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ABSTRACT

LATENT CLASS PROFILE ANALYSIS: INFERENCE, ESTIMATION AND
ITS APPLICATIONS

By

Hsiu-Ching Chang

Recently, a great deal of attention has been paid to the stage-sequential process for the

longitudinal data and a number of methods for analyzing stage-sequential processes have

been derived from the family of finite mixture modeling. However, research on the sequential

process is rendered difficult by the fact that the number of latent components is not known

a priori. To address this problem, we propose two solutions, reversible jump MCMC and

the Bayesian non-parametric approach, so as to provide a set of principles for the systematic

model selection for the stage-sequential process. The reversible jump MCMC sampler can

explore parameter space and automatically learn the model. Nevertheless, we have found

that reversible jump Markov chain Monte Carlo requires the efficient design of proposal

mechanism as jumping rules. To reduce the technical and computational burdens, we propose

a Bayesian non-parametric approach to select the number of latent components. Using a

latent class-profile analysis, we test both algorithms on synthesized data sets to evaluate

their performances in model selection problems.

Once a model is selected, the model parameters are needed to be estimated. The

expectation-maximization algorithm (Dempster et al., 1977) and the data augmentation

using MCMC (Hastings, 1970; Tanner and Wong, 1987a) are widely-used techniques to draw

statistical inferences of the parameters for the LCPA model. As a number of measure-

ment occasions increases in the LCPA model, however, the computation cost of expectation-

maximization or MCMC will become exponentially intensive. On the contrary, if one adapts



recursive scheme in the update steps, calculations will be simplified and become generalized

to more time points. In light of this, we formulate each update step with recursive terms

which are directly analogous to forward-backward algorithm (Chib, 1996; MacKay, 1997).

The parameter estimation for the LCPA model benefits from recursive formula, but the

recursive algorithm still requires careful examination for the existence of multiple local modes

of the objective function (i.e., log-likelihood). Applying the recursive formula, we implement

deterministic annealing EM (Ueda and Nakano, 1998) and deterministic annealing variant of

variational Bayes (Katahiral et al., 2008) in order to find parameter estimates on the global

mode of the objective function. Both methods are based on the deterministic annealing

framework, in which ω is included as an annealing parameter to control the annealing rate.

By adjusting the value of ω, the annealing process tracks multiple local modes and identifies

the globalized optimum as a result.

At last, we are interested in analyzing the early onset drinking behaviours among the

young generation. We apply latent class-profile analysis to alcohol drinking behaviours as

manifest in self-reported items drawn from the National Longitudinal Survey of Youth 1997,

which was a survey that explores the transition from school to work and from adolescence

to adulthood in the USA. To unveil the stage-sequential bevaviroal progressions, we adopt

dynamic Dirichlet learning process to characterize the probable progressions in a discrete

manner and then identify patterns in which similar progressions are grouped. For the pa-

rameter estimations, we conduct deterministic annealing approaches with predetermined

annealing schedule.

Key Words: Dirichlet process; Expectation-Maximization algorithm; Latent class pro-

file analysis; Latent stage-sequential process; Longitudinal data; Multiple local modes; Re-

cursive formula; Reversible jump MCMC; Deterministic annealing; Variatoinal Bayes
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Chapter 1

Introduction

Psychological research is increasingly turning to the idea of stage-sequential process. A com-

mon theme of stage-sequential process is that, at any moment, individuals are placed into

distinct qualitative stages, and they can change their stage memberships over time. The

latent class analysis (LCA) is perhaps the most straightforward mixture model now being

used to identify mutually exclusive subgroups of individuals based on their responses to

measured variables (Clogg and Goodman, 1984; Goodman, 1974). LCA models explain the

relationships among categorical variables in a cross-classified contingency table by assuming

the existence of an unobserved or latent classification. The first detailed statistical treatment

of the LC model appeared in the textbook of Lazarsfeld and Henry (1968). In their termi-

nology, the LC model is a special case of latent-structure analysis in which the measurement

scales and the latent variables are both categorical. General overviews of LC modeling are

provided by Goodman (1974), Haberman (1979), McCutcheon (1987), Heinen (1993, Chap.

2), Clogg (1995), Bartholomew and Knott (1999, Chap. 6), Hagenaars and McCutcheon

(2002), and others.

Recently, a number of new methods for analyzing stage-sequential processes have been
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derived from the family of LCA. For example, latent transition analysis (LTA) (Collins and

Wugalter, 1992; Chung et al., 2008) and general growth mixture models (GGMM) (Muthén

and Shedden, 1999; Muthén and Muthén, 2004) have been used widely to identify patterns

of the progression of adolescent substance use, such as alcohol (Lanza and Collins, 2006) or

tobacco (Velicer et al., 2007), or to investigate the initiation and progression of drug-taking

behaviors for a number of different substances (Dierker et al., 2007).

Chung et al. (2011) proposed another type of LCA approach, the latent class-profile

analysis (LCPA), to identify subtypes of the stage-sequential patterns of early-onset drinking

behaviors, where drinking items are treated as fallible indicators of unseen states of drinking

behaviors. In LCPA, the identification processes are divided into two steps. In the first

step, LCPA identifies discrete subgroups of individuals who have similar responses to items

at each measurement occasions. The subgroups identified in the first step are referred as

classes. In the second step, LCPA examines individuals’ class membership over the entire

set of time points so as to classify the population into two or more subgroups based on their

class sequencing. The subgroups identified in the second step are referred as class profiles or

simply profiles. By applying an LCPA to the longitudinal study of adolescent drinking, for

example, all drinkers in a class at a certain time point are expected to be homogeneous in

terms of their drinking behavious, and those individuals in a given profile will have similar

sequential pattern of class membership over time.

Like any other finite mixtures, the first and most crucial step in LCPA is to choose an

appropriate number of classes and profiles since model selction has important ramifications

for the analyses performed with the model. This study works on the issues regarding to

the selection of the number of classes and profiles in LCPA. Two Bayesian approaches for

selecting the number of classes and profiles have been proposed in this study: reversible jump

2



MCMC (RJMCMC) and Dirichlet process. RJMCMC has been proposed to select the num-

ber of latent components (e.g., classes and profiles) in finite mixture models (Green, 1995),

where the number of components is considered as an unknown parameter to be estimated. In

every step of the RJMCMC algorithm, the current mixture model can be proposed to jump

across dimensions, or the model can be simply proposed to update the parameters within the

current model. Any proposal is accepted with a probability that preserves reversibility with

respect to the target posterior. As a result of the RJMCMC, we can estimate the relative

frequencies regarding to the number of classes and profiles given the data. RJMCMC is

widely applied on many applications including the finite mixture models (Richardson and

Green, 1997) and linear mixed models (Ho and Hu, 2008). For the LCPA model, however,

the new RJMCMC procedure should be developed to deal with the stage-sequential process

for the latent component membership. In this study, we design a set of split-and-merge

formula tailored for the multivariate categorical LCPA models.

As a class of non-parametric Bayesian techniques, the Dirichlet process has been utilized

in Dirichlet process mixture models (also known as infinite mixture models). The involve-

ment of the non-parametric prior allows us to identify different distributions over observed

data. However, there is little literature regarding the Dirichlet process on model selection

problems in stage-sequential process with longitudinal data. To perform the Dirichlet process

in the longitudinal framework, we develop a dynamic approach that is able to explore the

stage-sequential process by elaborating on the stage transition. It can be seen as a special

hidden Markov model with no constraints placed. The dynamic approach has the space of

all distributions as support and can be easily applied to compute posterior and draw infer-

ences. Since the technique based on the Dirichlet process prior enables a dynamic model

learning, we therefore name it dynamic Dirichlet learning process and integrate in the study

3



to determine the optimal number of latent components.

Once a model is selected, the parameters of the model needed to be estimated. There are

several available parameter estimation methods and each is long-held for its own theoreti-

cal and practical worth. The expectation-maximization (EM) algorithm (Dempster et al.,

1977) and the data augmentation using the Markov chain Monte Carlo (MCMC) (Hastings,

1970; Tanner and Wong, 1987a) are widely-used techniques to draw statistical inferences

of the parameters. However, either the E-step of EM algorithm or I-step of MCMC re-

quires the computation of marginal distributions, which appears to be too expensive to be

of practical use in more generalized applications. To alleviate this problem, we formulate

each update step with recursive formula which are directly analogous to forward-backward

algorithm (Chib, 1996; MacKay, 1997). The recursive algorithm will therefore have less

computational complexity and storage demands.

Existing algorithms for parameter learning in models for estimating suffer from local

maxima problems since the dependency between neighboring starting values is strong. To

relax the dependence of the initializations, split-and-merge EM (SMEM) (Ueda et al., 2000),

deterministic annealing EM (DAEM) algorithm (Ueda and Nakano, 1998) and deterministic

annealing variant of variational Bayes (DAVB) (Katahiral et al., 2008) will be introduced

for this purpose. SMEM has some defects that deteriorate its capability of being widely

practiced. The major implementational difficulties of SMEM lie in designing suitable split

and merge operations and choosing the right component which the proposed mechanisms

can be applied to. On the other hand, both the DAEM and the DAVB algorithms are based

on the deterministic annealing framework in which ω is included as an annealing parameter

to control the annealing rate. By adjusting the value of ω, the annealing process tracks the

localized optimum and identifies the globalized optimum as a result.
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We organize the rest as follows: Chapter 2 introduces the mathematical structure under-

lying the LCPA models. Chapter 3 presents the procedures of two Bayesian model selection

algorithms: RJMCMC and Dirichlet process. Chapter 4 continues the previous chapter and

compares their performances in discovering the true model given different sets of conditions

on model parameters. Chapter 5 provides three parameter estimation methods: original EM

algorithm with split-and-merge formula; deterministic annealing designs in the application of

EM and variational Bayes. Chapter 6 discusses the model identifiability issues. In Chapter

7, we apply model selection and parameter estimation techniques to alcohol drinking items

drawn from the National Longitudinal Survey of Youth 1997 (NLSY97) and conclude their

performances. In Chapter 8, we summarize the contributions and suggest future researches.
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Chapter 2

Latent Class Profile Analysis

Suppose we construct a S-profile LCPA model with C classes from a set of M items over T

time periods. Let C = (C1, . . . , CT ) denote the class membership variables from initial

time t = 1 to time T , where Ct = 1, . . . , C , and let U denote the profile membership

variable with S nominal categories. We begin with the profile identification procedure.

The basic idea of LCPA in this identification procedure is that associations among class

membership across T time points arise from the assumption that the population is composed

of S profiles. If the ith individual’s class membership c = (c1, . . . , cT ) could be observed,

the joint probability that he or she belongs to the sequence c and the profile s is

P (U = s,C = c) = P (U = s)P (C = c | U = s)

= P (U = s)
T∏
t=1

P (Ct = ct | U = s)

= γs

T∏
t=1

C∏
c=1

[
η
(t)
c|s

]I(ct=c)
, (2.1)

6



where γs = P (U = s) denotes the marginal prevalence of the sth profile membership;

η
(t)
c|s = P (Ct = c | U = s) represents the probability of the cth class membership at time

t given the profile membership s; and I(A) is the indicator function such that I(A) = 1

if A is satisfied and I(A) = 0 otherwise. Here, we assume that the class membership

C = (C1, . . . , CT ) are conditionally independent or unrelated within each profile s. This

assumption, called local independence (Lazarsfeld and Henry, 1968), is the crucial feature

of LCPA that allows us to draw inferences about the unseen profile variable. In (2.1), the

associations among class membership is explained by latent class theory, which posits that

profiles can be identified by class sequencing over time. If individuals’ class membership

over T time points could be observed, we can simply apply an LCA to identify a number

of profiles. However, since individual’s class membership is not directly observed, another

procedure should be conducted to identify class membership based on their responses to

items.

The class identification explains associations among item responses based on the as-

sumption that the population is composed of C classes at each time point. Let Yt =

(Y1t, . . . , YMt) represent a vector of discrete M variables measuring latent class mem-

bership at time t, and let yit = (yi1t, . . . , yiMt)
′ be the observed values of Yt for the

ith individual, where each response yimt can take values from 1 to rm form = 1, . . . ,M

and t = 1, . . . , T . The joint probability that the individual belongs to class ct at time t

7



and provides responses yt would be

P (Ct = c,Yt = yit | U = s) = P (Ct = c | U = s)P (Yt = yit | Ct = c)

= P (Ct = c | U = s)
M∏

m=1

P (Ymt = yimt | Ct = c)

= η
(t)
c|s

M∏
m=1

rm∏
k=1

[
ρmkt|c

]I(yimt=k)
, (2.2)

where ρmkt|ct = P (Ymt = k | Ct = ct) represents the probability of response k to

the mth item for a given class ct at time t. In order to investigate the relationship among

items, we assume the following: (a) Yt = (Y1t, . . . , YMt) are conditionally independent

given c for t = 1, . . . , T ; and (b) the profile membership U is related to the items Yt

only through the class membership Ct for t = 1, . . . , T . Assumption (b) implies that U

depends on the class membership (C1, . . . , CT ) but not on the items (Y1, . . . ,YT ).

The joint probability that the individual belongs to the class sequence c = (c1, . . . , cT )

and the profile s and provides responses yi = (yi1, . . . ,yiT ) would be

L∗i = P (U = s,C = c,Y = yi)

= P (U = s)
T∏
t=1

P (Ct = ct | U = s)
M∏

m=1

P (Ymt = yimt | Ct = ct)


= γs

T∏
t=1

η
(t)
ct|s

M∏
m=1

rm∏
k=1

[
ρmkt|ct

]I(yimt=k)

 (2.3)

Therefore, the ith subject’s contribution to the likelihood function of (Y1, . . . ,YT ), with-
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out regard for the latent class and profile, is given by

Li = P (Y = yi)

=
S∑

s=1

C∑
c1=1

· · ·
C∑

cT=1

L∗i

=
S∑

s=1

γs

T∏
t=1


C∑

ct=1

η
(t)
ct|s

M∏
m=1

rm∏
k=1

[
ρmkt|ct

]I(yimt=k)

 (2.4)

In (2.4), the following three sets of parameters are estimated:

1. ρmkt|ct = P (Ymt = k | Ct = ct) represents the probability of the response k

to the mth item for a given class ct at time t;

2. η
(t)
ct|s

= P (Ct = ct | U = s) represents the conditional probability of belonging to

class ct at time t for a given class profile s; and

3. γs = P (U = s) represents the probability of belonging to the class profile s.

We refer to the ρ-parameter as the primary measurement parameter because it describes

how individuals in each class tend to respond to the mth item at each occasion for m =

1, . . . ,M . The η-parameter, referred to as the secondary measurement parameter describes

the relation between a class ct at time t and a class-profile s. The primary measure-

ment parameters are usually constrained to be equal across measurement occasions (i.e.,

ρmk1|c = · · · = ρmkT |c), so that the meaning of classes will not change over time. In

practice, this invariance assumption should be carefully checked by comparing the fit of the

model with and without constraints.

9



2.1 Latent Class Profile Model with Covariates

When we consider the stage-sequential patterns, it is reasonable to take external causes into

consideration. The nature way to extent the LCPA model in such a manner is to include

covariates to examine whether the prevalence of latent profile varies under their influence.

Let xi = (xi1, . . . , xip)
T denote a vector of time-invariant covariates for individual

i that may influence the probability with which he or she falls into the latent class-profile

Ui = 1, . . . , S. That is to say, the marginal probability of Ui is affected by the covariates

and therefore denoted as P (Ui = s | xi). Even though the covariates come into play in

shaping the profile sizes, the influences of xi on the data is completely mediated by Ui.

In most cases, the first covariate is fixed as a constant (xi1 = 1), so that the model

with p = 1 reduces to a traditional LCPA model without covariates. The dependence of

Ui on xi is specified by

γs(xi) = P (Ui = s|xi)

=
exp(xTi βs)

1 +
∑S−1

j=1 exp(xTi βj)
(2.5)

s = 1, 2, . . . , S − 1, with
∑S

s=1 γs = 1. In equation (2.5), βj = (βj1, . . . , βjp)
T

is a p×1 vector of logistic-regression coefficients influencing the log-odds that an individual

falls into class j relative profile S, which serves as a baseline,

log
γs(xi)

γS(xi)
= xTi βs (2.6)

Equation (2.6) appears to be a baseline-category logit model for a polytomous response (Agresti,
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2002), except that in this case, the response is latent. The likelihood contribution for the

ith individual can be written as

P (Y = yi) =
S∑

s=1

C∑
c1=1

· · ·
C∑

cT=1

L∗i

=
S∑

s=1

γs(xi)
T∏
t=1


C∑

ct=1

R
(t)
ct|s

 , (2.7)

where R
(t)
ct|s

= η
(t)
ct|s

∏M
m=1

∏rm
k=1

[
ρmkt|ct

]I(yimt=k)
.

