if PROJECTIVE DIFFERENTIAL GEOMETRY or K CERTAIN. SURFACES m ASPACE or mun mmmsnons THESIS FOR THE DEGREE OF M‘ A. ' PaulL; Dressel . 1934 ‘ - f... P..mt.l...i.ll u‘u‘i. ‘ ‘ 1 : ...1 .Q . ... p . A v . r . . ‘0 I . . .. . H a). \ ' I A g-‘ . V b C Q‘S‘c'.‘ P 445” ' ' at Mk1 ‘ ‘ .m (7 ¢ ‘ "T~‘ .u- W'- * W. . « 1‘“ "two . l,’.'rv"?"'- “I '— ...A -. .-, -.fi-Y MSU LIBRARIES .—_. RETURNING MATERIALS: P1ace in book drop to remove this checkout from your record. FINES w111 be charged if book is returned after the date stamped below. lattll‘Tfi Innu '0'}! l. . r . cwaxmjlq llflc N La? r. L- F. v in» {41‘ 1.. our: ._ 1‘.~:\ .fl‘ Jn.‘ :LV mm m -.: «7 ._4~’Al. . _. D .. _ ._;¢-LJA. Lti‘J y' LJV‘IJ‘ 11L 'Z‘Tf‘T‘"TPY T‘* 17““? 'v are “Tn-‘TSI‘: NH???» UJ. J-.‘LL LA -‘- ’*k- 7'1 7‘3“"? TfiT=H1rffiTrx~v1I :0 "~T n "D «_ "Hf! r‘ IA H C- 3;; UL" .)¢L Add. L-.Q.L‘u... C) A Thesis S'lii'lttvv‘. t3 tat“; Ff‘jox‘llty of jICfiIJAI STATE CGLLZJE of AJRIC ULT"R€ AID APPLIED SCIZNSE P3 rtial Fulfi lluent of the fi - . “ 4.3., A- v- mequi: ments tor the De fee agter of Arts '“U \0 L. t4 L“ {‘L ' H (D C’) U) (D H )f7 ‘J‘ _. ‘ V’ o H, -‘r- W—P—u—vr—vw —’+.‘ - ‘- ..-—-.. _————v ‘2‘ Tn"! “n “U ”#1-. < C): L ,_. «.2- lnLRTH. 133.- W W i Y3‘ /'~\ by "E” U i \3 hr .1... 5 fit at") r. a ll firm kit-“1'7... M» 0 VA}.-. Doct fi‘rr "(fi'C’LP-fiD/fi‘ 5“".1‘lr JV? 1— 'J..-._JAd T 7 --~ ‘1 » ‘ (“‘1 1 OI‘ '.T:.;'.LT'-Ofl uuf GI OVC ‘ 9 _ ’ ’c H 1 ' 3—. eet13-s and L~Lp ate a Jcr t.1s t4031c- PRCJEC IVE DIFFTRZ-T1AL GECZT RT 0? CTRTAIK SURFACTS ~.. Q ~.r‘<‘r‘\ A 1 (\T‘ - ‘fi;rfi'r.A.v'/_N Ill A c1 3...); vi“ FucR DI...L..O.L\_.1.Q 4* I 3 n 14"": A" ‘v ‘r‘ v .- "L — Iv /.H‘ -' " av 1n 4 VulCh sgstdlns a Cufljhumte not. Tle lotefilacll1tj \, j. 11., ".£~.;:'.._,.. , .L'. 4. 4 :_:4t co editions for tLe tnIee c111e1euo1al equatlons lelJ- -: -,-< r-, T, “‘ fir , I" ——. f , . r3 ‘1— ‘ -.. c; ’11 ‘ 1- . —— 1J3 the buIIflCS ale cer1vec. Tue o1f_elential egoat10Ls co lote systen of invariants is found. Two COVPriants points in 8*d1tion to x , xm, xv are found and a covariant local pentahed_'n of rele1cnv- 4. .x‘ 4 , ,3 .4 - . - V,“ - -0 -, .- etchlleuéo. Cahon1cal exyans1018 lor tse coord1: 1.3t 33 .9 4 4. .. ’1. . (or, ,L‘ ‘ ,,. ° * _ . 4 1-4, 1 01 a p01no on the surtgnc are OetclJlnCO- Certa1n Lats . -_ . .1: . 1, .4 1* ° -- 4. 4 . n44): 4.4.44— on the 81118ce are c1£c~cs:c. FlDullJ general all 8: 1t '~~~.--—m ‘-.° . ‘1 «n 1- 4,..c'" 14 m Lgyclauac11cs ale louna and orlcllj are c cterized- 23. T; .1 LITT‘CIZT TIAL E“ TATIOIIS (l) xi=xi(u,v) 'tzl)2)3)"l)5. {.13. . 1 .. 4 ‘_- ' 4. 4- 1 ., 4.x . .4.‘ ,4 T .3 1Ja11'&.;7:.btrlc net; .LS CI. 03,1311 U"; C") ‘ Cu ‘. ' t \ ~ .— I“ -~, '- Vv .044,‘ L: - .0 suluxce. Tue flue 1czlco10ns X; (‘1 Fl (I) {'1 L) F—J \. r) H) —L‘ fi n“.-DO-‘\ — \+.l~ — ‘ ~‘I '. — h .. - l . W ‘ __ - v ‘ ~ '1 'u..‘? s. Etc; 0: pxl; .1. fire“; \J.LC"~1 L7(4LA(-‘tJ-LJ-LS L: E. 1' e i :1 .L‘. - 9 -'u ’1 . r '1 '_ , 9.1. 'I k-‘JJ 6. m- (4) (I! xuuu. : q)(l-ML 1' lngv +3qu +MXV +JX) quLV 2 a‘qu—L. +LXK+MXV+DX, xuv 2’ (walfbxv +QX) / / qutv 2"— bxvv-r L’xu+MXv+ DX) I I I . xVVV :: xxuu+ JXVV '4' 1 Xu +WXV+JX ) L: 0—b+c.+a.u) LI: Chg-ray , M=b1+b¢ , MI?- “b+¢'+b"> I [Dr-bead“) D=o.c+cv) .VL _. f n .9 ,1 '1 .4 .44., ,1 .9. 