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ABSTRACT

STRAIN RATE EFFECTS ON THE INELASTIC

RESPONSE OF BEAMS

by John G. Janssen

In this thesis a numerical method for the dynamic analysis of

elasto -plastic beams exhibiting strain rate sensitivity is presented. The

analysis is based on a discretization of the prototype beam by lumping

the mass and flexibility. In order to include the strain rate effect, it is

further assumed that the moment curvature relation can be divided into

a "static" part and a dynamic part. The static part is based'on a bilinear

elasto-inelastic relation; the dynamic part is an adaptation of an empiri-

cal equation used by Symonds and Ting for considering the strain-rate

effects on yield stress for rigid perfectly plastic beams.

The validity of the method presented is proved, for the inelastic

case, by establishing the "convergence" of the response of a beam as the

discretization becomes finer. For elastic beams, solutions obtained by

'use of the model are compared with exact analytical solutions . It was

shown that, for ten panels, the discrete model predicted a maximum

displacement which differs from the exact solution by only 1.2%.

The effect of strain rate was determined by comparing two solu-

tions of the same problem; one considering strain rate, the other



John G. Janssen

neglecting it. The maximum deflection of a beam of nominal engineer-

ing dimensions with no strain hardening subjected to a blast loading

was reduced 23% due to the effect of strain rate. However, as the

amount of strain hardening increased, the effect of strain rate was

reduced.

The method was also used to analyze certain beams that were

studied experimentally at Brown University. It was shown that if the

strain hardening effects were considered, the results yielded by the

discrete model agreed well with the experimental data. The analysis

also indicated that as a consequence of the elastic and strain hardening

effects an "inelastic rebound" takes place which substantially decreases

the permanent deformation of the beams. In this connection the short-

comings of using the rigid perfectly plastic theory to predict the be-

havior of such beams are pointed out.
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CHAPTER I

INTRODUC TION

1.1 General

In recent years the problem of the dynamic response of inelastic

beams and frames has been the subject of many technical papers . The

nonlinear aspects of the problem and the inherent complexities of

structural systems preclude "exact" solutions to all but the simplest

problems. Because of this, analysts have been forced to make certain

assumptions which transform or simplify their original problems into

more manageable ones.

One mode of simplification is to reduce the continuous nature of

the problem to a discrete one. This is particularly attractive today as

the ensuing large amount of numerical work (a serious drawback of

such an approach in yesteryear) can now be handled conveniently by the

electronic computer. The mathematical model associated with the

discretized system will be referred to as the discrete model in this

thesis.

Wen and Toridis (13)* have investigated three discrete models

for inelastic beams. It was shown that quite accurate results (as com-

pared to available solutions of continuous systems and experiments)

could be obtained by use of the discrete models. The major advantage

 

*Numbers in parentheses refer to references listed in the bibliography.



of the method is that it can be conveniently used to predict the response

of quite general structural configurations and loadings and, even though

a computer is generally needed, the application and programming are

quite straightforward.

The majority of past works done in the area of structural dynamics

have neglected the effect of strain rate on the response of the structure.

It is generally known, however, that some materials exhibit an increase

in their yield stress while under dynamic loading conditions. This

effect on the bending of beams has been studied at Brown University by

Bodner and Symonds (1), who ran tests on small cantilevers subjected

to impulsive loadings . They also undertook a mathematical analysis in

which the analytical representation of the strain rate effects was based

on experiments carried out by Manjoine (4) .

Other researchers at Brown University (5, 12) as well as Parkes

(8, 9) in England have also studied the effects of strain rate on the

response of simple structures. In all the analytical works mentioned

above it was assumed that the material exhibits a rigid perfectly

plastic moment curvature relationship; thus, the effects of the elastic

response and possible strain hardening were neglected. Therefore, in

order for their analysis to be meaningful, the inelastic deformation must

be of a much greater order of magnitude than the elastic deformation.

This restriction upon the rigid perfectly plastic theory limits the range

of applicability in many practical situations . Also their methods of



analysis, though capable of treating simple structural elements such

as cantilever beams, do not in general seem adaptable to complex

structural systems.

Since the discrete model approach is applicable to a wide range

of material properties and complicated structural configurations (see

for example, reference 14) it is natural to attempt to extend it to

include the effects of strain rate in addition to the elastic, plastic, and

strain hardening properties .

l. 2 Scope

The present investigation begins with the formulation of the

moment curvature relation that incorporates both strain-rate and strain

hardening effects. Next, a method of analysis is developed for com-

puting structural response. Numerical results are then obtained for

a number of problems all involving cantilever beams. This was done

because: (i) the results could thus be compared with existing continuous

solutions and experimental data, and (ii) since the method is obviously

readily applicable to more complex structures, no numerical demon-

stration of such applications are deemed necessary.

The accuracy of the method is demonstrated by (i) comparing a

known exact solution for the completely elastic case to results obtained

by use of the model, (ii) showing that as the number of divisions of the

model is increased, the solutions seem to approach a limit, and (iii)

comparing results obtained with the model to experimental results and



continuum solutions given in reference (1) .