The LCPA model with covariates (2.7) has the attractive property that the distribution of

Yi marginalized over the covariates reduces to that of a traditional LCPA model (Bandeen-

Roche et al., 1997). Letting F denote the probability distribution of xi, the marginal

distribution of the item variables for the ith individual is

Pr(Yi = yi) =

∫ S∑
s=1

γs(xi)
T∏
t=1

R
(t)
s dF (xi)

=
S∑

s=1

∫
γs(xi)dF (xi)

T∏
t=1

R
(t)
s

=
S∑

s=1

γ∗s
T∏
t=1

R
(t)
s , (2.8)

where R
(t)
s =

{∑C
ct=1 η

(t)
ct|s

∏M
m=1

∏rm
k=1

[
ρmkt|ct

]I(yimt=k)
}
.

That is, the observed log likelihood function can be reduced to an LCPA model with γ∗s
representing the marginal class-profile membership probabilities averaged over the distribu-

tion of covariates in the population. This simplified form suggests a researcher can analyze
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the data with covariates by two-stage process: first, fit a conventional LCPA model to the

data without covariates to determine the nature of the latent variables Ui and Ci; then

introduce covariates to assess their influence on the class-profile variable Ui.

2.2 Missing Items

In real applications, it is inevitable to have missing data since some responses to one or more

questionnaires are extracted missing. The common attempt for missing data is to delete

the incomplete cases. However, the consequence could be far-flung if the removal of the

incomplete individuals cause major changes in representing data characteristics.

At fact, case deletion might be unnecessary because the incomplete information can pro-

vide substantial true knowledge of the data and estimates of parameters which are meant to

represent the full population may be biased if part of the information has been discarded (Lit-

tle and Rubin, 1987).

A more principled method to deal with missing data is to apply a likelihood function

defined by the marginal distribution of the observed items only. Maximizing this likelihood

function which eliminates the missing responses is appropriate when the missing items are

missing at random (MAR) in the sense defined by Rubin (1976) and Little and Rubin (1987).

The contribution of individual i to this function, which we call the observed-data likelihood,

is

Pr(Yi,obs = yi,obs) =
S∑

s=1

γs(xi)
T∏
t=1


C∑

ct=1

R
(t)
ct|s

 , (2.9)

whereYi,obs and yi,obs are the vectors of observed item variables and their realized values,
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and obsi denotes the set of items observed for individual i. We assume that covariates xi

are completely observed. Missing values among the covariates would require us to introduce

additional assumptions about the distribution of xi. The concept for extension to include

missing values in the covariates is straightforward but it can somehow wreck a havoc on the

implementation because the dimension of the observed item vectors Yi,obs vary from one

subject to another. Missing items also introduce complications in assessing goodness of fit

and checking for departures from modeling assumptions (e.g., local independence).
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Chapter 3

Model Selection

3.1 Introduction

In the finite mixture modeling, the problem to be solved is to estimate the unknown number

of components. This question arises in many traditional and novel situations such as variable

selections, signal processing and Bayesian non-parametric statistics. There are many model

selectors in popular use such as Akaike’s information criterion (Akaike, 1974) and Bayesian

information criterion (Schwarz, 1978). As an estimated Kullback-Leibler (KL) distance,

AIC aims at finding the best approximating model to the unknown true data generating

process and penalizes with twice the number of parameters to achieve the parsimony and BIC

operates in the similar way but penalizes more with the logarithm of sample size. Besides, the

penalized least squares approach with smoothly clipped absolute deviation (SCAD) penalty

term has been demonstrated to be an attractive selection approach which not only selects

important variables consistently but also produces oracle estimations (Fan and Li, 2001).

Unfortunately, there is no single superior model selection tool which can be applied to

all the types of data sets. For example, BIC is consistently better than AIC because if true
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model is considered among the candidates, BIC can identify the true model almost surely

as sample size grows; however, AIC has been proved to be minimax-rate optimal for both

parametric and nonparametric cases for estimating the regression function (Yang, 2003).

Even though AIC and BIC are commonly used for comparing different models, computing

the relevant AIC and BIC values for each possible model can be very time consuming when

the number of competing models is high. In the LCPA models, the structure is intricate and

we need to develop methods by which we can fully incorporate data information to better

the decision-making process.

3.2 Reversible Jump MCMC

In this section, we explore the algorithm of RJMCMC for the LCPA model to select the

appropriate number of classes and profiles. The algorithm aims to compute the joint pos-

terior distribution of the parameters and the number of latent components. The RJMCMC

samplers can travel between different dimensions by constructing a reversible Markov chain

on the general space with a specified limiting distribution. In other words, the RJMCMC

can jump to another LCPA model with different dimensions (across-model) or it can simply

update the parameters within the LCPA model with same dimension (within-model).

3.21 Within-Model Move

In Bayesian analysis, our goal is to compute the posterior distribution, P (Θ(C,S) | y),

where y represents the vectorized observed items from the sample and Θ(C,S) denotes

as the parameter set corresponding to C-class / S-profile LCPA model. The posterior

distribution, however, is difficult to portray in the LCPA model. If the class and profile
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membership for each individual were known, the augmented posterior P (Θ(C,S) | y, z)

would be easy to simulate.

A within-model MCMC algorithm for the LCPA model is implemented as an iterative

two-step procedure which can be regarded as a form of data augmentation (Tanner and

Wong, 1987b) or Gibbs sampling (Gelfand and Smith, 1990). In the first step of MCMC

procedure—the Imputation or I-step— Let z = (z1, . . . , zn) indicate the individuals’ class

and profile memberships where zi is a T + 1 dimensional array for the ith individual such

that zi(s,c1,...,cT )
∈ {0, 1} and

∑S
s=1

∑C
c1=1 · · ·

∑C
cT=1 zi(s,c1,...,cT )

= 1.

That is, if individual i belongs to the profile s and the class membership c = (c1, . . . , cT )

from initial time t = 1 to time T , then zi(s,c1,...,cT )
equals 1 and 0 otherwise. We

assume at (j + 1)th cycle, the value z
(j+1)
i is drawn from the conditional distribu-

tion P (L = s,C = c | yi,γ
(j),η(j),ρ(j)) given the observed data and pre-

vious parameter estimations. We then calculate the marginal indicators of z
(j+1)
is =∏T

t=1
∑C

ct=1 zi(s,c1,...,cT )
, z
(j+1)
i(s,ct)

=
∏
j ̸=t

∑C
cj=1 zi(s,c1,...,cT )

, and z
(j+1)
ict

=∑S
s=1 zit(s,ct)

for i = 1, . . . , n. In the second step—the Posterior or P-step—we draw

new random values for the parameters from the augmented posterior distribution

γ(j+1),η(j+1),ρ(j+1) ∼ P (γ,η,ρ | y, z(j+1)), (3.1)

which regards the membership of class and profile as known. Repeating this two-step pro-

cedure creates a sequence of iterates,

{(γ(1),η(1),ρ(1); z(1)), (γ(2),η(2),ρ(2); z(2)) . . . , } (3.2)
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which converges to the stationary distribution P (Θ(C,S) | y). This stream of parameter

values (after a suitable burn-in period) is summarized in various ways to produce approximate

Bayesian estimates, intervals, tests, etc. It is convenient to choose priors that cause γ, η

and ρ to be a posteriori independent given z. One way to achieve this is to make the

priors independent from each other. In situations where the priors are independent, the

joint posterior distribution for γ, η and ρ given z can be expressed as

P (γ,η,ρ | y, z) ∝ P (γ,η,ρ)P (y, z | γ,η,ρ)

∝

P (γ)
S∏

s=1

γ
zis
s

×

P (η)
S∏

s=1

T∏
t=1

C∏
ct=1

[
η
(t)
c|s

]z(t)
i(s,c)


×

P (ρ)
T∏
t=1

C∏
c=1

M∏
m=1

rm∏
k=1

{[
ρmkt|c

]I(yimt=k)
}z(t)ic

 ,
(3.3)

where P (γ), P (η) and P (ρ) are the prior distributions for γ, η and ρ and the equation

is composed of three parts: one pertaining to the γ parameters and one pertaining to the

η and the other pertaining to the ρ.

3.21.1 Prior Distribution Specification

In the equation (3.3), the posteriors for the measurement parameters consist of prior distribu-

tion and the multinomial distribution. The most straightforward choice for the prior distribu-

tion is Dirichlet since it is conjugate to the multinomial distribution. It is said that a random

vector γ = (γ1, . . . , γS) has Dirichlet prior with hyperparameters α = (α1, . . . , αS)
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if the density of γ is

P (γ | α) =
Γ(
∑S

l=1 αl)

Γ(α1) · · ·Γ(αS)

S∏
l=1

γα−1
l

(3.4)

over the simplex γl ≥ 0, l = 1, . . . , S, and
∑S

l=1 γl = 1, where Γ(·) denotes the

gamma function.

We prefer using the noninformative priors to make sure the data-driven inferences will

not be drawn under the influence of improper prior specification. The approach to choose a

noninformative prior is to adopt Jeffreys’ invariance principle (Box and Tiao, 1992). Jeffreys’

prior density is proportional to
∏S
l=1 γ

−1/2
l

, which corresponds to the Dirichelt with α =

(1/2, . . . , 1/2). Similarly, we apply the Jeffreys priors toρmt|c =
(
ρm1t|c, . . . , ρmrmt|c

)
and η

(t)
s =

(
η
(t)
1|s, . . . , η

(t)
C|s

)
.

3.21.2 Posterior Distribution

Adopting a Dirichelt prior to γ,η and ρ, the complete-data posterior distribution is also

Dirichlet because of conjugacy. Thus in the P-step, new random values for the parameters

are drawn from posterior distributions

ρm|c ∼ Dirichlet

(
nm1|c + 1/2, . . . , nmrm|c + 1/2

)
η
(t)
s ∼ Dirichlet

(
n
(t)
1|s + 1/2, . . . , n

(t)
C|s + 1/2

)
(3.5)

γ ∼ Dirichlet
(
n1 + 1/2, . . . , nS + 1/2

)
18



for ct = 1, . . . , C , t = 1, . . . , T , m = 1, . . . ,M , and s = 1, . . . , S, where n
(t)
c|s =∑n

i=1 z
(t)
i(s,c)

, nmk|c =
∑n

i=1
∑T

t=1 z
(t)
ic I(yimt = k), and ns =

∑n
i=1 zis. We

repeat this two-step procedure to create a sequence of iterates converging to the stationary

posterior distribution. This stream of parameter values (after a suitable burn-in period) is

summarized in various ways to produce Bayesian inference and estimation.

3.22 Across-Model Move

For the across-model update, we assume that the sampling starts from the stateΘ(C,S) and

then transits toΘ∗
(C∗,S∗). To match up the dimension, we generate a vector of continuous

random variables u from some known distributions g and the new proposed state is then

constructed by using an invertible deterministic function h such that (Θ∗
(C∗,S∗), u

∗) =

h(Θ(C,S), u) where u∗ are the suitable random variables generated from some known

functions g∗ that is required for the reversed move using the inverse function h∗ of h.

The new state updates the current one with probability α(k, k∗), where k = (C, S) and

k∗ = (C∗, S∗). The probability α(·, ·) is usually termed as the acceptance rate.

Assume the probability of choosing move from k to k∗ is denoted by q(Θk,Θ
∗
k∗), a

valid choice for the acceptance rate is

α(k, k∗) = min

{
1,

P (Θ∗
k∗ | y)q(Θ∗

k∗,Θk)g
∗(u∗)

P (Θk | y)q(Θk,Θ
∗
k∗)g(u)

∣∣∣∣∣∂(Θ
∗
k∗, u

∗)
∂(Θk, u)

∣∣∣∣∣
}
, (3.6)

note that the last factor in (3.6) is the Jacobian arising from the transformation from (k, u)

to (k∗, u∗).

To keep expressions simple, we consider the LCPA model with binary items (i.e., rm = 2
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for m = 1, 2, . . . ,M ) with the invariance constraint on the ρ-parameter (i.e., ρmk1|c =

. . . = ρmkT |c = ρmk|c), although an extension to the model defines in (2.4) is straight-

forward. First, we select the number of classes C ; and then explore the number of profiles S

with the fixed number of classes. We assume that the random variables C and S are from

Poisson distribution with hyperparameter ς with maximum values truncated at S0 and C0,

respectively. Based on the simulation results, the choices of S0 and C0 have little impact on

the performance of the RJMCMC and can be chosen as any reasonable values. In this study,

we choose ς = 5, S0 = 10, and C0 = 10. In RJMCMC, there are two possible ways to

accommodate the dimensional changes in latent classes: split (e.g., the C-class LCPA moves

to the (C+1)-class LCPA) and merge (e.g., the C-class LCPA moves to the (C−1)-class

LCPA). Usually, at each stage of dimensional change, split and merge moves are equally

preferred (i.e., bc = P ( split | C-class LCPA) = 0.5).

3.22.1 Jumping Rules for C

To update the number of classes, we first generate U from Uniform(0, 1). If U < bc, split

move is executed. Conditional on the current number of profiles, we randomly pick a class

c∗ from (1, . . . , C) and split it into classes c∗1 and c∗2. To accommodate these classes, we

draw u
(t)
s from Uniform(0, 1) and update the secondary measurement parameters as

η
(t)
c∗1|s

= η
(t)
c∗|su

(t)
s

η
(t)
c∗2|s

= η
(t)
c∗|s(1− u

(t)
s )
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for s = 1, . . . S and t = 1, . . . , T . For the primary measurement parameter, we generate

um from Uniform(0, 1) and update the primary parameters as

ρm1|c∗1
= ρm1|c∗ − umκ

√
1− ū

ū

ρm1|c∗2
= ρm1|c∗ + umκ

√
ū

1− ū

for m = 1, . . .M , where ū is
∑S

s=1
∑T

t=1 u
(t)
s /ST and κ is an adjust term added to

enhance the mixing performance. For simulation study, we choose 0.2 for κ since all ρmk|c
parameters are bounded and large κ (e.g. κ ≥ 0.4) would violate the constraint easily and

make the proposals invalid, however, small κ (e.g κ ≤ 0.1) will lead to low acceptance rate

and slow down the chain.

After the dimension-changing move is made, we need to reallocate the individuals whose

class memberships were c∗ to the new classes. The class label for each individual is not known

a priori and we therefore follow ad hoc rule to assign them to either c∗1 or c∗2 according to

the proposed formula.

On the other hand, if merge move is chosen, we randomly select two classes c∗1 and c∗2
from (1, . . . , C) and merge them into c∗. To preserve the reversibility, we update the

parameters as

η
(t)
c∗|s = η

(t)
c∗1|s

+ η
(t)
c∗2|s

ρm1|c∗ = ūρm1|c∗1
+ (1− ū)ρm1|c∗2

for s = 1, . . . , S, t = 1, . . . , T , and m = 1, . . . ,M . In this case, the reallocation can

be simply done by re-setting the memberships for those who were in the class c∗1 or c∗2 to
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c∗.

With the updated parameters, we then calculate the acceptance rate α(C,C′) of the

proposed C′-class LCPA model (C′ = C − 1 or C + 1) as (3.6) by replacing k with

(C, S) and k∗ with (C′, S).

3.22.2 Jumping Rules for S

Based on the selected number of classes C , we update the number of profiles S using

the following procedure. At each stage of dimensional change, split and merge moves are

equally preferred (i.e., bs = P ( split | S-profile LCPA) = 0.5). We generate V from the

Uniform(0,1). If split move is chosen (i.e., V < bs), we randomly select one profile s∗ from

(1, . . . , S) and split it into s∗1 and s∗2. We then draw w from the Uniform(0,1) and set

γs∗1
= γs∗w

γs∗2
= γs∗(1− w).

For the secondary measurement parameter, we update the parameters by setting them to be

proportional to the odds ratio for s∗

log


η
(t)
c|s∗1

η
(t)
C|s∗1

 = log

 η
(t)
c|s∗

η
(t)
C|s∗

+
βct
w

log


η
(t)
c|s∗2

η
(t)
C|s∗2

 = log

 η
(t)
c|s∗

η
(t)
C|s∗

− βct
1− w

,
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where βct are generated from N(0, σ2) independently for c = 1, . . . , C − 1 and t =

1, . . . , T . In the simulation study, we choose σ = 1 and for those individuals whose profile

memberships were s∗, we relabel each of them to either s∗1 or s∗2 with probabilities based

on the proposed formula.

If merge is selected, we randomly choose two profiles s∗1 and s∗2 and merge them into

s∗ by setting

γs∗ = γs∗1
+ γs∗2

log

 η
(t)
1|s∗

η
(t)
C|s∗

 = w log


η
(t)
c|s∗1

η
(t)
C|s∗1

+ (1− w) log


η
(t)
c|s∗2

η
(t)
C|s∗2


for c = 1, 2, . . . , C − 1 and t = 1, 2, . . . , T . And the reallocation can be easily done by

labeling those who were in the profile s∗1 or s∗2 to s∗.