4.1, o-(3 L-UCOLLLL and. 100.1%“ p'elhfl. Octrllhsa "”2 - .. rsntistion. TLi (0 kn . s: t1; 3 sand it 1 ans “v+fly=%+L) Xd+c§D’+w’c. +dL=bJ’+ L'c,+ 0;, fl; +pv 4"“ =90.) yaL-tc‘L’ +1,“ +o.\~\’+d’=, 51%. LICL+ L’v ’ «Lav +fl1'=L.t+aM+D, xv“ sm’+m;= bu w; + 0', °‘ M +16+MV+J+flWI=am+bM+Mu) “Yd-Ya +1“: bY, OLD +c1 +4., +/BJI= ad +cM+ Du ) flY-f-J‘L: bv +Ml. grow the first and last of (7‘ we find rs°4‘l7 tfist 1 {1.1. (J/ OLV +1bv :: (fa-+- 310,“ 11131109 from (4) a finction 9 exists 511011 1:56:13 eu=d+1b ’ esz-f-QQ‘ . 7—) B ”Asmar-da“ A \ “"’“*“/37\L) u= Qu‘5A“) .. 3 u ‘. “1:0“ 4’1“), C“ %) -—~ 7. [3: 63 W3 ’ E: 1%“ ) 9 1: "L1 1-0-4212- ¢uu "- _____Q. 3’: [I at A 5 .G < + h f I u 4.? c T- (N "‘ ".'.|"": V‘iyfi.‘" CC 1.3:: i y'fii 3 1+Cw c] *fiffi) P)" t" 3 ( 'fi-lCW 31‘1“ .‘p "t \ f1 1 ‘..\_, -L L‘AtLA ah. X- ‘L‘LJ \.'.l. J —L V‘ b— V .4 km .1- ./ L k] ‘-( .L ...r_ U .I .5. "J ~ .1 44/ ‘5 n 1- _. I .1 _- .4 (o) u; t c substitution. 8 u' “1 fl, 1"“)‘0: L) M) D) an“) '11:”, ¢1€ J’Y)W;£’) £3Ml) LIID’) b’e’ |,3)5') (”’6‘ o ’ V: Wil IF" CD This substitutio :3 T ‘. .9 I -‘ .‘ I ~ ", J—u . v . ‘\ .lso os 01 use star 1; .Loaigih; C ‘ I O - -._ W -‘ . V . .f a. 5 q: r -\ «v— Ix 31 . o -- -. [a li.w s.nhst1chl e1,1eLL1Jns- &A '1 E. .— I’lVG’ l‘lc .L TLC-V :1. R I . 31 Y o ‘T? 191! b. -4. ad V '7 .~ 3- T 1'. '31.?- 1C. .-" P! UK Du PV=6V+ Ru eug+ Pk (12) van t. I’ 18.11 .OVE A k €136 S w 8(10 OI * . 4. u .01; tlto i-EL. 00 fig 4 . Lgv :r t” Li ;-‘ .1 ‘.L 7 (ll) u“ OI’ t ‘ t “LL-h 1 Ll '! y} .LAJ. ‘ .nq is f I‘ ‘1 L1 - (\ k.~. C--QOS€ ICLFFkJfik at to . < ." -I'f‘ -.. h . 3 L.) LLJ. J J- \.l l (a ’\ V / rxl .; ‘ .A (1/. "Q vb 0:01 w‘rb -lv for t K.— .(‘ - 1“}: \r.1“" I (Lg. tau t] l I grad +0 LAVU, Y 'Q“ . 3:13.10 f‘l J l f“! & -i:fl Fogqs 1 f“r .‘ - 4A‘)‘- Lax-‘U. \2‘4. k1 \. ,‘1—,-. - 1- tit-e :1; 1' r. (16) x: c)? radon , V: tva) , J... - ' , -‘\. -= .1..‘ ".1 r‘ a “ ‘ ‘L s I '1’. l‘ 1‘ f . r! ....v-sl;. c. is anon-4:510 Cons cant, 8.11:: 4) (-1-:(1 LP 8.;v 1.4 g Q g: f, o q -I"..\ . 'L .0 ”I ”-.. ‘7 ' “i q 4 P\ r- " ': II-' '. 'r‘ L‘ J _ - J" “‘ 'f L~LLJl biol .' .L LALLL/t...\)-ts‘ u; tut? .Ll.'-L.LC-'c1utx.i. E‘ T 0-3 it (SJ (2 (3 *6 L4 L 3 r-3 L 1 (I) »< (O *3 ‘1‘] C) *o H 3 1 r a T‘ ,. $13 Fi ’ 4 h] (0 / JSLILg, t- e 11‘1varis1ts flJYJJJJJ a.) £56. to 1.0“. 13100063 to find the complete systen of invariants. For t4iS _.' _ I) v . I" u . 1-. P ‘ J. :..1 9.. gives om 0.1 1:117:11 1:111 ts H ‘ ‘ .' .- ' ._.‘ ‘ - ‘ v-45 . : I: ,.~ ‘ - , , -'. -1.‘ , I _ ' ‘ ‘.._ J 1.- o-_v:; s invoi‘lwfis :113 L11 :-.1, a») he.) 091$, gy ...ay :13 ..,,. -' .‘.. . " _. .L 1-. ‘ ' . " :y', ..' .. , +. _. ' ! - 2 41‘ 12;-L.L(iu.(:‘.ly c: e; ozol‘jiLeon 9 :1J 110 us also , t: _. 4 .11 ”Cue q ‘ ‘. -- .C' . ' , ~. . ‘ 'w 'x -‘ r ‘. ~. in ~. 1': “a ,— -\ h." v.. —‘ ‘51- ~c‘__‘l -.- LT‘ - ”IDLE COCJ _ lClelLtD UL: Laliiu. 1:3” i1; 44, -..;.1-.d‘\=’e .LL‘O..: OLA) integrcoility conditions w = £05) , «4:42), 1’: {3(1) , w’: 49“), c s; the 010183 0‘? R x: -:Lb + “Lg/ax)“, cf: ’24- + 3(1’5’68)v . p, (.73 A ‘nu F:’\ 7‘ - " 7. ‘t“ +'\ "4‘ ~ 4-" m V;-VC/ L" {Q ”J4! J' b ‘_- -L b.-.V' Ulfgt J; L1,: i'ri‘fii'fl. a.) b)('_) [3)Y)d) d’, all 4:123 C*’):¥f‘i”iCi:1:’LtL—s 3...: {2:72 5:7"; (stormined, Buglect to the inte r oilit: coniitlohs E:.t 3 szt1o 1cr c 0138 ii I? . A L 1?)