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TRANSLATION OF TWO CONTACTING SPHERES IN A

VISCOELASTIC FLUID

By

Mohammad Amin Jefri

This work was undertaken to study the effect of a visco-

elastic fluid on the translation of two contacting spherical parti-

cles of unequal size in creeping flow. The elastic effect of the

medium was investigated theoretically by employing a second order

fluid model and developing a numerical scheme that evaluates the

elastic effect on the drag force. The accuracy of the scheme was

established by carrying out a detailed error analysis at each step of

this scheme. It was revealed by analyzing the numerical results,

that the region near the stagnation points at the surface of the

larger sphere has the major contribution to the elastic effect on

the drag, while the region at the contact point has no contribution.

The results obtained for several size ratios of the large to small

sphere where the numerical scheme is valid showed an appreciable

elastic effect on the drag. This effect increased with increasing

size ratio, up to a ratio of 3.

Experiments carried out on the settling of these particles

in a solution of 0.2 wt.% Separan in corn syrup at particle Reynolds

4 6
numbers in the range of 10' to 10' yielded the following results.

First, it is seen that a stable orientation exists in the direction



Mohammad Amin Jefri

of the applied force (gravity) along the line of centers with the

larger sphere underneath. Secondly, the deviation from Newtonian

drag for equal spheres is zero. This agrees with previous theoretical

results. In the case of unequal spheres, a 10 percent reduction in

the drag coefficient below the Newtonian value is observed, at a

Neissenberg number of 0.1. This reduction is seen to increase with

increasing Neissenberg number. Good agreement was seen when compar-

ing the experimental and theoretical results.
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CHAPTER I

INTRODUCTION

1.1 Introduction
 

The flow of suspensions in Viscoelastic liquids occurs

commonly in a variety of industrial processes, ranging from the

manufacture of filled polymer composites, paints, and coating to the

injection of fracturing and drilling fluids into rock formations.

There is a great need to know how the solids in the flow affect the

bulk Viscoelastic properties and how the solids interact with each

other. In general, the rigorous solution of multiparticulate flow

is too complex to solve with present techniques. Therefore, we

have chosen a simple two contacting spheres problem in a Viscoelastic

fluid, hoping that the proper analysis of this system would give

some insights into multiparticulate problems. The study of such

suspensions presents a wide variety of unexplained phenomena dealing

with particle motions in sedimentation as well as shear flows and

with their bulk properties.

Sigli and Coutanccau (1977) have studied the translation of

a solid sphere in a circular cylinder where the ratio of sphere

diameter to cylinder diameter is greater than 0.25. They found that

the presence of the wall increased the effect of fluid elasticity.

Gauthier et al. (1971a,b) and Highgate and Whorlow (1970) observed



that in couette flow of Viscoelastic fluid, neutrally buoyant rigid

spheres migrate toward the cylinder wall while neutrally buoyant

Newtonian drops migrate away from the wall to an equilibrium position.

Gauthier et al. (1977a,b) also observed that rigid particles migrate

to the axis is Poiseuille flow even at Reynolds numbers of 10‘4 while

in Newtonian liquids no cross flow migration is observed at these

Reynolds numbers. Furthermore, in liquids which are predominantly

shear thinning, migration toward the wall is observed.

Understanding these phenomena must be through studying the

particle mechanics and dynamics. In particular, the motion in the

unbounded domain is hoped to provide the Viscoelastic medium effect

relative to the Newtonian medium which has been studied extensively

for a variety of particle motions in an unbounded domain. The inter-

est of this research is in the elastic effect on the translational

motion of rigid particles and clusters in a quiescent Viscoelastic

medium. In what follows work on particle motion in Viscoelastic

and Newtonian liquids are reviewed.

1.2 Particle Motion in Uniform Newtonian Flows

The work on particle motion in Newtonian fluids goes back a

long way since Stokes (1819-1903) studied the resistance of a solid

body moving relative to a fluid, in which the viscosity was taken into

account. Later in 1857 that study was published where Stokes linear-

ized the equations of motion for viscous incompressible fluid. Con-

sequently, the famous Stokes law which described the drag force on

falling spherical objects in an unbounded medium was obtained as:



E= 61m U a (1.1)

Brenner (1965) has reviewed later work with nonspherical particles

and with inertial or wall effects only a brief review is included

here.

Stimson and Jeffery (1926) determined the drag force on the

surface of two separate equal or unequal spheres along their line of

centers. Their solution was for uniform slow viscous flow that is

described by the quasistatic creeping equation of motion:

V - v = O (1.2)

The flow considered is for a body of revolution parallel to its

symmetry axis, the exact solution involved using the spherical

bipolar coordinates system to find Stokes stream function for the

fluid motion. Brenner (1964), in a series of articles, presented

solutions for the Stokes resistance to a slightly deformed rigid

sphere and for an arbitrary shape particle. The solution was for

both uniform flow and shear flow at low Reynolds numbers. In all

cases the results were obtained by solving the creeping flow equa-

tion for the specific particle and flow condition in question. In

the case of non-symmetrical particles, the rotational motion was

considered along with translation. An extension to Stimson's solu-

tion was carried out by Goldman et al. (1966). The problem they

solved is the same two spherical solid particles moving slowly in an



unbounded quiescent viscous fluid; with orientation of particle.

In their case it was an arbitrary orientation relative to the

particle motion direction. The solution is a superposition of the

results (of two spheres side by side) for the translation and rota-

tion each considered in the absence of the other. Brenner (1961) pre-

sented an exact solution for spherical particles moving toward a

plane surface. Two types of walls were considered, a solid wall and

a free surface. Correction to Stokes law was given as a function of

the ratio of the distance from the wall to the sphere radius. The

results obtained were pertinent to end-effects in the falling-ball

viscometer. The axisymmetrical stream function obtained by Stimmson

and Jeffery in terms of the bipolar coordinates was utilized in the

solution. Dean and O'Neill (1963) analyzed the case where the fluid

motion is caused by rotationifiithe sphere along an axis that is paral-

lel to the bounding rigid plane. A successive approximation method

was used to solve an infinite set of linear equations which describe

the problem. A numerical solution was obtained as a function of the

separation distance from the wall. The problem in which the sphere

only translates in the same manner as the previous problem was later

solved by O'Neill (1964). The solution is for axisymmetric flow

around the sphere; where the bipolar stream function of Stimmson was

used again.

Their solutions were in the form of infinite series which con-

verged very slowly as the distance between the bounding solid wall

and the sphere went to zero; Goldman et al. (1967) proposed an

asymptotic approximation obtained by the method of the lubrication



theory to overcome this problem. A corresponding solution to that

of Brenner (1961) (i.e., sphere translating toward a wall) for small

gap width was also carried out by Cox and Brenner (1967). A singular

perturbation expansion technique was used for calculating the hydro-

dynamic force on the sphere surface as the separation distance tends

to zero. A general solution for a more general axisymmetric particle

was also included. The same solution technique adapted by Cox and

Brenner (1967), for the same problem, was also used later by Cooley

and O'Neill (1969b). In addition to the plane wall, they also con-

sidered a case where a stationary spherical object is approached by

the moving sphere. In their work, use was made of a contacting

sphere coordinate system to facilitate the solution when contact is

achieved between the sphere and the wall or the sphere and the sta-

tionary sphere.

So far mostly uniform flows were mentioned. This is, in part,

due to the bulk of results available and to the fact that fewer prob-

lems have been attempted in shear flow. Lin et al. (1970) extended

the problem of arbitrarily oriented two sphere problem in uniform

flow in a viscous fluid solved by Godlman et al. (1966) to one in a

shear field. The analysis and solution procedure is parallel to

that of the uniform flow problem. The problem of a sphere approach-

ing a plane wall was also treated there. In both cases, the hydro-

dynamic forces and torques experienced by the spheres during the

course of their motion were given as a function of the distance

separating them.



1.3 Particle Motion in Viscoelastic Fluids

The study of particle motion of a sphere in a Viscoelastic

fluid was begun by Leslie and Tanner (1961) who carried out a

retarded motion expansion, which effectively reduces the constitutive

behavior to that of the nth-order fluid which is usually associated

with the names Rivlin and Ericksen. This constitutive behavior is

given by:

_ 2

pl + l ' 0‘051 I “152 + 0L251 I 0‘353 + “4(3152 I 5251)

+ higher terms (1.3)

where

 

+

. VB f-V! . én-1M
D I
I

and do to a4 are material constants related to the viscosity and

normal stress. The first three terms are the terms of what is known

as the second order fluid (to be discussed later). Leslie and Tanner

(1961) reported the effect of the Viscoelastic medium on the drag

for uniform creeping flow past a spherical object with the Oldroyd

fluid model (1958). They carried out a perturbation expansion up to

order two in Weissenberg number.

E = 50 + WeF + WezF_1 _2 (1.4)

The solution obtained is valid for Re << Ne << 1. Their results

showed a reduction in the drag below that obtained by Stoke's law.



In general, the solution to particle motion in a Viscoelastic medium

is centered around an expansion of the Neissenberg number which is

expressed as:

- N1

We =7 (1.5)

N1 is the first normal stress difference, I is the shear stress. The

expansion. is done around Stokes solution. Even though such expansion

restricts the Viscoelastic effect to a secondary role, nevertheless,

for the class of particle motions which involve weak Viscoelastic

characteristics, the "retarded motion" expansion has been shown to

yield qualitatively correct predictions of particle motions, both in

uniform streaming flow and in shear flow (Tiefenbruk and Leal, 1979;

Chan and Leal, 1979). These authors investigated the cross flow

migration of neutrally buoyant drops which are suspended in a non-

Newtonian fluid described by the second order fluid. They considered

the hydrodynamically induced migration. The predicted results

obtained by their theoretical analysis were found to be in good

agreement with experimental observations.

Giesekus (1962) obtained the correction to Stoke's drag for

both translation and rotation of a rigid sphere at the same flow

conditions as those of Leslie and Tanner. The medium is described

by a third order fluid model. This is represented by the first

four terms in Equation (1.3). The results obtained were consistent

with Leslie's. Other workers also used the third order fluid like



Caswell and Schwarz (1962) to find that drag reduction is observed

at order Rez.

It is worth while to present a word about the second order fluid

model which had been used by a number of workers. If the fluid

relaxation time is small (but finite) compared to the time scale

motion U/a, the fluid motion will be "rheologically slowf so that

the second order model may be used. As mentioned earlier, this

model is part of the general Rivlin Eriksen retarded expansion which

indicates that the flow is both slow and slowly varying with time.

It is useful in predicting elastic effects with a non-shear dependent

viscosity. Due to the non-linearities of both the governing equa-

tion of motion for particle motion in Viscoelastic fluids and the

constitutive equations, most of the solutions have been limited to

creeping flow, with the equation of motion

V-o =0 (1-5)

The hydrodynamic force, thd’ and torque, Thyd’ on the particle

surface are given by:



where Sp indicates the integration over the particle surface and n

is an outward unit normal in the direction of the force.

Brunn (1977a) has considered the general problem of a trans-

versely isotropic particle moving in a second order fluid. Such a

particle has three planes of symmetry, two of which are identical.

Examples are bodies of revolution with fore-aft symmetry. The

analysis included both uniform and simple shear flow. The solution

was carried out in the framework of a complete asyptotic solution,

but without carrying out the details necessary for numerical evalua-

tion of the coefficients whiCh characterize the particle's motion.

The interest was about particle preferred orientation. For the flow

condition considered there, the second order fluid model was given as:

 

 
 

90) = 211[K0(11)f(1) , f(1) + K0(2) f(2)3 (1.8)

and

f“) _ i [3321) + (33:1)?

3f”)
£12): 55 + 9(1) , aar 1_.(1) + 9(1) l.(1)_,_.<1> (9(1),

where

w(1) is the angular velocity vector

.1.

