prior to the addition of benzaldehyde 127a.

One of the last experiments undertaken was utilizing the BOROX catalyst generated by the simple mixing of the (S)-VANOL, 3 equiv B(OPh)₃ and 1 equiv DMSO. This would ideally simplify the procedure to a great deal and would lead to a one-pot procedure. Unfortunately, an

appreciable decrease in ee (\sim 17%) and *cis:trans* ratio was observed in these cases (Table 8.5, entry 5 *vs.* 6). However, this method can be used for the large scale synthesis of epoxides as the purification can be done by crystallization, which in turn, increases the diastereoselectivity and enantioselectivity (discussed in later sections of this chapter).

Table 8.5 Screening of the one-pot procedure for asymmetric epoxidation.

#	Solvent	Temp (°C)	Conc. (M)	Yield 135a (%) ^b	ee 135a (%)	c:t ^d	Yield 136a (%) ^e
1 f,g	CHCl ₃	-40	0.2	55 (59)	73	31:1	9.8
2^f	CHCl ₃	-40	0.2	66 (70)	69	11:1	2.0
3^h	CHCl ₃	-60	0.1	65 (70)	60	11:1	3.0
$4^{h,i}$	CHCl ₃	-60	0.1	60 (64)	70	11:1	4.0
5 ^g	PhCH ₃	-60	0.1	75 (80)	97	>100:1	9.0
6	PhCH ₃	-60	0.1	75 (79)	80	13:1	4.0
7	PhCH ₃	-60	0.2	68 (75)	74	15:1	3.5
8	PhCH ₃	-40	0.1	66 (71)	82	13:1	4.0

^a Unless otherwise specified, all reactions were performed with 10 mol % (S)-SULFOX-BOROX catalyst **432** and 0.2 mmol diazoacetamide (1.0 equiv, C M), 0.6 mmol benzaldehyde **127a** (3.0 equiv) at temp °C in the solvent. The (S)-SULFOX-BOROX catalyst **432** was prepared directly by stirring a mixture of 1 equiv of (S)-VANOL (10 mol %), 3 equiv of commercial B(OPh)₃ and 10 mol % DMSO in solvent for 1 h at 25 °C. ^b Isolated Yield. Yield in parenthesis determined by ¹H NMR spectra with Ph₃CH as internal standard.

Table 8.5 cont'd

^c Determined by HPLC. ^d Ratio determined by integration of the methine protons of *cis*- and *trans*-epoxide in the ¹H NMR spectrum of the crude reaction mixture. ^e Determined by ¹H NMR spectra with Ph₃CH as internal standard. ^f The ratio of **127a:128a** is 1:1.25. ^g The precatalyst was prepared by heating 1 equiv of (S)-VANOL (10 mol %), 3 equiv of commercial B(OPh)₃ and 3 equiv of H₂O in THF at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Thereafter, the (S)-SULFOX-BOROX catalyst **432** was prepared by stirring the pre-catalyst with 10 mol % DMSO in solvent for 1 h at 25 °C. ^h The diazoacetamide **128a** was added as a solution in CHCl₃. ⁱ Tetramethylene sulfoxide (TMSO) is used as the base.

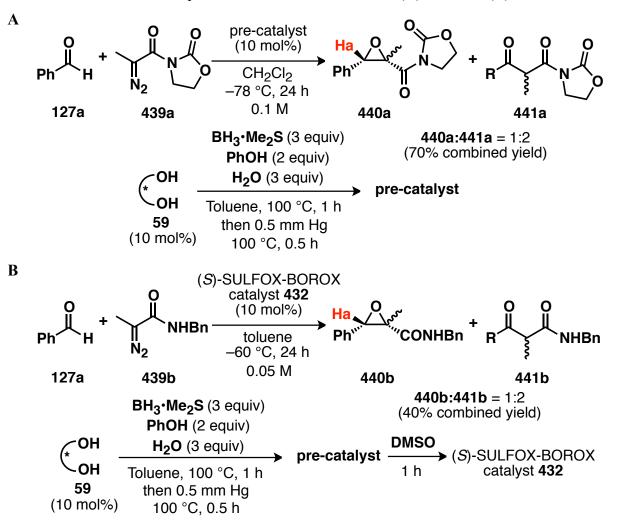
8.4 Substrate Scope

After we obtained the final optimized procedure, we then carried out a general screen for the catalytic asymmetric epoxidation reaction. The results of an examination of the scope of epoxidation reaction are presented in Table 8.5. Excellent yields and asymmetric inductions were observed for a number of substituted benzaldehydes (Table 8.5, entries 1, 4-12) and polyaromatic compounds (Table 8.5, entries 2-3). While the *p*-tolualdehyde gave high induction (entry 5), the *o*-tolualdehyde is slower and resulted the epoxide **135c** in 60% yield and 80% ee only (entry 4). Excellent result was obtained with *m*-anisaldehyde (entry 5). The reactions with electron-withdrawing groups at para-position gave high inductions (entries 7-8 and 11-12). These electron-withdrawing groups include nitro, bromide, cyanide and acetate. In fact, even *m*-bromobenzaldehyde gave excellent yield and asymmetric induction (entry 9). However, the reaction with 2-F,4-Br-C₆H₄CHO **127x** afforded the epoxide **135x** in 70% yield and 80% ee only (entry 10). Unfortunately, the reaction with 2-picolinaldehyde resulted the epoxide in 20% yield only (not shown here).

Table 8.6 Catalytic asymmetric epoxidation of aryl and alkyl aldehydes ^a

$$(S)\text{-SULFOX-BOROX} \\ \text{catalyst } \textbf{432} \\ \text{(10 mol\%)} \\ \textbf{127} \quad \textbf{128a} \\ \textbf{128a} \\ \textbf{135} \\ \textbf{136} \\ \textbf{I35} \\ \textbf{136} \\ \textbf{I36} \\ \textbf{I$$

#	R	series	Yield 135 (%) ^b	ee 135 (%) ^c	cis/trans d	136 (%) ^e
1	- ş - <u>(</u>)	a	88	99	>100:1	<1
2		b	97	92	35:1	<1
3	-}-	b'	92	98	>100:1	<1
4	Me -ξ-	c	60	80	>100:1	<1
5	−§- OMe	d	80	99	>100:1	<1
6	-}-	e'	80	90	31:1	6
7	-{{_No₂	f	70	92	13:1	8


Table 8	Γable 8.6 cont'd							
8	-§ √_ >−Br	g	88	99	>100:1	<1		
9	-§√Br	\mathbf{g}'	88	96	>100:1	4		
10	-} -} -}	X	70	80	39:1	9		
11	-§ ∕ >CN	y	84	96	>100:1	<1		
12	-} √_ OAc	z	82	97	>100:1	4		
13		0	65	78	nd	9		
14	· * * * * * * * * * * * * * * * * * * *	p′	84	90	nd	6		

Unless otherwise specified, all reactions were performed with 10 mol % (S)-SULFOX-BOROX catalyst **432** and 0.2 mmol diazo **128a** (1.0 equiv, 0.05 M), aldehyde **127** (1.1 equiv) at -60 °C in toluene. The pre-catalyst was prepared either by heating 1 equiv of (S)-VANOL (10 mol %), 3 equiv of BH₃•Me₂S, 2 equiv of PhOH and 3 equiv of H₂O in toluene at 100 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 100 °C. Thereafter, the (S)-SULFOX-BOROX catalyst **432** was prepared by stirring the pre-catalyst with 10 mol % DMSO in toluene for 1 h at 25 °C. In all cases, diazoacetamide **128a** was added a solution in toluene and prior to the addition of aldehyde. All liquid aldehydes are added in neat form whereas all solid aldehydes are added as a solution in toluene maintaining the concentration of the reaction to be 0.05 M in diazoaceatamide **128a**. b Isolated Yield. Determined by HPLC. d The cis:trans ratio is determined by integration of the methine protons of cis- and trans-epoxide in the H NMR spectrum of the crude reaction mixture. e Determined by H NMR spectra with Ph₃CH as internal standard.

In terms of aliphatic substrates, while the *n*-nonanal gave high induction (entry 14), the *n*-butanal is slower and resulted the epoxide **1350** in 65% yield and 78% ee only (entry 13). Recently, our group reported the first example of catalytic asymmetric aziridination for the

synthesis of tri-substituted aziridines.¹⁵ So we thought of employing the same protocol for tri-substituted epoxidation. Intial experiments suggested the formation of the tri-substituted epoxide using diazoacetamide **439a** as shown as in Scheme 8.6. The ¹H NMR analysis of the crude reaction mixture indicates that the ratio of the epoxide **440a** and β -keto amide **441a** is approximately 1:2. (Scheme 8.6A). In another experiment, same ratio (1:2) of epoxide **440b** and β -keto amide **441b** was obtained when diazoacetamide **439b** was utilized (Scheme 8.6B). The peak for Ha in CDCl₃ has been assumed to appear at δ = 4.25 ppm for **440a** and δ = 4.08 ppm for **440b** respectively.

Scheme 8.6 Tri-substitute epoxidation between PhCHO and (A) 439a and (B) 439b

8.5 Determination of absolute stereochemistry of epoxides

The absolute configurations of the major diastereomer i.e. *cis*-epoxide **426a** and **135a** has been determined by three different ways.

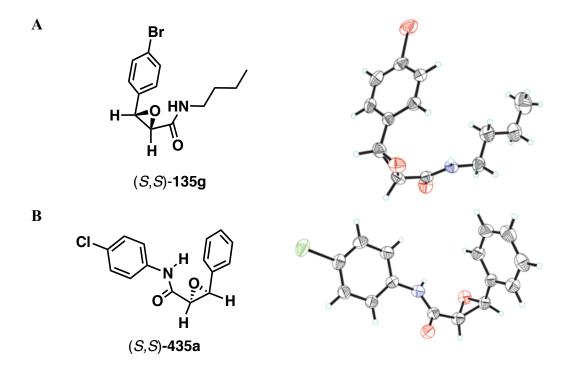
8.5.1 *Via* optical rotation

The epoxide **426a** is a reported in literature; ¹³ hence we compared the optical rotation of the epoxide **426a** with 62% ee to the reported value for the known epoxide **426a** with 99% ee (Scheme 8.7). It was quite surprising to know that the *cis*-epoxide **426a** results from a *Re* face attack of the diazoacetamide **123a** on the aldehyde using the (S)-SULFOX-BOROX catalyst **432** derived from (S)-VANOL. Interestingly, this indicates that the facial selectivity of the *cis*-epoxidation with diazoacetamide is opposite for *cis*-aziridination with ethyldiazoacetate using the same enantiomer of the ligand because the *cis*-aziridine results from a *Si* face attack of the diazoacetate on the (S)-catalyst-imine complex. Similar kind of observation was made in the case of *trans*-aziridination when compared to *cis*-aziridination. ¹⁶

Scheme 8.7 Comparison of the optical rotation values of epoxide (*S*,*S*)-426a obtained from the current work and from the literature

Ph H + N₂ (S)-SULFOX-BOROX catalyst 432 (10 mol%)
CHCl₃ -40 °C, 24 h

127a 123a (S,S)-426a 427a
68% yield, 62% ee 14% yield


$$[\alpha]_{D}^{20} = +14.7 \text{ (c=1.0, CH}_{2}\text{Cl}_{2}, 62\%\text{ee}) \text{ This work}$$

$$[\alpha]_{D}^{20} = +19.1 \text{ (c=0.9, CH}_{2}\text{Cl}_{2}, 99\%\text{ee}) \text{ Literature value (Reference 13)}$$

8.5.2 *Via* X-ray structure

The absolute configuration of the epoxides obtained in our catalytic asymmetric epoxidation protocol was further confirmed by X-ray crystallography. To our delight, we were able to obtain X-ray diffraction analysis of epoxides 135g and 435a, which further confirms *cis*-epoxidation and the absolute configuration. It must be noted that epoxides 135g and 435a were obtained from (S)-SULFOX-BOROX catalyst 432 derived from (S)-VANOL ligand (Table 8.6, entry 8 and Table 8.2, entry 2). The ORTEP drawing of *cis*-epoxides (S,S)-135g and (S,S)-435a are shown in Figure 8.1.

Figure 8.1 ORTEP drawing of *cis*-epoxides (A) (S,S)-135g and (B) (S,S)-435a

8.5.3 Via circular dichroism

Last but not the least, the absolute configuration of epoxides 135 was confirmed by the excellent method developed by Borhan and coworkers using circular dichroism. ¹⁷ This work

was done in collaboration with Carmin Burrell, a current graduate student in Borhan group. The method was applied to a number of epoxides as listed in Figure 8.2B.

The absolute stereochemistry of the *cis*-epoxides was confirmed through evaluation by exciton coupled circular dichroism (ECCD). The sign of the observed ECCD curve is a reflection of the stereochemistry of the epoxides in that a pair of enantiomeric molecules will exhibit ECCD signals with opposite sign. To develop a mnemonic for this class of substrates, initially an enantiomeric pair of epoxides was submitted to ECCD conditions. Each epoxide (40 equivalents, 0.04 μmol) was added to a 1μM solution of the porphyrin tweezer, Zn-C₅-TPFP-Tz, in hexanes at 0 °C. To our delight, under these conditions, the enantiomers did provide ECCD signal of opposite sign (Figure 8.2A).

Figure 8.2 Determination of absolute stereochemistry of *cis*-epoxides 135, 426a and 436a. (A) CD spectra for the two enantiomers of *cis*-epoxide 135g (B) Observed ECCD amplitudes for chiral *cis*-epoxides. All measurements were performed with 40 equivalents of the substrates (except 150 equiv used for (*S*,*S*)-426a) and 1μM tweezer in hexanes at 0 °C. (C) Proposed mnemonic explaining the signs of the observed ECCD signals.

A

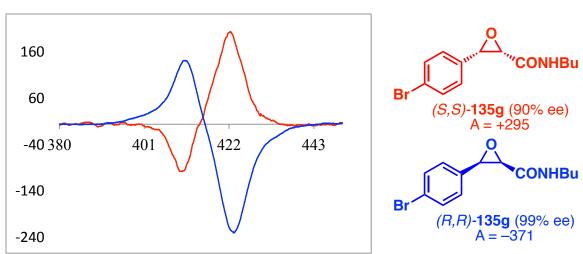


Figure 8.2 cont'd

B

The host-guest, epoxide-tweezer, complex is formed by coordination of the epoxidic oxygen and the oxygen of the amide carbonyl to the zinc centers of the porphyrin tweezer. The sterics of the epoxide governs the overall rotation of the porphyrins relative to one another and the sign of the ECCD signal. As shown in Figure 8.2C, the rear porphyrin, P2, coordinates to rear face of the epoxide *via* the oxygen lone pair electrons. This rear face of the epoxide has two hydrogen substituents and so this porphyrin remains essentially static. The amide substituent is positioned to the front face of the epoxide; therefore, P1 approaches the molecule to the front face. Once bound, there is a steric interaction between the R group and the porphyrin forcing the porphyrin to rotate away from the R group. In the case of the (2R,3R) epoxides, P1 rotates clockwise and results in an overall counterclockwise orientation of P1 relative to P2. Hence, for these epoxides, a negative ECCD signal is expected. For the enantiomeric (2S,3S) epoxides, an overall clockwise arrangement and a positive ECCD signal are expected. It was delightful to

observe the correct prediction of the absolute stereochemistry of *cis*-epoxide when compared to the already established absolute stereochemistry of (*S*,*S*)-135g *via* X-ray crystal structure. In fact, all the substrates do follow the proposed mnemonic.

In the case of *trans*-epoxide (minor product) obtained from the catalyst derived from the (S)-VANOL, the shown absolute configuration (Figure 8.3A) is based on a hypothetical mnemonic *that will require conformation by other means*. It is hypothesized that the rear porphyrin P2 binds to the epoxide to the rear face and rotates away from the R group. The front porphyrin binds to the carbonyl of the amide from the front face and rotates toward the hydrogen. This gives an overall clockwise helicity of the porphyrins and a positive sign is expected for S,R configured substrates and a negative signal for R,S substrates. Based on this hypothesis, the absolute configuration of the *trans*-epoxide is believed to be R,S.

Figure 8.3 Determination of absolute stereochemistry of *trans*-epoxide (R,S)-135g. (A) Observed ECCD amplitude for chiral *trans*-epoxide (R,S)-135g. All measurements were performed with 20 equivalents of the substrate and 1 μ M tweezer in hexanes at 0 °C. (C) Proposed mnemonic explaining the signs of the observed ECCD signal.

A

Figure 8.3 cont'd

B

$$P2$$
 $P1$
 $P2$
 $P1$
 $P2$
 $P1$
 $P2$
 $P1$
 $P2$
 $P2$
 $P2$
 $P3$
 $P4$
 $P4$
 $P5$
 $P5$
 $P5$
 $P7$
 P

Finally, the absolute configuration of both the major (*cis*-epoxide) and minor (*trans*-epoxide) diastereomers have been determined using various techniques. Although, the absolute configuration of *trans*-epoxide needs to be confirmed by other means, it is quite surprising to observe opposite facial selectivity for *cis*- and *trans*-epoxide diastereomers using the catalyst derived from the same enantiomer of the ligand ((*S*)-VANOL in this case). To summarize, the *cis*-epoxide is obtained from a *Re* face attack of the diazoacetaamide on the aldehyde and the *trans*-epoxide is resulted from a *Si* face attack, when the catalyst derived from (*S*)-ligand is employed.

8.6 Mechanistic study towards the identification of the actual catalyst in the epoxidation reaction

A small amount of time of this doctoral research has been spent in the understanding of the

mechanism of the current catalytic asymmetric epoxidation reaction. A few of the experiments are described below.

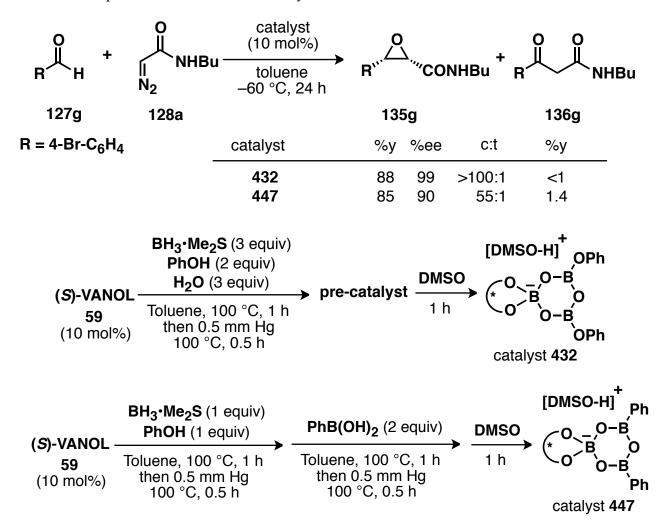
8.6.1 Investigating non-covalent interactions

In the process of screening different diazo compunds, we found that the diazoacetamide **128c** derived from benzhydryl amine **126a** resulted the epoxide **443a** in 68% yield and 74%ee (Table 8.6, entry 1). This reflects an increase of 9% yield and 12% ee when compared to the epoxide **436a** (59% yield and 62%ee; Table 8.6, entry 2) obtained from the diazoacetamide **128b** derived from benzyl amine. This result indicates the possibility of certain non-covalent interactions (CH- π or π - π type) operating in the epoxidation reaction.

Up till now, we have used secondary diazoacetamide for the epoxidation reaction. In the case of aziridination reaction, it is observed that while diazoacetamides of the type 123/128 containing a secondary amide give *trans*-aziridines, ¹⁶ tertiary diazoacetamides lacking the N-H bond will react with a switch in the diastereoselectivity to give *cis*-aziridines. ^{16,18} The pertinent question thus becomes, will a tertiary diazoacetamide of type 442a (Table 8.7) also reverse the diastereoselectivity to give the *trans*-epoxides? The answer is no. Surprisingly, β -keto amide 446a ¹⁹ and its enol form were observed when the benzaldehyde 127a was reacted with diazoacetamide 442a (Table 8.6, entry 3). In fact, same was observed when a) the reaction was carried out with EDA 85; b) the reaction was performed in the presence of commercial B(OPh)₃ only for all three cases. It suggests the importance of the secondary diazoacetamide for the successful realization of the catalytic asymmetric epoxidation reaction. Also, likewise the case of *trans*-aziridines, ²⁰ it indicates the possibility of a potential hydrogen bonding interaction

between the catalyst and the N-H of the secondary diazoacetamide in the transition state of the reaction.

Table 8.7 N-H verses N-Me and O in the catalytic asymmetric epoxidation reaction


#	Diazo (X)	Yield epoxide (%) ^b	ee epoxide (%)	cis/trans ^d	Yield β-keto amide (%) e
1	NHCHPh ₂	65 (68)	74	>50:1	9.5
2	NHCH ₂ Ph	59 (55)	62	>50:1	15.5
3	N(Me)CH ₂ Ph	<1	_	_	25^f
4	OCH ₂ CH ₃	<1	_	_	40

^a Unless otherwise specified, all reactions were performed with 10 mol % SULFOX-BOROX catalyst **432** and 0.50 mmol diazoacetamide (1.25 equiv), 0.4 mmol benzaldehyde **127a** (1.0 equiv, 0.4 M) at –40 °C in CHCl₃. The pre-catalyst was prepared by heating 1 equiv of (S)-VANOL (10 mol %), 3 equiv of commercial B(OPh)₃ and 3 equiv of H₂O in THF at 80 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 80 °C. Thereafter, the SULFOX-BOROX catalyst **432** was prepared by stirring the pre-catalyst with 10 mol % DMSO in CHCl₃ for 1 h at 25 °C. Determined by ¹H NMR spectra of the crude reaction mixture with Ph₃CH as internal standard. Yield in parenthesis is isolated yield. ^c Determined by HPLC. ^d Ratio determined by integration of the methine protons of cis- and trans-epoxide in the ¹H NMR spectrum of the crude reaction mixture. ^e Determined by ¹H NMR spectra of the crude reaction mixture with Ph₃CH as internal standard. ^f 50% yield of the enol form of **446a** was also observed.

8.6.2 Screening of a different catalytic system

We then decided to change the catalytic system in order to have a better understanding of the possible interactions of the substrate and the catalyst. One of the changes was the removal of the phenol component from the SULFOX-BOROX catalyst **432**. This would ideally result in a catalyst of type **447** (Scheme 8.8). Although the structure of the proposed catalyst is not confirmed, the epoxidation reaction resulted in epoxide **135g** in 85% yield and 90% ee with *cis:trans* = 55:1 using the catalyst **447**. Upon comparison to the reaction performed with catalyst **432**, a slight drop of 9% ee was observed in this case.

Scheme 8.8 Epoxidation reaction with catalyst **432** and **447**

8.6.3 Catalytic asymmetric epoxidation reaction with and without DMSO

We have seen before that reaction also works in the absence of any base (Table 8.1, entry 1 and 8). The asymmetric induction observed in those cases was low as compared to the results obtained from SULFOX-BOROX catalyst 432 (Table 8.1, entry 6 vs. 9) respectively. At this point we became interested to employ newly optimized procedure and diazoacetamide 128a for the epoxidation reaction where no base is used as an additive. Surprisingly, a drop of only 7% yield and 16% ee was noticed when the aldehyde was added prior to the addition of the diazoacetamide 128a in the absence of DMSO (Table 8.8, entry 4 vs. 3). However, the difference was reduced to 8% when the order of the addition of the aldehyde and diazoacetamide was switched (Table 8.8, entry 6 vs. 5). Similar observation was made for p-bromobenzaldehyde 127g (Table 8.8, entry 8 vs. 7). These intriguing results suggested the possibility of a different catalytic system where boroxinate of type 448a is generated by the diazoacetamide 128a itself, when there is no DMSO added. If this is true, then the epoxidation reaction would be similar to our aziridination reaction where the boroxinate catalyst is actual a substrate induced catalyst. However, a different mechanism along the idea of chiral Lewis acid type cannot be discarded.

Table 8.8 Catalytic asymmetric epoxidation with and without SULFOX-BOROX catalyst.^a

Table 8.8 cont'd

$$(S)\text{-VANOL} \xrightarrow{\text{PhOH (2 equiv)}} \text{Toluene, 100 °C, 1 h then 0.5 mm Hg} \\ 100 °C, 0.5 h \\ \text{PhOH (2 equiv)} \xrightarrow{\text{Diazo}} \text{Diazo} \\ \text{Diazo} \\ 128a \\ -60 °C \\ \text{O-B} \\ \text{OPh} \\ \text{catalyst 448a ?}$$

#	R	Base	Cat. (x mol%)	Yield 135 (%)	ee 135 (%) ^c	c/t d	Yield 136 (%) ^e
1	C ₆ H ₅	DMSO	432 (5)	73 (75)	98	>100:1	2
2	C_6H_5	_	448a (5)	61 (60)	86	49:1	6
3	C_6H_5	DMSO	432 (10)	82 (84)	98	>100:1	1
4	C_6H_5	_	448a (10)	75 (77)	82	49:1	9
5^f	C_6H_5	DMSO	432 (10)	88 (90)	99.3	>100:1	<1
6 ^f	C_6H_5	_	448a (10)	78 (79)	90	55:1	5
7^f	4 -Br- C_6 H $_4$	DMSO	432 (10)	88 (92)	99	>100:1	<1
8^f	4 -Br- C_6 H $_4$	_	448a (10)	86 (87)	91	56:1	2

^a Unless otherwise specified, all reactions were performed with 10 mol % catalyst **432** or **448a** and 0.2 mmol diazo **128a** (1.0 equiv, 0.05 M), aldehyde **127** (1.1 equiv) at –60 °C in toluene. The pre-catalyst was prepared by by heating 1 equiv of (S)-VANOL (10 mol %), 3 equiv of BH₃•Me₂S, 2 equiv of PhOH and 3 equiv of H₂O in toluene at 100 °C for 1 h, followed by removing all volatiles under high vacuum (0.1 mm Hg) for 0.5 h at 100 °C. Thereafter, the catalyst **432** was prepared by stirring the pre-catalyst with 10 mol % DMSO in toluene for 1 h at 25 °C. And, the catalyst **448a** was prepared by stirring the pre-catalyst with 100 mol % diazoacetamide in toluene for 10 min at –60 °C. ^b Isolated Yield. Yield in parenthesis determined by ¹H NMR spectra with Ph₃CH as internal standard. ^c Determined by HPLC. ^d The *cis:trans* ratio is determined by integration of the methine protons of *cis*- and *trans*-epoxide in the ¹H NMR spectrum of the crude reaction mixture. ^e Determined by ¹H NMR spectra with Ph₃CH as internal standard. ^f Diazoacetamide added prior to the addition of aldehyde.