With the updated parameters, we then calculate the acceptance rate α(S, S′) of the

proposed S′-profile LCPA model (S′ = S − 1 or S + 1) as (3.6) by replacing k with

(C, S) and k∗ with (C, S′). The details of the calculations of acceptance rates for class

and profile are summarized in the appendix.

3.3 Dirichlet Process

3.31 Preliminary

Typically, we assume that data is drawn from an unknown distribution which we wish to

estimate through the posterior distribution by specifying the prior. In most cases, the prior
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distribution is parametrically specified and the Bayesian computing can help to infer the esti-

mate easily. However, assuming prior has parametric form may not be suitable for the data.

In the case of Dirichlet process, the prior is a random distribution over probability measures.

The Dirichlet process is currently one of the most popular nonparametric Bayesian models

since it can be practiced as a modern way to learn dominating components economically.

By the definition from Ferguson (Ferguson, 1973), G is said to be Dirichlet process on a

measurable space (B,A) with concentration parameter λ and base measureG0 if, for any fi-

nite measurable partition (B1, B2, . . . , Bk) ofB, the distribution of (P (B1), . . . , P (Bk))

is Dirichlet with parameter (λG0(B1), . . . , λG0(Bk)) and written asG ∼ DP (G0, λ).

The parameters G0 and λ play intuitive roles in the definition of the Dirichlet process. For

any measurable set B ⊂ B, we have

E(G(B)) = G0(B)

V ar(G(B)) = G0(B)(1−G0(B))/(λ+ 1). (3.7)

The value of concentration parameter λ is a positive scalar with larger value of λ leading to

small variance of G. In other words, Dirichlet process will concentrate more on the mean

and as λ grows, G(B) will converges to G0(B) weakly for any measurable set B in B.

On the contrary, a Dirichlet with small value of λ favors extreme distribution but the belief

in prior is easily over-written by the data.

Since G is a prior distribution over the measure spaces, we can draw random samples

from G itself. Let θ1, . . . , θn be a sequence of independent draws from G. We can derive

the posterior distribution of G given observed values of θ1, . . . , θn. Let A1, . . . , Ar be

a finite measurable partition of B, and let mk = #{i : θi ∈ Ak} be the number of
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observed values in Ak . Since Dirichlet is the conjugate prior of multinomial, we will have

(G(A1), . . . , G(Ar)) | θ1, . . . , θn ∼ Dirichlet (αG0(A1) +m1, . . . , αG0(Ar) +mr)

The above expression is true for all the finite measurable partitionsA1, . . . , Ar of B and in

the light of the definition from Ferguson, we know G must be a Dirichlet process. Generally

put, the posterior distribution of G can be written down as:

G | θ1, . . . , θn ∼ DP

(
λ+ n,

λ

λ+ n
G0 +

n

λ+ n

∑n
i=1 θi
n

)

The posterior mean of G is the weighted average between the prior base distribution G0

and the sample average

∑n
i=1 θi
n . As λ → 0, the prior becomes noninformative since

the predictive distribution is controlled solely by the average. That is to say, as the amount

of observations outnumbers the concentration parameter (n >> λ), the posterior is con-

structed by the observations themselves which is regarded as a data-driven approximation

to the true underlying model. This fully explains that Dirichlet process is consistent in

recovering the model by increasing the sample size.

Consider again drawingG ∼ DP (G0, λ), and drawing an i.i.d. sequence θ1, . . . , θn ∼

G. The predictive distribution for θn+1, conditioned on θ1, . . . , θn with G marginalized

out, has the following formulation,

θn+1 | θ1, . . . , θn ∼ 1

λ+ n

λG0 +
n∑
i=1

δθi

 (3.8)

The sequence of predictive distributions is called the Blackwell- MacQueen urn scheme (Black-
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well and Macqueen, 1973).

Regardless of the question about the existence of the Dirichlet process, we can calculate

the joint probability of the sequence of (θ1, . . . , θn) by the conditional rule,

P (θ1, . . . , θn) =
n∏

i=1

P (θi | θ1, . . . , θi−1) (3.9)

where the conditional probability is defined as (3.8). It is obvious that the order of the sam-

pling will not change the probability and we therefore ensure that the sequence of the drawn

samples is infinitely exchangeable. More precisely, we say (θ1, θ2, . . .) is an infinitely ex-

changeable sequence of random variables if, for any n, the joint probability P (θ1, . . . , θn)

is invariant to permutation of the indices. That is, for any permutation σ,

P (θ1, . . . , θn) = P (θσ(1), . . . , θσ(n)) (3.10)

According to de Finetti’s theorem (de Finetti, 1931) and the generalized version of his

theorem (Hewitt and Savage, 1955), for any infinitely exchangeable sequence (θ1, θ2, . . .),

there exists a probability measure µ on the set of probability measures G(·) such that

P (θ1, . . . , θn) =

∫ n∏
i=1

G(θi)dµ(G) (3.11)

In our study, the prior over the random distribution is precisely the Dirichlet process

DP (G0, λ), thus establishing existence.

The important aspect of the Dirichlet process is its clustering property. Based on the

predictive form formulated as (3.8), the first sample is drawn from the distribution G0
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and once θ1, . . . , θn are observed, the next sample θn+1 is either drawn from G0 with

probability λ/(λ + n) or assigned the same value as θi for some i = 1, . . . , n with

probability 1/(λ + n). After the sequence of draws is long enough, we note that G is a

weighted sum of point masses and the same values of draws can be grouped together.

3.31.1 Sethuraman Stick-Breaking Representation

We have already mentioned that Dirichlet process is an almost surely discrete random proba-

bility measure which is composed of a weighted sum of point masses. Sethuraman made this

precise by providing a constructive definition of the Dirichlet process called the stick-breaking

construction (Sethuraman, 1994).

If P = DP (G0, λ), it can be constructed with the following:

βk ∼ Beta(1, λ)

πk = βk

k−1∏
l=1

(1− βk)

P(·) =
∞∑
k=1

πkδθ∗
k
(·), where θ∗k ∼ G0 (3.12)

The construction of π can be understood through breaking a stick as follows. We imagine

there is a stick whose length is 1 and we break it at β1 and assign weights π1 to the stick we

just broke off. Then repetitively break the other portion to obtain π2, π3 and so forth. The

stick-breaking distribution over π is sometimes written π ∼ GEM(λ) (GEM stands for

Griffiths, Engen and McCloskey). To summarize, the Sethuraman representation indicates

that the unknown distribution G can be recovered if the infinite number of θi along with

their corresponding weights are available. Because of its simple representation, Sethuraman’s
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construction has lead to a variety of extensions as well as novel inference techniques for the

Dirichlet process.

3.31.2 Ferguson Gamma Process Representation

Before the Sethuraman’s representation, Ferguson provided a representation for the gamma

process based on arrival times from a homogeneous Poisson process (Ferguson and klass,

1972). Let Ek be independent and identically distributed from exp(1) random variables

and Γk = E1 + · · · + Ek . Let Zk be i.i.d elements, independent of Γk, with a proba-

bility distribution G0 over (B,A). Then Ferguson showed that the Dirichlet process with

parameter (G0, λ), could be described as the random probability measure

G(·) =
∞∑
k=1

N−1(Γk)δZk
(·)/

∞∑
l=1

N−1(Γl) (3.13)

where

N(x) = λ

∫ ∞

x

e−u

u
du, for x > 0 (3.14)

is the Lévy measure of a gamma random variable with shape parameter λ > 0.

In the Sethuraman’s stick-breaking construction (3.12), the GEM weights are defined as

π1 = β1 and πk = (1− β1) · · · (1− βk−1)βk where k ≥ 2, (3.15)

and they are related to the Poisson process. By ordering them such that π(1) ≥ π(2) ≥

· · · , the two sets of weights are also related by the following form (Patil and Taillie, 1977;
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Perman and Pitman, 1992; Pitman and Yor, 1997)

(π(1), π(2), · · · , ) =
(

N−1(Γ1)∑∞
l=1N

−1(Γl)
,

N−1(Γ2)∑∞
l=1N

−1(Γl)
, · · ·

)
(3.16)

where N is the Lévy measure defined in (3.14).

Since there is no closed form solution for the inversed Lévy measure and since each π(i)

requires infinite sum calculation, the Ferguson representation is not widely practicable.

3.31.3 Almost Sure Truncation of DP (G0, λ) Measures

We already know that a Dirichlet process can be formulated by the weighted sum of point

masses and we are intuited to see if the truncated form of the Dirichlet process can replace the

original Dirichlet process without losing accuracy. Let DPM (G0, λ) be the approximate

form of DP (G0, λ) by discarding the M + 1,M + 2, . . . terms and denote it as PM ,

PM (·) =
M∑
k=1

πkδθ∗
k
(·), where θ∗k ∼ G0, (3.17)

and πM = 1 − π1 − . . . − πM−1. This corresponds to set βM = 1 so that∑M
k=1 πk = 1. As shown in the paper (Ishwaran and Zarepour, 2000), theDPM (λ,G0)

random measure can be used to approximate integrable funcitonals of the Dirichlet process:

DPM (G0, λ)(g) → DP (G0, λ)(g) (3.18)

for any arbitrary bounded and continuous real valued function g. The key property of (3.18)

can be exploited to describe an efficient Gibbs sampler for Bayesian nonparametric problems
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in which PM is used as an approximating prior to the Dirichlet process. Let’s consider the

following hierarchical set up where the prior for the measure G follows truncated Dirichlet

process:

Yi | θi ∼ f(yi | θi)

θi | G ∼ G

G ∼ PM (3.19)

The marginal density of the observed data Y is therefore written as

mM (Y) =

∫ 
n∏

i=1

∫
f(yi|θi)dG(θi)

 dPM (G). (3.20)

If m∞ is the marginal density of Y with Dirichlet process as the prior for G, as Ish-

waran (Ishwaran and James, 2001, 2002) showed,

∫
|mM (Y)−m∞(Y)|dY ≤ 4

1− E


M−1∑

k=1

πk

n


≈ 4n exp(−(M − 1)/λ) (3.21)
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The difference between the two marginal densities with each based on exact and approximate

sum representation respectively has been proved as by Ishwaran as follows:

∫
|mM (Y)−m∞(Y)|dY =

∫ ∣∣∣∣∣∣
∫ n∏

i=1

f(yi)(π
M (dθ)− π∞(dθi))

∣∣∣∣∣∣ dY
≤
∫ ∫ n∏

i=1

f(yi)dY
∣∣∣πM (dθi)− π∞(dθi)

∣∣∣
= 2D(πM, π∞) (3.22)

where D is the total variation distance between two probability measures πM and π∞.

Let ki be the indicator of the group membership θi has, that is, θi = θ∗ki
. The sampled

values θ under πM and π∞ are identical if ki is sampled from a value smaller than M th

term. Thus,

D(πM, π∞) ≤ 2(1− πM{ki ≤ M, for i = 1, 2, . . . , n})

= 2

1− E


M−1∑

k=1

πk

n


≈ 2n exp(−(M − 1)/λ) (3.23)

where the right most approximation follows by observing that

M−1∑
k=1

πk =D 1− exp(−E1/α)exp(−E2/α) · · · exp(−EM−1/α)

≈ 1− exp(−(M − 1)/λ) (3.24)

where E1, · · ·EM−1 are iid exp(1) random variables.
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Another method to compare between PM and DP (G0, λ) is to compare their clus-

tering behavior under sampling. Let ϕ = {ϕ1, . . . , ϕk} denote the set of distinct θi’s,

where k ≤ n is the number of distinct elements in the vector θ = (θ1, . . . , θn) and si

is the indicator defined by si = j if θsi = ϕj for i = 1, . . . , n. Let nj be the number

of si = j, DM and D∞ equal the number of distinct values in Y when sampled under

PM and DP (λ,G0), Ishwaran proved that

M !

Mk(M − k)!
≤

P (DM = k)

P (D∞ = k)
≤ nλk/M, for k = 1, . . . ,min(n,M) (3.25)

Since both sides of inequality (3.25) converge to one for each k as M → ∞, the two

distributions agree in the limit by the squeeze theorem. Therefore, the M -truncation prior

PM has been proved to have similar features in the clustering behavior as theDP (λ,G0).

As shown in the corollary 20 of the paper (Pitman, 1996), the posterior distribution PM (· |

θ) is the random probability measure represented as

PM (· | θ) =
M∑
j=1

π∗j δθ∗j
(·) + π∗m+1P

∗
M (·), (3.26)

where θ∗1, . . . ,θ
∗
M are distinct values in the full sequence θ1, . . . ,θn occurring each with

frequencies n∗j , and

(π∗1, · · · , π
∗
M,π∗M+1) ∼ Dir(n∗1 + λ/n, · · · , n∗M + λ/n, λ(1−M/n)).(3.27)

Let φ be a nonnegative or integrable function, the posterior mean of φ through PM (·|Y)
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is characterized by

∫
φ(G)PM (dG | Y) =

∫ ∫
φ(G)PM (dG | θ1, . . . , θn)µ(dθ1 . . . , θn | Y),(3.28)

The interior integral on the right head side of (3.28) can be expressed through averaging

over the values of θ1, . . . , θn drawn from the Gibbs sampler,

∫
φ(G)PM (dG | θ1, . . . , θn) =

M∑
j=1

n∗j + λ/n

λ+ n
φ(δθ∗j

) +
λ(1−M/λ)

λ+ n
φ(G0).(3.29)

We can implement the preceding scheme (3.28) to estimate various posterior mean functionals

by simplifying (3.28) with (3.29). There are many computational and theoretical advantages

by using approximate sum representation since the simplified mathematical representations

can be performed a lot more efficiently especially in cases where roundabout working strategy

is needed.

3.32 Dirichlet Process Mixture Model

To be consistent with the organization of Chapter 2, we begin with the profile identifi-

cation defined in (2.1). Let the ith individual’s class membership at time t and his or

her profile membership are cit and si respectively. The class memberships cit over time,

ci = (ci1, . . . , ciT ), ci = (ci1, . . . , ciT ) is then distributed with the product of multi-
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nomial probability densities with the form

f(ci | ηsi) = P (C = ci | U = si)

=
T∏
t=1

C∏
ct=1

η
(t)
ct|si

I(cit=ct)
,

where ηsi
= (η

(1)
1|si

, . . . , η
(T )
C|si

) indicates the vector for the secondary measurement

parameters associated with profile si. Sampling from a Dirichlet process mixture (DPM)

can be schemed by forming G with countably infinite number of point masses from G0 and

draw parameters ηsi
from G,

ci | ηsi ∼ f(ci | ηsi)

ηsi
∼ G

G ∼ DP (G0, λ).

By marginalizing over the prior for G, the conditional distribution of ηsi
given the

others is shown as

ηsi
| ηs1, . . . ,ηsi−1

∼ 1

i− 1 + λ

i−1∑
j=1

δ(ηsj
) +

λ

i− 1 + λ
G0, (3.30)

where δ(ηsj
) is the distribution concentrated at the point ηsj

. Equation (3.30) is asso-

ciated with the Pólya-urn representation (Blackwell and Macqueen, 1973). In LCPA, this

formulation only requires marginal distribution because same values of ηsi
can be grouped

together to form a profile. The evolution of ηs1
, . . . ,ηsn in (3.30) can also be formed by
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taking the number of components S in the finite mixture model to infinity:

ci | ηsi ∼ f(ci | ηsi)

ηsi
∼ G0

si | γ ∼ Multinomial(γ1, . . . , γS)

γ ∼ Dirichlet(λ/S, . . . , λ/S) (3.31)

By integrating over the mixing proportions γ = (γ1, . . . , γS), the marginal probability

of si given the profile membership except the ith individual has the following form

P (si = s | s1, . . . , si−1)

= P (s1, . . . , si−1, si = s)/P (s1, . . . , si−1)

=
ni,s + λ/S

i− 1 + λ
,

where ni,s is the number of sj for j < i that equals to s. Let us imagine that the ith

individual is the last of the n observations, then the conditional probabilities for si given

s−i = (s1, . . . , si−1, si+1, . . . , sn), ci and η = (η1, . . . ,ηS) can be obtained by

multiplying the likelihood, f(ci | ηs), as follows:

P (si = s | s−i, ci,η) = b
n−i,s + λ/S

n− 1 + λ
f(ci | ηs),

where n−i,s is the number of sj for j ̸= i that are equal to s, and b is the appropriate
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normalizing constant. If S goes to infinity,

P (si = s | s−i, ci,η) → b
n−i,s
n−1+λ

f(ci | ηs) if s is equal to sj for some j ̸= i

b λ
n−1+λ

∫
f(ci | ηs)dG0(ηs) if s is not equal to sj for all j ̸= i

(3.32)

Here, η is the set of ηs currently associated with some observations because we cannot

explicitly represent the infinite number of ηs as S goes to infinity.

Next, we specify how to perform Gibbs sampling on DPM models to select the number

of profiles in the LCPA model. Let the current profile state consist of s = (s1, . . . , sn).

