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TRANSLATION OF TWO CONTACTING SPHERES IN A
VISCOELASTIC FLUID

By

Mohammad Amin Jefri

This work was undertaken to study the effect of a visco-
elastic fluid on the translation of two contacting spherical parti-
cles of unequal size in creeping flow. The elastic effect of the
medium was investigated theoretically by employing a second order
fluid model and developing a numerical scheme that evaluates the
elastic effect on the drag force. The accuracy of the scheme was
established by carrying out a detailed error analysis at each step of
this scheme. It was revealed by analyzing the numerical results,
that the region near the stagnation points at the surface of the
larger sphere has the major contribution to the elastic effect on
the drag, while the region at the contact point has no contribution.
The results obtained for several size ratios of the large to small
sphere where the numerical scheme is valid showed an appreciable
elastic effect on the drag. This effect increased with increasing
size ratio, up to a ratio of 3.

Experiments carried out on the settling of these particles
in a solution of 0.2 wt.% Separan in corn syrup at particle Reynolds

4 6

numbers in the range of 107" to 10~ yielded the following results.

First, it is seen that a stable orientation exists in the direction
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of the applied force (gravity) along the line of centers with the
larger sphere underneath. Secondly, the deviation from Newtonian

drag for equal spheres is zero. This agrees with previous theoretical
results. In the case of unequal spheres, a 10 percent reduction in
the drag coefficient below the Newtonian value is observed, at a
Weissenberg number of 0.1. This reduction is seen to increase with
increasing Weissenberg number. Good agreement was seen when compar-

ing the experimental and theoretical results.
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CHAPTER I

INTRODUCTION

1.1 Introduction

The flow of suspensions in viscoelastic liquids occurs
commonly in a variety of industrial processes, ranging from the
manufacture of filled polymer composites, paints, and coating to the
injection of fracturing and drilling fluids into rock formations.
There is a great need to know how the solids in the flow affect the
bulk viscoelastic properties and how the solids interact with each
other. In general, the rigorous solution of multiparticulate flow
is too complex to solve with present techniques. Therefore, we
have chosen a simple two contacting spheres problem in a viscoelastic
fluid, hoping that the proper analysis of this system would give
some insights into mu]tiparticﬁ]ate problems. The study of such
suspensions presents a wide variety of unexplained phenomena dealing
with particle motions in sedimentation as well as shear flows and
with their bulk properties.

Sigli and Coutanccau (1977) have studied the translation of

a solid sphere in a circular cylinder where the ratio of sphere
diameter to cylinder diameter is greater than 0.25. They found that
the presence of the wall increased the effect of fluid elasticity.

Gauthier et al. (1971a,b) and Highgate and Whorlow (1970) observed



that in couette flow of viscoelastic fluid, neutrally buoyant rigid
spheres migrate toward the cylinder wall while neutrally buoyant
Newtonian drops migrate away from the wall to an equilibrium position.
Gauthier et al. (1977a,b) also observed that rigid particles migrate
to the axis is Poiseuille flow even at Reynolds numbers of 10'4 while
in Newtonian liquids no cross flow migration is observed at these
Reynolds numbers. Furthermore, in liquids which are predominantly
shear thinning, migration toward the wall is observed.

Understanding these phenomena must be through studying the
particle mechanics and dynamics. In particular, the motion in the
unbounded domain is hoped to provide the viscoelastic medium effect
relative to the Newtonian medium which has been studied extensively
for a variety of particle motions in an unbounded domain. The inter-
est of this research is in the elastic effect on the translational
motion of rigid particles and clusters in a quiescent viscoelastic
medium. In what follows work on particle motion in viscoelastic

and Newtonian liquids are reviewed.

1.2 Particle Motion in Uniform Newtonian Flows

The work on particle motion in Newtonian fluids goes back a
long way since Stokes (1819-1903) studied the resistance of a solid
body moving relative to a fluid, in which the viscosity was taken into
account. Later in 1857 that study was published where Stokes linear-
ized the equations of motion for viscous incompressible fluid. Con-
sequently, the famous Stokes law which described the drag force on

falling spherical objects in an unbounded medium was obtained as:



F=6mUa (1.1)

Brenner (1965) has reviewed later work with nonspherical particles
and with inertial or wall effects only a brief review is included
here.
Stimson and Jeffery (1926) determined the drag force on the
surface of two separate equal or unequal spheres along their line of
centers. Their solution was for uniform slow viscous flow that is

described by the quasistatic creeping equation of motion:
uviv = VP
Vev=0 (1.2)

The flow considered is for a body of revolution parallel to its
symmetry axis, the exact solution involved using the spherical
bipolar coordinates system to find Stokes stream function for the
fluid motion. Brenner (1964), in a series of articles, presented
solutions for the Stokes resistance to a slightly deformed rigid
sphere and for an arbitrary shape particle. The solution wés for
both uniform flow and shear flow at low Reynolds numbers. In all
cases the results were obtained by solving the creeping flow equa-
tion for the specific particle and flow condition in question. In
the case of non-symmetrical particles, the rotational motion was
considered along with translation. An extension to Stimson's solu-
tion was carried out by Goldman et al. (1966). The problem they

solved is the same two spherical solid particles moving slowly in an



unbounded quiescent viscous fluid; with orientation of particle.
In their case it was an arbitrary orientation relative to the
particle motion direction. The solution is a superposition of the
results (of two spheres side by side) for the translation and rota-
tion each considered in the absence of the other. Brenner (1961) pre-
sented an exact solution for spherical particles moving toward a
plane surface. Two types of walls were considered, a solid wall and
a free surface. Correction to Stokes law was given as a function of
the ratio of the distance from the wall to the sphere radius. The
results obtained were pertinent to end-effects in the falling-ball
viscometer. The axisymmetrical stream function obtained by Stimmson
and Jeffery in terms of the bipolar coordinates was utilized in the
solution. Dean and 0'Neill (1963) analyzed the case where the fluid
motion is caused by rotation of the sphere along an axis that is paral-
lel to the bounding rigid plane. A successive approximation method
was used to solve an infinite set of linear equations which describe
the problem. A numerical solution was obtained as a function of the
separation distance from the wall. The problem in which the sphere
only translates in the same manner as the previous problem was later
solved by 0'Neill (1964). The solution is for axisymmetric flow
around the sphere; where the bipolar stream function of S@immson was
used again.

Their solutions were in the form of infinite series which con-
verged very slowly as the distance between the bounding solid wall
and the sphere went to zero; Goldman et al. (1967) proposed an

asymptotic approximation obtained by the method of the lubrication



theory to overcome this problem. A corresponding solution to that

of Brenner (1961) (i.e., sphere translating toward a wall) for small
gap width was also carried out by Cox and Brenner (1967). A singular
perturbation expansion technique was used for calculating the hydro-
dynamic force on the sphere surface as the separation distance tends
to zero. A general solution for a more general axisymmetric particle
was also included. The same solution technique adapted by Cox and
Brenner (1967), for the same problem, was also used later by Cooley
and 0'Neill (1969b). In addition to the plane wall, they also con-
sidered a case where a stationary spherical object is approached by
the moving sphere. In their work, use was made of a contacting
sphere coordinate system to facilitate the solution when contact is
achieved between the sphere and the wall or the sphere and the sta-
tionary sphere.

So far mostly uniform flows were mentioned. This is, in part,
due to the bulk of results available and to the fact that fewer prob-
lems have been attempted in shear flow. Lin et al. (1970) extended
the problem of arbitrarily oriented two sphere problem in uniform
flow in a viscous fluid solved by Godlman et al. (1966) to one in a
shear field. The analysis and solution procedure is parallel to
that of the uniform flow problem. The problem of a spherg approach-
ing a plane wall was also treated there. In both cases, the hydro-
dynamic forces and torques experienced by the spheres during the
course of their motion were given as a function of the distance

separating them.



1.3 Particle Motion in Viscoelastic Fluids

The study of particle motion of a sphere in a viscoelastic
fluid was begun by Leslie and Tanner (1961) who carried out a
retarded motion expansion, which effectively reduces the constitutive
behavior to that of the nth-order fluid which is usually associated
with the names Rivlin and Ericksen. This constitutive behavior is

given by:
L+ T = oy + agly *+ oy + aghy + ay(yfy + Bphy)

+ higher terms (1.3)

where

+
* VI;I + V".‘ ) én-l

ux>
1]

and a, to a, are material constants related to the viscosity and
normal stress. The first three terms are the terms of what is known
as the second order fluid (to be discussed later). Leslie and Tanner
(1961) reported the effect of the viscoelastic medium on the drag

for uniform creeping flow past a spherical object with the 0ldroyd
fluid model (1958). They carried out a perturbation expansion up to

order two in Weissenberg number.

) - - 2
F = F, +Wef, +WeF (1.4)

The solution obtained is valid for Re << ﬁe << 1. Their results

showed a reduction in the drag below that obtained by Stoke's law.



In general, the solution to particle motion in a viscoelastic medium
is centered around an expansion of the Weissenberg number which is
expressed as:

- Nl
We = = (1.5)

N, is the first normal stress difference, t is the shear stress. The
expansion  is done around Stokes solution. Even though such expansion
restricts the viscoelastic effect to a secondary role, nevertheless,
for the class of particle motions which involve weak viscoelastic
characteristics, the "retarded motion" expansion has been shown to
yield qualitatively correct predictions of particle motions, both in
uniform streaming flow and in shear flow (Tiefenbruk and Leal, 1979;
Chan and Leal, 1979). These authors investigated the cross flow
migration of neutrally buoyant drops which are suspended in a non-
Newtonian fluid described by the second order fluid. They considered
the hydrodynamically induced migration. The predicted results
obtained by their theoretical analysis were found to be in good
agreement with experimental observations.

Giesekus (1962) obtained the correction to Stoke's drag for
both translation and rotation of a rigid sphere at the same flow
conditions as those of Leslie and Tanner. The medium is &escribed
by a third order fluid model. This is represented by the first
four terms in Equation (1.3). The results obtained were consistent

with Leslie's. Other workers also used the third order fluid like



Caswell and Schwarz (1962) to find that drag reduction is observed
at order Re’.