“: £J:*““nlg; e C AWL at: -ot fig t“oicffi*“ u 10 olg :rto: 11“1_£_ ;3;yct“va 2 dog vf fo r :- etc- 9 _:_t.: 11“?”13 to a.) he, fiJY, J, J’ are :_jvo11 as; ftmctiorzs 2:1: 4.; anc- v gub*eot to the intelpnoilitirconfiitions. Let us introduce two symbols of operation (19) '- b Au ’ — a. 3-9 ) ‘ EviCortly the functions V(A) ) V(b) ) V01); V‘(C) , 17(8) , Um , Um, WC), are also invaritnts- In fact the trans fanations by (13) or flag): U3) ) ‘66) 7.14%? ) iiai) : ER?) fiUE> : “EEQQL (20) u ‘3 4! g u E x; 1'36") - __ q-.- .- : .0 1" -\ ‘ ‘ . ' «‘5 “ WTWI; itpetltxon o; tuls process also LJ1me us a“ 9-1:. inruriant. From two invariants A and H for which " ' A ~ .1_ A :. —-1 = another, its Wronskian, can always be formedv*' We find Ava «1 ._’Aw4 «1 H "' H ) whence by logarithmic diffs ren ti ation we find that Mariette; 1e) Hence the function (21) (99)“) = MHAu‘lA Ha is an invariant for which Au (28) (EMAM) : £§:7:%+' ' We shall speak of (HJAQ) as the Wronskian of H and A with resnect to u. . By combining the Wronskian process with the operations {7 and.V7 , it is clearly possible to deduce an infinity of invariants from the seven original ones. We now proceed to show that any invariant is a function of those obtained in this manner. , , I We lave alrea .dy snovsn tnat a.) ch,J)d’ gy may C: CD eXpressed in terms of the seven invariants (18). Since . . . I . all invariants are functions of 0L, '0, c.) did) fl) y 8.21:; tgeir Corivatives, any inveriLnt may be e: pres . ed as o * . _- .n- W..- - q ‘5‘ E-J.Wilczynski, Progective Dirforential EoogetiJ bl Curved Surfaces. First Keroir; Transactions of the American Istie.3 001 Society, Vol. 8 (1307), p. 231. A Hereafter referred to as Surfeo. (D ‘5!) O function of (13) and the derivatives of these quantities. Introduce infinitesimal transformations by putting (35) 4’00: u+Hu)§t , WW) 2 v+ 8(v) <51: . Hence ¢u 1“” Pu 6t ) Wu. “:— O ¢v:O) WV:‘+8VC¥tJ ¢qu-¢vq’u: '+(‘Fu+8v)<§‘t . The infinitesimal transformations of (18) become (34) 60;: Ell—CL: %_ 0,: a.(I—3V)Jt -a = -gvotJt’ ébe—«Cuth, (SA: —3fiAJt (25) ’ (SJ: ”3‘Fu46‘t) SB: ”33‘186‘17) SJ": 'Bng’5t) (SC '-‘— O . The infinitesimal transformation,<§F7, of any function F of the functions (18) being known, the infinitesimal transformations §Fg_enui<§FQ of its first derivatives nay be easily found. W's find that 8F“: £-&E: 3_(_____F*JF)_L.;;t-a __E.—. 3§5F)_{upu&_) (35) i Jsz- if- 1:“: MR“) 1 -AE: alga- Fat. dv 3w ”3th o‘v 9" V Thus we find that J but : “ (‘uu bf 1““ bu)Jt) Jbv '-'- " (8v 4' (a) bv (St) 61“ “(3" +4“)a“ 6t) cg‘L\/'=‘(gvv‘l'1'3-fivav)cr_t, 61“, Z -(3(ou+q'€u J«)Jt') $dv : -(3fu +8V) &V 6*, <2?) 84% “(m-«ma; e, 54",: 4331,44 43,4351: 5A“ -(3 411A wages 5A - -(34 +351 5e 38“ “(fuuC- +2; “(05);" J8v ‘ ‘(38vv8+‘48v 8‘96}; SCuz -‘(;U.Cth) SCV~“ “SVCVs-t‘ All absolute invariants n" which involve only (18) (3. 1'1 d their first deri vs 0.) ci- <$ es must, therefore, satisfy en of partial difier ntial equations obtained ’3 “ .'.‘ '. 1' ‘1-I . 'c . 'r‘ . J.‘ "‘ V . " 'L" W!“- 'N'?/‘ ' ~~-" ‘- . s 1 V iorgimmg the 1niinuiuesime]. t n31:u1n+u1on 'ncar an arbitrary function Tr of these arguments and e uating t are "0 fi.