8.6.4 Temperature study

The role of the temperature in the asymmetric epoxidation was also examined and is presented in Table 8.9. This study was performed with 5 mol% catalyst loading. It is quite clear from the entries in Table 8.9 that the reaction slows down to a great extent at higher temperature. Only 31% yield of epoxide **135a** was obtained when the reaction was performed at room temperature (Table 8.9, entry 4). This corresponds to a difference of 44% yield compared to the reaction performed at -60 °C (Table 8.9, entry 1 vs. 4). Also, a decrease in *cis:trans* ratio was observed as the temperature of the reaction was increased.

Table 8.9 Screening of various temperatures for asymmetric epoxidation.

#	Temp (°C)	Yield 135a (%) ^b	ee 135a (%) ^c	c:t ^d	Yield 136a (%) ^e	Yield 128a (%) ^{e,f}
1	-60	75 (73)	98	>100:1	2.0	7
2	-40	51	_	81:1	7.0	24
3	-20	38	_	24:1	8.0	12
4	+25	31		16:1	6.0	19

^a Unless otherwise specified, all reactions were performed with 5 mol % (S)-SULFOX-BOROX catalyst **432** and 0.2 mmol diazoacetamide (1.0 equiv, 0.05 M), 0.22 mmol benzaldehyde **127a** (1.1 equiv) at temp °C in the toluene. The (S)-SULFOX-BOROX catalyst **432** was prepared directly by stirring a mixture of 1 equiv of (S)-VANOL (10 mol %), 3 equiv of commercial B(OPh)₃ and 5 mol % DMSO in solvent for 1 h at 25 °C. The diazoacetamide

Table 8.9 cont'd

128a is added as a solution in toluene and added after the addition of benzaldehyde. ^b Yield is determined by ¹H NMR spectra with Ph₃CH as internal standard. Yield in parenthesis is isolated yield. ^c Determined by HPLC. ^d Ratio determined by integration of the methine protons of *cis*- and *trans*-epoxide in the ¹H NMR spectrum of the crude reaction mixture. ^e Determined by ¹H NMR spectra with Ph₃CH as internal standard. ^f unreacted diazoacetamide 128a.

8.6.5 NMR Study

In order to have an understanding towards the identification of the catalytic system operational in the case where no base is employed, a detailed NMR study was performed. The aim of this study was to analyze the formation of the boroxinate using DMSO 221a and diazoacetamide by locating the characteristic peaks for the boroxinate catalyst i.e. $\delta = \sim 5$ -6 ppm and ~ 8.5 ppm in ^{11}B NMR and ^{1}H NMR respectively (for VANOL derived catalyst). Using the procedure listed in Table 8.6, pre-catalyst was prepared and it was found to contain B1 107, B2 109 and unreacted VANOL 59 in the ratio 1:1.5:0.2. A new doublet at $\delta = 8.66$ ppm in the ¹H NMR spectrum was observed upon the addition of one equivalent of DMSO 221a to the precatalyst at room temperature (Figure 8.4B, entry 3). Also, a peak at $\delta = 6.44$ ppm in the ¹¹B NMR spectrum was observed (Figure 8.4C, entry 3). These observations suggest the formation of the SULFOX-BOROX catalyst 432. There is also an up field shift (1.81 vs. 1.64) in the chemical shift of the methyl groups of DMSO 221a possibly due to $CH-\pi$ interaction (Figure 8.4D). No change in the ${}^{1}H$ NMR or ${}^{11}B$ NMR spectra was observed when one equiv of pbromobenzaldehyde 127g was added to the pre-catalyst (Figure 8.4B and 8.4C, entry 4). This result is supportive of the idea that aldehyde is not activated in the absence of DMSO 221a or diazoacetamide **128a**. When one equiv of diazoacetamide **128a** (solid or a solution in toluene) was treated with the pre-catalyst at room temperature, a tiny peak was observed at $\delta = 6.24$ ppm in the ¹¹B NMR spectrum (Figure 8.4C, entries 6-7). However, a characteristic peak at $\delta = 5.91$ ppm was observed when the same experiment was performed at -60 °C (Figure 8.4C, entry 8). Another interesting feature of the ¹¹B NMR was the shift in the tri-coordinate boron atoms ($\delta = 10.11$ ppm) at -60 °C in d₈-toluene (Figure 8.4C, entry 9). The same peak is observed at $\delta = 17.19$ at room temperature (Figure 8.4C, entry 7). The corresponding ¹H NMR did show a broadening at $\sim \delta = 8.5$ ppm, however, it was not conclusive. Nonetheless, initial experiments do suggest the possibility of the BOROX catalyst, perhaps, induced by the diazoacetamide itself.

Figure 8.4 (A) DMSO 221a and diazoacetamide 128a induced boroxinate formation. (B)^a ¹H NMR spectra of the reaction mixture in d₈-toluene. (C) ¹¹B NMR spectra corresponding to entries in the ¹H NMR spectra in Figure 8.4B. (D) ¹H NMR spectra (methyl region); Entry 1. Pure DMSO 221a in d₈-toluene. Entry 2: same as entry 3 in the ¹H NMR spectrum in Figure 8.4B.

A

$$\begin{array}{c} \text{BH}_{3} \cdot \text{Me}_{2} \text{S (3 equiv)} \\ \text{PhOH (2 equiv)} \\ \text{(S)-VANOL} \\ \hline \textbf{59} \\ \text{(0.1 mmol)} \\ \hline \textbf{Toluene, } 100 \, ^{\circ}\text{C, } 1 \, \text{h} \\ \text{then } 0.5 \, \text{mm Hg} \\ 100 \, ^{\circ}\text{C, } 0.5 \, \text{h} \\ \end{array} \begin{array}{c} \text{pre-} \\ \text{catalyst} \\ \hline \textbf{d}_{8} \text{-toluene} \\ \hline \textbf{432} \quad (\text{B} = 221a) \\ \textbf{448a} \, (\text{B} = 128a) \\ \end{array}$$

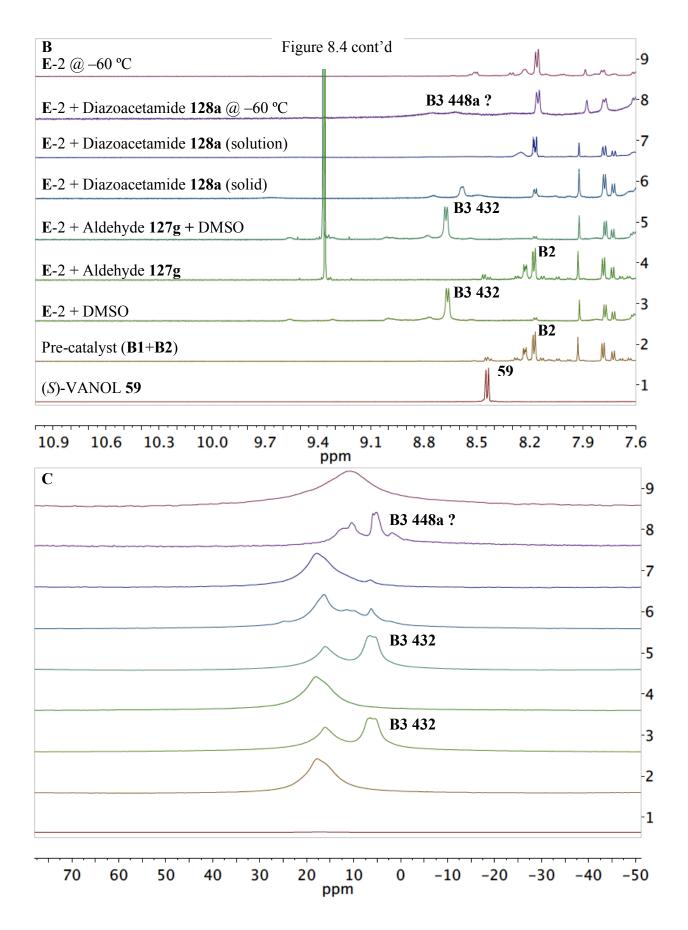
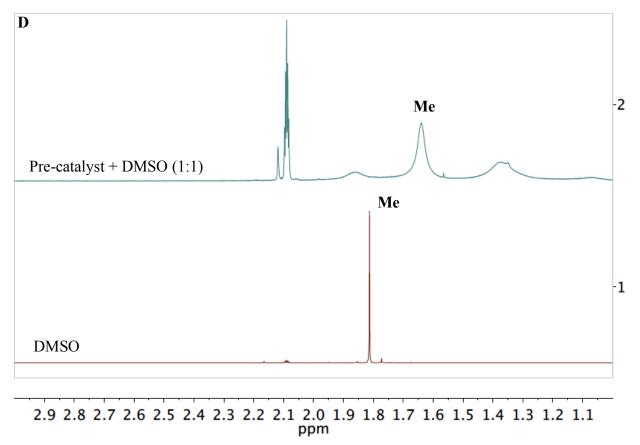
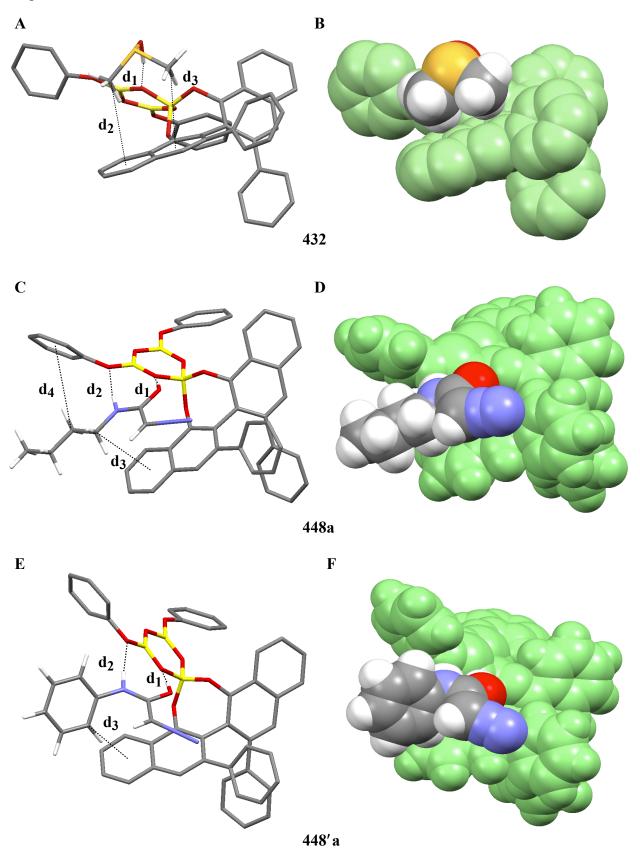



Figure 8.4 cont'd

a Note for Figure 8.4B: Entry 1: pure (S)-59. Entry 2: (S)-59 (0.1 mmol) plus 3 equiv BH₃•Me₂S 192a, 2 equiv PhOH and 3 equiv H₂O were heated at 100 °C in toluene for 1 h followed by removal of volatiles under vacuum for 0.5 h. Entry 3: 1.0 equiv of DMSO 221a and d₈-toluene (1 mL) was added to the entry 2 (pre-catalyst) for 10 min at 25 °C. Entry 4: 1.0 equiv of p-bromobenzaldehyde 127g and d₈-toluene (1 mL) was added to the entry 2 (pre-catalyst) for 10 min at 25 °C. Entry 5: 1.0 equiv of DMSO 221a was added to the entry 4 for 10 min at 25 °C. Entry 6: 1.0 equiv of diazoacetamide 128a and d₈-toluene (1 mL) was added to the pre-


catalyst followed by the addition of 1.0 equiv of diazoacetamide **128a** as a solution in d₈-toluene (1 mL) for 10 min at 25 °C. Entry 8: 1 mL of d₈-toluene was added to the pre-catalyst and the resulting solution was cooled to –60 °C. Thereafter, a pre-cooled (–60 °C) solution of 1.0 equiv of diazoacetamide **128a** in d₈-toluene (1 mL) was added and the NMR was taken at –60 °C. Entry 9: 1 mL of d₈-toluene was added to the pre-catalyst and the resulting solution was cooled to –60 °C. Thereafter, the NMR was taken at –60 °C.

8.6.6 Calculated structures of boroxinate catalysts from DMSO and diazoacetamides

While looking for the possibility of the boroxinate generated by diazoacetamide 128a and DMSO using the VANOL ligand, we decided to compute the probable structures of 432, 448a (Diazo = 128a) and 448'a (Diazo = 123a). Calculations were preformed using Gaussian 03 at B3LYP/6-31g* level of theory. The resulted structures are presented in Figure 8.5. Likewise the case of the calculated structure of the BOROX catalyst 222a derived from DMSO and the VAPOL ligand, we observed two probable CH- π interactions between the methyl groups of DMSO and the naphthalene ring of the VANOL ligand (Figure 8.5A, $d_2 = 3.89$ Å and $d_3 = 3.63$ Å). The boroxinate 448a and 448'a from diazoacetamides 128a and 123a were also computed and presented in Figure 8.5C-F.

Figure 8.5 Calculated structure of SULFOX-BOROX catalyst **432**, DIAZO-BOROX catalyst **448a** and **448'a** using Gaussian '03. They are visualized by the Mercury Program (C, gray; O, red; S, orange; B, yellow; H, white). Hydrogen atoms omitted for clarity (except protonated DMSO and diazoacetamides).

Figure 8.5 cont'd

Note for Figure 8.5: (A) Calculated B3LYP/6-31g* structure of 432. Some secondary interactions are highlighted: $d_1 = 1.44$ Å (H-bonding), $d_2 = 3.89$ Å (CH- π), $d_3 = 3.63$ Å (CH- π). (B) Space-filling rendition of 432 with the same orientation and showing hydrogens. The boroxinate anion is given in green and the protonated DMSO is in traditional colors. (C) Calculated B3LYP/6-31g* structure of 448a. Some secondary interactions are highlighted: $d_1 = 1.50$ Å (H-bonding), $d_2 = 1.92$ Å (H-bonding), $d_3 = 3.95$ Å (CH- π), $d_4 = 4.51$ Å (CH- π). (D) Space-filling rendition of 448a with the same orientation and showing hydrogens. The boroxinate anion is given in green and the protonated 128a is in traditional colors. (E) Calculated B3LYP/6-31g* structure of 448'a. Some secondary interactions are highlighted: $d_1 = 1.47$ Å (H-bonding), $d_2 = 1.85$ Å (H-bonding), $d_3 = 4.02$ Å (CH- π). (F) Space-filling rendition of 448'a with the same orientation and showing hydrogens. The boroxinate anion is given in green and the protonated 123a is in traditional colors.

In the case of the possible boroxinate **448a** generated from diazoacetamide **128a**, two potential hydrogen bonding interactions were located (Figure 8.5C, $d_1 = 1.50$ Å and $d_2 = 1.92$ Å). Additionally, we observed two probable CH- π interactions between the methylene units of the diazo compound and the boroxinate ring (Figure 8.5C, $d_3 = 3.95$ Å and $d_4 = 4.51$ Å). Similarly, boroxinate **448'a** generated from diazoacetamide **123a** also revealed two potential hydrogen bonding interactions (Figure 8.5E, $d_1 = 1.47$ Å and $d_2 = 1.85$ Å) and one probable CH- π interaction (Figure 8.5E, $d_3 = 4.02$ Å).

8.6.7 Possible rationale for the observed stereochemical outcome of asymmetric epoxidation reaction

Although, we do not have any concrete evidence for the mechanism for the epoxidation reaction yet, there are some proposals based on the initial mechanistic findings during this doctoral research. These proposals are explained below.

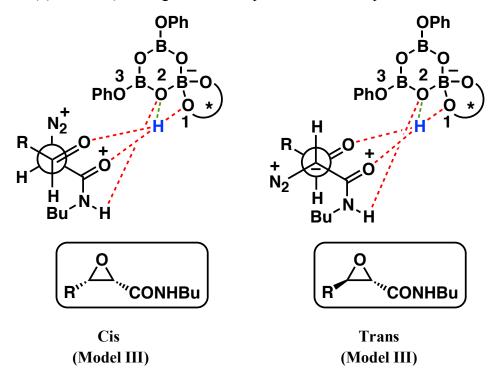
8.6.7.1 With DMSO

When the reaction is performed with (S)-SULFOX-BOROX catalyst, two mechanisms can be proposed via; a) Brønsted acid catalysis (model I) b) Brønsted acid-assisted Lewis acid catalysis (model II). In both the models, hydrogen bonding interactions between the substrates and the catalyst have been assumed and point of interactions (oxygens (O1-O3) on the boroxinate anion) can be different from that shown in the Figure 8.6. The shift in the hydrogen bonding between DMSO and boroxinate anion from O2 to O1 has been proposed based on the similar studies reported on the aziridination reaction by our group. ²⁰ In model I, both reactants are held by the hydrogen bonding and an extra hydrogen bonding stabilization comes from the secondary diazoacetamide. The third H-bond involving the diazoacetamide is crucial given the observation that there is no reaction when tertiary diazoacetamide is utilized. Also, the diazoacetamide is proposed to attack from the Re face of the aldehyde based on the absolute stereochemistry of the cis-epoxide. For trans-epoxide, the facial selectivity has been switched i.e. the Si face attack has been proposed to be favorable (Figure 8.6B). The proposed model suggests that the approach of diazoacetamide leading to the cis-epoxide in more favorable compared to *trans*-epoxide due to the dipolar interaction between the N_2^+ on the diazoacetamide and the carbonyl oxygen on the aldehyde. In the case of model II, the interactions were assumed

to be similar to model I except the interaction between the aldehyde and catalyst. The aldehyde is proposed to be coordinated to the sulfur of the DMSO as the Lewis acid-Lewis base complex.

Figure 8.6 Proposed models (I and II) for the mechanisms involving (S)-SULFOX-BOROX catalyst (derived from (S)-VANOL) leading to (A) *cis*-epoxide (B) *trans*-epoxide

8.6.7.2 Without DMSO

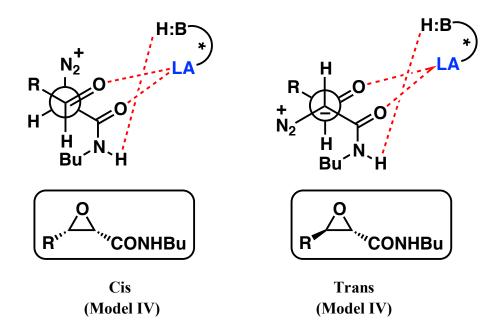

As shown earlier, that the reaction works well even in the absence of SULFOX-BOROX catalyst. In those cases, preliminary NMR studies suggest the possibility of the DIAZO-BOROX

(Model II)

(Model I)

catalyst of type **448a** (Figure 8.5B). After initial assumption of the formation of **448a**, the working model III has been proposed and shown in Figure 8.7. In addition to **448a**, it has been proposed that the aldehyde is either hydrogen bonded to O1 (red in color) or O2 (green in color). As discussed earlier, an extra hydrogen bonding stabilization is proposed to be present due to the hydrogen bonding between the boroxinate core and the secondary diazoacetamide.

Figure 8.7 Proposed model III for the mechanism involving (*S*)-DIAZO-BOROX catalyst (derived from (*S*)-VANOL) leading to both *cis*-epoxide and *trans*-epoxide.

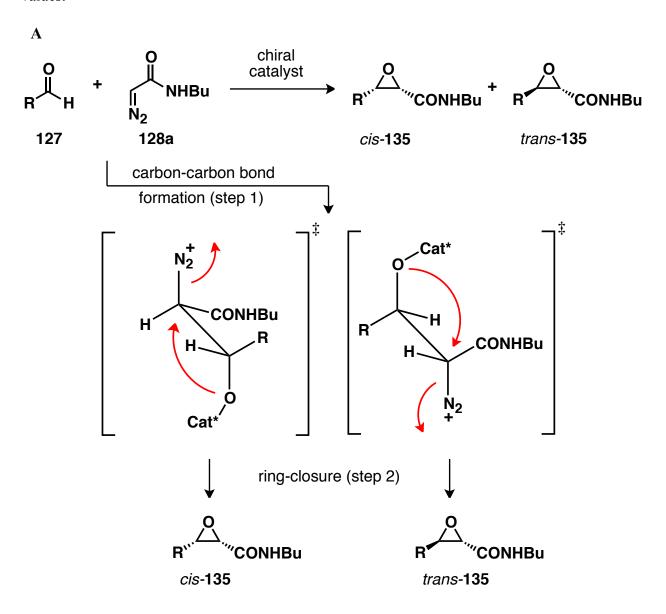


8.6.7.3 Lewis acid catalysis

Last but not the least, a completely different mechanism along the idea of chiral Lewis acid type cannot be discarded. In fact, as shown in Figure 8.8, a fourth model is proposed where a chiral Lewis acid in involved in the active site. As of now, the structure of the chiral Lewis cannot be predicted. It may or may not involve DMSO in the active site. However, it seems like

that there is a possibility of a hydrogen bonding site for the hydrogen bond with the secondary diazoacetamide.

Figure 8.8 Proposed model IV for the mechanism involving chiral Lewis catalyst (derived from (S)-VANOL) leading to both *cis*-epoxide and *trans*-epoxide.


In all models proposed above, transoid transition structures have been assumed to be operating, however, there is no evidence to exclude cisoid transition structures. The mechanistic investigations regarding asymmetric epoxidation reaction discussed in this chapter is still in its infant state. Hopefully, future studies will reveal the actual catalyst involved in this case.

8.6.8 Kinetic Isotopic effect studies of asymmetric epoxidation reaction

In order to probe further the mechanism of the catalytic asymmetric epoxidation reaction, we decided to probe the transition state geometry of the rate-limiting step using ¹³C kinetic

isotope effects (KIE) measured at natural abundance using the Singleton protocol. 22 As shown in Scheme 8.9A, the epoxidation reaction is generally assumed to go through a two step mechanism with addition of the diazoacetamide 128a to the p-bromobenzaldehyde 127g to form the diazonium ion intermediate (step I) followed by SN₂-like elimination (step II) of N₂ by the intramolecular nucleophile (the alkoxide). In the given mechanism, transoid transition structures have been assumed to be operating, however, there is no evidence to exclude cisoid transition structures (Scheme 8.9A). If the first step were rate-limiting, a significant KIE would be observed at the aldehyde carbon atom of p-bromobenzaldehyde 127g while rate-limiting SN₂like attack would result in a much smaller KIE on the aldehyde carbon. An additional benefit of such a high resolution picture of the transition state geometry is that differences in the transition state geometry with and without the DMSO additive can be probed effectively. With these goals in mind, we performed two experiments - one with and one without DMSO - where we took the starting p-bromobenzaldehyde to 80+/-2% conversion (Scheme 8.10). The unreacted pbromobenzaldehyde 127g was recovered and its isotopic composition was compared to that of pbromobenzaldehyde 127g from the same bottle, which was not subjected to the reaction conditions. From the relative ¹³C content at each carbon atom for the two samples and the fractional conversion, the 13 C KIEs for each carbon of p-bromobenzaldehyde 127g was computed using the equation given in Scheme 8.9B.

Scheme 8.9 (A) General mechanism of the epoxidation reaction of aldehydes and diazoacetamides catalyzed by our catalyst. (B) Equation used for the calculation of the ¹³C KIE values.

В

$$KIE = \frac{ln(1-F)}{ln[(1-F)(R/R_0)]}$$

$$F = fractional conversion$$

$$R/R_0 = ratio of the 13C in aldehyde prior to and after reaction as determined by quantitative 13C NMR.$$

For the reaction with added DMSO, the aldehyde carbon exhibited a KIE of 1.025 (8) while for the reaction without DMSO, a KIE of 1.030 (6) was measured. The number in parenthesis is the uncertainty in the last digit of the measurement obtained with 95% confidence from 6 independent measurements. All other carbon atoms exhibited KIEs within error of unity. The qualitative interpretation of the KIEs is that the aldehyde carbon atom is involved in the rate-limiting transition state and assuming the above mentioned two-step mechanism, the carbon-carbon bond forming (step I) is the *rate-limiting step*. The quality of the NMR results was not sufficient to ascertain the slight difference between the experiments performed with and without DMSO but the different values suggest that the addition of DMSO slightly alters the transition state geometry (especially since the KIEs for the other carbon atoms are nearly identical). Further validation of these results can be obtained by calculation of the transition state and theoretical prediction of the ¹³C KIEs.

8.7 Gram scale catalysis and large scale synthesis

The real application of any methodology lies in its easy adaption towards the large-scale synthesis. The catalytic asymmetric epoxidation was easily applicable to gram scale (Scheme 8.10). The large scale synthesis (4.8 mmol in diazoacetamide **128a**) was performed using the catalysts **432** (with DMSO) and **448a** (without DMSO). The same reaction was utilized in obtaining the sample of the unreacted *p*-bromobenzaldehyde **127g** for the KIE studies (section 8.6.8). The only downfall of the large scale reaction was the drop in the ee by ~9–11% in both the cases. However, the enantiomeric excess can easily be increased up to 99% ee by a single crystallization. It is advisable to reproduce this result so as to check whether the drop in ee is genuine or is actually an experimental error.

Scheme 8.10 Gram scale asymmetric catalysis

In order to perform the large scale epoxidation reaction, we needed a large quantity of the diazoacetamide **128a**. Since, the same diazo compound has been the used in all the epoxidations we performed, we thought of devising an easy and economic route to prepare diazoacetamide **128a**. In doing so, we came across the large scale synthesis of the parent diazo compound i.e. succinimidyl diazoacetate **454**. This compound has been widely used in the synthesis of various diazo compounds. The synthesis of this compound was reported via DCC coupling of the acid **451** and *N*-hydroxy succinimide **453**. The reported procedure was often low yielding and irreproducible. In fact, the purification involved several column chromatographies and was too cumbersome. So, we decided to follow another reported procedure that involved the synthesis starting from acid chloride **452**. We prepared the acid chloride **452** in large quantities (210 mmol scale) using a reported procedure. Delightfully, the synthesis of **454** (50 mmol scale)

was found to be much cleaner using the second procedure where the reaction was started with acid chloride **452**. The crude succinimidyl diazoacetate **454** was purified by crystallization only. Thereafter, the diazoacetamide **128a** was prepared on a large scale (40 mmol) in 90–93% yield. The entire process of preparation of diazo compounds **454** and **128a** was carried out efficiently without the use of any column chromatography purification.

Scheme 8.11 Large scale synthesis of diazo compounds 454 and 128a

8.8 Conclusions

We have been able to successfully realize the catalytic asymmetric epoxidation of the aldehydes, probably, using either SULFOX-BOROX catalyst or DIAZO-BOROX catalyst. Although the mode of catalysis has not been completely determined, it seems that the reaction is potentially is a Brønsted acid catalyzed reaction based on the initial studies towards the mechanism of the reaction. Also, it is quite general for a wide range of aldehydes in terms of substrate group.

