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1. INTACLUUCTION
Statement of the FProblem

The problem considered in this paper is to determine
the effect of an internal point support on the critical
elastic buckling load of a rectangular thin plate under

various edge support conditions.
Critvical Buckling Load

A plate subjected to an edge load in its plane is
said to be on the verge of buckling when the plate is in a
condition of neutral equilibrium. 1In this condition the
edge load may produce either strain in the initial flat
equilibrium configuration or, more important, a laterally
bent equilibrium configuration. This second configuration
is called a buckling mode. The edge load necessary to
produce a condition of neutral equilibrium in a plate is
called the critical buckling load. A buckling mode cor-
responding to a higher critical buckling load is possible,
but in practice the plate will buckle in the first modse
corresponding to the lowest critical buckling load unless

constrained.



Method of Solution of the Problem

The extended Ritz method was chosen for the solution

because an explicit solution of the buckling differeantial

equation of the plate was not available with the additional

restraint of the point support. A discussion of this

method is given in the General Theory, Chapter 2.

Assumptions

The usual classical theory assumptions are made:

a.

The material i1is homogeneous, isotropic, and
follows Hooke's Law.

Normals to the undeformed middle plane of the
plate remain straight and normal to the deformed
middle surface.

Thé cross section thickness is constant and small
compared to the length and width of the plate.
The plate is loaded in plane stress before

buckling.

Applications of the Theory

Two applications of the Gemeral Taeory of ohapter &« are

made in this paper. ‘he rectangular plate with simply

supported edges and an arbitrary point support is discussed

in Chapter 3. The rectangular plate with clamped edges and

an arbitrary point support is discussed in Chapter 4.
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2. GENEfAL THEOKRY
Stationary Potential Energy

The total potential energy of a mechanical system is
said to be stationary for a given equilibrium configuration
of the system if the first order change in the total
potential energy is zero for any arbitrary small displace-
ments from the given configuration. The Theorem of
Stationary Potential Energylstates that at an equiiibrium
configuration of a syétem, the total potential energy is
stationary.

Let U=V + U, (1)
where V 1is the strain energy of oending of the plate in
the buckled configuration and the symbol Uy 1is the change
of potential energy of the external loads when the plate
buckles into the buckled configuration. The Theorem of
Stationary Potential Energy requires that U ve stationary

for any buckled equilibrium configuration of the plate.

The Extended Ritz Msthod

2
The extended Ritz method is used to solve the plate

buckling problem. In this method the lateral deflection

1. Friedrich Bleich, Buckling Strength of Metal
Structures, McGraw-Hill, New York: 1952. pp. 70,71.
2. Ibido ppo 77-810




of the plate is expressed as a sum of suitably chosen
coordinate functions.
For the rectangular plate

o¢x¢a, o¢Yystop,

we choose 00 -

o0

w(x,y)= L “Z Apn O (1) (9 (2)
where the functions 4)“(7/) are the complete set of
eigenfunctions of a beam with no internal support subject
to end conditions at X=0 , X = Q which are the same as
the end conditions of the rectangular plate under consiaer-
ation. The functions -©,{Y) are the complete set of
eigenfunctions of a beam with no internal support subject
to end conditions at Y4Y=0, Yy = b which are the same as
the end conditions of the rectangular plate under consider-
ation. It is known that any arbitrary deflection configur-
ation of a rectangular plate can be represented by an
infinite double series of eigenfunctibn products of the
form chosen.3 The coefficients A, are to be determined so
that the constraint condition of the internal point support
is satisfied, and the total potential energy of the system

is stationary. 'the constraint condition for an internal

point support at an arvitrary point with coordinates (g,’t)

is .
VV(JE,'L) =0 ()

3. R. Couraﬁt and D. Hilbert, Methoden Der Mathematischen
Physik, Vol. 1, Berlin: Springer, 193l. p. 47.




The problem of making the expression for the total
potential energy of the system stationary and simultaneously
satisfying the subsidiary conditions of constraint can be

4
solved by the lLagranze uultiplier method. In this method,

the expression

U=V+U, - A w(E, ) (4)
is introduced. The parameters Ay, and the values A that

meke U stationary also make U [Eq. (l» stationary and

satisfy the subsidiary constraint condition. 'I'he necessary

- S
conditions for U to be stationary are
w(e"[.):o end a__U__ =0 (5)
dAmn °

For the applications to be made, V and U, &n Eq.(43
are given by certain double 1ntegralé over the plate. When
the series for W [Eq. (2)] 1s substituted in these integrals,
.and the integrals are evaluated, V and U,, are obtained
as quadratic expressions in the coefficients Ap,.