‘ dispense with the latte r tno eoua. ions. We omit the ’d O l“ 0 zero the coe fficie21ts of ¥uu3gvv3€43c3v . If we looking only for relative invariants, we may of of this and also certain other necessary dis— ussion since it may be found in W’ilcs ynshi's memoir * q in exactly the for n nee so here. 8.1” 021. Form the infinites i2nal transformation <5" of an d- ' 4) rory urction 11 of (1a) and their derivatives é‘rr=‘-:-%_Ja + fiJb+éfiJd+i3 {er-r %"JA+%%JB +318“ + g1 Ail.“ + éfiflfluéfi JJ‘+ +3 “dim“ +-%—5Cu+ «9353354 +—31vaefb +33% +9433 SJ +é—g-JA +43 43 +3315“) Q1 , A a (28) = (4&3? 4.35%"; ~3fid 35-33%! 3(if-satuAillA— .. 33v8fi; *- _‘F“ 404 bill. 56-14.“ 5“ i o‘éf'wgv -‘uau%fla ’3'Fwdg—g'u-q‘cudufi-‘L ‘- I I ' _ 3 3M- swans? arm/at- was... staa—gu-tagg .. aficu if ~3w°~5§ ‘13V6‘V3'3‘ 43.15.]? -42“ b‘, ELEV-34m 5:10", _ a 003’ , 3“." Si “33"”? 3%}; t‘fava’vfi- -31‘ Avéfl- 3A ~3VAV 9%., -33w8 5-9;- 4QVBI? 33V -C3v 31%;) 31— . E'J‘Wilczyfiski+ Surtacas. U9.au4,255. TT' (7 .4 U queting the coefficient obtei 0’ b E4 (29) 9/ 6 Q l 0.. 9.4 I v+31? gs; All : l C!- ir t d iva ives are isot U‘, 1 Q) ff) 7r .1 v 3') _ '1 ' G- p, .LL;C,- endent variables I cepenoent solutions. (30) 434%311+ 3A 1elative invariants tem of two equations (23) w" Thepe 1, 11,4, 4; A, B, c, we, no, MLWC), 1761), a‘ ‘— 01 cu.“ 3.116. 3.9. AAu. +38 3%., involv' O O 7‘ 1' "I l '. ‘L k '. only (13) and thei ric solutions of the complete 0 '1 'rvwv .5...L V ‘ich olve t enty—one "(a ADJ» ,1. + S ‘ V9 t t1 efore nine 1n— s- may be selected in the for; mama), (01,141,111), (8, at), (1,1), (A, c.) r11 (3 V ‘ —,. 2' ' —u - - ':l\“ ~-r T-LCt-e l 01691'13' 11251.net} ent- w‘ ‘1 ’3‘. r" ‘L' . . ‘ 70 ‘4 . I ‘ v“. . 1n . \ V r_ e ‘1'“ All ichblVG intaiients urlCu involte 0130 one 3 . .1 'I ‘_C‘ C ' :‘ ' . ‘ -. u 4‘ ’ I secoio CSIlVothBS i (1:) W111 oe isocwric solutions N'? - 4 - 4" -- V~-- A— J :1 !‘fi ': .~ . 7‘ ,- ,\ I‘- ‘ '4-- U1 2:. Canslt? u -‘ E- St: '31 1011: 1-16.01) oil-Cicrl t 311;? 1110118 :7 .L- 1, ., H,» _ - y 11,, . 1 ~_ .1 ,, :_ .4- 1n iortJ—two ‘o‘laulBS- dense onero ale tiirtJ-eiflnu ', - 7 .2 , V_ .. _ V, 1.1- -‘. ._J_: ,-V 1, '1' _ .1. - \ f 4-" 4‘... Li'or til-41‘ Li; L! b‘Jl-. d... Jl_|‘:3 . t. L L L- ) k: .L C‘ v \A U. ‘.\,\I... y . «1“ J— .. »- w. ~, . ‘ . . I z\ ' ‘ . 1“ -v I; U..J.LS pLOC 4L)??? J8 tll-lls'4M’ .Lt Cr‘ll Lje 8-40‘M'Il LI'J J-‘ .1 4. - -' .1 .,-'+.“ , .L“ - .1- .1-‘ - 1 1 ._‘ 1 U1-L .(L blbal 1111,11» L11- Li. 1 L, 1 1 1-1; 7I<+5 ‘ 1.1, ',~,11 . - .' ,z ,...:.1_- ,1. 1.0 ‘ nil-ALT. 5 .L uL‘ - \I L lh- -\V \, L“; _L hL/ U—«Q '(tk Ix. I: Lx \- \J-ln‘V Us C/J- ter 4— a - ' . 1,. -2. .,.1 .7 , ' JR List-Vi LL61 ilub (1'3) 0 1111.33 t..C to 9k 1 1'1. 111‘: )1 4.11\.I:3..L.1.w-iun3 "‘ "T "' n ‘ ‘ - r N 1" . I '3' ~ . —,c" 1 m \_, J- C.r.l.( LJ: 1.68:) t .‘C I]. 11‘...‘ (,g‘xALevL to “ .LS V1 7. (31) (7k+5) J- (7H +17" +I"/) a. K=O . « ’ ' N. “Tn —- r. (.7 E'U.',-";.L pL:;.1S;'.l, 13.3.1.1:130680 ‘r,p. Lu1,wuuo b. A wCVARIAhT PSHTAEEERCJ ‘f‘ --\ F- 1“ - --,J-fi '- ”-1 7; 4—~- 1‘“. ~c'~ I i'\ :AaL‘»\ C; Xu (ind Xv CO'VC—irlai.ub0 .‘ue A-C‘V \‘ ‘u'.'.‘t;,'—L €4.1JIC tL-e +0 v, 1 U0 Lv-L‘ fill-es COVE:I'ia.1;t {mints x) wav' T220 .222: @0111 required to outergine a Covariunt pentahedron of reference. Tgeee we proceed to determine- T;e covariant point (32) e: fixvv +""\xv J-‘ . + ,,' ' .3" f. J—r‘ .. - .LV .t m -1 .. es. v-0 peer“ e1; ‘..