APPENDIX

8.9 Experimental

8.9.1	General Information	739
8.9.2	Synthesis of diazoacetate 450, diazoacetamides 123a-b and 128a-f	739
8.9.3	Initial screening of various diazoacetamides (Table 8.2)	751
8.9.4	Synthesis of epoxides 135a-g (Table 8.6)	759
8.9.5	One pot procedure for epoxidation reaction (Table 8.5).	776
8.9.6	Epoxidation using catalyst 447 (Scheme 8.8)	777
8.9.7	Epoxidation using the DIAZO-BOROX catalyst 448a (Table 8.8)	779
8.9.8	NMR analysis of boroxinate catalysts 432 and 448a (Figure 8.4)	780
8.9.9	Gram scale asymmetric catalysis and KIE studies (Scheme 8.9-8.11)	782

8.9.1 General Information

Same as Chapter 2.

8.9.2 Synthesis of diazoacetate 450, diazoacetamides 123a-b and 128a-f

2-(2-tosylhydrazono)acetic acid 451: To a 1 L single-necked round bottom flask was added glyoxylic acid monohydrate **450** (46.3 g, 500 mmol) and water (500 mL). The mixture was stirred at 65 °C (oil bath) until **450** dissolved completely. To this solution was then added a warm suspension (at approximately 65°C) of *p*-toluenesulfonylhydrazide **449** (93.1 g, 500 mmol) in 2.5 M aqueous hydrochloric acid (300 mL). The reaction mixture was stirred at 65 °C for 15 min, then allowed to cool to room temperature gradually until all of the oil solidified and then the flask was kept in a refrigerator overnight. The crude product was collected on filter paper using a Büchner funnel (8 cm diameter), washed with cold water (70 mL), and dried for 2 days in open

air followed by exposure to high vacuum overnight. To a 1 L single-necked round bottom flask containing acid **451** and equipped with a stir bar and with a condenser was added boiling EtOAc until the entire solid dissolved. Hexanes were added until the solution became cloudy. Thereafter, hot EtOAc was added until it just became clear again. The solution was then allowed to cool to room temperature and then allowed to set in a refrigerator overnight (–20 °C). The solid was filtered and washed with ice-cold 1:2 EtOAc/hexanes to afford **451** as a white solid (mp 150-152 °C) in 79% isolated yield (96.4 g, 400 mmol).

Spectral data for **451**: $R_f = 0.45$ (1:1, EtOAc/hexane); ¹H NMR (CDCl₃, 300 MHz) δ 2.39(s, 3H), 7.29 (s, 1H), 7.40 (d, 2H, J = 8.5Hz), 7.78 (d, 2H, J = 8.3Hz), 10.05 (brs, 1H), 11.00 (brs, 1H); ¹³C NMR (CD₃COCD₃, 75 MHz) δ 21.37, 128.42, 130.57, 136.81, 137.28, 145.28, 163.72. These spectral data match those previously reported for this compound. ¹⁸

2-(2-tosylhydrazono)acetyl chloride 452: To a suspension of acid 451 (50.2 g, 210 mmol) in benzene (250 mL) was added SOCl₂ (30 mL, 420 mmol, freshly distilled). The reaction mixture was heated to reflux (90 °C oil bath) until vigorous gas evolution has ceased and most of the suspended solid has dissolved (~2 h). The heating period is critical to the success of this reaction. After a heating period of 45-90 minutes the initially white suspension begins to turn yellow and the color gradually deepens as heating is continued. The correct heating period is normally reached about 10 minutes after vigorous gas evolution ceases; at this time the color of the reaction mixture is yellow-orange to orange. At this point the mixture is not clear, but relatively little suspended material separates when the stirrer is stopped for a short period. If heating is stopped too soon, a large amount of acid is lost during the filtration and the product is

difficult to crystallize. If heating is continued too long, the product is contaminated with a brown colored impurity and is difficult to crystallize. The reaction mixture then was cooled under nitrogen and filtrated through a Celite pad on a sintered-glass funnel. After the filtrate has been concentrated to dryness under reduced pressure, the residual solid is mixed with anhydrous benzene (50 mL, warmed to ~40 to 50 °C), and the solid mass was broken up to give a fine suspension. The suspension was cooled and filtered quickly using a Büchner funnel (8 cm diameter) and then the solid was washed quickly with cold benzene (30 mL × 2) to remove most of the residual colored impurities. The combined filtrates were stripped of solvent on the rotovapor and the residue was washed quickly with cold benzene (30 mL × 2) to give a second crop of the crude product. Purification by crystallization was achieved by dissolving the crude product in boiling benzene (~100 mL), followed by the addition of hexanes (~100 mL, bp. 60-90 °C). The mixture was allowed to cool down to room temperature, and stand overnight. The acid chloride 452 was collected as a white solid (mp. 100-103°C) in 65% isolated yield (35.6g, 137 mmol).

Spectral data for **452**: 1 H NMR (CDCl₃, 500 MHz) δ 2.46 (s, 3H), 7.25 (d, 1H, J = 0.9 Hz), 7.38 (d, 2H, J = 8.0 Hz), 7.86 (d, 2H, J = 8.4 Hz), 9.38 (s, 1H); 13 C NMR (CDCl₃, 125 MHz) δ 21.70, 128.10, 130.14, 133.78, 136.05, 145.81, 165.01. These spectral data match those previously reported for this compound. 18

2,5-dioxopyrrolidin-1-yl 2-diazoacetate 454: To a flame dried 500 mL single-necked round-bottom flask was added *N*-hydroxysuccinimide **453** (6.33 g, 55.0 mmol) and Na₂CO₃ (7.95 g,

75.0 mmol) and dry CH₂Cl₂ (75 mL). The flask was then brought to 0 °C using a chiller over a period of 30 min. Meanwhile, to another flame-dried 250 mL single-necked round-bottom flask was added acid chloride 452 (13.04 g, 50.00 mmol) and dry CH₂Cl₂ (100 mL). This solution was added to the suspension of succinimide at 0 °C over a period of 2 h utilizing a syringe pump. Two syringe pumps were used and two 60 mL plastic syringes, containing 50 mL of the CH₂Cl₂ solution of 452, were employed. The resulting mixture was stirred for an additional hour at 0 °C. After 1 h, the solution was warmed to room temperature and then stirred for 3 h at room temperature. The reaction mixture was then filtered using a Büchner funnel (8 cm diameter) with filter paper and the filtrate was collected in a 500 mL round-bottom flask. It must be noted that a direct passage of the reaction mixture through a short plug of silica plug results in the clogged plug, thereby a substantial loss of the material. The residue was then washed with EtOAc (200 mL × 2). A small amount of solid is observed in the filtrate. The solid impurities remaining in the filtrate were removed by passing through a short plug (35 mm × 60 mm) of silica gel. The filtrate was collected in a 500 mL round-bottom flask. The silica plug was then washed with EtOAc (150 mL × 2). The washing was monitored by TLC. The resulting solution was then concentrated under reduced pressure to provide crude succinimidyl diazoacetate as a light yellow solid (~6.36 g). The crude diazo compound was kept under vacuum for a period of 1 h. Recrystallization from CH₂Cl₂/ hexanes (55 mL, 4:1) gave diazo **454** (mp 113.5-115.0 °C) as light yellow solid crystals in 29% yield (2.68 g, 14.5 mmol, first crop). Successive crystallization yielded the diazo 454 a combined yield of 60% (29%, 2.68 g, mp 113.5-115.0 °C, first crop; 15%, 1.40 g, mp 115.0-118.0 °C, second crop; 16%, 1.43 g, mp 115.0-118.0 °C, third

crop). The amounts of solvent (CH₂Cl₂/ hexanes, 4:1) used for second and third crystallizations are 29 mL and 19 mL respectively. The amounts of the solid residue from the mother liquor after the first and second crystallizations are 3.57g and 2.15 g respectively. The second run of the reaction resulted in 56% yield of the diazoacetate **454**.

Spectral data for **454**: $R_f = 0.13$ (3:1 ether/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 2.81 (s, 4H), 5.10 (brs, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 25.44, 45.11, 162.24, 169.36; IR (thin film) 3105w, 2135s, 1736vs, 1375s, 1206s, 1105s cm⁻¹; mass spectrum, m/z (% rel intensity) 183 M⁺ (1), 155 (3), 69 (100), 56 (16), 42 (11). These spectral data match those previously reported for this compound. ¹⁸

N-butyl-2-diazoacetamide 128a: To a flame dried 100 mL single-necked round-bottom flask was added succinimidyl diazoacetate 454 (7.33 g, 40 mmol) and THF (400 mL). To the solution was added *n*-butylamine 126n (8 mL, 80 mmol, freshly distilled) in one portion. Appearance of a yellow solid was observed after 1-2 min. The reaction mixture was stirred for 1 h at room temperature. The reaction was complete and the solvent was removed under reduced pressure. Purification of the crude diazo by silica gel chromatography (30 mm × 300 mm column, 1:3 hexanes/EtOAc) afforded pure diazo 128a as a yellow solid (mp 75-76 °C) in 90-93% isolated yield (5.10-5.25 g, 35-37.2 mmol). Alternatively, the crude product, after the evaporation of the

solvent, was directly passed through a short plug (35 mm \times 60 mm) of silica gel. The silica plug was then washed with 1:3 hexanes/EtOAc (100 mL). The washing is continued until the yellow color has stopped coming down the plug. All yellow fractions can be collected in a flask and the solvent is evaporated to afford pure diazo **128a** as a yellow solid. No difference in the yield was observed when the purification was performed in this way compared to column chromatography.

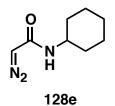
Spectral data for **128a**: R_f = 0.33 (1:1 EtOAc:hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 0.90 (t, 3H, J = 7.3 Hz), 1.29-1.36 (m, 2H), 1.44-1.50 (m, 2H), 3.26 (brs, 2H), 4.68 (brs, 1H), 5.10 (brs, 1H); ¹³C NMR (CDCl₃,125 MHz) δ 13.42, 19.82, 31.90, 39.76, 46.82, 165.34. These spectral data match those previously reported for this compound. ¹⁶

N-benyl-2-diazoacetamide 128b: Diazoacetamide 128b was prepared according to the procedure described above for diazoacetamide 128a except that the scale of the reaction was 4 mmol. Purification of the crude diazo by silica gel chromatography (30 mm × 300 mm column, 1:3 hexanes/EtOAc) afforded pure diazo 128b as a yellow solid (mp 97-98 °C) in 91% isolated yield (638 mg, 3.64 mmol).

Spectral data for **128b**: R_f = 0.33 (1:1 EtOAc:hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 4.37 (d, 2H, J = 5.5 Hz), 4.82 (s, 1H), 6.22 (bs, 1H), 7.23-7.32 (m, 5H); ¹³C NMR (CDCl₃,125 MHz) δ 43.74, 46.99, 127.34, 127.43, 128.56, 138.36, 165.51. These spectral data match those previously reported for this compound. ¹⁶

N-benzhydryl-2-diazoacetamide 128c: To a flame-dried 50 mL round bottom flask filled with argon was added benzhydrylamine 126a (1.03 mL, 6.00 mmol) and CH₂Cl₂ (4 mL), followed by dry Et₃N (0.84 mL, 6.00 mmol) at 0 °C. After stirring for 5 min, the solution of succinimidyl diazoacetate 454 (733 mg, 4.00 mmol) in CH₂Cl₂ (6 mL) was added slowly over a period of 10 min. The reaction mixture was stirred for 0.5 h at 0 °C, then allowed to warm up to room temperature and stirred for another 24 h. The reaction was complete and the solvent was removed under reduced pressure, and the crude product was purified by silica gel chromatography (20 mm × 200 mm, 1:3 EtOAc/ hexanes as eluent) to afford diazoacetamide 128c (mp 175-176 °C) as a yellow solid in 80% yield (1.21 g, 3.20 mmol).

Spectral data for **128c**: R_f = 0.73 (1:1, EtOAc/hexanes). ¹H NMR (CDCl₃, 600 MHz) δ 4.76 (s, 1H), 5.56 (d, J = 6.6 Hz, 1H), 6.26 (brs, 1H), 7.23 (d, J = 7.3 Hz, 4H), 7.28 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.3 Hz, 4H); ¹H NMR (DMSO-d₆, 500 MHz) δ 5.42 (s, 1H), 6.14 (d, J = 8.4 Hz, 1H), 7.25-7.35 (m, 10H), 8.52 (d, J = 8.3 Hz, 1H); ¹³C (DMSO-d₆, 125 MHz) 46.37, 56.31, 126.94, 127.11, 128.37, 142.54, 164.28; IR (thin film) 3250br, 3090m, 2103vs, 1605s, 1543s,


1495w, 1371s cm⁻¹; HRMS (ESI-TOF) m/z 252.1140 [(M+H⁺); calcd. for C₁₅H₁₄N₃O : 252.1137].

 $\begin{array}{c}
0\\
N\\
N_2
\end{array}$ 128d

2-diazo-*N***-nonylacetamide 128d:** Diazoacetamide **128d** was prepared according to the procedure described above for diazoacetamide **128a** except that the scale of the reaction was 1 mmol and the reaction time was 3 h.

Purification of the crude diazo by silica gel chromatography (30 mm × 300 mm column, 1:3 hexanes/EtOAc) afforded pure diazo **128d** as a yellow solid (mp 68-69 °C) in 87% isolated yield (184 mg, 0.87 mmol).

Spectral data for **128d**: R_f = 0.62 (1:1 EtOAc:hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 0.87 (t, J = 6.9 Hz, 3H), 1.25-1.29 (m, 12H), 1.47-1.51 (m, 2H), 3.25-3.28 (m, 2H), 4.69 (s, 1H), 5.07 (s, 1H); ¹³C NMR (CDCl₃,125 MHz) δ 14.02, 22.59, 26.83, 29.19, 29.26, 29.45, 29.90, 31.80, 40.04, 46.88, 165.52. IR (thin film) 3297s, 3098w, 2922s, 2851m, 2108vs, 1603s, 1549s, 1474w, 1397m cm⁻¹; HRMS (ESI-TOF) m/z 212.1756 [(M+H⁺); calcd. for C₁₁H₂₂N₃O: 212.1763].

N-cyclohexyl-2-diazoacetamide 128e: Diazoacetamide 128e was prepared according to the procedure described above for diazoacetamide 128a except that the scale of the reaction was 1 mmol and the reaction time was 3 h.

Purification of the crude diazo by silica gel chromatography (30 mm × 300 mm column, 1:3 hexanes/EtOAc) afforded pure diazo 128e as a yellow solid (mp 152-153 °C) in 91% isolated yield (152 mg, 0.91 mmol).

Spectral data for **128e**: R_f = 0.50 (1:1 EtOAc:hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 1.08-1.19 (m, 3H), 1.32-1.40 (m, 2H), 1.61 (dt, J = 13.0, 3.8 Hz, 1H), 1.67-1.72 (m, 2H), 1.91-1.94 (m, 2H), 1.91-1.2H), 3.79 (s, 1H), 4.68 (s, 1H), 5.01 (s, 1H); ¹³C NMR (CDCl₃,125 MHz) δ 24.85, 25.47, 33.53, 47.00, 48.87, 164.48. IR (thin film) 3279s, 3100m, 2924s, 2853m, 2101vs, 1614s, 1562s, 1447w, 1387m cm⁻¹; HRMS (ESI-TOF) m/z 168.1138 [(M+H⁺); calcd. for C₈H₁₄N₃O: 168.1137].

142 °C) in 81% isolated yield (114 mg, 0.81 mmol).

N-(tert-butyl)-2-diazoacetamide 128f: Diazoacetamide 128f was prepared according to the procedure described above for diazoacetamide 128a except that the scale of the reaction was 1 mmol, the reaction time was 36 h and 4 equivalents 128f of tert-butyl amine was used. Purification of the crude diazo by silica gel chromatography (30 mm × 300 mm column, 1:3 hexanes/EtOAc) afforded pure diazo 128f as a yellow solid (mp 141-

Spectral data for **128f**: $R_f = 0.62$ (1:1 EtOAc:hexanes); ¹H NMR (CDCl₃, 600 MHz) δ 1.37 (s, 9H), 4.61 (s, 1H), 4.86 (s, 1H); ¹³C NMR (CDCl₃,125 MHz) δ 29.17, 47.45, 51.88, 164.75. IR (thin film) 3279s, 3098m, 2968m, 2091vs, 1616s, 1559s, 1456w, 1375s cm⁻¹; HRMS (ESI-TOF) m/z 142.0984 [(M+H⁺); calcd. for C₆H₁₂N₃O: 142.0980].

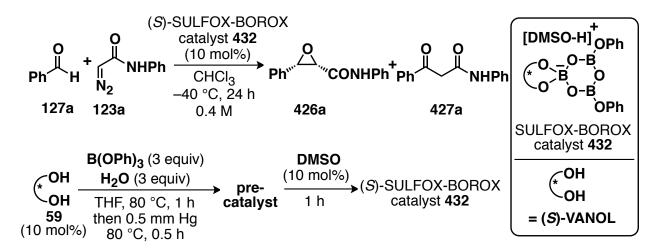
N-benzyl-2-diazo-*N*-methylacetamide 442a: To a flame-dried 50 mL round bottom flask filled with argon was added amine 126s (0.85 mL, 6.55 mmol) and CH₂Cl₂ (5 mL), followed by dry Et₃N (1.15 mL, 8.19 mmol) at 0 °C. After stirring for 5 min, the solution of succinimidyl diazoacetate 454 (1.0 g, 5.6 mmol) in CH₂Cl₂ (10 mL) was added slowly over a period of 10 min. The reaction mixture was stirred for 0.5 h at 0 °C, then allowed to warm up to room temperature and stirred for another 1 h. The reaction was complete and the solvent was removed under reduced pressure, and the crude product was purified by silica gel chromatography (25 mm × 450 mm, 1:1 EtOAc/ hexanes as eluent) to afford diazoacetamide 442a as a yellow liquid in 92% yield (0.97 g, 5.10 mmol).

Spectral data for **442a**: $R_f = 0.38$ (1:1, EtOAc/hexanes). ¹H NMR (CDCl₃, 300 MHz) δ 2.84 (br s, 3H), 4.47 (br s, 2H), 4.96 (s, 1H), 7.19-7.34 (m, 5H); ¹³C (CDCl₃, 75 MHz) δ 46.34, 51.72, 127.39, 128.62, 136.84, 166.00 (two sp^2 carbon not located); IR (thin film) 3065s, 2100vs, 1611vs, 1477s, 1408s cm⁻¹; mass spectrum, m/z (% rel intensity) 161 M⁺–N₂ (2), 117 (45), 103 (97), 91 (100), 64 (24), 50 (17). These spectral data match those previously reported for this compound. ¹⁸

$$p\text{-Ts}$$
 N
 N
 CI
 $+$
 H_2N
 CI
 CH_2Cl_2
 0 °C , 2 h
 N_2
 N_2
 N_3
 N_4
 N_4

2-diazo-*N***-phenylacetamide 123a:** To a flame-dried 100 mL round bottom flask equipped with a magnetic stir bar and flushed with argon was added acid chloride 452 (3.60 g, 13.82 mmol, 1 equiv) and dry CH₂Cl₂ (30 mL). The flask was then fitted with a rubber septum and an Argon balloon and cooled to 0 °C in an ice-bath. The reaction mixture was stirred at 0 °C for 15 min. Aniline 126k (1.40 mL, 15.2 mmol, 1.10 equiv) and DBU (4.20 mL, 27.6 mmol, 2.00 equiv) were then added sequentially to the reaction flask at 0 °C via plastic syringes. The reaction mixture was stirred at 0 °C for 2 h, and then warmed up to room temperature. It was then added to sat. NH₄Cl (~30 mL), and the layers separated. The aqueous layer was extracted with CH₂Cl₂ once, the organic layers combined, washed with brine once, dried over Na₂SO₄, and filtered. The product solution thereafter was transferred to a 250 mL round bottom flask and enough silica gel was added for subsequent column chromatography ("dry load"). This was then subjected to rotary evaporation till dryness, and directly loaded on a silica gel column (30 mm × 270 mm). An eluent mixture of 1:50 MeOH:CH₂Cl₂ was used for the flash chromatography, all yellow colored fractions were collected, and subjected to rotary evaporation till dryness and finally high vacuum to afford the impure product 123a as a yellow solid. This was then washed with ether 1-4 times until a single spot was observed on TLC (1:29 MeOH:CH₂Cl₂), this

afforded pure diazoacetamide **123a** (mp. 147-149 °C) as a bright yellow solid in 45% yield (1.0 g, 6.2 mmol).


Spectral data for **123a**: $R_f = 0.18$ (1:50 MeOH:CH₂Cl₂); ¹H NMR (d₆-DMSO, 500 MHz) δ 5.48 (s, 1H), 6.99 (t, J = 7.3 Hz, 1H), 7.26 (t, J = 8.5 Hz, 2H), 7.51 (d, J = 7.6 Hz, 2H), 9.69 (s, 1H); ¹³C NMR (d₆-DMSO, 125 MHz) δ 48.01, 118.58, 122.66, 128.75, 139.52, 163.53. These spectral data match those previously reported for this compound.

mmol).

Cl N-(4-chlorophenyl)-2-diazoacetamide 123b: Diazoacetamide 123b was prepared according to the procedure described above for diazo 123a. Purification of the crude diazo afforded pure diazo 123b as a yellow solid (mp 145-146 °C, decomposition) in 30% isolated yield (811 mg, 4.20

Spectral data for **123b**: $R_f = 0.32$ (1:50 MeOH:CH₂Cl₂); ¹H NMR (d₆-DMSO, 500 MHz) δ 5.48 (s, 1H), 7.32 (d, 2H, J = 8.7 Hz), 7.54 (d, 2H, J = 8.7 Hz), 9.84 (s, 1H); ¹³C NMR (d₆-DMSO, 125 MHz) δ 48.23, 120.08, 126.15, 128.64, 138.47, 163.68. These spectral data match those previously reported for this compound. ¹⁶

8.9.3 Initial screening of various diazoacetamides (Table 8.2)

(25,35)-N,3-diphenyloxirane-2-carboxamide 426a: Preparation of the pre-catalyst stock solution: To a 25 mL flame-dried home-made Schlenk flask, prepared from a single-necked 25 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve, equipped with a stir bar and flushed with argon was added (S)-VANOL (52.6 mg, 0.120 mmol) and commercial B(OPh)₃ (104.5 mg, 0.3600 mmol) and water (6.5 μL, 0.36 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry THF (2 mL) was added through the top of the Teflon valve to effect dissolution. The flask was sealed by closing the Teflon valve, and then placed in a 80 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 80 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. This was then completely dissolved in dry CHCl₃ (3 mL) under an argon flow through side-arm of the Schlenk flask to afford the

stock solution of the pre-catalyst. An aliquot of 1mL of the pre-catalyst was then transferred to a 10 mL flame-dried home-made Schlenk flask equipped with a stir bar and flushed with argon.

Asymmetric epoxidation protocol: To the flask containing the pre-catalyst (1 mL aliquot from 0.04 M stock solution) was added the dimethyl sulfoxide 221a (2.84 μL, 0.040 mmol) under an argon flow through side-arm of the Schlenk flask. The resulting mixture was stirred for 1 h at room temperature to give SULFOX-BOROX catalyst 432. After 1 h, the flask containing the catalyst was cooled to -40 °C for 10 min. To this solution was added benzaldehyde 127a (40.4 μL, 0.400 mmol, freshly distilled). This was then followed by closing the Teflon valve and stirring the resulting mixture for 10 min at -40 °C. To this mixture was then added diazoacetamide 123a (80.6 mg, 0.500 mmol, 1.25 equiv) and the resulting mixture was stirred for 24 h at -40 °C. The reaction was quenched by the addition of Et₃N (0.5 mL) and was then warmed to room temperature. The reaction mixture was then transferred to a 50 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude epoxide as an off-white semi-solid.

The *cis/trans* ratio was determined by comparing the 1 H NMR integration of the ring methine protons for each epoxide in the crude reaction mixture. The yield of the acyclic β -ketoamide side product **427a** was determined by 1 H NMR analysis of the crude reaction mixture by integration of the methylene protons relative to the internal standard (Ph₃CH). Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1

hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide **426a** as a white solid (mp 101-103 °C on 99% ee material) in 68% isolated yield (65.1 mg, 0.272 mmol); *cis/trans*: 40:1. β -ketoamide side product **427a**: 13.6% yield. The optical purity of **426a** was determined to be 62% *ee* by HPLC analysis (CHIRALCEL OD-H column, 90:10 hexane/2-propanol at 222 nm, flow-rate: 1 mL/min): retention times; $R_t = 8.17$ min (major enantiomer, **426a**) and $R_t = 10.33$ min (minor enantiomer, *ent*-**426a**). The melting point was taken after a single crystallization.

Spectral data for **426a**: $R_f = 0.32$ (1:3 EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 3.94 (d, 1H, J = 4.6 Hz), 4.44 (d, 1H, J = 4.7 Hz), 7.07 (t, 1H, J = 7.1 Hz), 7.17-7.25 (m, 4H), 7.28-7.35 (m, 3H), 7.43 (d, 2H, J = 7.3 Hz), 7.55 (bs, 1H); ¹³C (CDCl₃, 125 MHz) δ 56.51, 58.65, 120.21, 124.86, 126.39, 128.55, 128.69, 128.85, 132.78, 135.96, 164.40; IR (thin film) 3321w, 3061w, 2922w, 1672s, 1599m, 1529s, 1444s cm⁻¹; HRMS (ESI-TOF) m/z 240.1027 [(M+H⁺); calcd. for C₁₅H₁₄NO₂: 240.1025]; [α]_D²⁰ +14.7 (c 1.0, CH₂Cl₂) on 62% ee material (HPLC).

(2S,3S)-N-(4-chlorophenyl)-3-phenyloxirane-2-carboxamide 435a: Aldehyde 127a was reacted with diazoacetamide 123b according to the method described above for epoxide 426a with (S)-VANOL as ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide 435a as a white solid (mp 113-114 °C on 52% ee material) in 60% isolated yield (65.7 mg, 0.240 mmol); *cis/trans*: 29:1. β-ketoamide side product 437a: 8.5%

yield. The optical purity of **435a** was determined to be 52% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; $R_t = 25.69$ min (major enantiomer, **435a**) and $R_t = 39.42$ min (minor enantiomer, *ent-***435a**).

Spectral data for **435a**: $R_f = 0.48$ (1:2 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz): δ 3.91 (d, J = 4.8 Hz, 1H), 4.43 (d, J = 4.8 Hz, 1H), 7.10 (d, J = 8.9 Hz, 2H), 7.16 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 7.1 Hz, 1H), 7.32 (t, J = 7.2 Hz, 2H), 7.39 (d, J = 7.2 Hz, 2H), 7.50 (s, 1H). ¹³C (CDCl₃, 125 MHz) δ 56.35, 58.64, 121.34, 126.35, 128.58, 128.77, 128.92, 129.95, 132.69, 134.51, 164.49; IR (thin film) 3312 br, 3080 s, 1676 vs, 1589s, 1516vs, 1402 s cm⁻¹; HRMS (ESI-TOF) m/z 274.0641 [(M+H⁺); calcd. for C₁₅H₁₃ClNO₂ : 274.0635]; [α]_D²⁰ +47.9 (c 1.0, EtOAc) on 52% ee material (HPLC).