It is worth while to present a word about the second order fluid
model which had been used by a number of workers. If the fluid
relaxation time is small (but finite) compared to the time scale
motion U/a, the fluid motion will be "rheologically slowf so that
the second order model may be used. As mentioned earlier, this
model is part of the general Rivlin Eriksen retarded expansion which
indicates that the flow is both slow and slowly varying with time.

It is useful in predicting elastic effects with a non-shear dependent
viscosity. Due to the non-linearities of both the governing equa-
tion of motion for particle motion in viscoelastic fluids and the
constitutive equations, most of the solutions have been limited to

creeping flow, with the equation of motion
Veog =0 (1.6)

The hydrodynamic force, Fhyd® and torque, Thyd’ on the particle

surface are given by:

Thya = | (0 @) xrds (1.7)



where Sp indicates the integration over the particle surface and n
is an outward unit normal in the direction of the force.

Brunn (1977a) has considered the general problem of a trans-
versely isotropic particle moving in a second order fluid. Such a
particle has three planes of symmetry, two of which are identical.
Examples are bodies of revolution with fore-aft symmetry. The
analysis included both uniform and simple shear flow. The solution
was carried out in the framework of a complete asyptotic solution,
but without carrying out the details necessary for numerical evalua-
tion of the coefficients which characterize the particle's motion.

The interest was about particle preferred orientation. For the flow

condition considered there, the second order fluid model was given as:

g(l) = 2U[K0(11)f(1) o f(l) + KO(Z) f(z)l (1.8)
and
) 1 [a® )’
f S 2| Tar + ar )
@ %Y ) s, ) L)
£ ===t u 'a—rf +w £ro-f w0,
where
9(1) is the angular velocity vector
.f-
g(l), g(l) is the velocity vector and its transpose
Kéll) and Kéz) are two time constants related to the viscosity

and normal stress of the fluid.
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It is by the contribution of these constants to the total hydrodynamic
force F and couple G, information was obtained on those preferred
orientation. It was shown that a transversely isotropic particle in
a quiescent field will have a terminal orientation in the direction
of the external force. In this case, the particle would not rotate
once it reaches the terminal state. A particle with its symmetry
axis in the plane of the shear will not leave that plane while a
particle with its axis parallel to the vorticity axis will always
maintain that orientation. For long transversely isotropic-particle,
Leal (1975) used the slender-body approximation to calculate the
hydrodynamic force and torque for simple translation. It was shown
that the particle will acquire a terminal orientation that is parallel
to the axis of symmetry in the direction of the external force. This
was also seen to be the case experimentally. In simple shear flow
the results were identical to those of Brunn (1977a). Brunn (1979)
investigated the effect of particle shape on the orientation. He
considered a near sphere particle and included the particle shape in
the analysis. The medium was taken to be represented by the second
order fluid. The result of particle sedimentation gave the same
conclusion as that of a perfect sphere. This is a terminal orienta-
tion in the direction of minimum resistance. The results showed no
such agreement for shear flow. In this case, it is shown that the
particle migrates in the direction of its axis provided that this

is the vorticity axis. In elongational flow, the behavior is quali-

tatively the same as in a Newtonian fluid. In a review by Brunn
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(1980) the motion of rigid particles in viscoelastic fluid was sur-
veyed. The second order fluid model was used to describe the medium.
A general formulation for arbitrary rigid particle in a steady motion
of negligible inertial effect was considered. A regular perturbation
expansion around the Newtonian solution in power of small Weissenberg
number was assumed to obtain an expression for the drag force and

torque on the particle surface.

E=k

[
-n
+
x|

1))
m

—

+

T

TgtWReT, +... (1.9)

where the subscript 0 is for Newtonian contribution and the sub-
script 1 is for the non-Newtonian (normal stress) contribution. In
pure translation the contribution from El was obtained via application
of the reciprocal theorem which is given as a volume integral around

the total fluid volume surrounding the particle.

(1.10)

) =
.
m
—
[}
N
=
—_
a
<<
M
I—h
o
.
lI—h
-’
—
II—h >
o

where
i is an arbitrary vector,
u is the viscosity

ﬁo, :0 are the Newtonian and reference field deformation

gradient
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Brunn (1976) had stressed the difficulty of evaluating the integral
of Equation (1.10). He clarified that the difficulty is not due to
the volume integral itself, but to the tedious repeated tensorial
product £, - f.: i. The same method of analysis was also outlined by
Leal (1975). The merit in using the reciprocal theorem is in that
there is no need for obtaining the velocity field in order to obtain
the force and torque on the particle surface. Leal also found that
a slender or symmetric rod-1ike particle in a simple shear flow has
a correction in the drag force at order one rather than at order
two in Weissenberg number as for a sphere.

In the next chapter particle interaction is going to be dis-
cussed and the problem statement is to be presented. Chapter III and
IV are devoted to the theoretic;l and experimental analysis. Finally,

Chapter V would present the conclusion and recommendation.



CHAPTER II

MOTION OF AGGREGATES

2.1 Particle Interaction

2.1.1 Effect of Particle Size

Increasing the concentration of particles and shear rate in
suspensions leads to the formation of particle doublets due to the
hydrodynamic interaction. In general, suspensions of single particles
will behave differently from suspension of agglomerates. This is
caused by the difference in shape between agglomerates and single
particles and by the fluid entrapped in the interstices between the
particles. When the particle size is of lum or less, other factors
which are known as colloidal forces effect the interaction and sta-
bility of doublets in addition to the hydrodynamic force. The first
of the colloidal forces is the Brownian. These have been reviewed
by Russell (1980). This force is due to random collision between
particles due to fluctuation in thermal conditions. The dominance of
this force over the electrostatic force is for particle sizes of nano-
meters. Electrostatic effect is dominant for particle sizes in
the range of .1 to 10um in diameter. This has been treated by
Overbeek (1948). At this size, two electrostatic effects are
encountered between the particles; an attractive field as a result

of the Van der Waals forces and a repulsive field due to particle

13



14

surface charge. The repulsion effect acts as an opposing force
against the attraction. Thus, the superiority of either the attrac-
tion or repulsion effect is the 1imiting factor for forming an aggre-
gated or a floctuated system. The stability of the doublets formed
was investigated by several workers. Papenhyijzen (1972) investigated
the effect of high and Tow deformation on aggregated suspension. A
network model describing the particle arrangement as a random chain
formation was developed. The relative order of magnitude of the
effects of hydrodynamic and non-hydrodynamic forces on breaking these
chains was calculated for two different suspensions. It was found
that the hydrodynamic force is of the same order of magnitude as the
non-hydrodynamic. Hoffman (1974) performed a theoretical and experi-
mental study of the role of interactive forces on the dilatant vis-
césity behavior in concentrated suspensions of polymer resins in
shear flow. The phenomona was explained by the effect of the shear
rate on the layer of ordered chains of particles which pass one over
another in the direction of flow. It is the disorder of such an
arrangement, caused by shear rate increase, that results in dilatancy.
A mathematical model was postulated to describe this behavior.
Experimental results gave strong evidence to the importance of the
repulsive force and shear stress effect. The mathematical model has
not been conclusive yet. Zeichner and Schowalter (1977) carried out
a similar study of the interparticles forces in a shear flow on the

stability of colloidal systems.
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2.2 Hydrodynamic Effect

When the particle size is above those of colloidal size only
hydrodynamic force effects exist. Michele et al. (1977) observed
that rigid spheres, as well as air bubbles of 60 to 70 um diameter
suspended in visoelastic polymer solutions subjected to laminar shear
flow, aligned themselves to form finite chains. They reported also
that when two spheres come into contact in such shear flows, no
rotation was observed. Riddle et al. (1977) observed pairs of
identical rigid spheres (of diameter 0.3 to 0.6 cm) falling along
their line of centers in viscoelastic fluids and found that for
initial sparations less than a critical value, the spheres come in
contact. All observations indicate the formation of chains of
particles in suspensions of both Newtonian and viscoelastic fluids.
The study of hydrodynamic effects on these systems started investi-
gating the effect of the interaction between two particles.

A theoretical analysis of 0'Neill (1969b) studied the slow
viscous flow caused by the motion of two equal spheres almost in
contact. The spheres were perpendicular to their line of centers.
Two cases were considered: one of a translation with uniform equal
velocities and the other is of rotation with equal and opposite
angular velocities. The drag force for each sphere was obtained
for the first problem and the value of each was less than that of
a single sphere in the same fluid. The method of solution involved
the use of the contacting spheres coordinates. The solution of the
creeping flow equation was obtained in terms of several Hankel trans-

forms expressed in terms of these coordinates. In the second problem
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a singular purturbation expansion around the Timit of zero separation
between the spheres was carried out. In the same year Cooley and
0'Neill (1969a) were able to solve the problem of two arbitrary
contacting spheres translating slowly in a viscous incompressible
fluid. This problem is the same problem we are going to solve in a
viscoelastic fluid. These workers expressed the axisymmetric stream
function in the same coordinates of 0'Neill, mentioned earlier, as a
Hankel transform too. The drag force exerted by the Newtonian fluid
on either sphere is less than the drag ona single sphere, over a
range of ratios of sphere diameter. The . same problem was solved
later for simple shear flow by Simon and Goren (1971) and Nir and
Acrivos (1972).