Having (reasonably) established the reliability of the model,

numerical results are then obtained to study the influence of strain

rate and strain hardening.

l. 3 Notations

The following symbols and notations have been used in this

thesis and are listed below in alphabetical order.

A = constant

n

A 2 area of cross section that has yielded

Y

a = thickness of flange of WF section

B = constant

n

B = constant

0

b = width of flange of WF section

C = constant

n

c = constant

D = constant with dimension of l/sec

d = depth of WF section

dt = time increment

E = modulus of elasticity

e = strain rate

G 2 mass of tip of beam

G = constant

n

h = panel length
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z
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z
z
g
z

c
g
g
g
o
'
d
v

G
i
g
i

m(x)

P.(t)
1

moment of inertia

impulse

subscripts

elastic stiffness

inelastic stiffness

curvature

curvature at intersection of elastic line with curvature axis

curvature rate

length of beam

bending moment

internal bending moment of beam at ith joint

lower bound of "static” elastic action

”static" moment at which beam initially behaves inelastically

moment due to strain rate (or curvature rate)

total moment, lower (Msr + M1)

total moment, upper (Msr + Mu)

upper bound of "static" elastic action

Msr/Mo

mass lumped at panel point i

mass distribution of beam

number of panels beam is divided into

load lumped at panel point i

constant



p(x.t)

1
|

angular beam frequency (in Appendix only)

loading function of beam

ratio of kinetic energy input to maximum storable elastic

energy (102 /2G) /(M02L/2EI)

ratio of stiffnesses, KZ/Kl

G/mL

constant

assumed section modulus

elastic se ction modulus

i‘plastic se ction modulus

period of nth mode of beam

first fundamental period of simply supported beam

time

initial velocity of tip

internal shear to the right of the ith joint

internal shear to the left of the ith joint

uniform load in #/ft.

load which causes extreme fibers to yield

mode shape of a slender prismatic beam

location of ith joint from the left support

point midway between the (ith-l) and the ith joint

point midway between the ith and the (ith+ 1) joint

deformation curve of beam

deflection of the ith joint



velocity of the ith joint

acceleration of the ith joint

distance from neutral axis of beam

initial static yield stress

stress due to strain rate

ratio of 0'sr and 00

dynamic yield stress

joint rotation

rotation rate

mp2 /EI

generalized coordinate



CHAPTER II

FORMULATION OF MOMENT CURVATURE RELATION

2.1 Basis of Moment Curvature Relation
 

For the most part the moment curvature relation used in con-

nection with this work is that of the bilinear type with a modification

included to incorporate the effect of strain rate. The dynamic moment

curvature relation is assumed to be the sum of the "static" moment

curvature relation and the effects due to strain rate.

Consider the moment curvature diagram of a beam cross section

which is being loaded slowly. The effect of strain rate will be con-

sidered negligible in this case. The moment curvature diagram under

consideration has two distinct parts. The first part, which shall be

called the elastic line, is represented in Figure 2.1 by the line

M:K1(k-ko) (2.1)

where M is the bending moment, K is the elastic stiffness, k is the

l

curvature, and k0 is the intersection of the elastic line with the cur-

vature axis. The second part, which will be called the inelastic line,

is represented by one of the lines

or (2.2)

depending on the direction of the inelastic bending. The constant Bo



represents the M intercept of the inelastic lines, and K2 is the inelastic

stiffness. When inelastic straining takes place, Equation (2.1) (the

elastic line) is adjusted to take care of the hysteresis effect by chang-

ing k0 by the amount of the inelastic straining. For the virgin case, k0

is equal to zero.

The two inelastic lines represented by Equations (2.2) do not

shift as does the elastic line. These lines are considered the upper

and lower bounds of the static flexure strength of the cross section. The

constant B0 in the equations depends on the slope of the inelastic lines

and the yield moment MO. With the moment curvature relation of the

static case as a foundation, the consideration of the effect of strain

rate on the characteristics of the beam follows.

Let Msr denote the increase in the yield moment due to strain

rate. While its formulation involving the strain (or curvature) rate

will be given in the next section, its relation to the overall moment

curvature relation is discussed here.

It will be assumed that the rate of straining will have no effect

upon the elastic portion of the moment curvature relation.

Furthermore, it will be assumed that the absolute value of the

section can be no more than that given by Equation (2.1) to

account for the strain history. Since the yield moment for a

given section depends upon its rate of curvature as well as its curva-

ture, the value of the yield moment will, in general, vary with time.
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Knowing the curvature and the curvature rate at any cross section the

yield moment at that cross section may be determined by adding the

increase in yield moment due to strain rate and the "static" yield mom-

ent. Therefore the yield curve is represented by Equations (2. 3)

M

tu

M

Mu+ Msr

(2.3)

l
l +

tl Ml Msr

where Mtu and Mt represent, respectively, the total upper and lower

1

yield moments .

In Figure 2.2 is shown a moment curvature diagram of a strain

rate sensitive cross section. The representation differs from the static

case in the inelastic region only. For example, yielding takes place at

point A for the static case, while for the dynamic case, the yield point

continues to move up the elastic line until it reaches point A', after

which it moves along the yield line to point C. Point C is the point

where there is a reversal of the direction of straining. At that point

the strain rate is zero, and the yield line and the inelastic line inter-

sect. The configuration point will then move down an elastic line to

point D .

