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1. INTRODUCTION

Statement of the Problem

The problem considered in this paper is to determine

the effect of an internal point support on the critical

elastic buckling load of a rectangular thin plate under

various edge support conditions.

Critical Buckling Lead

A plate subjected to an edge load in its plans is

said to be on the verge of buckling when the plate is in a

condition of neutral equilibrium. In this condition the

edge load may produce either strain in the initial flat

equilibrium configuration or, more important, a laterally

bent equilibrium configuration. This second configuration

is called a buckling mode. The edge load necessary to

produce a condition of neutral equilibrium in a plate is

called the critical buckling load. A buckling mode cor-

reSponding to a higher critical buckling load is possible,

but in practice the plate will buckle in the first mode

corresponding to the lowest critical buckling load unless

constrained.



Method of Solution of the Problem

The extended Ritz method was chosen for the solution

because an explicit solution of the buckling differential

equation of the plate was not available with the additional

restraint of the point support. A discussion of this

method is given in the General Theory,Chapter 2.

Assumptions

The usual classical theory assumptions are made:

a. The material is homogeneous, isotropic, and

follows hooke's Law.

b. Normals to the undeformed middle plane of the

plate remain straight and normal to the deformed

middle surface.

c. The cross section thickness is constant and small

compared to the length and width of the plate.

d. The plate is loaded in plane stress before

buckling.

Applications of the Theory

Two applications of the General Theory of Chapter 2 are

made in this paper. The rectangular plate with simply

supported edges and an arbitrary point support is discussed

in Chapter 3. The rectangular plate with clamped edges and

an arbitrary point support is discussed in Chapter 4.
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2. GENERAL THEORY

Stationary Potential Energy

The total potential energy of a mechanical system is

said to be stationary for a given equilibrium configuration

of the system if the first order change in the total

potential energy is zero for any arbitrary small diaplace-

ments from the given configuration. The Theorem of

Stationary Potential Energylstates that at an equilibrium

configuration of a system, the total potential energy is

stationary.

Let U = V + UW (1)

where \l is the strain energy of bending of the plate in

the buckled configuration and the symbol UW is the change

of potential energy of the external loads when the plate

buckles into the buckled configuration. The Theorem of

Stationary Potential Energy requires that U be stationary

for any buckled equilibrium configuration of the plate.

The Extended Ritz Method

2

The extended Ritz method is used to solve the plate

buckling problem. In this method the lateral deflection

 

l. Friedrich Bleich, Buckling Strength gf_Metal

Structures, McGraw-Hill, New York: 1952. pp. 70,71.

2. Ibid. pp. 77-81.



of the plate is expressed as a sum of suitably chosen

coordinate functions.

For the rectangular plate

osxso. , 0S5$b,

we choose 0°, .9

w(x’sg)=~‘;‘ nzst AM“ ¢m(”)°'e'“(g) (2)

where the functions ¢M(XI) are the complete set of

eigenfunctions of‘a beam with no internal support subject

to and conditions at 19-0 , 1,: Q which are the same as

the and conditions of the rectangular plate under consider-

ation. The functions «9“(3) are the complete set of

eigenfunctions of a beam with no internal support subject

to and conditions at S30 a 3“ b which are the same as

the and conditions of the rectangular plate under consider-

ation. It is known that any arbitrary deflection configur—

ation of a rectangular plate can be represented by an

infinite double series of eigenfunction products of the

form chosen.3 The coefficients Amn are to be determined so

that the constraint condition of the internal point support

is satisfied, and the total potential energy of the system

is stationary. The constraint condition for an internal

point support at an arbitrary point with coordinates (£31.)

is _

w(€,l)=0 (is)

— 3. R. Courant and D. Hilbert, Methoden Der Mathematischen

Physik, Vol. 1, Berlin: Springer, 1931. p. 47.

