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ABSTRACT

A MICROSCOPIC HYPER-SPHERICAL MODEL OF TWO-NEUTRON HALO '

NUCLEI

By

Ivan Brida

We have developed a microscopic cluster model of light two neutron halo nuclei that

incorporates the few-body asymptotics in full extent. The wavefunction of the system

consists of a core and two valence neutrons. The core is given in terms of correlated

Gaussians. The three-body dynamics between the core and valence neutrons is taken into

account by means of the hyper-spherical functions containing an exponentially decaying

hyper-radial part. To avoid the spurious motion of the center of mass, Jacobi coordinates

are used for the entire system.

In the present work, the model is applied to the lightest two-neutron halo nucleus,

6He. The central Minnesota nucleon-nucleon interaction with and without a spin-orbit

addition is used to bind the nucleus. The results are compared to those obtained in other

models and to experimental data. Basic structural observables, such as binding relative to

4He, radii and one-body densities are in agreement with other models. The microscopic

description of the core allows us to test the efficiency of Pauli projection techniques

employed in the few-body models. We demonstrate that proper antisymmetrization is

crucial to bind 6He against three-body break-up. Overlap functions between 6He and 4He

have been extracted with the aim of reaction calculations involving 6He. In particular,

two-neutron transfer reaction p(6He, 4He)t at 25MeV/A is studied.
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Chapter 1

Introduction

Atomic nuclei represent self-bound ensembles of strongly interacting fermions. Experi-

mental and theoretical explorations of the chart of nuclei have revealed many intriguing

features of nuclear matter. Among them, a structural hallmark—the nuclear halo—has

been found in the realm of light nuclei near the limits of particle stability.

In general, the halo phenomenon is a threshold effect occurring in loosely bound

systems, in which particles are held in short-range potential wells. In favorable circum—

stances, a barely trapped particle or particles (or a cluster of particles) may tunnel out

into the classically forbidden region. This “leakage” populates very dilute and fragile

structures near particle emission thresholds. The more loosely the halo particles are con-

fined, the more clearly “the halo stratosphere” is developed.

Besides nuclear physics, halo systems are known or expected to exist in other branches

of physics as well. One of the most extended halo systems known to exist is the atomic

helium dimer 4H82 which is about ten times larger than a typical diatomic molecule and

is bound by only about 10‘7 eV [1]. Halo states have been predicted or experimentally

observed for a range of other systems, such as 3He—3He-39K [2], positron-atom complexes

[3], hyper-nuclei such as 31H [4] among others. A comprehensive review of halo systems

can be found for example in [5].
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1.1 Halo in nuclei

The quantum-mechanical tunneling present in halo nuclei produces unexpected effects.

The energy needed to remove halo nucleons is drastically less than particle separation

energies for typical nuclei. Nuclear radii are enhanced; matter and charge radii may differ

considerably. There is evidence that few-body effects may become crucial, leading to the

formation of cluster structures beyond the reach of mean field theories.

In a first approximation, the spatial separation of particles in the halo from the rest

of the system justifies a simplified description with only a few active constituents. Halo

nuclei can be thought of in terms of a few (typically one or two) single halo nucleons

1
orbiting a tightly bound core, thus implying a major role of single-particle properties.

In quantitative terms, it has been assessed [6,7] that for a quantum halo to develop,

1. the probability to find halo particles in the forbidden region beyond the classical

turning point should be more than 50%,

2. and the core-halo configuration should occur with more than a 50% probability in

a given system.

It has been argued [8,9] that for a nucleus to meet these criteria:

a. the energy needed to separate the halo part from the rest of the nucleus should be

small, more precisely less than about 2 MeV 14—2/3, with A being the mass number

of the nucleus,

b. the halo nucleons should occupy s— or p—angular momentum orbits around the core,

c. and the proton number of the nucleus should not exceed ten or so for a proton halo

to develop.

For three-body halo states containing two loosely bound nucleons, the condition b. should

be supplemented by a requirement of hyperlmomentum2 K = 0 or 1. The formation of

 

1Here, we do not consider less straightforward cluster divisions with tightly bound subgroups of

nucleons, such as 9Be consisting of two 0: clusters glued together by a neutron.

2To be introduced in Chapter 2.
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Figure 1.1: Lower part of the chart of nuclei. Stable nuclei are represented by black

“ ,7

squares. In this figure, p stands for a proton, “n” for a neutron. The term ”Borromean”

is explained in Section 1.2.

a charged halo is hindered by the Coulomb barrier. These conditions naturally favor light

nuclei in Figure 1.1 to populate halo states.

From the modern perspective, the best established nuclear halos live among light

neutron-rich nuclei. Examples of one-neutron halo nuclei include the ground states of

11Be (2 10Be + n) [10] and 19C (= 18C + n) [11], excited states in 12B (= 11B + n) and

13C (= 12C + n) [12] and several possible candidates, such as 31Ne (= 30Ne + n) and

40A1 (= 39A1 + n) [5]. In one-neutron halos, the tail of the relative core-n wavefunction

falls off exponentially with the distance between the core and the extra neutron. The

decay length, determined by the neutron separation energy, is typically 4—5 times that

of ordinary, tightly bound nuclei [5].

In nuclear physics, the most obvious three-body halo candidates are light drip-line

nuclei with two neutrons encircling a core. Among them, 6He (2 4He + n + n) and

11Li (= 9Li + n + n) are stereotypical prototypes of nuclear halo systems [13], and they

enjoy all the attention of the present work. 11Li is considered the prima donna of all halo

nuclei thanks to its very small two-neutron separation energy 378 keV [14]. Other two-

neutron halo nuclei include 14Be (2 12Be + n + n) [15], possibly 22C (= 20C + n + n)

[16], and other candidates [5].

For completeness, we should mention other nuclei in which some sort of halo may

3
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be deveIOped. In the deuteron, for example, the proton (p) and the neutron are very

likely to be found outside the range of the strong interaction. The binding energy of the

deuteron (-2.2 MeV) is in absolute value small compared to a typical nucleon separation

energy (7—8 MeV), arguably making the deuteron the forerunner of all nuclear halo

states [17]. On the neutron-rich side of the chart of nuclei, 8He contains four neutrons

believed to form a neutron skin around the 4He core [18]. On the proton-rich side, the

population of halo nuclei is decimated by the Coulomb barrier. Hints of a proton halo have

been seen in 8B (= 7Be + p) [19], 17'Ne (2 15O + p + p) [20], and some other nuclear

states. Reference [5] contains a more complete list of possible halo states in light nuclei.

As an example of theoretical studies on the existence of halo effects in heavier nuclei,

medium-mass even-even nuclei have been scrutinized in [21, 22]. The authors of these

works concluded that on the large scale the halo phenomenon is very rare and can only

exist at the very limit of neutron stability.

In the present work, however, we shall focus only on light two-neutron halo nuclei, in

particular on 6He and 11Li.

1.2 Two-neutron halo nuclei: 6He and 11Li

Apart from possessing all of the peculiar halo features, the known two-neutron halo

nuclei including 6He and 11Li are Borromean, meaning that the system core + n + n is

bound, even though the binary subsystems core + n and n + n are unbound. The term

Borromean is adopted after a heraldic symbol of three rings which are joined in such

a way that if any one is broken, all three become free [13]. In the helium chain, for

example, 4He binds two extra neutrons, but not one, and the di-neutron is unbound as

well. This odd-even staggering is merely a consequence of nucleon-nucleon correlations.

One then deals meticulously with two correlated neutrons revolving around a core in the

low density regime. Thus, these nuclei are ideal playgrounds to study neutron correlations

in an almost proton-free environment. It is possible that these nuclei give rise to the so-

called Efimov states [23,24].
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The Borromean nature of 6He and 11Li implies that, even at large distances, the

core and the valence particles are correlated with no bound binary admixtures. Asymp—

totically, the wavefunction vanishes exponentially with a decay rate depending on the

three-body binding energy, i.e. on the amount of energy needed to break the nucleus up

into a core and two free neutrons. The inverse of the decay rate gives a typical “three-body

distance” within the nucleus, which is about 7.5 fm in 11Li. For better visual apprecia-

tion, this value corresponds to a di-neutron at distance about 6 fm from a 9Li core or to

the two neutrons being on opposite sides of the core at mutual distance of about 11 fm.