2. 2 Formulation of Msr

 

Manjoine (4) has conducted experiments to find the effect of

strain rate on yield stress. Tests were run at various strain rates

and temperatures and one set of tests was run at room temperature.

From this data Ting and Symonds (12) have derived a relationship
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between yield stress and strain rate as follows:

é=D(;X -1)p (2.4)

0

‘where e is the strain rate, 00 is the initial static yield stress, O'y is

the yield stress corresponding to é, and D and p are constants deter-

mined from Manjoine's work. Figure 2. 3 shows the effect of strain

rate on the yield stress of aluminum and steel. The values for mild

steel were due to Manjoine and those for aluminum to Parkes (8) .

It is desirable to have the constitutive equations given in terms

of moment and curvature rate rather than stress and strain rate since

it is moment and curvature that will be used in the analysis. Equation

(2.4) can be written in the form

kz = D(&Sr)P (2.5a)

where k is the curvature rate, 2 is the distance from the neutral axis

to the fiber in question and

0‘ -O' 0'

- X 0 SI‘

0' = :—

SI‘ 0‘ 0'

O O

U = (—) (2.5b)

To determine the percentage increase in moment, Mar = Mar/Mo' all

that is necessary is to integrate the moment of EsrdAY over the cross

section;

Msr= A zosr dAy/[MO] (2.6)

Y
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where AV is that area of the cross section which has yielded.

If a wide flange section is considered, it is reasonable to assume

that only the flanges resist bending and that the stress distribution

over the flange is constant (see Figure 2.4) . Under the slightly con-

servative assumption, 2 = constant = d/2, Equation (2. 6) becomes

l/p

- _ Rd
Msr—abd(2—D) (2.6a)

where a, b, and d are as defined in Figure 2.4.



CHAPTER III

METHOD OF ANALYSIS

3 .1 Introduction
 

The beam is assumed to deform by bending only. The prototype

that the discrete model is to represent has continuous distributions of

mass and flexibility. Figure 3.1a shows the general beam of this type

with a continuous loading. In general,the flexibility, mass and loading

may vary with the distance along the beam. Also, the loading may vary

with time. Any practical support conditions may be considered. Free,

fixed, and simple supports are illustrated in the figure. Motion of the

supports, as in an earthquake, can be easily considered.

3. 2 Discretization
 

The model of the prototype beam is derived by dividing the pro-

totype beam into rigid, massless ”panels. " At this point it is convenient,

although not necessary, to consider that the beam is divided into N

panels of equal length, h. The mass and loading of the prototype beam

are lumped in a tributory manner at the flexible joints between two

panels. Consider the joint, i, in Figure 3.1b. The mass at i is obtained

by summing the mass of the prototype between x' and x” where

x' = xi - h/2, and x" = xi + h/2. Then the mass at joint i is given by

Equation (3. l) . x"

mi=f m(x) dx (3.1)

X

13
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In which m(x) is the mass distribution per unit length. The load at

joint i is obtained in a similar manner.

XII

Pi(t) =f p(x,t)dx (3.2)

x

To determine the flexibility of joint i, consider that the curvature of

the beam over the interval from x' to x" is given by k(Xi)' the curva-

ture at xi of the prototype beam. The rotation of the joint is given by

integrating the curvature over the interval x' to x".

xll

Oi =f k(xi) dx

-x

= k (xi)(x" -x')

e. =hk(x,) (3.3)
1 1

From Figure 3. 1c 6i may be determined from consideration of the

geometry of the system.

1 1

91‘ h(Yi-Yi-1) + H‘Vi'ym)

e =-l(y -ZV +Y ) (3'4)i h 1-1 1 1+1

From Equation ( 3. 3) it is noted that by multiplying the abscissa of the

moment curvature diagram by h, it will be converted to a moment -joint

rotation diagram. Since the yield stress of the beam being studied

exhibits rate dependent characteristics, the rate of joint rotation must

be related to the curvature rate so that the yield moment may be
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determined. By taking the time derivatives of Equations (3. 3) and

(3.4), a relationship between the joint rotational velocities and the

curvature rate is found and the yield moment may be determined as

shown in Chapter II.

0
.

l
l

hk(x.)
1

- 1 . . .

6' ‘ ”HWi—l ‘ Zyi + Yi+l)

(3.5)

Thus, the rotations of the joints are defined in terms of the joint

displacements .

It should be noted that the above formulas are valid only for small

deformations. However, it was found that for certain problems

involving an initial tip velocity of a cantilever beam (see sections 4. l

and 5.1), these formulas also yield sufficiently accurate results for

the angular deformations at the tip.

3. 3 Equations of Motion
 

The equations of motion for the beam may be determined by

considering a free body diagram of joint i (see Figure 3.1d). V: is

the shearing force to the right of the joint, V; is the shearing force

to the left, 'yi is the acceleration of the joint, positive downward, and

the Mi's are the moments at the joints. Using Newton's second law of

motion and taking downwards as positive, Equation (3. 6) is obtained.

mxv. = v.+ - V.’ + PM (3.6)
1 1 1 1 1

The shearing forces, Vi's, may be expressed in terms of moments

at joints by applying the laws of statics to the massless panels.