 



The problem of making the expression for the total

potential energy of the system stationary and simultaneously

satisfying the subsidiary conditions of constraint can be

4

solved by the Lagrange multiplier method. In this method,

the expression

U=V+Uw-Aw(§,’l) m

is introduced. The parameters AInn and the values )L that

make U stationary also make U [Eq. (1» stationary and

satisfy the subsidiary constraint condition. The necessary

- 5

conditions for lJ to be stationary are

- au - o

E’IKInvt '

For the applications to be made, V and Uw [in FRI-(43

are given by certain double integrals over the plate. When

the series for W EEq. (2313 substituted in these integrals,

and the integrals are evaluated, V and on are obtained

as quadratic expressions in the coefficients Amn'

In practice, if N coefficients are to be determined,

the N Equations (6) together with Equation (3) form a system

of Nrtl linear homogeneous algebraic equations for the n

coefficients and the multiplier 1L.. The solution of this

system is obtained only up to an undetermined constant

multiplier. Hence the shape of the deflected equilibrium

configuration is determined, but not its amplitude.

 

-' 4. F. Bleich, Op. Cit. pp. 77-81.

5. I. S. Sokolnikoff and E. S. Sokolnikoff, Higher

Mathematics for Engineers and Physicists, McGraw-nill, New

York: 1941. pp. 165-167.



In the following Chapter the buckling problem of a

simply supported rectangular plate with lateral point support

is solved using the method discussed in this Chapter.
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3. SIMPLY SUPPORTED PLATE

Application of the General Theory

A rectangular plate with simply supported edges on

four sides and an arbitrary point support with coordinates

(§,'L) is considered.

-
1
1
1

.
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3 Figurel

In Figure l

a:

b a

length of the plate

length of the plate

uniform compressive

acting in the plane

- uniform compressive

acting in the plane

in the x-direction,

in the y-direction5

force per unit length

of the plate on the edges

force per unit length

of the plate on the edges

y = 0, y a b‘where “is a dimensionless constant.



 

The series expression EJq.(ZD for the deflection

of the plate is then

wtx, 9): Z Z: A..." sin 11: nwa (6)
mg. ”8| b

 

where the functions sm I'm are the complete set of eigen-

¢t ' 6

functions of a simply supported beam of length'a, and the

functions sin 31"! are the complete set of eigenfunctions

b

of a simply supported beam of length b. The coefficients

Amn are the set of parameters to be determined.

7

The strain energy of bending of a rectangular plate is

\,,.L:D‘j!‘£u(:(:i
‘MI +1ylVV)z'

' 2 0 7‘2... ‘3‘-

}‘u Y’s)
-zu-WE 3-2.. 5—3 -(3:——;3)‘J} 43:43 (7)

 

where

.D = E i? <8)

ETC-:79")

is the flexural rigidity of the plate. In Equation (8)

E : modulus of elasticity,

h.= thickness of the plate, and

‘D = Poisson's ratio.

Ne assume that the limited bending that occurs when the plate

enters the buckled equilibrium configuration takes place

 

6. F. B. Hildebrand,Advanced Calculus for Engineers,

Prentice-Hall, New York: 1949. p. 215.

7. S. Timoshenko, Theory g£_Elastic Stability,

McGraw-Hill, New York: 1936. pp. 305-307.



with negligible stretch or compression of the middle plane

of the plate.8 If we then take the datum configuration of

zero potential energy to be the flat configuration of the

plate just before buckling occurs, the quantity \I is the

total strain energy in the buckled configuration.

The appropriate derivatives of W @qdéfl are taken and

..
-
M
.
.
.
~
—

substituted in V EEqJ'in. If we observe the orthogonality

9

of the eigenfunctions, namely

 

n.

Sein' m‘wx.'.sin “MT" = I

0 " " 0 Cer- m #7".

a. SL‘QOW’ nn|=='11,

‘SCHMI UB:!:2?,*¢01.1~\ffl’1E., Z. ’

d. g -

\l is found to be

2.b g, 21
‘1? t

V=—- *4: Z A"m [$421) In] (9)
msl na\ b ‘

We also assume that the edge loads do not change during

the buckling of the plate. Then the work done by the external

10

compressive forces Nx and 0(prduring buckling is

c: b
2 l.