9(1), 9(1) is the velocity vector and its transpose

K811) and K82) are two time constants related to the viscosity

and normal stress of the fluid.
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It is by the contribution of these constants to the total hydrodynamic

force F and couple G, information was obtained on those preferred

orientation. It was shown thatatransversely isotropic particle in

a quiescent field will have a terminal orientation in the direction

of the external force. In this case, the particle would not rotate

once it reaches the terminal state. A particle with its symmetry

axis in the plane of the shear will not leave that plane while a

particle with its axis parallel to the vorticity axis will always

maintain that orientation. For long transversely isotropic particle,

Leal (1975) used the slender-body approximation to calculate the

hydrodynamic force and torque for simple translation. It was shown

that the particle will acquire a terminal orientation that is parallel

to the axis of symmetry in the direction of the external force. This

was also seen to be the case experimentally. In simple shear flow

the results were identical to those of Brunn (1977a). Brunn (1979)

investigated the effect of particle shape on the orientation. He

considered a near sphere particle and included the particle shape in

the analysis. The medium was taken to be represented by the second

order fluid. The result of particle sedimentation gave the same

conclusion as that of a perfect sphere. This is a terminal orienta-

tion in the direction of minimum resistance. The results showed no

such agreement for shear flow. In this case, it is shown that the

particle migrates in the direction of its axis provided that this

is the vorticity axis. In elongational flow, the behavior is quali-

tatively the same as in a Newtonian fluid. In a review by Brunn
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(1980) the motion of rigid particles in Viscoelastic fluid was sur-

veyed. The second order fluid model was used to describe the medium.

A general formulation for arbitrary rigid particle in a steady motion

of negligible inertial effect was considered. A regular perturbation

expansion around the Newtonian solution in power of small Neissenberg

number was assumed to obtain an expression for the drag force and

torque on the particle surface.

F

- £0 + we E1 + '

I IO + We 11 + . . . (1.9)

where the subscript 0 is for Newtonian contribution and the sub-

script 1 is for the non-Newtonian (normal stress) contribution. In

pure translation the contribution from E1 was obtained via application

of the reciprocal theorem which is given as a volume integral around

the total fluid volume surrounding the particle.

(1.10)
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Brunn (1976) had stressed the difficulty of evaluating the integral

of Equation (1.10). He clarified that the difficulty is not due to

the volume integral itself, but to the tedious repeated tensorial

product :0 . :0: i. The same method of analysis was also outlined by

Leal (1975). The merit in using the reciprocal theorem is in that

there is no need for obtaining the velocity field in order to obtain

the force and torque on the particle surface. Leal also found that

a slender or symmetric rod-like particle in a simple shear flow has

a correction in the drag force at order one rather than at order

two in Neissenberg number as for a sphere.

In the next chapter particle interaction is going to be dis-

cussed and the problem statement‘is to be presented. Chapter III and

IV are devoted to the theoretical and experimental analysis. Finally,

Chapter V would present the conclusion and recommendation.



CHAPTER II

MOTION OF AGGREGATES

2.1 Particle Interaction
 

2.1.1 Effect of Particle Size
 

Increasing the concentration of particles and shear rate in

suspensions leads to the formation of particle doublets due to the

hydrodynamic interaction. In general, suspensions of single particles

will behave differently from suspension of agglomerates. This is

caused by the difference in shape between agglomerates and single

particles and by the fluid entrapped in the interstices between the

particles. When the particle size is of lum or less, other factors

which are known as colloidal forces effect the interaction and sta—

bility of doublets in addition to the hydrodynamic force. The first

of the colloidal forces is the Brownian. These have been reviewed

by Russell (1980). This force is due to random collision between

particles due to fluctuation in thermal conditions. The dominance of

this force over the electrostatic force is for particle sizes of nano-

meters. Electrostatic effect is dominant for particle sizes in

the range of .1 to 10pm in diameter. This has been treated by

Overbeek (1948). At this size, two electrostatic effects are

encountered between the particles; an attractive field as a result

of the Van der Naals forces and a repulsive field due to particle

13
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surface charge. The repulsion effect acts as an opposing force

against the attraction. Thus, the superiority of either the attrac-

tion or repulsion effect is the limiting factor for forming an aggre-

gated or a floctuated system. The stability of the doublets formed

was investigated by several workers. Papenhyijzen (1972) investigated

the effect of high and low deformation on aggregated suspension. A

network model describing the particle arrangement as a random chain

formation was developed. The relative order of magnitude of the

effects of hydrodynamic and non-hydrodynamic forces on breaking these

chains was calculated for two different suspensions. It was found

that the hydrodynamic force is of the same order of magnitude as the

non-hydrodynamic. Hoffman (1974) performed a theoretical and experi-

mental study of the role of interactive forces on the dilatant vis-

cosity behavior in concentrated suspensions of polymer resins in

shear flow. The phenomona was explained by the effect of the shear

rate on the layer of ordered chains of particles which pass one over

another in the direction of flow. It is the disorder of such an

arrangement, caused by shear rate increase, that results in dilatancy.

A mathematical model was postulated to describe this behavior.

Experimental results gave strong evidence to the importance of the

repulsive force and shear stress effect. The mathematical model has

not been conclusive yet. Zeichner and Schowalter (1977) carried out

a similar study of the interparticles forces in a shear flow on the

stability of colloidal systems.
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2.2 Hydrodynamic Effect

When the particle size is above those of colloidal size only

hydrodynamic force effects exist. Michele et al . (1977) observed

that rigid spheres, as well as air bubbles of 60 to 70 um diameter

suspended in visoelastic polymer solutions subjected to laminar shear

flow, aligned themselves to form finite chains. They reported also

that when two spheres come into contact in such shear flows, no

rotation was observed. Riddle et al. (1977) observed pairs of

identical rigid spheres (of diameter 0.3 to 0.6 cm) falling along

their line of centers in Viscoelastic fluids and found that for

initial sparations less than a critical value, the spheres come in

contact. All observations indicate the formation of chains of

particles in suspensions of both Newtonian and Viscoelastic fluids.

The study of hydrodynamic effects on these systems started investi-

gating the effect of the interaction between two particles.

A theoretical analysis of O'Neill (1969b) studied the slow

viscous flow caused by the motion of two equal spheres almost in

contact. The spheres were perpendicular to their line of centers.

Two cases were considered: one of a translation with uniform equal

velocities and the other is of rotation with equal and opposite

angular velocities. The drag force for each sphere was obtained

for the first problem and the value of each was less than that of

a single sphere in the same fluid. The method of solution involved

the use of the contacting spheres coordinates. The solution of the

creeping flow equation was obtained in terms of several Hankel trans-

forms expressed in terms of these coordinates. In the second problem
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a singular purturbation expansion around the limit of zero separation

between the spheres was carried out. In the same year Cooley and

O'Neill (1969a) were able to solve the problem of two arbitrary

contacting Spheres translating slowly in a viscous incompressible

fluid. This problem is the same problem we are going to solve in a

Viscoelastic fluid. These workers expressed the axisymmetric stream

function in the same coordinates of O'Neill, mentioned earlier, as a

Hankel transform too. The drag force exerted by the Newtonian fluid

on either sphere is less than the drag ona.single sphere, over a

range of ratios of sphere diameter. The usame problem was solved

later for simple shear flow by Simon and Goren (1971) and Nir and

Acrivos (1972).

In a Viscoelastic medium, which is the main concern of this

work, the study of the hydrodynamic effect on interacting particles

has just started. Brunn (1977b) found that equal spherical particles

in contact in a second order fluid would yield no correction to

Stokes' drag if the solution was considered at order Me. For the

case where the particles are separated from each other in such a way

that the distance between the spheres divided by the spheres radius

is much greater than one, the spheres seem to converge and they

orient themselves along their center line. No data exist-on the

effect of changing size ratio for contacting particles in these fluid.

The experimental work that was carried by Riddle et al. (1977) had

been for fluids which possess considered shear thinning behavior and

so they could not be compared to theories which assume constant shear

viscosity as the second order fluid model does.
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2.3 Bulk Stress
 

The previous factors which influence particle interaction

have been studied by a number of investigators in an attempt to deter-

mine an effective viscosity for concentrated suspensions of Newtonian

medium. Adler (1978) used the cell model to get a concentration

dependent effective viscosity. The defect of the model is its

dependence on the shape of the cell. Frankel and Acrivos (1967)

used the classical hydrodynamic lubrication theory to study the

same systems by calculating dissipated energy in the gap between

the spherical particles. Both the cell model and the lubrication

method suffers from neglecting particle interaction in the analysis.

Polymeric suspensions have been investigated experimentally

by Highgate and Whorlew (1970). Three different Viscoelastic systems

of various types of rigid spherical particles have been studied. The

size of the particle is 100 um in diameter and at concentration of

10% by volume or less. The relative viscosity, defined by ratio of

viscosity of suspension to viscosity of suspending fluid, was measured

along with the first normal stress difference. This had been done

for several solid concentrations within the above range. The results

showed that comparing suspension properties to the suspending medium

at the same shear stress was a function of concentration only; whereas

if the comparison is made at the same shear rate both concentration

and shear rate dependence was noticed. The same observations were

reported by Kataoka et al. (1978). Until recently, no theoretical

explanation was available.
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Sun and Jayaraman (1982) have derived the bulk stress for sus-

pensions of neutrally buoyant spherical particles in a second order

fluid medium. They showed that the bulk viscosity of the suspension

has a shear thinning factor which is directly related to the elastic-

ity of the medium. Their expressions are borne out by the data of

Highgate and Nhorlow for systems of concentration up to 7%. These

results suggest that if an understanding of systems of higher con-

centrations (moderate) is to be achieved, a basic understanding of

the role of elasticity in the motion of doublets must be pursued.

Thus we exclude colloidal systems and dispersion forces from any

future consideration within the scope of this work.

2.4 Objective of Present Research

Understanding the behavior of aggregates in flowing polymer

liquids is still in a very early stage. This in part is due to the

fact that most theoretical analysis has been centered around single

particle; while most practical systems are composed of doublets and

chains. It is hoped that studying the effect of medium elasticity

on the drag experienced by two rigid, contacting spheres in uniform

translation would add some light to the subject of filled polymer

systems.

2.5 Statement of the Problem

Two rigid spheres in contact, one of radius a and another

of radius ka with their line of centers along the z-axis in a
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cylindrical polar coordinates as shown in Figure 2.1 were considered.

The pair translates along the z-axis with a constant velocity U in an

incompressible vi'scoellastiic fluid at negligible particle Reynolds

numer, Re ~ a Upf/uo where of = fluid density and “O = zero shear

rate viscosity of the fluid. If the fluid relaxation time is small

(but finite) compared to the time scale of motion E3 the fluid

motion will be "rheologically slow" so that the second order stress

constitutive equation may be used:

V1902

g = ”P0 + 20 [Q “'7rgjf + (91 + 2v2)(Q ' 2)] (2-1)

)

where

g = is a unit tensor

Q = rate of deformation gradient tensor given by

g= —%- (v! + 17er) (2.2)

11\u_and1nm e are the primary and secondary normal stress coefficient.

3? / £25 5 denotes the corotational derivative given by

@Q 32 1
QT=E+{Q-vg} +-2-(5-g}-{g-w}) A (2.3)

This model will allow us to isolate the elastic effect on the trans-

lation of these contacting spheres, since it has a non-shear dependent
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Figure 2.1.--Schematic diagram of spheres and coordinates.
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viscosity p. Thus in the next chapter we will derive an expression

for the drag force on the surface of the spheres due to the elasticity

of the medium.



CHAPTER III

DRAG CALCULATION FOR TWO TOUCHING SPHERES

The drag on two touching spheres of arbitrary sizes translat-

ing in a second order fluid is evaluated in this chapter. First,

_the governing equation of motion and the solution procedure are laid

down. Next, a volume integral is developed for the elastic effect with

the integrand in the most useful form. This volume integral is then

evaluated by a sequence of numerical steps. The errors occurring in

each numerical step are discussed.

3.1 Equation of Motion
 

The axisymmetrical fluid motion described by the problem

statement of Section 2.3 may be represented by the equations:

V ° g = O, V o v = O (3.1)

where g is the second order stress constitutive equation given

earlier by equation (2.1) as:

g = 'P§ + ZULQ ' 2 j t + (V1 + 2V2)(Q ' 2)] C (3.2)

The boundary conditions require that

Uez on either sphere<

l
l

9 far from the spheres (3.3)

l
<

I
I

22
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Since only uniform translation is considered, in Equation (3.2) the

term containing SEQ given by equation (2.3) and the term containing

Q?