These numbers are to be compared with the range of the nucleon-nucleon interaction of

about 1—2 fin and also with the 2.32 fm radius of the 9Li core [13]. The situation is less

dramatic in 6He due to its larger two-neutron separation energy3 of about 970 keV [25].

One then anticipates that many properties of 6He and 11Li will depend chiefly on the

asymptotic part of the wavefunction.

Due to the proximity of particle emission thresholds, 6He and 11Li support only a

single bound state, the ground state. Moreover, these nuclei are short-lived; the half-

life of 6He is 806.7 ms [25] and that of 11Li is even shorter at about 8.8 ms [26]. To

be studied, these nuclei have to be produced artificially. Most information about the

anatomy of nuclear halos has been obtained in reaction processes leading to continuum

excitations and ultimately to the destruction of the investigated nuclei. It is useful to put

the most rewarding experimental methods into their historical context. In the following

short historical overview, we focus mainly on “Li, but some of the experiments have

been carried out for other halo nuclei including 6He.

1.3 Overview of 6He and 11Li: experiments

The history of two-neutron halo nuclei started with the discovery of 6He back in the

19308 [27]. It took three more decades to produce 11Li for the first time [28]. Current

 

3In what follows, the two-neutron separation energy is taken as an absolute value of the three-body

binding energy, and the two terms will be used interchangeably.
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interest in nuclear halos, however, was sparked by the advent of modern radioactive beam

facilities. In 1985, the interaction cross section of helium and lithium isotopes colliding

with ordinary nuclear targets was measured [29,30]. The surprisingly large values for 11Li

were soon interpreted as a consequence of extended neutron densities, a neutron halo,

consisting of a di-neutron coupled to a 9Li core [31]. This speculation was later supported

by a measurement of the momentum distribution of 9Li after the break-up of 11Li [32].

Consistent with the di—neutron model, large spatial extent of the halo was, through the un-

certainty principle, reflected by narrow relative momentum distributions. The di-neutron

model also suggested large two-neutron removal cross sections via Coulomb dissociation.

Soon after, the cross sections of electromagnetic dissociation of 11Li on high-Z targets at

high [33] and low beam energies [34] were found to reach anomalously large values. Later,

charge-exchange cross sections of 829211Li were measured to be about the same [35], thus

implying that the 9Li core is little disturbed in 11Li. One of the first attempts to indirectly

deduce the neutron density profile of 11Li can be found in [36]. The authors concluded

that only density distributions with very long tails consistently reproduce the observed

interaction cross-sections. Furthermore, the angular distributions of 9Li and 11Li nuclei

scattered elastically from protons are similar, but the elastic scattering cross-section is

smaller by about a factor of two for 11Li [37]. In data analysis, both real and imaginary

parts of the optical potentials had to be changed considerably for 11Li compared to global

fit parameters, in order to account for break-up due to the extended tail of the neutron

density. fl-decay represents an interesting alternative for extracting information about

halo structure. Several theoretical works [38,39] have investigated the B-decay of 11Li

into 9Li and a deuteron (d). They concluded that the fl-decay matrix elements are to a

large extent determined by the halo part in 11Li. Experimental efforts in this direction

reported in [40,41] and more recently in [42] provide evidence that the fi—decay takes place

essentially in the halo of 11Li, and that it proceeds mainly to the 9Li + d continuum,

opening up a new means to study the halo phenomenon in 11Li.

The early reaction experiments were extended in later years, see for example reviews

in [43—45]. They include transfer, stripping and break-up reaction studies providing differ-

6
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ential, rather than integrated cross-sections. Reaction and decay experiments have been

accompanied by precise measurements of static properties: measurements of two-neutron

separation energy by methods of radio-frequency spectrometry [14] and Penning trap [46]

for 11Li, nuclear charge radius determined by laser spectroscopy for 6He [47] and 11Li [48],

and electric quadrupole and magnetic moments of 11Li from nuclear magnetic resonance

experiments [49].

In spite of all the experimental efforts, the detailed structure of the two—neutron halo

has not been deciphered yet. The consensus seems to be that, in 6He, the two maverick

neutrons coexist anywhere between two extreme configurations [13]: a di—neutron with

valence neutrons closely spatially correlated, and a cigar configuration in which the two

valence particles are on opposite sides of the core. In 11Li, the situation is less clear due

to a strong competition between s— and p—waves in the halo part of the wavefunction

[13,50]. The question of clustering in 6He and 11Li is the subject of ongoing experimental

quest [51—53].

Experimental data concerning two-neutron halos collected over the last decades has

become so detailed that theoretical models must be more than merely qualitative to rise

to the challenge. Even simple properties, such as the size of the nucleus, turn out to

be model dependent and are not real experimental observables [54]. The study of halo

nuclei as unstable species via reaction experiments involves tightly intertwined aspects of

structure and reaction physics. Details of the reaction component are beyond the scope

of this work. Nevertheless, reviews of reaction models used to probe the structure of light

exotic nuclei can be found in [55,56].

1.4 Overview of 6He and 11Li: structure theory

Traditionally, theoretical considerations of structure and reactions of halo nuclei have

been dominated by few-body models. Few-body structure models of two-neutron halo

nuclei have built their success around the fact that, when viewed at a distance, the halo

particles are decoupled from the core. Under such an approximation, the core’s degrees
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microscopic microscopic cluster three-body

model model model

Figure 1.2: Schematic representation of structure models of 6He. In microscopic cluster

models, a microscopically described 4He core is formed explicitly.

of freedom can be reduced, and the wavefunction factorizes into the core and the valence

part. The many-body problem then reduces to a three-body one—core + n + n———held

together by effective core-n and n-n interactions. For 6He, the transition from a fully

microscopic to a few-body picture is schematically depicted in Figure 1.2.

The early di-neutron models of 6He and 11Li, such as [31], turned out to be too

schematic to quantitatively describe experimental data and were soon followed by more

sophisticated three-body approaches. In the first generation, the three-body models of

these nuclei treated the core as a completely inert object. Several methods of tackling

the three-body problem were applied, mostly to 6He and 11Li. They include the Fad-

deev approach [13,57,58], the hyper-spherical harmonics method [13,59], the variational

method on a harmonic oscillator basis [60], the two-body Green’s function [61], and

the cluster-orbital shell model [62,63]. Some calculations within a pairing model were

reported in [64]. In all their generosity, the three-body models of the next generation

rewarded the core with some degrees of freedom, namely with rotational modes [65].

With increasing computational power in recent years and new techniques to solve

many-body problems, ab-initio microscopic competitors have emerged in the field of

structure models of light exotic nuclei. The microscopic nature of these models allows

them to employ realistic nucleon-nucleon and three-nucleon interactions. The Green’s

function Monte Carlo model has been successfully applied to light nuclei up to 12C [66,67].

The model reproduced the three-body binding energy and radius of 6He. The no—core

shell model [68] is another sophisticated approach, which as its name suggests, is a shell

model with all particles active in harmonic oscillator shells; i.e. there is no inert core
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like in standard shell model calculations. The model has been applied to both 6He [69]

and 11Li [70]. The fermionic molecular dynamics and the antisymmetrized molecular

dynamics represent conceptually similar approaches to the problem of light nuclei [71].

They both use superpositions of Gaussian wave packets for single—particle wavefunctions.

Their application to helium isotopes can be found in [72,73]. As in Green’s function

Monte Carlo, the structure of 11Li has not yet been successfully described by molecular

dynamics models.

Somewhere between few-body and truly microscopic models are microscopic cluster

models, in which some degrees of freedom are frozen to reduce the computational de-

mands. This is achieved through the formation of microscopic clusters with a simplified

internal structure within the nucleus being modeled. To a certain extent, cluster struc—

tures can also be recognized in some of the micrOSCOpic models mentioned above. The

stochastic variational model [74] and its multi-cluster version [75] has been applied to

helium [76] and lithium [77] isotopes. With simpler phenomenological forces of adjusted

strength, the model has been able to reproduce basic (three-body—like) properties of 6He

and 11Li. Other examples of microscopic cluster models applied to 6He include [78—80].

All these models rely on Gaussians of one sort or another to describe the inter-cluster

motion.