-'- 1" (1”)3LNxSSEz$)+.‘%3 AfiAS.

c: o

The change in the potential energy of the external loads

during buckling is then

‘0= —- N, S S[(2.41)ix‘%‘§)‘] “43310)

 

8. S. Timoshenko, Op. Cit. ,p. 325.

9. Friedrich Bleich, Op. Cit.,pp. 65-69.

10. S.Timoshenko, Op.Cit.,pp.308-314.
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The appropriate derivatives of WEEq.(6) are taken and

substituted in UwfiSq.(lOB. The expression 1‘0er when inte-

grated is

Uwz- 8“- -,‘N Z Z Amn [mt-t- K(%)‘h‘].(ll)

M:\ “H

 

The extended hitz method as discussed in Chapter 2 is

now applied. The expressions round for V and Uware sub-

stituted in DELq. (43. Then

0 'Ii'b'No Z 5:. Am" .[m‘+(%)‘v\j‘

NV! ha!

-‘{-"-Nx 5: '2': A.“ E‘Hefl

"A Z Z A...“ s.~m“§s;~2_-1n')

“3 Imat

(12)

' 11".:
where N. = F‘ load per unit width ), the Euler critical

load for a column with flexurlall rigidity equal to'D .

The necessary conditions for U to be stationary are

‘20

)Amn
n (g ‘1) e

The derivatives of U @quzfl with respect to the parameters

Amn produce the equations

- 2

2.9.. : .N A [Mt ‘9’ — ‘hJ

1A.“ 4a ° h" (b)

_ ‘b I 1.1. 2'

14:1.NgAmn [In +a(($b) In]

-J\.smm1r!.s'm51rn Q.

a. 5

11. See Lagrange's multiplier method in Chapter 2.

(13)

 



ll

In these equations the multiplier A may be zero or differ-

ent from zero. If 5K.is zero the Equations (13) require that

for each possible combination of the two indices m,n, either

Amn is zero or

[ne‘+($)‘ at...) No—z"[m +o<(—b1n)n]= Q (14)

If the load ratio d and the side ratio 9b have been chosen

in advance, the critical value ”I is then determined by

Equation (14) for one choice of m,n. The choice made is that

which gives the lowest critical value of ”x and still set-

isfies the constraint condition w(§,‘1)=o. All of the

other coefficients Amn except the one corresponding to this

choice of m,n must be zero in order that Equations (13) can

all be satisfied. Thus only one term of the series $or vv

Eq. (6a survives when A is zero. Physically this means

that the internal point support is located on a nodal point

of one of the buckling modes of a simply supported plate.

In fact an expression similar to Equation (14) is given by

S. Timoshenkolzto find the critical buckling load for a

simply supported plate.

When Jl is not zero, Equations (13) require that for

each choice of the indices m,n,

4-1
Am=W1”—:.- [Sin‘bW\__Tg $310111]

E“*ct)‘ "‘J“/4- Em” * ($76
12. S. Timoshenko, 0p.Cit., p. 518.

(15)

 



12

Na:
where/q, = —— , a dimensionless load parameter. The other

1V0

necessary condition is that w(§,"‘[)=o. Substitution

of AmnEQ- (157] in the expression for NEEq. (63 at the

point(€,fl)results in the characteristic equation,

4 A a. °° ’° 3 . g,

g” °E° Z Z Sin in"; . 5'” 'ELR

1" . mu as " b - C(16)