In practice, if N coefficients are to be determined,
the N Equations (6) together with Equation (3) form a system
of N+1 linear homogeneous algebraic equations for the i
coefficients and the multiplier A. . The solution of this
system is obtained only up to an undetermined constant
multiplier. Hence the shape of fhe deflected equiliorium

configuration is determined, but not its amplitude.

4. F. Bleich, Op. Cit. pp. 77-8l.

5. I. S. Sokolnikoff and E. S. Sokolnikoff, Higher
Mathematics for Engineers and Physicists, McGraw-i.iill, New
York: 1941l. PpP. 163-167.




In the following Chapter the buckling prcblem of a
simply supported rectangular plate with lateral point support

is solved using the method discussed in this Chapter.
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3. SIMPLY SUPPORTED PLATE
Application of the General Theory

A rectangular plate with simply supported edges on

four sides and an arbitrary point support with coordinates

(g,’L) is considered.

v ¥ —
PPt

Y Figure 1

In Figure 1
a = length of the plate in the x-direction,
b = length of the plate in the y-direcu'ons
Nx s uniform compressive force per unit length
acting in the plane of the plate on the edges
x =0, x= 8a,and
o Ny = uniform compressive force per unit length

acting in the plane of the plate on the edges

y =0, y = bywhere ois a dimensionless constant,



The series expression [g:q.(zﬂ for the deflection

of the plate is then

w(x,y) = 2:: 2:: Amn s‘"\!n n nmTy (6)

Ml N3 b

where the functions SIN MW X are the complete set of eigen-
a 6

functions of a simply supported beam of length a, and the

functions Sin gTTQ are the complete set of eigenfunctions

»
of a simply supported beam of length b. The coefficients

Ampn are the set of parameters to be determined.

7
The strain energy of bending of a rectangular plate is

a zlwl
v:gd§ I( b;-:' EYS

Atw tw
«2C1-V) "—;;':3—3., }gbs)_]}d"AS (7)

where

D=EW (8)
2 Cr-o®)
is the flexural rigidity of the plate. In iquation (&)
E = modulus of elasticity,
h = thickness of the plate, and
VY = Poisson's ratio.
Je assume that the limited bending that occurs when the plate

enters the buckled equilibrium configuration takes place

6. F.B. Hildebrand,Advanced Calculus fur kngineers,
Prentice-Hall, liew York: 1949. p.215.

7. S. Timoshenko, Theory of Elastic Stability,
McGraw-Hill, New York: 1936. pp. 305-207.




with negligible stretch or compression of the middle plane
of the plelte.8 If we then take the datum configuration of
zero potential energy to be the flat configuration of the
plate just before buckling occurs, the quantity \/ is the
total strain energy in the buckled configuration.

The appropriate derivatives of W @q.(ﬁ)] are taken and l

v~

substituted in V @q.('?]. 1f we observe the orthogonality
9

of the eigenfunctions, namely

[ 8
S-s‘m MTEL. Sin M TX - l
° at « O for m #£ m,
a & for m =m,
Scu ML cos M, TE_ z d
(- 8 a =

V is found to be
T t R 2
b T z >
V-—--— : A,,,,, [m"-c—(.‘.‘.) n] (9)
msl »ms\ b b
“e also assume that the edge loads do not change during
the buckling of the plate. Then the work done by the external

10
compressive forces Ny and Ny during buckling is

~xssc(2:) «(22) Jdn iy,

The change in the potential energy of the external loads

during buckling is then

U =-in, SSE( d%“-;-)&]axéijlo)