Our overview of structure models would not be complete without mean field theories.

Widely dispersed halo particles barely feel the short-range nuclear forces exerted by

nucleons in the core. As a consequence, valence and core particles experience different

mean fields. For Borromean systems in particular, the term mean field is probably not

appropriate, as the correlations between halo particles are crucial for the overall binding.

Moreover, the last neutron in the core + n + 11 system can not be bound in the localized

mean field of the core + n subsystem since such a bound subsystem does not exist in

Borromean nuclei. The importance of unusually small neutron separation energies for

mean field calculations was recognized early on [81]. In later shell model calculations,

configuration mixing and adjustments to residual interactions have become unavoidable

for a good description of exotic nuclei towards the drip-lines [82,83]. In general, mean

9
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field approaches have found it rather challenging to obtain a reasonable description of

halo effects in light nuclei.

1.5 Motivation for present work

The obvious advantage of few-body structure models of two-neutron halo nuclei is the

exact treatment of halo dynamics. These models provide clear, intuitive insight into

the relative motion between the core and valence particles, and as long as implemented

properly, they are well suited to capture the long-distance halo characteristics and cor-

relations. On the other hand, micrOSCOpic models tackle the many body problem in its

full complexity. Thanks to our advancing knowledge of nuclear interactions and increas-

ing computational power, brute force ab-initio models now yield very accurate structure

results for many light nuclei. It is reasonable to believe that, sooner or later, ab—initio

models will succeed in producing an accurate description of halo nuclei.

We are now in the position to ask why we need yet another structure model to

cope with two-neutron halo nuclei. The answer is buried in drawbacks of the above-

mentioned structure models and the lack of connection of some of them to reaction

theories traditionally formulated in a few-body framework.

The crucial assumption of few-body models, a macroscopic core, turns out to be a

double-edged sword: on one hand, it allows us to focus on the most important correlations

between core and halo nucleons, on the other hand, it is undoubtedly a (crude) simplifi-

cation of the many-body problem. To argue in favor of inert cores, some authors indeed

suggest that core polarization in halo nuclei is suppressed compared to normal nuclei [84];

but on the other side, there are works that admit the possibility of less inert cores inside

halo nuclei [48,76]. Despite the occasional strong claims by few-body practitioners [85],

realistic halo nuclei are unfortunately not ideal halo systems; the simple halo picture

is always obscured by small idiosyncrasies, and one has always to check that the core

is really unperturbed to justify the simplified inert-core few-body approach [86]. Stem-

ming from the simplified picture of the core, probably the two most severe drawbacks

10
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of few-body models are the lack of exact antisymmetrization and the usage of effective

interactions [87]. Several Pauli blocking techniques have been developed to account for

antisymmetrization in few—body models, however, when compared side by side, they may

provide different results [88]. Effective interactions, especially those between the core and

halo particles, are not necessarily known. Normally, the core-n potentials are adjusted to

reproduce some set of experimental core-n findings and the three-body binding energy

of the whole nucleus, or attempts are made to derive them from the underlying nuclear

forces. Furthermore, there are indications that for reaction calculations three—body wave—

functions perhaps require additional renormalization to account for microscopic effects

missing in the inert-core approximation [89]. Nevertheless, few—body models are presently

used in most reaction calculations involving halo nuclei.

Some of the above-mentioned drawbacks of few-body models are eliminated in micro-

scopic (cluster) models with halo particles made indistinguishable from those in the core.

The microscopic treatment allows one to antisymmetrize wavefunctions properly and

use phenomenological or realistic nucleon-nucleon (and three-nucleon) forces. So, what

is wrong with microscopic (cluster) models? Well, one could object to several things.

The first one is the missing connection to reaction theories, a link so important for the

understanding of halo species. To feed reaction calculations formulated in a few-body

picture, one would have to extract the necessary information about halo particles from

the full microsc0pic wavefunction, a task that is by no means trivial computationally.

Even though recently we have witnessed some progress in this direction for two-body-like

(but not halo) projectiles [90,91], most microscopic structure theories are still far from

providing such few-body-like information relevant for three-body-like halo nuclei. This

computational obstacle is accompanied by a more fundamental physics question of the

adequacy of microscopic models in the asymptotic regions.

Horn the previous short review of structure theories it has become obvious that to

make calculations feasible microscopic (cluster) models exploit computationally tractable

bases. Chief among them are the Gaussians and harmonic oscillators. One must remem-

ber, however, that at large distances, where the halo nucleons are almost liberated from

11
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the core, the wavefunction falls off exponentially. In principle, it should be possible to

capture the slower exponential decay by using a large Gaussian or oscillator basis, but

as argued in [5], quality precedes quantity in the halo world; that is the actual shape of

basis functions matters more than the size of the basis. In other words, the basis func-

tions themselves ought to possess the correct long-distance functional form to produce

correct halo asymptotics. For this reason, the authors of [5] concluded that Gaussians

are in general not at all suited as a computational basis for halo nuclei. Moreover, most

microscopic calculations are variational with the binding energy used to assess the rate

of convergence. In general, the convergence of the total binding energy does not guar-

antee the convergence of other observables and definitely not the convergence of the

wavefunction in asymptotic regions.

Based on the arguments presented, one can conclude that both few-body and mi-

croscopic structure models have their appealing aspects as well as their drawbacks. We

wish to mix the best of the two approaches to create a microscopic structure model of

two-neutron halo nuclei that would describe simultaneously short- and especially long-

distance regions and allow us to link .the structure and reactions of these nuclei. The

concept of a microscopic cluster model with a carefully chosen functional form for the

wavefunction seems to be ideal to meet our goals. Hereafter, the model of two-neutron

halo nuclei developed in the present work shall be referred to as MiCH (microscopic core

halos).

In MiCH, a two—neutron halo nucleus will be described by a properly antisymmetrized

product of a microscopic core and the valence part consisting of two individual neutrons,

or schematically II! = Acore‘val(core x valence). We shall use terms “core” and “valence”

in spite of the presence of the core-valence antisymmetrizer Acme-"al which, in principle,

makes nucleons from the two parts of the wavefunction indistinguishable. A more precise

meaning of “core” and “valence” will be provided as we go along. At large distances,

the wavefunction naturally decouples into the three-body—like form \I! ——+ core x n x n,

whereas at short distances it is equivalent to a fully antisymmetrized, many-body treat-

ment. To bind the nucleus, effective nucleon-nucleon interactions shall be employed. The

12
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theory developed in this work is designed to cope with bound states of two-neutron halo

nuclei. The link between structure and reactions will be established for simultaneous

two-neutron transfer. In this reaction channel, the two valence neutrons are transferred

in one step from a halo projectile to a target nucleus. The transition probability of this

process is directly proportional to the overlap integral between the original two-neutron

halo projectile and its own core.

1.6 Outline

In the present work, we elaborate on all aspects of MiCH. First, the two major building

blocks of the wavefunctions—the valence part and the core—are discussed separately.

Chapter 2 focuses on the valence part. A particular three-body model is described, el-

ements of which are later incorporated into MiCH. To find the appropriate functional

form for the valence part, the three—body dynamics between the core and the two ex-

tra neutrons is studied in interaction-free regions. Chapter 2 also contains results for

6He and 11Li studied within a three-body approach. Chapter 3 presents a microscopic

model that meets requirements imposed on the core. MiCH is then finally assembled in

Chapter 4 by putting the core and the valence part together. That chapter also includes

the computational background needed for evaluation of matrix elements and optimiza-

tion of variational parameters. Chapter 5 contains results for 6He studied within MiCH.

Basic structural features of 6He are elaborated on, and the results obtained within MiCH

are compared to those from other models and to experimental data. As part of the

discussion, the two-neutron transfer reaction p(6He,4He)t is studied using microscopic

structure input for 6He modelled in MiCH. The work finishes with the conclusions and

outlook in Chapter 6.
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Chapter 2

Valence part

Contrary to standard nuclei, valence particles in two-neutron halo nuclei are weakly

bound and the tail of the wavefunction offers large contributions to most physical ob—

servables. Any structure model aimed at the description of halo species should take into

account the fact that the loosely bound neutrons swim in distant, low-energy regions and

are subject to an interaction which is closer to the free rather than in—medium nucleon-

nucleon interaction. Thus, a proper treatment of the asymptotic regions is vital if one is

to pin down any observable sensitive to the spatial extent of the nucleus. Moreover, the

added Borromean peculiarity of two-neutron halos implies pure three-body rather than

any other asymptotics. Few-body models are especially well suited to cope successfully

with the few-body dynamics and asymptotics of two-neutron halo nuclei. In Chapter 4,

the wavefunction in MiCH will be cast as an antisymmetrized product of a microscopic

core and a three-body-like valence part describing the relative motion of the two valence

neutrons relative to the core.