(2S,3S)-N-butyl-3-phenyloxirane-2-carboxamide

135a: Aldehyde 127a was reacted with diazoacetamide 128a

according to the method described above for epoxide 426a with (S)-VANOL as ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 3:1 hexanes/ EtOAc as eluent) afforded pure *cis*-epoxide 135a as a white solid (52-53 °C on 99.3 % ee material) in 50% isolated yield (43.9 mg, 0.200 mmol); *cis/trans*: 16:1. β -ketoamide side product 136a: 13.7% yield. The optical purity of 135a was determined to be 62% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7

hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; $R_t = 13.8$ min (major enantiomer, 135a) and $R_t = 24.6$ min (minor enantiomer, *ent-*135a).

Spectral data for **135a**: $R_f = 0.61$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.72 (t, J = 7.2 Hz, 3H), 0.89-1.04 (m, 4H), 2.82-2.88 (m, 1H), 3.08 (dq, J = 13.6, 6.9 Hz, 1H), 3.77 (d, J = 4.8 Hz, 1H), 4.31 (d, J = 4.8 Hz, 1H), 5.84 (s, 1H), 7.35-7.28 (m, 5H); ¹³C (CDCl₃, 125 MHz) δ 13.53, 19.62, 31.17, 38.21, 56.27, 58.08, 126.49, 128.31, 128.38, 133.19, 165.95; IR (thin film) 3316 br, 2959 vs, 2932 vs, 1651 vs, 1545 s, 1454 s cm⁻¹; HRMS (ESI-TOF) m/z 220.1334 [(M+H⁺); calcd. for C₁₃H₁₈NO₂ : 220.1338]; $[\alpha]_D^{20}$ +18.6 (c 1.0, EtOAc) on 99.3% ee material (HPLC).

Spectral data for **136a**: $R_f = 0.40$ (1:3 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz): δ 0.92 (t, J = 7.4 Hz, 3H), 1.33-1.39 (m, 2H), 1.49-1.55 (m, 2H), 3.30 (td, J = 7.1, 5.7 Hz, 2H), 3.94 (s, 2H), 7.07-7.15 (m, 1H), 7.47-7.51 (m, 2H), 7.61 (ddt, J = 8.4, 6.5, 1.6 Hz, 1H), 8.00 (dt, J = 8.4, 1.6 Hz, 2H); ¹³C (CDCl₃, 125 MHz): δ 13.69, 20.04, 31.43, 39.40, 45.26, 128.56, 128.85, 134.04, 136.23, 165.55, 196.37. These spectral data match those previously reported for this compound. ²⁶

(2S,3S)-N-benzyl-3-phenyloxirane-2-carboxamide

436a:

Aldehyde **127a** was reacted with diazoacetamide **128b** according to the method described above for epoxide **426a** with (S)-VANOL as

ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 3:1 hexanes/ EtOAc as eluent) afforded pure *cis*-epoxide **436a** as a white solid (mp 108-110 °C on 62% ee material) in 55% isolated yield (55.7 mg, 0.220 mmol); *cis/trans*: >50:1. β -ketoamide side product **438a**: 15.5% yield. The optical purity of **436a** was determined to be 62% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; R_t = 32.55 min (major enantiomer, **436a**) and R_t = 18.91 min (minor enantiomer, *ent*-**436a**).

Spectral data for **436a**: $R_f = 0.63$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz): δ 3.84 (d, J = 4.8 Hz, 1H), 4.06 (dd, J = 14.9, 5.0 Hz, 1H), 4.29 (dd, J = 14.9, 6.9 Hz, 1H), 4.34 (d, J = 4.8 Hz, 1H), 6.17 (s, 1H), 6.72 (d, J = 6.8 Hz, 2H), 7.14-7.20 (m, 3H), 7.28-7.35 (m, 5H); ¹³C (CDCl₃, 125 MHz): δ 42.65, 56.31, 58.21, 126.51, 127.24, 127.37, 128.44, 128.47, 133.02, 137.00, 166.05 (one sp^2 carbon not located); IR (thin film) 3312 br, 3063 s, 3012 s, 1669 vs, 1535s, 1454s cm⁻¹; HRMS (ESI-TOF) m/z 254.1171 [(M+H⁺); calcd. for C₁₆H₁₆NO₂: 254.1181]; $[\alpha]_D^{20} + 23.2$ (c 1.0, EtOAc) on 62% ee material (HPLC).

Spectral data for **438a**: $R_f = 0.34$ (1:3 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz): δ 4.01 (s, 2H), 4.51 (d, J = 5.7 Hz, 2H), 7.36-7.27 (m, 6H), 7.50 (t, J = 7.8 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 8.00 (d, J = 7.5 Hz, 2H); ¹³C (CDCl₃, 125 MHz): δ 43.67, 45.26, 127.48, 127.68, 128.57, 128.70, 128.89, 134.11, 136.17, 137.88, 165.60, 196.05. These spectral data match those previously reported for this compound.²⁷

(2S,3S)-N-benzhydryl-3-phenyloxirane-2-carboxamide 443a:

Aldehyde **127a** was reacted with diazoacetamide **128c** according to the method described above for epoxide **426a** with (S)-VANOL as

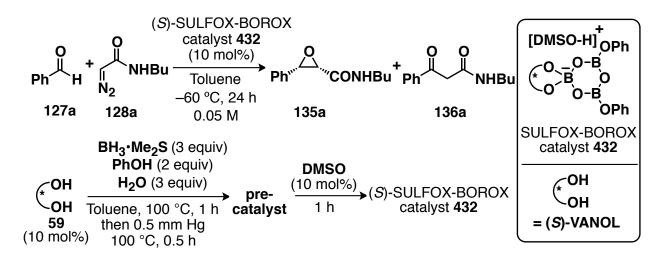
ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH_2Cl_2 as eluent) afforded pure *cis*-epoxide **443a** as a white solid (mp 82-84 °C on 74% ee material) in 65% isolated yield (85.6 mg, 0.260 mmol); *cis/trans*: >50:1. β -ketoamide side product **445a**: 9.5% yield. The optical purity of **443a** was determined to be 74% *ee* by HPLC analysis (CHIRALPAK AS column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; $R_t = 22.36$ min (major enantiomer, **443a**) and $R_t = 12.94$ min (minor enantiomer, *ent*-**443a**).

Spectral data for **443a**: R_f = 0.26 (0.1:1:1 EtOAc/CH₂Cl₂/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 3.85 (s, 1H), 4.37 (d, J = 4.8 Hz, 1H), 5.95 (d, J = 8.0 Hz, 1H), 6.40 (d, J = 7.4 Hz, 2H), 6.43 (d, J = 7.7 Hz, 1H), 7.05 (t, J = 7.5 Hz, 2H), 7.13 (d, J = 7.2 Hz, 3H), 7.27 (d, J = 7.1 Hz, 1H), 7.31 (t, J = 7.2 Hz, 4H), 7.36 (d, J = 7.3 Hz, 3H); ¹³C (CDCl₃, 125 MHz) δ 56.34, 56.53, 58.42,

126.66, 126.87, 126.97, 127.38, 127.60, 128.29, 128.55, 128.65, 128.68, 133.07, 140.34, 140.89, 165.35; IR (thin film) 3302 br, 3063 s, 3030 s, 1676 vs, 1518 vs, 1408 s cm⁻¹; HRMS (ESI-TOF) m/z 330.1499 [(M+H⁺); calcd. for C₂₂H₂₀NO₂ : 330.1494]; [α]_D²⁰ +22.0 (c 1.0, EtOAc) on 74% ee material (HPLC).

reaction mixture.

N-benzyl-N-methyl-3-oxo-3-phenylpropanamide 446a: The presence of 446a was confirmed by the characteristic peak at $\delta = 4.13^{19}$ ppm in the 1 H NMR previously published for this compound and the amount (25%) of the compound was quantified by integration against an internal standard (Ph₃CH). Additionally, 50% yield of the enol form of 446a was also observed based on the characteristic peak at $\delta = 5.83^{19}$ ppm in the 1 H NMR spectrum of crude reaction mixture.


(2S,3S)-ethyl-3-phenyloxirane-2-carboxylate 395a: Aldehyde 127a was reacted with diazoacetate 85 according to the method described above for epoxide 426a with (S)-VANOL as ligand. There was no

epoxide observed based on the ¹H NMR analysis of the crude reaction mixture.

ethyl-3-oxo-3-phenylpropanoate 396a: The presence of 396a was confirmed by the characteristic peak at
$$\delta = 3.98^{14i}$$
 ppm in the ¹H NMR previously published for this compound and the amount (40%) of the compound was quantified by integration against an internal standard (Ph₃CH).

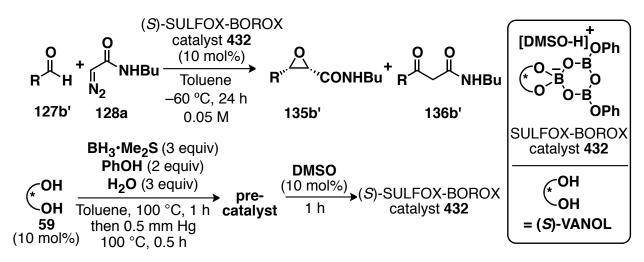
8.9.4 Synthesis of epoxides 135a-g (Table 8.6)

Method A (for Liquid aldehydes)

(2S,3S)-N-butyl-3-phenyloxirane-2-carboxamide 135a: Preparation of the pre-catalyst stock solution: To a 25 mL flame-dried home-made Schlenk flask, prepared from a single-necked 25 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve, equipped with a stir bar and flushed with argon was added (S)-VANOL (26.3 mg, 0.06).

mmol) and PhOH (11.3 mg, 0.120 mmol, freshly sublimed). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to effect dissolution. After the addition of the toluene, BH₃•Me₂S (90 μL, 0.18 mmol, 2 M in toluene) and water (3.24 μL, 0.180 mmol) was added. The flask was sealed by closing the Teflon valve, and then placed in a 100 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. This was then completely dissolved in dry toluene (3 mL) under an argon flow through side-arm of the Schlenk flask to afford the stock solution of the pre-catalyst. An aliquot of 1mL of the pre-catalyst was then transferred to a 10 mL flame-dried home-made Schlenk flask equipped with a stir bar and flushed with argon.

Asymmetric epoxidation protocol (method A): To the flask containing the pre-catalyst (1 mL aliquot from 0.02 M stock solution) was added the dimethyl sulfoxide 221a (1.42 μL, 0.020 mmol) under an argon flow through side-arm of the Schlenk flask. The resulting mixture was stirred for 1 h at room temperature to give SULFOX-BOROX catalyst 432. Meanwhile, to a separate 10 mL flame-dried round bottom flask was added diazoacetamide 128a (28.23 mg, 0.2000 mmol) and dry toluene (2.5 mL). After 1 h, the flask containing the catalyst was cooled to -60 °C for 10 min. To this solution was added pre-made solution of diazoacetamide 128a. The flask containing the diazoacetamide 128a was then rinsed with toluene (0.5 mL) and the rinse was then transferred to the flask containing the catalyst at -60 °C. This was then followed by closing the Teflon valve and stirring the resulting mixture for 10 min at -60 °C. To this


mixture was then added benzaldehyde **127a** (22.2 μ L, 0.220 mmol, freshly distilled) and the resulting mixture was stirred for 24 h at –60 °C. The reaction was quenched by the addition of Et₃N (0.5 mL) and was then warmed to room temperature. The reaction mixture was then transferred to a 50 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 2) and the rinse was added to the 50 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude epoxide as an off-white semi-solid.

The *cis/trans* ratio was determined by comparing the 1 H NMR integration of the ring methine protons for each epoxide in the crude reaction mixture. The yield of the acyclic β -ketoamide side product **136a** was determined by 1 H NMR analysis of the crude reaction mixture by integration of the methylene protons relative to the internal standard (Ph₃CH). Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide **135a** as a white solid (52-53 $^{\circ}$ C on 99.3 $^{\circ}$ C ematerial) in 88% isolated yield (38.6 mg, 0.176 mmol); *cis/trans*: >100:1. β -ketoamide side product **136a**: <1% yield. The optical purity of **135a** was determined to be 99.3% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; R_t = 13.8 min (major enantiomer, **135a**) and R_t = 24.6 min (minor enantiomer, *ent*-**135a**).

Spectral data for **135a**: $R_f = 0.61$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.72 (t, J = 7.2 Hz, 3H), 0.89-1.04 (m, 4H), 2.82-2.88 (m, 1H), 3.08 (dq, J = 13.6, 6.9 Hz, 1H), 3.77 (d, J =

4.8 Hz, 1H), 4.31 (d, J = 4.8 Hz, 1H), 5.84 (s, 1H), 7.35-7.28 (m, 5H); 13 C (CDCl₃, 125 MHz) δ 13.53, 19.62, 31.17, 38.21, 56.27, 58.08, 126.49, 128.31, 128.38, 133.19, 165.95; IR (thin film) 3316 br, 2959 vs, 2932 vs, 1651 vs, 1545 s, 1454 s cm⁻¹; HRMS (ESI-TOF) m/z 220.1334 [(M+H⁺); calcd. for C₁₃H₁₈NO₂ : 220.1338]; $[\alpha]_D^{20}$ +18.6 (c 1.0, EtOAc) on 99.3% ee material (HPLC).

Method B (for solid aldehydes)

R = 2-naphthaldehyde

(2S,3S)-N-butyl-3-(naphthalen-2-yl)oxirane-2-carboxamide 135b': Preparation of the precatalyst stock solution: same as above.

Asymmetric epoxidation protocol (method B): To the flask containing the pre-catalyst (1 mL aliquot from 0.02 M stock solution) was added the dimethyl sulfoxide 221a (1.42 μL, 0.020 mmol) under an argon flow through side-arm of the Schlenk flask. The resulting mixture was stirred for 1 h at room temperature to give SULFOX-BOROX catalyst 432. Meanwhile, to a

separate 10 mL flame-dried round bottom flask was added diazoacetamide 128a (28.23 mg, 0.2000 mmol) and dry toluene (1.5 mL). After 1 h, the flask containing the catalyst was cooled to -60 °C for 10 min. To this solution was added pre-made solution of diazoacetamide 128a. The flask containing the diazoacetamide 128a was then rinsed with toluene (0.5 mL) and the rinse was then transferred to the flask containing the catalyst at -60 °C. This was then followed by closing the Teflon valve and stirring the resulting mixture for 10 min at -60 °C. Meanwhile, to a separate 10 mL flame-dried round bottom flask was added aldehyde 127b' (34.4 mg, 0.220 mmol, freshly purified) and dry toluene (1.0 mL). To the mixture containing diazoacetamide 128a and catalyst was then added a pre-made solution of aldehyde 127b' and the resulting mixture was stirred for 24 h at -60 °C. The reaction was guenched by the addition of Et₃N (0.5 mL) and was then warmed to room temperature. The reaction mixture was then transferred to a 50 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 2) and the rinse was added to the 50 mL round bottom flask. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude epoxide as an off-white semi-solid. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure cis-epoxide 135b' as a white solid (105-106 °C on 98% ee material) in 92% isolated yield (49.6 mg, 0.184 mmol); cis/trans: >100:1. β -ketoamide side product 136b': <1 % yield. The optical purity of 135b' was determined to be 98% ee by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; $R_t = 16.26$ min (major enantiomer, 135b') and $R_t = 19.95$ min (minor enantiomer, ent-135b').

Spectral data for **135b'**: $R_f = 0.55$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.40 (t, J = 7.3 Hz, 3H), 0.65-0.72 (m, 2H), 0.80-0.86 (m, 2H), 2.75-2.81 (m, 1H), 3.05 (dq, J = 13.7, 6.9 Hz, 1H), 3.86 (d, J = 4.8 Hz, 1H), 4.47 (d, J = 4.8 Hz, 1H), 5.88 (s, 1H), 7.45-7.51 (m, 3H), 7.80-7.83 (m, 4H); ¹³C (CDCl₃, 125 MHz) δ 13.19, 19.50, 31.22, 38.25, 56.49, 58.30, 124.02, 125.70, 126.41, 126.53, 127.77, 127.82, 128.32, 130.66, 132.85, 133.18, 165.96; IR (thin film) 3308 br, 2959 s, 2932 s, 1651 vs, 1545 s, 1437 s cm⁻¹; HRMS (ESI-TOF) m/z 270.1494 [(M+H⁺); calcd. for C₁₇H₂₀NO₂ : 270.1494]; [α]²⁰_D -50.6 (c 1.0, EtOAc) on 98% ee material (HPLC).

the general method A described above with (*S*)-VANOL as ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH_2Cl_2 as eluent) afforded pure *cis*-epoxide **135b** as a colorless viscous oil in 97% isolated yield (52.3 mg, 0.194 mmol); *cis/trans*: 35:1. β -ketoamide side product **136b**: <1 % yield. The optical purity of **135b** was determined to be 92% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; $R_t = 16.69$ min (major enantiomer, 135b) and $R_t = 54.29$ min (minor enantiomer, *ent*-135b).

Spectral data for **135b**: R_f = 0.56 (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.57 (t, J = 7.1 Hz, 3H), 0.69 (dq, J = 14.7, 7.3 Hz, 2H), 0.74-0.81 (m, 2H), 2.73 (dq, J = 12.8, 6.4 Hz, 1H),

2.98 (dq, J = 13.7, 6.9 Hz, 1H), 4.02 (d, J = 4.7 Hz, 1H), 4.68 (d, J = 4.6 Hz, 1H), 5.73 (s, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.52 (d, J = 7.3 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H); 13 C (CDCl₃, 125 MHz) δ 13.41, 19.41, 31.08, 38.12, 56.17, 57.41, 123.64, 124.47, 124.75, 126.33, 126.82, 128.47, 128.94, 129.48, 131.14, 133.28, 166.17; IR (thin film) 3323 br, 2959 vs, 2932 s, 1668 vs, 1539 s, 1464 s cm⁻¹; HRMS (ESI-TOF) m/z 270.1504 [(M+H⁺); calcd. for C₁₇H₂₀NO₂ : 270.1494]; [α]_D²⁰ +110.3 (c 1.0, EtOAc) on 92% ee material (HPLC).

(2S,3S)-N-butyl-3-(o-tolyl)oxirane-2-carboxamide 135c:

Aldehyde 127c was reacted according to the general method A

described above with (S)-VANOL as ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm \times 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide **135c** as a white solid (mp 41-43 °C on 80% ee material) in 60% isolated yield (28 mg, 0.12 mmol); *cis/trans*: >100:1. β -ketoamide side product **136c**: <1% yield. The optical purity of **135c** was determined to be 80% *ee* by HPLC

flow-rate: 1 mL/min): retention times; $R_t = 17.11$ min (major enantiomer, **135c**) and $R_t = 20.61$ min (minor enantiomer, *ent-***135c**).

analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm,

Spectral data for **135c**: R_f = 0.58 (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.70 (t, J = 7.1 Hz, 3H), 0.87-0.96 (m, 4H), 2.36 (s, 3H), 2.78-2.83 (m, 1H), 3.07 (dq, J = 13.7, 6.9 Hz, 1H),

3.84 (d, J = 4.7 Hz, 1H), 4.25 (d, J = 4.7 Hz, 1H), 5.72 (s, 1H), 7.15 (dd, J = 11.6, 7.5 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.30 (d, J = 7.4 Hz, 1H); 13 C (CDCl₃, 125 MHz) δ 13.56, 18.69, 19.59, 31.20, 38.20, 56.13, 57.69, 125.46, 126.15, 128.31, 130.02, 131.77, 136.73, 166.11; IR (thin film) 3330 br, 2959 s, 2930 s, 1666 vs, 1539 vs, 1458 m cm⁻¹; HRMS (ESI-TOF) m/z 234.1503 [(M+H⁺); calcd. for C₁₄H₂₀NO₂ : 234.1494]; [α]_D²⁰ +39.8 (c 1.0, EtOAc) on 80% ee material (HPLC).

(2S,3S)-N-butyl-3-(p-tolyl)oxirane-2-carboxamide 135d:

Aldehyde **127d** was reacted according to the general method A described above with (S)-VANOL as ligand. Purification

of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide **135d** as a white solid (mp 58-59 °C on 98% ee material) in 80% isolated yield (37.3 mg, 0.160 mmol); *cis/trans*: >100:1. β -ketoamide side product **136d**: <1% yield. The optical purity of **135d** was determined to be 98% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; R_t = 23.76 min (major enantiomer, **135d**) and R_t = 35.09 min (minor enantiomer, *ent-***135d**).

Spectral data for **135d**: $R_f = 0.56$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.72 (t, J = 7.2 Hz, 3H), 0.88-0.96 (m, 2H), 1.00-1.06 (m, 2H), 2.32 (s, 3H), 2.83-2.89 (m, 1H), 3.11 (dq, J = 13.6, 6.9 Hz, 1H), 3.74 (d, J = 4.8 Hz, 1H), 4.27 (d, J = 4.7 Hz, 1H), 5.83 (s, 1H), 7.13 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H); ¹³C (CDCl₃, 125 MHz) δ 13.58, 19.66, 21.15, 31.28,

38.26, 56.32, 58.09, 126.45, 128.99, 130.21, 138.21, 166.12; IR (thin film) 3310 br, 2961 s, 2932 s, 1653 vs, 1547 vs, 1433 s cm⁻¹; HRMS (ESI-TOF) m/z 234.1504 [(M+H⁺); calcd. for $C_{14}H_{20}NO_2$: 234.1494]; $[\alpha]_D^{20}$ +22.0 (c 1.0, EtOAc) on 98% ee material (HPLC).

(2S,3S)-N-butyl-3-(3-methoxyphenyl)oxirane-2-carboxamide 135e': Aldehyde 127e' was reacted according to the general method A described above with (S)-VANOL as ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide 135e' as a white solid (mp 58-59 °C on 90% ee material) in 80% isolated yield (40.0 mg, 0.160 mmol); *cis/trans*: 31:1. β-ketoamide side product 136e': 6% yield. The optical purity of 135e' was determined to be 90% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times;
$$R_t = 17.09$$
 min (major enantiomer, 135e') and $R_t = 38.66$ min (minor enantiomer, *ent*-135e').

Spectral data for **135e'**: $R_f = 0.55$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.73 (t, J = 7.2 Hz, 3H), 0.95 (dq, J = 14.8, 7.3 Hz, 2H), 1.05 (dt, J = 14.6, 7.1 Hz, 2H), 2.87 (dq, J = 12.8, 6.4 Hz, 1H), 3.12 (dq, J = 13.6, 6.9 Hz, 1H), 3.76 (d, J = 4.8 Hz, 1H), 3.78 (s, 3H), 4.29 (d, J = 4.7 Hz, 1H), 5.84 (s, 1H), 6.83 (dd, J = 8.2, 2.0 Hz, 1H), 6.88 (s, 1H), 6.93 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 7.9 Hz, 1H); ¹³C (CDCl₃, 125 MHz) δ 13.57, 19.66, 31.29, 38.28, 55.23, 56.30, 58.05, 112.04, 114.07, 118.75, 129.54, 134.70, 159.61, 165.95; IR (thin film) 3312 br, 2959 s, 2934 s, 1663 vs, 1530 s, 1458 s cm⁻¹; HRMS (ESI-TOF) m/z 250.1443 [(M+H⁺); calcd. for

 $C_{14}H_{20}NO_3$: 250.1443]; $[\alpha]_D^{20}$ +5.4 (c 0.5, EtOAc) on 90% ee material (HPLC).

$$O_2N$$
 O_2N
 O_3
 O_4
 O_4
 O_5
 O_7
 O_8
 $O_$

(2S,3S)-N-butyl-3-(4-nitrophenyl)oxirane-2-

carboxamide 135f: Aldehyde 127f was reacted according to the general method B described above with

(S)-VANOL as ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH_2Cl_2 as eluent) afforded pure *cis*-epoxide **135f** as a white solid (mp 95-96 °C on 92% ee material) in 70% isolated yield (37.0 mg, 0.140 mmol); *cis/trans*: 13:1. β -ketoamide side product **136f**: 8% yield. The optical purity of **135f** was determined to be 92% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; $R_t = 28.14$ min (major enantiomer, **135f**) and $R_t = 47.71$ min (minor enantiomer, *ent*-**135f**).

Spectral data for **135f**: $R_f = 0.55$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.73 (t, J = 7.3 Hz, 3H), 0.92-1.00 (m, 2H), 1.04-1.11 (m, 2H), 2.92 (dq, J = 13.0, 6.5 Hz, 1H), 3.08 (dq, J = 13.7, 6.9 Hz, 1H), 3.86 (d, J = 4.9 Hz, 1H), 4.36 (d, J = 4.9 Hz, 1H), 5.88 (s, 1H), 7.55 (d, J = 8.7 Hz, 2H), 8.21 (d, J = 8.7 Hz, 2H); ¹³C (CDCl₃, 125 MHz) δ 13.45, 19.69, 31.35, 38.39, 56.50, 57.21, 123.57, 127.62, 140.29, 147.99, 164.97; IR (thin film) 3312 br, 2961 vs, 2934 s, 1655 vs, 1547 vs, 1518 vs, 1464 s, 1346 s cm⁻¹; HRMS (ESI-TOF) m/z 265.1179 [(M+H⁺); calcd. for $C_{13}H_{17}N_2O_4$: 265.1188]; $[\alpha]_D^{20}$ +42.2 (c 1.0, EtOAc) on 92% ee material (HPLC).

(2S,3S)-N-butyl-3-(4-bromophenyl)oxirane-2-

Br 135g

carboxamide 135g: Aldehyde **127g** was reacted according to the general method B described above with (*S*)-VANOL as

ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH_2Cl_2 as eluent) afforded pure *cis*-epoxide **135g** as a white solid (mp 109-110 °C on 99% ee material) in 88% isolated yield (52.5 mg, 0.176 mmol); *cis/trans*: >100:1. β -ketoamide side product **136g**: <1% yield. The optical purity of **135g** was determined to be 99% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; $R_t = 15.09$ min (major enantiomer, **135g**) and $R_t = 27.43$ min (minor enantiomer, *ent-***135g**).