In a viscoelastic medium, which is the main concern of this
work, the study of the hydrodynamic effect on interacting particles
has just started. Brunn (1977b) found that equal spherical particles
in contact in a second order fluid would yield no correction to
Stokes' drag if the solution was considered at order We. For the
case where thé particles are separated from each other in such a way
that the distance between the spheres divided by the spheres radius
is much greater than one, the spheres seem to converge and they
orient themselves along their center line. No data exist on the
effect of changing size ratio for contacting particles in these fluid.
The experimental work that was carried by Riddle et al. (1977) had
been for fluids which possess considered shear thinning behavior and
so they could not be compared to theories which assume constant shear

viscosity as the second order fluid model does.
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2.3 Bulk Stress

The previous factors which influence particle interaction
have been studied by a number of investigators in an attempt to deter-
mine an effective viscosity for concentrated suspensions of Newtonian
medium. Adler (1978) used the cell model to get a concentration
dependent effective viscosity. The defect of the model is its
dependence on the shape of the cell. Frankel and Acrivos (1967)
used the classical hydrodynamic lubrication theory to study the
same systems by calculating dissipated energy in the gap between
the spherical particles. Both the cell model and the lubrication
method suffers from neglecting particle interaction in the analysis.
Polymeric suspensions have been investigated experimentally
by Highgate and Whorlew (1970). Three different viscoelastic systems
of various types of rigid spherical particles have been studied. The
size of the particle is 100 um in diameter and at concentration of
10% by volume or less. The relative viscosity, defined by ratio of
viscosity of suspension to viscosity of suspending fluid, was measured
along with the first normal stress difference. This had been done
for several solid concentrations within the above range. The results
showed that comparing suspension properties to the suspending medium
at the same shear stress was a function of concentration only; whereas
if the comparison is made at the same shear rate both concentration
and shear rate dependence wasnoticed. The same observations were
reported by Kataoka et al. (1978). Until recently, no theoretical

explanation was available.
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Sun and Jayaraman (1982) have derived the bulk stress for sus-
pensions of neutrally buoyant spherical particles in a second order
fluid medium. They showed that the bulk viscosity of the suspension
has a shear thinning factor which is directly related to the elastic-
ity of the medium. Their expressions are borne out by the data of
Highgate and Whorlow for systems of concentration up to 7%. These
results suggest that if an understanding of systems of higher con-
centrations (moderate) is to be achieved, a basic understanding of
the role of elasticity in the motion of doublets must be pursued.

Thus we exclude colloidal systems and dispersion forces from any

future consideration within the scope of this work.

2.4 Objective of Present Research

Understanding the behavior of aggregates in flowing polymer
liquids is still in a very early stage. This in part is due to the
fact that most theoretical analysis has been centered around single
particle; while most practical systems are composed of doublets and
chains. It is hoped that studying the effect of medium elasticity
on the drag experienced by two rigid, contacting spheres in uniform
translation would add some light to the subject of filled polymer

systems.

2.5 Statement of the Problem

Two rigid spheres in contact, one of radius a and another

of radius ka with their line of centers along the z-axis in a
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cylindrical polar coordinates as shown in Figure 2.1 were considered.
The pair translates along the z-axis with a constant velocity U in an
incompressible viscoelastic fluid at negligible particle Reynolds
numer, Re ~ a Upf/uo where pg = fluid density and Mg = zero shear
rate viscosity of the fluid. If the fluid relaxation time is small
(but finite) compared to the time scale of motion-g, the fluid

motion will be "rheologically slow" so that the second order stress

constitutive equation may be used:

v1£EQ
g = -Pg + 2u [D “Tge? (v1 + 2v,)(Q - D)] (2.1)
J
where
§ = is a unit tensor
D = rate of deformation gradient tensor given by
D= %-(Vy + Vy+) (2.2)

U v, and uyv, = are the primary and secondary normal stress coefficient.

9D | @t = denotes the corotational derivative given by

a0 R 1
gt att LW +5 (weDr-1{0 - o) (2.3)

This model will allow us to isolate the elastic effect on the trans-

lation of these contacting spheres, since it has a non-shear dependent
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Figure 2.1.--Schematic diagram of spheres and coordinates.



21

viscosity u. Thus in the next chapter we will derive an expression
for the drag force on the surface of the spheres due to the elasticity

of the medium.



CHAPTER III

DRAG CALCULATION FOR TWO TOUCHING SPHERES

The drag on two touching spheres of arbitrary sizes translat-
ing in a second order fluid is evaluated in this chapter. First,
_the governing equation of motion and the solution procedure are laid
down. Next, a volume integral is developed for the elastic effect with
the integrand in the most useful form. This volume integral is then
evaluated by a sequence of numerical steps. The errors occurring in

each numerical step are discussed.

3.1 Equation of Motion

The axisymmetrical fluid motion described by the problem

statement of Section 2.3 may be represented by the equations:
Veg=0,Vev=0 (3.1)

where g is the second order stress constitutive equation given

earlier by equation (2.1) as:

)
g =-ps + 2u[D - ;ié%% + (vi + 2v2)(0 - D)] - (3.2)

The boundary conditions require that

<
n

ng on either sphere

<
n

0 far from the spheres (3.3)
22
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Since only uniform translation is considered, in Equation (3.2) the

term containing 52% given by equation (2.3) and the term containing
gt

D - D are significant for this analysis. Thus a modified Weissenberg

number, We is defined as:
_ U
We = (vy + 2v;) 3 (3.4)

while the conventional Weissenberg number is, We = v,U/a. For small
values of We (Re << We << 1), which is the case in the problem con-
sidered here, the velocity field v and the hydrodynamic force on the
two spheres F may be expressed as a regular perturbation expansion

in powers of We.

= 2
VEuy,tWey, +Wem vyt

2

F=Fy+MWeFy+ We® Fpb . .. (3.5)

=30 £1

where v,, F, denote solutions for a Newtonian fluid, with the same
boundary conditions,using only the first two terms of Equation (3.2)
and v,, F; the correction obtained with the other two terms of
Equation (3.2). No attempt is going to be made to evaluate Vys

since it is possible to solve for El without it as shown by Brunn
(1980). This is done by applying the reciprocal theorem which was
also used by Leal (1975). The background of this theorm, as well as
its application to determine the elastic contribution El are presented

below.



24

3.1.1 Reciprocal Theorem (Background)

The reciprocal theorem is a useful device with regard to
problems involving the resistance of particles and pressure drops due
to fluid moving with respect to particles in creeping flow. Many of
the developments and uses of this theorem stem from the work of
Lorentz (1906). The theorem can be stated as follows. Let there be
a closed surface which is bounding a volume of fluid where we know
the velocity and stress fields for a certain steady, incompressible
creeping flow in a certain geometry; the theorem says that the force
and torque on any surface witin that volume for a different fluid and
a different creeping flow but the same geometry may be obtained with-
out solving for the velocity and stress fields in the latter situa-
tion. The details of this statement can be best explained by show-
ing its use for a specific case as presented below.

We assume that we know the solution to an incompressible New-
tonian fluid in creeping flow for a certain geometry with the equa-

tion of motion and continuity.

VeTo=0 and ¥ -yo=0 (3.6)
where
To = = Pog + 2u(Vo + 7y5) . (3.7)

Next we consider an incompressible viscoelastic fluid within the
same geometry as the first fluid and also in creeping flow situation,

the relevant equations are
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vV -

n=

=0 and V - v =0 (3.8)

where

+
D=-p,d+ 2u(Vy,*t Vv )- P§

-+

D
211[2 - ;g—; + (\)1 + 2\)2) Q . Q] (3.9)

is the stress tensor of the second order fluid model. Furthermore,
let us say that we are interested in getting the contribution at the
first perturbation in We for the second fluid such as the force on
any surface within the total volume that is enclosing the fluid.

Equation (3.8) may be rewritten with O(We) terms as
Ve (I, + Well; + Wel:) =0
Ve (vo + Wev,) =0 (3.10)

where

w=
[
]

- By8 + 2u(Wyy + W)

[ =]
=}
n

+
- P8+ 2u(vy, + V)

v“ @D
= 2ul- _§i.225%9_ + (v + 2v,) Qo . Qé]

([ nol}
[}
|

0,= 3 (W *+ wh) (3.11)
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Giesekus (1963) has shown that the divergence of the term

Vi @Qo
T gt

may be rewritten as the gradient of a scalar function

- v,V gt = —— V P1 (3.12)

Now we define

Hva

Py =P+ —— Pi (3.13)

Notice that P1 is isotropic. Thus, according to Equation (3.10), we

may write
VAR vi© 0
Vel =-V 5 (3.14)
where
+
On = - Py g+ 2u (Vv +Vy)
Z1 = 2u(vy+2v,) D+ D (3.15)

0 0
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The nonhomogeneous term in the stress equation now involve only the
quadratic combination go . Qo' The reciprocal theorem may be written
for the fields (Qo, M) and (y;, T,) from the given equations of

motion as

J {% « (It L) :]- §5 [% . ﬁ%} © vy V=0 (3.16)

f

where Vf is the volume of fluid considered. Substituting the tensor
identities

~

[V (M+8)] vy =9« [+ 51) « v ] - (mem): W,

(v . ﬁo]- Ve =V e [ﬁo - vl - Do ¢ V Vi (3.17)

= [ [kgl + 1) ¢ vgo - ﬁo : Vyi] dv (3.18)

Applying Gauss' divergence theorem to the left hand side, we

obtain
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= 0 : VYO -Io ¢ Vy{} dv + | L, : Vgo dv (3.19)

Note here that the area integral is evaluated over the entire surface
bounding the fluid. This comprises a fluid surface just about the
particle, So’ as well as a fluid surface S_ far from the particle.
Also, the normal n is directed away from the fluid at the fluid-

particle boundary. Furthermore, as shown in Appendix A

(D2 : Vyy - Do @ Vyyl dV =0 (3.20)

Ve

so that we may write

[0 @) -y -0 Do-y|ds

- [ Loty Y (3.21)
v
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Note here that the volume integral on the right hand side involves

only velocity fields in a Newtonian fluid, v_ and ¥Vo- In order to

(]
apply the reciprocal theorem in this form successfully, the comple-
mentary or known fields (go’ éo) must be chosen to leave only one
unknown on the left hand side, such as the o(We) contribution to
force on the particle in the other problem.