+ 1

Vi " K (Min

- l

V = - M - M

i h ( i i-

-M.)

1 (3.7)

1)

Substituting (3. 7) into (3.6) one obtains:



l6

- 2M1 + Mi+1) + Pi(t) (3.8)

There will be an equation similar to Equation (3. 8) for each joint that

is free to move in the y direction.

3.4 Support Conditions
 

The effects of the support conditions on the equations of motion

and flexibility are not difficult to determine. For example, V+N+l and

MN+1 would be equal to zero for a free end. The flexibility of a joint

at a fixed end would not be the same as that for the rest of the joints.

This is because there is only one -half of a panel to contribute to the

flexibility. Consider the fixed end at joint No. l in Figure 3.1b. The

rotation and angular velocity are given by:

C
D

|
'
-
"

II

Y /h

2 (3.9)

a
.

l
l

H

W
"

W
A

A

O
O

V
V

I
I

N
I
B
“

m
g
r

' hYZ/

Therefore, in order to use the same moment rotation relationship that

is used for the interior joints, the angle of rotation at a fixed end must

be multiplied by 2.

3. 5 Numerical Integration of Equations of Motion
 

The response of the model is determined by a step by step

numerical integration procedure. The [3 = 0 method, as outlined in

reference (7), is used in this study. If yi(t), yi(t) and 'yi(t) are,

respectively, the displacement, velocity and acceleration of the ith
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joint at time t, and yi(t+dt) is the acceleration at time t+ dt, then the

displacement and velocity at t+ dt is given by

yi(t+dt) = grim + £2 dt['yi(t) + yi(t+dt)]

yi(t+dt) = y_1(t) + dt grim + % dt2y1(t) (3.10)

It should be noted that yi (t+dt) is in general unknown. Thus (an

I

iterative procedure is necessary. A typical step will now be explained.

1)

2)

3)

4)

5)

At time t, the beginning of the step, the displacements,

velocities and accelerations are known.

The acceleration at the end of the step, time = t +dt, is

assumed equal to the acceleration at time equal to t.

The velocities and displacements at the end of the step can

now be computed by Equations (3. 10) .

The configuration of the system at the end of the step is now

known, so that from geometry the rotations of the joints can

be determined along with the rate of rotation. From the

moment joint rotation relationship and the effect of rotation

rate, the moment at each joint can be determined. Then by

Equations (3. 8) the accelerations at the end of the step can

be determined.

These new accelerations are compared with the values as-

sumed in part (2). If the new and old sets of values are within

an allowable tolerance, the iteration is said to have converged.
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6) If, at the end of the try, the assume‘d'acceleration does not

agree with the acceleration found in part (4) to within an

allowable tolerance, the iteration has not converged and an-

other value for the acceleration at time : t+dt must be assumed.

This new assumed acceleration is taken as the acceleration

found in part (4) of the previous try. Steps (3) to (6) are

repeated until the iteration converges.

7) If the iteration has converged, the time is advanced by the

time increment, dt.

8) The displacements, velocities, and accelerations found at the

end of this step become the initial conditions for the next step.

In passing, it may be mentioned that the convergence of the [3 = 0 method

of numerical integration is automatic if the quantities in the equation of

motion do not depend on the velocities at the end of a “try. " Otherwise,

iteration is required.

According to reference (7) the time increment for each step must

be less than 1/TI' times the smallest period of vibration to insure stability

of the numerical procedure. If the number of panels into which the beam

is divided is relatively large, the smallest period of vibration, Tn, of a

beam with arbitrary conditions may be approximated by

T = T /N2 (3.11)
n l

where T is the fundamental period of a simply supported beam of the

1

same length and cross section, and N is the number of panels (see
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reference 13). The time interval used in this study is given by

l 2

dt=ZT1/N (3.12)



CHAPTER IV

NUMERICAL RESULTS

4.1 Description of Problems
 

All the numerical data presented herein pertain to cantilever

beams. However, two types of beam load systems were considered.

In the first case, the numerical values of the parameters of the prob—

lem are quite realistic; i.e., they correspond to I-beams subjected to

blast loading. The objective of obtaining these data was to get some

idea about the engineering significance of the variables considered, i.e.

strain rate and strain hardening.

The second type of problem deals with a somewhat more academic

case of a rectangular slender beam with a heavy tip mass subjected to

a tip impulse load. The motivation for considering this problem was

that it had been studied by other investigators and the results could thus

be compared.

Figure 4.1a shows the prototype cantilever beam with a uniform

load, and Figure 4.lb shows the corresponding discrete model for

N = 10. The static moment curvature diagram for a 10WF66 beam is

shown in Figure 2.4. The value of the section modulus, Sa' is taken to

be ab (1, where a, b, and d have been defined in Figure 2.4. This value

is conservative in the plastic range and is a reasonable compromise

between the elastic section modulus and the fully plastic section

20
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modulus. The load on the beam is given by

wr-cwee-r’C (4.1)

where We ZZUoSa/Lz is the static elastic limit load, t is the time, and

c and r are numerical constants which determine the magnitude and

duration of the loading.