“fl“fi)‘at]‘7‘[’3‘§ 40-3333

Since the characteristic equation was obtained for the con-

 

dition that 1 is not zero, and the coefficients

1|" ”a b

then

V94) = if s‘~‘m:—‘- “‘13—"an “al E,‘+(£é)‘n‘]‘-js["‘*

4(37-3

must equal zero for each critical buckling value of/;; . If

(1'7)

the load ratio aflthe point support location, and the side

ratio i have been chosen in advance, the values of/Q that

satisfyyy):o are the critical buckling dimensionless load

parameters of that simply supported rectangular plate with

a point support at (£31).
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Graphical Solution

of the Characteristic Equation

A graphical method can be used to solve V94): 0

After the load ratio ci , the side ratio fig , and the co-

ordinates of the point support(§’11)are selected, a graph

is constructed with values ofl/fip on the abscissa axis and

the values of the sum}@§g)on the ordinate axis ( See Fig.2).

This graph has a vertical asymptote at each value of;/4;

corresponding to a buckling mode of a simply supported

plate with no point support. Since there is no root of the

Equation ”AL-.0 before the first asymptote ( The terms

are all positive.), the lowest critical value of/‘b for the

point supported plate where V94): 0 , will lie between the

first two asymptotes. The accuracy of the determination cf

the root ( where W} crosses the/e - axis ) can be im-

proved by numerical interpolation, using a suitable number

of terms of the sumW).

Example of the Numerical Solution

Let us consider as an example the problem of a simply

supported square plate with equal loads in the two directions

(e(’| and $2| ) and a point support at ($8 % ,1: i).

The terms of We) can be represented in the doubly infinite

array ( See Fig. 3 ))



l4
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367%.
/

I. Figure 3 ..
 

wherey‘mn is the term corresponding to the summation

indices m,n in the sumEqu'ID. In practice a finite number

of terms of the infinite array are summed to evaluate W) ,

starting at the upper left hand corner and moving diagonally

through the array as shown by the arrows.

V For the particular square plate of this example the

first six non-vanishing terms of the sum are

.15 .75 .15 .

-r -————-' -P’ -——-—- 4P

4-Z_A 25‘971. zoo-1°,"

.15 , .15 .15
—— + -——-— * ————-—' O

H.9- 03/; ass-rye (.76- 25,4.

The first asymptotes of the graph’Y/y0are found by equating

 

the denominators of the doubly infinite array ( Fig. 5 )

to zero. The first two asymptotes are/(a 2 and/(1:5(See

Fig. 2 ). The term'V'll and the term that will make the

largest contribution to the sum W) for a value of/Q.

between the asymptotes are now summed and equated to zero.
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.5 o

wr. ,::/, ,;_,/,.-. .

This equation is now solved for the first approximate value

01%., , which 18/4,: 4.14. The first approximate value of

‘/Al is now inserted in the first six contributory terms

9‘) and the sum taken. The sum of m 4.14 ) is

+.015. Since this sum is positive, a value of/l‘ less than

A: 4.14 is chosen. We choose/4: 3.85 arbitrarily and

sum the first six terms again with this value. The sum of

m 3.85 ) 13-.049. Since this sum is negative, the crit-

ical value car/4 lies within the interval 3.85. (,4. (4.14.

Further numerical interpolation will give the value of/Q

with greater accuracy. The dritical value of/AQ for this

example is approximately/1;: 4.05 ( See Fig. 2 ).

Critical values of/lv. for other values of load ratios

4, side ratios #2 , and point support locations (€31)

for the simply supported plate are tabulated in Table I.

'The lowest critical value of/a, occurs for A not zero

except for the case that the point support is at the middle

of the plate (5: i ,1: %_ ). The values tabulated were

therefore all obtained by solving Equation (16), except the

values for the simply supported plate with a point support in the

middle of the plate. In these cases the lowest critical

value of/g, occurs forA‘O, and the denominator of the

Equation (16) was equated to zero to find the lowest value.



TABLE I

CRITICAL VALUES OF A

FOR THE SIMPLY SUPPORTED PLATE

 

 

 

 

 

 

 

 

 

 

5 ”L 1.; x ,9.