In the current chapter, we focus on the valence part. To do so, we outline a well

established three—body model [65,92,93]. To avoid repetition, the mentioned three-body

model will be referred to as “the three-body model”. First, we introduce coordinates

and three-body basis sets used to attach the halo neutrons to the core in the three-body

model, ingredients to be incorporated later into MiCH. Then, we outline details of the

three-body model beyond what will be built into MiCH, such as interactions, the Pauli
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principle, and the actual way of solving the three-body problem. In later chapters, we

will have no use of these extra aspects of the three-body problem, but it is useful to lay

them out before us to perform three-body calculations for 6He and 11Li, results of which

are included in this chapter. The results of three-body calculations for 11Li were recently

published by the author and collaborators [50]. For 6He, calculations originally published

in [94] are repeated to reach results that were not included in that article but that are

needed for comparison with results obtained within MiCH for this nucleus.

2.1 Coordinates and bases

The key ingredient of the three-body model is the Schrédinger equation in the hyper-

spherical formalism. The hyper-spherical method, which had been used in other areas of

physics, was brought into nuclear physics in [95] with the aim to develop a general nuclear

reaction theory. The value added to three-body models in [65,92] was the introduction of

deformation and rotational degrees of freedom to an otherwise inert core. The Sturmian

hyper-radial basis exploited in [65,92] was later in [93] replaced by a more suitable

Laguerre hyper-radial basis [96].

For clarity, we should define terms “core” and “valence” more precisely. In the current

chapter, “valence” will refer to all features of the three-body core + n + n system except

the properties of the core, i.e. it will encompass spins of the two neutrons as well as the

full information about the relative motion between the three bodies. Later, in Chapter 4,

the meaning of these terms will be elaborated.

To see how the three-body model is assembled, let us first analyze a three-body

core + n + n bound problem in interaction-free asymptotic regions1 where, as argued

in [5], one ought to employ a basis with appropriate exponentially decaying form. At this

point, we are solely interested in relative motion between the three bodies. To eliminate

the spurious motion of the total center of mass, only relative Jacobi coordinates between

core and neutrons are used as shown in Figure 2.1. In principle, the two sets of Jacobi

 

1Long range Coulomb effects are absent due to charge neutrality of valence particles.

15



p
a
l

 

 
 

(iiit‘m‘li
natt's

cast in any of

rttx‘irtlirm
tts l5

Pattir"l‘"llk“ i)

equatit in lm u a:

\

w1tt1 litany <

lt is URN“

pdrlb (lti‘t‘l 1111)]: ~(

wi'
'

.19“? l]- em“ sf)

tall and they '

momenta (I aml

particle mort ll 11'

IL";
,a.” dIlV'ctIlléiL't‘

they allow the t

rat '~hal equation.

l.ii . ~.ptmphcrit‘al (

l 3“ 'lit-trig-



coordinates—~Y and T—are completely equivalent and the three-body problem can be

cast in any of them. The main advantage of Jacobi coordinates over other sets of relative

coordinates is that the operator of kinetic energy decouples into two independent single-

particle—like pieces with no cross term:

it? 1 1 h?
T=——- —A~ +—A,~,2 =2m #1 1.1 #2 [A5 + A37] , (2.1)

”275

where m is the mass of a nucleon. Then, the interaction—free three-body Schrodinger

equation becomes:

Tw (5,37) = E3body¢ (13,37), (2-2)

with E3body < 0 being the three-body binding energy.

It is convenient to seek the solution of Eq. (2.2) in the form with angular and radial

parts decoupled, schematically:

d) (f g) 2 HOT, 3»le (93)}fly(ny)a (23)

where Y; are spherical harmonics (for now, their projection quantum numbers are omit-

ted) and they take care of the angular part of Eq. (2.2). We stress that the orbital

momenta la; and ly are associated with Jacobi coordinates, rather than any sort of single-

particle coordinates. Next, hyper-spherical coordinates from Figure 2.1 are involved. The

main advantage of hyper-spherical coordinates is that, as it will soon become obvious,

they allow the transformation of the original Eq. (2.2) into a one-dimensional, hyper-

radial equation. The radial function H(:r,y) can be equally well written in terms of

hyper-spherical coordinates p and 0, i.e. ’H($,y) = ’H(p,t9). Plugging (2.3) into (2.2)

yields:

a l

— (p555) + p19] H (M) = EgbodyH (a9), (2.4)
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 Let us consider a three-body system core + II} + n2. In the laboratory frame, the three

objects are at positions 77007.8, 7"}, and 7"}, . Then, there are two different—Y- and T-

like—sets of Jacobi coordinates :75 = {em = 1, 2, 3}:

  
 Relative Jacobi coordinates 531 and f2 connect centers of masses of subgroups of objects;

the last Jacobi coordinate 53 (not shown in the graphics) is equal to the position of the

center of mass of the three-body system in the laboratory frame:

Y T

51 = Fnl — 77core 531: F112 _ 71.721

_. _. (77111 + Acorefocore)/(Acore + 1) 52 = (F712 + Fn1)/2 — Fcore1172 = n2 —

53 = 7ICMS = (Acorefcore + F721 + anl/A

The volume element corresponding to the two relative Jacobi coordinates is:

dV = asldrg = x? 323 dxldxgdflldflg.

Here, (2,- comprises the standard polar and azimuthal spherical angles associated with

5,7. Next, rescaled relative Jacobi vectors are defined as:

5=VH15L .77=\/M2$2

 

 

with dimensionless reduced mass factors:

Y T

#1 = Acme/(Acme +1) #1 = 1/2

#2 = (Acore +1)/A #2 = 2Acme/A

 Note that spherical angles associated with :i" and 37 are the same as {21 and (22, i.e.

(2x = (21 and fly = {22. Finally, the hyper-spherical coordinates, the hyper-radius p

and the hyper-angle 0, are introduced as:

x=psin0, y=pcos6.  The volume element now becomes:

dV = (p1,u2)_3/2 p5 sin2 6 cos2 6 (1de ML; de. 
 Figure 2.1: Definition of Jacobi and hyper-spherical coordinates for a three-body system

core + n1 + 112. Acme and A are the mass numbers of the core and of the whole system.
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with the grand-angular operator A2:

2.5

—2—n26 6_6 86 sin2 6 cos2 6 ( )

This Operator contains dimensionless magnitudes ($0,; + 1) and ly(ly + 1) of orbital

momenta as traces of the orbital motion. The grand-angular operator has a complete

spectrum of eigenfunctions enumerated by hyper-momentum K:

A2tpfilm): —K(K + 4)<le ”/(0). (2.6)

In [95], the eigenfunctions (plight/(6) were found in terms of hyper-geometric functions.

For the purposes of the three-body model, these functions are transformed by means of

the relationship 22.5.42 from [97] into a more convenient form:

I l

cplliglyw) = N];: ly sinl‘” 600313! 6Pn3+} ill—”(cos 26), (2.7)

lag-:2[yd-2 , , ,

where B, (cos 26) 18 a Jacobi polynomial of the order njac. Then, the allowed

values of the hyper-momentum K are:

K : [1; + ly + 2njac njac = 0,1,2,. . . (2.8)

. . . . l I

For a given pair of orbital quantum numbers {[3, ly}, hyper-angular functions cpl? y

can be made orthonormal with respect to the weight factor sin2 60082 6 from the hyper-

spherical volume element in Figure 2.1:

7r/2

/0 cpl}? [y (6)9011:,ly (6) sin2 6 cos2 6 d6 = 6K,K" (2.9)

This requires:

 

 

N12: ly = \/21x+ly+2njac+3 ([1: + ly + 2njac 'l' 2)njacl(la: ‘l' ly + njac + 1)! (2.10)

K [2(nJ-ac + 1x) + 1]!![2(njac + 1,) + 1]!! 7r
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with the aid of relationships 22.1.2 and 22.2.1 from [97].