For the second problem the prototype beam is shown in Figure 4.2.

The general problem consists of a cantilever beam with a relatively

"limber" cross section and a large concentrated tip mass. An impulsive

load is applied on the tip so as to give the mass an initial velocity

VO = 10/0

where V0 is the tip velocity, I0 is the impulse applied to the tip, and G

is the mass of the tip.

4.2 Accuracy of the Model
 

Before any remarks are made about the dynamic response of the

beams studied in this paper, the accuracy of the discrete model used

must first be considered. The model, being composed of discrete points

where mass and flexibility are lumped, is only an approximation to the

continuum prototype beam. However, as the number of panels is in-

creased and the divisions of the beam become finer, it would be expected

that the model would more closely approximate the prototype beam. In

the limit, with the number of joints approaching infinity, the model would

approach the prototype .
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To show this "convergence, " a cantilever beam with an attached

tip mass subjected to an impulse loading is analyzed for stiffness ratios

of R = 0 and R = 0.1, where R is the ratio of the inelastic stiffness to the

elastic stiffness. For the convergence of the model for R = 1.0, a

cantilever beam subjected to a suddenly applied uniform load is used.

The data are presented in Figures 4. 3 and 4.4 which are graphs of the

maximum dimensionless displacement versus the reciprocal of N. In

each case, the results are seen to approach an "apparent limit" as N

increases.

By comparing Figures 4.3 and 4.4 with Figures 10, ll, 12, and

13 of reference (13) (which deals with simply supported beams) it will

be noted that the convergence is of a similar nature. For each value of

R the model converges to an apparent limit as N becomes larger. How-

ever, the model converges faster for larger values of R.

The value of R = l. 0 corresponds to the case of a perfectly elastic

beam. For this case an exact analytical continuum solution is obtainable

and is presented in the Appendix. Figure 4. 5 is a graph of tip deflection

(scaled by the static yield deflection = 200L2/3Ed) versus time for a

cantilever beam subjected to a suddenly applied uniform load. The re-

sponse curves are shown for the exact continuum solution as well as the

discrete solutions corresponding to N = 10 and N = 20. It can be seen

that the response curves of the discrete model are very close approxi-

mations to the continuum case. Also the convergence of the discrete
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case can be noted by the fact that N = 20, more nearly approximates the

exact case than does N = 10 (even though they are both very good). For

the case of a uniform load which is suddenly applied and then decreases

exponentially with time, similar results were obtained and are not

presented herein.

Although theoretically it appears that by taking increasingly larger

values of N, the discrete model may be made as accurate as the analyst

wishes, however, a point of diminishing returns would be reached when

round off error and computer time consumption make the use of a larger

value of N unrewarding. For the purposes of this thesis the value of

N = 10 seems to be a good choice. The accuracy obtained is sufficient

and the amount of computer time used is quite modest (about 2 minutes

for an average problem with N = 10) .

4. 3 The Effect of Strain Rate
 

In order to study the effect of strain rate on the dynamic response

of beams a comparison is made between two identical beams under iden-

tical loadings. The only difference between the two beams is that the

analysis of one of the beams considers strain rate while the analysis of

the other neglects it.

Since strain rate has the effect of increasing the yield moment, it

is natural to expect that the magnitude of response of a strain rate

sensitive beam would be reduced. This is indeed the case. The reduc-

tion for the particular beam under consideration was of the order of 23%
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for R = 0 (see Figure 4.8) . This reduction, of course, would depend

upon the sensitivity of the material to strain rate and the amount of plastic

action undergone.

The effect of the length of the beam seemed to have little effect on

the dimensionless deflection (see Figure 4.6). By shortening the beam

the frequency of elastic vibration is increased in proportion to UL2 and

since strain rate is proportional to the frequency it would seem natural

that there should be a still larger reduction due to strain rate sensitivity.

But this was not found to be the case. Similarly, altering the rate of

straining did not noticeably change the percent reduction of the deflection

for the strain rate sensitive case. An explanation for these two seemingly

puzzling facts can be found by an examination of Equation (2. 6a) .

Taking the derivative with respect to k:

  

(4.3)

It is seen that the rate of increase of the yield moment decreases with

an increase in strain rate. That is, the higher the strain rate. the more

insensitive is the beam to strain rate. Mentel (7) has made a similar

observation with regard to the effect of strain rate on yield moment.

4. 4 Effect of Strain Rate in the Presence of Strain Hardening
 

In Figure 4. 7 is plotted the dimensionless maximum tip deflec-

tion of a cantilevered beam versus the ratio of the inelastic (strain



25

hardening) stiffness to the elastic stiffness, R, for the cases of strain

rate considered and strain rate neglected. The beam has a wide flange

cross-section and is subjected to a dynamic load of the type given by

Equation (4. l) .

The effect of strain hardening is to reduce the maximum deflection

of the beam, which is to be expected. It is of notable importance that

for small values of R, a small variation of it will cause a considerable

change in the maximum deflection. For the strain-rate -neglected anal-

ysis, a change from R = 0 to R = 0. 05 has approximately the same effect

as a change from 0. 05 to 0. 5, or a change from 0.1 to l. 0 (see Figure

5. 3 for relative magnitudes of the maximum elastic and inelastic strains

corresponding to the data R = 0 plotted in Figure 4. 7) . Since strain

hardening is an inelastic phenomenon, the effect it has will of course

depend upon the amount of inelastic deformation the beam will undergo.