Spectral data for **135g**: $R_f = 0.50$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.77 (t, J = 7.2 Hz, 3H), 0.92-0.99 (m, 2H), 1.04-1.10 (m, 2H), 2.86-2.92 (m, 1H), 3.13 (dq, J = 13.7, 6.9 Hz, 1H), 3.78 (d, J = 4.8 Hz, 1H), 4.25 (d, J = 4.8 Hz, 1H), 7.24 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H); ¹³C (CDCl₃, 151 MHz) δ 13.67, 19.77, 31.39, 38.39, 56.29, 57.57, 122.66, 128.33, 131.61, 132.33, 165.69; IR (thin film) 3300 br, 2957 s, 2928 s, 1653 vs, 1545 s, 1435 s, 1286 s cm⁻¹; HRMS (ESI-TOF) m/z 298.0449 [(M+H⁺); calcd. for C₁₃H₁₇BrNO₂ : 298.0443]; [α]_D²⁰ +20.7 (c 1.0, EtOAc) on 99% ee material (HPLC).

(2S,3S)-N-butyl-3-(3-bromophenyl)oxirane-2-

carboxamide 135g': Aldehyde 127g' was reacted 135g' according to the general method A described above with (S)-VANOL as ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure cis-epoxide 135g' as a white solid (mp 74-75 °C on 96% ee material) in 88% isolated yield (52.5 mg, 0.176 mmol); cis/trans: >100:1. β-ketoamide side product 136g': 4% yield. The optical purity of 135g' was determined to be 96% ee by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; $R_t = 14.31$ min (major enantiomer, 135g') and $R_t = 27.29$ min (minor enantiomer, *ent-135g'*).

Spectral data for **135g'**: $R_f = 0.55$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.76 (t, J = 7.2 Hz, 3H, 0.97 (dgd, J = 14.9, 7.4, 2.9 Hz, 2H), 1.06-1.12 (m, 2H), 2.84-2.90 (m, 1H), 3.16(dq, J = 13.7, 6.9 Hz, 1H), 3.77 (d, J = 4.8 Hz, 1H), 4.27 (d, J = 4.8 Hz, 1H), 5.88 (s, 1H), 7.20(t, J = 7.8 Hz, 1H), 7.28 (d, J = 7.7 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.50 (s, 1H); ¹³C (CDCl₃, 125 MHz) δ 13.60, 19.71, 31.36, 38.34, 56.38, 57.28, 122.49, 125.28, 129.50, 129.95, 131.59, 135.46, 165.42; IR (thin film) 3304 br, 2959 vs, 2932 vs, 1658 vs, 1568 vs, 1541 vs, 1435 s, 1284 s cm⁻¹; HRMS (ESI-TOF) m/z 298.0442 [(M+H⁺); calcd. for C₁₃H₁₇BrNO₂ : 298.0443]; $[\alpha]_D^{20}$ –17.8 (c 1.0, EtOAc) on 96% ee material (HPLC).

Br O H

(2S,3S)-N-butyl-3-(4-bromo-2fluorophenyl)oxirane-2-carboxamide 135x: Aldehyde 127x was reacted according to the general method B described above with (S)-VANOL

as ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm \times 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide **135x** as a white solid (mp 86-87 °C on 80% ee material) in 70% isolated yield (44.3 mg, 0.140 mmol); *cis/trans*: 39:1. β -ketoamide side product **136x**: 9% yield. The optical purity of **135x** was determined to be 80% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; R_t = 15.61 min (major enantiomer, 135x) and R_t = 23.23 min (minor enantiomer, *ent*-135x).

Spectral data for **135x**: $R_f = 0.68$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.83 (t, J = 7.3 Hz, 3H), 1.01-1.08 (m, 2H), 1.16 (dt, J = 14.8, 7.3 Hz, 2H), 2.98 (dq, J = 12.9, 6.4 Hz, 1H), 3.20 (dq, J = 13.7, 6.9 Hz, 1H), 3.87 (d, J = 4.7 Hz, 1H), 4.32 (d, J = 4.7 Hz, 1H), 5.91 (s, 1H), 7.24 (t, J = 8.0 Hz, 1H), 7.29-7.32 (m, 2H); ¹³C (CDCl₃, 125 MHz) δ 13.58, 19.74, 31.38, 38.40, 53.83, 53.86, 55.76, 119.24, 119.43, 120.09, 120.20, 122.87, 122.94, 127.16, 127.19, 129.17, 129.20, 160.06, 162.08, 165.29; IR (thin film) 3300 br, 2959 s, 2932 s, 1653 vs, 1547 vs, 1406 s cm⁻¹; HRMS (ESI-TOF) m/z 316.0364 [(M+H⁺); calcd. for C₁₃H₁₆BrFNO₂ : 317.0348]; $[\alpha]_D^{20}$ +12.7 (c 1.0, EtOAc) on 80% ee material (HPLC).

(2S,3S)-N-butyl-3-(4-cyanophenyl)oxirane-2-

NC 135y

carboxamide 135y: Aldehyde **127y** was reacted according to the general method B described above with (S)-VANOL

as ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm \times 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide **135y** as a white solid (mp 72-73 °C on 96% ee material) in 84% isolated yield (41.0 mg, 0.168 mmol); *cis/trans*: >100:1. β -ketoamide side product **136y**: <1% yield. The optical purity of **135y** was determined to be 96% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; R_t = 38.97 min (major enantiomer, **135y**) and R_t = 63.98 min (minor enantiomer, *ent-***135y**).

Spectral data for **135y**: $R_f = 0.23$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 600 MHz) δ 0.76 (t, J = 7.3 Hz, 3H), 0.93-0.99 (m, 2H), 1.04-1.09 (m, 2H), 2.87-2.93 (m, 1H), 3.08 (dq, J = 13.7, 6.9 Hz, 1H), 3.83 (d, J = 4.9 Hz, 1H), 4.32 (d, J = 4.9 Hz, 1H), 5.86 (s, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H); ¹³C (CDCl₃, 125 MHz) δ 13.54, 19.67, 31.30, 38.33, 56.40, 57.29, 112.49, 118.17, 127.39, 132.10, 138.41, 165.06; IR (thin film) 3312 br, 2959 s, 2934 s, 2229 s, 1664 vs, 1541 s, 1437 s cm⁻¹; HRMS (ESI-TOF) m/z 245.1283 [(M+H⁺); calcd. for $C_{14}H_{17}N_2O_2$: 245.1290]; $[\alpha]_D^{20}$ +41.0 (c 1.0, EtOAc) on 96% ee material (HPLC).

4-((2S,3S)-3-(butylcarbamoyl)oxiran-2-yl)phenyl acetate 135z: Aldehyde 127z was reacted according to the general method B described above with (S)-VANOL

as ligand. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide **135z** as a white solid (mp 113-114 °C on 97% ee material) in 82% isolated yield (45.5 mg, 0.164 mmol); *cis/trans*: >100:1. β -ketoamide side product **136z**: 4% yield. The optical purity of **135z** was determined to be 97% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 80:20 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; R_t = 26.76 min (major enantiomer, **135z**) and R_t = 46.04 min (minor enantiomer, *ent*-**135z**).

Spectral data for **135z**: $R_f = 0.34$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 600 MHz) δ 0.76 (t, J = 7.2 Hz, 3H), 1.00 (dq, J = 14.7, 7.3 Hz, 2H), 1.07 (dtd, J = 14.5, 7.2, 2.7 Hz, 2H), 2.28 (s, 3H), 2.90 (dq, J = 12.9, 6.4 Hz, 1H), 3.09 (dq, J = 13.7, 6.9 Hz, 1H), 3.77 (d, J = 4.7 Hz, 1H), 4.29 (d, J = 4.7 Hz, 1H), 5.82 (s, 1H), 7.07 (d, J = 8.6 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H); ¹³C (CDCl₃, 125 MHz) δ 13.48, 19.70, 21.08, 31.19, 38.28, 56.27, 57.66, 121.64, 127.76, 130.74, 150.75, 165.83, 169.06; IR (thin film) 3310 br, 2957 s, 2930 s, 1757 vs, 1653 vs, 1545 vs, 1369 s, 1223 s cm⁻¹; HRMS (ESI-TOF) m/z 278.1395 [(M+H⁺); calcd. for C₁₅H₂₀NO₄ : 278.1392]; $[\alpha]_D^{20}$ +14.5 (c 1.0, EtOAc) on 97% ee material (HPLC).

(2S,3S)-N-butyl-3propyloxirane-2-carboxamide

Aldehyde **1270** was reacted according to the general method A described above with (S)-VANOL as ligand. Purification of the

135o:

crude epoxide by neutral alumina chromatography (17 mm \times 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide **1350** as a white semi-solid in 65% isolated yield (24.1 mg, 0.130 mmol); *cis/trans*: nd. β -ketoamide side product **1360**: 9% yield. The optical purity of **1350** was determined to be 78% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 97:3 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; R_t = 30.34 min (major enantiomer, **1350**) and R_t = 37.02 min (minor enantiomer, *ent*-**1350**).

Spectral data for **1350**: $R_f = 0.44$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 600 MHz) δ 0.92 (t, J = 7.4 Hz, 3H), 0.95-0.97 (m, 3H), 1.34 (dq, J = 15.0, 7.5 Hz, 2H), 1.46-1.55 (m, 6H), 3.15-3.17 (m, 1H), 3.24 (dq, J = 13.3, 6.6 Hz, 1H), 3.32 (dq, J = 13.5, 6.7 Hz, 1H), 3.48 (d, J = 4.8 Hz, 1H), 6.13 (s, 1H); ¹³C (CDCl₃, 125 MHz) δ 13.63, 13.84, 19.41, 20.04, 29.64, 31.62, 38.55, 55.29, 58.39, 167.27; IR (thin film) 3306 br, 2961 s, 2934 s, 1653 vs, 1539 s, 1458 m cm⁻¹; HRMS (ESI-TOF) m/z 186.1500 [(M+H⁺); calcd. for C₁₀H₂₀NO₂ : 186.1494]; [α]²⁰_D -1.9 (c 1.0, EtOAc) on 78% ee material (HPLC).

(2S,3S)-N-butyl-3octyloxirane-2-carboxamide

Aldehyde **127p'** was reacted according to the general method A described above with (S)-VANOL as ligand. Purification of the

135p':

crude epoxide by neutral alumina chromatography (17 mm \times 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide **135p'** as a white semi-solid in 84% isolated yield (42.9 mg, 0.168 mmol); *cis/trans*: nd. β -ketoamide side product **136p'**: 6% yield. The optical purity of **135p'** was determined to be 90% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 97:3 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; $R_t = 22.64$ min (major enantiomer, **135p'**) and $R_t = 27.43$ min (minor enantiomer, *ent-***135p'**).

Spectral data for **135p'**: $R_f = 0.32$ (1:2 EtOAc/hexane); ¹H NMR (CDCl₃, 600 MHz) δ 0.85 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.4 Hz, 3H), 1.21-1.27 (m, 8H), 1.28-1.35 (m, 4H), 1.40-1.53 (m, 6H), 3.11-3.14 (m, 1H), 3.21 (dq, J = 13.2, 6.6 Hz, 1H), 3.30 (dq, J = 13.5, 6.7 Hz, 1H), 3.46 (d, J = 4.8 Hz, 1H), 6.11 (s, 1H); ¹³C (CDCl₃, 125 MHz) δ 13.63, 14.04, 20.05, 22.61, 26.01, 27.64, 29.12, 29.30, 29.33, 31.63, 31.80, 38.55, 55.36, 58.57, 167.26; IR (thin film) 3312 br, 2957 s, 2938 s, 2857 m, 1661 vs, 1539 vs, 1458 m, cm⁻¹; HRMS (ESI-TOF) m/z 256.2271 [(M+H⁺); calcd. for C₁₅H₃₀NO₂ : 256.2277]; [α]²⁰_D +2.9 (c 1.0, EtOAc) on 90% ee material (HPLC).

(2R,3S)-N-butyl-3-(4-bromophenyl)oxirane-2-

carboxamide 135g: A sample of *trans*-epoxide **135g** was obtained when aldehyde **127g** was subjected to the reaction

conditions given in the entry 4 of Table 8.3 in CHCl₃. The optical purity of (2R,3S)-135g was determined to be 20% *ee* by HPLC analysis (PIRKLE COVALENT (R,R) WHELK-O 1 column, 93:7 hexane/2-propanol at 228 nm, flow-rate: 1 mL/min): retention times; $R_t = 60.20$ min (major enantiomer, (2R,3S)-135g) and $R_t = 39.34$ min (minor enantiomer, (2S,3R)-135g).

Spectral data for (2R,3S)-135g: $R_f = 0.63$ (1:1 EtOAc/hexane); ¹H NMR (CDCl₃, 500 MHz) δ 0.94 (t, J = 7.3 Hz, 3H), 1.37 (dq, J = 15.0, 7.5 Hz, 2H), 1.49-1.55 (m, 2H), 3.29 (qq, J = 13.2, 6.6 Hz, 2H), 3.47 (d, J = 2.0 Hz, 1H), 3.83 (d, J = 1.9 Hz, 1H), 6.19 (s, 1H), 7.14 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.6 Hz, 2H); ¹³C (CDCl₃, 151 MHz) δ 13.69, 20.00, 31.56, 38.67, 58.54, 58.99, 123.06, 127.39, 131.85, 134.06, 166.94; IR (thin film) 3275 br, 2859 m, 2932 m, 1655 vs, 1564 m, 1439 w cm⁻¹; HRMS (ESI-TOF) m/z 298.0444 [(M+H⁺); calcd. for C₁₃H₁₇BrNO₂ : 298.0443].

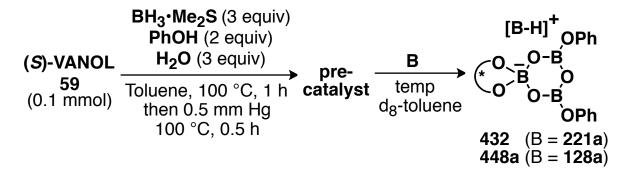
8.9.5 One pot procedure for epoxidation reaction (Table 8.5)

(2S,3S)-N-butyl-3-phenyloxirane-2-carboxamide 135a: To a flame-dried 10 mL round bottom flask filled with argon was added was added (S)-VANOL (9.0 mg, 0.02 mmol) and commercial B(OPh)₃ (17.4 mg, 0.060 mmol), dimethyl sulfoxide **221a** (1.42 μL, 0.020 mmol) and toluene (2 mL). The resulting mixture was stirred for 1 h at room temperature to give SULFOX-BOROX catalyst 432. After 1 h, the flask containing the catalyst was cooled to -60 °C for 10 min. To this solution was added benzaldehyde 127a (61 µL, 0.60 mmol, 3 equiv, freshly distilled). The resulting mixture was then stirred for 10 min at -60 °C. To this mixture was then added diazoacetamide 128a (28.3 mg, 0.200 mmol) and the resulting mixture was stirred for 24 h at -60 °C. The reaction was quenched by the addition of Et₃N (0.5 mL) and was then warmed to room temperature. The reaction mixture was then transferred to a 50 mL round bottom flask. The reaction flask was rinsed with EtOAc (3 mL × 2) and the rinse was added to the 50 mL round bottom flask. The resulting solution was then concentrated *in vacuo* followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude epoxide as an off-white semi-solid. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure cis-epoxide 135a as a white solid in 75% isolated yield and 80% ee; *cis/trans*: 13:1. β-ketoamide side product **136a**: 4% yield.

8.9.6 Epoxidation using catalyst 447 (Scheme 8.8)

(2S,3S)-N-butyl-3-(4-bromophenyl)oxirane-2-carboxamide 135g: Preparation of the precatalyst stock solution: To a 25 mL flame-dried home-made Schlenk flask, prepared from a single-necked 25 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve, equipped with a stir bar and flushed with argon was added (S)-VANOL (26.3 mg, 0.06 mmol) and PhOH (5.7 mg, 0.06 mmol, freshly sublimed). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to effect dissolution. After the addition of the toluene, BH3•Me2S (30 μL, 0.06 mmol, 2 M in toluene) was added. The flask was sealed by closing the Teflon valve, and then placed in a 100 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To this flask was added PhB(OH)2 (14.6 mg, 0.120 mmol) and toluene (2 mL). The flask was sealed by closing the Teflon valve, and then placed in a 100 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and

opened to argon through the side-arm of the Schlenk flask. This was then completely dissolved in dry toluene (3 mL) under an argon flow through side-arm of the Schlenk flask to afford the stock solution of the pre-catalyst. An aliquot of 1mL of the pre-catalyst was then transferred to a 10 mL flame-dried home-made Schlenk flask equipped with a stir bar and flushed with argon.


Asymmetric epoxidation protocol: To the flask containing the pre-catalyst (1 mL aliquot from 0.02 M stock solution) was added the dimethyl sulfoxide **221a** (1.42 μL, 0.020 mmol) under an argon flow through side-arm of the Schlenk flask. The resulting mixture was stirred for 1 h at room temperature to give the catalyst **447**. The rest of the procedure was similar to method B (for solid aldehydes) discussed earlier. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide **135g** in 85% isolated yield and 90% ee; *cis/trans*: 55:1. β-ketoamide side product **136g**: 1.4% yield.

8.9.7 Epoxidation using the DIAZO-BOROX catalyst 448a (Table 8.8)

(2S,3S)-N-butyl-3-(4-bromophenyl)oxirane-2-carboxamide 135g: Preparation of the precatalyst stock solution: same as discussed earlier for method A or method B.

Asymmetric epoxidation protocol: The flask containing the pre-catalyst was cooled to -60 °C for 10 min. Meanwhile, to a separate 10 mL flame-dried round bottom flask was added diazoacetamide 128a (28.23 mg, 0.2000 mmol) and dry toluene (1.5 mL). To the falsk containing the pre-catalyst was added pre-made solution of diazoacetamide 128a. The flask containing the diazoacetamide 128a was then rinsed with toluene (0.5 mL) and the rinse was then transferred to the flask containing the catalyst at -60 °C. This was then followed by closing the Teflon valve and stirring the resulting mixture for 10 min at -60 °C. The rest of the procedure was similar to method B (for solid aldehydes) discussed earlier. Purification of the crude epoxide by neutral alumina chromatography (17 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure *cis*-epoxide 135g in 86% isolated yield and 91% ee; *cis/trans*: 56:1. β-ketoamide side product 136g: 2% yield.

8.9.8 NMR analysis of boroxinate catalysts 432 and 448a (Figure 8.4)

Entry 1, Figure 8.4A: ¹H NMR of pure VANOL (S)-59 in d₈-toluene

Entry 2, Figure 8.4A: To a 25 mL flame-dried home-made Schlenk flask (see Figure 2.26) equipped with a stir bar and flushed with argon was added (*S*)-VANOL (44 mg, 0.1 mmol) and BH₃•Me₂S (150 μL, 0.3 mmol, 2.0 M in toluene), PhOH (18.8, 0.2 mmol) and H₂O (5.4 μL, 0.3 mmol). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (2 mL) was added through the top of the Teflon valve to effect dissolution. The flask was sealed by closing the Teflon valve, and then placed in an 100 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. To the flask containing the pre-catalyst was d₈-toluene (1 mL) under an argon flow through side-arm of the Schlenk flask. The reaction mixture was then stirred for 10 min. The resulting solution was then directly transferred to a quartz NMR tube and was subjected to ¹H NMR and ¹¹B NMR analysis.

Entry 3, Figure 8.4A: 1.0 equiv of DMSO 221a and d₈-toluene (1 mL) was added to the precatalyst (as shown in entry 2) for 10 min at 25 °C.

Entry 4, Figure 8.4A: same as entry 3 except *p*-bromobenzaldehyde **127g** used in place of DMSO.

Entry 5, Figure 8.4A: 1.0 equiv of DMSO 221a was added to the entry 4 for 10 min at 25 °C.

Entry 6, Figure 8.4A: same as entry 3 except diazoacetamide 128a used in place of DMSO.

Entry 7, Figure 8.4A: 1 mL of d₈-toluene was added to the pre-catalyst followed by the addition of 1.0 equiv of diazoacetamide 128a as a solution in d₈-toluene (1 mL) for 10 min at 25

°C.

Entry 8, Figure 8.4A: 1 mL of d₈-toluene was added to the pre-catalyst and the resulting solution was cooled to -60 °C. Thereafter, a pre-cooled (-60 °C) solution of 1.0 equiv of diazoacetamide **128a** in d₈-toluene (1 mL) was added and the NMR was taken at -60 °C.

Entry 9, Figure 8.4A: 1 mL of d_8 -toluene was added to the pre-catalyst and the resulting solution was cooled to -60 °C. Thereafter, the NMR was taken at -60 °C.

8.9.9 Gram scale asymmetric catalysis and KIE studies (Scheme 8.9-8.11)

(2S,3S)-N-butyl-3-(4-bromophenyl)oxirane-2-carboxamide 135g: Preparation of the precatalyst stock solution: To a 100 mL flame-dried home-made Schlenk flask, prepared from a single-necked 100 mL pear-shaped flask that had its 14/20 glass joint replaced with a high vacuum threaded Teflon valve, equipped with a stir bar and flushed with argon was added (S)-VANOL (632 mg, 1.44 mmol) and PhOH (271 mg, 2.18 mmol, freshly sublimed). Under an argon flow through the side-arm of the Schlenk flask, dry toluene (16 mL) was added through the top of the Teflon valve to effect dissolution. After the addition of the toluene, BH3•Me2S (2.16 mL, 4.32 mmol, 2 M in toluene) and water (78.0 µL, 4.32 mmol) was added. The flask was sealed by closing the Teflon valve, and then placed in a 100 °C oil bath for 1 h. After 1 h, a vacuum (0.5 mm Hg) was carefully applied by slightly opening the Teflon valve to remove the volatiles. After the volatiles were removed completely, a full vacuum was applied and maintained for a period of 30 min at a temperature of 100 °C (oil bath). The flask was then allowed to cool to room temperature and opened to argon through the side-arm of the Schlenk flask. This was then completely dissolved in dry toluene (72 mL) under an argon flow through side-arm of the Schlenk flask to afford the stock solution of the pre-catalyst. An aliquot of 24 mL of the pre-catalyst was then transferred to a 250 mL flame-dried round bottom flask equipped with a stir bar and flushed with argon.

Asymmetric epoxidation protocol (with DMSO): To the flask containing the pre-catalyst (24 mL aliquot from 0.02 M stock solution) was added the dimethyl sulfoxide 221a (37.5 μL, 0.48 mmol). The resulting mixture was stirred for 1 h at room temperature to give SULFOX-BOROX catalyst 432. Meanwhile, to a separate 100 mL flame-dried round bottom flask was added diazoacetamide 128a (677.6 mg, 4.800 mmol) and dry toluene (36 mL). After 1 h, the flask containing the catalyst was cooled to -60 °C for 10 min. To this solution was added pre-made solution of diazoacetamide 128a. The flask containing the diazoacetamide 128a was then rinsed with toluene (12 mL) and the rinse was then transferred to the flask containing the catalyst at -60 °C. This was then followed by the stirring of the resulting mixture for 10 min at -60 °C. Meanwhile, to a separate 50 mL flame-dried round bottom flask was added aldehyde 127g (1.11 g, 6.00 mmol, 1.2 equiv, freshly purified) and dry toluene (24 mL). To the mixture containing

diazoacetamide 128a and catalyst was then added a pre-made solution of aldehyde 127g and the resulting mixture was stirred for 24 h at -60 °C. The reaction was quenched by the addition of Et₃N (4 mL) and was then warmed to room temperature. The reaction mixture was then transferred to a 500 mL round bottom flask. The reaction flask was rinsed with EtOAc (50 mL \times 2) and the rinse was added to the 500 mL round bottom flask. The resulting solution was then concentrated in vacuo followed by exposure to high vacuum (0.05 mm Hg) for 1 h to afford the crude epoxide as an off-white semi-solid. The unreacted p-bromobenzaldehyde 127g (148 mg, 0.8 mmol) was recovered by flash silica gel column chromatography followed by the sublimation. The sample of the aldehyde was further subjected to the KIE studies. The remaining crude epoxide was flushed through column using EtOAc. Purification of the crude epoxide by neutral alumina chromatography (30 mm × 300 mm column, 10:1 to 1:1 hexanes/ CH₂Cl₂ as eluent) afforded pure cis-epoxide 135g as a white solid (mp 109-110 °C on 99% ee material) in 78% isolated yield (1.12 g, 3.74 mmol) and 90% ee; cis/trans: 30:1. β-ketoamide side product 136g: 5% yield. The ee of the epoxide was increased to 99% ee with a single recrystallization (1:9 EtOAc/hexanes). The yield of the 1st crop was 65%.

Asymmetric epoxidation protocol (without DMSO): The same reaction in the absence of the DMSO resulted *cis*-epoxide **135g** as a white solid (mp 109-110 °C on 99% ee material) in 70% isolated yield (1.00 g, 3.36 mmol) and 79% ee; *cis/trans*: 15:1. β -ketoamide side product **136g**: 13% yield. The ee of the epoxide was increased to 97% ee with a single recrystallization (1:9 EtOAc/hexanes). The yield of the 1st crop was 60%.