Q . Q are significant for this analysis. Thus a modified Neissenberg

number, We is defined as:

_ U
We - (V1 + 2V2) 3' (3.4)

while the conventional Heissenberg number is, We = v1U/a. For small

values of We (Re << Ne << 1), which is the case in the problem con-

sidered here, the velocity field v and the hydrodynamic force on the

two spheres 5 may be expressed as a regular perturbation expansion

in powers of We.

- 2
v - v0 + We v1 + We v2 + . . .

2
F = E + We F + We 52+ . . . (3-5)

0 -1

where v0, f0 denote solutions for a Newtonian fluid, with the same

boundary conditions,using only the first two terms of Equation (3.2)

and 31’ El the correction obtained with the other two terms of

Equation (3.2). No attempt is going to be made to evaluate v],

since it is possible to solve for E1 without it as shown by Brunn

(1980). This is done by applying the reciprocal theorem which was

also used by Leal (1975). The background of this theorm, as well as

its application to determine the elastic contribution F1 are presented

below.
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3.1.1 Reciprocal Theorem(Background)
 

The reciprocal theorem is a useful device with regard to

problems involving the resistance of particles and pressure drops due

to fluid moving with respect to particles in creeping flow. Many of

the developments and uses of this theorem stem from the work of

Lorentz (1906). The theorem can be stated as follows. Let there be

a closed surface which is bounding a volume of fluid where we know

the velocity and stress fields for a certain steady, incompressible

creeping flow in a certain geometry; the theorem says that the force

and torque on any surface witin that volume for a different fluid and

a different creeping flow but the same geometry may be obtained with-

out solving for the velocity and stress fields in the latter situa-

tion. The details of this statement can be best explained by show-

ing its use for a specific case as presented below.

We assume that we know the solution to an incompressible New-

tonian fluid in creeping flow for a certain geometry with the equa-

tion of motion and continuity.

V - £0 = O and v - v0 = 0 (3.6)

where

A A A A+

90 = ' PDQ + 2U(V!o'+ V20) - (3-7)

Next we consider an incompressible Viscoelastic fluid within the

same geometry as the first fluid and also in creeping flow situation,

the relevant equations are
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Q

o

I
:_ = O and V - V = 0 (3,8)

+ -

H - pod + 2u(Vyo+ Vyo)- P16

+

D

2U[2 ' ;% + (V1 + 2V2) 2 ’ 2] (3.9)

is the stress tensor of the second order fluid model. Furthermore,

let us say that we are interested in getting the contribution at the

first perturbation in We for the second fluid such as the force on

any surface within the total volume that is enclosing the fluid.

Equation (3.8) may be rewritten with 0(We) terms as

v - (g, + 11te1 + Negl) = 0

V - (v0 + Nevl) = O (3.10)

where

"
:
1
.

H

II - 5.5 + 251v!1 + vyI)

 

iso = - P05 + 2u<on + V22)

- V1 .QDQ

g1 = 211 - 2 Q; '1' (V1 ‘1' 2V2) 90 ° QC]

Qo= 7:: 0720+ 1723) (3.11)
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Giesekus (1963) has shown that the divergence of the term

V1 QED

T 22th

may be rewritten as the gradient of a scalar function

922 'W1
- 551v - @712 a _2— v Pi (3.12)

where

P1 = v - VP + u (D D )
1 o -0 =0 '

UV1

P1= P1+ 7— 19% (3.13)

Notice that P1 is isotropic. Thus, according to Equation (3.10), we

may write

V . 31: 0

v - gl = - v - g, (3.14)

where

+

31 = ’ P1 9 T 2“ (Vvli-Vvl)

£1 - 2u(v1't2v2) D ° 9 (3.15)
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The nonhomogeneous term in the stress equation now involve only the

quadratic combination Q0 - go. The reciprocal theorem may be written

for the fields (90, go) and (¥1’ $1) from the given equations of

motion as

I [v - (gla. g1) ] . §5 [17 - 1:10] - gl dV = o (3.16)

f

where Vf is the volume of fluid considered. Substituting the tensor

identities

A

[V . (£1 + g1)] . v0 = V ° [(E1 + £1) ' go] ' (Eli-El): V10

[v - g0]~ y] = v - [fio - v1] - fio : v 21 (3.17)

= “3111 + g1) : V; - it), : V111] dV (3-18)

Applying Gauss' divergence theorem to the left hand side, we

obtain
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A

3 VYO - o 1 VVJdV + '2_:1 I VYO dV (3.19)

I
I

1
:
2
1

H

>

"
:
1

>

Note here that the area integral is evaluated over the entire surface

bounding the fluid. This comprises a fluid surface just about the

particle, So, as well as a fluid surface S0° far from the particle.

Also, the normal 0 is directed away from the fluid at the fluid- 1

particle boundary. Furthermore, as shown in Appendix A

(g, : v§o - g. : v21] dV = o (3.20)

Vf

so that we may write

= J ;1 : V go dV (3°21)

V
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Note here that the volume integral on the right hand side involves

only velocity fields in a Newtonian fluid, v and go. In order to
0

apply the reciprocal theorem in this form successfully, the comple-

mentary or known fields (go, go) must be chosen to leave only one

unknown on the left hand side, such as the 0(Ne) contribution to

force on the particle in the other problem.

3.1.2 Application of the

Reciprocal Theorem

Pursuing the objective outlined in the last section, of leav-

ing only one unknown on the left hand side of Equation (3.21), let

us choose the complementary problem such that Q0 = 0 far from the

particle on Sco ; that is the fluid is quiescent far from the particle.

Further, to obtain the z - component of the force contribution at

0(Ne) on the particle, let us choose a uniform translation of the

particle along the z — direction for the complementary problem, i.e.,

l
<
>

o = Uez on Sp the particle surface (3-22)

The other problem of interest with unknown velocity and stress fields

in a second order fluid is also one of a uniformly translating particle

in a quiescent fluid since the velocity is specified on the particle

surface

v = Uez on Sp (3.23)

This is met by the zeroth order term v0 and

y1= 0 on Sp (3.24)
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Finally, the fluid here too is quiescent far from the particle

v1 = O on Sm (3.25)

and we obtain from Equation (3.21)

- U F12 = g1 ; v20 dV (3.26)

Vf

where F12 is the z- component of the 0(We) contribution to force on

the particle surface. If we choose, U = U, we obtain

F12 = - .2015 (01+202) (20 - go) : V‘lo W (3.27)

Vf

Of‘

512 = %E (v. + 2v.) I (Q, - 20) = 20 W (MB)
v _
f

Working with nondimensional quantities on the right hand side

(length scale a, velocity scale U) 20 the same as go here,

* *
-

= '2U(V1 + 2V2) U2 ( *

0

F dV* (3.29)

"
O

"
O

O

0

“
U

12 O

01"
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Flz = -2(uUa)We [ ) : Q dV* (3.30)

V

with nondimensional quantities denoted by an asterisk.

This relation given by equation (3.30) is a direct conse-

quence of the result of the reciprocal theorem as given by equa-

tion (3.21). It is seen that we could avoid evaluating 31 since

£1 at order one in Weissenberg number is associated with terms

involving 30' At this point we would like to stress that all the

work in the remaining part of this chapter is centered around eval-

uating this volume integral as given by equation (3.30).

3.2. Use of the Newtonian Solution
 

*

The dimensionless, axisymmetric velocity field, Yo needed

for determining the volume integral of Equation (3.30) may be obtained

from a stream function 5 in cylindrical coordinates as

y; = (v*, o, v*); v* = _1_$p_. v* = -'—1- 9p- (3.31)

Several investigators have solved for this stream function in vari-

ous coordinates. Cooley and O'Neill (1969a) approached this problem

using tangent sphere coordinates (mentioned briefly in Chapter I)

which are related to cylindrical coordinate by the relations



 

Z*=‘2_§.___;r*=——J_2’¢=¢

£2 + n2 £2 + n2

or

n +15 = (2*E11'r*) - 1' = 731 (3.32)

Figure 3.1 is a schematic diagram of the spheres and the coordinates.

In terms of these coordinates, the surfaces of the two spheres are

given by g = 1 and g = -a s - l/k. The region occupied by the fluid

is given by -a < a < 1 and 0 < n < m. The point of contact of the

two spheres is given by n = m; and the region far away from the

spheres by E = n = 0. .

Cooley and O'Neill showed that the equation of motion for

creeping flow of an incompressible Newtonian fluid about the pairs

of spheres may be written in terms of the axisymmetric stream function

as

4

AP = 0 (3.33)

where the operator4/<,is defined in tangent sphere coordinates by

./\E.[(€2 + n2)-& £315. n)]

=% (£2 + n2)3/2 [fl- $1.???)- 332] (3.34)

35:2 ° 802

whereé?(g,n) is any twice differentiable function. The solution to

Equation (3.33) waS'Uwyiobtained by them as Hankel transform involving
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Figure 3.1. Schematic diagram of the spheres and coordinates.
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01, a Bessel function of first kind and order 1.

oo

 

w = ( 2 n 2)3/2 {(A + 5C) sinh 5E + (B + £0) cosh 55}

E + n

0

01(sn) ds (3.35)

where A, B, C, D are functions of 5 found from the no-slip boundary

conditions on the moving sphere surfaces.€ = (51 = 1, £2 = -a) which

can be written as

w - -2n2(€2 + n2)-2

at (E = £13 £2)

= 8€n2(€2 + n2)'3

0
1
0
)

(
“
£
3

(3.36)

These equations, along with Equation (3.35) yield (as Shown in

detail by Cooley and O'Neill (1969a) a set of four linear equations

in the unknowns A, B, C, and D for arbitrary size Spheres.

A sinh $51 + B cosh Sal + 51C sinh 551 + £1 0 cosh $51 =

‘Slill -

.25 (1511+ s 1)

A sinh sgz + B cosh $52 + ngsinh sgz + 52 D cosh $52 =

’SIEZI -1

'29 (lag! + S )
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A cosh 551 + B sinh 551 + C(s'1 sinh sgl + £1 cosh Sal) +

0(5-1 COSh $61 + £1 sinh sgl) = 2519'51511

1
A cosh $52 + B sinh 552 + C(s' sinh sag-Fazcosh 552)

1 ‘51521

D(s- cosh sgz + £2 sinh 5&2) = 2E2 e (3.37)

Solution of these equations for the unknowns A, B, C and D furnishes

the solution to the stream function 5. The force 50 on the pair of -

Spheres has been shown by Copley and O'Neill (1969a) to be given by

E0: Zfiuaez sBds . (3.38)

It is to be noted that this is obtained by adding the forces on the

individual spheres given in Equation (4.3) of their paper.

In order to evaluate the elastic contribution to drag, the

integrand of Equation (3.30), must be expressed in terms of the con-

tacting sphere coordinates. This is because the Newtonian solution

of which use is going to be made of here, is given in these coordi-

nates, and the volume of fluid around the spheres is most easily

expressed in these coordinates. 'Hwaprocedure involved performing the

~k * *

tensorial operation Q0 oQ : D in terms of cylindrical coordinates,
o -0

followed by coordinates transformation with the aid of Equation

(3.32)
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1—3 *
* * ‘l

.15 0 l( Bvr 3 z )
'k 'k *

3r 2 32 Sr

* 'k *

Q0 - O Vr/r 0

a * a 'k 'k

l( v" v2 ) o 3’72,—
*

2 32 ar* 32   
* 'k

and the dot product Q0 - Q0 yield

  

  

  

_ 3 * 3v* v* v* 3v* 3V* T,v
z

<—5—)2+1/4(—5+—5>2 o -—";< 3: + .)
Br 32 3r Zr 32 Gr

'k

1: *- Vr

QOOQO- 0 :5 0

'k 3* 3* 3* 3*

-v v v v v
2 1

-I.-'($+ 3.) 0 (—§- +z(—:+
Zr 32 ar 32 32

‘k

3V2 2

"1; )

3r

(3.39)

The above quantities yield for
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v*2 3 * ** 3 'k 'k

* * * v v v 2 v

2 ° 9 = Q = - 3E " -—%5—-+-5;—-( -—55—) + —55r
° 0 o I;;3.sz r 32 4r

3 * a *v * v

H:— + -i—>21 (3.40)
32 31‘

The velocity components in Equation (3.40) can be expressed in terms

of the stream function using Equations (3.31) and some rearrangement

 

to give.