For example, if there is no inelastic action, then the effect of strain

hardening is unimportant. On the other hand, if the amount of inelastic

action is much greater than the elastic action, the role of strain

hardening may be very important and a value of R = 0. 02 or 0. 04 can

be significant (see Figure 4. 9). When strain rate is considered along

with strain hardening, an even greater reduction in maximum deflection

is noted. As mentioned before, for R = 0, strain rate had the effect of

reducing the maximum tip deflection by 23% as compared to the strain-

rate -neglected'c'a.se (see Figure 4.8) . However, as the value of R is
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increased the effect of strain rate is reduced. Since the effect of strain

rate takes place in the plastic range only, it is not surprising that, for

R = 1.0 (the perfectly elastic case), no effect at all is noticed.

It is interesting to consider how these two material properties

affect one another. On examination of Figure 4. 7 it is noticed that the

curve which represents the strain-rate sensitive case is flatter than the

rate -insensitive curve. This indicates that the strain rate moderates

the effect of strain hardening. However, the difference between the two

cases becomes less with increasing strain hardening. This, in turn,

indicates that strain hardening also moderates the effect of strain rate.

In Figure 4. 9 is plotted the response history curves of similar

beams subjected to the same loading by having stiffness ratios varying

from R = 0 to R = 0. 05. This could give a better insight into the effect

of strain hardening on the response for small values of R. Along with

the reduction of the maximum deformation (the tip end slope is being

used as a measure of deformation in this case) there is also a reduction

in the final permanent set, taken to be the configuration corresponding

to zero moments, and in the time required to reach the maximum

deformation. The reduction in the permanent set is, in general, greater

than that in the maximum deformation.



CHAPTER V

COMPARISON OF DISCRETE SOLUTIONS WITH EXPERIMENTS

AND CONTINUUM SOLUTIONS

5.1 Description of Experiments
 

A comparison of the results obtained by the method of analysis

presented in this work and experiments carried out at Brown University

( l, 5 and 12) has been made in an attempt to discuss the validity of this

method. A detailed account of the experiments and a table of the results

are presented in references (1 ) and ( 5). Along with the experimental

results, a method of analysis based on a "rigid plastic" theory is also

presented in these references.

In general, the experiments were carried out on cantilever

beams with relatively large concentrations of mass at their tips . A

high energy impulse load was applied to the tip mass; the resulting

deformations and permanent sets were generally quite large. Tests were

run on steel and aluminum beams with two varieties of each type of

metal. A summary of some of the tests and results is given in Table (l)

of this work.

5.2 Rigid Plastic Continuum Analysis
 

The theory presented in the above mentioned references is based

upon the assumption that the material has a rigid plastic bending moment-

curvature relation. This assumption requires that until the bending

moment reaches Mo the "yield moment, " the beam cross section

27
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remains rigid, i.e. , there will be no curvature or straining. When M0

is reached, the curvature can be indefinitely large. By assuming the

rigid plastic property, a mathematical analysis, treating the beam as a

continuum, became feasible. Two versions of such analyses were pro-

posed. Symond's ( 1) rate sensitive solution is based upon the conser-

vation of momentum principle. The equations of conservation of linear

momentum and conservation of angular momentum must then be solved

by numerical integration. Ting's (see reference 1) rate sensitive

solution is an approximation since the "damage" angle is obtained by

multiplying the rate insensitive "damage" angle by an appropriate con-

stant. The constant is determined by considerations of material

properties, mass distribution and loading.

Since the model used is continuous, the curvature rate at every

point along the beam is defined. The increase in yield stress at every

point along the beam can then be determined. It is, however, necessary

to use a numerical method - an iterative procedure - to obtain the effect

of curvature rate, since the rate of curvature and the moment are

inter-dependent. However, as discussed previously small changes in

strain rate do not significantly affect the yield stress; hence, the itera-

tive procedure converges rapidly.

5.3 Analysis by the Discrete Model
 

In order to analyze, by use of the discrete model, the systems

studied experimentally, it was necessary to make certain assumptions
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regarding the physical properties of the systems. Following the lead of

the experimenters, the fully plastic moment for the rectangular beam

was taken as l. 5 times the extreme fiber yield moment. The end or tip

mass was assumed to be concentrated at the last mass point of the

model. Neither rotary inertia nor shear effects have been considered.

Effects of geometry changes are also neglected (geometry effects are

not too important even though the deflections are quite large).

5.4 Comparison of Experimental and Analytical Results
 

A summary of the experimental results and analytical results

obtained from references ( l, 5 and 12) along with the results based on

the discrete model is presented in Table ( l) . As mentioned before,

the deflections and permanent sets are quite large. The symbol Q (Q

corresponds to R in reference 1) given in the table represents the ratio

of the total energy absorbed to the maximum elastic energy (MZL /2EI)

which can be stored in the beam. For the beams listed in Table ( l) ,

the value of Q ranges from about 3 to 16, which indicates that, for the

cases under consideration, plastic action generally dominates the

behavior.