8. S.Timoshenko, Op Cit.,p.325.
9. Friedrich Bleich Op.Cit.,pp.65-69.
10. S.Timoshenko, Op.Cit.,pp.508-314.
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The appropriate derivatives of W[Eq.(&) are tax<en and

substituted in U, [Eq.(10)}. The expression forU,, when inte-

grated is

Uwz - ———- N,‘ z Z Amn [mz-!- K(%)‘h‘].(ll)

8 < m:l N3\
The extended Hitz method as discussed in Chapter 2 is

now applied. The expressions found for V and Uware sub-

stituted in U [Eq. (43. Then

U _ﬁ.N Z z Amn [ma.“.(%)&“jz

mz:l wnsi
2 z ‘]
ST T AL e
(12)

-A Z Z: Am“ Scumwg smrﬂ’"\ .:

mz2| n:z|

‘ wt>
where Ng = '?;_( load per unit width ), the Euler critical

load for a column with flexurf% rigidity equal toD .

The necessary conditions for U to be stationary are

22U
—_— = O d w ’ =0
)Amﬂ o (g n) 3

The derivatives of U f’_Eq.(lzzl with respect to the parameters

hppn pPraduce the equatious

?_9_- « Ng A......[m (5) J

A ¢ @
2 [ 2 x :.]2'

- A sw m‘“'!-si»n":’l. o,
a
11. See Lagrange's multiplier method in Chapter <.

(13)




1l

In these equations the multiplier A may be zero or differ-
ent from zero. If A is zero the Equations (13) require that
for each possible combination of the two indices m,n, either

Apn is zero or

(3

TS e (R K R
If the load ratio ©f and the side ratio %i have been chosen
in advance, the critical value Ny is then determined by
Equation (1l4) for one choice of m,n. The choice made is that
which gives the lowest critical value of N, and still sat-
isfies the constraint condition w(!,'l,)m. All of the
other coefficients A except the one corresponding to this
choice of m,n must be zero in order that Equations (1l%) can
all be satisfied. Thus only one term of the series for W
EE.q. (63 survives when A is zero. Physically this means
that the internal point support is located on a nodal point
of one of the buckling modes of a simply supported plate.
In fact an expression similar to Equation (14) is given by
S. Timoshenkolzto find the critical buckling lcad for a
simply supported plate.

#nen A is not zero, Equations (13) require that for
each choice of the indices m,n,

1
/‘!nn 3 17"°°
CRIC i VA LR

12. S. Timoshenko, Op.Cit., p. 318.

a R .
= Sin mTS. sinnTn
b [ o -] ] (15)
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Ny

where//; = — , a dimensionless load parameter. The other
No

necessary condition is that w(@,"[): O. Substitution
of ApplEq. (15)) in the expression for w [Eq. (6] at the
point(g,"l)results in the characteristic equation,

4 A a o 22 2 R 3

Tp, b 2 ) [sin mmS . siaTanll
w ° msi n3 = © - 0(16)
n‘-o(%)' n) ‘—/.,, [mts c((‘-‘;)‘n‘

Since the characteristic equation was obtained for the con-

dition that A is not zero, and the coefficients

TEN, ®
then

Vi = 25 [ sinmxS. siu"ag
mai na3d Y . NS )
E“t*(%)\ n\] _/‘[m *‘(%) "] (17

must equal zero for each critical buckling value of/Q . Ir
the load ratioef,the point support location, and the side

a
ratio <+

b
satisfyy(/‘)zo are the critical buckling dimensionless load

have been chosen in advance, the values of/‘ that

parameters of that simply supported rectangular plate with

e point support at (Q,"l).
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Graphical Solution

of the Characteristic Equation

A graphical method cen be used to solve y/(/l..)= o .
After the load ratio o , the side ratio T , and the co-
ordinates of the point support(g,"l)are selected, a graph
is constructed with values of’/ﬁp on the abscissa axis and
the values of the sumyge)on the ordinate axis ( See Fig.2).
This graph has a vertical asymptote at each value of‘/ﬂg
corresponding to a buckling mode of a simply supported
plate with no point support. Since there is no root of the
Equation W}:o before the first asymptote ( The rterms
are all positive .), the lowest critical value og/lb for the
point supported plate where V‘/s)= O, will lie between the

first two asymptotes. The accuracy of the determination o

the root ( where W} crosses the/Q - axis ) can be im-

proved by numerical interpolation, using a suitable number
of terms of the sumyf/‘k).