-..J.L,A- the L.(..:1bc3:;t no ;-e Valve u-c, Par-l k4 H. (H H O (13 6') d- : I (D O (A. O L FJ m d- '— y 4 't;-l'OCLc".:; ".12: to the curve _. xv .. S3 V:C.at X . A £111 a CLertcterization may be jade for tge point I T use Characterizations mey be easily verified by ~ ‘\ . ‘?\ totlcing that from equations (~x XML“ -o¢xu,_~l xu—Jx = (3' xw +VV1 Xv ' 00’ - Y)! +,(’ XVVV "Jxvv-w XV- - “u xu" q Tie points x’xu’xx’ed(y nerefore, are coveriant \ .‘f.. 4— r- .3 do 51 a -‘-,‘ 7 “4-4; f\ o I v. —\ 0 .~ , LuJ’ipS (lib. JO...“ tn: V91 wees C; 8 COVRllBTlt pGI‘tc..-‘-C- {1.1 T7" 4-\-- ~-1- . ',.‘ A3 L.... .A.\ - ..- \, AVE]. * ~ 7‘11 ~ e - ‘ U. VIOLA-1 0.1.1 .40 LI¥L O1-.N)d- dLINJ - \ ‘ '-| ~ . 3‘ 0‘ . ’ . r- '5‘? ." -v “ "‘ - N ‘L > \O, 3 f‘ x '. J' P. j“ T.--U CUULLLLMJJJCCS x); 51.1.} EJUllib X ilL4Lil d lJOJ-llb PK \JLL 3"“ S ’5' ' 1“ 17.2“".wctnfin-‘f- :5 ‘~.v~ '1 0-5 \ ~ "_‘."",\v‘r‘; ~ gut, \Afll'. 1.3 L £.'i.\.~,~\.i--~v'.3 1. L4;‘ L1. TLA‘iUI'S 1,..x‘JU4LvDJ—Oli v (0 ‘2 J a f‘.) (5 ~ of t;e form X: x+ quuH— vav + (XMLAuz +514“W uuw+ xwavl)/2 +... h". \1‘ 7.x," -.—~ , 7 .- ' r 4-: ,‘-. ‘-\ l ‘3 ‘,~ . IV ‘I‘ 4- . -‘. ‘R f‘ . ‘ 1 ‘g —.a 13,;iuuss oi equetiods \u), tnxaeagM-tious outeinea.ticie— Iv ' 7* 4—, 44-2 . ” ' “is: ;J_,_ 10;; together hit; the lutehlrluilibw' conditirus, and equations (38),(35) it is possible on e;-;£_~1'ess every derivative of x uniouelv as a linesr eefi-inetion of X,Xu,Xv, 9’0” . Hence X :1113 DC exm"e:sse\ ,, 1- z. -‘ Al,» I (a 'Q I v“ r‘ t A- -, I ‘9' +-:‘«‘ 0 Ir» .A -o . ‘fi 4 J— }. 7‘ "'A O .LaA v'i ULLV.LJ.1(, n‘JJ-L_Jr$‘3'1lo L‘ts L1.) 10 COOI‘KA—LALQ“ LS 8.).f VA \/ '~‘.Q-¥- 11‘4- LJ .LI,).Li‘.) (36) x: :3: y: I; 4:: 7‘! .15 V: V 1‘ x. :1 \. 2 II z A -1: A 2‘ A .L -0118, 3 X M. ay LL +¢Au V 4 5(1 FY)A.LL +2-L(L‘ %’_1C)AUIAV I 4-1:. 2. 2 ALLAV 1...“) Y : Av— —"‘—"Av"+bmav 4 .g Au‘Av +3E(M'- big—ac. AuAV" (37) + {~(MI— %—K)AV3+-n- _, i 2. g 3 Avl-t—(JJAu-s -+ 2 ll \Zit ‘9 AuAv" i 3 a? +GflAV+H . ‘ 4'- W v I" ‘m\ _‘ t - A g" C' F '1‘ A1'L\j L4- ‘— V‘A‘JL -éQJ-’.)o--S (U(/ ul- it.) t.) ‘DK'A-ULC UV, (‘J LIJV V; n - .- av fl — x r "P 7‘ ) ~ g f) a 1 \4h‘ \ lev-l .1le ‘Ur E A--\A w S ‘. 1" .1 |_, ,L-nyk.) 11‘ x Q&-KA izw tlat tie expe;siexs (e7) satisfy tLe equation 0 terms of any desired ord3r. B? tiis gethofi we obtain 2: fixt+iy(%+—§)x3-§? KN +’cl§‘(3+'”“ , 5'3Y1'*2L"3* abp Xx *Jp (5/ V3.’?)‘I3“‘ . P~ V a ': -, "or ', 1“»x "‘ I 4". T.‘>: Eaélblar-lSJ-OA'}. for % .ijjJIk/bk_nt8 ULAG 83 " v:¢iC:: is LII-Le (VJ‘1"..'1- fir t~ A C.)“a4-fi \C‘ ‘WY‘W'CI 3 t) '~Vv “t fi {‘53: \r‘gr +l'11 L‘L} LA. O.‘ C, n.\_,..[.lC‘CtL, ILn/4Vu( L‘s L C “-1.le (A *A — l‘ - _ ‘ fi '5 .. 4- ‘ -‘-'- A 10 eqj'tiens £1), n t.e nei “eel! C( on t e seine x' is —— -‘ .—- _— 1 11. n — ‘ 4 F5 . "ffi — "'-' 1x~+ + +~ -- ’- -‘ -.-~-: "w CC L. '.'k_' LLI L; 0 u--e S L -‘L‘ ,7 (.74 ti-L: ‘ '_'. .L C1) (1-4 f 0 — 4—— — .- 2. ~Q°+QIX+CL1x +..~ Y __ 1 ‘3‘ co+ 91X“! 