{3 1;: l o 6.25

5: -§; 2: 0 16.00

g % "'i 0 4.00

g ‘32"- l l , 5.00

9i ‘52": . 2 1 8.00

1,: 3;: i i 2.00

g? 5% 1 0 5.75

’§’ ii 1 1 4.05    
 

l7
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4. CLAMPED PLATE

Application of the General Theory

A rectangular plate with clamped edges on four sides

and an arbitrary point support with coordinates (5,11) is

 

 

  

considered.

at

. 1v») .,
_. 3,...

b—e- L..—

-__q~“__'gf'_d'4 "75

H1

5 FIGURE4

In Figure 4

a a length of the plate in the x - direction,

b 3 length of the plate in the y -- direction,

Nx «13 uniform compressive force per unit length acting

in the plane of the plate on the edges 1.: 0,1'3‘,

o(.Nx a’uniform compressive force per unit length acting

in the plane of the plate on the edges 5:9, 3:5

where 0‘18 a dimensionless constant.

The series expression Eq.(2) for the deflection

of this plate is
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W(x,3)=z Z [Ann '91-“. 3n 4' BM" FM.G'I

"3| “3‘

+ Cm“ 'Pm° G" ‘.’ Em“ Fm'sn] (18)

3
where the functions

fm=(I-Cosam11'£) (19)

a.

Fm:(umg “‘5” “In £)_(l -c°‘ amt)

km -Jin “In I ’C-O‘ um

and

(20)

are the complete set of eigenfunctions of a clamped beam of

13

length a. The functions

3“: (1-Cossn1rti) (21)

b

and ear-(“"3 .. sin 11,, %)_(I - cos a. i) (22)

an - Sin a” I- COS “n

are the complete set of eigenfunctions of a clamped beam of

1ength b. The numbers a... and an respectively in the

functions Fan, and (3" are the positive rootsl4of the

transcendental equation

«-9.tang-L.

The coefficients Amn: an, Cmn: and Emn are the multiple

set of parameters to be determined.

The same expression for the strain energy of bending

[Eq.(7)] is used as was used in Chapter 3. We observe the

13. F.B. Hildebrand, Op.Cit. p. 217.

14. See Table II.
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orthogonality properties of the eigenfunctions, namely

4

S'Pm"pm|d%

o :0 $or mine,

I: 4' as
m m‘ #0 germ-3m.

4:“. like!»

9
”
D
0
"
)
,

A fourth orthogonality property,

. “;¢ £:u

. . ‘1
S) m m, 7"

=0 $9? m¢m\

#0 #or m=m,

is obtained by integration by parts as follows:

a» u I l‘ a t |

S'gm'¥m‘Jx =(‘$m°“m) 0-S'cm'.¥m.dx.

o , o

The integrated part vanishes because of the and conditions

at «so, QL‘P-a . Since the remaining integral is the same

as the second orthogonality property listed above, the

fourth orthogonalitylproperty is proved. The same ortho-

gonality properties of the eigenfunctions are true if ‘Pm

and‘n. are replaced by Pm and Pen. . If, however, only

one of the two functions is replaced ( *m by pm or .9”.

by anbut not both ), then the integrals vanish whether or

not finsvw\,. Similar orthogonality properties are true for

the eigenfunctions 3“ and CD“ .

 

15. Friedrich Bleich, 0p.Cit, pp.55-59.

'
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.
‘
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2.1

With these properties in mind,‘wc first evaluate the

contribution of the curved bracket

4 b 2,

SS 47%,) 4“:
in Equation—(7). This expression can be expanded to

a z 2. t- 2. 1- 1.

SS (3:: + 2. 2‘21 3.22;) deal

0 o 3%.. 3* 33 ‘33 O

The only terms that will not vanish due to orthogonality

 

9
:
L
'
J
fl
.