2 2
* * * 3 2

50-5, 90:341-335. (a—i—afl’r) +517(§“’:)2;-2—3-4’5
r 2 Z l‘ T‘ Z Z r

2
*

+r 31.312 3* 1-1/e555] (3.41)
32 32 Br Br

At this point coordinate transformation is to be performed. To

start with, the volume element of Equation (3.30) in tangent sphere

coordinates can be written as:

dV* = dgdnd¢ = 8dgdnd¢g
(3.42)

hEhnh¢ (n2 + 52)5/2

where hg, hn’ h¢ are scale factors which may be obtained with the

procedure discussed by Happel and Brenner (1965). .The trans-

formation of Equation (3.41) into the contacting spheres

coordinate system is a rather lengthy but straight forward

process. It involves handling a large number of terms which resulted

from repeated use of the chain rule as required for each expression
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in the above equation. To clarify the previous statement further,

EE* is going to be transformed below. With 5 = w(n, g) given

32

34 .. 35 35 95 an
3—1' ‘3: _T+3n ‘1' (3-43)

2 32 32

The partial derivativeség;, 91*- and others like in?

 

SZ 82 Br

and §§;-can be obtained from Equations (3.32) which yield,

3r

2 2
8 3 -
._D.;=.. gn,_§?=n__2£_

32 32

2 2

Ln; .-. - (n 25 ), 315* = - an (3.44)

3r 3r

With the aid of Equation (3.44) the individual terms in Equations

(3.41) can be written in terms of the contacting coordinates as:

:3 -(nZ-EZ) aw_ 54
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2 2_ 2
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32*

312W (31¢)I
l
l 0
) N

G
-

I

I

m :
5

fi
l
e
)

A

O
.
)

H '
6
V

+

m

N

I

J

.
N

O
.
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= * 3 = 2n _ ii_

322111- 7' 8:; (32¢) _—n2.+§2 [50 3?, (324’)

+ gzznz %(32w):1 (3.45)

Now we can express Equation (3.30) in terms of contacting spheres

by utilizing the results-(fi’ Equation (3.42) and (3.45) which yield

F12 _ 1

553" -324 d: dn 4(5.n) (3.46)
-5 0

where

2 23/2

Q(€.n) = ilL-ggdi—l [11(4) + 12(5) + 13(4)] (3.47)

11(4) =-§% (5.4)<a..w)2

 

T2(¢) = Digs Uz;;€2 (31W72 (312W)

13(5) =-f% (a.4>(a..4)<5224) (3.48)

The partial derivaties %%,-%%-and higher order derivatives as needed

in the individual terms of Equation (3.45) is obtained as follows

from Equation (3.35).

Let us write 5 = gII1

where
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g]. = n/(€2+02)3/2

I1 = [wf(s.€) 01(sn)ds (3.49)

Hence 0

ab 891 3I1

3n 3n II + 91 an

3g1 311 3I1

73g— ‘37]— + 91 E— (3.50)25.:

35

This procedure when followed for the rest of the partial derivatives,

with respect to n and 5;, involved in Equation (3.48.) yielded other Hankel

transforms in addition to the ones in Equation (3.50). At this point

it is convenient to define the variable x = Sn for the argument of the

Bessel functions 01 and Jo arising in these transformations. Later

we will see that the quadrature is done over x in order to keep track

of the oscillatory integrand. Here we list all the transforms which

resulted from the above operations in terms of the variable x.
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F f(x/n.€)J1(X) 5%

O

81 do.)
1_ 1 dx

_B—n— '- r f(X/Tl.€)(x 33—) Hz

0

22
3 11 d J

 j f(X/n.€)(X2 7,715) $5
311 0

i]; = 00.3.1: J ( >925.

3 _34‘,’ 1 n

0

81 (1.1

_§ -_- 3f .1 dx

3%; F? (x dx) 7"

O

 

 (3.51)
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-It is to be emphasized that I1 through 16 have to be obtained before

any other numerical calculation can be carried out.

3.3 Results for Equal Spheres

For equal spheres, a = 1 and the boundary conditions given by

Equation (3.36) lead to nonzero values only for B and C in Equations

(3.37) so the stream function 5 is an even function of g

1 .-
 

_ n

V (52 + n2)3/2 1: {5C sinh $5 + B cosh $5101 (sn)ds

Furthermore, Cooley and O'Neill have noted the explicit expressions

' -[2 + 25 + s-1(1-e'25)]/[s + sinh s cosh s]w

I

[1 + Zs-e'ZSJ/[s + sinh s cosh s] (3.52)(
'
5

I
I

This feature is useful here in obtaining an analytical answer for the

integral in Equation (3.46). A quick look at the individual terms of

Equations (3.45) in terms of the even stream function would Show that

315 = even

3115 = odd

3125 = even _

82211) = Odd (3.53)

and so it is readily seen from Equation (3.48) that for this case,

T1(w). T2(W). T3(w)-—all turn out to be odd functions of g. Inte-

gration over a from -1 to +1 should yield zero. Hence, the drag
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exerted by a second order fluid on a pair of identical, touching

Spheres is the same up to 0(We) as the drag exerted by a Newtonian

fluid with the same viscosity. This result will be used later in

the case of arbitrary spheres to check the numerical procedures

developed to evaluate the integral in Equation (3.46). It is worth

noting here thata pair of identical, touching spheres is a body

of revolution with fore-after symmetry and thus belongs to the class

of transveresly isotropic particles. For such particles Brunn (1977a)

has shown that the 0(We) contribution to the drag is zero.

3.4 Numerical Procedure for Evaluating

the Draggon UnquEl Spheres

 

 

In this section we are going to have three subsections.

Section 3.4.1 is devoted to evaluating the function f(s,g) for

unequal spheres; Section 3.4.2 is the detailed evaluation of the

Hankel transforms; and Section 3.4.3 to discussing the quadrature

scheme over n and g. The importance of the first two subsections

is because for uneuqal spheres (a f 1), the functions A, B, C, and

D of 5 (see Equation (3.37)) must be evaluated numerically; so the

integral of Equation (3.46) has to be evaluated numerically;

managing such an expression is no trivial matter. This is not

because of the triple integration that had to be carried out, but

rather because of the great need of very accurate numerical evaluations

of the function f(s.€) and subsequently the Hankel transforms.
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3.4.1 Evaluation of f(s,€) for

Unequal Spheres
 

The function f(s,€) is evaluated thousands of times in the

product quadrature scheme used for the multiple integration of

Equation (3.46). Hence, the accurate evaluation of A(s), 8(5),

0(5), and 0(5) is at the heart of the lengthy sequence of the numeri-

cal steps in this work. These functions of s are obtained as the

solution to the four linear equations (3.37). Detailed error esti-

mates for different valuse of S and a may be obtained by writing

(3.37) as

«299 = 9 (3.54)

where

9T = [A(s), 3(5), c<s). D(s>1 (3.55)

Defining the vector norm of c by

||c||0° = max |ci| (3.56)

1 .

and the matrix (row sum) norm of gby

i. .|0° = max (2 | ) (3.57)55 J. .3 L5 _

we obtain an upper bound on the relative error Ilégll/llcll according

to Goult et al. (1974),



where R is a condition number defined by

1841.. 11.8111-
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llésll/llcll _<_ Rand-52‘? (3.58)

(3.59)

n is the number of Equations (4) and t, the number of bits in the

mantissa of a single precision floating point number is 48 on the

cyber 750 at Michigan State University.

10'5 say, K may be as large as 5 x 10 .
7

So for a relative error of

Table 3.1 shows the condition

numbers of the matrngiB for different values of s at several values

of a between .05 and 5.

a marked increase at both very low and large values of s.

It is to be noticed that the values of K show

Furthermore,

TABLE 3.1.--Condition numbers K ofgat different values of 01 and s.

 

S

 

 

a 0.1 1.0 6.0 10.0 20.0

0.05 0.1217x106 0.9038x102 0.4732x104 0.3226x106 0.805 x1010

0.1 0.1052x106 0.8075x102 0.3650x104 10.2042x106 0.3095x1010

0.2 0.8221x105 0.5595x102 0.2164x104 0.8139x105 0.4554x109

0.5 0.4281x105 0.4184x102 0.4469x103 0.5004x104 0.1400x107

1 0.1864x104 0.2822x102 0.5533x102 0.882 x102 0.1581x103

5 0.1073x104 0.1813x104 0.3501x1013 0.4992x1020 9.2283x1038
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the actual magnitude of A, B, C, and D are also larger with decreas-

ing a at large values of s as can be seen in Table 3.2. For

TABLE 3.2.--Change in A, B, C, and D with decreasing 8..

 

 

s=10 a=.5 s=10 a=.2

A 5.538 x 10'4 4.762 x 10"2

8 -5.540 x 10‘4 -4.762 x 10'2

c 9.989 x 10'4 0.1832

0 -9.987 x 10‘4 -0.1832

 

both the small values and large values of S, Cooley and O'Neill

(1969a) have asymptotic estimates for A, B, C, and D.

= -2(a-1)(a2 + 40 +1)
 

(a+1)3s
for s_: 0.1 (3.60)

and for large 5.

A, B, C, and 0 all are 0(se'285) (3.61)

where B = min {1, 0}

Thus in our evaluationcfiithe function f(s,g) to overcome the error

in evaluating A, B, C, and D at both small 5 5_.1 and large 5 3_10

we do the following. First at small 5 the expressions of Equations
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(3.60) are used and the function f(s.€) at this range of s < .1 will

be referred to as fO from now on. On the other hand for large 5 we

obtain with Equation (3.61) for A, B, C, D, the following asymptotic

expression for f(s,g)

f . se'sia'E ) (52 + 535) (3.62)

where b2 and b3 are functions of a. A plot of f(s.§) versus 5 shows

a monotonic decay for the function above 5 = 7.5 as seen in Figure

3.2. It was seen possible to fit f(s,€) with a single exponential

function

f = b1 9-915 (3.63)
1

where b1, 61 are obtained from fitting f(s,g) keeping 0,5 fixed.

More will be said about the fitting procedure in the next section.

For convenience, the form of Equation (3.63) is used for values of

5.: 10. Thus for 5.: 10 the function f(s,g) is referred to as f1.

Another look at Table 3.1-would Show that the relative error

in most cases is less than 10'7; but for a = 5 the error at larger

values of 5 becomes enormous. This large error is typical for a

greater than 1. However, of all possible values for a, it is enough

to consider the range of 0 < e < 1, because the results for the

remaining values may be found by reversing the Sign of the right-hand

side of Equation (3.37).

The last point that we would like to stress is the magnitude

of error in calculating f(s,g) as a is decreased. In Table 3.2 we
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(It?  

795)

-/.C’

  - 2.0 -

/.0 6.0 j /0.0

5

Figure 3.2. Monotonic decay of f(s.€) VS S at a = .5. E = 0-25
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have shown that the values of A, B, C, and 0 increase in magnitude_

as a is lowered from .5 to .2 at S = 10. This increase in magnitude

has also caused the value of f(s,g) to increase markedly for this .

change in a at s = 10. Thus, the accuracy of evaluating f(s,g) is

decreased for values of a less than 0.5. The behavior of f(s,g) as

a is decreased is given in Table 3.3. It is to be noticed that the

values of f(s,§) increase by one order of magnitude as a is decreased

from .5 to .2 at large values of 5 above 5 = 1. Finally in Table

3.4 we present the absolute error lAfl in calculating f(s,g). |Af|

is obtained by finding the error in A, B, C, and D, and multiplying

by f(s,€). The table shows us the change in the magnitude of the

absolute error as a is decreased._ It is seen that as a is decreased,

the absolute error is higher in two particular situations. The first

is that for all values of g as a is decreased, the error is largest

10. The second situation is seen to be associated with twoat 5

distinct regions on the surface of the contacting spheres. These

are at the stagnation point on the larger sphere at g = -a and in the

region far away from the spheres at g = 0.

These absolute errors would accumulate each time the function

f(s, g) is evaluated with the numerical scheme. In that scheme the

function f(s,g) is evaluated 27,000 times on the average. Multiplying

this number by of would give an upper bound on the total error

involved in evaluating f(s, 5). Using the maximum value of |df| over

4

s and a, we obtain an upper bound of 10' on total error due to

function evaluation at a = 0.2.