REFERENCES

REFERENCES

- (1) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976.
- (2) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801-2803.
- (3) Irie, R.; Noda, K.; Ito, Y.; Katsuki, T. Tetrahedron Lett. 1991, 32, 1055-1058.
- (4) Tu, Y.; Wang, Z.-X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806-9807.
- (5) (a) Matsumoto, K.; Katsuki, T. In *Catalytic Asymmetric Synthesis*, 3rd Ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2010, p 839. (b) Wong, O. A.; Shi, Y. Chem. Rev. **2008**, 108, 3958-3987. (c) Matsumoto, K.; Sawada, Y.; Katsuki, T. Pure Appl. Chem. **2008**, 80, 1071-1077. (d) Aziridines and Epoxides in Organic Synthesis; Yudin, A. K., Ed.; Wiley-VCH: Weinheim, 2006.
- (6) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. *Science* **1997**, *277*, 936-938.
- (7) (a) Katsuki, T. In *Comprehensive Asymmetric Catalysis, 1st Ed.*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999. (b) Johnson, R. A.; Sharpless, K. B. In *Catalytic Asymmetric Synthesis, 2nd Ed.*; Ojima, I., Ed.; Wiley-VCH: New York, 2000. (c) Li, Z.; Yamamoto, H. *J. Am. Chem. Soc.* **2010**, *132*, 7878-+. (d) Zhang, W.; Yamamoto, H. *J. Am. Chem. Soc.* **2007**, *129*, 286-287. (e) Jacobsen, E. N.; Wu, M. H. E. In *Comprehensive Asymmetric Catalysis*, 2nd Ed.; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999, Vol. Vol 2, p 649-677.
- (8) (a) Aggarwal, V. K.; Wang, M. F. *Chem. Commun.* **1996**, 191-192. (b) Yang, D.; Wong, M.-K.; Yip, Y.-C.; Wang, X.-C.; Tang, M.-W.; Zheng, J.-H.; Cheung, K.-K. *J. Am. Chem. Soc.* **1998**, *120*, 5943-5952. (c) Denmark, S. E.; Matsuhashi, H. *J. Org. Chem.* **2002**, *67*, 3479-3486. (d) Page, P. C. B.; Buckley, B. R.; Heaney, H.; Blacker, A. J. *Org. Lett.* **2005**, *7*, 375-377.
- (9) (a) Nishikawa, Y.; Yamamoto, H. *J. Am. Chem. Soc.* **2011**, *133*, 8432-8435. (b) Shibasaki, M.; Kanai, M.; Matsunaga, S. *Aldrichimica Acta* **2006**, *39*, 31–39.
- (10) (a) Juliá, S.; Masana, J.; Vega, J. C. *Angew. Chem., Int. Ed.* **1980**, *19*, 929-931. (b) Ooi, T.; Ohara, D.; Tamura, M.; Maruoka, K. *J. Am. Chem. Soc.* **2004**, *126*, 6844-6845. (c) Lattanzi, A. *Org. Lett.* **2005**, *7*, 2579-2582. (d) Marigo, M.; Franzén, J.; Poulsen, T. B.; Zhuang, W.;

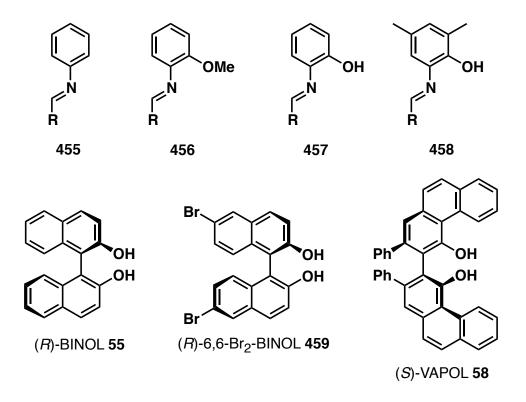
- Jørgensen, K. A. J. Am. Chem. Soc. **2005**, 127, 6964-6965. (e) Lee, S.; MacMillan, D. W. C. *Tetrahedron* **2006**, 62, 11413-11424.
- (11) (a) Liu, Y.; Provencher, B. A.; Bartelson, K. J.; Deng, L. Chem. Sci. 2011, 2, 1301-1304. (b) Ku, J.-M.; Yoo, M.-S.; Park, H.-g.; Jew, S.-s.; Jeong, B.-S. Tetrahedron 2007, 63, 8099-8103. (c) Arai, S.; Shioiri, T. Tetrahedron 2002, 58, 1407-1413. (d) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T. Tetrahedron 1999, 55, 6375-6386. (e) Arai, S.; Shirai, Y.; Shioiri, T.; Ishida, T. Chem. Commun. 1999, 49-50. (f) Arai, S.; Shioiri, T. Tetrahedron Lett. 1998, 39, 2145-2148. (g) Arai, S.; Ishida, T.; Shioiri, T. Tetrahedron Lett. 1998, 39, 8299-8302.
- (12) (a) Aggarwal, V. K.; Alonso, E.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Porcelloni, M.; Studley, J. R. *Angew. Chem., Int. Ed.* **2001**, *40*, 1430-1433. (b) Aggarwal, V. K.; Alonso, E.; Bae, I.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Patel, M.; Porcelloni, M.; Richardson, J.; Stenson, R. A.; Studley, J. R.; Vasse, J.-L.; Winn, C. L. *J. Am. Chem. Soc.* **2003**, *125*, 10926-10940. (c) Aggarwal, V. K.; Winn, C. L. *Acc. Chem. Res.* **2004**, *37*, 611-620.
- (13) (a) He, L.; Liu, W.-J.; Ren, L.; Lei, T.; Gong, L.-Z. Adv. Synth. Catal. **2010**, 352, 1123-1127. (b) Liu, W. J.; Lv, B. D.; Gong, L. Z. Angew. Chem., Int. Ed. **2009**, 48, 6503-6506.
- (14) (a) Li, W.; Wang, J.; Hu, X.; Shen, K.; Wang, W.; Chu, Y.; Lin, L.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2010, 132, 8532-8533. (b) Hashimoto, T.; Miyamoto, H.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 11280-11281. (c) Trost, B. M.; Malhotra, S.; Fried, B. A. J. Am. Chem. Soc. 2009, 131, 1674-+. (d) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 2434-2435. (e) Hasegawa, K.; Arai, S.; Nishida, A. Tetrahedron 2006, 62, 1390-1401. (f) Dudley, M. E.; Morshed, M. M.; Brennan, C. L.; Islam, M. S.; Ahmad, M. S.; Atuu, M.-R.; Branstetter, B.; Hossain, M. M. J. Org. Chem. 2004, 69, 7599-7608. (g) Yao, W.; Wang, J. Org. Lett. 2003, 5, 1527-1530. (h) Jiang, N.; Wang, J. B. Tetrahedron Lett. 2002, 43, 1285-1287. (i) Mahmood, S. J.; Hossain, M. M. J. Org. Chem. 1998, 63, 3333-3336. (j) Holmquist, C. R.; Roskamp, E. J. J. Org. Chem. 1989, 54, 3258-3260. (k) Zhu, Z.; Espenson, J. H. J. Am. Chem. Soc. 1996, 118, 9901-9907. (l) Zhu, Z.; Espenson, J. H. J. Org. Chem. 1995, 60, 7090-7091. (m) Curini, M.; Epifano, F.; Marcotullio, Maria C.; Rosati, O. Eur. J. Org. Chem. 2002, 1562-1565.
- (15) Huang, L.; Wulff, W. D. J. Am. Chem. Soc. 2011, 133, 8892-8895.
- (16) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13100-13103.
- (17) Li, X.; Burrell, C. E.; Staples, R. J.; Borhan, B. J. Am. Chem. Soc. 2012, 134, 9026-9029.

- (18) Mukherjee, M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. J. Org. Chem. **2010**, 75, 5643-5660.
- (19) Hasegawa, T.; Aoyama, H.; Omote, Y. J. Chem. Soc., Perkin Trans. 1 1979, 963-969.
- (20) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. **2010**, 132, 13104-13107.
- (21) Gaussian 03, Revision D.01 M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004
- (22) Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. 1995, 117, 9357-9358.
- (23) Ouihia, A.; Rene, L.; Guilhem, J.; Pascard, C.; Badet, B. J. Org. Chem. 1993, 58, 1641-1642.
- (24) Doyle, M. P.; Kalinin, A. V. J. Org. Chem. **1996**, 61, 2179-2184.
- (25) Blankley, C. J.; Sauter, F. J.; House, H. O. Org. Synth. 1969, 49, 22.
- (26) García, M. J.; Rebolledo, F.; Gotor, V. Tetrahedron 1994, 50, 6935-6940.
- (27) Neo, A. G.; Delgado, J.; Polo, C.; Marcaccini, S.; Marcos, C. F. *Tetrahedron Lett.* **2005**, *46*, 23-26.

CHAPTER 9

IS IT REALLY A LEWIS ACID CATALYED ASYMMETRIC IMINO-ALDOL REACTION? - PROBING THE NATURE OF THE ACTIVE SITE VIA NMR SPECTROSCOPY, COMPUTATIONAL STUDIES AND SUBSTRATE AND CATALYST MODIFICATIONS

Another year; another reaction. I think that we should pursue it a little more!


-William D. Wulff

9.1 Introduction

Out of all catalytic asymmetric reactions, the Mannich reaction¹ and Mannich-type reactions are some of the most important and useful reactions.² One of the Mannich-type reactions is the reaction of an enolate or enolate equivalent with an aldimine. This reaction provides an easy access to the optically active β -amino esters or ketones, which can easily be transformed into β -amino acids, β -amino-alcohols, β -lactams etc.³ In the 90's, several examples of enantioselective Mannich-type reactions using a stoichiometric amount of an activator for the imines were reported.⁴ However, in last decade or so, various kinds of asymmetric catalysis have been utilized for the realization of this reaction. This includes a variety of chiral Lewis acid^{2a,2e} and Brønsted acid⁵ mediated asymmetric reactions. Specifically, one of the early examples involving chiral Lewis acids was reported by Kobayashi and co-workers in 1997.⁶ They reported the first asymmetric Mannich type reaction between imine **458** and ketene silyl acetal **460** using a catalyst derived from $Zr(OtBu)_4$ **463b**, NMI **464** and (R)-6,6'-Br₂-BINOL **459**.

In due course of time, they reported several modifications of this catalytic system for the same reaction.^{2a} Within four years of the first example, the Wulff group reported an unusually robust and temperature independent catalytic system which provided higher selectivities by employing vaulted biaryl ligand (*S*)-VAPOL **59** rather than the linear biaryl ligands **55** and **459**.⁷ A list of various ligands and imines screened for imino-aldol reaction are presented in Figure 9.1.

Figure 9.1 Ligands and imines used in the imino-aldol reaction.

Based on the initial CPK models, Wulff and cowerkers installed two methyl groups at the 3 and 5 positions of the phenyl ring of the imine **457**, thereby, transforming it to the imine **458** (Figure 9.1). Excellent results were obtained utilizing imine **458** and also, it was found to be independent of the temperature (Table 9.1). More importantly, they were able to employ a

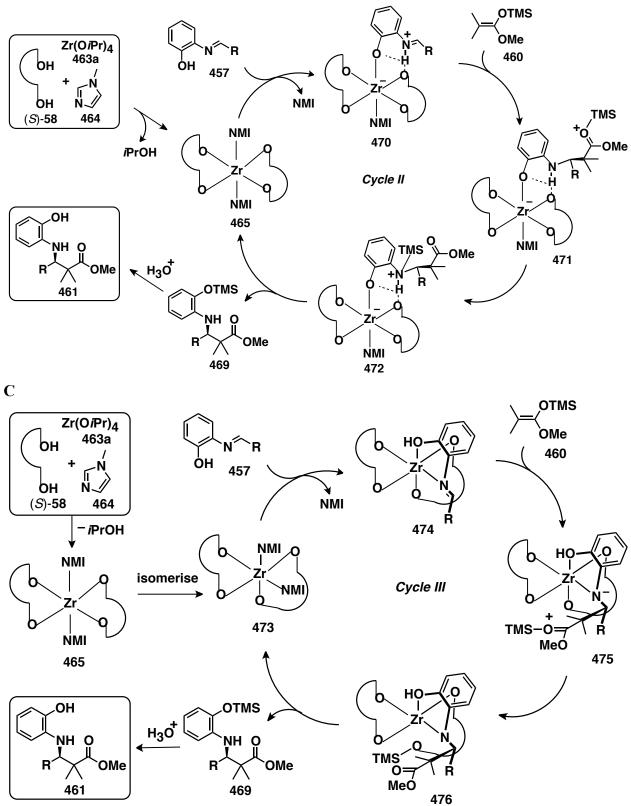
catalyst loading as low as up to 2 mol% (Table 9.1, entries 7 and 9). The only data from Table 9.1 that comes from the present dissertation is entry 6 (solvent = CH_2Cl_2).

Table 9.1 Imino-aldol reaction between imine **457/458** with ketene acetal **460** using various ligands.

	Imine	L	Cat (mol%)	T (°C)	Ester	Solvent					
#						CH ₂ Cl ₂			Toluene		
						Yield	ee	Time	Yield	ee	Time
						$(\%)^b$	$(\%)^{\mathcal{C}}$	(h)	(%) ^b	(%) ^c	(h)
1	457a	55	20	-45	461a	80	36	19	_	_	_
2^{d}	457a	55	10	-45	461a	87	86	19	_	_	_
3	457a	58	20	-45	461a	50	80	10	92	91	20
4	457a	55	20	25	461a	100	28	4	_	_	_
5 ^d	457a	459	10	25	461a	87	48	4	95	62	18
6	457a	58	20	25	461a	78	84 ^e	18	94	89 ^{f,g}	15
7	457a	58	2	40	461a	_	_	_	100	86 ^{g,h}	6
8^{d}	458a	459	10	25	462a	_	_	-	93	47	18
9	458a	58	20	25	462a	_	_	_	100	98	15
10	458a	58	2	100	462a	_	_	_	95	98.5	5

^a Unless otherwise specified, all reactions were performed with 0.25 mmol of imine **457/458** in toluene (0.125 M in imine) with 1.2 equiv of **460** and 10, 20 or 2 mol% of the catalyst at T °C. The catalyst was prepared from $Zr(O^{i}Pr)_{4}/^{i}PrOH$ **463a**, ligand **55/58/459** (2.2 equiv) and NMI **464** (1.2 equiv) in CH₂Cl₂ (entries 1, 2, 4, 5 and 8) or toluene (entries 3, 6, 7, 9 and 10) at 25 °C for 1h. L = Ligand. Isolated Yield. Determined by HPLC. $^{d}Zr(O^{t}Bu)_{4}$ **463b** used. ^e 15:1 CH₂Cl₂: toluene. ^f 0.5 M in imine. ^g 15:1 toluene:CH₂Cl₂. ^h 1.0 M in imine.

Our catalyst was prepared by the reaction of 2.2 equivalents of (S)-VAPOL 58 with 1 equiv of Zr(iPrO)₄ 463a and 1.2 equiv of N-methylimidazole (NMI) 464 at room temperature for 1 h. In dichloromethane, it was found that (S)-VAPOL 58 and (R)-6,6'-Br₂-BINOL 459 were superior to (R)-BINOL 55 at -45 °C (Table 9.1, entries 1-3). At 25 °C, while asymmetric induction in the case of VAPOL remains almost unchanged (84% ee, Table 9.1, entry 6), it decreased quite sharply in the case of (R)-6,6'-Br₂-BINOL **459** (48% ee, Table 9.1, entry 5). When the solvent is changed to toluene, the induction increases in both cases at room temperature. However, (S)-VAPOL 58 proved still to be the best ligand for this reaction in toluene at room temperature (89% ee vs 62% ee, Table 9.1 entries 6 vs. 5). In fact, quantitative yield was obtained with only a small drop-off in the asymmetric induction (86% ee), when the reaction was performed at 40 °C with 2 mol% catalyst loading. Additionally, almost optically pure β -amino ester was obtained employing imine 458a independent of temperature (entries 9-10). However, only 47% ee was observed when (R)-6,6'-Br₂-BINOL **459** was used as the ligand in the case of the imine 458a (entry 8). Thus, the catalyst generated from VAPOL is far more efficient than the catalyst generated from (R)-BINOL 55 or its derivative 459 as low temperature is not necessary for attaining high asymmetric inductions.


9.2 Proposed catalytic cycle of imino-aldol reaction

In the year 2001, Wulff proposed a mechanism for the imino-aldol reaction and this is presented in Scheme 9.1. Initially, the proposed catalytic cycle I involved a catalyst bearing two VAPOL ligands on one zirconium and o-hydroxyphenylimine 457 is coordinated to the

zirconium. Based on the initial space-filling CPK models, we found that the binding of the two VAPOL units to one zirconium atom is possible only with a facial arrangement of the four oxygen atoms as illustrated by structure 465 in Scheme 9.1. Also, two NMIs are proposed to be coordinating at the axial positions. Thereafter, the imine is proposed to replace one of the NMI at one of the apical position. This would lead to imine-catalyst complex 466 where a phenol exchange has occurred. Subsequent attack of ketene acetal 460 would give 467 first, and then 468, whose trimethylsilylated oxygen atom attacks the Zr center to afford the product 469. Subsequent hydrolysis would furnish the β -amino ester 461.

Scheme 9.1 Proposed catalytic cycles of imino-aldol reaction using (S)-VAPOL **58** (A, B, C) and (R)-6,6'-Br₂-BINOL **459** (D) as the ligands. (A) Catalytic cycle I (B) Catalytic cycle II (C) Catalytic cycle III (D) Catalytic cycle III'

В

Scheme 9.1 cont'd

D **OTMS** Zr(OtBu)4 ÒМе 463b HO рн 460 457 ρн (S)-459 NMI 464 474' tBuOH NMI Λ HO NMI isomerise Cycle III' 473' TMS-O= ЙMI MeÓ 475' 465' **OTMS** OH н₃о๋ OMe MeÓ 461 469 476'

During recent mechanistic investigations, we envisioned another catalytic cycle with a different mode of activation of the imine (Scheme 9.1B). This involves the presence of the imine–catalyst complex **470** where the imine is protonated and is hydrogen bonded to the oxygen of the ligand **58**. As the imine is covalently bonded to zirconium after phenol exchange, this type of interaction would fall in the category of Lewis acid assisted Brønsted acid catalysis. Another plausible mechanism was proposed by Kobayashi and coworkers and involves (*R*)-6,6'-Br₂-BINOL **459** as the ligand. It excludes the presence of NMI in the transition states (Catalytic cycle III', Scheme 9.1D and Scheme 9.2B). The catalyst is generated from a mixture of Zr(OtBu)₄ **463b**, NMI **464** and (*R*)-6,6'-Br₂-BINOL **459**. In this mechanism, it has been

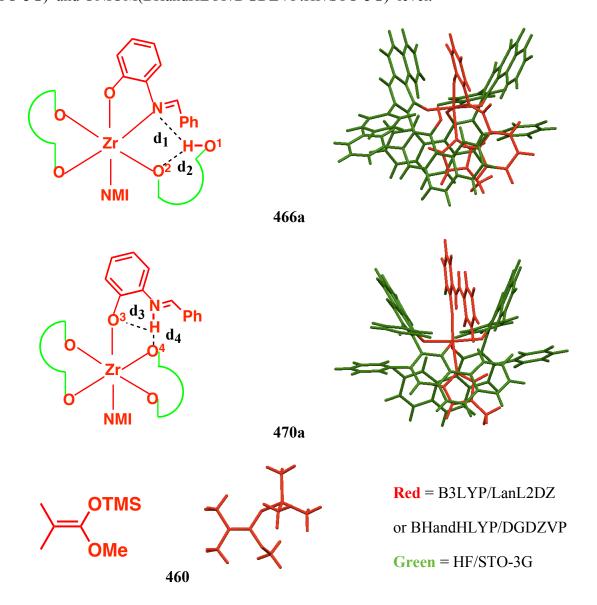
assumed that step one involves the isomerization of complex 465', where there are two NMI groups that are trans to each other (Catalytic cycle III, Scheme 9.2B), to 473' where the NMI groups are cis to each other. The second step involves the exchange of the NMI groups by the imine 457 leading to the formation of the imine-catalyst complex 474'. The coordination of the hydroxyl group to the zirconium atom indicates the importance of the hydroxyl group. Subsequent attack of ketene acetal 460 would give 475' then 476', which is followed by the final release of the product 461. A similar kind of mechanism can also be assumed for the reaction involving (S)-VAPOL 58 as the ligand (Catalytic cycle III, Scheme 9.1C). Various techniques such as NMR studies and theoretical calculations were then used to determine the most probable catalytic cycle and to support the proposed intermediates of the corresponding catalytic cycle. The details are discussed below.

9.3 NMR experiments:

In support of the intermediate **465**, a clean spectrum was observed when a catalyst derived from $Zr(iPrO)_4$, 2 equiv of (S)-VAPOL **58** and 2 equiv of N-methyl imidazole **464** was subjected to 1H NMR analysis. The observed 1H NMR spectrum with a single bay proton doublet at $\delta = 11.33$ ppm clearly indicates the presence of a C_2 -symmetric species **465** bearing two mutually trans NMI ligands bound to zirconium. Thereafter, another NMR experiment was performed to gain an insight into the interaction of the imine with the catalyst. This provides some information about the phenol exchange. An excess amount of imine **457a** (2 equiv) was added to the catalyst that was generated from 1 equiv of $Zr(iPrO)_4$ **463a**, 2 equiv of VAPOL **58** and 2

equiv of *N*-methyl imidazole **464** in d8-toluene. Non-equivalent phenanthrene units were observed in the 1 H NMR spectrum. In fact, the appearance of new bay protons at $\delta = 11.4$ and $\delta = 11.8$ ppm indicated the loss of C_2 symmetry and supported the proposal of phenol exchange resulting from the addition of the imine to the catalyst. Another piece of evidence comes from the fact that the reaction of imine **456a** (R = Ph) gave the racemic product in 5% yield only (Figure 9.1). Also, a similar observation has been made for the catalyst derived from (*R*)-6,6′-Br₂-BINOL **459** where the imines **455a** (R = Ph) and **456a** (R = Ph) gave good yields but only in 5% ee. 6

9.4 DFT calculations

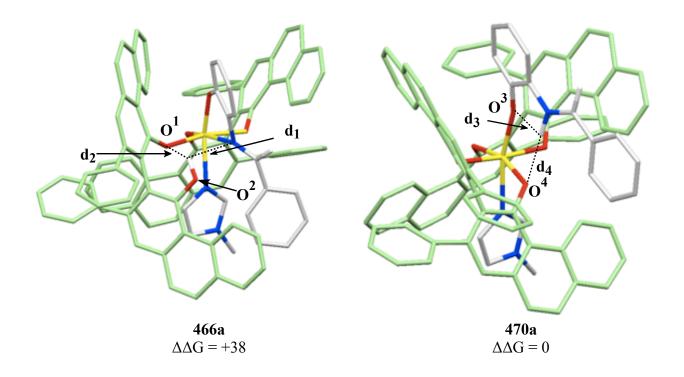

Intrigued by the observations from the NMR experiments on the catalyst for the imino-aldol reaction, we decided to investigate the catalyst and catalytic cycle further using computational chemistry. Specifically, the nature of the active site and subsequent transition state of the imino-aldol reaction were point of interests in these theoretical calculations. The possibility of hydrogen bonding in 470 (Scheme 9.1) motivated us to study the mechanism of the reaction in detail. The catalytic asymmetric imino-aldol reaction is a challenging system to examine computationally due to the size of the system which includes two VAPOL units and the zirconium atom (with d-orbitals). The number of atoms is more than 125 in each of the reactions studied computationally. Hence, in order to reduce the computational cost, the hybrid DFT:HF ONIOM method was employed to obtain quality results. It must be noted that it is not reasonable to expect quantitative matches of experimental and theoretical $\Delta\Delta G^{\ddagger}$ given the size of the experimental system and the errors associated with each of the methods. The

'extrapolated energy' from the ONIOM calculation gives an initial measure of the relative energy of the transition state structures. Thereafter, following the common approach, one can then perform a single point energy calculation on the ONIOM optimized geometries using the DFT method with a larger basis set for the whole system. All calculations were performed with the Gaussian '03. Geometries and transition states were fully optimized and characterized by frequency using B3LYP or hybrid density functional theory (BHandHLYP) with the LanL2DZ or DGDZVP basis sets for the high level and HF with STO-3G basis set for the low level in ONIOM calculations. Free energies (298.15 K, 1 atm) and natural charges from the natural population analysis were also computed for the gas phase. As the reaction was performed in toluene, one does not expect much stabilization from toluene for the charged intermediates/transition states along the reaction coordinate. In the continuum solvation model, the single-point energy calculations with the self-consistent reaction field (SCRF) calculation based on the polarizable continuum model (PCM, $\epsilon = 2.379$ for toluene) were carried out at the high level for the one used for geometry optimization in ONIOM calculations.

9.4.1 Catalytic cycle I verses catalytic cycle II

As stated earlier, there are two possible kinds of imine-catalyst complexes and these are 466a and 470a. These two complexes 466a and 470a were computed using ONIOM (B3LYP/LanL2DZ:HF/STO-3G) calculations. The division of layers for the ONIOM calculations is illustrated by the color scheme given in Figure 9.2. The choice of the basis sets for the higher level calculations were made after carefully considering the available options for the zirconium atom in Gaussian '03. All distances in the fully optimized structures are reported in angstroms. The reported energies are the free energies ($\Delta\Delta$ G) of fully optimized geometries from the ONIOM calculations.

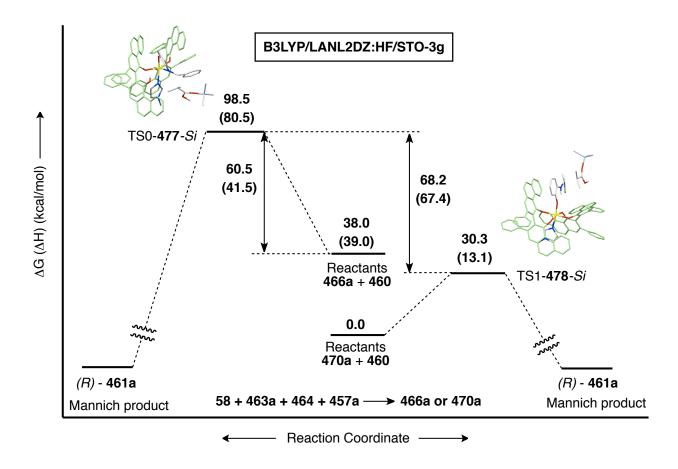
Figure 9.2 Division of layers for the ONIOM calculations ONIOM(B3LYP/LanL2DZ:HF/STO-3G) and ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level.


Interestingly, the imine-catalyst complex 470a was found to be the preferred complex as the other complex 466a was found to be +38.0 Kcal/mol higher in energy (Figure 9.3). The huge difference in energy suggests that the complex 466a is highly unfavorable. In complex 466a, the proposed hydrogen bonding ($d_1 = 2.87$ Å, Figure 9.3) between nitrogen of imine and the proton attached to O1 is found to be a very weak interaction and in fact the bond angle (98°) is far away

from linear. The preference for the imine-catalyst complex 470a suggests that a Lewis acid assisted Brønsted acid catalysis might be a plausible mechanism in this case. There is a probability of a weak hydrogen bonding (d₄) existing in the case of complex 470a with a calculated bond distance of 2.53 Å (d₄, O^4 -H, Figure 9.3) and bond angle of 169.6° ($\angle O^4$ HN, Figure 9.3). In order to refine the analysis, we subjected the both complexes to geometry optimization using hybrid density functional (BHandHLYP) with DGDZVP basis set. BHandHLYP is considered to be a better method than B3LYP for the case of hydrogen bonding and other non-covalent interactions. ⁹ In this case, the bond distance (d₄) and bond angle were determined to be 2.32 Å (d₄ O⁴-H, Figure 9.3) and 179.6° (\angle O⁴HN, Figure 9.3) respectively. This indicated the presence of a hydrogen bond of moderate strength. Another weak interaction was found to be operating between O^3 and the H attached to nitrogen of imine ($d_3 = 2.31 \text{ Å}$, Figure 9.3). It must be noted that complex 466a is +29 Kcal/mol higher in energy as compared complex 470a the higher level of calculations to even at (ONIOM(BHandHLYP/DGDZVP:HF/STO-3G), Figure 9.3).