‘
‘
3
3
“
t
a
x
-
“
u
'
o
'
c
r
m
c

when the approPriate derivatives of w ESquBfl are substi-

tuted in the expressions above are found to be

 G
;
-

._
,

b_ co oo 43 I: .‘

as enagsspmtmisi +
B:»(Fv:)" G: + Ci... (4.3.7- G:+E:~n(‘:)z3:}d“l

J

’

Z.
 

b a a. u ” ‘5 u “
§(3 w,%',)de43:{: SS inn$m$h3“1“*

‘3 11‘ Inst rm

0
(
a
’
5
9

E3::aFin'i: (Ancsz -* <::;n‘¢u.$£: <3,,c5:‘?

5‘

'E:k"|FinflFi: fSh‘S’e ‘d‘fld3)

a. b .‘_ z a. .° 1‘ " g it 0| 1

§S(-.:-:.)Ma=§.§ SS (Am Man) +

E3:hvv Fi::6§3;sz+'C::un'Fs:(£3;:)}4pEah"'F::e§:§}dkdl
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Similar expressions for the Square bracket of Equation (7)

are also found. The apprOpriate derivatives of the eigen-

functions 4‘“, F,“ ,3“ , and G“ are calculated from

Equations ( 19,20,21, and 22 ), and substituted in Equation

(7). We find that the square bracket vanishes and the curved

bracket when integrated produces

“
7

v: -'-N

t, a“ hunt!

L”"“":(Aam ‘;:;l*'2(EE§L‘(nK‘-rt*1fiijr12n{‘:v\) +-

3.3.")

EM“(%;F—1"m + ‘(gb‘zn'z Km +8(%)4'"‘4Pz. :M)} (33)

3

  

 

 

where

Nozw‘D

a. ’ h
a.

33nslfiuun z,

Hm=u.'.. (aim 4- )_ 5‘“ “m

zZ {41"A:”(3m+£92.32mgn‘+3(%)n4}!-

 
 

(“In - Sun. an)‘ (a... ~$au um)(l-COS a”7.)...

Z-

“In shall-M...)< .. 4, -
_
,
7
—
7
1
—
4
7

.
.
‘
_
:
‘
_
'
_
‘

"
h
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u. u 3 I.“

"I: ‘ (3-354-25;" HM+ZUmCosam+ f-%__’.n)*

0:; (u... - Sin um)‘

(— at, + Z. a... Site “on - Sin‘um)

(um - 53" “m)( i - c°‘ “m) a

l

(-1! Urn-LS"; um+* Strata-m) )and

(I - Cos 14,“):-

Km: a,” ("22, uM-Z. Sinumia-fishzum)

(“m- Sin km)‘

 

(L C03 um '- Z. + ain‘um)

(um - sin um)(1- cos u...)

C “I?” -$ Sin 2. am)

(| — Cos 04...)" ’

Note that Q“: H“ , 3'“: P“ ,and L”: K“ . Different

symbols have been used to avoid confusion when one of the

 

quantities is evaluated for an index m, and the other one

is evaluated for a different index n. These quantities

have been evaluated for m,n 8 1,2, and 3,and are tabulated

in Table III.

The same expression UW for the change in the potential

energy of the external loads during buckling is used as in

Chapter 3 [134410]. The appropriate derivatives of wutqdlea

are taken and substituted in U“. The expression for ”we
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when integrated is

 

U": -éT—;:.Nfizmu “zf‘éAm”(m‘+d(gtn‘)+

vw‘

1:.:;n, (.ZL\~JL :5. +-«-((% kuf) +

5:“ (i—zi'“ Km +- 46:)!- Zn,”3;”ng )(‘4

where Km ,3... , L... , and PM are the quantities defined

following Equation (23).

The extended Ritz method as discussed in Chapter 2 is

now applied. The expressions found for V EEqJZSD and Uw

@q. (24] are substituted in U«@9443

The necessary conditions16for £1 to be stationary are

2.9... 29.-., 2.9.... 29...,
3 Ana 2 BM“ zchfl 3 ENG

and

wCE.‘D=O.