For the case of R = 0, the discrete model gives rotations which

are consistently larger than the experimental values. The differences

are larger for the steel test samples, and smaller for the aluminum

samples. In an attempt to explain them, the assumption of R = 0 is

examined. It is felt that for the magnitude of deformation involved in
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the tests (for example, 0. 10 in/in strain for sample E4, reference (1),

should be well into the strain hardening range) the influence of strain

hardening may be important. Since the deformations and strains are

large enough to cause strain hardening in the steel samples the data was

analyzed considering strain hardening. Reference (6) gives the ratio of

the elastic modulus to the strain hardening modulus to fall into the range

from 20 to 50. This corresponds to a range of R values from 0.02 to

0. 05. A value of 0. 04 was chosen for the value of R in the calculations.

Since aluminum does not exhibit strain hardening to the degree that steel

does, a value of the stiffness ratio of 0. 01 was chosen for aluminum.

For these values of R the discrete model yields results that agree quite

closely to the experimental values as shown in Table ( 1) .

The analytical results presented by the experimenters compare

favorably with the experimental results, more favorably than those yielded

by the discrete model with R = 0. However, when strain hardening is

considered the discrete model does as well, and sometimes even better

than the experimenters' analysis. It is worthy of note that the deforma-

tions are rather sensitive to the small value of R used. This and some

other aspects of the problem will be further examined in the following

section.

5. 5 Discussion of Behavior for Different Material Properties
 

It is obvious that elastic vibrations cannot be considered in the

rigid perfectly plastic solutions. However, for some of the samples,
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elastic deformations amounted to about 18% of the maximum deflection.

Strain hardening, which is also neglected in rigid plastic solutions, was

considered in reference (5) to have an effect of 15% of the maximum

deflection. It seems that a combination of these two items, strain

hardening and elastic action, could significantly influence the behavior.

For simplicity,let the beam be represented by a system with a

single degree of freedom as shown in Figure 5.1a. Consider the moment

rotation diagrams shown in Figure 5.1 for the rigid perfectly plastic case.

Since the response would not include elastic vibrations, once the yielding

has ceased no other motion would exist. For the elasto -perfectly plastic

case, shown in Figure 5. 1c, however, there could still be motion after

plastic action had stopped. This motion could consist of elastic vibrations

about the equilibrium position represented in Figure 5.1c by moving

back and forth along line AB.

This elastic vibration when coupled with strain hardening would

lead to the existence of an "inelastic rebound," explained as follows. In

Figure 5.1d is shown a moment rotation diagram which considers elastic

action and strain'hardening. Assume that the section has undergone in-

elastic bending such that point A gives the configuration of the cross

section on the moment rotation diagram. The area ABC corresponds to

the elastic energy stored in the beam. This energy will be converted

into kinetic energy as the configuration crosses the rotation axis. This

kinetic energy must in turn be absorbed by the beam by a combination
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of elastic and inelastic deformations. Area BDEF corresponds to this

energy. Now the only elastic strain energy remaining is that corre-

sponding to the area EFG. Thus, deformation BG corresponds to the

inelastic rebound.

In Figure 5. 2 is shown the moment joint rotation history curve

for joint #1 plotted from computer results. These results correspond

to the analysis of sample E4 assuming a value of R = 0. 05. It can be

seen that the ”inelastic rebound" has reduced the permanent deformation

by more than 50% of the maximum deformation. It is apparent that

inelastic rebound can occur only when both elastic action and strain

hardening enter into the behavior.

Another interesting feature exhibited in Figure 5.2 is the saw

tooth shape of the graph. This is caused by the strain rate effects.

Since only the results of every fiftieth step of integration were printed

out by the computer, the intermediate values can only be guessed at.

However, in Figure 5. 3 is shown the moment joint rotation history

curve of joint #1 of a cantilever beam with R = 0. In this case the

value of moment and joint rotation for every step was printed out by

the computer. The saw tooth effect is seen to be more pronounced than

in Figure 5.2. This effect is thought to be caused by the presence of

higher modes which, in turn, cause the velocity of rotation to be uneven

and to change rapidly from plus to minus. When a change of sign of

velocity occurs, the moment due to strain rate goes to zero; any
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subsequent increase in moment would follow an elastic line with an

appropriate new value of k0 (Equation 2.1) . Thus, the "saw tooth"

shape results.

In cases where the inelastic action of a structure is only moderate

compared to the elastic action, the rigid perfectly plastic approach

would be at a disadvantage since the elastic effect is not negligible. If,

on the other hand, the inelastic action is large enough to warrant neg-

lection of the elastic action, strain hardening would probably be present

to a substantial degree. This also limits the range of applicability of the

rigid plastic theory.



CHAPTER VI

CONCLUSIONS

The method of analysis presented in this thesis can consider bi-

linear elasto -plastic moment curvature relations which incorporate

strain hardening and strain rate effects . Based upon the data and dis -

cussions presented, it is reasonable to conclude that this method does,

to a good degree of accuracy, predict response of structures. Since the

method is based upon a discrete model, it may be applied to very general

structural configurations such as frames (see reference 14).