Since the hyper-angular part of the wavefunction in Eq. (2.3) can be expressed in

terms of functions Eq. (2.7), it is convenient to decompose the radial part ’H(p, 6) of the

wavefunction further into a product of hyper-radial and hyper-angular parts:

71(1), 0) = 7300) #1349) = {75/2 Mp) 901,3”(9), (2-11)

where the factor p—5/2 is chosen to cancel the factor p5 in (2.4). By using this new form

of the radial part of the wavefunction, Eq. (2.4) is brought to its final one-dimensional

hyper-radial form:

— — 2 — K3 u(p) = 0, (2.12) 

which is the only equation that needs to be solved. The three—body binding energy is

now hidden in a decay parameter to—be It:

2 _ 27” lE3bodyl
_ Ii? , K. (2.13)

In Eq. (2.12), the term proportional to [0—2 can be interpreted as an effective centrifu-

gal barrier. This barrier combines not only the effects of single-particle—like centrifugal

barriers associated with each Jacobi coordinate, but also an added effective barrier re-

flecting the difficulty of finding the two neutrons close to the core simultaneously. In

contrast to the two—body case, the barrier does not vanish even for the lowest possible

hyper-momentum K = 0 and thus for the most trivial orbital motion lg; = ly = 0.

The hyper-radial equation Eq. (2.12) provides the remaining clues to build the skele-

ton of the three-body model. At small hyper-radii, the hyper-radial function u(p) van-

ishes:

[HO [(+3”(p) __, p (2.14)
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whereas at large hyper-radii, the hyper-radial part of the wavefunction falls off as:

p—+oo 5/2
Mp) flHam-Hp), 73(1)) ——+p_ exp(-I€p). (2-15)

Indeed, the three-body binding energy buried in re through Eq. (2.13) determines the

decay rate of the wavefunction. The smaller the binding energy the more pronounced

the halo effects. In the three-body approximation, two-neutron halo nuclei posses only

the long-distance asymptotics in Eq. (2.15) due to the non-existence of any bound binary

subsystem, and because the hyper-radius is invariant under the change of Jacobi sets, the

asymptotics are the same in both Y and T Jacobi sets. Having in mind the importance

of asymptotical behavior of the wavefunction, the three-body model employs a Laguerre

hyper-radial basis introduced in [96]:

1 ”lag! 5 P 1 P
7?,” p,p = —— —————-——L —— exp ——--—— , 2.16

lag ( 0) p3 ("lag + 5)! "lag pO 2 P0 ( )

where Lilagm/po) are associated Laguerre polynomials of the order may = 0, 1,2, . . ..

 

A few comments regarding this basis are appropriate at this point. First and foremost,

this basis is just a suitable mathematical basis, elements of which can not be interpreted

as hyper-radial eigenfunctions of the physical three-body system. The basis explicitly

contains the desired exponential part. The basis functions Rnlag are orthonormal with

respect to the weight p5 which occurs in the hyper—spherical volume element in Figure 2.1:

00

R R , 5d :5 2.1[0 nlag(p,po) "lag(p po)p p nlag’nlag ( 7)

with the help of the relationship 22.2.12 from [97]. Moreover, the basis is complete for any

value of po. This fact is of great importance because any p0 can be used in calculations

and yet the proper asymptotic exponential behavior determined by the a priori unknown

three-body binding energy, or It, can be reconstructed. Last, the hyper-radial basis is

privileged in that its index may is not restricted by quantum numbers attached to the
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spherical and hyper-angular parts of the wavefunction.

Based on these schematic arguments, a single basis term for the valence part of the

wavefunction is written as:

7.0 J7?

val

Z Rnlag (p1p0) W7 1 (Baflfihflyaxnlixng) (218)

"lag 711a! val 13a

where W is a generalized hyper-harmonic function in an LS—coupled product form:

_ ’ny
93/700,JgGIWfixfig/axnpxngl "" ‘PK (mx

[ [1393“le ‘8 Yly(9y)] L ‘8) [X111 (8) Xn2ls $119)

val

szal denotes the total angular momentum and the parity of the valence part. The

parity is determined by orbital momenta 1;; and [3, as 7r = (—1)lx+ly. an and Xng

are spins of the two valence neutrons. Index 7m] comprises quantum numbers related

to all but the hyper-radial part, as well as the Jacobi channel identifier Y or T, i.e.

7w; 2 {K, Ix, ly, L, S, Y/T}. This form of valence terms is sufficient for the three-body

model; later, in Chapter 4, each valence term will be enriched by isospins of valence

particles.

In this section, we have introduced only those elements of the three-body model that

will be in Chapter 4 incorporated into MiCH. The next section details the remaining

ingredients of the three—body model.

2.2 Other ingredients of the three-body model

In the three-body model, the core is a macroscopic object with states (PJgrorefi) that are

eigenstates of the core’s intrinsic Hamiltonian:

hc°re<€>¢am<€> = fiestas“)- (220)
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To improve upon the inert-core assumption, the adepted three-body model assumes that

the core behaves as a macroscopic deformed rotor and includes the lowest energy states

of a rotational band built on the ground state of the core. The eigenstates of the core

are the rotational matrices with Euler angles as coordinates 6. Quadrupole deformation

serves as the collective degree of freedom.

A question may arise whether the assumption of a deformed rotor-like core is justified

in light nuclei. Even though it is true that light nuclei in general do not show genuine

rotor-like features, some of them are known to be deformed. In such cases, the quadrupole

deformation can be adjusted to reproduce the strength of the E2 transition between

the ground state and the first excited state in the core, as in the case of 10Be core in

11Be [10]. When the core does not exhibit rotor-like features or the E2 transition strength

is not known, the quadrupole deformation is a free variational parameter taken from a

reasonable physical interval, as in the case of a 9Li core in 11Li [50]. Besides three-body

calculations for 11Li in Section 2.3, we will not rely on the assumption of a rotor-like core

in this work.

Having the basis in Eq. (2.18) for the valence part and the states of the core given by

<1) Jgo're, the three-body decomposition of the total wavefunction is finally written as:

Jgrore nlag “Yual Jgat J

with numbers c being linear expansion coefficients. It is understood that parities 7r in the

last expression implicitly carry the same subscripts as corresponding J. The number of

terms in the expansion is controlled through the number of included states of the core,

maximum hyper-momentum K, maximum order may of hyper-radial basis functions, and

the parity requirements 7r 2 more anl and “val = (—1)lx +131. Additional constraints on

the basis may be imposed by limiting the maximum orders lg, lg of partial waves. To

take advantage of the completeness of the hyper-radial basis in Eq. (2.16), the nonlinear

parameter p0 is the same in all terms in Eq. (2.21). Although, in principle, both Y and T

Jacobi sets of coordinates work equally well and could even be mixed in the wavefunction,
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Figure 2.2: Pair-wise coordinates used to define two-body potentials in the three-body

model. These coordinates are essentially the same as vectors 551 in Figure 2.1, but they

are renamed here for the purpose of potential definitions.

the three-body model starts with the wavefunction written solely in the T Jacobi basis

for reasons explained later in this section.

In Section 2.1, a simplified three-body problem in the interaction-free region was

considered. We now extend our considerations to the full physical space where the three-

body Hamiltonian contains the kinetic energy T, the intrinsic Hamiltonian of the core

hm”, two-body interactions V‘me‘" and V"‘” for all pairs of interacting bodies, and a

possible three—body interaction V3b0dy:

H = T+hc‘”‘e(€)+ere‘”(rcore_n, , §)+vw"€—"(ch_n2,§)+v"-"(Fn,_n2)+v3b0dv

(2.22)

Figure 2.2 depicts the corresponding pair-wise coordinates. The operator of kinetic energy

expressed in Jacobi coordinates appears in Eq. (2.1).