We can repeatedly sample as following three-step procedure:

1. For i = 1, . . . , n, remove the profile si from the current state if si is not associated

with any other observation (i.e., n−i,si
= 0).

2. Generate a new profile membership si from the equation defined in (3.32). If the new

si is not associated with any other observation, generate a set of values for η
(t)
si

for all

t from the posterior distribution defined in (3.5). Repeat this step for i = 1, . . . , n.

3. For all s ∈ (s1, . . . , sn), generate a set of new values for η
(t)
s for all t from the

posterior distribution.

The procedures described above point out that the ith individual explores a new profile

with probability λ/(i − 1 + λ) and thus the average number of profiles is expected to

grow logarithmically in the sample with size n as O(λ log n). It has also been proved that

the number of profiles will converge to infinity almost surely as n increases (Korwar and

Hollander, 1973). In other words, if λ is fixed to a constant with large sample size, an over-
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fitting problem might occur. In Liu’s paper (Liu, 1996), λ is estimated by its ML estimate

by using sequential imputation but it demands many conditional probability calculations

which barely comes with parametric forms. Therefore, we consider a noninformative gamma

prior which assigns most equal probabilities to all possibilities to properly update λ with

the procedures suggested by Escobar and West (1995). Here we briefly describe how to

incorporate the concentration parameter into Gibbs sampling update procedure.

According to Antoniak (1974), given the concentration parameter λ and sample size n, we

can represent the uncertainty of the number of components k with the following probability

density,

P (k|λ, n) = Cn(k)n!λ
k Γ(λ)

Γ(λ+ n)
, (3.33)

where Cn(k) is nothing to do with λ . Assume we already sampled θi for i = 1, . . . , n

by DPM algorithm and are able to classify them into groups. In this way, the value of k is

the number of groups we have for configuring the data. Suppose λ ∼ G(a, b), a gamma

prior with shape a and scale b. For λ ≥ 0, we have

Γ(λ)

Γ(λ+ n)
=

(λ+ n)B(λ+ 1, n)

λΓ(n)
(3.34)

where B(·, ·) is the Beta function. Then the posterior of λ given k has the following form:

P (λ | k) ∝ P (λ)λk−1(λ+ n)B(λ+ 1, n)

∝ P (λ)λk−1(λ+ n)

∫ 1

0
xλ(1− x)ndx (3.35)

This implies that P (λ | k) is the marginal distribution from the joint distribution of λ and
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a continuous variable ν such that

P (λ, ν | k) ∝ P (λ)λk−1(λ+ n)νλ(1− ν)n−1. (3.36)

Since we assume λ has G(a, b) as the prior, we can write down the conditional probabilities

for λ and ν as follows:

P (ν | λ, k) ∝ νλ(1− ν)n−1

P (λ | ν, k) ∝ λa+k−1(e−bν)λ + nλa+k−2(e−bν)λ. (3.37)

It is obvious that given the value of λ, the value of ν is updated by drawing from B(λ+1, n)

and the conditional probability of λ given ν reduces to a mixture of two Gamma densities.

P (λ | ν, k) ∼ πνG(a+ k, b− log(ν)) + (1− πν)G(a+ k − 1, b− log(ν))(3.38)

with πν satisfying πν/(1−πν) = (a+k−1)/n(b− log(ν). At each iteration of Gibbs

sampling, we can sample λ from the mixture of Gamma distributions given the currently

sampled ν and k.

3.33 Dynamic Dirichlet Process Mixture Model

In the scenarios where data are thought to be produced by the stage-sequential process, hid-

den Markov model is certainly the most suitable method to describe the data set. However,

the task of estimating the number of stages (i.e., classes) is not covered in the hidden Markov

model setting. We need to extend the hidden Markov model by assuming each row of the

transition matrix follows a Dirichlet process to explore the stage-sequential progression and
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infer the number of classes afterwards. To be precise, we consider the data observed at each

time point is a group and the observations are exchangeable at this specific time. While each

mixture model has mixing proportions specific to the group, we require that the different

groups share the same set of mixture components. The idea is that while different groups

have different characteristics given by a different combination of mixing proportions, using

the same set of mixture components allows statistical strength to be shared across groups,

and allows generalization to new groups. It is generally known as hierarchical Dirichlet pro-

cess (HDP). Overall speaking, The HDP allows the data at a specific time point to have

similar structure by providing global layer of hierarchy. The applications of HDP are pre-

sented in literatures (Ahmed and Xing, 2008; Xu et al., 2008). In LCPA models, we adopt

the concept of HDP to identify the number of classes. Since the number of classes is not

necessarily constant over time, we call this process as dynamic Dirichlet process mixture

(DDPM) model.

If each individual’s class membership over time (i.e., cit) could be observed, we would like

a joint model for class membership across T time points,
∏n
i=1 P (C1 = ci1, . . . , CT =

ciT ), where all possible sequences of class membership can be re-expressed as frequencies

in a contingency table with CT cells for n individuals. This table can produce a reasonable

inference about the important aspects of the common progression of class membership over

time. In LCPA, we assume there is an extra level of latent variable (i.e., class profile)

by which the dependency among classes can be explained. Under this assumption, the

classes are conditionally independent given the profile membership. The class memberships,

however, are unobserved directly, and it is not possible to learn the class profile before the

class memberships over time are known. In addition, it is not possible to know the true

structure of dependency among class memberships over time. The LCPA can summarize
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the dependency among classes by a small number of class profiles, without regard for the

structure of dependency. Therefore, we implement DDPM by generating dependency among

classes from the first-order Markov chain and summarizing the dependency through the class

profiles.

Let yi,t be the observed values for M items of the ith individual at time t. If his or her

class membership at time t, ci,t, could be observed, the distribution of yi,t is the product

of multinomial probability densities with the form

f(yi,t | ρt|ci,t
) = P (Yt = yi,t | Ct = ci,t)

=
M∏

m=1

rm∏
k=1

[
ρmkt|ci,t

]I(yimt=k)
,

where ρt|ci,t
represents the vector of all ρ-parameters associated with time t and class

membership ci,t. Let τ
(t)
ct|ct−1

= P (Ct = ct | Ct−1 = ct−1) represent the transition

probability of class membership from time t − 1 to t. Suppose we have C classes over T

time periods, there is a C ×C transition probability matrix τ (t) with all elements of each

row of τ (t) summed to one for t = 2, . . . , T . Thus, given the previous class membership

ct−1, the row vector τ
(t)
ct−1

, can be used as the mixing proportions for the current class

membership.

As described before, sampling from a Dirichlet process mixture can be schemed by taking
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the number of classes C to infinity:

yi,t | ρt|ci,t
∼ f(yi,t | ρt|ci,t

)

ci,t | τ
(t)
ct−1

∼ Multinomial(τ
(t)
1|ct−1

, . . . , τ
(t)
C|ct−1

)

ρt|ci,t
∼ G0

τ
(t)
ct−1

∼ Dirichlet(n
(t−1)
1 + α/C, . . . , n

(t−1)
C + α/C), (3.39)

where n
(t−1)
c denotes the number of individuals who were assigned class c at time t− 1,

α is the concentration parameter. By integrating over the mixing proportions τ
(t)
ct−1

, the

prior for ci,t, as conditional probability, has the following form

P (ci,t = ct | c1,t−1, . . . , cn,t−1, c1,t, . . . , ci−1,t) =
n
(t−1)
ct

+ n
(t)
i,ct

+ α/C

n+ i− 1 + α
,

P (ci,t = ct | c1,t−1, . . . , cn,t−1, c1,t, . . . , ci−1,t) =
n
(t−1)
ct

+ n
(t)
i,ct

+ α/C

n+ i− 1 + α
,

where n
(t)
i,ct

is the number of cj,t for j < i that equals to ct at time t. Let us imagine that

the ith individual is the last of the n observations, then the conditional probabilities for ci,t

given ct−1 = (c1,t−1, . . . , cn,t−1), c−i,t = (c1,t, . . . , ci−1,t, ci+1,t, . . . , cn,t−1),

and ρt = (ρt|1, . . . ,ρt|C) can be obtained by multiplying the likelihood, f(yi,t |
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ρt|ct), as follows:

P (ci,t = ct | ct−1, c−i,t,yi,t,ρt) = b
n
(t−1)
ct

+ n
(t)
−i,ct

+ α/C

2n− 1 + α
f(yi,t | ρt|ct),

where n
(t)
−i,ct

is the number of cj,t for j ̸= i that are equal to ct at time t, and b is the

appropriate normalizing constant. If C goes to infinity,

P (ci,t = ct | ct−1, c−i,t,yit,ρt) →

if ct is equal to cj,t−1 or

b
n
(t−1)
ct

+n
(t)
−i,ct

2n−1+α f(yit | ρt|ct) cj,t for some j ̸= i

if ct is not equal to cj,t−1
b
n
(t−1)
ct

+n
(t)
−i,ct

2n−1+α
∫
f(yit | ρt|ct)dG0(ρt|ct) and cj,t for all j ̸= i

(3.40)

Here, ρt is the set of ρt|ct currently associated with some observations because we can-

not explicitly represent the infinite number of ρt|ct as C goes to infinity. Therefore, we

can update the current class membership by sampling ci,t over time from the conditional

probability

P (ci,t | ct−1, c−i,t, ct+1,yi,t,ρt)

= P (cit = ct | ct−1, c−i,t,yit,ρt)P (ct+1 | ct). (3.41)

Note that the first factor in (3.41) was presented in Equation (3.40). The second factor

in (3.41) can be computed by integrating over the mixture weights τ (t+1) which depends
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on the number of individuals who were assigned to each of identified classes at time t (i.e.,

n
(t)
1 , . . . , n

(t)
C ). Here, C is the number of existing classes at time t and t+1. Then, it is

straightforward to show that:

P (ct+1 | ct) =
Γ(
∑C

c=1 n
(t)
c + α/C)∏C

c=1 Γ(n
(t)
c + α/C)

×
∏C
c=1 Γ(n

(t)
c + n

(t+1)
c + α/C)

Γ(
∑C

c=1 n
(t)
c + n

(t+1)
c + α/C)

,

where Γ is a typical gamma function. We consider Gamma distribution with shape a and rate

b, G(a, b), as the prior for the concentration parameters α and λ used in class and profile

learning, respectively. Given the previous constructions, we specify the Gibbs sampling by

following four-step procedure.

1. For t = 1, . . . , T , generate a new class membership ci,t from the equation (3.41). If

the new ci,t is not associated with any other observation (i.e., n
(t)
−i,ci,t

= n
(t−1)
−i,ci,t

=

0), generate a set of values for ρt|ci,t
from the posterior distribution defined in (3.5).

Repeat this step for i = 1, . . . , n.

2. To update concentration parameter, α, we sample x and u from Beta(α + 1) and

Uniform(0, 1), respectively. We then calculate pα = (a + µα − 1)/(a + µα −

1+n(b− log(x))), where µα is the average of numbers of classes identified at each

time. If u < pα, we update α by drawing a sample from G(a+µα, b− log(x)) or

draw a sample from G(a+ µα − 1, b− log(x)), otherwise.

3. With the class membership identified in Step 1, ci = (ci,1, . . . , ci,T ) for i =

1, . . . , n, employ DPM to identify the number of profiles by following the three-step

procedure described above.
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4. We sample x and u from Beta(λ + 1) and Uniform(0, 1), respectively and calculate

pλ = (a + S − 1)/(a + S − 1 + n(b − log(x))), where S is the number of

identified profiles in Step 3. If u < pλ, we update λ by drawing a sample from

G(a+S, b− log(x)) or draw a sample from G(a+S− 1, b− log(x)), otherwise.
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Chapter 4

Simulation

In this section, we evaluate the performance of RJMCMC and Dirichlet process over re-

peated samples. In our simulation, we draw over 200 samples from a pre-specified data

set constructed with an LCPA representing two classes (i.e., C = 2) and two profiles (i.e.,

S = 2) with four binary items (i.e.,M = 4) measured over four-time periods (i.e., T = 4).

To simplify the presentation, we constrained ρ-parameter to be invariant over time (i.e.,

ρmk1|c = · · · = ρmkT |c = ρmk|c), but imposed no constraint on the η-parameter.

Note that the η-parameter describes the class progression over time. If the η-parameters

were time invariant (i.e., η
(1)
s = . . . = η

(T )
s where η

(1)
s = (η

(1)
1|s, . . . , η

(1)
C|s).), given

a profile, the probabilities of belonging to a specific class could not change over time, leading

to difficulties in interpretation for the identified profiles. We used the balanced probability of

profile membership (i.e., γ1 = γ2 = .5), but the following three factors were varied for the

simulation study: relationship between items and classes (i.e., ρ-parameter), relationship be-

tween classes and profiles (i.e., η-parameter), and sample size (n = 250 or n = 500). The

ρ-parameter and the η-parameter have two levels: the strong (i.e, ρ = .9 or .1 and η = .9

or .1) relationship and the mixed (i.e., .1 < ρ < .4 or .6 < ρ < .9 and .1 < η < .4 or
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.6 < η < .9) relationship. For each sample, we estimate the number of classes and profiles

by the RJMCMC and Dirichlet process. Our purpose is to compare their performances by

comparing the relative frequency of selecting the true model (i.e., two-class and two-profile

LCPA) over repeated sample. For the prior specifications, we choose ς = 5, κ = 0.2, and

σ = 1 and apply rather diffuse prior, G(1.5, 1), on both concentration parameters α and

λ (i.e., a = 1.5 and b = 1).

4.1 Simulation with Reversible Jump MCMC

For each data set, we run our sampler for 10,000 iterations with an additional 1,000 iterations

for burn-in period. Regrading to the performance in recovering the correct number of classes,

RJMCMC never fails to select the true number of classes under all combinations of factors

considered. We find that RJMCMC samplers converge to the desired posterior distribution

of the number of classes quickly. Once it converged, however, the trans-dimension moves

are not easily implemented. In fact, the difficulty in accepting the proposed parameters of a

different dimensional space may lead to some biases in the number of classes. To improve low

acceptance rates, we modify the across-model scheme by adding birth and death of an empty

class. The rate of accepting the birth move of an empty class is controlled by the quantity∏S
s=1

∏T
t=1(1 − u

(t)
s )n

(t)
s , where u

(t)
s is a random variable from Uniform(0, 1) and

n
(t)
s is the size of the profile s at time t, for all s = 1, . . . , S and t = 1, . . . , T .

The problem of poor mixing remains, however, since the acceptance rate could diminish

exponentially fast even for the moderate size of profile.

Table 4.1 shows the percentage of the most frequently selected profiles over simulated

samples. For the number of profiles, RJMCMC is able to identify correct number of profiles
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Table 4.1: The percentage of the most frequently selected profiles over simulated samples by
reversible jump MCMC

Sample Number of profiles
size ρ η 1 2 3 4 5 6 7

Strong Strong 0.0 78.4 19.6 2.0 0.0 0.0 0.0
Mixed Strong 0.0 74.8 20.2 4.6 0.4 0.0 0.0

250
Strong Mixed 0.0 45.2 48.6 5.4 0.8 0.0 0.0
Mixed Mixed 5.2 34.8 58.8 1.2 0.0 0.0 0.0

Strong Strong 0.0 82.2 17.2 0.6 0.0 0.0 0.0
Mixed Strong 0.0 52.2 45.8 1.6 0.3 0.1 0.0

500
Strong Mixed 5.4 19.6 70.8 3.0 0.8 0.3 0.1
Mixed Mixed 10.4 14.4 70.2 4.6 0.4 0.0 0.0

when both measurements are strong (78.4% for the small sample and 82.2% for the large

sample). However if secondary measurement is mixed, the accurate disparity among com-

peting models is difficult especially when RJMCMC works with large samples. We find out

given weak measurement setups, some of the resulting profiles are formalised with small sizes

and richly strictured samples would exacerbate the performance even more. We generalize

the cases to explain how intrinsic difficulty in RJMCMC impacts the performance in the

later section.

4.2 Simulation with Dirichlet Process

Even though Dirichlet process chooses the correct number of classes during the whole simu-

lations, the method is not free from problems. A troubling aspect of the Dirichlet process is

that a complex model is falsely preferred because there is probability that some profiles are

generated but rarely been visited since then, which would result in sparse decomposition of

an LCPA model. In addition to presenting results from Dirichlet process without applying
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Figure 4.1: The percentage of the most frequently selected profiles over simulated samples
by reversible jump MCMC: (a) strong ρ and strong η, (b) mixed ρ and strong η, (c) strong
ρ and mixed η, and (d) mixed ρ and mixed η
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n = 250
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n = 500
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(d)

48



any inclusion threshold, we will adapt our models to work with two cutoffs (e.g., 1% and

5%) and investigate the changes.

The results of the Dirichlet process for the number of profiles are presented in Figure 4.2.

Dirichlet process is known to be consistent in recovering the true model as we increase the

sample size and Figure 4.2 illustratively corroborates this attribute since the the correct

rates increase when sample size grows.