31X 4" ' ‘ C‘ L 0 O C) H [G (L H F.1- ('D U) F... :5 cf- (b i;e::e-uoe ocaugueerl t;.e ts“) ~\. (“J L) * .' ’4. f') G '-i 3 H -< P D Ft: H C) (J c+ *4. {J H 5'. H powers of ‘x covic be L‘ J" "\ " f“ ' 4" -:. .' ~*' '\' a ‘Lj‘ ~' 'I — v .D --- .: > ' 'V V' V “,'c Oubaiuud to iurt_ei MAC studt oi tflis curve. :onexos, a I " - ‘ + r - J— . L. a J'- +'1 ‘ ‘- LE) siaxli zzoti Colitizuie t; b Eiuhiflf ;A3re. n if"! -- *yflrrr“ u rfi I: '1' 'r 'r P \ 1‘1". 7 . C‘JL| \1 _JLK-‘- Li‘J I‘I‘ LLTU '1’ J- 31 .‘ixjgo ~V‘ I o ’3 J. 1. n I _ v Coesioer two oistinct Certes CA tively by the oifxere; :31 equitions (39) *--4 x ‘ '“I ‘. fl I-: 1' ' 'r \ - ¢v - my I '__ "v VI ‘ CuiVCS end 3d faces. Tue UAlVb s1 3 oi VthJhO Pi ss Tye osc eel ting; plane to CA is defined tic-:3 points /_ 1/ 2 (40) X , X -Xu+/\xv , X = xuu-M xw+2athu+ (A’+1bA)xv +:2.c./\X. Tle local Coordinates of these points, sing the A. . '1 i (3 ‘3 r/ JCLiYe‘LBV r‘f‘ sent: neoron X, X“) XV) qu) 1' “T'O 4-.1 va (41) (5,0,0)0}o)) (o, l)/\)ojo)) (ask) 2a))1bk) 1) A1) . w- ‘ .4. " .. ii u.€ iy'perplane Z 5’. w o \ I“ " ’ ‘- ~ 4’ 'II‘ 'I' ‘~' ‘4" 1 f“ I "" \‘f ‘ ’\ . 4' " * : ‘ J." 7“ "‘ £7?.Li_‘t.;s U-.IUIA{LL$ LLBLC tn. ‘1'?“ 14/.) 5-11 we, lb: €31.1th .-‘Il 'iL-lgu ..«u‘ Xxx—x3 + (A’+ 1b) —aa.,\")x.,:o ) 1 _ -_ ’5'; -?,'-\’p .3 -‘»'J.»\ ,4— :u 4'."\ "\ ‘fi “L.- "‘ (‘3‘? C '3 ' Li.'L‘l€.Lp.Le lfltc‘loLCu .Ln U.;L', USleC.blflw planlic t0 A (,1; it: plane to CH at x has t;;e equations HXL‘X31' (u’+1bg—1mH’)Xq=O, H‘xq -x5= o . Sir-Ge CA 82d CH are distiz-ct it follows the :1.“ o .wv ,__;_- -. ..-.'. J.’ A .L.,, no, :A .. 4.“: .., Re ......LL;.Li-. tee BCLMtlUllS oi oi.,.€ t .o i)lt..es um; i bulb Condition they are Axl -x3 + (Au-I- AX, +1bA~anz>Xq= z O ) x1.- X§=° , (45) Axa + X3 + (KHAN, +1.5) +21X")Xq :0) (458) A1 ‘ . . . ~ o n a - 16W“ W~ , 1... 1 ~~ - X 4' t‘v‘ T;.‘.\Is.‘\1 p 911ng lam“ beut lll wilt? 1.1-3. 334111.12.) L0 1113 “pf-AJ- LIU-‘.1;L; (46) y : » (2.5 +41%)“ + A"(T ~2¢)xv +x1111+A‘xvv . he SUEfece of the form 4. 1... 4. .4. ' ,1 . w ‘Vw 11 1x 1-3;0 e?1~»£:€*1* diuue line t'toa “ x cur; .L‘ ‘ 3 \ .. - - - . v-0 Io1nt u;t3- 1‘nu ‘:“’ (40‘ P“ v Lstltutinr t “te'; \‘L‘ .9» 9' 0" 03 F p. (D S‘ H V H D «3 L 2 2* I! ’rN O C I (D O r U r A; (F) H t) .3 FJ r O l‘ Tfie net (47) becomes (48) of 6L”:- back}: 0 b 7. b a. “34%”; myfixudtifiw . TLe net (48) may 3e 0118wr eterized as follows: 3. _‘ : . ' 7-1 , 4. .0 - ..., . fl ' x: J- :1 The pulnt XKV 18 the yOLflb o- lnt615LCthH 01 bfle 4"" ,«1 v14- ‘1 ' on. ‘ “ '14?" "1" ml— 4- - 1 ‘- t‘\ ..-1(-:‘ 1111.fL;\r.€11 Ub 10 LLVC. 00. tile Saildce 536112310 UGCL U3" X“ , 14.0w tie te‘1‘:1:1-.:1t to Vza 011 te 51:15:10»: genszi': . 1‘; by XV - TLe tangent to the curve wloee differential equatian is 17 pa U) ses through the point Xuv . The tangent to the \ curve defined by ado-4 Eddy»: O D) (‘f' P (D hJ ’11 H ionic conjugate of the tenrent to the curve a&— bob.“ :0 with respect to the tengents to the parametric curves. Consider the pencil of nets (50) d“"‘-— A24": dual-2 0 Tue curves of this net are the integrel curves 0? the '§ 0 siffcrential equation 51 I: L. 1 _ do- () HTH+AKLH1H“ZZ' The osculating planes to the curves of this pencil inte:sect in the line joining )< to _ 1 z (52) Y“ ‘A t‘ va ‘f'xuu +l‘tkl(%y"2a)Xv~(1b+—AS5) Xu. 0 The local coordinates of the point Y“ are X|::. O, (53) X1: '(1b+)fl, Z. 2. fl 2. 