The derivatives of \1 with reSpect to Amn are

2 : Aan 2 N.‘W 4(3 m‘i-1(53‘m‘n14.

CL ‘b

at» '%‘”‘*°‘¢t>‘“3 mm:-
 

16. See Lagrange's multiplier method, Chapter 2.
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The derivatives of l’ with respect to an are

10;, - 3...... _ m~3' '0!- 5 1' °

23...; : Akl}. " 34-) KTL'”

-1r'~1_. Fit) 6.90:“o. (256)

The derivatives of ‘1 with respect to Cmn are

2.9. g h, 2’: N. [(81I“m‘- I," 4(%)"1~zm"-L. ‘9

Cm.

fit)a.)‘V-("L"“3» *‘-‘--(8;)""‘ufl

w‘a - £5?)- GM.‘ = - ‘2'”

The derivatives of D with respect to Em are

0
’

.2 -.E.:..h:.[(!i-H_+4.(gf"'-1-n K

nun.

8(9‘.‘1!".‘fm)-‘l‘/g_(-’ihK +zei($)wfl'n- p..]

(28)

-vw‘A Iflg» 3.0L)-- o -

In Equations ( 25,26,2'7, and 28 ), A may be zero or diff-

N

erent from zero. If Jl. is zero, the critical value of

is determined from one of the Equations ( 25,26,27, and 28 )

in a manner similar to that for the case of the simply

supported plate of Chapter 3. When the lowest critical value

of/‘g has been chosen in this manner» only one term of the

series for w [@4183 survives. The other coefficients of

that set and all three of the remaining sets of coefficients

must be equal to zero in order that Equations ( 25,26,27,

and 28 ) can all be satisfied for the lowest critical buck-

ling value Of/q. chosen. Physically this means that the

D
R
E
'
W
‘
W

-
A
n
d
-
m
m



internal point support is located at a nodal point of one

of the buckling modes of a clamped plate with no internal

support.

For the case that )L is different from zero, Equations

( 25,26,27, and 28 ) require that for each choice of the

indices m,n,

A 2

Am". 1!“ b m' (-F...(€)-3.ou)
,

e «a.4 + .2«2m2“ «as»?

no.1“

"TN. (tam . e..m>)

E". In “’ z’(%)‘Km°Ln+(%)‘Pm'Qu-.] "'

lsrnvt=
 

 

1P;Q, E Km‘ In "’ ‘«%)‘ Pr-(LJ

 

 

 

Xe. 1“"

Cm“: b No . (‘Fm(€)‘ Gh(n))

[g ‘fl‘4'm‘. 3-“ +4(%)z,u. z mt- . L“... %(%)‘.'Qg-

, and

‘7tjyflu [:Fr‘qtfln‘-:Ivs‘*’°"%:c%:ftt";]

Jch‘flJL

Ema: 5N0. (Fm(£). 3"(n))
 

‘-‘$

[% Hawt- +(%)‘fz'n‘Km-|-8($bq"fl' 9‘ 'Pm] «—

#74: 3; K... +- d z(%)‘f‘n‘- Pm]

 

L
“
-
‘
fi
E
Q

.
.
2
"
.

O
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The other necessary condition for a stationary value

of D is w(g,'o=0 . Substitution of the expressions for

Amn, an, Cmn, and Emn in this necessary condition results

in the characteristic equation

3

’23-” 2:” 41‘ (ex - GD
”0-__-b-

( m 3» >

4.

m“ "“ 1!“ [4(:m“'+ 2.(%3‘m‘a‘+ 3%.)? )

 

.. 3/40}+42...“)3

m
a
r
s
-
n
u
s
:
5
4
‘
w
*
‘
"
M
.