It is rather interesting to know that Dirichlet process favors models with excessive number

of profiles especially when working with mixed primary measurements. We believe the poor

performance can be ascribable to the weak relationship between classes and the items since

the sequence of the well identified class memberships is the key ingredient for successful

classification of the profiles. When the primary measurement is mixed, we can see the poor

performance, especially with small samples . Generally, Dirichlet process is poorly suited to

identify the correct number of profiles when none of the measurements is strong and sample

size is small but the method is vindicated to have a good practical use when sample size is

large.

As the matter of fact, in the process of Dirichlet process, there are some profiles developed

with sizes not even larger than 1% in many stages of profile learning. To avoid profile

redundancy, we need to impose a threshold as an inclusion criterion. We use 1% and 5% as

the cut-offs, by which any profile whose size is less than the given cutoff will be considered

too sparse to be included and the corresponding distributions for the number of profiles are

then given in Figure 4.3 and Figure 4.4.

Clearly, when 5% cutoff is applied, the predictive accuracy increases dramatically espe-

cially when strong-strong pairs and large sample sizes are the working scenario. To deter-

mine an optimal cutoff value is more of the matter in discovering right dominating profiles.
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Figure 4.2: The histogram of the most frequently selected profiles over simulated samples
from Dirichlet process: (a) strong ρ and strong η, (b) mixed ρ and strong η, (c) strong ρ
and mixed η, and (d) mixed ρ and mixed η
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Figure 4.3: The histogram of the most frequently selected profiles over simulated samples
from Dirichlet process with cutoff 1%: (a) strong ρ and strong η, (b) mixed ρ and strong
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Table 4.2: The percentage of the most frequently selected profiles over simulated samples
from Dirichlet process with cutoff 5%

Sample Number of profiles
size ρ η 1 2 3 4 5 6 7

Strong Strong 0.0 69.0 29.0 1.0 1.0 0.0 0.0
Mixed Strong 0.0 35.0 38.0 21.0 5.0 1.0 0.0

250
Strong Mixed 0.0 51.0 34.0 12.0 3.0 0.0 0.0
Mixed Mixed 6.0 41.0 33.0 17.0 5.0 0.0 0.0

Strong Strong 0.0 81.0 17.0 1.0 1.0 0.0 0.0
Mixed Strong 0.0 50.0 20.0 20.0 5.0 2.0 0.0

500
Strong Mixed 0.0 65.0 30.0 4.0 1.0 0.0 0.0
Mixed Mixed 3.0 53.0 30.0 14.0 0.0 0.0 0.0

Since 5% cutoff is recognized as more effective in producing satisfying results without be-

ing unreasonably liberal in screening profiles, we consider 5% as the appropriate threshold

in determining the number of profiles and the percentages of the most frequently selected

profiles are distributed in Table 4.2. For cases where more than 7 profiles are generated are

not shown in the table since the sizes are insignificantly small.

4.3 Extended Cases

In previous sections, we already provided empirical results showing that both presented tech-

niques are able to learn the class structure correctly. However, to investigate the performance

and validate their effectiveness in selecting the right profiles, we consider applications more

generally. We draw samples from LCPA models with two classes, two profiles, four items over

varying number of time measurements (i.e, T = 3, 4 and 5). Table 4.3 indicates that with

strong-strong pairs, RJMCMC can optimize the performance when more time measurements

are involved. However, the performance degradation is noted when weak measurements are
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Table 4.3: The percentage of selecting the correct number of profiles (S = 2) over simulated
samples from RJMCM and Dirichlet process

Sample RJMCMC DP with 5% cutoff
size ρ η T = 3 T = 4 T = 5 T = 3 T = 4 T = 5

Strong Strong 74.6 78.4 80.5 51.0 69.0 91.0
Mixed Strong 76.2 74.8 73.0 34.0 35.0 60.0

250
Strong Mixed 53.6 45.2 58.3 50.0 51.0 65.0
Mixed Mixed 54.3 34.8 32.6 38.0 41.0 55.0

Strong Strong 77.9 82.2 86.2 57.0 81.0 92.0
Mixed Strong 64.7 52.2 46.9 45.0 51.0 66.0

500
Strong Mixed 27.4 19.6 22.2 51.0 65.0 82.0
Mixed Mixed 33.1 14.4 17.7 48.0 53.0 65.0

given, which we believe is because weak measurements vaguely distinguish the competing

models and most of time, RJMCMC would prefer a complex model as opposed to a simple

one. On the other hand, we found out that Dirichlet process can learn the profiles more

accurately when there are more time measurements involved. Besides, the results demon-

strate that working with large data is always accompanied by significant improvement but

enlarging the sample size might not be a feasible approach in modeling the complexity.

4.4 Discussion

Latent stage-sequential process is an attractive tool for many areas of substantive research.

Like other mixture models, however, it can be difficult to estimate the number of latent

components such as classes and profiles. We have illustrated two Bayesian approaches,

RJMCMC and Dirichlet process, for the latent class profile analysis. Although this model is

certainly not representative of all latent stage-sequential process, it nevertheless lends several

important insight which we believe have general relevance.
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First, both RJMCMC and Dirichlet process can learn the model without assuming the

number of latent components in advance. Comparing with the technical challenges that

RJMCMC might bring, Dirichlet process may be preferred in terms of flexibility and con-

sistency. Dirichlet process technique relaxes the constraint on the number of classes placed

at each measurement occasion and it performs well with large sample size. Dirichlet process

is conceptually simple and does not require intensive computation since there is no need for

Dirichlet process to design jumping proposals and computing the acceptance rates. Tech-

nically, Dirichlet process is easily employed on the intuitive basis and readily extended to

study longitudinal data.

In the Bayesian mixture modeling, label switching is one of the most common issues and

it will lead to poor parameter estimation. However, It does no harm in finding the number

of components for the LCPA model. In the simulation study, we run the algorithms in the

presence of label switching, but the conclusions we inferred here are unaffectedly viable. To

capture the structural change in classes during experiments, we may allow the RJMCMC to

vary the number of classes at different measurement occasions, but it leads to insurmountable

technical hurdles. However, allowing various number of classes over time is possible in DDPM

and it is an appealing aspect of Dirichlet process approach comparing to the RJMCMC. In

this study, we present Bayesian model selection analysis on LCPA without any covariates

to predict the prevalence of the profile; however, predicator-dependent kernel stick-breaking

process has already increased the interest. It is utilized in choosing the priors for an unknown

probability measure (Dunson and Park, 2008) and variable selection problems (Chung and

Dunson, 2009). Adding predictors in the prior consideration gives different insights into how

the classes are formed under the influence of predictors and it is understood as a dependent

Dirichlet Process. Future work should explore the model selection for the LCPA regression
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model.

Some specific limitation to this study include the choice of jumping rules in RJMCMC.

The simulation study can only serve as a preliminary exploration and it is worth noting

that a comparison between RJMCMC and Dirichlet process cannot be generalized unless

the ingenuity of the proposal mechanism we proposed in the RJMCMC is ensured. Besides,

we note that the results of the Dirichlet process may not be promising when mixed-mixed

pairs are considered since it did not gain much accuracy when sample size was increased

from 250 to 500. We believe that the appropriate sample size should be investigated for

Dirichlet process to produce accurate results under different scenarios on the measurement

parameters for future study. We provided a limited demonstration to help elucidate the the

two potential methodologies for the model selection in LCPA. Our hope is that substantive

practitioners will be able to utilize this demonstration in their research and that it may

provide helpful guidance for the implementation of these two methods. In summary, this

presentation provided the coverage of the implementation of RJMCMC and the Dirichlet

process for the LCPA model and showed the performance of those methods in selecting

the number of classes and profiles over repeated samples. Future work should investigate

more tailored RJMCMC and the Dirichlet process specialized for LCPA and compare the

performance formally via simulation study. We expect that each method will display its own

unique strengths and weaknesses under different conditions.
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Chapter 5

Parameter Estimation

5.1 Preliminary

Parameters for latent class profile analysis (LCPA) are easily estimated by maximum likeli-

hood via EM algorithm or Bayesian method via Markov chain Monte Carlo. However, the

local maximum problem is a long-standing issue in any hill-climbing optimization technique

for the LCPA model. In this study, we propose to apply two probabilistic optimization

techniques using the deterministic annealing framework in order to deal with multiple local

modalities in the LCPA model. The deterministic annealing approaches are implemented

with an efficient recursive formula in the step for the parameter update.

5.2 Expectation-Maximization

The EM algorithm is an iterative procedure which is widely employed for finding maximum

likelihood and solving missing value problems (Dempster et al., 1977). Estimation of pa-

rameters in the LCPA model may be regarded as an estimation problem with missing data:
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the realized values of the latent-profile variable Ui and latent-class memberships Cit for

all t are missing for individuals i = 1, . . . , n. The observed data loglikelihood given the

covariates xi is

l(θ) =
n∑

i=1

log
(
Pr(Yi = yi) | xi

)
=

n∑
i=1

log

 S∑
s=1

γs(xi)
T∏
t=1

R
(t)
s

 (5.1)

Direct maximization of the observed-data loglikelihood is complicated because we need to

solve optimization problem with sum of logarithm functions; however, ML estimates could

be calculated directly in closed form if there is no latent variables. EM is computationally

tractable to maximizing the loglikelihood function by repeatedly solving the complete-data

problem. EM is an iterative procedure in which each iteration consists of two steps, the

E-step and M-step.

In the E-step, we compute the expected values of the unobservable cell counts for the

cross-classification by Yi1, . . . , YiM and Ui, Ci1, . . . , CiT , given the observed data and

provious parameter estimates. In the M-step, we maximize the complete-data logliklihood

function under the assumption that the missing data are known and the missing data from

the E-step are used to substitute the actural missing data.

For the LCPA model, the EM algorithm has some important advantages over other

methods for finding ML estimates: it converges to gradually but reliably; it guarantees that

the resulting estimates lie within the parameter space; it does not require inversion of the

Hessian matrix at each iteration, so it demands less computational time than the Newton-

Raphson; and it does not require a carefully chosen set of initial values to start the iterative
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process in order to converge to the final solution. For all these reasons, the EM algorithm

has been the preferred method for ML-based estimation in the LCPA model. If covariates

are included, the expected complete-data loglikelihood can no longer be maximized using

closed-form expressions; the M-step requires an iterative procedure equivalent to a routine for

fitting a standard baseline-category multinomial logistic-regression model. Van der Heijden

et al. (1996) and Bandeen-Roche et al. (1997) utilized an EM algorithm that incorporates

a Newton-Raphson steps for the multinomial logit model into the standard latent class

estimating procedure devised by Goodman (1974). The E- and M-steps of this procedure

are given below.

5.21 E-step

In the E-step, the posterior probabilities of latent class and profile memberships for the

ith individual are calculated under the provisional parameter estimates from the previous

iteration. By Bayes’ Theorem, these posterior probabilities are

θi,(s,c) = Pr(Ui = s,Ci = ci | Yi = yi,xi)

=
γs(xi)

∏T
t=1R

(t)
ct|s∑S

s=1 γs(xi)
∏T
t=1

{∑C
ct=1 η

(t)
ct|s

R
(t)
ct|s

}

5.22 M-step

In the M-step, updated parameter estimates are obtained by maximizing the expected

complete-data loglikelihod, regarding the latent variables if they were observed. If Ui and

ci were known, let the contribution of the ith individual to the complete-data likelihood
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be denoted L∗i (θ) and the logarithm of the complete-data likelihood function contribution

l∗i (θ) = log(L∗i (θ)) can be written as

l∗i (θ) =
S∑

s=1

log γs(xi)θis +
n∑

i=1

S∑
s=1

T∑
t=1

C∑
ct=1

θ
(t)
i(s,ct)

log η
(t)
ct|s

+
T∑
t=1

C∑
ct=1

θ
(t)
ict

M∑
m=1

rm∑
k=1

I(yimt=k) log ρmkt|ct (5.2)

where θis =
∑

c1
. . .
∑

cT
θi(s,c), θ

(t)
i(s,ct)

=
∏
j ̸=t

∑
cj

θi(s,c) and θ
(t)
ict

=∑
s θ

(t)
i(s,ct)

. According to (2.6) for each s = 1, . . . , S − 1, the maximizing vector β̂s

can be derived by setting

∂

∂βsr

n∑
i=1

θis log
exp(x′iβs)∑S
j=1 exp(x

′
iβj)

= 0 for r = 1, . . . , p. (5.3)

To approach the roots of these non-linear equations, we use NR algorithm to expedite the

calculation. In the initial stages of EM, the parameter estimates begin far from the desired

values and Newton’s method might fail to converge. Burdened with the caveats, we only

execute one iteration of NR method within each M-step. In the NR method, an estimate

βnews is updated by

βnews = βolds −
(

∂2l

∂β∂βT

)−1(
∂l

∂β

)
|
β=βold

(5.4)

where β is the vectorized parameter containing all parameter elements.
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5.3 Recursive Formula

Although direct maximization of the observed-data loglikelihood defined in (5.1) is compli-

cated, ML estimates can be easily calculated if the latent memberships (i.e., c and s) were

known.

In the E-step, the conditional probabilities of class and profile memberships for the ith

individual are calculated under the provisional parameter estimates from the previous iter-

ation. By Bayes’ theorem, these conditional probabilities are given by

θi(s,c1,...,cT )
= P (U = s,C = c | yi,xi)

=
L∗i∑S

s=1
∑C

c1=1 · · ·
∑C

cT=1 L
∗
i

, (5.5)

where L∗i is defined in (2.3).

In the E-step, however, the complexity of computation and the memory demand grow

when the number of time periods T increases. Instead of computing the joint posterior

probabilities given in (5.5), we apply the recursive formula to the E-step by adopting the

forward-backward algorithm (Chib, 1996; MacKay, 1997). Let α and λ represent the forward

and backward probabilities, respectively:

αit(ct, s) = P (Y1 = yi1, . . . ,Yt = yit, Ct = ct | U = s,xi)

λit(ct, s) = P (Yt+1 = yi(t+1), . . . ,YT = yiT | Ct = ct, U = s,xi).

Both α and λ functions then can be computed by the following recursive representations
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using the first-order Markov chain:

αit(ct, s) =
C∑

ct−1=1

αi(t−1)(ct−1, s)η
(t)
ct|s

M∏
m=1

rm∏
k=1

[
ρmkt|ct

]I(yimt=k)

λit(ct, s) =
C∑

ct+1=1

λi(t+1)(ct+1, s)η
(t+1)
ct+1|s

×
M∏

m=1

rm∏
k=1

[
ρmk(t+1)|ct+1

]I(yim(t+1)=k)

With the forward and backward functions, the marginalized conditional probability of the

latent component membership at time t can be computed by

θ
(t)
i(s,ct)

= P (U = s, Ct = ct | yi,xi)

=
γs(xi)αit(ct, s)λit(ct, s)∑S

s=1 γs(xi)
∑C

cT=1 αiT (cT , s)
, (5.6)

for s = 1, . . . , S, ct = 1, . . . , C , and t = 1, . . . , T .

In the M-step, updated parameter estimates are obtained by maximizing the expected

complete-data loglikelihood, regarding the latent variables if they were observed. The contri-

bution of the ith individual to the complete-data loglikelihood ℓ∗i = logL∗i can be written

as ℓ∗i (θ) as (5.2). The first sum in (5.2), which relates to the regression coefficients (i.e., the

β-parameters), is the loglikelihood function for the multinomial logit model, except that the

unobserved counts for s are replaced by the fractional expectations
∑n

i=1 θis. Updated

estimates for the regression coefficients can be calculated with the standard Newton-Raphson

method for multinomial logistic regression, provided that the computational routines allow
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fractional responses rather than integer counts. The other model parameters can be obtained

by

η̂
(t)
ct|s

=

∑n
i=1 θ

(t)
i(s,ct)∑n

i=1 θis

ρ̂mkt|ct =

∑
i∈obs(t)m

θ
(t)
ict

I(yimt = k) +
∑

i∈mis
(t)
m

θ
(t)
ict

ρ∗
mkt|ct∑n

i=1 θ
(t)
ict

for m = 1, . . . ,M , k = 1, . . . , rm, s = 1, . . . , S, ct = 1, . . . , C , and t = 1, . . . , T .

Here obs
(t)
m denotes the set of individuals who respond to the mth item at time t, mis

(t)
m

denotes the set of individuals who fail to respond to the mth item at time t, and ρ∗
mkt|ct

is the provisional parameter estimate.

5.4 Local Modality

We understand that the local maximum problem could be mitigated by starting from multiple

initial values and then tracking the optimal solution which achieves the highest likelihood.