TABLE 3.3.--Behavior of f(s.€) with decreasing a
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a=.5 g=-.5 a==.5 g=0.0 a=.5 g=1.0

S

f(5.€) f(S.€) f(S.€l

1 -1.8196 -1.9108 -1.471

6 -0.066383 -0.020822 - .00578

10 -0.008086 -0.000554 - .00009988

a= 2 g=- 2 a=.2 g=0.0 a=.2 g=1.0

1 -1.965 -1.9881 -1.462

6 - .22088 - .18998 - .00578

10 - .0812 - .047621 - .00009988

TABLE 3.4.--Abs0lute error in f(s.€) as 0 is decreased

8:.5 g=-.5 a=.5 g=0.0 a=.5 g=1.0

5

MIL lAfl lAfl

1 1.5 x 10'11 1.6 x 10‘11 1.21 x 10'11

6 5 9 x 10‘12 1.85xio‘12 5.13 x 10'13

10 8 1 x 10'12 5.55x10’13 1.0 x 10"13

a =.2 g=-.2 5:.2 5:0.0 a=.2 5=1.0

1 2.5 x 10’11 2.63 x 10‘11 1:95 x 10'11

6 9.5 x 10‘11 8.17 x 10‘11 2.5 x 10'12

10 1 3 x 10‘9 7.62 x 10'10 1.59 x 10‘12
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‘§;4.2 Evaluation of Hankel

Transforms

 

 

There are several problems to be addressed as we proceed in

describing the procedure of evaluating the Hankel transforms I1 . . .

I6 given in Equation (3.51). For convenience, only one Hankel

transform is going to be used to describe the method of solution.

The others are evaluated in a similar fashion. Also, we will use the

variable x = sn which is the argument of the Bessel function. In

particular, we choose the transform

I1 =-%-I:f(x/D:E)J1(x)dx . (3.64)

As we discussed in Section 3.4.1 that asymptotic expressions

f0 and f1 will be used over a range of small s and a range of large

5 values repsectively.

Hence

x2 x0

f(x/n,g)Jl(x)dx = f001(x)dx + f01(x)dx

0 0

X9.

+ f101(x)dx (3-55)

xu

We note that in Equation (3.65) XH= Sn and as we mentioned earlier

it is more convenient for the behavior of the Bessel functions to

use x rather than sn. This is primarily to keep track of the number
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of cycles over the limits of integration and to provide enough quad-

rature points in each cycle. The quadrature points which we are

referring to here are those of a Gauss Chebyshev quadrature scheme

which is used for the numerical integration as will be discussed

shortly. In Equation (3.65) xz = .ln; however, x2 should be less than

or equal to 0.3 so that the power series representation of the Bessel

function (to be discussed below) is valid. Thus, x = min [.ln,.3];
5L

and Xu = 10n as established earlier in Section 3.4.1. In the sub-

sequent paragraphs each of those integrals on the‘right hand side of

Equation C365) is going to be discussed separately.

In the first integral on the right hand side of Equation (3.65)

x5

0 f0 Jl(x)dx (3.66)

fo has been defined in Section 3.4.1 and because of the unbounded

functions A(s), B(s) as s + 0 (see Equation (3.60)), for 01(x), we

considered the first few terms of a power series representation of

the Bessel function

3

_x__ x<'0.3
~ X

hm" 2‘ 16 —

When this is done, the integrand of Equation (3.66) is no more

unbounded and can be written as:

2
11 = f001(x) = (1n/2)sinh(£n§) - (Di-63) sinh (X—f)

2

- ncosh (é?) + (Lgn) cosh (é?) (3.67)
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T = -2 (01-1)(012l+4a + 1)
where 3

(a + 1)

(3.68)

The integration of Equation (3.66) was carried out numerically using

Gauss-Chebyshev quadrature scheme. The integrands for the rest of

the Hankel transforms 12 . . . I6 for this limit 01+ xi were obtained

by a similar procedure and are listed below.

2

(1 - %$r)((T/2)sinh(é§) - cosh (é§))1'2 =

- - 1i , . 55.
13 - n( )((T/2)SInh(XE/n) - cosh( ))

4 n2 D

14 = (Tcosh(xE/n) + 25inh 0%)) 01(x)

i5 =%(1 cosh(’%)—2 sinh (%))(% 00(x)-.11(x))

i6 = (T—rf si Ming) 4% cosh(£n§))dl(x) (3.69)

The second integral on the right hand side of Equation (3.65)

over the range x2 to x was obtained with the Gauss Chebyshev
u

quadrature scheme. Here the function f is the actual function as

given with the original Hankel transform in Equation (3.51). A(s),

B(s), C(s), and 0(s) are evaluated by the Gauss-elimination routine

from Equation (3.37), and n0 truncation is used for the Bessel func-

tion. The number of quadrature points supplied was based on deter-

mining the number of cycles for that range of integration, and at

least three points per cycle were supplied.
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Finally the third integral on the right hand side of Equation

(3.65) is to be discussed. In Section 3.4.1 we mentioned that the

errors in evaluating A(s) -- D(s) is also large at large s. We

also mentioned that

f1 = ble‘alS (3.70)

This form has been obtained by observing the behavior of f(s,g) at

large values of s. Figure 3.3 shows this behavior where a monotonic

decay is observed after about s = %-= 7.5. It should be mentioned

that for the otherHankel transforms I2 . . . 16, their function of s

are born by derivatives of f(s,g) with respect to g as can be seen in

Equation (3.51). The behaVior of these functions at larges is shown

in Figures 3.4 and 3.5 where a similar monotonic decay is observed

at about the same value of s =-%-= 7.5. Thus, fitting each of

f(s,g), i3féélél-andfig-g-Eiflby an exponential hear 5 = 10 would pre-

vent the error in evaluating A(s)--B(s) at larger value of s. In

f1, b1 and a1 are determined by the fitting procedure of fig; 27:1;-

for each set of e and E separately. For each a, several values of a

between -a and 1 were picked and a range of s values (between 7 and

12),that was seen to yield a uniform decay, was chosen.

Even though we have been able to overcome the problem of

evaluating those functions of s at large 5 by the exponential fit,

we have noticed that for a less than 0.33 there was a considerable

difference between the values of the functions f(s,£L-§££§&§l .
BE

2 I I I .

9.;éggél and their exponential fit f1, f1. f1 . The d1fference
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I 2

is larger and more significant between 35:2,5), 3 géi'g ) and f

f1 .

3f

35

10 2, while the error with f is of order 10'6. However, in the case

19

For example, when a = 0. 2, the fitting error associated with

2

is of order 104 and the error associated with $33-1s of order

of a = 0.5, the fitting errors are much smaller. Thus, once more we

see that this range of a values would have one additional error to

that discussed in Section 3.4.1 in evaluating the function because

of the fitting procedure. It should be stressed that this error

especially in fitting Efééiéi-and 322355 is going to be large as we

repeat their evaluation in the numerical scheme for these a values

less than 0.33.

The Hankel transforms of a decaying exponential is available as

D
!

H
‘

4
.

~
.
2
3 N

. l

 e‘als 01(sn)ds = 1 (3.71)

9
1

I
—
'

+

J

N

Hence, we may write the last integral of Equation (3.65) as

xu=10n

f1 01 (x)dx = HTl- f101(x)dx

J

Xu 0

W— XU=10n

=b a1 + nZ-a1_ Talx

1 Na: + n2 ble—f‘] Jl(x)dx (3.72)

1

0

And the expressions for the remaining Hankel transforms in the limit

0 +'w are
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5

Figure 3.3. Monotonic decay of f(s,§) vs. 5 for a = 0.5, g = 0.25.
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3f(s,€)
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Figure 3.4. Monotonic decay of _8f_g_2_,€_l vs. 5 for 0L=0.5, £70.25-
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32f(s,€)
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Figure 3.5.--Monotonic decay of 3;- vs s for OL = .5, €= 0.25.



 

  

 

- a + 2a n - (a2 + 2)3/2

H12 - aggl = b1 ( 1 21 2 313/2 ) (3.73)

n (al + n )

H11 2 a1 a1
H13 - .,.. - b ( ¢ (1- . . \-

1 :3 w. .1' .152. .9312

Baln

- ) (3.74)

(ng + a§)5/2

It is to be noticed that HT4 and HT6 are given by expression similar

to that for HT1 in Equation (3.72), but with different coefficients.

Their coefficients are a4, b4, and a6, b6 respectively and obtained

from fitting-gg-and-ggg. H15 is similar to H12 with as and b5

obtained from fitting g2. The indices associated with HT's are for

the purpose of identifying the specific Hankel transform I1 . . . 16

in Equation (3.51). The other integral on the right hand side of

Equation (3.72) is

(x)dx (3.75)

This integral was obtained numerically using the same quadrature

scheme.

Now that we have discussed the individual integrals and

explained the motivation behind that procedure, we rewrite

Equation (3.65)
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I1 = rf(x/n,€(dl(><)dx

.0

x1 = .In or .3

2 2

= [TM-é- - §g)sinh(’-‘n§) + 11(58- -1)cosh(5n§)]dx

‘0

xu=10n

t J f(X/n.€)J1(X)dX

x =.lnor .3

 - x =10n

VU 'X‘

‘1“? + “2 " at1 "3‘1";
b ( ) - b e J1(x)dx (3.76)

1

nJai +112 0

This form is the one that was used in the numerical evaluation. An

+
 

additional check on Unanumerical values of these Hankel transforms is

available from the work of Soni and Soni (1973) on asymptotic esti-

mates at large n. These estimates are discussed in the next section.

3.4.3 ,Quadrature Scheme

over n and g

 

 

It was mentioned earlier that in terms of the contacting

spheres coordinates employed here, the region at which n = w is the

point of contact of the spheres and the region of n = g ='0 is the

region far from the spheres. The contribution to the elastic effect

at the contact point was investigated through the use of asymptotic

estimates of the six Hankel transforms given in Equation (3.51) as

n + w and by writing theintegral over n as follows.
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m 10

[0(n.€.11 . . -15)dn = 01mg. Il . . ~15) dn

0 0

+ Q(n,g, asymptotic estimates of 1's) dn (3.77)

10

where the asymptotic estimates of the Hankel transforms were obtained

by a theorem of Soni and Soni (1973). Soni and Soni have related

the behavior of a function of s that is unbounded at‘s + 0 of the

form s'Yg(s) where y > 0 and 0 < y < m + 3/2 with the limit of its

Hankel transform at n‘+ m.

lim "Y

n+m /sn Jm(sn) s g(s)ds

0

-Y +

"2 iifl‘ééilfliifil H 9w”) (318)

where the function g(s) is bounded over the entire range of s. It

is to be noticed that in Equation (3.78) si'Y g(s) is equal to the

specific function of s in the various Hankel transforms. Further

the form of equation (3.67) has n% which is not present in our defini-

tion of the Hankel transforms, so we have to multiply the results of

Equation (3.73) by n'%. The coefficient y is chosen in such a way

as to make f(s,g) bounded at s = 0, m is the order of Bessel function.

Application of Equation (3.78) to the six Hankel transforms showed

that as n +'w the following estimates are obtained:
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11 ' -2

12 = 0

I3 = 0

I4 - 0

15 = 0

16 = 0 (3.79)

In the last integral of Equation (3.77) when infinity was replaced

by 15 or 20 and using the results of Equation (3.79) along with

other functions of g and n yielded values of the order of 10'5

which were practically zero. This result had established two things.

First, the point of contact of the spheres yield no contribution to

whatever result we get for the elastic effect on the drag. Second

the value of n = 10 is a reasonable upper limt for n.

0n the other hand, at low n the value of the integrand is

large, particularly at E §_0. It is useful to note here that the

range of low n with a near 0 describes the region far away from the

spheres while the range of low n with 5 near -a describes the stag-

nation points region about the larger sphere. More will be said in

Section 3.6 about the contributions from different regions to the

elastic effect on the drag.

3.5 Contribution from Different Regions

We proceed to look at the integrand Q(g,n) of the double

integral over n and g in Equation (3.46). This integrand involves

large sequence of algebric expressions. It is useful to look at the
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behavior of Q(g,n) in different regions of fluid around the spheres.