Example of the Numerical Solution

Let us consider as an example the problem of a simply
supported square plate with equal loads in the two directions
(o(’l and %:l ) and a point support at (?3 % ’1'(, %).

The terms of W/.Q) can be represented in the doubly infinite

array ( See Fig. 3 ),
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¥
+.3 GRAPH
of
g I
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Q
ol = | -b-: |
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%/%/m....m.
Yo Vae
g

.. Figure 3 .t

where}an is the term corresponding to the summation
indices m,n in the sumEg.(l’?B. In practice a finite number
of terms of the infinite array are summed to evaluate)ﬁi&),
starting at the upper left hand corner and moving diagonally
through the array as shown by the arrows.

For the particuler square plate of this example the

first six non-vanishing terms of the sum are

- 15 .15 15 :
+ — -+ — +
4-2 L4 25-5/k /00-/04
I [ L )
169~ 134 289-1lAk (76- 2604
The first asymptotes of the graph’?&g}are found by equating

the denominators of the doubly infinite array ( Fig. 3 )

to zero. The first two asymptotes are/ﬁs 2 and/"ss(See
Fig. 2 ). The term)/1) and the term that will make the

largest contribution to the &un’é@&)ror a value of /¢

between the asymptotes are now summed and equated to zero.
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05 o
Voe¥ar 225 -

This equation is now solved for the first approximate value

of/“ , which 134/4,3 4.14. The first approximate value of

_A 1s now inserted in the first six contributory terms

of 'yf/.i) and the sum taken. The sum of V'( 4.14 ) 1is
4+.015. Since this sum 18 positive, a value of/AL less than
/Q: 4.14 is chosen. We choose/€= 3.85 arbitrarily and
sum the first six terms again with this value. The sum of
y71 3.85 ) 18=.049. Since this sum is negative, the crit-
ical value of /& lies within the interval 3.85 <4 <4.14.
Further numerical interpolation will give the value o{/ﬂi
with greater accuracy. The critical value o{/AQ for this
example is approximately/ﬁs 4,05 ( See Fig. 2 ).
Critical values o{//E.ror other values of load ratios

o{, side ratios % » and point support locations (g' ‘1)

for the simply supported plate are tabulated in Table I.
‘The lowest critical value of e occurs for A not zero

except for the case that the point support is at the middle

of the plate (Ss % ,'Lz % ). The values tabulated were
therefore all obtained by solving Equation (16), except the
values for the simply supported plate with a point support in the
middle of the plate. In these cases the lowest critical

value ot/g, occurs for A = O, and the denominator of the

Equation (16) was equated to zero to find the lowest value.



TABLE 1

CRITICAL VALUES OF €
FOR THE SIMPLY SUPPORTED PLATE

8§ 1M | ¢ |« | A&
$ 2 1 0 6.25
s ® 2 o |16.00
3 2 + 0 4.00
% | 2 1 1 5.00
% 2 2 1 8.00
s < i 1 2.00
s > 1 0 5,75
: 3 1 1 4.05

17
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4. CLAMPED PLATE
Application of the General Theory

A rectangular plate with clamped edges on four sides
and an arbitrary point support with coordinates (g.,7l) is

considered.

oy 1“‘“’”#
1
R 8
— § —

1t

Y FIGURE 4

)

L

TTTT

A

e

In Figurq 4
a = length of the plate in the x - direction,
b = length of the plate in the y - direction,
Nx = uniform compressive force per unit length acting
in the plane of the plate on the edges X%=O,%=&
o{ Ny = uniform compressive force per unit length acting
in the plane of the plate on the edges Y4 =O, 3‘-'-5
where ol is a dimensionless constant.
The series expression Eq.(2) for the deflection

of this plate is
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wcx,3)=§: Z [Amn ‘F.-.c 9n + Bmn Fm°Gn

m:=i ns\

+ Cm“ #m' G" + E“\ﬂ FM.S"\] (18)
2

where the functions

fm=Cl—-cCos2mT %) (19)
a

Fm:(umg -Sin Um ﬁ)__(l -—cOS amz)