3.1.2 Application of the
Reciprocal Theorem

Pursuing the objective outlined in the last section, of leav-
ing only one unknown on the left hand side of Equation (3.21), let
us choose the complementary problem such that QO = 0 far from the
particle on S_ ; that is the fluid is quiescent far from the particle.
Further, to obtain the z - component of the force contribution at
o(We) on the particle, let us choose a uniform translation of the

particle along the z - direction for the complementary problem, i.e.,

= ng on Sp the particle surface (3.22)

1< >

0

The other problem of interest with unknown velocity and stress fields
in a second order fluid is also one of a uniformly translating particle

in a quiescent fluid since the velocity is specified on the particle

surface

v =Ue, on Sp (3.23)
This is met by the zeroth order term y and

V1= 0 on Sp (3.24)
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Finally, the fluid here too is quiescent far from the particle

vy = 0 onsS_ (3.25)

and we obtain from Equation (3.21)

-UF, = | E:vy @V (3.26)

Ve

where F, is the z- component of the O(We) contribution to force on

1
the particle surface. If we choose, U = U, we obtain

Fl, = - ZUE (vi+2v) | (Dy+D,) & Ty, dV (3.27)
Ve
or
Fip = :%B (v; + 2v,) { (D, +D,) : B, v (3.28)
v
f

Working with nondimensional quantities on the right hand side

(1ength scale a, velocity scale U) Yo the same as Yo here,

Fooo= 2w+ 2va) 2 (p% Lg%y Lt v (3.29)

1z 0

*

Ve

or
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*

* %*
D, °D,) : D, dv* (3.30)

Flz = -2(ula)We J 0 B

(
V*
£
with nondimensional quantities denoted by an asterisk.

This relation given by equation (3.30) is a direct conse-
quence of the result of the reciprocal theorem as given by equa-
tion (3.21). It is seen that we could avoid evaluating vq since
F, at order one in Weissenberg number is associated with terms
involving Yor At this point we would like to stress that all the
work in the remaining part of this chapter is centered around eval-

uating this volume integral as given by equation (3.30).

3.2. Use of the Newtonian Solution

*
The dimensionless, axisymmetric velocity field, Yo needed
for determining the volume integral of Equation (3.30) may be obtained
from a stream function y in cylindrical coordinates as

R CHEN PR I P 1 (3.31)

Several investigators have solved for this stream function in vari-
ous coordinates. Cooley and 0'Neill (1969a) approached this problem
using tangent sphere coordinates (mentioned briefly in Chapter I)

which are related to cylindrical coordinate by the relations



l* = 28 s r* = -jél-——, =9
EZ + n2 52 + n2
or
n+i£=ﬁq‘ i=/~T (3.32)

Figure 3.1 is a schematic diagram of the spheres and the coordinates.
In terms of these coordinates, the surfaces of the two spheres are
given by £ =1 and £ = -a = - 1/k. The region occupied by the fluid
is given by - < £ <1 and 0 < n < . The point of contact of the
two spheres is given by n = »; and the region far away from the
spheres by £ = n = 0.

Cooley and 0'Neill showed that the equation of motion for
creeping flow of an incompressible Newtonian fluid about the pairs
of spheres may be written in terms of the axisymmetric stream function

as
4
Ny =0 (3.33)
where the operator./*tis defined in tangent sphere coordinates by

N (g2 + n2)7 Fe, )]

=1 (£2 + n2)3/2 3. g.?.u%. ek (3.34)
4 3&2 n on an?

wheree97(£,n) is any twice differentiable function. The solution to

Equation (3.33) was then obtained by them as Hankel transform involving
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Figure 3.1. Schematic diagram of the spheres and coordinates.
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Jl’ a Bessel function of first kind and order 1.

oo

v = (c? ! 2372 {(A + £C) sinh s£ + (B + &D) cosh s&}
£ +n
0

Jl(sn) ds (3.35)

where A, B, C, D are functions of s found from the no-slip boundary
conditions on the moving sphere surfaces,£ = (§; = 1, £, = -a) which

can be written as
Y - -2n%(g? + n2)~2

at (f‘; = &1, 52)
S = aen?(s? + n2) | | (3.36)

These equations, along with Equation (3.35) yield (as shown in
detail by Cooley and 0'Neill (1969a) a set of four linear equations

in the unknowns A, B, C, and D for arbitrary size spheres.

A sinh sg; + B cosh s&; + £,C sinh sg; + £; D cosh s&, =

-s|&1] -
~2e (lea] + s71)

A sinh sg, + B cosh sg, + Cg,sinh sg, + £, D cosh sg, =

-S|&2| -
-2e (Jeo] +s7H
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A cosh s&; + B sinh s§; + (i(s'1 sinh s§; + &; cosh s&;) +

-1

D(s™! cosh s&; + £, sinh s&,) = 2£,e7S181]

1

A cosh sg, + B sinh s&; + C(s “sinh sg; +£,cosh s&;)

-1 ) -s|&2|
D(s * cosh s, + £, sinh s&,) = 28, e (3.37)
Solution of these equations for the unknowns A, B, C and D furnishes
the solution to the stream function y. The force F  on the pair of .

spheres has been shown by Cooley and 0'Neill (1969a) to be given by

F,= 2muae, sBds . (3.38)

It is to be noted that this is obtained by adding the forces on the
individual spheres given in Equation (4.3) of their paper.

In order to evaluate the elastic contribution to drag, the
integrand of Equation (3.30), must be expressed in terms of the con-
tacting sphere coordinates. This is because the Newtonian solution
of which use is going to be made of here, is given in these coordi-
nates, and the volume of fluid around the spheres is most easily
expressed in these coordinates. The procedure involved performing the
tensorial operation g; -g; : Q;
followed by coordinates transformation with the aid of Equation

in terms of cylindrical coordinates,

(3.32)
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3*
Y
r
— 0
ar
* * %
go = 0 vr/r
3* *
%(a:: . 2z 0
or¥

and the dot product Q: . g; yield

. % *
v av av
(—2+ /4 (—5 + )2
r 9z
s *_ 0
0,79, =
* 3* 3*
-V \") v
— (= +—5)
2r 3z or

The above quantities yield for

*

ar

* *
l( V.. . v, )
2\ oz* or*
0
*
avz
—%
9z
*3* 8*
v v v
r z
0 - ==l rT"' %)
2r 23z or
*
v
XL 0
r*2
* 3*
v v
2
0 —Z )+ (—+
3z 9z
*
avz 2
—= )
ar
(3.39)
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*23* ** 3 *
* * * v v v v v
D, - D, : D= -3y L ()% I
r* 0z r 9z 4r
W AV
Vow v
(— + —2)2] (3.40)
9z ar

The velocity components in Equation (3.40) can be expressed in terms

of the stream function using Equations (3.31) and some rearrangement

to giye.

x k%3 o 0% (2. 1 (p,2_ 5%

DOOQO:QO=_*4[-8* (3*8*) +'ﬁ(a*) 8*3*
r z z or r¢ az z or
2

*
o rd CR b} (3.41)
9z 39z ~Or or

At this point coordinate transformation is to be performed. To
start with, the volume element of Equation (3.30) in tangent sphere
coordinates can be written as:

* _ dedndo = 8dedndg (3 42)
hehahy  (n? + £2)°/2

dv

where h , h,_are scale factors which may be obtained with the

g’ hn ¢
procedure discussed by Happel and Brenner (1965). .The trans-
formation of Equation (3.41) into the contacting spheres

coordinate system is a rather lengthy but straight forward

process. It involves handling a large number of terms which resulted

from repeated use of the chain rule as required for each expression
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in the above equation. To clarify the previous statement further,

M
Tk
0z

The

and

is going to be transformed below. With ¢y = y(n, &) given

e - s B N, (3.43)
z dz 9z

partial derivatives2os, 20 and others like 2
2z oz ar

§§; can be obtained from Equations (3.32) which yield,
ar
?.D_ = - gn 3& =n_2_-£.3
3z ’ 2
z az
an n%-e% ag
a—r-k' = - 2 )s ar* =-£&n (3.44)

With the aid of Equation (3.44) the individual terms in Equations

(3.41) can be written in terms of the contacting coordinates as:

S (n-E%) W _ .
31‘1’—3‘2‘2*"—2— 5E ne =n

_ 8% _ (n?-£?) 3 e D
d11y = az*T = 7 ‘az (31‘1’) né n (Bl‘p)

=% . 9 £2-n? 3
d120 = —— = -&n =z (31y) + - (319)
H ar 3 z 8¢ 7! 2 o %t
n2+£2 2
azws—l;a—‘”,= +E[En_l£ (g2 n)g_ﬁ;]
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- x93 - _2n Fn 0
3229 = 1 a—r; (329) —T\2+ n [En 5E (329)
+ 5— = (Bzw)] (3.45)

Now we can express Equation (3.30) in terms of contacting spheres

by utilizing the results. of Equation (3.42) and (3.45) which yield

Nz -32n[1 de | d
Tau n Qg,n) (3.46)
g
where
i 3/2
Q(g,n) = ﬂ‘——:u—g—zl [Ty (W) + Ty(w) + T5(w)] (3.47)

T,(v) = T8 (319) (3129)

Tyt) = &GI8 WXL (5,4)2 (3y50)
n

Ta(y) = 15 (010) (3129) (3220) (3.48)

The partial derivaties 3% i’} and higher order derivatives as needed
in the individual terms of Equation (3.45) is obtained as “follows
from Equation (3.35).

Let us write y = gII1

where
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g, = /(g2 +02)3/?
I - rf(s,e) 3 (sn)ds (3.49)
Hence 0
g ol
aw = .__].'_. __1__
w1t 91
ag, I ol
s _ %91 4 4
#E W U (3.50)

This procedure when followed for the rest of the partial derivatives,

with respect tonand ¢, involved in Equation (3.48) yielded other Hankel

transforms in addition to the ones in Equation (3.50). At this point

it is convenient to define the variable x = sn for the argument of the
Bessel functions Jl and Jo arising in these transformations. Later
we will see that the quadrature is done over x in order to keep track
of the oscillatory integrand. Here we list all the transforms which

resulted from the above operations in terms of the variable x.
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I, = r f(x/n,£)d; (x) d;’(
0

ol dJ
=gt = | fmex gh &
0

2
321 ® d4J
[, =—1i = f(x/n,s)(x2 —12) 9"?
3 In2 dx n
n 0
3l ®
-1 _[of dx
43 IB—«E Jp(x) 3
0
) dJ
.2 _ of Y1, dx
5 = 3¢ ra_(xdx)ﬁ"'
0

and

L. (2-x9 Iy - x (3.51)
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.It is to be emphasized that I1 through 16 have to be obtained before

any other numerical calculation can be carried out.