Figure 9.3 Calculated 3D structures and relative energies of the imine-catalyst complexes **466a** and **470a** at ONIOM(B3LYP/LanL2DZ:HF/STO-3G) level and ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level. The structures are visualized by the Mercury program (C, gray; O, red; N, blue; Zr, yellow; H, white). Hydrogen atoms are omitted (except N-H) and the ligand is given in green color for clarity. Free energies and bond lengths are in Kcal/mol and Å respectively. Some interactions are highlighted: $d_1 = 2.87$ Å, $d_2 = 3.02$

Figure 9.3 cont'd


Å, $d_3 = 2.21$ Å and $d_4 = 2.53$ Å with ONIOM(B3LYP/LanL2DZ:HF/STO-3G) and $d_1 = 2.95$ Å, $d_2 = 2.97$ Å, $d_3 = 2.31$ Å and $d_4 = 2.32$ Å with ONIOM(B3LYP/LanL2DZ:HF/STO-3G)

Although the imine-catalyst complex **466a** is highly unlikely to be a viable intermediate, we decided to compute the transition states for the reaction of ketene acetal **460** with both complexes **466a** and **470a**. More unstable intermediates tend to be also much more reactive and therefore, it is important to explore reactivity and compare the activation barriers for reaction of both complexes. Transition states for the key carbon-carbon bond-forming step of the reactions between **466a** and **460** and **470a** and **460** were located by scanning the coordinates at the ONIOM(B3LYP/LanL2DZ:HF/STO-3G) level. All distances are reported in angstroms, and all reported energies are $\Delta\Delta G^{\ddagger}$ of fully optimized geometries from the ONIOM calculations. Also,

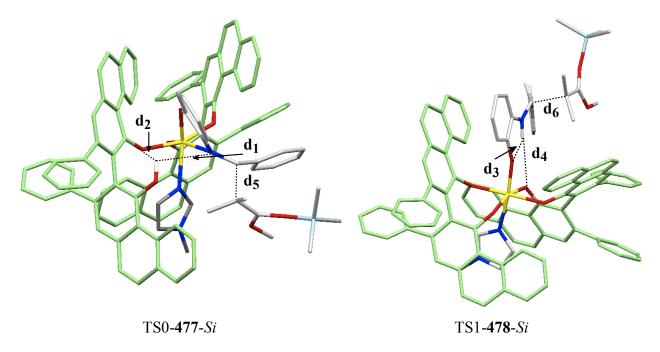

it must be noted that the ketene acetal 460 was calculated at B3LYP/LanL2DZ level of theory.

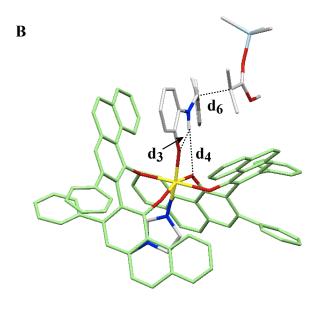
Figure 9.4 Free Energy diagram for the transition states TS0-477-Si and TS1-478-Si at ONIOM(B3LYP/LanL2DZ:HF/STO-3G) level. Energy in parenthesis is enthalpy.

The DFT calculations at B3LYP/LanL2DZ level of theory revealed that a direct coordination of N of imine to the zirconium atom in complex 466 is highly unfavorable as a high energy barrier of +60.5 kcal/mol was found in the case of the corresponding transition state (TS0 477-Si, Figure 9.4 and 9.5) leading to favored enantiomer (R). The fact that the calculated barrier for TS1-478-Si (470 \rightarrow 471) is approximately three times lower than the barrier for TS0-477-Si (466 \rightarrow 467) strongly supports the catalytic cycle II (Figure 9.4 and 9.5).

Figure 9.5 Calculated 3D structures of the TS0-477-Si and TS1-478-Si at ONIOM(B3LYP/LanL2DZ:HF/STO-3G) level. The structures are visualized by the Mercury program (C, gray; O, red; N, blue; Zr, yellow; Si = light blue). Hydrogen atoms are omitted (except N-H) and the ligand is given in green color for clarity. Bond lengths are in Å. Some interactions are highlighted: $d_1 = 3.55$ Å, $d_2 = 3.07$ Å, $d_5 = 1.95$ Å, $d_3 = 2.17$ Å, $d_4 = 2.97$ Å and $d_6 = 2.08$ Å.

The computations discussed above were performed with four different orientations of attack by the ketene acetal and the data presented above was for the lowest energy orientation of the four. The discussion of the other possible transition states is given below.

9.4.2 Various transition states for catalytic cycle II


As discussed above, four transition states (including TS1-478-Si) were located for one particular enantiomer by employing the different orientations and conformations of silyl ketene

acetal 460 (Figure 9.6A). The lowest energy transition state leading to the favored enantiomer (*R*) found be TS1-478-Si when it subjected was to was to ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level of calculations. The key observation in the favored structure is that the hydrogen bonding (d₁) is further weakened due to increase in the bond distance from 2.3 to 2.9 Å (Figure 9.6). Nonetheless, a weak interaction is still operational providing the R enantiomer as the major product. Also, it must be noted that the Re face of the imine **457a** is completely shielded by the (S)-VAPOL **58**. The carbon-carbon bond distance for transition state TS1-478-Si is 2.08 Å (Figure 9.5). Interestingly, TS3-480-Re which leads to lowest energy structure for minor enantiomer was found to have no hydrogen bonding as the O-H distance was ~ 4 Å. The energy difference between favored transition state TS1-479-Si and disfavored transition state TS3-480-Re was determined to be +1.8 Kcal/mol (Figure 9.6). The absence of the hydrogen bonding is probably due to the steric hindrance between the methyl groups of ketene acetal **460** and the phenanthrene ring of the (S)-VAPOL **58**.

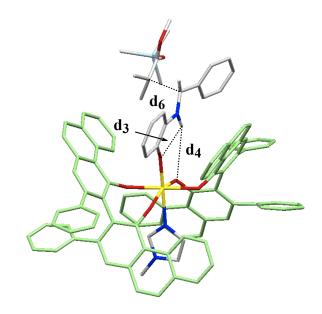
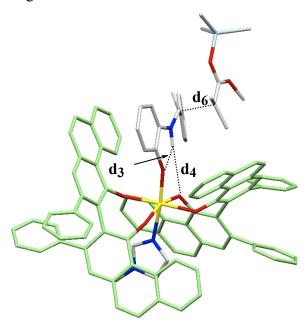

Figure 9.6 (**A**) Different conformations and orientations of silyl ketene acetal **460** used for calculations. (**B**) Calculated 3D structures and relative free energies of TS1-**478** to TS4-**481** at ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level. The structures are visualized by the Mercury program (C, gray; O, red; N, blue; Zr, yellow; Si = light blue). Hydrogen atoms are omitted (except N-H) and the ligand is given in green color for clarity. Free energies and bond lengths are in kcal/mol and Å respectively. Some interactions are highlighted: d_3 (O³-H), d_4 (O⁴-H) and d_6 (C-C). (C) Space-filling rendition of TS1-**478**-Si and TS3-**480**-Re with top and side-view with hydrogens showing.

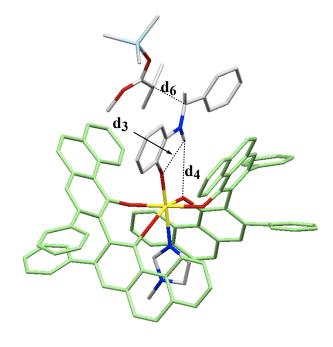
Figure 9.6 cont'd

A



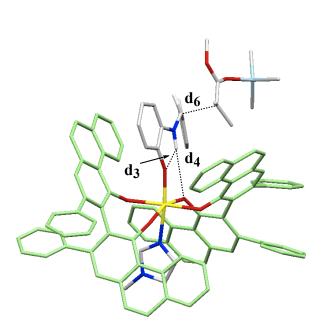
TS1**-478**-*Si* $\Delta\Delta G^{\ddagger} = +0.0$

TS1**-478**-*Re* $\Delta\Delta G^{\ddagger} = +2.2$ $d_3 = 2.16 \text{ Å}, d_4 = 2.99 \text{ Å} \text{ and } d_6 = 2.09 \text{ Å} \\ d_3 = 2.24 \text{ Å}, d_4 = 3.98 \text{ Å} \text{ and } d_6 = 2.09 \text{ Å}$


Figure 9.6 cont'd

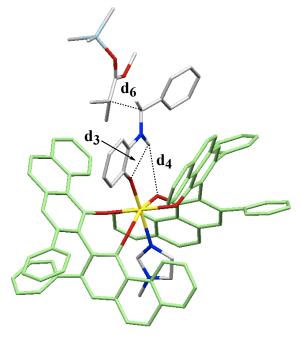
TS2-**479**-Si

$$\Delta\Delta G^{\ddagger} = +1.9$$


 d_3 = 2.15 Å, d_4 = 2.99 Å and d_6 = 2.09 Å

TS2**-479**-*Re*

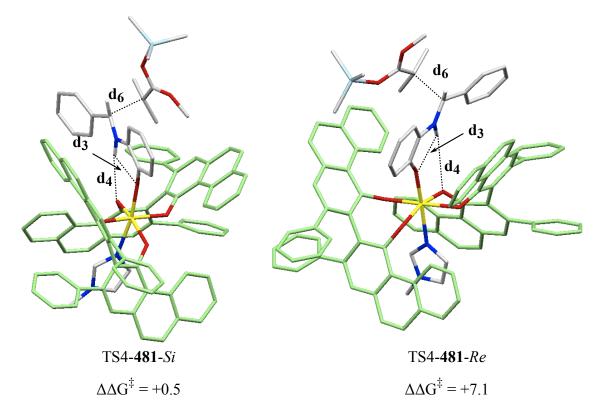
$$\Delta\Delta G^{\ddagger} = +2.8$$


 d_3 = 2.21 Å, d_4 = 3.94 Å and d_6 = 2.15 Å

TS3**-480**-Si

$$\Delta\Delta G^{\ddagger} = +0.1$$

 d_3 = 2.17 Å, d_4 = 2.93 Å and d_6 = 2.09 Å



TS3-480-Re

$$\Delta\Delta G^{\ddagger} = +1.8$$

 $d_3 = 2.24 \text{ Å}, d_4 = 3.96 \text{ Å} \text{ and } d_6 = 2.08 \text{ Å}$

Figure 9.6 cont'd

 d_3 = 2.18 Å, d_4 = 3.09 Å and d_6 = 2.15 Å

 d_3 = 2.16 Å, d_4 = 3.89 Å and d_6 = 2.16 Å

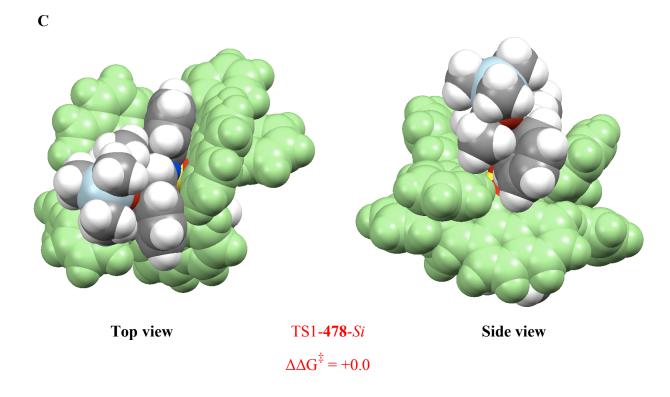
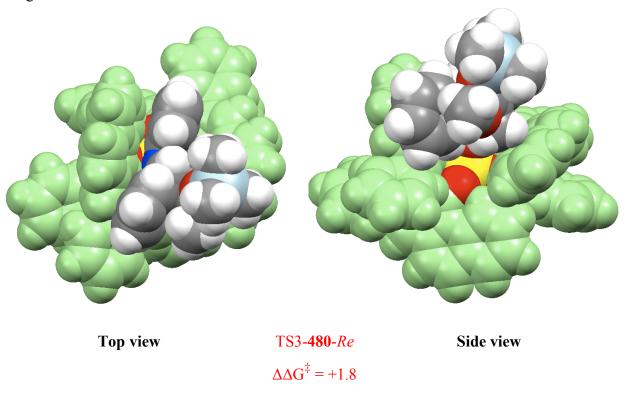



Figure 9.6 cont'd

Further, the single point energies with the self-consistent field (SCRF) calculation based on the polarizable continuum model (PCM, $\epsilon=2.379$ for toluene) were calculated at BHandHLYP/DGDZVP level of theory and the TS3-480-Re was found to be +1.1 kcal/mol $(\Delta\Delta G_{sol}^{\ \ \ \ \ })$ higher in energy as compared to TS1-478-Si.

9.5 Catalyst modifications

After location of the transition states for the zirconium mediated imino-aldol reaction, it was decided to experimentally test them via some modified catalytic systems. According to the calculated transition states, the third ring C in (S)-VAPOL 58 is extremely important. Hence, it would be interesting to screen the reaction in the absence of the ring C. Subsequently, we examined some ligands like (S)-VANOL 59 and (S)-ISOVAPOL 197 where either the third ring

is removed or shifted (Figure 9.7). As predicted, a sharp decrease in ee was observed in both cases as compared to (S)-VAPOL **58** (entries 2 and 3, Table 9.2).

Figure 9.7 Various ligands used for imino-aldol reaction.

In an attempt to increase the asymmetric induction based on the computational findings and initial CPK model study, Kostas Rampalokos, a former group member, prepared (S)-8,8'-Me₂-VAPOL **482**. Although it did not improve the asymmetric induction, it did give essentially the same results as (S)-VAPOL **58**. Hence the results obtained further supports the proposed

mechanism. The details of the screening of the ligands at various temperatures are given in Table 9.2.

Table 9.2 Imino-aldol reaction between imine 457a with keten acetal 460 using various ligands.

		Temperature						
#	Ligand	-45	°C	25 °C				
	Diguild	Yield (%) b	ee (%) ^c	Yield (%) ^b	ee (%) ^c			
1	(S)-VAPOL 58	92	91	95	89			
2	(S)-8,8'-Me ₂ -VAPOL 482	90	91	97	86			
3	(<i>S</i>)-ISOVAPOL 197	58	06	63	71			
4	(S)-VANOL 59	53	-18	71	51			

^a Unless otherwise specified, all reactions were run with 0.25 mmol of imine **457a** in toluene (0.125 M in imine) with 1.2 equiv of **460** and 20 mol% of the catalyst at T °C. The catalyst was prepared from Zr(O*i*Pr)₄/iPrOH, ligand (1.2 equiv) and NMI (1.2 equiv) in toluene at 25 °C for 1 h. ^b Isolated Yield. ^c Determined by HPLC.

9.6 Imine modifications

Based on initial studies with CPK models, there were some modifications done in the structure of the imine **457**. A new imine **458** was prepared by installing two methyl groups at 3 and 5 position of the phenyl ring of the imine **457** (Figure 9.1). Excellent results were obtained with imine **458a** (Table 9.1, entries 8-10) and also the asymmetric inductions were found to be independent of temperature. Hence, we decided to locate and analyze the transition states where

the imine **458a** was used in the reaction. The calculated transition structures are shown in Figure 9.8.

Figure 9.8 Calculated 3D structures and relative free energies of (**A**) TS-**483**-Si and (**B**) TS-**483**-Re at ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level. The structures are visualized by the Mercury program (C, gray; O, red; N, blue; Zr, yellow; Si, light blue; H, white). Hydrogen atoms are omitted (except N-H) and the ligand is given in green color for clarity. Free energies and bond lengths are in kcal/mol and Å respectively. Some interactions are highlighted: d_3 (O³–H), d_4 (O⁴–H) and d_6 (C–C). Space-filling rendition of TS-**483**-Si and TS-**483**-Re with top and side-view with hydrogens showing. The ortho methyl group is shown in magenta color in the space filling models.

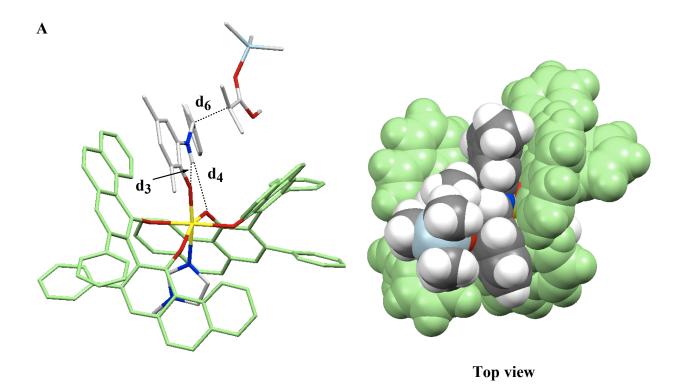
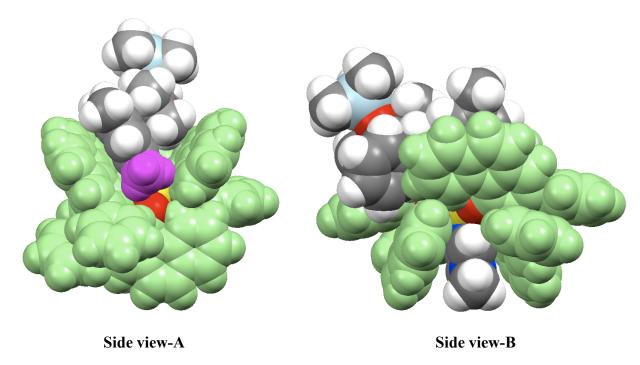



Figure 9.8 cont'd

$$TS-483-Si$$
$$\Delta\Delta G^{\ddagger} = +0.0$$

 d_3 = 2.23 Å, d_4 = 2.84 Å and d_6 = 2.09 Å

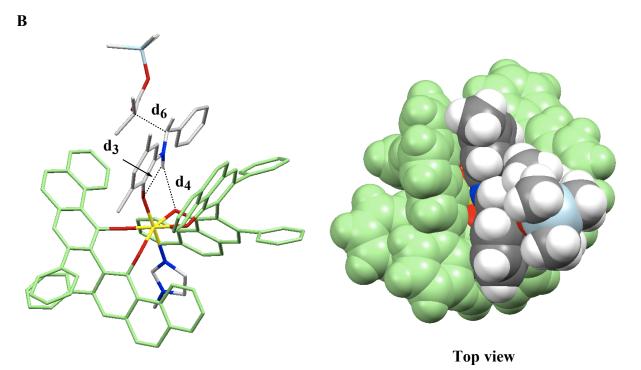
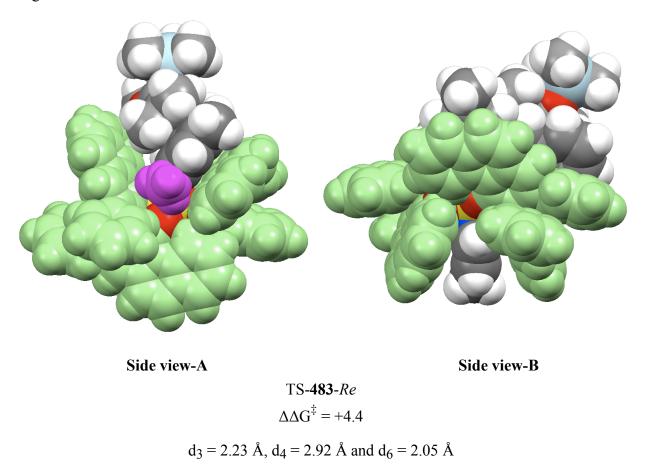
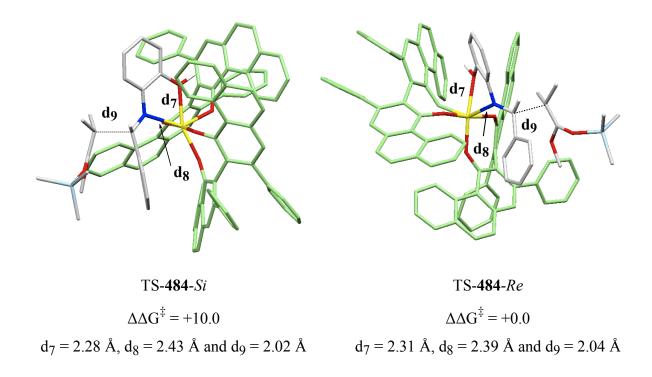



Figure 9.8 cont'd

As stated earlier, based on initial CPK models, it was predicted that rocking the imine down into the cleft should provide a conformation that provides a greater facial selectivity of attack on the imine since it should provide greater shielding of the *Re*-face by the phenanthrene unit on the right side of the molecule. The methyl group at the ortho position should be sufficient to push the imine down into the cleft, thus increasing the selectivity of the reaction. This was indeed observed in the calculated transition states (Figure 9.8). The ortho methyl group is given in the magenta color in the side-view-A of both transition states (TS-483-Si and TS-483-Re). As shown in Figure 9.8, this methyl group makes close contacts with the floor of the cleft even when the imine is rotated down into the cleft and results in greatly restricted movement

about the Zr–O–C unit to the imine moiety. Another important interaction is π - π stacking between the phenanthrene unit of the ligand and the phenyl ring of the imine **458a** (Figure 9.8). Last but not least, the TS for favored enantiomer is found to be +4.4 kcal/mol lower than the disfavored TS. In all, the calculated transition states also support the concept of the modified imines **458**.

Figure 9.9 Free Energy diagram of transition states for imines **457a** and **458a** at ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level for catalytic cycle II. Energy in parenthesis is enthalpy.


An energy diagram showing the energy barriers in the reactions of the imines **457a** and **458a** for the final optimized transition states for the carbon-carbon bond forming step is presented in Figure 9.9. Finally, a new mechanism has been established with the aid of NMR spectroscopy, computational studies and substrate and catalyst modifications. The observed mechanism is unprecedented and hopefully will lead to new applications to the field of asymmetric catalysis.

9.7 Examination of the catalytic cycle III for (S)-VAPOL 58

At this point, we were curious as to whether the proposed catalytic cycle III holds true for the imino-aldol reaction using (S)-VAPOL **58** (Scheme 9.1C). Hence, we located two transition states for the carbon-carbon bond forming step in catalytic cycle III (**474** \rightarrow **475**) using ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level of theory. The new optimized transition states (TS-**484**-Si and TS-**484**-Re) are presented in Figure 9.10. Interestingly, the calculated results are not consistent with the experimental results. Hence, it is likely that the proposed catalytic cycle III is not favored in the case of (S)-VAPOL **58**. An important feature to be noted is the elongated bond distance between Zr and N of the imine ($d_8 = 2.43-2.39$ Å). This probably is due to steric compulsions and leads to a weak coordination.

Figure 9.10 Calculated 3D structures and relative free energies of TS-**484**-*Si* and TS-**484**-*Re* at ONIOM(BHandHLYP/DGDZVP:HF/STO-3G) level. The structures are visualized by the Mercury program (C, gray; O, red; N, blue; Zr, yellow; Si, light blue; H, white). Hydrogen atoms are omitted (except O-H and sp²-C-H of imine) and the ligand is given in green color for clarity. Free energies and bond lengths are in kcal/mol and Å respectively. Some bond distances

Figure 9.10 cont'd are highlighted: d₇ (Zr–O), d₈ (Zr–N) and d₉ (C–C).

9.8 Case of BINOL derivative 459

In the preceding sections, we found evidence for a new mechanism for the imino-aldol reaction catalyzed by a zirconium compound incorporating the using the (S)-VAPOL ligand **58** (Catalytic cycle II, Scheme 9.1B). This reaction was originally reported by Kobayashi and coworkers where they used (R)-6,6'-Br₂-BINOL **459** as the ligand. As stated earlier (Catalytic cycle III', Scheme 9.1D), Kobayashi and coworkers proposed another plausible mechanism, which excludes the presence of NMI in the transition states (Catalytic cycle III', Scheme 9.1D and 9.2B). The catalyst was generated from a mixture of Zr(OtBu)₄ **463b**, NMI **464** and (R)-6,6'-Br₂-BINOL **459**. In this mechanism, it has been assumed that step one involves an isomerization of complex **465'** in which there are two NMI groups trans to each other (Catalytic

cycle III', Scheme 9.2B). Complex **465'** isomerizes to **473'** in which the two NMI groups are cis to each other. The second step involves the exchange of the NMI groups by the imine **457** leading to the formation of the imine-catalyst complex **474'**. The coordination of the hydroxyl group to the zirconium atom indicates the importance of the hydroxyl group. Subsequent attack of ketene acetal **460** would give **475'** then **476'**, which is followed by the final release of the product **461** in the form of its silylated derivative **469**. The obvious question then arises as to whether the mechanism of the reaction can change depending on the ligand used (Catalytic cycle II' vs III', Scheme 9.2). Hence, we decided to gather more information about the transition states for the reaction involving catalysts derived from for BINOL derivative **459** by examining both catalytic cycles II' and III'.

Scheme 9.2 Proposed catalytic cycles of imino-aldol reaction using (*R*)-6,6'-Br₂-BINOL **459** as the ligand. (**A**) Catalytic cycle II' (**B**) Catalytic Cycle III'

Scheme 9.2 cont'd

В **OTMS** Zr(OtBu)4 ОMe 463b рн 460 457 NMI (S)-459 464 474' tBuOH NMI isomerise Cycle III' 473' TMS-O= ŃМІ MeÓ 475' 465' OTMS ОН н₃о[‡] ОМе ОМе MeÓ 469 461 476'

In this case, the division of layers for ONIOM calculations is shown in Figure 9.11.

Figure 9.11 Division of layers for the ONIOM calculations ONIOM(B3LYP/LanL2DZ:HF/STO-3G) and ONIOM(B3LYP/DGDZVP:B3LYP/LanL2MB) level.

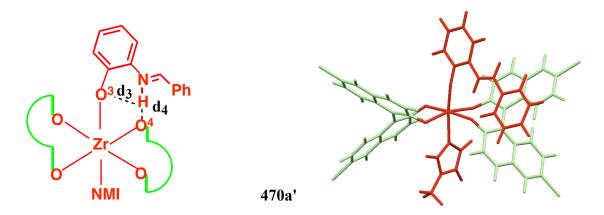
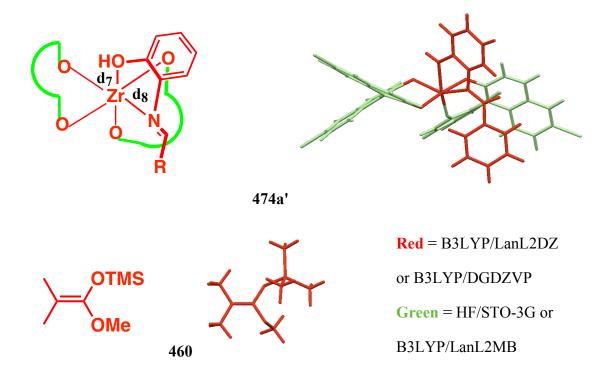



Figure 9.11 cont'd

Four different orientations of the ketene acetals were taken into consideration. Subsequently, four transition states (TS1-485 to TS4-488) were located for one particular enantiomer depending upon the different orientations and conformations of silyl ketene acetal 460 (Figure 9.12). The method used for calculations above is ONIOM(B3LYP/LanL2DZ:HF/STO-3G). The lowest energy transition states for S and R enantiomers were then carefully examined (TS1-485-Re and TS3-487-Si, Figure 9.12). Interestingly, the observed theoretical results were not consistent with the experimental observations. The lowest energy transition state (TS3-487-Si) leading to the favored enantiomer was found to be higher in energy by +0.5 kcal/mol than the lowest energy transition state (TS1-**485**-*Re*) leading to the disfavored enantiomer (Figure 9.12).