U = Sin Up, i —Cos Uy,

and

(20)

are the complete set of eigenfunctions of a clamped beam of
13
length a. The functions

gn= (1 —cos znwy) (21)
-]

and G.ﬁ(“’"g - Sin &n %)_(3 - cos Ua %)

(22)

are the complete set of eigenfunctions of a clamped beam of
length b. The numbers L m and &,y respectively in the
functions Fy, and G, are the positive rootsmof the
transcendental equation

«© . &«

tan z: = EE °

The coefficients Apmn, Bpns Cmn, and Epp are the multiple
set of parameters to be determined.
The same expression for the strain energy of bending

EEq.(?)] is used as was used in Chapter 3. Ve observe the

13. F.B. Hildebrand, Op.Cit. p. 217.
14. See Table II.
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orthogonality properties of the eigenfunctions, namely

Q
S'Pm‘#m'd* \
° =0 %or m % wm,

-$.. d
Fm ™ * ?;to for m =m,

oLp 0P

" w
$on  Fm, 4% 7
A fourth orthogonality property,

. §¢m- $rmdx

= o ¥or m £ m,

# O for m=m,

is obtained by integration by parts as follows:
a " Ut 2 )
g fm: ‘Fm‘ dx = ('pm "Fm)lo" S¢m°.¥m,d%.
° . °

The integrated part vanishes because of the end conditions
at £=0,%=0 . Since the remaining integral is the same
as the second orthogonality property listed above, the
fourth orthogonality; property is proved. The same ortho-
gonality properties of the eigenfunctions are true 1if -@m
and-cn‘ are replaced by Py, and Fm. . 1f, however,‘ only
one of the two functions is replaced ( -('—m by e OT Qm'
by F.,.. put not both ), then the integrals vanish whether or
not M=rn,. Similar orthogonality properties are true for

the eigenfunctions 9In and C:'.. .

15. Friedrich Bleich, Op.Cit, pp.65-69.

G, T e
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With these properties in mind, we first evaluate the

contribution of the curved bracket

y A
SS o+ ) drdy

in Equation.(7) This expressiun can be expanded to

2w \2 w - Dw
Sg{(a 3‘*‘ a;:-+ ?3)}&&3‘

The only terms that will not vanish due to orthogonality

when the appropriate derivatives of w E‘Jq.(leﬂ are substi-

tuted in the expressions above are found to be

R R R {Am e

Blan(Fm)- Gr + Ch (#0): Ghe a...,.(r"l“a‘a;

’

(3:‘ :;)Jﬁd}- M2\ n3l Sg :""c "m 3-1-\"’

oCLMT

E:...F'MF,.‘: 3,5.:. 41-43
o
a b * X = a
§ g(__:_;.;)t,djgg‘}; S{ {A‘..... £a(qn) >

S S A

R S
. 5 J

Ifﬁ‘—t—y—m T wRTT
Vin )
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Similar expressions for the square bracket of Equation (7)
are also found. The appropriate derivatives of the eigen-
functions -Gm, Fw 8w », and G, are calculated from
Equations ( 19,20,21, and 22 ), and substituted in Equation

(7). We rind that the square bracket vanishes and the curved

bracket when integrated produces a
o ]

=3 b ¢

\V/ z Noz g.":ﬂ {4’“ A (Sm +2(.¢_3,) m n+3(s)n )-l- {

Ls

2 2 4 E

. . a . !

C :m (8 m+1"g'3'h + 4(%)2."‘&_‘_“ + %(%-)q-%).,

mn( ® + 4(&\n Ko +8(G-)n . P )} , (23)

where

N'IPD

. u Su\?-“'ﬂ)- sint Uy,
(u- - Sin u.‘) (“,,.-Sau “n)(l-CoS U )

z
(1 - cos u, )*

m +’lhzum>




&3

Um sin lum

3
(Um - sinu.,)?