3.3 Results for Equal Spheres

For equal spheres, a = 1 and the boundary conditions given by
Equation (3.36) lead to nonzero values only for B and C in Equations

(3.37) so the stream function y is an even function of £

i

= n
(£2 + n2)3/2 I: {&C sinh s + B cosh sg}J1 (sn)ds

Furthermore, Cooley and 0'Neill have noted the explicit expressions

= -[2 +2s + s'l(i-e'zs)]/[s + sinh s cosh s]

[ev)
|

[1+ Zs-e'zs]/[s + sinh s cosh s] (3.52)

(]
1]

This feature is useful here in obtaining an analytical answer for the
integral in Equation (3.46). A quick look at the individual terms of

Equations (3.45) in terms of the even stream function would show that

1y = even

911y = odd

3120 = even )

322y = odd (3.53)

and so it is readily seen from Equation (3.48) that for this case,
T1(w)s To(u), T;(¥)--all turn out to be odd functions of £. Inte-

gration over £ from -1 to +1 should yield zero. Hence, the drag
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exerted by a second order fluid on a pair of identical, touching
spheres is the same up to O(We) as the drag exerted by a Newtonian
fluid with the same viscosity. This result will be used later in

the case of arbitrary spheres to check the numerical procedures
developed to evaluate the integral in Equation (3.46). It is worth
noting here that a pair of identical, touching spheres is a body

of revolution with fore-after symmetry and thus belongs to the class
of transveresly isotropic particles. For such particles Brunn (1977a)
has shown that the O(We) contribution to the drag is zero.

3.4 Numerical Procedure for Evaluating
the Drag on Unequal Spheres

In this section we are going to have three subsections.
Section 3.4.1 is devoted to evaluating the function f(s,g) for
unequal spheres; Section 3.4.2 is the detailed evaluation of the
Hankel transforms; and Section 3.4.3 to discussing the quadrature
scheme over n and £. The importance of the first two subsections
is because for uneuqal spheres (o # 1), the functions A, B, C, and
D of s (see Equation (3.37)) must be evaluated numerically; so the
integral of Equation (3.46) has to be evaluated numerically;
managing such an expression is no trivial matter. This is not
because of the triple integration that had to be carried out, but
rather because of the great need of very accurate numerical evaluations

of the function f(s,£) and subsequently the Hankel transforms.



44

3.4.1 Evaluation of f(s,t) for
Unequal Spheres

The function f(s,Z) is evaluated thousands of times in the
product quadrature scheme used for the multiple integration of
Equation (3.46). Hence, the accurate evaluation of A(s), B(s),

C(s), and D(s) is at the heart of the lengthy sequence of the numeri-
cal steps in this work. These functions of s are obtained as the
solution to the four linear equations (3.37). Detailed error esti-
mates for different valuse of s and o may be obtained by writing

(3.37) as

where
cT = [A(s), B(s), C(s), D(s)] (3.55)
Defining the vector norm of c by
llcl],, = max ]ci] (3.56)
j .
and the matrix (row sum) norm ofégyby
|1, = max (£ || ) (3.57)

we obtain an upper bound on the relative error ||dc||/||c|| according

to Goult et al. (1974),
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l16e]1/11el] < R(ny (@2t (3.58)

where K is a condition number defined by
= ‘ 1
K= lew H@ Hw (3.59)

n is the number of Equations (4) and t, the number of bits in the
mantissa of a single precision floating point number is 48 on the
cyber 750 at Michigan State University. So for a relative error of
10'5 say, K may be as large as 5 x 107. Table 3.1 shows the condition
numbers of the matrix,j__? for different values of s at several values
of o between .05 and 5. It is to be noticed that the values of R show

a marked increase at both very low and large values of s. Furthermore,

TABLE 3.1.--Condition numbers K oféZ?at different values of a and é.

S
a 0.1 1.0 6.0 10.0 20.0

o

0.05 0.1217x10° 0.9038x10% 0.4732x10% 0.3226x10% 0.805 x10!°

(=]

0.1 0.1062x10° 0.8075x10% 0.3650x10% 0.2042x10% 0.3096x10!0

0.2 0.8221x10° 0.6596x10% 0.2164x10% 0.8139x10° 0.4554x10°

5 4 7

0.5 0.4281x10° 0.4184x10° 0.4469x10° 0.5004x10? 0.1400x10

1 0.1864x10% 0.2822x10% 0.5633x10% 0.882 x10% 0.1681x10°

4 4

5  0.1073x10% 0.1813x10% 0.3501x10%3 0.4992x10%° 9.2283x1038
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the actual magnitude of A, B, C, and D are also larger with decreas-

ing o at large values of s as can be seen in Table 3.2. For

TABLE 3.2.--Change in A, B, C, and D with decreasing a

5=10 a=.5 =10 0=.2
A 5.538 x 10°% 4.762 x 1072
B -5.540 x 10°4 -4.762 x 1072
c 9.989 x 1074 0.1832
D -9.987 x 1074 -0.1832

both the small values and large values of s, Cooley and 0'Neill

(1969a) have asymptotic estimates for A, B, C, and D.

p < 22(a=1)(o? + da +1)

(a+1)%s
for s < 0.1 (3.60)
and for large s.
A, B, C, and D all are 0(se”2%%) (3.61)

where 8 = min {1, a}

Thus in our evaluation of the function f(s,£) to overcome the error
in evaluating A, B, C, and D at both small s < .1 and large s > 10

we do the following. First at small s the expressions of Equations
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(3.60) are used and the function f(s,£) at this range of s < .1 will
be referred to as fo from now on. On the other hand for large s we

obtainwith Equation (3.61) for A, B, C, D, the following asymptotic

expression for f(s,&)

f.ses(a-t) (b_ + b3g) (3.62)

2

where b2 and b3 are functions of a. A plot of f(s,£) versus s shows
a monotonic decay for the function above s = 7.5 as seen in Figure
3.2. It was seen possible to fit f(s,£) with a single exponential

function

f, = by e?l® (3.63)

1

where bl’ a, are obtained from fitting f(s,£) keeping o, fixed.
More will be said about the fitting procedure in the next section.
For convenience, the form of Equation (3.63) is used for values of
s > 10. Thus for s > 10 the function f(s,&) is referred to as fl.
Another look at Table 3.1.wou1d show that the relative error
in most cases is less than 10'7; but for o = 5 the error at larger
values of s becomes enormous. This large error is typical for o
greater than 1. However, of all possible values for a, it is enough
to consider the range of 0 < o < 1, because the results for the
remaining values may be found by reversing the sign of the right-hand
side of Equation (3.37).

The last point that we would like to stress is the magnitude

of error in calculating f(s,£) as o is decreased. In Table 3.2 we



48

0.0

f(s)

= 1.0

-20] '
1.0 60 10.0

S

Figure 3.2. Monotonic decay of f(s,£) vs s at o = .5, £ = 0.25
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have shown that the values of A, B, C, and D increase in magnitude
as a is lowered from .5 to .2 at S = 10. This increase in magnitude

has also caused the value of f(s,f) to increase markedly for this

change in o at s = 10. Thus, the accuracy of evaluating f(s,£) is
decreased for values of o less than 0.5. The behavior of f(s,£) as

a is decreased is given in Table 3.3. It is to be noticed that the
values of f(s,£) increase by one order of magnitude as o is decreased
from .5 to .2 at large values of s above s = 1. Finally in Table

3.4 we present the absolute error |Af| in calculating f(s,£). |Af]|
is obtained by finding the error in A, B, C, and D, and multiplying
by f(s,£). The table shows us the change in the magnitude of the
absolute error as a is decreased. It is seen that as o is decreased,
the absolute error is higher in two particular situations. The first

is that for all values of £ as a is decreased, the error is largest

10. The second situation is seen to be associated with two

at s
distinct regions on the surface of the contacting spheres. These
are at the stagnation point on the larger sphere at £ = -o and in the
region far away from the spheres at £ = 0.

These absolute errors would accumulate each time the function
f(s, £) is evaluated with the numerical scheme. In that scheme the
function f(s,£) is evaluated 27,000 times on the average. Multiplying
this number by Af would give an upper bound on the total érror
involved in evaluating f(s, £). Using the maximum value of |af| over
s and £, we obtain an upper bound of 10'4 on total error due to

function evaluation at o = 0.2.
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TABLE 3.3.--Behavior of f(s,£) with decreasing o

a=.5 £&=-.5 a=.5 £=0.0 a=.5 ¢&=1.0
s
f(s,&) f(s,t) f(s,E,
1 -1.819 -1.9108 -1.471
6 -0.066383 ~0.020822 - .00578
10 ~0.008086 ~0.000554 - .00009988
a=.2 £=-.2 a=.2 £=0.0 a=.2 £=1.0
] -1.965 -1.9881 -1.462
6 _ .22088 - .18998 - .00578
10 - .0812 - .047621 - .00009988
TABLE 3.4.--Absolute error in f(s,£) as o is decreased
0=.5 £=-.5 0=.5 £=0.0 a=.5 £=1.0
s ————————————————— ————————————————
|af ], | af | | AF |
1 1.5 x 10711 1.6 x 10711 1.21 x 10”11
6 5.9 x 10712 1.85x 1012 5.13 x 10713
10 8.1 x 10712 5.55x 10713 1.0 x 10713
0 =.2 E==.2 0=.2 £<0.0 0.2  £=1.0
1 2.5 x 10711 2.63 x 10711 1:95 x 10711
6 9.5 x 1011 8.17 x 10”11 2.5 x 10712
10 1.3 x 1072 7.62 x 10719 1.59 x 10" 12
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3.4.2 Evaluation of Hankel
Transforms

There are several problems to be addressed as we proceed in
describing the procedure of evaluating the Hankel transforms I1 « ..
16 given in Equation (3.51). For convenience, only one Hankel
transform is going to be used to describe the method of solution.

The others are evaluated in a similar fashion. Also, we will use the
variable x = sn which is the argument of the Bessel function. In

particular, we choose the transform

=R

[Fox/mi)a (x)ox | (3.64)
0

I =

As we discussed in Section 3.4.1 that asymptotic expressions
fo and f1 will be used over a range of small s and a range of large

s values repsectively.