In three—body models in general, the exact form of two-body interactions, especially

those between the core and the valence particles, is rather uncertain. In some works, inter-

cluster potentials were derived from underlying nucleon-nucleon interactions [98]. Such

potentials are non-local, however. In most three-body applications to two-neutron halo

nuclei, the core-n interactions are not founded microscopically; rather they are given an

empirical form with parameters adjusted to reproduce some set of experimental findings

for the core + 11 system and possibly the three-body binding energy. The three-body

model in this chapter adOpts the later approach. The exact form of potentials will be
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shown later in this chapter when three-body results for 6He and 11Li will be discussed.

For some core-n systems, such as 4He—n, the interaction can be fitted to reproduce scat-

tering phase shifts. For other systems, such as 9Li-n, the scattering phase shifts are not

available. One then adjusts potential parameters to reproduce experimentally known low-

lying energy levels in the core + 11 system asserting that the levels can be constructed

from a single neutron orbiting the core. Unfortunately, low lying energy spectra of the

core + 11 system may not be well known, as it happens to be in the case of 10Li [99].

For the interaction between the valence neutrons some sort of realistic nucleon-nucleon

potential is used. When the two-body interactions alone are not sufiicient to bind the

three—body system by the experimentally observed amount against the three-body break-

up, an additional three-body interaction may be introduced. Overall, it becomes obvious

that the uncertainty due to interactions remains one of the major drawbacks of three-

body models.

In few-body models, it is impossible to account prOperly for the fermionic nature of

nucleons. The wavefunction can not be fully antisymmetrized due to the macroscopic

treatment of the core. The wavefunction can, however, be explicitly made antisymmetric

under the permutation of valence neutrons, a requirement easily achieved in the T Jacobi

basis by imposing:

lg; + S + T 2 odd (2.23)

where lag is the orbital momentum of the relative motion between the two neutrons, and S

and T are total spin and isospin of the valence part. For two neutrons, T = 1. This simple

antisymmetry condition considerably reduces the number of available channels in the T

Jacobi basis when compared to the Y set of coordinates. It is for this very reason that

the three-body model starts with the wavefunction in Eq. (2.21) written in the T Jacobi

basis. To account approximately for the Pauli blocking between the core and each valence

neutron, the model space is restricted further. The three—body Hamiltonian in Eq. (2.22)

does not provide information about the internal structure of the core. The model then

assumes that the fictitious core’s neutrons sit in the same core-n potential well defined
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for valence neutrons which, as we have argued in Chapter 1, may not be adequate for

halo systems. Nevertheless, the lowest states produced by the core-n interaction are said

to be occupied by neutrons in the core and as such should be eliminated from the model

space available for valence neutrons. Several different techniques exist to suppress the

forbidden core-n states [88]. In the three-body model described in this chapter, such

forbidden states are projected out before diagonalization [65].

The linear coefficients 0 in Eq. (2.21) can be obtained through the energy matrix

diagonalization. Upon arbitrary reordering of terms in Eq. (2.21), the three-body wave-

function can be schematically written as:

\II = Zci‘l’i- (2.24)

2'

When no core-n states are projected out of the valence model space, the expansion

coefficients c,- are obtained by solving a set of simultaneous linear equations:

Hij cj = EIz-j cj (2.25)

with energy and overlap matrix elements defined as:

Hij = (‘I’ilHl‘I’jli Iij =(‘1’z‘l‘1’jl- (226)

The operator H is the Hamiltonian from Eq. (2.22). In Eq. (2.25), E is the binding

energy of the nucleus. In the three-body model, E = E3body- When the forbidden core-n

states are projected out before diagonalization, matrix elements H and I take a more

complicated form, which can be found in [65].

In actual calculations, it may be useful to move between the Y and T Jacobi sets.

For example, the wavefunction in Eq. (2.21) is written in the T basis, but the matrix

elements of the core-n interaction are most simply calculated in the Y basis. A change

of Jacobi systems only affects the spherical and hyper-angular parts of hyper-harmonics
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in Eq. (2.18). Under a transformation of Jacobi sets, hyper-harmonic functions undergo

a unitary transformation:

WViral szral (B’Qx’ay’xnl’XRZ): Z (If: [Iyll$ly>KLg’ Jflal (0, ngQQ/aanXnQ) a

at

1;, l.’

(2.27)

where the primed and unprimed quantities refer to different Jacobi sets. In 7m] and

Viral’ quantum numbers K, L and S are the same. The coefficients (1’ l’lely)KL’ called

the Raynal-Revai coefficients [100], have analytic forms. Because of the orthonormality

of hyper-harmonic functions in all quantum numbers, squares of Raynal-Revai coeffi-

cients can be interpreted as probabilities to find a basis state with quantum numbers

K, lg, lg), L, S in one Jacobi set in a state with numbers K, 13;, lg, L, S in the other Jacobi

set. For example, for K = 0, there exists only a single combination la; 2 lg = 0 allowed

by Eq. (2.8). Therefore, in Eq. (2.18), basis states with K = 0 in different Jacobi sets

are essentially identical. Also, low partial waves 13,13, in one Jacobi set may contain all

higher partial waves 1' ,l’ allowed by Eq. (2.8) in the other Jacobi set. The Raynal-Revai

coefficients will be useful in Chapter 5 where 6He will be scrutinized.

To conclude the discussion of the three-body model, we establish basic relationships

between geometrical measures within a three-body system. We assume, for a while, that

the core in Eq. (2.21) is described by a microscopic wavefunction @Jgore' Then, one would

be dealing with a system of A nucleons consisting of Z protons and N neutrons. The first

Acme nucleons including all protons would be contained in the core. For such an A-body

system, an operator of the average squared distance of nucleons from the position of the

total center of mass TCMS— (1/A) 2,4121 1*",- could be defined as:

A

n—5AZ”rz'—7‘CMS)2 , (2-28)

where 1",- would be the position of the i—th nucleon in the laboratory frame. After taking the

square root of the mean value of this Operator applied to the wavefunction in Eq. (2.21),
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one would obtain the commonly computed root-mean--square (rms) matter radius (r)1/2

of the nucleus, which can be expressed as:

 

(rial/2 = \/%[Acore<r%.tcore)> + (722)], (2.29)

where () denotes an expectation value and (r?n(co're)) is a square of the rms matter radius

of the core relative to the core’s center of mass. Similarly, one could define an operator

with the summation over protons only:

1 z

,23—2ZZU’Ti -7‘CMS)2 - (2'30)

Zi=1

The corresponding rms proton radius (7%)”2 of the nucleus could be computed as:

 

(7,2,)1/2 = \flrg(core)) + (rgm_CMS>, (2.31)

where (r12,(core)) is a square of the rms proton radius of the core and rme_cMS is the

distance between the core’s center of mass and the center of mass of the whole nucleus.

Finally, an operator for the neutrons could be defined as:

N

1

T7215 N 21(7)'— TCA/IS)2 (2.32)

with the summation restricted to neutrons only. The expectation values of 7%,,1‘2TP, and

7% would be related simply as:

1

<73.» = 2 [2%) + N630] (2.33)

In reality, however, the core in Eq. (2.21) is a macroscopic object. Therefore, the

core’s rms matter and proton radii can not be directly computed in the three-body

model. Rather, they must be inserted into Eq. (2.29) and Eq. (2.31) by hand. Within

the three-body picture, all protons in a two-neutron halo nucleus are confined inside the
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core. It is merely due to the core’s motion relative to the center of mass of the nucleus

that the rms proton radius of the nucleus in Eq. (2.31) is larger than that of the core.

2.3 11Li in the three-body model

As part of the present work, 11Li was studied within the three-body model introduced

in this chapter. The 9L1 core is allowed to be deformed and/or excited. The material

presented in this section is based on the article [50]. In the paper, the value 295 :l: 26 keV

[101] was used for the two-neutron separation energy in 11Li. However, as also commented

in the paper, a new experimental value 376 :1: 5 keV [102] was reported for the two-

neutron separation energy after the completion of our calculations, Later, this new value

was finally corrected to be 378 j: 5 keV [14]. In this section, no attempt has been made to

change the discussion and results to account for the change in the two-neutron separation

energy.