Ry, =

1
Lo

(- u,'.‘. +2 Um Sin Un -sinzum) +
(Uem - in w1 - Con )

(—%um-zsin umd-* S'lnl.“-m)

(‘ e X-X ) “m)z

S and

. O

7‘% Um =2 SinlUm + T 5102 Um)
(u,.. - Sin u..,)'-

sz um

( 2 CosS Um -2 + sin&um)

(ups - sin Um)(1— €08 Um)

(S -Lsinzlim)

Note that Q,.= H, I, P, sand L = K, - Different

symbols have been used to avoid confusion when one of the

quantities is evaluated for an index m, and the other one
is evaluated for a different index n. These quantities
have been evaluated for m,n = 1,2, and 3,and are tabulated
in Table III.

The same expression LJ,,ror the change in the potential
energy of the external loads during buckling is used as in
Chapter 3 [Eq.(lO]. The appropriate derivatives of w@q.(lan

are taken and substituted in U“. The expression for WU,
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when integrated is

c© @o
U, = "'%_?-}-N; z Z@A:n(m"-to((%)&n‘)a—

W=\ nW3

e N

2 ® L
Comn (2™ T, + (2 2 La)

where K, ,3m , Lo, and B, are the quantities defined
following Equation (23).

The extended Ritz method as discussed in Chapter 2 is
now applied. The expressions found for \') @q.(zsn amduW
(Eq.(24) are substituted in ?GLEq.M].

The necessary conditions for U to be stationary are

20 _, 230 ., 20_, 20 _4
° b )
dAma 8., dCumn €.,

and

w(g,'l)=o.

The derivatives of U with respect to App are

?ﬁ = Amn B N,‘“"E»(amﬂ-l(&gmznz-o—
Q -
O Amn

YT - (mtedgyin)] -2 403 .

16. See Lagrange's multiplier method, Chapter 2.
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The derivatives of U with respect to Bpp are

U S
R 1o LR O

(2)" P Q) =100 (KT + ot (2R
-wrA-F -G M=o (£0)
The derivatives of {§ with respect to Cp, are
22. = Conn L N [(8 ™ - Jn+ 4(%)"13'-“"- L.+
1) - T (2Tt Tty g 1) -
T™*a .-}.}Qﬁ. (QJF[\ T O. (27)

The derivatives of U with respect to Epp are

MmN

o/

¥ 2 e
2Y . Emabw, l:(!iu,_,-n_(%\"-r nKo o+
wmn

4+ 4 q 2 2
8(_:_' ™ n .P"\)-r/‘- (% KMQ-Zd(%)gfz? .)P..ﬂ

28

-m*A E@)- 3. (M) =0
In Equations ( 25,26,27, and 28 ), R may be zero or dirff-

m

erent from zero. If A 1s zero, the critical value of

is determined from one of the Equations ( <5,26,27, and 286 )
in a manner similar to that for the case of the simply
supported plate of Chapter 3. When the lowest critical value
o{,‘b has been chosen in this manner» only one term of the
series for w [‘_Eq.(laﬂ survives. The other coefficients of
that set and all three of the remaining sets of coefficients
must be equal to zero in order that Equations ( 25,26,27,

and 28 ) can all be satisfied for the lowest critical buck-

ling value or‘/Ag chosen. Physically this means that the




internal point support is located at a nodal point of one
of the buckling modes of a clamped plate with no internal
support.

For the case that )L is different from zero, Equations
( 25,26,27, and 28 ) require that for each choice of the

indices m,n,

A _a
Apne T2 80" (£,.8)- s..ou)
‘Et(;a'n -rilaa) n\v\4r3%2Q|n ) (anh.«. ‘:l

Aaw
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[% Ho + 4-(%)‘1‘"n K,,,-Q-S(S) ™Tn -P...J -

T ALK+ z(%}"'l“n"‘ Pm]

A ity 4
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The otner necessary condition for a stationary value
of U is w(g, M)=0 . Zubstiiution of the expressions for
Amn, Bmn, Cmn, and Emn in this necessary condition results
in the characteristic equation

A“‘q' o0 : L

St (£ - 3.00)

mzt sl S [4_( 3 m¥+ 2.(%5‘ mtn - 3(%)‘03)

- 3/q_(m +a((2.. )]
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-
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T e AL
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a ! 4 4 42
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' :0(29)

—1‘}«_[_%. Ko + a(-z.(e:)"w'n"- P-.] }.