Hence
X9 Xu
f(x/n,g)dl(x)dx = fodl(x)dx + le(x)dx
0 0
Xq
+ fldl(x)dx (3.65)
Xy

We note that in Equation (3.65) x= sn and as we mentioned earlier
it is more convenient for the behavior of the Bessel functions to

use X rather than sn. This is primarily to keep track of the number
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of cycles over the limits of integration and to provide enough quad-
rature points in each cycle. The quadrature points which we are
referring to here are those of a Gauss Chebyshev quadrature scheme
which is used for the numerical integration as will be discussed
shortly. In Equation (3.65) xz = .1n; however, X0 should be less than
or equal to 0.3 so that the power series representation of the Bessel
function (to be discussed below) is valid. Thus, X, = min [.1n,.3];
and X, = 10n as established earlier in Section 3.4.1. In the sub-
sequent paragraphs each of those integrals on the right hand side of
Equation (365) is going to be discussed separately.

In the first integral on the right hand side of Equation (3.65)

X2
[0 fo Jl(x)dx (3.66)

f0 has been defined in Section 3.4.1 and because of the unbounded
functions A(s), B(s) as s + 0 (see Equation (3.60)), for Jl(x), we
considered the first few terms of a power series representation of
the Bessel function

3
~ X X .
J1(x)"'§ -1 X=2 0.3

When this is done, the integrand of Equation (3.66) is no more

unbounded and can be written as:

Jy(x) = (Tn/z)smh(—‘z) - (TX N) sinh (—né)

2
- ncosh (%5) + (5—3) cosh (%?) (3.67)

i =

8



53

T = -2 (0-1)(c2+4a + 1)
(a +1)3

where (3.68)

The integration of Equation (3.66) was carried out numerically using
Gauss-Chebyshev quadrature scheme. The integrands for the rest of
the Hankel transforms 12 c .. I6 for this 1imit 0 » xg were obtained

by a similar procedure and are listed below.

i2 = (1- 3—r:‘ﬁ)((T/2)sinh("—n§) - cosh (x—,f‘))

i3 = %(jf—:i)((le)sinh(xsln) - cosh(%))

i4 = (Tcosh(xe/n) + 2sinh (£2)) J;(x)

15 = (T cosh(XE)-2 sinh (£5))(X 3(x)-9; (x))

6 = (X sinn(25) -2% cosh(E)), (x) (3.69)

The second integral on the right hand side of Equation (3.65)

over the range X, to x, was obtained with the Gauss Chebyshev

u
quadrature scheme. Here the function f is the actual function as
given with the original Hankel transform in Equation (3.51). A(s),
B(s), C(s), and D(s) are evaluated by the Gauss-elimination routine
from Equation (3.37), and no truncation is used for the Béssel func-
tion. The number of quadrature points supplied was based on deter-

mining the number of cycles for that range of integration, and at

least three points per cycle were supplied.
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Finally the third integral on the right hand side of Equation
(3.65) is to be discussed. In Section 3.4.1 we mentioned that the
errors in evaluating A(s) -- D(s) is also large at large s. We

also mentioned that

f, = ble'als (3.70)

This form has been obtained by observing the behavior of f(s,£) at
large values of s. Figure 3.3 shows this behavior where a monotonic
decay is observed after about s = ﬁ-= 7.5. If should be mentioned
that for the otherHankel transforms I, . .. Igs their function of s
are born by derivatives of f(s,£) with respect to £ as can be seen in
Equation (3.51). The behavior of these functions at larges is shown
in Figures 3.4 and 3.5 where a similar monotonic decay is observed

at about the same value of s =-% = 7.5. Thus, fitting each of

f(s,&), afgz,g) and azgz,g) by an exponential near s = 10 would pre-

vent the error in evaluating A(s)--B(s) at larger value of s. In
fl’ bl and a, are determined by the fitting procedure of _f,g—g, 3—2%
for each set of a and £ separately. For each o, several values of &
between -o. and 1 were picked and a range of s values (between 7 and
12), that was seen to yield a uniform decay, was chosen.

Even though we have been able to overcome the problem of
evaluating those functions of s at large s by the exponential fit,
we have noticed that for o less than 0.33 there was a considerable
difference between the values of the functions f(s,a),gfi§i§l s

g

2 ] [} .
9—§é§4§l and their exponential fit f,, f;, f; . The difference
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2
is larger and more significant between afgz,g), 9 géglg) and fl’
LN}

f1 . For example, when a = 0.2, the fitting error associated with
gg is of order 10~ -4 and the error associated with —Ez is of order

10 2, while the error with f is of order 1075, However, in the case
of a = 0.5, the fitting errors are much smaller. Thus, once more we
see that this range of o values would have one additional error to
that discussed in Section 3.4.1 in evaluating the function because
of the fitting procedure. It should be stressed that this error
especially in fitting Ef%%:él and azgasg is going to be large as we
repeat their evaluation in the numerical scheme for these o values
less than 0.33.

The Hankel transforms of a decaying exponential is availableas

V a? nz‘-

+
s
J,(sn)ds = (3.71)
1 r1v;§ + n?
0
Hence, we may write the last integral of Equation (3.65) as
Xu=10n
) Jq (x)dx = HT, - flJl(x)dx
J
Xu 0
Xu=10n
Va! aj +n®-a; -a;x
=b T | ben 90 (3.72)
.Jal + 12 1- n Y1
0

And the expressions for the remaining Hankel transforms in the limit

0 » = are
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Figure 3.3. Monotonic decay of f(s,£) vs. s for a = 0.5, & = 0.25.



57

af (s,£)
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Figure 3.4. Monotonic decay of _af%ﬁ_[ vs. s for =0.5, £=0.25.
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Figure 3.5.--Monotonic decay of g—gf— vs s for a = .5, &= 0.25.
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3., 2a1n2 i (ai + 1232

' JHT1 1
HT2 = ——= = b, ( ) (3.73)
an 1 nZ(af + n3)3/2 .
2 a
) HT1 1 1
HT3 = —~ = b ( (1- )-
an 3 {n[ a / n(nZ + a§)3/72
3aln (
- ) 3.74)
(nz; + a%)s/z

It is to be noticed that HT4 and HT6 are given by expression similar
to that for HT1 in Equation (3.72), but with different coefficients.
Their coefficients are a5 b4, and ags b6 respectively and obtained
from f1tt1ng'35 and 55; HT5 is similar to HT2 with ag and b5
obtained from fitting 32. The indices associated with HT's are for
the purpose of identifying the specific Hankel transform I1 « .o 16
in Equation (3.51). The other integral on the right hand side of

Equation (3.72) ‘is
(x)dx (3.75)

This integral was obtained numerically using the same quaarature
scheme.

Now that we have discussed the individual integrals and
explained the motivation behind that procedure, we rewrite

Equation (3.65)
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Il ) rf(x/n ,€(J1(X)dx
0

x2 = .In or .3 2 2
= [Tn(% --%E)sinh(€$) + n(%r -1)cosh(é§)]dx

0
xu=10n
+ f(x/n,£)d; (x)dx
Xg=.1nor .3
—— X =10n
u
Wi +n’ - gy 25
+b ( ) - b,e ”Jl(x)dx (3.76)

nJa§+n2 0

This form is the one that was used in the numerical evaluation. An
additional check on the numerical values of these Hankel transforms is
available from the work of Soni and Soni (1973) on asymptotic esti-
mates at large n. These estimates are discussed in the next section.

3.4.3 Quadrature Scheme
over n and ¢

It was mentioned earlier that in terms of the contacting
spheres coordinates employed here, fhe region at which n = » is the
point of contact of the spheres and the region of n = £ =0 is the
region far from the spheres. The contribution to the elastic effect
at the contact point was investigated through the use of asymptotic
estimates of the six Hankel transforms given in Equation (3.51) as

n + « and by writing theintegral over n as follows.
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10
rQ(n.E,Il . . 'Is)dn = Q(n,E, Il . . '16) dn
0 0
+ Q(n,&, asymptotic estimates of I's) dn (3.77)

10

where the asymptotic estimates of the Hankel transforms were obtained
by a theorem of Soni and Soni (1973). Soni and Soni have related
the behavior of a function of s that is unbounded at's + 0 of the
form s Yg(s) wherey > 0 and 0 <y < m + 3/2 with the limit 6f its

Hankel transform at n - .

Tim -y
e /sn Jm(sn) s Yg(s)ds
0

=27 M1 (w2 - v/4 ¢ 3/4) +
/2 Ay 0 90)

(3.78)

where the function g(s) is bounded over the entire range of s. It

is to be noticed that in Equation (3.78) 54}'Y g(s) is equal to the
specific function of s in the various Hankel transforms. Further

the form of equation (3.67) has n% which is not present in odir defini-
tion of the Hankel transforms, so we have to multiply the results of
Equation (3.73) by n'i. The coefficient y is chosen in such a way

as to make f(s,£) bounded at s = 0, m is the order of Bessel function.
Application of Equation (3.78) to the six Hankel transforms showed

that as n > = the following estimates are obtained:
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I, = -2
I,=0

I3=0

I, =0

Ig = 0

Ig = 0 (3.79)

In the last integral of Equation (3.77) when infinity was replaced
by 15 or 20 and using the results of Equation (3.79) along with
other functions of £ and n yielded values of the order of 10'5
which were practically zero. This result had established two things.
First, the point of contact of the spheres yield no contribution to
whatever result we get for the elastic effect on the drag. Second
the value of n = 10 is a reasonable upper limt for n.

On the other hand, at low n the value of the integrand is
large, particularly at £ < 0. It is useful to note here that the
range of Tow n with £ near 0 describes the region far away from the
spheres while the range of low n with £ near -a describes the stag-
nation points region about the larger sphere. More will be said in
Section 3.6 about the contributions from different regions to the

elastic effect on the drag.