In Section 3.4.3 we have already shown that the region near the

equatorial section of the spheres and in particular the point of con-

tact has no contribution to the drag. This region is that of n +

infinity. 0n the other hand, in the regions of low values of n and

nonzero values of g we observed a different behavior. The numerical

values of the integrand Q(g,n) for a = .2 are listed in Table 3.5.

The values of n and g are those at which the integrand started to

have an appreciable magnitude. Let us first look at low values of

n, with g approaching zero, which represent the region far away from

spheres as can be seen from

The values of Q(g,n) are significant in this region as shown in

Table 3.5 Next we looked at the region near E_:_-a and at low n

which describe the stagnation points on the surface of the rear

sphere. It was seen that this region contribute the most to the

elastic effect on the drag. The range of low n values over which

the integrand Q(g,n) takes on appreciable magnitude is larger around

the larger sphere (E < 0) than around the small sphere (g-> 0).

The large contribution from the stagnation point region

is understandable in the light of previous work. Of particular

importance to us is the work of Leal (1975) where he treated the
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Table 3.5.--Integrand after integrating over x (a=.2, k=5)

 

 

g n Q(€.n)

0.79 0.007 0.29

0.713 0.007 0.29

0.63 0.007 0.26

0.54 0.007 0.23

0.447 0.007 -0.21

0.087 0 007 0.42

0.01 0.062 -O.60

0.01 0.007 -950.7

-0.056 0.062 253.8

-0.056 0.007 -2.08

~0.112 0.332 -1.01

-0.112 0.17 5.74

-0.112 0 062 165.8

-0.112 0.007 2.71

-0.154 0.17 18.38

-0 154 0.062 93.83

-0.154 0.007 -641.3

40.183 0.062 64.74

-O.183 0 007 -1.31

-0.198 0.062 1.56

-0.198 0.007 0.21
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case of a long, slender rod-like cone without fore-aft symmetry. In

that work, the drag force due to the elasticity of the medium was

represented by two integrals. The first is a surface integral which

is evaluated at the surface of the particle using asymptotic expres-

sion for the integrand. These expressions are not valid for the

region close to the ends of the particle. Further in the volume

integral it was seen that the region of fluid close to the particle

is dominant; and because of the slender body approximation the stagna-

tion points at both ends of the particles where omitted. However,

the fact that we have an appreciable contribution even near a = 0

(i.e., far from the spheres) is at variance with the result of Leal.

It is to be mentioned that the shape of our particles is different

from Leal's and this may explain this variance in the results for

this region.

We would like to conclude this section by presenting an

estimate of the error associated with the integration over g and n.

It was just seen that the region of small n and E < 0 has the largest

contribution to the drag on the spheres surfaces. Thus, when we

evaluated the numerical value of the integral of Equation (3.46) for

equal spheres (a = 1) where a high degree of accuracy was available

in the Hankel transforms evaluation, we obtained a final answer of

0.12. This value was obtained by integrating over a from -1 to 0

and over n from 0 to 1 which are the regions of major contribution

to the drag. The integration from-*1to 0 over a and 1 to 10 over n

4
has a value of 10' which is practically zero. Before we can say

anything about the value 0.12 for the integral of equal spheres, we
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further investigated the effect of changing the number of quadrature

points over the range -a to 0 over E and 0 to 1 over n for several

0 values. As can be seen in Table 3.6 that the effect of increasing

TABLE 3.6.--Effect of increasing number oquuadrature points on

integral shown

 

 

30 points each 50 Points each

. 1°28 If: (15“ l: d“

0.33 0.98 0.95

0.50 0.48 0.46

0.67 0.28 0.27

 

the number from 30 to 50 has an effect on the second decimal point of

the integral value. The other‘integral -01 to 0 over a and 1 to 10

‘4). Thus, we conclude that evenover n is also very small 0 (10

with this increase in the number of quadrature points, the first

decimal point is unchanged. We also know that in the integration over

5 and n the integrand does not involve 6. Thus, we say that since

for equal spheres the result of Equation (3.46) should be zero, there-

fore, the value of 0.12 is error due to the quadrature over 5 and n.

This magnitude is also associated with other values of a's # 1 which

we will present their final results in the next section.
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3.6 Results for Unequal Spheres

Before we present the results of the drag correction factor

Flz/GHuUa due to the elastic medium for unequal spheres (a f 1), we

would like to recall attention to Sections 3.4.1 and 3.4.2. In Section

3.4.1 we aimed at establishing confidence in the numerical evaluation

of the function f(s,E) of the Hankel transform. We have seen that as

a is decreased from 0.5 to 0.2 the absolute error lAfl increased by

an order of magnitude. Furthermore, we showed that as we repeat the

evaluation of f(s,£) the error adds up to reach an upper bound of 10"4

for a = .2. In Section 3.5.2 we discussed the error involved in

fitting éflélél-and Ejjlgiél-at a less than 0.33 and said that the
BE BE

order of magnitude of the difference between these functions and the

fitting function f1 is large. We also mentioned that the

difference will add up as we repeat evaluating these functions.

Thus, in light of these points, it was decided that values of

8': .33 where the upper bound of the total error in evaluating all

the functions of s and also the difference between the functions and

8 4
their fitting values is of order 10' to 10' , is an acceptable

degree of accuracy. In Table 3.7 we present the result for unequal

spheres for k =-§-between 1.5 and 3 or a between .33 and .67. The

Foz
, _

6nuUa the correspond1ng Newton1an

drag correction factor for those particle size ratios. These results

 

F

- 12
table includes both wuua and

show that there is an appreciable elastic effect on the drag at order

one in Weissenberg number. Also, it is seen that this effect

increases as k is increased.
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TABLE 3.7.--Drag on pair of contacting spheres--elastic contributions

 

 

K -FOE/600Ua -F12/610Ua

1 1.29 .64

1.5 1.66 1.23

2 2.09 1.89

3 3.04 3.42

 

Note: F2 = FOZ + We F12

Before we conclude this chapter we would like to recall that

the problem treated here is that of two contacting spherical particles

translating along their center line in the positive z-direction with

the small sphere leading. He mentioned earlier in Section 3.5.1 that

the case where the spheres translates in the negative 2- direction

with the larger sphere leading can be considered by changing the signs

of the right hand sides of Equation (3.37). The sign of the quantity

Flz is not going to be affected by this sign change of Equation (3.37).

since it is associated with the quadratic quantity QO- 90' .FOF the

case of spheres translating in the positive 2 direction FOz acts in

the negative z-direction; the net drag

F = F 2 + WeF

0 12

If we consider We = .1 and for a = 1.5

F = -6nuUa(l.66) - .60uU6(1.233)
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which is greater than the Newtonian value. 0n the other hand, the case

where the large sphere is leading in the negative z-direction, Foz

acts up in the positive z-direction. Thus

F = 6nuUa(1.66) - .6nuUa(1.233)

which is less than the Newtonian value. In Chapter IV we shall dis—

cuss the results of Table 3.7 in light of the experimental results.



CHAPTER IV

EXPERIMENTAL PROCEDURE AND RESULTS

4.1 Single Sphere Experiments

Sedimentation is a common method for measuring the drag coef-

ficient of particles translating in a fluid. It is very accurate

when care is exercised in both the design and procedure. Several

investigators--Sutterby (1973), Sakai et al. (1977/78), Sigli and

Coutanceau (1977), Chhabra et al. (1980), Broad and Mena (1974), and

Acharya et al. (1976)--have performed such experiments using single-

rigid spheres with both Newtonian and Viscoelastic fluids. The only

measurements needed are settling velocity, particle size, and density

and the fluid density. In terms of isolating the effect of fluid

elasticity on drag, Boger and coworkers (1980) have obtained the

most accurate results using so-called Boger fluids. Most of these

experiments were done at very low particle Reynolds numbers. The

work of Sigli and Coutanceau (1977) has addressed inertial effects.

It was concluded that inertial effects generally opposed the elastic

effect. This means that as the Reynolds number is increased, the

elastic effect is decreased. Creeping flow conditions are commonly

observed since most of the theoretical work applies only to such

flow conditions.

The purpose of the present work is to investigate the effect

of elasticity on the drag experienced by rigid contacting spheres

70
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translating in a non-shear thinning fluid along their line of centers.

This is to be performed over a range of Weissenberg number and at low

Reynolds number. The remainder of this chapter will include apparatus

design, material properties and preparation, experimental procedure,

and finally, results.

4.2 Apparatus
 

4.2.1 Hall Effect Correction for

Néwtonian Fluids

 

 

A drop cylinder made of Plexiglass was designed for the experi-

ment. In this design, the following factors have been taken into

consideration, which are very critical from the standpoint of the

degree of accuracy. In selecting the cylinder diameter, the wall

effect is the major concern. For a single sphere in a Newtonian

fluid, Faxen (1932) has made a theoretical analysis of the correc-

tion to Stokes law due to the presence of a boundary. The resulting

expression for drag is

F = GnuUaK (4.1)

where

1
K:

1-2.104(d/D) + 2.09(d/0)3 - .95(d/0)5

d/D is the ratio of sphere to tube diameters

The above expression was verified experimentally by Bacon (1936) for

d/D up to 0.32. The linearity of the constitutive relation of

Newtonian fluids enabled Brenner (1964) to derive expressions for the
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first order effect of wall proximity as a correction formula for the

terminal velocity given as

_'E
g = 0” + . + 0(C0/2) (4.2)

6002

 

and a correction force formula obtained by a simple inversion of

the above expression. In Equation (4.2), g is the velocity of the

particle when settling in an infinite medium, 0” is the velocity

when the particle is settling under the influence of an outside

force 5 at a distance from a boundary whose wall effect tensor is

5 and C0 is a characteristic particle dimension, usually the radius.

The second order tensor 5 was obtained by the method of reflection.

Sutterby (1973) studied the wall and inertial effect experimentally

overa range of d/D between 0.0025 to 0.125 for a range of Reynolds

number between 0.00001 to 3.78. The falling sphere data were corre-

lated as a relationship between 05/0 5 K, d/D and Re = pUd/u. Here

“s is the fluid viscosity obtained from Stokes law and u is corrected

fluid viscosity. The value of K for several values Re was given in

a graphical form and reproduced here as Figure 4.1. Agreement with

Faxen results is up to Re = 0.2; where beyond this value inertial

effect is appreciable.

4.2.2 Hall Effect Correction for

Viscoelastic Fluids

In the case of a Viscoelastic material, the wall effect is

not fully determined. Unlike the case of viscous flow, the non-

linearities of the fluid's constitutive relations for a Viscoelastic
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medium doesn't in general allow the wall effect to be expressed as

a force correction formula. Only a velocity correction factor is

possible. Caswell (1970) presented the expression for the first

order effect of the wall proximity on particle settling as:

g = Uco + 5 - f/6nu02 + 0(2'2) (4.3)

The only restriction on the constitutive equation for the validity

of the above relation is that it must describe an isotropic fluid

which has a lower Newtonian regime with zero shear viscosity. This

general relation was examined for the case where the stress expres-

sion for the medium is represented by the third order fluid model.

Translation induced by a force alone and rotation induced by torque

alone was considered. The solution involved velocity perturbation

expansions and Green's function method was utilized for obtaining

the wall effect tensor 5. The final expression for the unbounded

velocity was expressed in terms of the zero shear viscosity for a

sphere settling in a Viscoelastic medium as:

   

6naU F F

'E “0 U03 6na2 611a2

where

A is a combination of material constants given in Caswell (1970)

Various experiments were carried out to estimate the critical ratio

of particle to tube diameter above which wall effect is significant.

Sigli (1977) observed that for a ratio greater than 0.25 the wall
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proximity increased the effect of fluid elasticity. This effect is

seen by a decrease in the particle velocity. Boger and coworkers

(1980) had established experimental conditions for negligible wall

effects. They investigated situations for d/D between 0.04 and 0.2.

It was found that the terminal velocity decreased as the sphere to

tube diameter ratio increased, but this reduction in the terminal

velocity as a result of the proximity of the tube wall to the falling

sphere was less than 2% of the unbounded terminal velocity for the

case of d/D = 0.2.