However, in the case of high-dimensional parameter space, a large number of performing

the EM algorithm for each initialization is required and therefore become computationally

intractable. In order to relax the initialization dependence for the LCPA model, we in-

troduce two reformulated versions of the standard EM algorithm, namely split-and-merge

EM (SMEM) (Ueda et al., 2000), deterministic annealing EM (DAEM) (Ueda and Nakano,

1998) and a variational Bayes learning algorithm, referred as and deterministic annealing

variational Bayes (DAVB) (Katahiral et al., 2008).
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The general idea of SMEM aims at increasing the log likelihood value gradually by

tactically choosing three components as candidates for split and merge. A number of merge

and split candidates are selected, usually 5 candidate sets are recommended for each iteration

and then using partial expectation step to expedite the expectation computation. The idea

of performing split and merge operations has been successfully applied to the EM in the

Gaussian mixture models through considering local Kullback divergence as a split criteria

and posterior probabilities as a merge index. Here we roughly sketch the steps for partial

expectation step on classes and profiles in LCPA models.

Ueda and Nakano (1998) proposed a deterministic annealing version of the EM (DAEM)

algorithm to reduce the impact that inappropriate initial values could cause. Even though

there is no evidence to prove it is grounded in theory, it has been successfully applied in

the realm of local maximum issues and such an annealing framework has proven effective in

improving the performance of the standard approaches (Itaya et al., 2004; Park et al., 2005).

5.41 Split-and-Merge EM

Let JC = (c1, c2, c3) denote the split-and-merge candidates where c1 and c2 are chosen

by the pre-specified rule to form a new c∗ and c3 is chosen to be divided into two new

classes c̃1 and c̃2. The partial update step for newly-generated classes l = c∗, c̃1, c̃2 are

re-estimated by the following:

θ
(t)
i(s,l)

=

 ∑
m∈JC

θ
(t)
i(s,m)

× αt(l, s)λt(l, s)∑
l=c∗,c̃1,c̃2

αt(l, s)λt(l, s)
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Similarly, for profiles, we set JS = (s1, s2, s3) as the split-and-merge candidates where

s1 and s2 are merged to form s∗ and s3 is split into two new profiles s̃1 and s̃2. In

the partial update step, the posterior probability of profile components l = s∗, s̃1, s̃2 are

re-estimated by

θ
(t)
i(l,ct)

=

 ∑
m∈JS

θ
(t)
i(m,ct)

×
γlαt(ct, l)λt(ct, l)∑

k=s∗,s̃1,s̃2
γkαt(ct, k)λt(ct, k)

SMEM algorithm is expected to be abler to travel low log-likelihood area and solve the

problem of initialization dependence only if a clear set of principles for split and merge has

been instituted. In the case of LCPA applications, the correspondence between adjacent

measurement occasions is inextricably bridged and there is no easy heuristical method to

relocate the mixture components in the data space. Generally speaking, SMEM intensifies

the extent of the technical difficulties.

5.42 Deterministic Annealing EM Algorithm

Ueda and Nakano (1998) proposed a deterministic annealing version of the EM algorithm

(DAEM) to find a set of parameter estimates on the global mode of the loglikelihood func-

tion. In the DAEM algorithm for LCPA, the goal to maximize the loglikelihood function is

reformulated as the problem of maximizing the function F (ω) =
∑n

i=1 Fi(ω), where

Fi(ω) =
1

ω
log

S∑
s=1

C∑
c1=1

· · ·
C∑

cT=1

(L∗i )
ω.
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Note that the function F (ω) equals to the observed-data loglikelihood ℓ in (5.1) when

ω = 1. To maximize the function F (ω), we introduce a random density function q(U =

s,C = c | yi) and find the lower bound of Fi(ω) by Jensen’s inequality (Cover and

Thomas, 1991):

Fi(ω) ≥ 1

ω

∑
s,c

q(U = s,C = c | yi) log
[

(L∗i )
ω

q(U = s,C = c | yi)

]
=
∑
s,c

q(U = s,C = c | yi) logL
∗
i

− 1

ω

∑
s,c

q(U = s,C = c | yi) log q(U = s,C = c | yi). (5.7)

In the first step of DAEM, we find the optimal choice for q(U = s,C = c | yi) by

taking functional derivatives with respect to q(U = s,C = c | yi) and setting it as zero

under the constraint
∑

s,c q(U = s,C = c | yi) = 1. Then the optimal choice for

q(U = s,C = c | yi, ) would be

θi(s,c1,...,cT )
=

(L∗i )
ω∑S

s=1
∑C

c1=1 · · ·
∑C

cT=1(L
∗
i )
ω
. (5.8)

It is worth noting that with values of ω close to zero, the function θi(s,c1,...,cT )
(ω) is

uniformly distributed across all the latent components (i.e., classes and profiles). As the

value of ω increases toward one, however, θi(s,c1,...,cT )
(ω) agrees with the conditional

probabilities θi(s,c1,...,cT )
given in (5.5).

In the second step of DAEM, the model parameters are updated by maximizing the

modified expected complete-data loglikelihood ℓ∗(ω) =
∑n

i=1 ℓ
∗
i (ω). The contribution
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of the ith individual to the ℓ∗i (ω) can be written as

ℓ∗i (ω) =
S∑

s=1

θis(ω) log γs(xi) +
S∑

s=1

T∑
t=1

C∑
ct=1

θ
(t)
i(s,ct)

(ω) log η
(t)
ct|s

+
T∑
t=1

C∑
ct=1

θ
(t)
ict

(ω)
M∑

m=1

rm∑
k=1

I(yimt=k) log ρmkt|ct, (5.9)

where θis(ω) ∝
(
θis
)ω

, θ
(t)
i(s,ct)

(ω) ∝
(
θ
(t)
i(s,ct)

)ω
, and θ

(t)
ict

(ω) ∝
(
θ
(t)
ict

)ω
.

These quantities can be calculated by the recursive formula given in (5.6), and the joint

conditional probabilities are not necessary in the second step of DAEM. As the standard

EM algorithm, updated estimates for the regression coefficients can be calculated with the

Newton-Raphson algorithm for the first sum in (5.9). The other model parameters can be

obtained by

η̂
(t)
ct|s

=

∑n
i=1 θ

(t)
i(s,ct)

(ω)∑n
i=1 θis(ω)

ρ̂mkt|ct =

∑n

i∈obs(t)m
θ
(t)
ict

(ω)I(yimt = k) +
∑n

i∈mis
(t)
m

θ
(t)
ict

(ω)ρ∗
mkt|ct∑n

i=1 θ
(t)
ict

(ω)

for m = 1, . . . ,M , k = 1, . . . , rm, s = 1, . . . , S, ct = 1, . . . , C , and t = 1, . . . , T .

We adopt ω=(.001, .01, .1, .2, .3, .4, .48, .58, .69, .83, 1) as an annealing schedule in

DAEM. The algorithm is initialized with the value of ω close to zero (i.e., .001) and its

converged parameters will be used as the starting values for the next one (i.e., .01). By

repeating this procedure until ω reaches one, the DAEM algorithm will find the parameter
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estimates on the global mode of the loglikelihood function.

5.43 Deterministic Annealing Variational Bayes Algorithm

Let Θ denote the vectorized model parameters for the LCPA model. In the deterministic

annealing variational Bayes (DAVB) algorithm, we can considerΘ, a set of unknown param-

eters, as the random quantities and incorporate the prior information for Θ. Let φ(Θ) de-

note a prior distribution ofΘ. Further, let z = (z1, . . . , zn) indicate the individuals’ class

and profile memberships, where zi is a T +1 dimensional array for the ith individual such

that zi(s,c1,...,cT )
∈ {0, 1} and

∑S
s=1

∑C
c1=1 · · ·

∑C
cT=1 zi(s,c1,...,cT )

= 1.

That is, if individual i belongs to the profile s and the class membership c = (c1, . . . , cT )

from initial time t = 1 to time T , then zi(s,c1,...,cT )
equals 1 and 0 otherwise.

Constructed with the similar logic of the DAEM, the goal of DAVB to approximate the

distribution over latent variables and model parameters can be rephrased by the problem of

maximizing F (ω) =
∑n

i=1 Fi(ω), where

Fi(ω) =
1

ω
log

S∑
s=1

C∑
c1=1

· · ·
C∑

cT=1

∫
P (Y = yi,Z = zi,Θ)ωdΘ.

By introducing a random distribution q(Z = zi,Θ), Fi(ω) can be lower bounded by
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Jensen’s inequality (Cover and Thomas, 1991):

Fi(ω) ≥
S∑

s=1

C∑
c1=1

· · ·
C∑

cT=1

∫
q(Z = zi,Θ) logP (Y = yi,Z = zi,Θ)dΘ

− 1

ω

S∑
s=1

C∑
c1=1

· · ·
C∑

cT=1

∫
q(Z = zi,Θ) log q(Z = zi,Θ)dΘ.

If q(Z = zi,Θ) has a factored form (i.e., q(Z = zi,Θ) = Q(Z = zi)r(Θ)), the

function Fi(ω) is then lower bounded as

Fi(ω) ≥
S∑

s=1

C∑
c1=1

· · ·
C∑

cT=1∫
Q(Z = zi)r(Θ) logP (Y = yi,Z = zi | Θ)φ(Θ)dΘ

− 1

ω


S∑

s=1

C∑
c1=1

· · ·
C∑

cT=1

Q(Z = zi) logQ(Z = zi) (5.10)

+

∫
r(Θ) log r(Θ)dΘ

}
.

In the first step of DAVB, we iteratively maximizes the lower bound of Fi(ω) with

respective to Q(Z = zi) by taking functional derivative and setting it equal to zero under

the constraint
∑S

s=1
∑C

c1=1 · · ·
∑C

cT=1Q(Z = zi) = 1. The optimal choice for

Q(Z = zi) would be θi(s,c1,...,cT )
(ω), which is the optimal choice for q(U = s,C =

c | yi) given in (5.8).

In the second step, the lower bound of Fi(ω) is maximized with respective to r(Θ)

and the model parameters are updated based on the variational posteriors. We consider
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multivariate normal distribution Np×(S−1)(0, I) as a prior for the β-parameters. At

each cycle of Gibbs sampler, the vectorized coefficients β are updated by Metropolis algo-

rithm (Robert and Casella, 2004). A candidate for the next coefficient vector βc is generated

fromNp×(S−1)(β̂, δΣ) at each iteration, where β̂ is the generated sample from the pre-

vious iteration. In this paper, we adjust the value of δ in order to control the acceptance

rate within a recommended range from .18 to .30 (Gelman et al., 1997). The variance Σ is

the negative inverse of the β-submatrix in the Hessian from the complete-data loglikelihood

ℓ∗(ω) evaluated at the DAEM estimates. The candidate vector for βc is accepted with

probability α(β̂,βc) = min (1, exp (ωA)), where

A = −1

2

(
|β|2 − |β̂|2

)
+

n∑
i=1

S∑
s=1

θis(ω)x
′
i(β

c
s − β̂s)

−
n∑
i=1

log

 S∑
s=1

exp(x′iβ
c
s)

− log

 S∑
s=1

exp(x′iβ̂s)

 .

Applying the Jeffreys’ priors to the measurement parameters η
(t)
s = (η

(t)
1|s, . . . , η

(t)
C|s)

and ρmt|c = (ρm1t|c, . . . , ρmrmt|c), new parameters can be drawn from η
(t)
s ∼

Dirichlet(τ
(t)
1|s, . . . , τ

(t)
C|s) and ρmt|c ∼ Dirichlet(νm1t|c, . . . , νmrmt|c), where

τ
(t)
c|s = ω

 n∑
i=1

θ
(t)
i(s,c)

(ω)− 1

2

+ 1

νmkt|c = ω

 ∑
i∈obs(t)m

I(yimt = k)θ
(t)
ic (ω) +

∑
i∈mis

(t)
m

θ
(t)
ic (ω)ρ∗mkt|c −

1

2

+ 1
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for c = 1, . . . , C , s = 1, . . . , S, t = 1, . . . , T , k = 1, . . . , rm, and m = 1, . . . ,M .

In DAVB, we adopt the same annealing schedule and proceed with the same procedure

as in DAEM.
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Chapter 6

Model Diagnosis

For the inferences drawn from a model being meaningful, we need to establish a correctly

specified model and identifiability is fundamental for having valid parameter estimates. Ac-

cording to the definition by Goodman (1974), the parameters of an LC model without

covariates are said to be locally identifiable at a particular value θ∗ if for some open neigh-

borhood of it, the loglikelihood function has a unique optimum value at θ∗. The definition is

no problem to be further applied to LCPA models. Let us assume the number of a response

pattern as a particular combination of responses to the manifest items Y1t, . . . ,YMt

for all t = 1, . . . , T is (
∏M
m=1 rm)T . A saturated model for Y1t, . . . ,YMt for

all t = 1, . . . , T would have (
∏M
m=1 rm)T − 1 nonredundant parameters because

the probabilities for the response patterns must sum to 1. A necessary but not sufficient

condition to make the LCPA model locally identifiable is that the number of nonredun-

dant parameters in the saturated model must be greater than or equal to the number of

free parameters in γ,η and ρ (Goodman, 1974; Clogg and Goodman, 1984). The satu-

rated model has (
∏M
m=1 rm)T − 1 nonredundant parameters and the LCPA model has

S − 1 + ST (C − 1) + C(
∑C

m=1 rm −M) when we assume the number of classes is
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fixed as C over time. When

 M∏
m=1

rm

T

− 1 > S − 1 + ST (C − 1) + C

 C∑
m=1

rm −M

 (6.1)

the LCPA model might be identifiable but not necessarily so.

Traditionally, we diagnose the identifiability by carrying out the Hessian matrix evalu-

ated at the ML estimates θ∗. If it has full rank or the inverse exists, we can ascertain the

parameter estimates are at least locally identifiable. In practice, however, it is difficult to

distinguish between situations where the Hessian is nearly singular and where it is exactly

singular because of the imprecision of floating-point computations. As pointed out by For-

mann (2003), in situations where some estimated parameters lie on the boundary (estimates

are close to boundary value), we’d better fix those values in order to make the remaining

parameters identifiable. At fact, a covariance matrix with large variance indicates boundary

problems. The Hessian matrix for LCPA with covariates may have result in large dimen-

sion structure and the derivatives therefore become unappealing. As shown in (2.8), the

marginalization implies that an LCPA with logistic regression is locally identifiable if the

following three conditions are satisfied (Bandeen-Roche et al., 1997):

1. an LCPA marginalized over covariates is locally identifiable;

2. if the design matrix (x1, . . . ,xn)
′ has full column rank;

3. at least one individual has nonzero γs(xi) for all s = 1, 2, . . . , S.

Some new monitoring methods for identifiability have been proposed, for example, Kim

and Lindsay (2009) define a new concept, the degree of identifiability of the parameters in

the likelihood. This data-dependent identifiability is measured through modal regions that is
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the maximum connected subset containing ML estimate θ∗ and determined by a significance

level α. The model is said to be identifiable at confidence level 100(1− α)% at θ∗ if the

modal region containing θ∗ is disjoint from any other permutated ones. It comes no surprise

that as α decreases, the modal regions are hardly well-labeled because overlapping might

occur. The level of identifiability can be quantified by finding the infimum of the value α

such that the modal region is well separated. Besides, Yao and Lindsay (2009) developed

marginal discriminant plots to measure the degree of modal separation.

74



Chapter 7

Data Analysis on National

Longitudinal Survey of Youth 1997

(NLSY97)

7.1 Data

The proposed model selection (i.e., Dirichlet process) and parameter estimation (i.e., de-

terministic annealing) methods are applied to the drinking items drawn from the National

Longitudinal Survey of Youth 1997 (NLSY97), a survey that explores the transition from

school to work and from adolescence to adulthood in the United State. Since the detailed

information on the data appears in Chung et al. (2011), we briefly describe the data structure

here. Complete data for the analysis were available on 1416 adolescents who were identified

as the early onset drinkers. The early onset drinkers under this study had started drink by

the time when they were 14 years old, at least 7 years before the legal drinking age. There
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are three self-report items measuring adolescent drinking behaviors: how many days they

had one or more drinks of an alcoholic beverage during the last 30 days (Recent Drinking);

how many days they had five or more drinks on the same occasion during the last 30 days

(Binge Drinking); and how many days they had drinks immediately before or during school

or work hours in the last 30 days (Drinking at School). The responses for Recent Drink-

ing were reduced to a three-category indicator, non-drinker (0 days of drinking), occasional

drinker (1-5 days of drinking) and regular drinker (6 or more days of drinking). For Binge

Drinking, respondents who had consumed five or more drinks on the same occasion at least

one time were characterized as binge drinkers. The same rule was applied for Drinking at

School. These three drinking items were tracked over the three survey waves in 1997 (Wave

1), 2000 (Wave 4), and 2003 (Wave 7), corresponding to early adolescence (ages 12–14), mid-

dle adolescence (ages 15–17), and late adolescence (ages 18–20), respectively. In addition to

these three items, we consider gender and race as covariates in the model.

7.11 Information Criteria versus Dirichlet Process

Under the data set described above, Chung et al. (2011) started by fitting a series of two-

class LCPA models where the pathways of the class membership were mapped onto between

two and four profiles. This procedure was repeated until it reached a model with six classes

and six profiles. Table 7.1 shows a series of LCPA models with evaluations based on the

bootstrap p-value for goodness of fit and AIC.