2.3. 1 Introduction

In the early days, three-body models of two neutrons and an inert 9Li core were developed

to describe properties of 11Li [13,58,61,103]. At that time nothing was known about

the core + n subsystem 10Li, and theorists could play the game of adjusting freely the

effective 9Li-n interaction in order to produce a sensible 11Li ground state. In these

models, two neutrons were coupled to the ground state of 9Li and the final composition

of the valence part of the wavefunction varied significantly depending on the core-n

interaction used. In [58] a three—body force was introduced in addition to the two-body

core-n and n-n interactions. In [61,104], a density-dependent n-n delta force was used

and emphasis was given to the importance of pairing. Three-body inert-core models have

been expanded to generate three-body continuum states [105] and the complexity of

these three-body scattering states was analyzed within the context of proton inelastic

scattering.

Early microscopic calculations were unable to reproduce a realistic binding energy
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for 11Li without artificially renormalizing the interactions [81,106]. As pairing effects

had been identified to be crucial [61], by introducing a phenomenological force in the

pairing channel, a self-consistent description of the Li isotopic chain became possible

within the relativistic Hartree—Bogolyubov framework [107]. Effective interactions valid

near the driplines have meanwhile been developed in the shell model [108]. Nevertheless,

configuration mixing, required to produce a realistic ground state for 11Li, is still intro-

duced by hand. In the mean time, some ab-initio methods have reached nuclei with mass

eleven [67,70]. Although the general spectra for light nuclei look promising, ab-initio

models still have difficulties dealing with halo nuclei, 11Li in particular.

There are still some open questions regarding 11Li, even when considering the ground

state only. Should the excitation and quadrupole deformation of 9Li play a role in the

structure of “Li? Using the three-body framework, it was our aim to shed some light on

these issues under the constraints provided by the new 10Li data. Besides the 3/2“ ground

state, the 1/2‘ first excited state of 9Li should also be present in the model space due to

its low excitation energy of 2.69 MeV [99]. We indeed carried out calculations in such an

extended model space, but results were not sensitive to the inclusion of the first excited

state of the core. This is probably due to the lower spin of this state when compared to

the ground state; there are no new orbitals brought into the configuration space when the

first excited state of the core is included. We then concluded that core excitation is not

significant in 11Li. This conclusion is in contrary to 112Be (2 10Be + n + n), a nucleus

differing from 11Li by a single proton, which has been studied within the same model [92].

There, the ground state and the first excited states of the 10Be core have spins 0+ and 2+,

respectively. Consequently, the model space of 12Be is enlarged by inclusion of the first

excited state of the core, and as expected, core excitation was found to be important in

12Be. For reasons given in this paragraph and to avoid unnecessarily tedious discussions,

we only present results for 11Li built on the ground state of 9Li.
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2.3.2 10Li

In the three-body picture, one can not understand the Borromean nucleus 11Li without

a good description of its particle-unbound core + n subsystem 10Li. The information on

10Li is summarized in [99]. Therein, it is possible to see the large number of experiments

that have been performed to measure the spectrum of 10Li, but also the contradictory

energy, parity, and spin assignments made.

Within the few—body picture, 10Li is considered as a core + n system with a neutron

above the 9Li core. The extra neutron is allowed to live in orbits around the core labelled

by nlj, where n is the radial quantum number, I is the orbital momentum relative to

the center-of-mass of the core, and j = I <8) 3 is the neutron’s angular momentum with

s = 1/2 being the neutron’s internal spin. These orbits are assumed to be produced by

a core-n potential to be defined later. Based on the experimental evidence and using

the core + n decomposition, one can conclude the following regarding the low energy

structure of 10Li [99]:

1. The ground state of 10Li contains a valence neutron in a 231/2 state at about

+50 keV or below.

2. there is a 1191/2 resonant state at several hundred keV, to be also referred to as the

p-resonance. This resonance is often assumed to be around +500 keV [58].

3. There is no clear evidence for a d-state (l = 2) below +3 MeV. This state will be

referred to as the d-resonance.

Along with other constraints, these observations are used to fix parameters of the core-n

interaction.

2.3.3 Interactions

In this section, the potentials appearing in Eq. (2.22) used to bind 11Li are discussed.

In three-body models, the interaction between the two neutrons, V"‘"‘, is usually taken

from a parameterization of the low energy nucleon-nucleon scattering phase shifts, which
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are well understood. For V"“”, we use the soft-core Gogny interaction (also known as

the GPT interaction) [109]. It includes central, tensor, spin-orbit, and spin-spin terms.

The quadratic LL term is neglected since its effects are not strongly felt.

Most ambiguities reside in pinning down the effective interaction che"" between

the 9Li core and each neutron. In the following discussion, Fem-8-7,, stands for any of the

two pair-wise coordinates between the core and the neutrons depicted in Figure 2.2. The

form of the core-n interaction is based on the idea of the core being a rotor generating

a deformed field. This field is taken as a deformed Woods-Saxon potential accompanied

by a spin-orbit part proportional to a derivative of another non-deformed Woods-Saxon

potential:

—1 2

Vcore—n (Foam—nag) 2 thJS [1 + eXp (Tcore—n _ R(0,¢))] _ (L) (2-34)
aws mnc

(21". 5') V30 d [1 + exp (Tcore—n _ R30)] _1 ,

47'core—n drcore—n 030

where f is the operator of the orbital momentum between the core and a neutron, .§' is

 

  

the Operator of a neutron’s spin, and m7, is the mass of a pion. For practical calculations,

(Ii/(mind)2 = 2.0 fm2. Both angular momentum operators are in units of h.

The central Woods-Saxon part in Eq. (2.34) depends on the core’s quadrupole de-

formation fi2 through the radius R(0,¢) = Ms(fi2)[1+fi2Y20(0,¢)], where 0 and (b

are spherical angles in the rest frame of the core. When ,32 = 0, a standard value

Rms = 1.2514253} = 2.60 fm is used [110], where Acme is the mass number of the core.

When ,32 75 0, the radius parameter Rw3(fi2) is adjusted to meet the volume conserva-

tion imposed on the central part of the interaction [10], and the dependence of Rms on

deformation is shown in Figure 2.3. In this and other figures, results are shown only up

to ,32 = 0.7, a value that is unrealistically large. The spin-orbit term is left undeformed.

Radius R30 was made equal to Rms at any deformation. The diffusenesses are fixed to the

standard value aws = ago = 0.65 fm [110]. To increase the flexibility of the interaction,

the depth V123 of the central part depends on the relative orbital momentum 1. Different
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Figure 2.3: Radius of the 9Li-n interaction as a function of deformation.

V538 and V53 are considered for l = 0 and 1, respectively, and the same Vgs is taken for

all partial waves with l 2 2. The depth V30 of the spin-orbit term is l-independent.

The rotor-like picture for 9Li is probably an oversimplification, and thus we will not

impose that the quadrupole deformation be determined by the strength of E2 transition

between the ground state and the first excited state of the core, which in any case is not

known. Therefore, in the three-body model of 11Li the deformation parameter fig is a

free parameter chosen from a physically reasonable interval. In principle, the deformation

parameter can take negative values if the core is oblate. We found that the quadrupole

force for oblate shapes of 9Li produces more repulsion when compared to the prolate case

and therefore less binding energy. For this reason, only the prolate deformation (fig > 0)

of the 9Li core is considered in what follows. It should be noted that the preference of

a prolate deformation contradicts a recently measured negative quadrupole moment of

9Li [111].

In case of an undeformed 9Li, all J7" states in 10Li originating from a given nlj neutron

orbital are degenerate. The degeneracy is, however, removed as soon as the spherical

symmetry is broken by non-zero deformation. When there is deformation, l, j are no

longer good quantum numbers, and a nuclear state J'”(10Li) contains a superposition

of different nlj components coupled to the ground state of 9Li with J“(9Li) = 3/2".

Nevertheless, for simplicity, we will refer to any multi-component state J"(10Li), by the
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nlj component into which the state collapses in the limit of no deformation.