In the present work the diameter of the tube is 200mm. The

maximum particle diameter is less than 25.4 mm; so the maximum parti-

cle to tube diameter ratio is about 0.125. This selection will

provide negligible wall effect. The method of Thomas and Walter

(1965) was used to estimate the distance (Le) required for the

sphere to attain their terminal velocity using the following equa-

tion:

17opgafiF

'- =———
(4.5)

e M 2

“0

where

OP is the particle density

pr+ pF

0‘6 ‘ —96'f'—F

M' = 4/3 flpf a'
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pf = fluid density

a' = doublet radious = a3(1 + k3)

k = ratio of large to small sphere diameter

a = small particle radius

F = (M-M')g = net gravational force

M = 4/3 h a' pp and g = gravitational acceleration

The maximum entrance length needed was thus estimated to be less

than 200 mm. The designed tube height is 1200 mm, allowing for at

least 800 mm of test section. Two sections of 300 mm each were

marked along the tube length to improve precision. First, a section

of 50 mm from the top was left empty to be able to draw a vacuum

on the solution without drawing it out. This section is then followed

by a 200 mm liquid filled section for attaining terminal velocity.

Following this there are the two sections of 300 mm which are sepa-

rated by 150 mm. A schematic diagram of the details of the drop

cylinder is shown in Figure 4.2. Only measurement considered are

those reproduced in the two equal sections. Finally, a section of

200 mm is allowed for the bottom edge effect. The accuracy of this

arrangement is seen in the results presented for a Newtonian fluid.

The spheres are supposed uibe free from any attachment and

fall under gravity along their line of centers. Extreme care is

required to have the spheres dr0pped axially in the fall tube at

the start of each experiment. A special centering device, shown

in Figure 4.3, was designed for each pair. This device, a Plexiglass

funnel positioned in the center of the tube cover. The lower end
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Figure 4.2. Schematic diagram of drop cylinder.
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Figure 4.3. Photograph of centering device.
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of the funnel is immersed in the fluid and is only 0.001 inch

larger than the large sphere. This design yielded good degree of

alignment of the pairs along the axis before they enter the fluid.

Friction in the funnel was eliminated by making the passage very

smooth. The tube wall thickness was 1/4" so as to withstand the

pressure of the highly viscous fluid.

4.3 Materials

4.3.1 Test Fluids
 

For the purpose of isolating the elastic effect on the trans-

lation of the doublets, a Viscoelastic fluid that has a constant

shear viscosity is needed. This fluid has the characteristics of

what is referred to as a second order fluid with constant shear

viscosity and constant normal stress coefficients.

lim N

1 -> o (u 6)) =60 and 41 = $5 = 20010 (4.6)

where

01 is the first normal stress coefficient

N1 is the first normal stress difference,

7 is the shear rate

AD is a time constant

In the present work two media are used, a Newtonian corn syrup made

by A. E. Staley and a Viscoelastic solution of Separan® in this

corn syrup. The syrup was chosen due to its clarity and high vis-

cosity at the experiment conditions which was 1580 poise at 25°C.
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Terminal velocity was obtained over a short distance down the tube

and low Reynolds number flow around the spheres was obtained because

4 to 10‘5).of such fluid viscosity. The range of Re is between (10'

The Newtonian medium was used for the purpose of confirming the

accuracy of the drag measurements. The Viscoelastic medium was pre-

pared by dissolving small quantities (0.2 wt.%) of Separan AP30

synthetic polyacrylamide, manufactured by Dow Chemical, in the corn

syrup. The polymer was sprinkled in the syrup at different depth in

the preparation tank and left for two days to swell. Then a slight

rotation of the solution to achieve uniformity of the polymer con-

centration. The solution obtained was fairly clear and homogeneous.

Separan AP-30 has good thermal stability below 210°C, and good

resistance to shear degradation.

4.3.2 Preparation of Doublets

Spheres choosen for the experiment were steel ball bearings

having extremely small tolerance on diameter and sphericity- The

sphere diameter was measured carefully at several points. The

density was obtained from the measurements of weight and volume of

sphere. Doublets were formed by joining two spheres together over a

size ratio of 1 to 7. The joining process was performed very care~

fully. A commercially available adhesive (Super glue) was used, a

small drop was enough to bond the spheres together at a minimum

contact point. The surfaces of the spheres were wiped clean and

no foreign material such as glue was on them as they were dropped in

the cylinder. Figure 4.4 is a photograph of several size doublets.
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Figure 4.4. Photograph of several size doublets.
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4.4 Rheological Properties of Test Fluids

An R-16 Weissenberg Rheogoniometer was used to measure the

flow properties of all test fluids. Steady shear measurements were

carried out to obtain the torques and forces on the cone and plate

and angular velocity of the rotating plate. A cone angle of 0.5522°

and a plate diameter of 7.5 cm were used in the measurements. To

measure normal stress difference, piezoelectric load cell (922F)

connected through an amplifier to a storage oscilloscope were used

here. The cell was calibrated before the measurements by placing a

certain weight and recording the voltage output. The first normal

stress difference is then calculated by:

2HAnlg

__f_

"1‘4
(mm

c (6/4)d§

where

An1 is the oscilloscope steady-state reading in volts

9 is the gravity force

H is the transfer function of the cell in mass/volt

(11 is the plate diameter and the factor (2) is for the

force on the lower and upper platens.

The first normal stress coefficient is then obtained by Equation

(4.6).

A standard oil supplied by ASTM was used for viscosity cali-

bration. Temperature control was also used to obtain viscosity-

temperature data for comparison with the manufacturer's data. This
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comparison is shown in Figure 4.5 to be excellent. The Newtonian

corn syrup was also characterized at various temperatures. The

Viscoelastic Separan solution in corn syrup was tested at the experi-

ment condition. The effect of inertia on normal stress measurements

was studied very carefully. No normal force was observed with the

pure corn syrup. Since the Separan solution has the same density

almost as the corn syrup, inertial effects are absents in these

measurements.. Corn syrup viscosity vs. shear rate is shown in

Figure 4.6 and 4.7. The temperature dependence of the viscosity

is given in Figure 4.8. Figure 4.9 shows the viscosity vs. shear

rate of the elastic fluid. Constant viscosity is observed up to a

1
shear rate of 5 sec- . For the first normal stress coefficient

1
Figure 4.10 show that 01 is constant again up to y z 2 sec- . In

any case our settling experiments involve shear rates less than or

1 as will be seen in Table 4.3. The first normalequal to_1 sec-

stress difference is shown in Figure 4.11. The flow properties of

all test fluids are summarized in Table 4.1., A new sample was used

TABLE 4.1.--Viscosity, relaxation time, and density of test fluids

 

 

Test Fluid Temp C° 00(Poise) 10(sec) of(gm/cm3)

Standard oil 25 740 --

Corn syrup 200 25 1580 -- 1.4288

.2% Separan 25 1760.57 0.26 1.3501
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Figure 4.5 Calibration of Weissenberg Rheogoniometer by ASTM Fluid.
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at each shear rate. This was necessary to avoid any error due to

material degradation or insufficient relaxation time after shearing

the sample. Each time a sample is loaded twenty minutes were allowed

for the material to relax before a measurement is taken. Evaporation

of the sample was cut to a minimum by applying a thin film of silicon

oil of comparable viscosity to the exposed sample in the gap between

the cone and platen.

4. 5 Experimental Procedure

The Newtonian fluid was used first for reproducing available

theoretical results and confirming the suitability of the experimental

arrangement. Pure corn syrup filled the drop cylinder up to a level

that is enough to have the centering device immersed. The cylinder

was left in a constant temperature room for few days to allow the

entrapped air to escape and thermal equilibrium to be reached. Appli-

cation of a vaccum on the cylinder helped further speed up the process

of getting rid of the air bubbles.

Each pair of spheres was released carefully in the centering

device to avoid any eccentricity. The terminal velocity was recorded

with two electronic timers, were each section is timed by a separate

timer. A period of at least twenty minutes was allowed after each

test to avoid any error due to disturbances. This was netessary due

to the highly viscous fluids used. This time was also higher for

larger doublets. The same procedure was followed for the visco-

elastic medium. It is worth noting that it took a longer time to

clear the solution from air bubbles.
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The orientation of non-spherical particles is an important

question to be addressed in sedimentation experiments. Photographs

in Figures 4.12, 4.13 show that for both Newtonian and Viscoelastic

medium the orientation in which the line of centers coincides with

the axis of the cylinder and the larger sphere is underneath, is

stable and maintained throughout the fall. The same behavior was

predicted by Boun1(1977a) for transversely isotropic particle in a

quiescent field, as discussed earlier in Chapter I.

4.6 Results
 

4.6.1 Previous Observations

Non-Contactinngarticles

For the purpose of completeness non-contacting spheres were

also dropped with two different initial separation distances. This

was done in both the Newtonian syrup and the elastic liquid. As

expected, in the Newtonian syrup the initial separation has no

effect on the spheres as they settle in the tube. On the other hand,

in the elastic liquid we observed convergence of the spheres for

small initial separation distance and divergence for large separation

distance as they settle in the tube as can be seen in Figures 4.14 to

4.20. These phenomena were also reported by Riddle et al. (1977).

The fluids used by Riddle were of considerable shear thinning. In

our case the elastic fluid is non-shear thinning and thus we attribute

these observations to the elasticity of the medium.
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Figure 4.12. Photograph of a doublet in a Newtonian fluid.
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Figure 4.13. Photograph of a doublets in a Viscoelastic fluid.
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Figure 4.14. Photograph of particles separated by a distance in

Newtonian fluid. Top section of the test column.
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Figure 4.15. Photograph of same particles at the bottom 6f the

test cylinder.
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Figure 4.16. Photograph of two particles in Viscoelastic fluid

at the top of the test cylinder. '
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Figure 4.17. Photograph of same two particles after some distance

down the tube.
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Figure 4.18. Photograph of same particles as they converge.
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Figure 4.19. Photograph of particles separated by large

critical distance at the top of the cylinder

in a Viscoelastic fluid.



101

 
Figure 4.20. Photograph of same particles as they diverge

down the tube.
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4.6.2 Contacting Particles in

Newtonian Liquid

The theoretical and experimental values of the correction

factor fN to STokes' law for doublets of various size ratios in

the Newtonian corn syrup are summarized in Table 4.2. The

TABLE 4.2.-~Newtonian fluid results. a = small sphere radius (cm).

k = ratio of radii, fex = exp. drag correction factor,

ftheo = theo-drag correction factor

 

 

a I k fexp. ftheo

.1587 cm 1 1.216 1.29

.1587 cm 2 2.08 2.09

.1587 cm 4 3.97 4.02

.1587 cm 5 5.03 5.01

.1587 cm 7 6.99 7.01

 

experimental values have been obtained from the following equation

F

G (4.8)
fN = 6nuUa

where

Fe = (473)6(op-6f)(1+k3) a3g

where

g is the acceleration

a is the small sphere radius

k is the ratio of radii (k.: 1)

pp and of are the particle and fluid densities
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Theoretical values of fN were given by O'Neill (1969a). The maximum

discrepancy between the experimental and theoretical values of fN is

seen to be at k = 1; and amounts to 6%. This is believed to be due

to experimental and wall effect error. Nevertheless, it should be

mentioned that wall effect contribution to this value is very

negligible. This conclusion is reached on the basis of the results

of larger k values. So the error is mostly due to small errors in

measuring the terminal velocities. It is to be noted that creeping

flow was ensured since the values of Reynolds numbers are between

lO'4 to 10's. The results obtained here confirmed the suitability of

the cylinder design for carrying out the experiment for the elastic

medium.

4.6.3 Contacting Spheres in

Elastic Fluid
 

The results of this section are to be presented in terms of a

correction factor which accounts for the deviation in drag coefficient

from Newtonian value due to the presence of fluid elasticity. The

correction factor was obtained for several values to the product

of 10 and the average shear rate which is in the case of doublets

of spheres in creeping flow can be arbitrarily defined as

XoYa
v = IOU/a(1 + k) (4.9)

where

A0 is a relaxation time in seconds and all other

quantities are as defined before.
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The various values of the product Aoyav were obtained by varying the

doublets size ratio. In general, for creeping flow, the drag coeffi-

cient can be written as:

cd = 2F (4.10)

of 6202(1 + k2)n

 

where

F is the drag experienced by the doublets.