The four-class-three-profile LCPA model and five-class-three-profile LCPA models are

favored in terms of AIC, bootstrap p-value and the principle of parsimony. However, due

to the unclear interpretation of the classes in the five-class-three-profile LCPA model, four-

class-three-profile LCPA model is selected. Even though the traditional model selectors work
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Table 7.1: Goodness-of-fit statistics for a series of LCPA models under various numbers of
classes and profiles

Number of Number of LRT Bootstrapping AIC
classes profiles p-value

2 2 812.81 0.000 12103
3 812.81 0.000 12111
4 812.81 0.000 12119

3 2 492.84 0.000 11803
3 452.99 0.025 11777
4 447.16 0.015 11785
5 445.64 0.020 11798

4 2 449.80 0.005 11780
3 404.58 0.305 11755
4 392.61 0.440 11763
5 387.90 0.315 11778

5 2 429.69 0.025 11780
3 375.52 0.375 11752
4 357.65 0.585 11760
5 347.64 0.595 11776

6 2 421.65 0.015 11792
3 367.31 0.410 11770
4 338.81 0.735 11773
5 325.88 0.810 11792
6 306.07 0.795 11804
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as convenient means for comparison of each competing model, the process would be a lengthy

undertaking. Since dynamic Dirichlet learning process has been proved to work well with

less computation demands, we are interested in implementing Dirichlet process to see if it

comes to the same conclusions without comparing each model one at a time.

Fig. 7.1 (a) - (c) shows scatter diagrams derived by applying DDPM and LOWESS

algorithm proposed by Cleveland (1979) with two smoothing curves. LOWESS is a locally

weighted scatterplot smoothing used here to summarize the appropriate number of classes

over time. The smoothing span gives the proportion of points in the plot that influence the

smoothness at each value and larger spans give smoother lines. Each plot is smoothed with

two smoother spans (.1 and .5) to locally fit the diagram. It is obvious to see all the wavy

lines are around four, which makes the preferences fairly self-explanatory to be four classes

over three time measurements. The result is in line with the histogram exploration as shown

in Fig. 7.1 (d) where a four-class-over-three-time model has dominant frequency. Chung

et al. (2011) selected a four-class LCPA model based on the Table 7.1 and it seems Dirichlet

process has equal learning capability of selecting suitable number of classes.

Based on the class transiting routes, we implement DPM to learn the number of profiles.

Fig. 7.1 (d) indicates models with three or four profiles are favored by the DPM algorithm

because of their higher occurrences, 27% and 29%, respectively. Chung et al. (2011) conclude

that three-profile model fit better based on goodness-of-fit index and according to the result

DPM presents, we have consistent conclusions. Since DDPM and DPM lead to successful

applications without requiring prior knowledge on the unknown system, we believe Dirichlet

process can effectively constructs the model by integrating the sequential information.
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7.12 Parameter Estimates

Given the picked four-class-three-profile LCPA model, Chung et al. (2011) used 100 differ-

ent sets of initial parameters to avoid local optimum entrapment. They selected a set of

estimates providing the highest loglikelihood value among those from 100 different initial-

izations by using standard EM algorithm. We will focus on the same model structure to

compare the performances of two deterministic annealing approaches in finding the global

maximum estimates with the pre-determined annealing schedule. Note that we consider the

LCPA model where the ρ-parameters are constrained to be equal across time points and

both deterministic annealing update the marginalized conditional probability of the latent

component membership recursively by using forward and backward functions.

To ensure the comparability of the standard EM algorithm and two deterministic anneal-

ing approaches, we implement DAEM with 100 initializations in order to better understand

how different starting values induce variations in the loglikelihood values. For the standard

EM algorithm, the distribution of the converged loglikelihood values corresponding to 100

sets of initializations are presented in Figure 7.2 (a). Exploring the histogram, we can see

that EM solutions are trapped in four local modes based on their initializations. The largest

loglikelihood value is −5726.28 presented in the last bar in Figure 7.2 (a), but the most

frequent loglikelihood values are observed in the range of −5740 and −5739. On the con-

trary, Figure 7.2 (b) illustrates that DAEM reaches a single point convergence (loglikelihood

value is −5727.14) irrespective of the initial values. Although DAEM does not achieve

the optimum value given by the standard EM algorithm, the difference in the loglikelihood

values is negligible based on the distributions presented in Figure 7.2. In addition, only 29%

of the initial sets are converged to the global maximum with the standard EM algorithm.
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Therefore, the DAEM algorithm with recursive formula can be considered as a robust tool

to avoid many local entrapments and reduce the computation cost.

For DAVB, we also apply 100 different initializations and calculate the standard devi-

ation for each of the model parameters from the 100 sets of DAVB estimates. Generally

speaking, DAVB exhibits the work of satisfaction because the extent to which the varia-

tions are incurred due to the numerous initializations can be regarded insignificant. Here we

briefly sketch the performance of DAVB in terms of their standard deviations and related

concerns. The standard deviation of the ρ-parameter estimates derived from DAVB with

100 sets of initializations are presented in Table 7.2. The values under the Recent Drinking

column provide the standard deviations of the estimates for probabilities of having reported

occasional drinking (one to five days of drinking in the last 30 days) and regular drinking

(six or more days of drinking in the last 30 days) for a given class membership. The other

two columns show the standard deviations of the estimates for the probabilities of having

consumed five or more drinks on the same occasion at least one time in the last 30 days for

Binge Drinking and consumed alcoholic beverage right before or during school or work hours

at least once in the last 30 days for Drinking at School. Table 7.2 indicates that Class 3

seems more likely to produce largest deviations among the identified classes. We believe the

cause is more related to the small prevalence of Class 3: the prevalence of Class 3 is 7.5%,

7.0%, and 0.2% in 1997, 2000, and 2003, respectively, and the average prevalence over time

is 4.9%.

The secondary measurement parameters (i.e., η-parameters) identify common sequential

patterns of drinking behaviors. The standard deviation of the η-parameter estimates from

the 100 sets of DAVB estimates are presented in Table 7.3. The η-parameter estimates from

DAVB are shown to be fairly stable in terms of insignificant degree of spread. We can see
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Table 7.2: Standard deviation of the ρ-parameter estimates derived from DAVB with 100
different sets of starting values

Recent Drinking Binge Drinking
Class Occasional Regular Drinking at School
1 0.024 0.000 0.000 0.000
2 0.001 0.009 0.026 0.022
3 0.003 0.062 0.078 0.084
4 0.001 0.022 0.010 0.017

Table 7.3: Standard deviation of the η-parameter estimates derived from DAVB with 100
different sets of starting values

Year
Profile Class 1997 2000 2003

1 1 0.025 0.031 0.027
2 0.024 0.039 0.030
3 0.018 0.030 0.020
4 0.006 0.008 0.026

2 1 0.043 0.044 0.040
2 0.040 0.056 0.068
3 0.019 0.026 0.016
4 0.012 0.035 0.061

3 1 0.030 0.030 0.024
2 0.039 0.045 0.018
3 0.040 0.051 0.010
4 0.020 0.043 0.034

that the estimates corresponding to Profile 2 have more fluctuations comparing to those

of other profiles. Although estimates regarding to some classes or profiles might not have

ideally small deviations, DAVB can still be considered as a more consistent implementation

than the traditional multi-start methods because all the standard deviations are below an

acceptable threshold.

The standard deviations of the β-parameter estimates from the 100 sets of DAVB esti-

mates are presented in Table 7.4. As inspected, the standard deviations of Profile 2 relative

to Profile 1 are slightly larger than those of Profile 3, but none of them reveal serious insta-
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Table 7.4: Standard deviation of β-parameter estimates derived from DAVB with 100 dif-
ferent sets of starting values (Profile 1 is the baseline)

Covariate Category Profile 2 Profile 3
Gender versus Male Female 0.122 0.101
Race versus White Black 0.242 0.163

Hispanic 0.260 0.204
Other race 0.272 0.283

Table 7.5: Estimated probabilities of responding ‘any use’ to the drinking items for each
class (ρ-parameters)

Recent Drinking Binge Drinking
Method Class Occasional Regular Drinking at School
EM 1 0.001 0.002 0.000 0.000

2 0.960 0.040 0.303 0.119
3 0.675 0.325 0.848 0.606
4 0.280 0.720 0.960 0.173

DAEM 1 0.102 0.000 0.000 0.000
2 0.929 0.071 0.378 0.056
3 0.899 0.101 0.546 0.396
4 0.260 0.740 0.965 0.205

DAVB 1 0.096 0.000 0.000 0.000
2 0.922 0.076 0.407 0.044
3 0.894 0.105 0.541 0.469
4 0.238 0.761 0.967 0.207

bility among the resulting estimates from 100 sets of starting values with DAVB. Profile 2

tends to produce larger standard deviations as previously shown in Table 7.3 and we believe

the small prevalence of Profile 2 affects the results in some degrees.

The estimated primary measurement parameters (i.e., ρ-parameters) using the three

estimation algorithms are presented in Table 7.5. The values under the Recent Drinking

column provide the estimated probabilities of having reported occasional drinking (one to

five days of drinking in the last 30 days) and regular drinking (six or more days of drinking in

the last 30 days) for a given class membership. The other two columns show the probabilities
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of having consumed five or more drinks on the same occasion at least one time in the last

30 days for Binge Drinking and consumed alcoholic beverage right before or during school

or work hours at least once in the last 30 days for Drinking at School. We can see that all

three items combined support a meaningful interpretation for each class. An inspection of

these values leads to the adoption of the common class names across estimation methods.

Adolescents in Class 1 have not been involved in any drinking in the previous 30 days;

therefore we label Class 1 as ‘non-current drinkers.’ Class 2 represents adolescents who

drink occasionally but have no history of regular drinking or drinking at work or school.

We accordingly identify adolescents classified in Class 2 as ‘light drinkers.’ For the same

grounds, Class 4 labels as ‘regular binge drinkers’ who both drink regularly and engage in

binge drinking. The estimates for Class 3, however, produce largest deviations between EM

and two deterministic annealing methods, leading to a difficulty in labeling Class 3 with the

common class name across estimation algorithms. The maximal differences in the estimates

between EM and two annealing methods are .302 and .307 in Binge Drinking for DAEM

and DAVB, respectively. We believe the cause is more related to the small prevalence of

Class 3: using the EM algorithm, the prevalence of Class 3 is 7.5%, 7.0%, and 0.2% in 1997,

2000, and 2003, respectively, and the average prevalence over time is 4.9%. The other two

deterministic alternatives produce similar class prevalences as the EM algorithm. Although

three parameter estimation methods produce distinct estimates for Class 3, the difference

in estimates of ‘small’ class may not affect the description of the major classes and the

loglikelihood value.

The secondary measurement parameters (i.e., η-parameters) identify common sequential

patterns of drinking behaviors. The estimated η-parameters with three estimation methods

are presented in Table 7.6. As shown in Table 7.6, in Profile 1 the probabilities of belonging
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Table 7.6: Estimated probabilities of belonging to a class sequence for each profile (η-
parameters) and estimated profile prevalence (γ-parameters)

Year
Method Profile Class 1997 2000 2003
EM 1 (45.0) 1 0.694 0.746 0.626

2 0.250 0.219 0.348
3 0.055 0.034 0.004
4 0.001 0.000 0.023

2 (18.6) 1 0.538 0.058 0.100
2 0.432 0.766 0.610
3 0.000 0.000 0.000
4 0.031 0.175 0.290

3 (36.4) 1 0.614 0.252 0.133
2 0.227 0.122 0.015
3 0.139 0.150 0.000
4 0.020 0.476 0.853

DAEM 1 (46.1) 1 0.782 0.806 0.688
2 0.046 0.027 0.203
3 0.163 0.167 0.078
4 0.009 0.000 0.031

2 (19.0) 1 0.610 0.112 0.121
2 0.239 0.766 0.666
3 0.130 0.000 0.001
4 0.021 0.122 0.212

3 (34.9) 1 0.672 0.253 0.135
2 0.019 0.034 0.002
3 0.255 0.158 0.001
4 0.054 0.555 0.862

DAVB 1 (47.0) 1 0.785 0.780 0.688
2 0.013 0.052 0.207
3 0.189 0.165 0.065
4 0.013 0.003 0.040

2 (18.4) 1 0.695 0.159 0.094
2 0.102 0.711 0.749
3 0.186 0.030 0.014
4 0.017 0.100 0.143

3 (34.6) 1 0.665 0.284 0.139
2 0.033 0.050 0.015
3 0.258 0.136 0.001
4 0.044 0.530 0.845
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to Class 1, the class of ‘not current drinkers,’ are consistently higher than the probabilities of

belonging to other classes (see the first rows in Table 7.6 for all estimation method), implying

that adolescents in this profile are likely to remain as ‘not current drinkers’ over time. The

LCPA identified another two profiles of adolescents who tended to intensify their drinking

habits over time. Adolescents in Profile 2 were more likely to belong to Class 1 (not current

drinkers) in 1997, advance to Class 2 (light drinkers) in 2000. By 2003, some of them had

advanced further to become members of Class 4 (regular binge drinkers), although many

others remained in Class 2 (light drinkers). Profile 3 consists of early drinkers who moved

toward Class 4 (regular binge drinkers) by the year of 2000 and stayed in that class by 2003.

Three parameter estimation methods yield similar estimates for the η-parameters so that

we can commonly label the identified profiles across three different estimation methods. The

most prevalent profile is Profile 1 for all estimation methods. The largest differences between

EM and two annealing methods are .208 for DAEM in Profile 3 and Class 2 in 1997 and .330

for DAVB in Profile 2, Class 2 in 1997.

Point estimates for the logistic regression coefficients (β-parameter) pertaining to each

covariate are reported in Table 7.7. Speaking broadly, whites are more likely to be in the

profiles involving intensified drinking habits (i.e., Profiles 2 and 3) than in Profile 1 (non-

drinking stayers). Interestingly, the odds of belonging to Profile 2 (light drinking advancers)

versus Profile 1 are higher for females, but the odds of belonging to Profile 3 (regular binge

drinking advancers) are higher for males than their counterparts. Three parameter estima-

tion methods come to the same conclusions in explaining the logistic coefficients even though

the yielded values are not indistinguishable.
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Table 7.7: Estimated logistic regression coefficients (β-parameters) for the prevalence of
profiles (Profile 1, non-drinking stayers, is the baseline)

Method Covariate Profile 2 Profile 3
EM Intercept −1.144 0.511

Female versus male 1.244 −1.011
Race versus White
Black −1.640 −1.510
Hispanic −1.600 −0.198
Other race −1.133 −0.481

DAEM Intercept −1.161 0.410
Female versus male 1.349 −0.882
Race versus White
Black −1.884 −1.546
Hispanic −1.897 −0.240
Other race −0.877 −0.459

DAVB Intercept −1.146 0.415
Female versus male 1.197 −0.823
Race versus White
Black −1.457 −1.523
Hispanic −1.217 −0.261
Other race −0.473 −0.301
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7.12.1 Discussion

In the standard EM algorithm, the computation of the joint posterior distribution that

involves all time measurements is fairly demanding. Instead of computing the joint posterior

probabilities given in (5.5), the recursive formula adopts the forward-backward algorithm to

calculate the marginal posterior probabilities given in (5.6) directly. The recursive formula

enables us to predict latent membership faster than the standard EM algorithm because the

forward and backward quantities can easily calculated.

In this study, we apply the two annealing methods, DAEM and DAVB, to estimate the

model parameters lying on the global maximum of the objective functions for the LCPA

models using the recursive formula at each iteration. Deterministic annealing is an opti-

mization technique aiming to search for a global maximum by gradually increasing the value

of ω. However, the performance of the annealing methods is contingent upon the choice of

annealing schedule. Geman and Geman (1984) have shown that, if the annealing schedule

follows ω ∝ (log i), where i is the number of current iteration, the global solution is the-

oretically achievable even though such schedule might not be realistic in practice. Chang

and Lin (2002) proposed a novel method to adaptively learn the annealing parameter based

on the results of the previous iteration. However, it requires matrix calculation which is

limited only for special cases. In this study, we adopt a very tight annealing schedule, but

more research is required to select the appropriate annealing schedule for the LCPA mod-

els. However, the DAEM and DAVB have their own strengths and therefore are attractive

alternatives to the standard EM algorithm in order to discover an optimal solution.