AT s A TR
7.

— -~

w



<8

Let }%/‘) equal the doubly infinite sum in Equation (£9).

Then the values of',L; that satisfy the equation
YVirdr=o (20)

will be the critical values of A¢ for the case taat Alis

different than zero.

Solution of the Characteristic Equation

Rpas

The characteristic equation of this Chapter is solved

by a numerical interpolation method similar to the method

m_ T

of solution of the characteristic equation of Chapter 3.

A graph of W/g)versusjq_ for a specific clamped plate

will have vertical asymptotes at values or/‘. corresponding

to the critical buckling values or/Q_ for that clamped

plate with no internal point support. These values are found

for the case that A 1is zero. ‘The lowest solution of the

characteristic equation will lie in the intsrval between the

first two asymptotes. A value or/Ag within this interval

~1s arbitrarily selected and is substituted in a finite

number of terms of each of the four infinite arrays. After

the sign of the sum is found, a second value of'/Ag is selected,

lower than the first choice if the sum is positive, and higher

than the first choice if the sum is negative. When two values

or/Q, have been found to give opposite signs for the sum, the

root of V(/g)= O is found by repeated numerical interpolation.
Several critical values of /¢ for various load ratios o ,

side ratios g , and point support locations (g,"L) are
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tabulated in Table IV.

The lowest critical value of /‘, occurs for A not zero
except in the case that the point support is et the middle
of the plate (gz 3‘: , = %‘ ). The values tabulated were
therefore all obtained by solving Equation (30), except for
the case of the middle support. 1In this case the lowest
critical value or/l‘ occurs for A= ©, and one of the

denominators of a term in Eguations ( 25,26,27, and 28 )

was equated to zero to find the lowest value.

I 2 AT ———— v st u——-“.q'
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TABLT 11

ROOTS OF THE
TRANSCENDENTAL EQUATION

Um

«u, 8.9868 ;‘q
P
.:ﬁ,

«s 21.8082 L
!

ug 24.4416

TABLE I1I

EVALUTED CONSTANTS
OF THE CHARACTERISTIC EQUATION

m Hy Qnm Km Im Pp Jn
1l 8S6. 11.12 « 230
2 7380. 30.9 .200

3 28250. 60.3 211
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TABLE 1V

LCRITICAL VALUES OF
FOR THE CLAMPED PLATE

(- B
§ (M| T | «£ | A&
¢ L 1 | o | 1.9
3 > 1 1 9.35




5. SUMMARY AND CONCLUSIONS

The problem considered in this paper was to determine
the effect of an internal point support on the critical
elastic buckling load of a rectangular thin plate under
various edge support conditions. The extended Ritz energy
method was used in the solution. The general theory of this
solution is discussed in Chapter 2. Two applications of

the theory, namely the simply supported plate in Chapter 3

AP A ke B2 e :—W
lﬁ_',‘ .

and the clamped plate in Chapter 4, were made.

The lowest critical buckling load for a rectangular
plate with a point support not in the middle of the plate
was shown to lie between the first and second critical
buckling load of the plate with no internal point support.
The lowest critical load for a plate with a point support
in the middle of the plate was ghown to be the second crit-
ical buckling load of that plate with no internal point
support. Therefore the most effective location of the
point support is at the middle of the plate.

The critical values of Ae¢ ( a dimensionless load
parameter ) can be used for plates of any material that
conforms to the assﬁmptions made in Chapter 1, namely that
the material is homogeneous, isotropic, and follows Hooke's

law. The specific material properties are only introduced

when the critical buckling load Ny is evaluated using the

dimensionless parameter//g .
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