In comparing the present method of analysis with past works

based on a rigid plastic theory, it is pointed out that although the latter

theory enables the analyst to use a continuum model, the features which

it neglects may be too important. For example, this theory cannot

produce the "inelastic rebound" phenomenon which, as discussed earlier,

plays an important part in the response picture.

The results of the investigation indicated that the behavior under

consideration is very sensitive to the shape of the moment curvature

curve. It would, therefore, seem desirable as a possible future ex-

tension of this work, to try a more nearly correct approximation to the

"true" moment curvature relation than the bilinear one used here.

34
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APPENDIX

EXACT ELASTIC SOLUTION

To consider the reliability of the discrete model, a problem for

which an exact solution is obtainable was solved. This solution was

used for purposes of comparison in section 4.2 and Figure 4. 5.

The problem consists of finding the elastic response of a uniform

cantilever beam subjected to a suddenly applied distributed uniform

load as shown in Figure 4.1a. Rogers' (10) gives the general equation

for the normal mode shape of an elastic beam:

X(x) =Csinkx+C sinhkx+C coskx+C coshkx (A1)

1 2 3 4

where

2

x = mp /EI (A2)

and p is the natural circular frequency. For a cantilever beam, the

boundary conditions are given by:

X(O) = 0

x'(0) = 0 (A3)

X"(L) = 0

XIII(L) : 0

By introducing these boundary conditions into equation (A l), the fre-

quency equation and the normal mode shape may be determined.

The frequency equation is:

-cos XL coshXL =1 (A4)

The eigen values, given by Timoshenko (11), are:
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le = 1.875 kzL = 4.694

k3L= 7.855 X4L= 10.996

XSL = 14.137 kéL = 17.279

LIL = 20.420 XSL = 23.562

kgL = 26.704 x10L= 29.845

The nth mode shape is:

sin k x - sinhknx cos knx - coshknx

X =
+

n(x) c:n [cos k L+ cosh). L sin). L - sinh). L ] (A5)

n n n .- n

where Cn is a constant.

For forced vibration the equation of motion is given by

84 82

EI—X+m——x=w(x,t) (A6)

4 2

3x at

The solution may be written in the form:

00

= Zy(X. t) n_1xn(x) (nu) (A7)

where rpm is the nth generalized coordinate. By orthogonality of the Xn's,

L

IX(X)X (x)dx=0 min (A8)

n m

0

If the modes are normalized, i.e.,

L

I Xn2(x) dx =1 (A9)

0

the value of Cn may be determined from:

sinkx-sinhkx cosXx-coshkx

n nl -l
  

2 - n

Cn _ (L/4) [cosk L+ cosh). L+ sink L - sinhk L 1

n n n n x=L

Inserting (A7) into (A6) and multiplying the resulting equation by
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Xm(x) the following results will be obtained.

00 00

E1 th(t)-X"".X +quJ(t)°X -X =X °w(x,t) (All)

n=1 n n m n=l n n m m

Introducing the following identity for a prismatic beam

2

pn m xn
XIIII = ___.—_.__

A12

n EI ( )

and integrating the entire equation over the length of the beam the

following equation results . L

pn2m¢n(t) + mILn(t) =f me(x,t) dx (A13)

0

If w(x, t) is a function of t alone, for example, a uniform load, inte-

grating Xm over the length of the beam, the preceding equation becomes

w(t)C 2-cosXL-coshXL

n n n
 

 

a. 2

LI‘nm‘Lpn q’nm ’ x m [ cosX L+ cosh). L +1] (A14)
n n n

If w(t) has the form of ce-rt and writing

c Cn 2 - cos knL - coshknL

CIn:)\m coskL-coshk L +1] (A15)

n n n

equation (A14) becomes

-- 2 -rt
___ Al¢n(t) + pn (nu) an e ( 6)

The solution to (A16) can be shown to be

Gn e-rt

qJn(t) = An cos pnt + Bn smp t + ——-——2— (A17)

(pn + r )

For the initial conditions:
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I Oy(X. 0) ‘

fix 0) ‘ (A18)I O

the corresponding initial conditions for the variables Lpn (for all n) are

given by

0

0

4411(0)

4111(0) (A19)

The values of An and B corresponding to the above initial conditions are:

n

A = -G /(p2+ r2)

n n n (A20)

B

n

r Gn/(an-I- r2)

Thus LIJn can be calculated from Equations (A17), (A20), and (A15) . The

modes Xn are determined from Equations (A5) and (A10) . Finally, the

dynamic deflections of the beam are calculated from Equation (A7) . For

the numerical problem solved ten modes were used in the sum that

appears in Equation (A7) .
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Figure 2.1 Moment Curvature Diagram for "Static" Loading.
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Figure 2.2 Moment Curvature Diagram with Strain Rate Effects Incorporated
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Figure 2. 3 Effect of Strain Rate on Yield Stress
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Figure 4.1 Prototype Cantilever Beam and Corresponding Discrete Model
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Figure 4.2 Prototype Cantilever Beam with Tip Mass Subjected to

Impulsive Load and Corresponding Discrete Model
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Figure 5.1 Behavior of Simple Structures with Different Moment Rotation
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