The correction factor can then be written as:

C

Xe = 599- . (4.11)

ds

where

Cde is the drag coefficient in the elastic fluid

C is the drag coefficient for a Newtonian fluid of the
ds

same viscosity as that of the elastic medium

It is worth noting that in calculating Cde’ we set

F = FG (4.12)

while in the calculation of Cds’ we set

F = 6nuUa fN,theo (4.13)

with the viscosity 0 and the observed terminal velocity U are taken

from the experiment with the elastic fluid. Flow around a doublet

of spherical shape in a non-viscometric and the shear rate at the
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surface varies from point to point over the surface., This case is the

same as for flow around a single sphere. An average shear rate defined

by

Yav = U/a

is usually used there. In our case 7 is to be defined as
av

yav = U/a(1+k) (4.14)

At this point we will define

YavAo 5 Ne* ‘ (4.15)

In Table 4.3 the results for the elastic fluid are presented. These

results include the size ratio k, the small sphere radius a, Ne*, the

average surface shear rate Iav’the correction factor due to elasticity

Xefor the doublets and the correction factor for the single spheres

XeS given by Boger and coworkers (1980). These results cover a range

4 to 10'6 as shown in the Table of rawof Reynolds numbers between 10'

data in Appendix B. The results of Table 4.3 are also shown in

Figure 4.21 and 4.22. The value of Ne* was varied by changing the

size ratio of the spheres. Thus in Figure 4.21 Ne* values were

obtained from doublets whose small sphere radius is 0.0794 cm and k

was increased from 1 to 4. This arrangement covered a range of Ne*

from 0.0129 to 0.064. In Figure 4.22 the small sphere radius is

*

0.1587 cm and k is increased from 1 to 7 to cover a range of We from
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Xe 1 O Xes (single spheres, Boger, 1980)

4 Xe (contacting spheres)
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I l 1, I I
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We*

Figure 4.21. Correction factor for drag coefficient deviation

from Newtonian Value due to presence of elasticity

VS Ne*.
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Boger 1980)
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He*

Figure 4.22. Correction factor for drag coefficient deviation from

Newtonian values due to presence of elasticity vs Ne*.
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Table 4.3.—-Elastic fluid results

 

 

k a(cm) yav(sec'1) Iav Ao=we Xe Xes

1 0.0794 .05 0.0128 .99 1 i

1 0.1587 .1 0.0261 .98 1 ‘

1.5 0.0794 .07 0.018 .91 1

2 0.0794 .104 0.027 .87 1 ‘

2 0.1587 .22 0.056 .84 1

4 0.0794 .25 0.064 .82 1

4 0.1587 .51 0.133 .80 1

5 0.1587 .695 0.178 .76 .92

6 0.1587 .879 .228 .74 .87

7 0.1587 1.05 .272 .74 .85

 

0.02611x10.272. These figures show that there is a significant reduc-

tion in drag coefficient of the elastic medium below that of Newtonian

liquid for contacting spheres. It was further seen that this reduc-

tion is dependent on Ne*. We observed that there is a linear reduc-

tion over Ne*=n0-0128 to 0.035 where a reduction of 15% was seen.

For Ne* between 0.035 and 0.064 a leveling off is observed and a

reduction of 18% is reached. As Ne* is further increased-above 0.064

we observed further reduction in the drag below the Newtonian value.

The maximum reduction was seen to be 26% at Ne* = 0.272. The case

of single spheres doesn't show deviation except at Ne* = .13. A

linear reduction is seen there which reaches a maximum of 15% at

*

We = 0.272.
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At this point we would like to see how the elastic effect

predicted by the numerical scheme of Chapter III compares to the

results of this chapter. Itharticular, we will compare the results

for the value of k = 1.5. In Chapter III we defined

we = (0, + 20,) g- (4.16)

where

V1 = 01/00

V2 = Wz/UO

Ipland¢m_ are the first and second normal stress coefficients

In this work we could measure- only 01. It is a common practice to

assume that 02 = - .101, so

We ((1)1 ' 2X "11:71) 3%- : '8w1-a_%_ (4.17)

O ‘ 0

According to Equation (4.6)

W1 =‘2UOAO ' (4.18)

Therefore

Ne 1.6 00 U/a (4.19)

So for k 1.5 and a = 0.0794 cm, U = 0.0145 cm/sec. (from Appendix

B) we get Ne = 0.076. Thus using F02 and F12 for k = 1.5 in Table

3.6, we can evaluate a corresponding theoretical value to Xe as Xt

using

F = F02 + weFlz (4.20)
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to get Xt = 0.944 while the experimental value Xe = 0.91. In

Table 4.4 we present the results of k = 1.5 and 2. It is noticed

that experimental values are in close agreement with those

predicted by theory.

TABLE 4.4.--Comparison between theoretical drag coefficient ratio

Xt and experimental drag coefficient ratio Xe:

 

 

k He He* 1-Xt 1-Xe

1.5 0.076 0.018 .06 1 .03a .09

2 .13 0.027 .1 1 .02a .13

 

aThis uncertainty is due to error in numerical scheme, already

discussed.



CHAPTER V

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This investigation has focused on determining the elastic

effect of a non-shear-thinning medium on the sedimentation of con-

tacting particles. The flow conditions are those of creeping flow

with Reynolds number in the range of 10'4 to 10'6. As far as we

know, we are the first to observe the elastic effect on the sedimen-

tation of contacting particles with a non-shear-thinning (Boger)

fluid. The suitability of our apparatus was checked with a viscous,

Newtonian corn syrup in which our observations on orientation as

well as sedimentation speed were consistent with previous reports

in the literature. The experimentally observed settling speed on

these particle pairs is reproducible to within 2 percent.

In the elastic fluid medium, this study provided new infor-

mation about a stable orientation for unequal spheres. This orien-

tation is that of the line of centers along gravity with the larger

sphere leading. It was further observed that even if the initial

orientation was not coinciding with the terminal orientation, the

particles will reorient themselves to the terminal and stable

orientation within a length of at most 15 cm. For completeness, we

repeated the experiments which were carried out by Riddle et al.

111
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(1977) on spheres separated by several distances. Convergence was

seen for particles with small initial separation and divergence

was seen with large initial separation. It is to be noted that

while the fluid used by Riddle was considerably shear thinning, we

observed similar behavior with the Boger fluid, so the above behavior

might be attributed to elasticity of the medium alone.

Measured settling velocities for unequal spheres showed a

significant reduction in the drag coefficient below the Newtonian

values. The reduction was seen to be a function of Ne* = Iavxo’

where a deviation of 26 percent is observed over a range of Ne*

between 0.0128 and 0272, based on a dimension (1 + k)a of the two

spheres.

A theoretical analysis was carried out to investigate the

translation of these contacting particles along their line of

centers, in an effort to obtain the elastic effect of a second order

fluid medium of a constant viscosity on the drag force on the con-

tacting spheres surface. A volume integral was developed for the

drag contribution at 0(We) involving the zeroth order, Newtonian

velocity field. Steps were taken to insure accuracy at each stage

of the numerical solution by checking condition of matrix in solving

a set of linear equations repeatedly; comparing asymptotic limits of

all six Hankel transforms at both ends (n + O and n +1w) with numeri-

cal estimates, taking care to obtain simple analytical approxima-

tions to the behavior of the integrand at large s as well as small 5.

Since the function f(s,€) is evaluated thousands of times in the
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numerical scheme, accurate evaluation of f was the heart of the

numerical steps in this work. Thus we carried out a detail error

analysis and obtained an upper bound on the total error in evaluating

f(s,F,). Our analysis revealed that the error increased with

decreasing a over 0 < a < 1 and in the increasing 5 values above

5 = 6. Using the worst case error an upper bound on the error in

the total result including 27,000 function evaluations, would be

10'4 for a = 0.2 and 10'7 for a = 0.5. In addition, there is the

2

- error in fitting exponentials to the large 5 behavior of f,%§, ggi.

This fit was necessary to evaluate the complete Hankel transform

of these functions. The error of the fit was worst for azflag2

and this error too increased with decreasing a over 0 < a < 1. We

have tabulated results in Table 3.7 above a = 0.33 for which these

errors add up to only 20 percent of the final result for reduction

in drag. These results indicate a definite nonzero elastic contribu-

tion to drag for the a values listed.

The contribution of the integrand involving n and 5 alone

was investigated over the entire range of g and n. This investi-

gation revealed that the region near the stagnation point on the

larger sphere is the most important region for estimating the elastic

effect. The region near the contact point of the two spheres has

no contribution at all. These results are in accordance with findings

of Leal (1975) in his analysis of the drag on slender cone in a second

order fluid, Leal found that the major contribution to a similar

volume integral was obtained from the fluid close to the

particles; however, because of the slender body approximation, he
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was able to omit the stagnation points at both ends of the particle

for very long rods.

The numerical results obtained for the integral of Equation

(3.46) for a 3 0.33 show an appreciable elastic effect on the drag

experienced by the unequal contacting spheres. This effect was

larger for larger size ratio lye Comparing these theoretical predic-

tions with the experimental values for k = 1.5 and 2 showed that

experiments are in good agreement with theory.

5.2 Recommendation
 

The theoretical and experimental analysis carried out here has

established the existence of an elastic effect due to the medium on

the drag force of two contacting spheres of unequal size translating

along their center line in creeping flow. The major problem and

difficulty in the numerical solution is in evaluating the function

f(s,g) at large values of s and small values of a. The fitting

procedure also involved an additional error with decreasing a over

0 < a < 1. Therefore, in order to obtain results for low a values

some other methods for evaluating the function f(s,§) and fitting

2

f(s,g),fl%§flandfi%§§l should be pursued in future work.
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APPENDIX A

PROOF OF VANISHING INTEGRAND 0F EQUATION (3.20)
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APPENDIX A

PROOF OF VANISHING INTEGRAND OF EQUATION (3.20)

Proving that

(21’ vgo- fi : 131) = 0 (A.1)

Vf

Tensorial notations are going to be adapted for this proof. We

consider the integrand term by term as follows

HI: Vvo = - P12 + Zugl: Vyo

 

 

 

 

= [-P1 (Sijeiej + “(3:2 eiej + 13:13— 8131.)]

23:"

- (-PlalJ :izm) (euej° emen)

+ “ (2:;1 :::m )(eieJ emen)
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3v . 3v

1; om ,

+ u(3x1. 5xn )(ejei' amen)

- p 5 . 3:99. 5 5_ + u(.3!li.i!9fl. 5 5_

1 ij 3x in jm 3x. 3x in am

n j n

+ avij avom 6. 5. )

3x1 3xn jn 1m

Since m = j and n = i

av . 3v . 3; . 8v . 3; .

=-p 5,,_2.1+u 1101 _11 _9.1_)
1 13 3x1 axj 8x1 3x1 3x1

and i f j

+

1 - v30) (A-2)

o A+ A

.- 11 (V!1°VVO + W

by the same procedure it can be proven that

would yield the same quantity as in (A-2) thus the integrand of

(A-1) vanishes.
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TABLE B.1.--Experimental Raw Data

 

 

a(cm) t(sec) U(cm/sec) Egynes) (gynes) Re

0 0794 1 3854.8 0.0079 26.44 26.72 1.9 x 10'6

0.1587 1 949.3 0.0316 208.96 213.74 7.7 x 10‘5

0.316 1 247.8 0.121 1692.66 1659.59 5.9 x 10"5

0.0794 1. 2067.7 0.0145 57.83 63.9 3.5 x 10"6

0.0794 2 _ 1214.7 0.0247 118.96 136.43 6.1 x 10"6

0.1587 2 293.6 0.1022 952.1 1133.4 2.5 x 10‘5

0.0794 4 306.7 0.0978 857.2 1046.5 2.4 x 10‘5

0.1587 4 74.3 0.403 6871.79 8579.62 9.8 x 10‘5

0.1587 5 45.3 0.662 13329.11 17538.3 1.6 x 10'4

0.1587 6 30.7 0.976 22955.69 31021 212 2.4 x 10'4

0.1587 7 22.5 1.33 36390.6 49309.7 3.2 x 10‘4
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