1-- A) x5 : A I" o It is possible to eliminate F1 from these local coordinates in two different ways, thus obtaining - >1, .. ”3 (T 2“) Y5“ 0, x,_+(1‘i-‘—+2.b)x.,= o . Each of these equations represents a hyperplane. The 5 ‘ two equations taken tofetner represent tne into section of the hyperplanes, this intersection being a plane through the point )( . It follows, tierefore, the he locus of the axis of the nets of e nencil 's a nlnne Such a systefi of curves is of the type called by Bonpiani a two—axial system. The plane (54) is the plane of which th- given system of curves is the two- anial system- The envelOpe of the osculeting planes to all the integral curves of (51) is the cubic cone* (55) [XS-(AXL“1a)¥5-)axq= [x1 + (3f+zb)xq]2x5 . The tangent plane X” .2 )(5 =- O is a sinple directrix plane of (55), wnile the plane determined by equatiens (54) is a double directrix p lain e . 8. A PHOJECTIVELY IRVARIAZT IJTEGRAL The differential form flYoLqu is easily shov-rn to q We absolutely invariant under the transformation * E- Bomnieni, Projective Differential Geometri_of firmer- unce- Lectures given in the University f Chicago, Sumner 1930. Part IX- Hereafter referred to as Lectures. 19 X: .. ~ —- —- . . Ax 2 “" ‘ 4“), v: IP(v) . Tne ‘efore the integral l (56) $(fiYv’)"cL.... calculated along a curve is invariant. We may call this integral the projective arc-length of the ,urve along which it is calculated. We now make us. (0 Of Euler's equation for the extremals of an intejrel of the form we»; WM», H ¢V" C‘uv’ -¢vv' VI) A U. x} V s- <‘ a < H and find the Ci ierential equation of the extremals of tie projective arc length to be <58) (if ¥s)v’-<%’+%)v". This is an equation similar to (51), both of them belonging to the genera form (59) V": A+ Bv’+Cv’L+ Dv’3 . Evidently for (52) A30, |3=(L’3195’).i , C3“ (10316399 0: 0. It has been shown by Bonpiani*' that on all surfaces sustaining a conjugate net, equation (68) represents a two—axial system of curves. By a little computation it is found that the plane which is the locus of tee lines of intersection of the osculating planes to *- . . E. Bomplanl, Lectures, Part IX. W O tle extremals of ‘$(§Xv§i4u. is the plane deter— mined. by the points (60) X , {3‘1 Afipflflmm, [1" + “"358” x“- ”““° If we call the extremals of f@¥v')’£ol- projective feodesics, and the plane determined by (80) the projective normal plane, we 1333’ state the theorem: T e os ulating_plenes of all the projective eoCesics throng; x , intersect the projective norfiel plane determined “v tne points £60) in lines; and, moreover, this plane is unique for each point.X . 9. ASSOCIA ED HYPERQUADRICS T? e eqt ration of the most general non-singular W'reroueiric is z. (61) “-.. x +0. ‘1‘“ 3L” fiWX" +a 55"5 +a XML” ,3X. X3+ am xnfq ”Mama; +%x}3*arzq“1'l + (25‘ 1x5+034 XJX.‘ +Q-35X31‘5 +aqsxq ‘5. :0 , '31 Kl¢o . :1) If no dezn nd the t th series (35) satisfy this equation identically in AuVAV as.far as terms of the fourth degree we obtain the «J’iyperquadrics [mam ”(ta-+19% - mm + ems] (52) ‘9' 0.33 [xslvafifixs +1<§+V~JX3X5 -2bp)l,.x5 +. ”J'fJszxv] +0‘w "414'0‘55‘5 +31% “4"" = 0 0 These Lyperquaerics have four point contact with the surface at the point X . The tangent plane 'S x v xq=x3=o intersects this four point qua ic in the (N H We have therefore the theoreh: The four point hyper— ouaorics of S zrt F; intersect the mnggmt plane to £3 at P, in lines paired in involution, with the conjugate tan;ents as double lines f the involution. _ —‘ Consider a curve u.