3.5 Contribution from Different Regions

We proceed to look at the integrand Q(Z,n) of the double
integral over n and £ in Equation (3.46). This integrand involves

large sequence of algebric expressions. It is useful to look at the



63

behavior of Q(g,n) in different regions of fluid around the spheres.
In Section 3.4.3 we have already shown that the region near the
equatorial section of the spheres and in particular the point of con-
tact has no contribution to the drag. This region is that of n »
infinity. On the other hand, in the regions of low values of n and
nonzero values of £ we observed a different behavior. The numerical
values of the integrand Q(£,n) for a = .2 are listed in Table 3.5.
The values of n and £ are those at which the integrand started to
have an appreciable magnitude. Let us first look at Tow values of

n, with £ approaching zero, which represent the region far away from

spheres as can be séeen from

The values of Q(&,n) are significant in this region as shown in
Table 3.5 Next we lTooked at the region near £ ~ -o and at low n
which describe the stagnation points on the surface of the rear
sphere. It was seen that this region contribute the most to the
elastic effect on the drag. The range of low n values over which
the integrand Q(&,n) takes on appreciable magnitude is larger around
the larger sphere (£ < 0) than around the small sphere (£ > 0).

The large contribution from the stagnation point region
is understandable in the light of previous work. Of particular

importance to us is the work of Leal (1975) where he treated the
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Table 3.5.--Integrand after integrating over x (a=.2, k=5)

3 n Q(g,n)
0.79 0.007 0.29
0.713 0.007 0.29
0.63 0.007 0.26
0.54 0.007 0.23
0.447 0.007 -0.21
0.087 0.007 0.42
0.01 0.062 -0.60
0.01 0.007 -950.7

-0.056 0.062 253.8

-0.056 0.007 -2.08
-0.112 0.332 -1.01
-0.112 0.17 5.74
-0.112 0.062 165.8

-0.112 0.007 2.71
-0.154 0.17 18.38
-0.154 0.062 93.83
-0.154 0.007 -641.3

-0.183 0.062 64.74
-0.183 0.007 -1.31
-0.198 0.062 1.56
-0.198 0.007 0.21
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case of a long, slender rod-1ike cone without fore-aft symmetry. In
that work, the drag force due to the elasticity of the medium was
represented by two integrals. The first is a surface integral which
is evaluated at the surface of the particle using asymptotic expres-
sion for the integrand. These expressions are not valid for the
region close to the ends of the particle. Further in the volume
integral it was seen that the region of fluid close to the particle
is dominant; and because of the slender body approximation the stagna-
tion points at both ends of the particles where omitted. However,
the fact that we have an appreciable contribution even near £ = 0
(i.e., far from the spheres) is at variance with the result of Leal.
It is to be mentioned that the shape of our particles is different
from Leal's and this may explain this variance in the results for
this region.

We would like to conclude this section by presenting an
estimate of the error associated with the integration over £ and n.
It was just seen that the region of small n and & < 0 has the largest
contribution to the drag on the spheres surfaces. Thus, when we
evaluated the numerical value of the integral of Equation (3.46) for
equal spheres (a = 1) where a high degree of accuracy was available
in the Hankel transforms evaluation, we obtained a final answer of
0.12. This value was obtained by integrating over £ from -1 to 0
and over n from 0 to 1 which are the regions of major contribution
to the drag. The integration from-ato O over £ and 1 to 10 over n
has a value of 10'4 which is practically zero. Before we can say

anything about the value 0.12 for the integral of equal spheres, we
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further investigated the effect of changing the number of quadrature
points over the range -o to 0 over £ and 0 to 1 over n for several

a values. As can be seen in Table 3.6 that the effect of increasing

TABLE 3.6.--Effect of increasing number of quadrature points on
integral shown

30 points each 50 Points each
. Ll o
0.33 0.98 0.95
0.50 0.48 0.46
0.67 0.28 0.27

the number from 30 to 50 has an effect on the second decimal point of
the integral value. The other integral -a to 0 over £ and 1 to 10
over n is also very small 0 (10'4). Thus, we conclude that even

with this increase in the number of quadrature points, the first
decimal point is unchanged. We also know that in the integration over
£ and n the integrand does not involve a. Thus, we say that since

for equal spheres the result of Equation (3.46) should be zero, there-
fore, the value of 0.12 is error due to the quadrature over & and n.
This magnitude is also associated with other values of a's # 1 which

we will present their final results in the next section.
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3.6 Results for Unequal Spheres

Before we present the results of the drag correction factor
F,,/6Tula due to the elastic medium for unequal spheres (o # 1), we
would like to recall attention to Sections 3.4.1 and 3.4.2. In Section
3.4.1 we aimed at establishing confidence in the numerical evaluation
of the function f(s,£) of the Hankel transform. We have seen that as
o is decreased from 0.5 to 0.2 the absolute error |Af| increased by
an order of magnitude. Furthermore, we showed that as we repeat the
evaluation of f(s,£) the error adds up to reach an upper bound of 10'4

for o = .2. In Section 3.5.2 we discussed the error involved in

2 »
fitting afgz’gl-and 3 géf’Q) at a less than 0.33 and said that the

order of magnitude of the difference between these functions and the
fitting function fl is large. We also mentioned that the

difference will add up as we repeat evaluating these functions.
Thus, in light of these points, it was decided that values of

o > .33 where the upper bound of the total error in evaluating all

the functions of s and also the difference between the functions and

8 4

their fitting values is of order 10 - to 10 ', is an acceptable

degree of accuracy. In Table 3.7 we present the result for unequal

spheres for k =-é between 1.5 and 3 or o between .33 and .67. The

Foz
6mula

drag correction factor for those particle size ratios. These results

F
. 1z . .
table includes both Sriva and the corresponding Newtonian
show that there is an appreciable elastic effect on the drag at order
one in Weissenberg number. Also, it is seen that this effect

increases as k is increased.
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TABLE 3.7.--Drag on pair of contacting spheres--elastic contributions

K -FOE/G%uUa -F1,/6mula

1 1.29 .64
1.5 1.66 1.23

2 2.09 1.89

3 3.04 3.42
Note: F, = Foz + We F

1z

Before we conclude this chapter we would like to recall that
the problem treated here is that of two contacting spherical particles
translating along their center line in the positive z-direction with
the small sphere leading. We mentioned earlier in Section 3.5.1 that
the case where the spheres translates in the negative z- direction
with the larger sphere leading can be considered by changing the signs
of the right hand sides of Equation (3.37). The sign of the quantity
F1z is not going to be affected by this sign change of Equation (3.37).
since it is associated with the quadratic quantity Qo- Qo' ‘FOF the

case of spheres translating in the positive z direction FOz acts in

the negative z-direction; the net drag

F=F,, + WeF

1z
If we consider We = .1 and for o = 1.5

F = -6mula(1.66) - .6mula(1.233)
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which is greater than the Newtonian value. On the other hand, the case
where the large sphere is leading in the negative z-direction, Foz

acts up in the positive z-direction. Thus
F = 6mpUa(1.66) - .6mula(1.233)

which is less than the Newtonian value. In Chapter IV we shall dis-

cuss the results of Table 3.7 in light of the experimental results.



CHAPTER IV

EXPERIMENTAL PROCEDURE AND RESULTS

4.1 Single Sphere Experiments

Sedimentation is a common method for measuring the drag coef-
ficient of particles translating in a fluid. It is very accurate
when care is exercised in both the design and procedure. Several
investigators--Sutterby (1973), Sakai et al. (1977/78), Sigli and
Coutanceau (1977), Chhabra et al. (1980), Broad and Mena (1974), and
Acharya et al. (1976)--have performed such experiments using single-
rigid spheres with both Newtonian and viscoelastic fluids. The only
measurements needed are settling velocity, particle size, and density
and the fluid density. In terms of isolating the effect of fluid
elasticity on drag, Boger and coworkers (1980) have obtained the
most accurate results using so-called Boger fluids. Most of these
experiments were done at very low particle Reynolds numbers. The
work of Sigli and Coutanceau (1977) has addressed inertial effects.
It was concluded that inertial effects generally opposed the elastic
effect. This means that as the Reynolds number is increased, the
elastic effect is decreased. Creeping flow conditions are commonly
observed since most of the theoretical work applies only to such
flow conditions.

The purpose of the present work is to investigate the effect

of elasticity on the drag experienced by rigid contacting spheres

70
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translating in a non-shear thinning fluid along their line of centers.
This is to be performed over a range of Weissenberg number and at low
Reynolds number. The remainder of this chapter will include apparatus
design, material properties and preparation, experimental procedure,

and finally, results.

4.2 Apparatus

4.2.1 Wall Effect Correction for
Newtonian Fluids

A drop cylinder made of Plexiglass was designed for the experi-
ment. In this design, the following factors have been taken into
consideration, which are very critical from the standpoint of the
degree of accuracy. In selecting the cylinder diameter, the wall
effect is the major concern. For a single sphere in a Newtonian
fluid, Faxen (1932) has made a theoretical analysis of the correc-
tion to Stokes law due to the presence of a boundary. The resulting

expression for drag is
F = 6muaK (4.1)

where

= 1 —
1-2.104(d/D) + 2.09(d/D)3 - .95(d/D)>

K
d/D is the ratio of sphere to tube diameters

The above expression was verified experimentally by Bacon (1936) for
d/D up to 0.32. The linearity of the constitutive relation of

Newtonian fluids enabled Brenner (1964) to derive expressions for the
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first order effect of wall proximity as a correction formula for the

terminal velocity given as

- F

y=y

+ O(CO/Q) (4.2)
6mul
and a correction force formula obtained by a simple inversion of
the above expression. In Equation (4.2), U is the velocity of the
particle when settling in an infinite medium, U_ is the velocity
when the particle is settling under the influence of an outside
force F at a distance from a boundary whose wall effect tensor is
K and C0 is a characteristic particle dimension, usually the radius.
The second order tensor K was obtained by the method of reflection.
Sutterby (1973) studied the wall and inertial effect experimentally
over a range of d/D between 0.0025 to 0.125 for a range of Reynolds
number between 0.00001 to 3.78. The falling sphere data were corre-
lated as a relationship between us/u = K, d/D and Re = pUd/u. Here

p. is the fluid viscosity obtained from Stokes law and p is corrected

s
fluid viscosity. The value of K for several values Re was given in

a graphical form and reproduced here as Figure 4.1. Agreement with
Faxen results is up to Re = 0.2; where beyond this value inertial
effect is appreciable.