Roughly speaking, when ω is close to zero, for both DAEM and DAVB, the corresponding

θi(s,c1,...,cT )
generates random moves with uniform weights and pick the membership of
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class and profile arbitrarily. As the annealing parameters are gradually adjusted, the local-

ized influences become more discriminating for classes and profiles and enable deterministic

annealing approaches to avoid arbitrary local maxima and search in the right direction. The

DAEM algorithm is more convenient to operate and typically converges more quickly than

DAVB. However, when the annealing rate is too sparse or the prevalence of latent compo-

nents are not large enough, DAEM may be entrapped into a local mode of the likelihood

function. On the contrary, the DAVB algorithm is less influenced by the annealing schedule

or the size of latent components, but it may exhibit slow convergence in the search of global

maximum. Therefore, more computational burden should be expected as the trade-off. The

most troubling aspect of the DAVB is to decide a well-functioning proposal distribution in

the MCMC. In the beginning, we applied a Metropolis algorithm in which a candidate for

the next logistic coefficient vector was sampled from a multivariate t distribution with degree

of freedom ν, βc ∼ tν(β̂, δΣ), where δ was a scalar value used to control the acceptance

rate. Using the t distribution, however, the acceptance rate drops when ω approaches one,

which causes the slow mixing in the Markov chain. Although decreasing the variation in

the proposal distribution by setting a small value to δ may alleviate the problem, it does

not make sense to sample the candidate values only from the regions close to the mean β̂.

Therefore, we substitute t distribution with a multivariate normal to expedite the mixing

by keeping many undesired extreme values from being selected.

Although many alternatives to the standard estimation algorithm could be pursued in

light of the LCPA model, we only mentioned only a few in this presentation. Note that our

exploration was intended to demonstrate a possible solution to difficulties in finding a set of

estimates on the global maximum of the objective function. We provided a limited demon-

stration using real data to elucidate the estimation methods. Our hope is that substantive
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researchers will be able to identify possible difficulties in estimation for the LCPA model,

and consider using the proposed solution in their research.
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Figure 7.1: (a) - (c) Tracking plots for classes smoothed by LOWESS with two smoother
spans (red: .67 and green: .15) from time 1 to time 3; (d) histogram of class progression
(yellow bars) and the number of profiles (blue bars).
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Figure 7.2: Histogram of loglikelihood values derived from (a) the standard EM and (b) the
DAEM algorithms with 100 different sets of starting values
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Chapter 8

Discussion

8.1 Contributions

Latent stage-sequential process is an attractive tool for many areas of substantive research.

We have designed several computational algorithms in order to develop practical understand-

ing and concrete advice for those who may apply the LCPA model to their own data. The

unique contributions of this thesis are summarized as follows.

Determining the number of latent components such as classes and profiles can be difficult

especially when prior knowledge is not readily available. We adopt two Bayesian approaches

to learn the model without presuming the number of latent components in advance. The

RJMCMC turns to be less computationally feasible because there is no way to design a

best-suited jumping rules. When the proposal construction has trouble landing in regions

of low probability density, a rapid mixing to reach the stationary distribution will not be

facilitated. However, to design an appropriate jumping principle for dimension changes is

not easy. On the contrary, Dirichlet process is easily carried out to predict the underlying

sequential structure due to its non-parametric nature. By relaxing the constrains on the
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number of classes placed at each measurement occasion, Dirichlet process helps to enhance

visibility of future patterns. However, in the profile-learning phase, Dirichlet process has

difficulty delivering satisfactory results because weak measurements make competing models

indistinguishable.

To estimate the unknown parameters, the widely-known technique is hill climbing op-

timization such as EM algorithm. This gradient optimization approach can search local

neighborhood of the initial values but it may be very poor compared to the global optimal

solution. In this study, we firstly compute the forward probability of being in a certain state

(i.e. class) at time point t and the backward probability of having a specific type of future

observations after t given the current states. Both of them are advantageously represented

in recursive forms to expedite each iteration. The forward-backward algorithm proceeds on

the basis of parameter updates but the initialization dependence problem remains unsolved.

There is a plethora of literatures aiming at finding a numerically robust parameter es-

timation tool to deal with local maximum problems (Biernacki et al., 2003; Reddy and

Rajaratnam, 2010). For example, Reddy and Rajaratnam (2010) convolute the objective

function by kernel functions to flatten the surface and reduce the number of local modes.

They demonstrate that the optimal solutions would be reached effectively by adjusting the

smoothing factor at each iteration. Instead, we implement deterministic annealing EM and

deterministic annealing variant of variational Bayes in order to find parameter estimates on

the global mode of the objective function. Two deterministic annealing approaches are pre-

sented here to overcome the local maximum issues. It is shown that both DAEM and DAVB

are equivalent to a generic gradient method which starts from the unimodal well-shaped

function of unknown parameter and by gradually increasing the annealing parameter, the

distribution becomes more discriminating and a good approximation to the global optimum
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can be located. While we have demonstrated the effectiveness of the deterministic anneal-

ing algorithms in combating the local modality problems, a global optimum is not always

guaranteed. The most important reason is that the annealing schedule is not unanimously

regulated; one must be very discreet when adjusting the increases. Generally, the schedule

should be determined so that the annealing rate is either passive nor aggressive.

8.2 Direction for Future Research

In the model selection problem, we adopt reversible jump MCMC because it is the most

commonly used MCMC tool by which we can explore variable dimension statistical models.

We already discussed about the difficulties in proposing efficient jumping rules especially

in the complex LCPA models. Fahimah (2004) suggested using a secondary Markov chain

(adding few fixed-dimension MCMC steps) to modify proposed moves before calculating the

acceptance rates. They have shown the acceptance probabilities soar even the proposals

are poorly matched to the true target distribution but the increased programming costs are

expected as a trade-off.

We present dynamic Dirichlet learning process analysis on model selection problems with-

out any covariates to predict the prevalence of the profile; however, predicator-dependent

kernel stick-breaking process has already increased the interest. It is utilized in choosing

the priors for an unknown probability measure (Dunson and Park, 2008) and variable se-

lection problems (Chung and Dunson, 2009). Adding predictors in the prior consideration

gives different insights into how the profiles are formed under the influence of predictors and

it is understood as a dependent Dirichlet Process. Future work should explore the model

selection for the LCPA regression model.
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Appendix A

Acceptance Rate of C → C + 1

For the split move on latent classes (i.e., C′ = C + 1), the acceptance rate α(C,C′) is

min (1, A), where

A =
P (Θ(C′,S) | y)

P (Θ(C,S) | y)
×

q(Θ(C′,S),Θ(C,S))

q(Θ(C,S),Θ(C′,S))
× g∗(u∗)

g(u)
×

∣∣∣∣∣∣
∂(Θ(S,C′), u

∗)

∂(Θ(S,C), u)

∣∣∣∣∣∣
= (likelihood ratio) ×

π0(Θ(C′,S))

π0(Θ(C,S))
×

dC+1
bC

× 1

Palloc

× 1∏S
s=1

∏T
t=1 g(u

(t)
s )×

∏M
m=1 g(um)

×

∏S
s=1

∏T
t=1 η

(t)
c∗|s

[
(1 + 1−ū

ū )κ
]M

[(1− ū)/ū]M/2
,

where the likelihood ratio is the ratio of the product of the complete likelihood values for the

new parameter sets when new classes are formed to that for the old. The function π0 is the

product of the prior distributions for model parameters, the number of latent classes, and

the latent allocation variables. To be specific, writing Dv(δ) to denote a Dirichlet density
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evaluated at v and parametrized by a vector δ,

π0(Θ(C′,S))

π0(Θ(C,S))
∝
∏
s,t


η
(t)
c∗1|s

δ−1
η
(t)
c∗2|s

δ−1

η
(t)
c∗|s

δ−1
B(δ, Cδ)


M∏

m=1

Dρm|c∗1
(δ)Dρm|c∗2

(δ)

Dρm|c∗(δ)

Besides, Palloc is the probability that the specific reallocation for those who were in the

class that was chosen to be split is made. The g function is the Uniform(0, 1) density. For

the corresponding merge move, the acceptance probability α(C,C − 1) is min(1, A−1),

using the same expression for A but some corrections are required.
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Appendix B

Acceptance Rate of S → S + 1

For the split move on latent profiles (i.e., S′ = S + 1), the acceptance rate α(S, S′) is

min (1, B), where

B =
P (Θ(C,S′) | y)

P (Θ(C,S) | y)
×

q(Θ(C,S′),Θ(C,S))

q(Θ(C,S),Θ(C,S′))
× g∗(u∗)

g(u)
×

∣∣∣∣∣∣
∂(Θ(S′,C), u

∗)

∂(Θ(S,C), u)

∣∣∣∣∣∣
= (likelihood ratio) ×

π0(Θ(C,S′))

π0(Θ(C,S))
×

dS+1
bS

× 1

Palloc

× 1

g1(w)
∏C−1
c=1

∏T
t=1 g2(βct)

×


∏C
c=1

∏T
t=1 η

(t)
c|s1

×
∏C
c=1

∏T
t=1 η

(t)
c|s2∏C

c=1
∏T
t=1 η

(t)
c|s∗

× 1

w(1− w)


T (C−1)

,

where the likelihood ratio is the ratio of the product of the complete likelihood values for

the new parameter sets when new profiles are formed to that for the old. The function π0

is the product of the prior distributions for model parameters, the number of latent profiles,
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and the latent allocation variables. To be specific,

π0(Θ(C,S′))

π0(Θ(C,S))
∝

T∏
t=1


D
η
(t)
s1

(δ)D
η
(t)
s2

(δ)

D
η
(t)
s∗

(δ)

×
(γs∗w1)

δ−1(γs∗w2)
δ−1

γδ−1
s∗ B(Sδ, δ)

Besides, Palloc is the probability that the specific reallocation for those who were in the

profile that was chosen to be split is made. The g1 function is the Uniform(0, 1) density

and g2 is theN(0, 1) density. For the merge move, the acceptance probability α(S, S−1)

is min(1, B−1), using the same expression for B but some corrections are required.
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Appendix C

Hessian Matrix

C.1 Diagonal Entries

Firstly, we introduce several quantities for the future use

1. θi(s,c) = Pr(Li = s,Ci = ci|Yi = yi)

2. θis =
∑

c1
. . .
∑

cT
θi(s,c)

3. θ
(t)
i(s,ct)

=
∏
j ̸=t

∑
cj

θi(s,c)

4. θ
(t)
ict

=
∑

s θ
(t)
i(s,ct)

5. θ
(t,t∗)
i(s,c,c∗) = P (Li = s, Cit = c, Cit∗ = c∗ | Yi = yi)

6. θ
(t,t∗)
i(c,c∗) =

∑
s θ

(t,t∗)
i(s,c,c∗)

7. g(i,m, c, t) =
(
ρm|ct=c

)I(yimt=1)
(
1− ρm|ct=c

)I(yimt=0)

8. δ(i, c, t) = 1−
∏rm
m=1

g(i,m,t,C)
g(i,m,t,c)
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Let fi = P (Yi1 = yi1, . . . , YiT = yiT ) and li = log fi. The sref and cref stand

for reference group for profile and class respectively. The elements in the diagonal matrix of

the Hessian for the profile probabilities γ are

∂2l

∂γs∂γs∗
= −

θis
γs

−
θisref

γsref

θis∗
γs∗

−
θisref

γsref


where s and s∗ = 1, 2, . . . , S − 1.

To get the diagonal block of the Hessian with respect to η, we consider the following

cases.

1. When s = s and t = t, the following equation is true whether c1 is equal to c2

∂2li

∂η
(t)
c1|s

∂η
(t)
c2|s

=


θ
(t)
i(s,c1)

η
(t)
c1|s

−
θ
(t)
i(s,cref )

η
(t)
cref |s



θ
(t)
i(s,c2)

η
(t)
c2|s

−
θ
(t)
i(s,cref )

η
(t)
cref |s



2. When s = s but t1 ̸= t2, the following equation is true whether c1 is equal to c2

∂2li

∂η
(t1)
c1|s

∂η
(t2)
c2|s

=
θ
(t1,t2)
i(s,c1,c2)

η
(t1)
c1|s

η
(t2)
c2|s

δ(i, t1, c1)δ(i, t2, c2)

−


θ
(t1)
i(s,c1)

η
(t1)
c1|s

−
θ
(t1)
i(s,cref )

η
(t1)
cref |s



θ
(t2)
i(s,c2)

η
(t2)
c2|s

−
θ
(t2)
i(s,cref )

η
(t2)
cref |s


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3. When t = t but s1 ̸= s2, the following equation is true whether c1 is equal to c2

∂2li

∂η
(t)
c1|s1

∂η
(t)
c2|s2

= −


θ
(t)
i(s1,c1)

η
(t)
c1|s1

−
θ
(t)
i(s1,cref )

η
(t)
cref |s1



×


θ
(t)
i(s2,c2)

η
(t)
c2|s2

−
θ
(t)
i(s2,cref )

η
(t)
cref |s2



4. When t1 ̸= t2 and s1 ̸= s2, the following equation is true whether c1 is equal to

c2

∂2li

∂η
(t1)
c1|s1

∂η
(t2)
c2|s2

= −


θ
(t1)
i(s1,c1)

η
(t1)
c1|s1

−
θ
t1
i(s1,cref )

η
(t1)
cref |s1



×


θ
t2
i(s2,c2)

η
(t2)
c2|s2

−
θ
t2
i(s2,cref )

η
(t2)
cref |s2



Next, for the diagonal block of the Hessian with respect to the response measurement

parameter ρ, there are several cases to be considered.

1. When t1 ̸= t2, the following expression is true irrespective of the relationship between
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k and l or c1 and c2.

∂2li
∂ρk|ct1=c1

∂ρl|ct2=c2

=
(2yikt1

− 1)(2yilt2
− 1)

g(i, k, t1, c1)g(i, l, c2, t2)

×
(
θ
(t1,t2)
i(c1,c2)

− θ
(t1)
i,c1

θ
(t2)
i,c2

)

2. When t = t, c = c but k ̸= l,

∂2li
∂ρk|ct=c∂ρk|ct=c

= −
(2yikt − 1)(2yilt − 1)

g(i, k, c, t)g(i, l, c, t)
θ
(t)
ic (1− θ

(t)
ic )

3. When t = t but c1 ̸= c2, the following expression is true whether k is equal to l,

∂2li
∂ρk|ct=c1

∂ρk|ct=c2

= −
θ
(t)
ic1

(2yikt − 1)

g(i, k, c1, t)

θ
(t)
ic2

(2yilt − 1)

g(i, l, c2, t)

4. When all subscripts are the same,

∂2li
∂ρk|ct=c∂ρk|ct=c

= −
θ
(t)
i,c

2
(2yikt − 1)2

g(i, k, t, c)2
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C.2 Off-Diagonal Entries

To derive the off-diagonal elements, we start with the Hessian with respect to γ and η.

Similarly, we need to consider couple of cases.

1. When s = s,

∂2li
∂γs∂ηtc|s

=


θ
(t)
i(s,c)

η
(t)
c|sγs

−
θ
(t)
i(s,cref )

η
(t)
cref |s

γs



−

θis
γs

−
θisref

γsref


θ

(t)
i(s,c)

η
(t)
c|s

−
θ
(t)
i(s,cref)

η
(t)
C|s



2. When s1 ̸= s2,

∂2li

∂γs1∂η
(t)
c|s2

= −
θ
(t)
i(sref ,c)

γsref η
(t)
c|sref

δ(i, c, t)

−

θis1
γs1

−
θisref

γsref



θ
(t)
i(s2,c)

η
(t)
c|s2

−
θ
(t)
i(s2,cref )

η
(t)
cref |s2


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We then derive the off-diagonal elements of the Hessian with respective to γ and η.

∂2li
∂γs1∂ρk|ct=c

= −
(2yikt − 1)

g(i, k, c, t)

×


θ
(t)
i(s,c)

γs
−

θ
(t)
i(γsref ,c)

γsref
−

θis
γs

−
θi,sref

γsref

 θ
(t)
ic


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At last, we derive the off-diagonal elements of the Hessian with respective to η and ρ.

There are several cases we need to take into consideration.

1. When t1 ̸= t2, the following expression is applicable whether or not c1 is equal to

c2,

∂2li

∂η
(t1)
c1|s

∂ρk|ct2=c2

=
2yikt2

− 1

g(i, k, c2, t2)
R, (C.1)

where R =


θ
(t2,t1)
i(s,c2,c1)

η
(t1)
c1|s

δ(i, t1, c1)−


θ
(t1)
i(s,c1)

η
(t1)
c1|s

−
θ
(t1)
i(s,cref )

η
(t1)
cref |s

 θ
(t2)
i,c2


2. When t = t but c1 ̸= c2,

∂2li

∂η
(t)
c1|s

∂ρk|ct=c2

=


θ
(t)
i(s,c1)

η
(t)
c1|s

−
θ
(t)
i(s,cref )

η
(t1)
cref |s


θ
(t)
i,c2

(2yikt−1)

g(i, k, t, c2)

3. When all subscripts are the same

∂2li

∂η
(t)
c|s∂ρk|ct=c

=
2yikt2

− 1

g(i, k, c, t)


θ
(t)
i(s,c)

η
(t)
c|s

−


θ
(t)
i(s,c)

η
(t)
c|s

−
θ
(t)
i(s,cref )

η
(t)
cref |s

 θ
(t)
i,c


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