Figure 9.12 (**A**) Different conformations and orientations of silyl ketene acetal **460** used for calculations. (**B**) Calculated 3D structures and relative free energies of TS1-**485** to TS4-**488** at ONIOM(B3LYP/LanL2DZ:HF/STO-3G) level. The structures are visualized by the Mercury program (C, gray; O, red; N, blue; Zr, yellow; Si, light blue; Br, magenta; H, white). Hydrogen atoms are omitted (except N-H) and the ligand is given in green color for clarity. Free energies and bond lengths are in kcal/mol and Å respectively. Some interactions are highlighted: d_3 (O³–H), d_4 (O⁴–H) and d_6 (C–C).

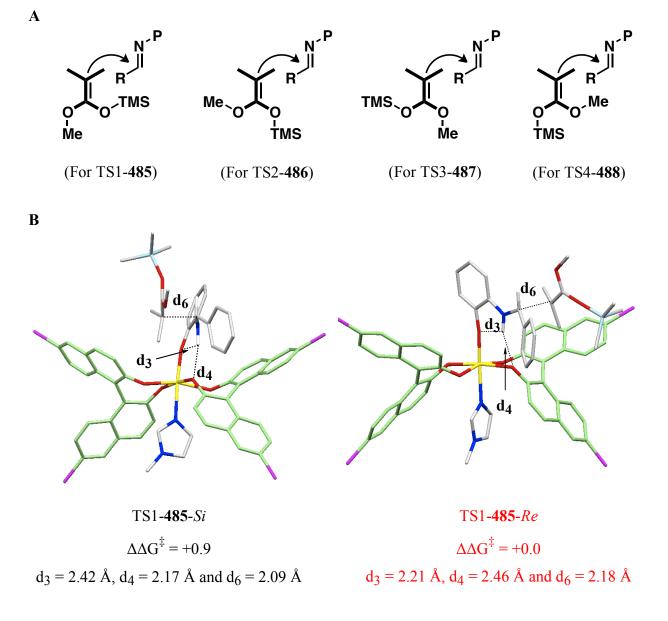
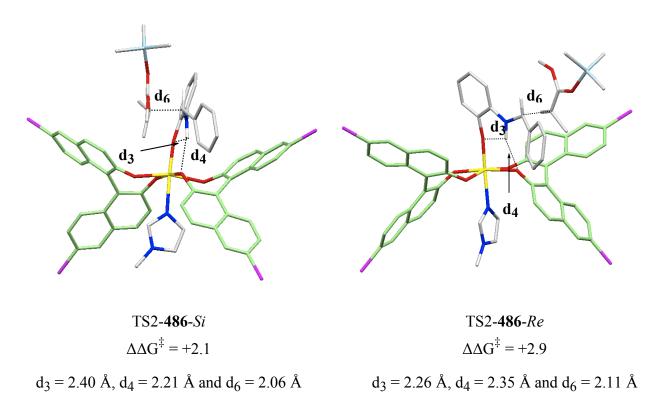



Figure 9.12 cont'd

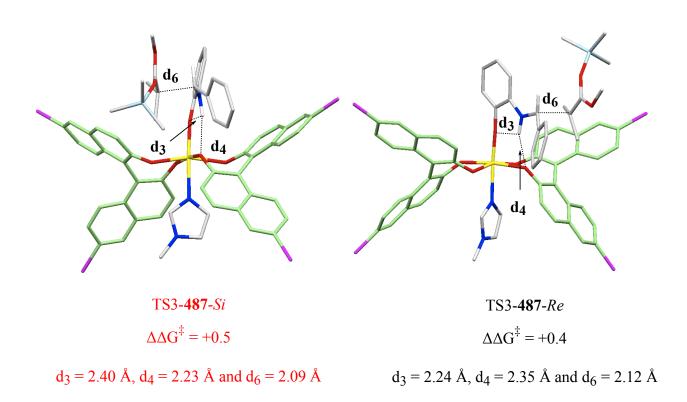
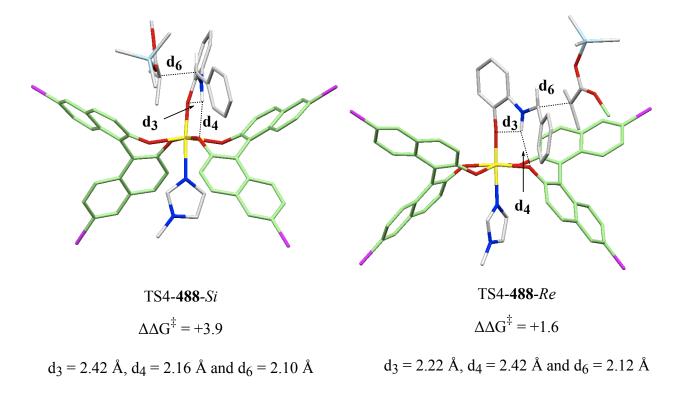



Figure 9.12 cont'd

We then decided to include the DFT in the lower level of the ONIOM calculations. Subsequently, the transition states TS1-485 and TS3-487 were subjected to the higher level calculations, i.e. ONIOM(B3LYP/DGDZVP:B3LYP/LanL2MB) (Figure 9.13). However, there was no change in the outcome. Therefore, it is likely that there is a difference in the mechanism of the imino-aldol reaction depending on the type of the ligand employed. Consequently, the catalytic cycle II' (Scheme 9.2A) in the case of (R)-6,6'-Br₂-BINOL 459 was not supported by the above described computational analysis since it predicts the wrong enantiomer of the product.

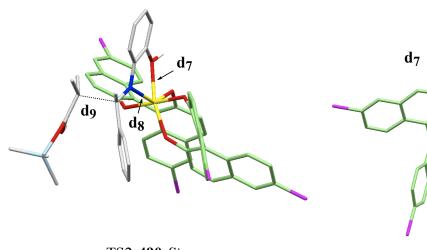
Figure 9.13 Calculated relative free energies of TS1-**485**-*Si*, TS1-**485**-*Re*, TS3-**487**-*Si* and TS3-**487**-*Re*, at ONIOM(B3LYP/DGDZVP: B3LYP/LanL2MB) level. Free energies and bond

Figure 9.13 cont'd

lengths are in kcal/mol and Å respectively. Some interactions are highlighted: d_3 (O³–H), d_4 (O⁴–H) and d_6 (C–C).

TS1-485-
$$Si$$
 $\Delta \Delta G^{\ddagger} = +1.3$
 $\Delta \Delta G^{\ddagger} = +0.0$
 $d_3 = 2.42 \text{ Å}, d_4 = 2.17 \text{ Å} \text{ and } d_6 = 2.09 \text{ Å}$

TS3-487- Si


TS3-487- Re
 $\Delta \Delta G^{\ddagger} = +1.3$
 $\Delta \Delta G^{\ddagger} = +0.2$
 $d_3 = 2.40 \text{ Å}, d_4 = 2.21 \text{ Å} \text{ and } d_6 = 2.06 \text{ Å}$
 $d_3 = 2.26 \text{ Å}, d_4 = 2.35 \text{ Å} \text{ and } d_6 = 2.11 \text{ Å}$

Next, we decided to computationally examine the original proposed mechanism by Kobatashi i.e. catalytic cycle III' (Scheme 9.2B). The division of layers for ONIOM calculations is already shown in Figure 9.11. Similar to the approach for catalytic cycle II', four different orientations of ketene acetal **460** were examined (Figure 9.14). Three transition states were located and the transition state with the fourth orientation failed to converge irrespective of the method utilized (Figure 9.14). Interestingly, the lowest energy transition state (TS1-**489**-Si) leading to the favored enantiomer was found to be 0.9 kcal/mol higher in energy than the lowest energy transition state (TS1-**489**-Re) leading to the disfavored enantiomer using ONIOM(B3LYP/LanL2DZ:HF/STO-3G) level of calculations (Figure 9.14). This suggested that either the catalytic cycle III' does not hold true for the reaction, or the level of calculations is not appropriate. Hence we decided to perform the calculations using DFT in the lower layer and the results are presented in Figure 9.15.

Figure 9.14 (**A**) Different conformations and orientations of silyl ketene acetal **460** used for calculations. (**B**) Calculated 3D structures and relative free energies of TS1-**489** to TS4-**492** at ONIOM(B3LYP/LanL2DZ:HF/STO-3G) level. The structures are visualized by the Mercury program (C, gray; O, red; N, blue; Zr, yellow; Si, light blue; Br, magenta; H, white). Hydrogen atoms are omitted (except O-H and sp²-C-H of imine) and the ligand is given in green color for clarity. Free energies and bond lengths are in kcal/mol and Å respectively. Some bond distances are highlighted: d_7 (Zr–O), d_8 (Zr–N) and d_9 (C–C).

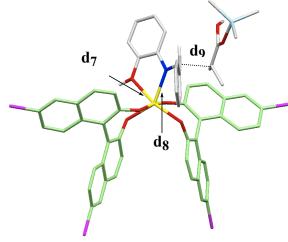
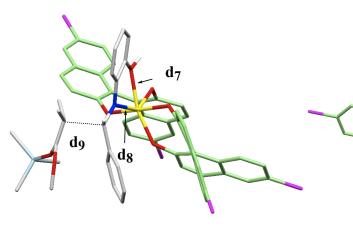

A тмs (For TS1-489) (For TS2-490) (For TS3-491) (For TS4-492) В d_7 do d₈ TS1-489-Si TS1-489-Re $\Lambda\Lambda G^{\ddagger} = +0.9$ $\Lambda\Lambda G^{\ddagger} = +0.0$ $d_7 = 2.25 \text{ Å}, d_8 = 2.32 \text{ Å} \text{ and } d_9 = 2.11 \text{ Å}$ $d_7 = 2.23 \text{ Å}, d_8 = 2.31 \text{ Å} \text{ and } d_9 = 2.13 \text{ Å}$

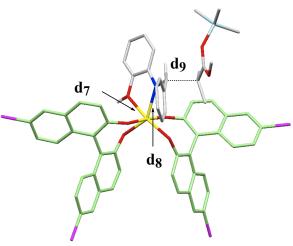
Figure 9.14 cont'd


$$TS2-490-Si$$
$$\Delta\Delta G^{\ddagger} = +3.7$$

$$d_7$$
 = 2.24 Å, d_8 = 2.33 Å and d_9 = 2.12 Å

TS2-490-Re $\Delta\Delta G^{\ddagger} = +5.3$

$$d_7 = 2.24 \text{ Å}, d_8 = 2.29 \text{ Å} \text{ and } d_9 = 2.06 \text{ Å}$$



TS3-**491**-Si

$$\Delta\Delta G^{\ddagger} = +1.7$$

$$d_7 = 2.24 \text{ Å}, d_8 = 2.32 \text{ Å} \text{ and } d_9 = 2.12 \text{ Å}$$

(no convergence achieved)

TS3-**491**-*Re*

$$\Delta\Delta G^{\ddagger} = +2.0$$

$$d_7 = 2.23 \text{ Å}, d_8 = 2.31 \text{ Å} \text{ and } d_9 = 2.11 \text{ Å}$$

TS4-**492**-Re

(no convergence achieved)

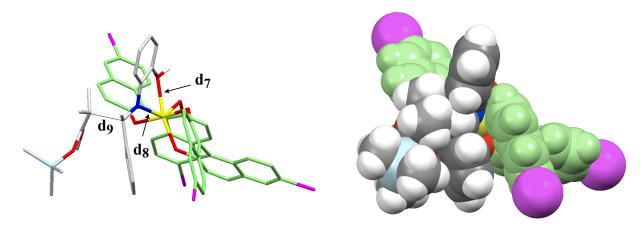
TS3-**491** were As stated last paragraph, TS1-**489** and subjected to ONIOM(B3LYP/DGDZVP:B3LYP/LanL2MB) level of calculations (Figure 9.15). The lowest energy transition state leading to the favored enantiomer (R) was found to be TS1-489-Si. Similarly, TS3-491-Re was found to be the lowest transition state leading to the disfavored enantiomer (S). The observed results with the higher level calculations were found to be consistent with the experimental results. The energy difference between favored transition state TS1-489-Si and disfavored transition state TS3-491-Re was determined to be +1.8 Kcal/mol (Figure 9.15). Also, it must be noted that the *Re* face of the imine **457a** is completely shielded by the naphthalene unit of the (R)-6,6'-Br₂-BINOL **459**. Additionally, there is a possible π - π stacking interaction between the phenyl ring of imine and one of the naphthalene rings of the ligand 459. The reason that the (S)-enantiomer is unfavorable is probably due to the steric hindrance between the methyl groups of ketene acetal 460 and the naphthalene ring of the ligand **459** (Figure 9.15).

Figure 9.15 (**A**) Calculated relative free energies of TS1-**489**-*Si*, TS1-**489**-*Re*, TS3-**491**-*Si* and TS3-**491**-*Re*, at ONIOM(B3LYP/DGDZVP:B3LYP/LanL2MB) level. Free energies and bond lengths are in kcal/mol and Å respectively. Some bond distances are highlighted: d₇ (Zr–O), d₈ (Zr–N) and d₉ (C–C). (**B**) Calculated 3D structures and relative free energies of TS1-**489**-*Si* and TS3-**491**-*Re* at ONIOM(B3LYP/DGDZVP:B3LYP/LanL2MB) level. The structures are visualized by the Mercury program (C, gray; O, red; N, blue; Zr, yellow; Si, light blue; Br, magenta; H, white). Hydrogen atoms are omitted (except O-H and sp²-C-H of imine) and the

Figure 9.15 cont'd

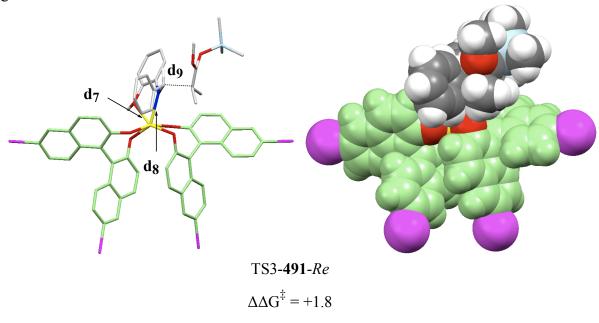
TS1-489-Si

ligand is given in green color for clarity. Free energies and bond lengths are in kcal/mol and Å respectively. Some bond distances are highlighted: d_7 (Zr–O), d_8 (Zr–N) and d_9 (C–C).


A

$$\Delta\Delta G^{\ddagger} = +0.0$$
 $\Delta\Delta G^{\ddagger} = +1.9$ $\Delta G^{\ddagger} = +0.9$ $\Delta G^{\ddagger} = +1.8$

 $d_7 = 2.34 \text{ Å}, d_8 = 2.32 \text{ Å} \text{ and } d_9 = 2.03 \text{ Å}$ $d_7 = 2.27 \text{ Å}, d_8 = 2.33 \text{ Å} \text{ and } d_9 = 2.01 \text{ Å}$


TS1-489-Re

B

TS1-**489**-*Si*
$$\Delta \Delta G^{\ddagger} = +0.0$$
 d₇ = 2.33 Å, d₈ = 2.35 Å and d₉ = 1.99 Å

Figure 9.15 cont'd

$$d_7 = 2.27 \text{ Å}, d_8 = 2.33 \text{ Å} \text{ and } d_9 = 2.01 \text{ Å}$$

9.9 Conclusions

In this chapter, the active site of the catalytic asymmetric imino-aldol reaction has been probed via NMR spectroscopy, computational studies and substrate and catalyst modifications. In the literature, two mechanisms have been proposed. One of them involves the presence of imidazole in the transition state whereas the other one assumes no role of imidazole in the transition state. Both reactions were assumed to be Lewis acid catalyzed reactions. We found that the reaction is actually a Lewis acid assisted Brønsted acid catalyzed reaction (Scheme 9.1, Catalytic cycle II) when (S)-VAPOL ligand is used and a Lewis acid catalyzed reaction (Scheme 9.2, Catalytic cycle III') when (R)-6,6'-Br₂-BINOL ligand is utilized. The transition states were located using ONIOM level calculations.

APPENDIX

9.10 Experimental

9.10.1. General Information	831
9.10.2. Synthesis of imine 457a	831
9.10.3. General procedure for imino-aldol reaction between 457a and 460 (<i>Table 9.1-9.2</i>)	832
9 10 4 DFT Calculations	834

9.10.1 General Information

Same as Chapter 2

9.10.2 Preparation of imine 457a

$$H_2N$$
 OH $\frac{ZnCl_2}{benzene}$ N OH $\frac{ZnCl_2}{benzene}$ N OH $\frac{127a}{benzene}$ $\frac{126x}{benzene}$ $\frac{126x}{benzene}$ $\frac{126x}{benzene}$

(*E*)-2-(benzylideneamino)phenol 457a: To a 250 mL flame-dried round bottom flask filled with argon was added 2-aminophenol 126x (2.18 g, 20.0 mmol), benzaldehyde 127a (2.02 mL, 20 mmol), $ZnCl_2$ (100 mg, 0.73 mmol) and dry benzene (100 mL). The reaction mixture was refluxed with a Dean-Stark trap for 5 h, and then cooled to room temperature. The reaction mixture was filtered through Celite and the Celite bed was washed with benzene (10 mL × 3) and then the filtrate was concentrated by rotary evaporation to give the crude imine as a yellow solid. Crystallization (ethanol) and collection of the first crop afforded 457a as yellow crystals (mp. 91-92 °C) in 85% isolated yield (3.35 g, 17.0 mmol).

Spectral data for **457a**: 1 H NMR (CDCl₃, 300 MHz) δ 6.92 (ddd, J = 7.9, 7.4, 1.4 Hz, 1H), 7.02 (dd, J = 8.1, 1.4 Hz, 1H), 7.21-7.18 (m, 1H), 7.25 (s, 1H), 7.32 (dd, J = 7.9, 1.5 Hz, 1H), 7.53-7.47 (m, 3H), 7.95-7.91 (m, 2H), 8.71 (s, 1H); 13 C (CDCl₃, 75 MHz) δ 114.90, 115.62, 118.54, 128.69, 128.81, 129.41, 131.39, 135.41, 135.73, 151.10, 151.22. These spectral data match those previously reported for this compound. 10

9.10.3 General procedure for the imino-addol reaction (Table 9.1-9.2)

(a) At room temperature (25 °C):

(R)-methyl 3-((2-hydroxyphenyl)amino)-2,2-dimethyl-3-phenylpropanoate 461a: To a 10 mL flame-dried round bottom flask were added (S)-VAPOL (59.25 mg, 0.1100 mmol) and Zr(OⁱPr)₄•ⁱPrOH (19.38 mg, 0.0500 mmol) in toluene (0.9 mL). To this solution was added 1methylimidazole (4.78 µL, 0.060 mmol) in toluene (0.1 mL) at room temperature. The mixture was stirred for 1 h at the same temperature. A solution of imine 457a (49.31 mg, 0.2500 mmol) in toluene (1 mL) was added to the flask containing the catalyst and the mixture was stirred for an additional 5 min. This was then followed by the addition of the silvl ketene acetal 460 (62 μL, 0.3 mmol). The resulting reaction mixture was stirred for 24 h at room temperature. Aqueous NaHCO₃ (2 mL) was added to quench the reaction. The mixture was extracted with CH₂Cl₂ (10 mL × 2). The combined organic layer was concentrated in vacuo to give the crude product. The crude product was then treated with a mixture of THF and aqueous 1N HCl (11 mL, 10:1, v/v) at 0 °C for 30 min. The hydrolysis was quenched with aqueous NaHCO₃ (2 mL) and then extracted with ethyl acetate (10 mL \times 2). The combined organic layer was washed with brine and dried with anhydrous MgSO₄ and concentrated in vacuo to give the crude product **461a**. Purification of the crude product by silica gel column chromatography ($20 \times 280 \text{ mm}$, 5:1 hexanes/EtOAc as eluent) afforded pure ester **461a** in 95% yield (71 mg, 0.24 mmol). The optical purity of **461a** was determined to be 89% *ee* by HPLC analysis (Daicel Chiralpak AD, 90:10 Hexanes/i-PrOH at 222 nm, flow rate: 1.0 mL/min): retention times; $R_t = 8.47 \text{ min}$ (major enantiomer, **461a**), $R_t = 14.73 \text{ min}$ (minor enantiomer, *ent-***461a**).

Spectral data for **461a**: $R_f = 0.36$ (1:5 EtOAc/hexane); ¹H NMR (CDCl₃, 300 MHz) δ 1.22 (s, 3H), 1.24 (s, 3H), 3.69 (s, 3H), 4.55 (brs, 1H), 4.87 (brs, 1H), 5.31 (s, 1H), 6.39 (dd, J = 7.7, 1.3 Hz, 1H), 6.54 (td, J = 7.5, 1.4 Hz, 1H), 6.62 (td, J = 7.5, 1.3 Hz, 1H), 6.69 (dd, J = 7.5, 1.2 Hz, 1H), 7.32-7.19 (m, 5H); ¹³C (CDCl₃, 75 MHz) δ 19.93, 24.22, 47.27, 52.31, 64.27, 113.18, 114.10, 117.56, 120.79, 127.34, 127.93, 128.32, 135.60, 138.90, 144.03, 177.70. These spectral data match those previously reported for this compound. ^{5b}

(b) At -45 °C

(*R*)-methyl 3-((2-hydroxyphenyl)amino)-2,2-dimethyl-3-phenylpropanoate 461a: To a 10 mL flame-dried round bottom flask were added (*S*)-VAPOL (59.25 mg, 0.1100 mmol) and $Zr(O^iPr)_4 \cdot {}^iPrOH$ (19.38 mg, 0.0500 mmol) in toluene (0.9 mL). To this solution was added 1-methylimidazole (4.78 μL, 0.060 mmol) in toluene (0.1 mL) at room temperature. The mixture was stirred for 1 h at the same temperature. A solution of imine 457a (49.31 mg, 0.2500 mmol) in toluene (1 mL) was added to the flask containing the catalyst and the mixture was stirred for an additional 5 min. Then the mixture was cooled to -45° C followed by the addition of the silyl ketene acetal (62 μL, 0.3 mmol). The resulting reaction mixture was stirred for 24 h at -45° C.

Aqueous NaHCO₃ (2 mL) was added to quench the reaction. The mixture was extracted with CH₂Cl₂ (10 mL × 2). The combined organic layer was concentrated *in vacuo* to give the crude product. The crude product was then treated with a mixture of THF and aqueous 1N HCl (11 mL, 10:1, v/v) at 0 °C for 30 min. The hydrolysis was quenched with aqueous NaHCO₃ (2 mL) and then extracted with ethyl acetate (10 mL × 2). The combined organic layer was washed with brine and dried with anhydrous MgSO₄ and concentrated *in vacuo* to give the crude product 461a. Purification of the crude product by silica gel column chromatography (20 × 280 mm, 5:1 hexanes/EtOAc as eluent) afforded pure ester 461a in 92% yield (69 mg, 0.23 mmol). The optical purity of 461a was determined to be 91% *ee* by HPLC analysis (Daicel Chiralpak AD, 90:10 Hexanes/i-PrOH at 222 nm, flow rate: 1.0 mL/min): retention times; $R_t = 8.47$ min (major enantiomer, 461a), $R_t = 14.73$ min (minor enantiomer, *ent-*461a).

The ligands **59**, **197** and **482** were also screened using the procedure described above and the results are presented in Table 9.2.

9.10.4 DFT Calculations

All quantum mechanical calculations were performed using the Gaussian '03.⁸ The B3LYP¹¹ and BHandHLYP^{9,12} density functional were used along with 6-31G* basis sets. The coordinates of all transition states were provided to Prof. Wulff as a separate file.

REFERENCES

REFERENCES

- (1) Mannich, C.; Krösche, W. Archiv Der Pharmazie 1912, 250, 647-667.
- (2) (a) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626-2704. (b) Ting, A.; Schaus, S. E. Eur. J. Org. Chem. 2007, 5797-5815. (c) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541-2569. (d) Kobayashi, S.; Ueno, M. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Supplement 1; Springer: Berlin, 2003; Chapter 29.5, p 143. (e) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069-1094. (f) Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1044-1070.
- (3) (a) KLeinman, E. F. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Chapter 2.3, Vol. 2, p 893. (b) Arend, M. *Angew. Chem., Int. Ed.* **1999**, *38*, 2873-2874. (c) *Enantioselective Synthesis of \beta-amino acids*; 2^{nd} ed.; Juaristi, E.; Soloshonok, V. A., Eds.; John Wiley & Sons: Hoboken, New Jersey, 2005.
- (4) (a) Ishihara, K.; Miyata, M.; Hattori, K.; Tada, T.; Yamamoto, H. *J. Am. Chem. Soc.* **1994**, *116*, 10520-10524. (b) Müller, R.; Goesmann, H.; Waldmann, H. *Angew. Chem., Int. Ed.* **1999**, *38*, 184-187.
- (5) (a) Benaglia, M.; Biaggi, C.; Annunziata, R.; Rossi, S. *Chirality* **2010**, *22*, 369-378. (b) Akiyama, T.; Katoh, T.; Mori, K.; Kanno, K. *Synlett* **2009**, 1664-1666. (c) Marcel Sickert, C. S. *Angew. Chem., Int. Ed.* **2008**, *47*, 3631-3634. (d) Giera, D. S.; Sickert, M.; Schneider, C. *Org. Lett.* **2008**, *10*, 4259-4262. (e) Yamanaka, M.; Itoh, J.; Fuchibe, K.; Akiyama, T. *J. Am. Chem. Soc.* **2007**, *129*, 6756-6764.
- (6) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997, 119, 7153-7154.
- (7) Xue, S.; Yu, S.; Deng, Y.; Wulff, W. D. Angew. Chem., Int. Ed. 2001, 40, 2271-2274.
- (8) Gaussian 03, Revision D.01 M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.

- Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004
- (9) (a) Zhao, Y.; Truhlar, D. G. *J. Chem. Theory Comput.* **2005**, *I*, 415-432. (b) Yu, W.; Liang, L.; Lin, Z.; Ling, S.; Haranczyk, M.; Gutowski, M. *J. Comput. Chem.* **2009**, *30*, 589-600.
- (10) López, C.; Caubet, A.; Péreza, S.; Solans, X.; Font-Bardía, M. J. Organomet. Chem. **2003**, 681, 82-90.
- (11) (a) Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098. (b) Lee, C. Y., W.; Parr, R. G. *Phys. Rev. B* **1988**, *37*, 785.
- (12) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377.