-
"
‘
7
‘

FGX 610D

Bm-=»+F’-<%)K--‘L~* 55-"? ‘QJ

+

 

:TP‘/(', [Km-5,. «- d(%)" P”. I... J

9.2%)- elm

. . . 4

[mm + ore-w hie-m1
4‘4-

. TykLLTP‘mt-I“ + 4‘ at a)" La

 

kab- 3100

1. x ' ‘F 4' 43

[PiHm++(%)‘1r n «ma-8% 1‘ n Fm]

. 20(29)

mt... W... }.
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Let WA) equal the doubly infinite sum in Equation (29).

Then the values of A that satisfy the equation

V99) = o (30)

will be the critical values of/‘ for the case that A. is

different than zero.

 

Solution of the Characteristic Equation

-
»
“
.
'
.
'

-
'
-
:
‘
-
«
"

V
‘
x
.

.
.
~
.
.
-
.

,

The characteristic equation of this Chapter is solved

by a numerical interpolation method similar to the method

 r —
m

.
_

.
"

o
.

.
-

_

4

of solution of the characteristic equation of Chapter 8.

A graph of Vlaversus/v. for a Specific clamped plate

will have vertical asymptotes at values of/g corresponding

to the critical buckling values of/Q‘ for that clamped

plate with no internal point support. These values are found

for the case that 1 is zero. The lowest solution of the

characteristic equation will lie in the interval between the

first two asymptotes. A value or/q. within this interval

~is arbitrarily selected and is substituted in a finite

number of terms of each of the four infinite arrays. After

the sign of the sum is found, a second value of/g is selected,

lower than the first choice if the sum is positive, and higher

than the first choice if the sum is negative. When two values

of/g, have been found to give opposite signs for the sum, the

root of V“): O is found by repeated numerical interpolation.

Several critical values of/t for various load ratios d ,

side ratios % , and point support locations (g’ql) are
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tabulated in Table IV.

The lowest critical value of jg occurs for 1 not zero

except in the case that the point support is at the middle

of the plate (9: 3;: , '1: Pi ). The values tabulated were

therefore all obtained by solving Equation (30), except for

the case of the middle support. In this case the lowest

critical value or/(‘ occurs forks O , and one of the

denominators or a term in Equations ( 25,26,27, and 28 )

was equated to zero to find the lowest value.

w
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TABLE II

ROOTS OF THE

TRANSCENDENTAL EQUATION

 

 

 

 

 

 

 

 
 

it».

u , 8. 9868

a," 15. 4506

«4, 21.8082

R4 28. 1324

“.3 34.4416

TABLE 111

EVALUTED CONSTANTS

 

 

 

 

 

THE CHARACTERISTIC EQUATION

m Hm Qm Km 1m Pm JIn

1 896. 11.12 .280

2 7880. 80.9 .200

3 28250. 60.8 .211   
 

50
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TABLE IV

CRITICAL VALUES OF

FOR THE CLAMPED PLATE

 

 

 

 

a.

g 7L 1; a! [L

% if 1 0 11.90

1}: '3'; 1 1 9.85    
 

 

 



5. SUMMARY AND CONCLUSIONS

The problem considered in this paper was to determine

the effect of an internal point support on the critical

elastic buckling load of a rectangular thin plate under

various edge support conditions. The extended Ritz energy

method was used in the solution. The general theory of this, a

solution is discussed in Chapter 2. Two applications of

 the theory, namely the simply supported plate in Chapter 3 g“

and the clamped plate in Chapter 4) were made. i;

The lowest critical buckling load for a rectangular

plate with a point support not in the middle of the plate

was shown to lie between the first and second critical

buckling load of the plate with no internal point support.

The lowest critical load for a plate with a point support

in the middle of the plate was shown to be the second crit-

ical buckling load of that plate with no internal point

support. Therefore the most effective location of the

point support is at the middle of the plate.

The critical values of /&g.( a dimensionless load

parameter ) can be used for plates of any material that

conforms to the assumptions made in Chapter 1, namely that

the material is homogeneous, isotropic, and follows hooke's

law. The specific material properties are only introduced

when the critical buckling load Nx is evaluated using the

dimensionless parameter/fi¢..
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