4.2.2 Wall Effect Correction for
Viscoelastic Fluids

In the case of a viscoelastic material, the wall effect is
not fully determined. Unlike the case of viscous flow, the non-

linearities of the fluid's constitutive relations for a viscoelastic
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Figure 4.1. Wall correction factor vs. d/D of Sutterby (1973).
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medium doesn't in general allow the wall effect to be expressed as
a force correction formula. Only a velocity correction factor is
possible. Caswell (1970) presented the expression for the first

order effect of the wall proximity on particle settling as:

U=U, +K - F/6my2+ 0(272) (4.3)

The only restriction on the constitutive equation for the validity
of the above relation is that it must describe an isotropic fluid
which has a lower Newtonian regime with zero shear viscosity. This
general relation was examined for the case where the stress expres-
sion for the medium is represented by the third order fluid model.
Translation induced by a force alone and rotation induced by torque
alone was considered. The solution involved velocity perturbation
expansions and Green's function method was utilized for obtaining
the wall effect tensor K. The final expression for the unbounded
velocity was expressed in terms of the zero shear viscosity for a

sphere settling in a viscoelastic medium as:

6mal F F
© 1 A - 12 - 4
== - 22 (—5)° + 0 (=) (4.4)
-F Ho uO 61ra2 61ra2
where

A is a combination of material constants given in Caswell (1970)

Various experiments were carried out to estimate the critical ratio
of particle to tube diameter above which wall effect is significant.

Sigli (1977) observed that for a ratio greater than 0.25 the wall
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proximity increased the effect of fluid e1astjcity. This effect is
seen by a decrease in the particle velocity. Boger and coworkers
(1980) had established experimental conditions for negligible wall
effects. They investigated situations for d/D between 0.04 and 0.2.
It was found that the terminal velocity decreased as the sphere to
tube diameter ratio increased, but this reduction in the terminal
velocity as a result of the proximity of the tube wall to the falling
sphere was less than 2% of the unbounded terminal velocity for the
case of d/D = 0.2.

In the present work the diameter of the tube is 200mm. The
maximum particle diameter is less than 25.4 mm; so the maximum parti-
cle to tube diameter ratio is about 0.125. This selection will
provide negligible wall effect. The method of Thomas and Walter
(1965) was used to estimate the distance (Le) required for the
sphere to attain their terminal velocity using the following equa-

tion:

17op§a§F

L (4.5)

e M Ug

where

Pp is the particle density

20p+ Pp
c 9pfF

R
[0}

=
n

4/3 Tog a'
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s = fluid density

a' = doublet radious = a3(1 + k3)

k = ratio of large to small sphere diameter

a = small particle radius

F = (M-M')g = net gravational force

M=4/3 7a' Pp and g = gravitational acceleration

The maximum entrance length needed was thus estimated to be less
than 200 mm. The designed tube height is 1200 mm, allowing for at
least 800 mm of test section. Two sections of 300 mm each were
marked along the tube Iength to improve precision. First, a section
of 50 mm from the top was left empty to be able to draw a vacuum
on the solution without drawing it out. This section is then followed
by a 200 mm 1liquid filled section for attaining terminal velocity.
Following this there are the two sections of 300 mm which are sepa-
rated by 150 mm. A schematic diagram of the details of the drop
cylinder is shown in Figure 4.2. Only measurement considered are
those reproduced in the two equal sections. Finally, a section of
200 mm is allowed for the bottom edge effect. The accuracy of this
arrangement is seen in the results presented for a Newtonian fluid.
The spheres are supposed to be free from any attachment and
fall under gravity along their line of centers. Extreme care is
required to have the spheres dropped axially in the fall tube at
the start of each experiment. A special centering device, shown
in Figure 4.3, was designed for each pair. This device, a Plexiglass

funnel positioned in the center of the tube cover. The lower end
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Figure 4.2. Schematic diagram of drop cylinder.
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Figure 4.3. Photograph of centering device.
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of the funnel is immersed in the fluid and is only 0.001 inch
larger than the large sphere. This design yielded good degree of
alignment of the pairs along the axis before they enter the fluid.
Friction in the funnel was eliminated by making the passage very
smooth. The tube wall thickness was 1/4" so as to withstand the

pressure of the highly viscous fluid.

4.3 Materials

4.3.1 Test Fluids

For the purpose of isolating the elastic effect on the trans-
lation of the doublets, a viscoelastic fluid that has a constant
shear viscosity is needed. This fluid has the characteristics of
what is referred to as a second order fluid with constant shear

viscosity and constant normal stress coefficients.

Tim N
>0 (u (¥) =ug and v = =3 = 2ughg (4.6)
where

¥, is the first normal stress coefficient
N1 is the first normal stress difference,
Y 1is the shear rate

AO is a time constant

In the present work two media are used, a Newtonian corn syrup made
by A. E. Staley and a viscoelastic solution of Separan® in this
corn syrup. The syrup was chosen due to its clarity and high vis-

cosity at the experiment conditions which was 1580 poise at 25°C.
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Terminal velocity was obtained over a short distance down the tube
and Tow Reynolds number flow around the spheres was obtained because
of such fluid viscosity. The range of Re is between (10'4 to 10'6).
The Newtonian medium was used for the purpose of confirming the
accuracy of the drag measurements. The viscoelastic mediumwas pre-
pared by dissolving small quantities (0.2 wt.%) of Separan AP30
synthetic polyacrylamide, manufactured by Dow Chemical, in the corn
syrup. The polymer was sprinkled in the syrup at different depth in
the preparation tank and left for two days to swell. Then a slight
rotation of the solution to achieve uniformity of the polymer con-
centration. The solution obtained was fairly clear and homogeneous.
Separan AP-30 has good thermal stability below 210°C, and good

resistance to shear degradation.

4.3.2 Preparation of Doublets

Spheres choosen for the experiment were steel ball bearings
having extremely small tolerance on diameter and sphericity. The
sphere diameter was measured carefully at several points. The
density was obtained from the measurements of weight and volume of
sphere. Doublets were formed by joining two spheres together over a
size ratio of 1 to 7. The joining process was performed very care-
fully. A commercially available adhesive (Super glue) was used, a
small drop was enough to bond the spheres together at a minimum
contact point. The surfaces of the spheres were wiped clean and
no foreign material such as glue was on them as they were dropped in

the cylinder. Figure 4.4 is a photograph of several size doublets.
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Figure 4.4. Photograph of several size doublets.
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4.4 Rheological Properties of Test Fluids

An R-16 Weissenberg Rheogoniometer was used to measure the
flow properties of all test fluids. Steady shear measurements were
carried out to obtain the torques and forces on the cone and plate
and angular velocity of the rotating plate. A cone angle of 0.5522°
and a plate diameter of 7.5 cm were used in the measurements. To
measure normal stress difference, piezoelectric load cell (922F)
connected through an amplifier to a storage oscilloscope were used
here. The cell was calibrated before the measurements by placing a
certain weight and recording the voltage output. The first normal

stress difference is then calculated by:

ZHAnlg

=t
Ny =3 (4.7)

¢ (n/4)d}
where
An1 is the oscilloscope steady-state reading in volts
g 1is the gravity force
H 1is the transfer function of the cell in mass/volt
d1 is the plate diameter and the factor (2) is for the
force on the lower and upper platens.
The first normal stress coefficient is then obtained by Equation
(4.6).
A standard oil supplied by ASTM was used for viscosity cali-
bration. Temperature control was also used to obtain viscosity-

temperature data for comparison with the manufacturer's data. This
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comparison is shown in Figure 4.5 to be excellent. The Newtonian
corn syrup was also characterized at various temperatures. The
viscoelastic Separan solution in corn syrup was tested at the experi-
ment condition. The effect of inertia on normal stress measurements
was studied very carefully. No normal force was observed with the
pure corn syrup. Since the Separan solution has the same density
almost as the corn syrup, inertial effects are absents in these
measurements. . Corn syrup viscosity vs. shear rate is shown in
Figure 4.6 and 4.7. The temperature dependence of the viscosity

is given in Figure 4.8. Figure 4.9 shows the viscosity vs. shear
rate of the elastic fluid. Constant viscosity is observed up to a

1

shear rate of 5 sec . For the first normal stress coefficient

1

Figure 4.10 show that ¥q is constant again up to ¥ 2 sec . In

any case our settling experiments involve shear rates less than or

1 as will be seen in Table 4.3. The first normal

equal to 1 sec”
stress difference is shown in Figure 4.11. The flow properties of

all test fluids are summarized in Table 4.1. A new sample was used

TABLE 4.1.--Viscosity, relaxation time, and density of test fluids

Test Fluid Temp C° up(Poise) rg(sec) pf(gm/cm3)
Standard oil 25 740 --
Corn syrup 200 25 1580 -- 1.4288

.2% Separan 25 1760.57 0.26 1.3501
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Figure 4.5 Calibration of Weissenberg Rheogoniometer by ASTM Fluid.
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Figure 4.6. Corn syrup viscosity vs. shear rate at 25°C.
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at each shear rate. This was necessary to avoid any error due to
material degradation or insufficient relaxation time after shearing
the sample. Each time a sample is loaded twenty minutes were allowed
for the material to relax before a measurement is taken. Evaporation
of the sample was cut to a minimum by applying a thin film of silicon
0il of comparable viscosity to the exposed sample in the gap between

the cone and platen.

4.5 Experimental Procedure

The Newtonian fluid was used first for reproducing available
theoretical results and confirming the suitability of the experimental
arrangement. Pure corn syrup filled the drop cylinder up to a level
that is enough to have the centering device immersed. The cylinder
was left in a constant temperature room for few days to allow the
entrapped air to escape and thermal equilibrium to be reached. Appli-
cation of a vaccum on the cylinder helped further speed up the process
of getting rid of the air bubbles.

Each pair of spheres was released carefully in the centering
device to avoid any eccentricity. The terminal velocity was recorded
with two electronic timers, were each section is timed by a separate
timer.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>