=c. on 8 through PX . ..t P,‘ and two neighboringjpoints FZ,F; on.the curve cons ruct the osculating p anes of the curves v: C. :Tov: let PUP1 approach PX independently- Does there exist a hyperquaoric such that these three os ulating planes are plane generators? The osculating plane to the curve |4= ,‘ . 2"" \ ~ I . J, ' ‘_ " ‘. . - 5 ~" ' ”I',’ ..rl’. ~ 1.3.- gfitnuz; ‘ i: '5; ‘. ms“ .~ . ‘ s :3 ‘2: .1' 3 .f. 4“ ~-- -‘ .. ‘.-. . I. ..- w .- ' ;: ' “i ' J3". 6. 2'... ” .é‘" ‘. :- "~ if X} 'A wf' .-_w 3:. ‘ ‘ ‘€*" I ‘. 13.514, «a? 5‘; 3'1 ’1 «..L 4,. a». '( W‘P ' +‘ - ‘ ‘ I . ' . K 1 I'. ‘ ,_. ..' . - r . . P s 1 .. 1., A I I r / A: --. f. ..4 ~ A .5 ‘ y 2, AI '3 V‘- 5 'M' L p w “5 A‘ .‘-u ” J" .r “ )V‘ ‘ I 1 5' {P- ~ 'Y K ~ L "o J A. ‘ '11: .3 fl .4. ., . “r 1.: "11"".J‘j u‘r’a' , S... ta {In A ~ ‘. ! H ' . . . ‘.'; c1...” . , 7 .' L ' ‘ %¥.~.\’g:\ A“, ,1. :5"; 1‘4 .fg 35%;", 5.11.,”- 7:9 .‘n 7' ‘ ~ . " 7? ,)""- . . .‘2 " . ' ' '. . ‘ 4..”‘9 . u I. ‘ . - . " ' ‘ I. ‘ r“ "I: .‘ "3-. ‘u . x ‘. V,‘a~‘ .’ £2 ’ I 'ugafi- . 1" {gr}? "7.» .‘ Q j. " If: a" t. ,1 ‘ ‘I :‘fi‘ ‘ "in” ..K ,; 1".) y ['1 ’- J; ‘ _ -‘ “\ x _‘ ‘ . ." ', _ ' v r J ’ " ' "i ,1 I. ‘ -, .‘d u . l. v ,‘I‘ ‘ L“ . ,_r 1 ’ -.- " - -. - , fin .._ . ‘ .,‘ \' .‘ I. A] ' " "I .. .1 .fl "*3" 1‘9?“ ’K."\r' ’L‘J K ‘7‘}, , .« WWW." ' 3“. '9. j“. 5 '3' fl. ', . '» 1‘- . n ’ " .- .I i} ..l I :1. ‘l, g v’ I .- E3)!" b :4 \ ’3' ‘; ' '. :E _’ . ‘2 .. v‘v“ . PS . . . ' {-. 1"“. H, ’. 1.. . v I ( “ . ‘ [‘2' ‘3’ 1..., a ‘ .y .1. 35’ ‘1 (‘0 ~ 0 ‘ . . I . . .. . Q. . ,; \‘-.,‘ . ' . “, ._ . 3213159." "‘{J'é't ‘5 v‘ "' Y ‘1' fl ‘ 7 Ln": 1”‘.'-“(;£:.-' I "h. .5 1‘7. . 1 13'" ‘ -.J‘t- ‘4‘ a: :- t“ . j “J‘- . ' u ‘ ‘ '3! ' " . ' ' 5' .-. "5 ' " ‘.. ' ' \' " ' ‘ ". “‘."‘ .‘ . ‘ t nfi‘ " c' I ' .'. 'w ' ~' , ,zvVI-Ik“"”"..‘:0 “’3’ (4'1 ' ' . I} At”? C I)" '6" m! " {1‘ "u . 1.42-77" '5‘” ’th " "I’M"; ’.-' t", {.4 "4 UM " .( z. )I» ‘ V' f n‘l' ‘- - o ' "' .71-" '- f‘u 1| - l9""' . '1“ ' M A. f ’33 ‘ ‘ 3" - ’n- .‘ A". ‘ ‘II "4" .‘h l . l " ‘ ' ' n IA" '; - .‘If J" "9 ‘ . ' " v I." . t ’,‘ f—i‘xa ."x " "-"3 {rm “’1‘ . I. . ..‘?t I. r I' ~ .« A‘ to“. ..p- I . hi ‘ / .l .‘il‘ “1“; ‘k" "f“ "."I‘ '1 5‘ L .‘.’1 . .O["..-’ I”, I I. . - ' v r, . ~ \ , . .- , u . » . . «.I i, " v . I 1,3 3 1" 'r7' )b' - U» “.11 .. ' ‘1‘“ ' . " .' '5‘- V‘; \f' p! v \ ‘ . f“ L . l, “ ' ‘t ’34,“? (1‘ 7 v ‘ [I ,. . ‘ ’6 ”:n’ ' I '. - ‘, I‘*. -" ' € *‘l ,1, 1‘ .j |- l'. g ‘ ': 'IQ“ ~41: - - .~-., . «-,..r-v-{ I. ’ r '1"~ » .w. H ' Q -.-: i ‘1 ‘ .' ' f , NI}. .‘ . r -V 1 I:‘ ‘»' .fl‘ . . § - 9*,» "IN ; 5 0.! 3 l." I ’1' 45.1“» - " vi "\?-.."0 -‘ ' ‘ {v Q‘ .- . V " :‘n‘ ’ ‘5‘ ' ’ ' ’ ‘ " ' -l‘ ' " ‘ w I “' .1. I .. I Q “A. - " 'l‘l'-w .’ '. ' J... ; . ' ‘ W7 1 ’, 00 V‘ ‘ y I ' .) f ‘ $ ~ 'b‘é'h ' 'v : r) "W ' {, ii. \ "- .nj ." . c . ~ I x " "a ' . | I) _ a ‘ " f.‘ . ' .'~ ‘ ‘ ‘. . ‘ . ‘ ’r ’ 3 . f,‘ ' f" " . . : 0" ' ' til... i 3,.» ‘ ' ' ,. '- ékflflidf-‘)¥.Lfi'.~.~é£'t"§tfa :4 . '. :‘i ' ~ '3 ~"‘ MICHIGAN STATE UNIVERSITY LIBRARIES 0 II II” III II 3 1293 3062 0755 vv._fi.,___-