The depth of the core-n interaction can now be adjusted to reproduce low-lying levels

in 10Li. Because the experimental data on 10Li from Section 2.3.2 is inconclusive about

positions of the p— and d-resonances, these states can be moved around a bit to obtain

reasonable results for 11Li. In particular, to reproduce the experimental binding of 11Li,

we place the p-resonance in 10Li at +400 keV. By comparison of 10Li with 11Be, a

nucleus with the same number of neutrons, one would expect the d—resonance in 10Li to

be close to +2 MeV [112]. In this work, the d-resonance is placed at +3.4 MeV. If the

d-resonance were at much higher energy, the three-body binding energy of 11Li would

not be reproduced; if it were at much lower energy, it would become bound more than

the p-resonance at large deformations in contradiction to experimental data on 10Li. The

final restriction on the core-n interaction is that the interaction must produce the lp3/2

orbital at —4.1 MeV to match the neutron separation energy of 9Li. Under all these

assumptions, the depths VJ”, and V30 of the core-n interaction are adjusted so that the

interaction produces a series of levels, lowest of which are shown in Figure 2.4 for the case

of zero deformation. In the deformed cases, fitting the core-n potential means adjusting its

depths so that the centroids of 1123/2, 231/2, 1121/2 and 1d5/2 orbitals are kept at -4.1 MeV,

+50 keV, +400 keV and +3.4 MeV, respectively. The variation of potential depths with

deformation is finally shown in Figure 2.5. The corresponding two-body bound states

and the lowest resonances in 10Li are shown in Figure 2.6 and Figure 2.7, respectively.

We note that, with this choice of the core-n and n-n potentials, no three-body force is

needed to reproduce the three-body binding energy of 11Li.

Finally, in order to approximately satisfy the exclusion principle, the bound 131/2 and

1133/2 neutron orbitals are projected out of the model space before diagonalization [65].

2.3.4 Results

Calculations were performed using the computer code EFADD [113]. The full model space

in Eq. (2.21) contained all valence terms with mag S 18 and K S 22. The hyper-radial
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Figure 2.4: The lowest energy levels in 10Li produced by the core—n interaction. It is

assumed that the valence neutron is coupled to the J"r = 3/2- ground state of 9Li and

that the 9Li core is undeformed, i.e. fig = 0. The levels, energies of which are shown,

were used to restrict parameters of the core-n interaction. The two lowest levels, 131/2

and 1p3/2, are forbidden for valence neutrons in 10Li and need to be projected out of the

valence model space. The other orbitals are free to be occupied by valence neutrons.

Laguerre functions reach out to the maximum hyper-radius 20 fm.

Figure 2.8 shows the convergence of the three-body binding energy of 11Li with the

size of the model space measured by the maximum hyper-momentum. The figure contains

three sets of results corresponding to fig = 0.0, 0.3 and 0.6. On one hand, the convergence

exhibits the well known exponential dependence when Kmax 2 12 for all deformations

studied. On the other hand, in all cases, the convergence rate is very slow, much slower

than in the 12Be case [92]. Moreover, the convergence rate decreases with increasing
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Figure 2.5: Depths of the fitted 9Li-n interaction as a function of deformation.
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The legend refers to nlj valence neutron orbitals (coupled to the 3/2“ ground state of

9Li) and the total spin of 10Li.

deformation. It is thus necessary to use extrapolated energy values for three-body binding

energies.

The three-body binding energy of 11Li as a function of deformation is presented

in Figure 2.9. The figure contains both the values for the maximum hyper-momentum

Kmax = 22 and those obtained through the extrapolation in Kmax- Contrary to the

case of 12Be where the energy gain was large, in 11Li a very small additional binding is

obtained from the quadrupole coupling, and as the deformation becomes large the system
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mation. The legend refers to nlj valence neutron orbitals (coupled to the 3/2‘ ground
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the other states correspond to real resonances.
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Figure 2.8: Dependence of the three-body binding energy of 11Li on the size of the model

space determined by the maximum hyper-momentum Kmax included in calculations. For

any Km, all possible valence channels with K s Kmax are included in the wavefunction.

The lines are exponential fits to the tails of data sets.

becomes less bound.

The rms matter radii of the corresponding wavefunctions are shown in Figure 2.10. To

compute the matter radii of 11Li, the rms matter radius 2.32 fm of the 9Li core was used

in Eq. (2.29) [13]. In Figure 2.10, the matter radii were obtained for the maximum hyper-

momentum Kmaa; = 22, but their variations between Kmax :2 20 and Kmam = 22 were

less than 1%. The experimental three-body binding energy and the rms matter radius

impose a constraint on values of the deformation parameter, namely ,82 S, 0.3. We note

that the extrapolation was only done for three-body binding energies since it is the only

observable that has a well established exponential dependence on Kmax. Our prediction

2>1/2

for the rms proton radius obtained for ,62 = 0.3 is (rp = 2.37 fm in agreement with

the recent measurement of the charge radius of 11Li [48].

Figure 2.11 shows the probabilities to find the three main structural components in the

ground state of 11Li, namely (31/2)2, (131/le and (d5/2)2 components. Here, jj coupling

scheme (l$jz)(lyjy) in the Y Jacobi basis is used (see Figure 2.1): la; and Z3, are orbital

momenta along Jacobi vectors {if and 37, and j ’s are orbital momenta l coupled to spins

of neutrons sitting at the ends of corresponding Jacobi vectors. When the deformation of

the core is small, the ground state of 11Li is almost 60% (p1/2)2; for large deformations

36
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Figure 2.9: Three-body binding energy of 11Li as a function of deformation. The squares

correspond to values obtained for Kmaa; = 22, the circles are values obtained through

the extrapolation in Kmax for Kmax 2 12. Lines are to guide the eye. Shaded region

corresponds to experimental value 295 :l: 26 keV [101].

it becomes more than 80% (31/2)2. The region around ,82 = 0.3 corresponds to the

transition between these two configurations where both components are populated with

equal probability. Regardless of the deformation, the weight of the ((15/53)2 configuration

is small, less than about 7%. This result is in contrast with the three-body calculations

for 12Be in [92] where the ((15/2)2 configuration accounts for about 30% in the ground

state of 12Be.
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Figure 2.10: Rms matter radius of 11Li as a function of deformation. The squares cor-

respond to values obtained for Kmax = 22, the line is to guide the eye. Shaded region

corresponds to the value consistent with reaction data [54].
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Figure 2.11: Probabilities of the three main structural components in the ground state

of 11Li as a function of deformation. The lines are to guide the eye.

One has to realize that there is no unique parameterization for the effective core-

n interaction. We have convinced ourselves, though, that the features shown here for

the structure of the ground state of 11Li do not result from a specific parameterization.

Rather, the main features emerge from the constraints imposed on continuum states in

10Li. Other interaction parameterizations, using different interaction radii or spin-orbit

parameters, produce exactly the same characteristics of 11Li.

It is important to understand the implications of the 10Li structure on 11Li. Despite

the large number of experiments, a close study of [99] raises questions about the preci-

sion with which states in 10lLi are known. We have explored the possibility of different

assumptions for the neutron states to which the core-n interaction is fitted, namely 231/2

at +50 keV; 1121/2 at +400 keV and 1d5/2 at +3.4 MeV. Of these, the least uncertain

is the 251/2 state. We have checked that the main features of the present work are not

changed by moving the 1191/2 neutron orbital to +500 keV. More important is the un-

certainty in the location of the ld5/2 state. There is no clear experimental evidence for a

d-resonance at +3.4 MeV or at any lower energy. If the d-resonance is broad or it is su-

perposed by other states, it could be hard to observe experimentally. What happens if the

d—resonance is pushed down? We refitted the core-n interaction for deformation fig = 0.3,

fixing the centroid of the d-resonance at +2.5 MeV. An immediate consequence is a gain
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in three-body binding in 11Li of about 150 keV. However this additional attraction would

not be sufficient to change the structure of the ground state of 11Li, which would remain

essentially (31/2)2 and (p1 /2)2, with ((15/2)2 accountng only for about 10%.

2.3.5 Conclusions

We performed three-body calculations for the ground state of 11Li including deformation

and excitation of 9Li. We find that reorientation effects due to core deformation can

account for the known configuration admixture of s—waves and p-waves in 11Li. With

a three-body model, in which the core is treated as a deformed rotor, it is possible

to reproduce the three-body binding energy, the rms matter radius, the rms proton

radius, and the structure of 11Li consistent with experiment. On the other side, core

excitation is found to be unimportant. In the three-body model, the strength of d—waves

in 11Li is predicted to be very small (x 7%), which is in disagreement with shell-model

calculations [50]. So far, experiments have not been able to make a clear statement about

the position of the d-resonance in 10Li. In the three-body calculations, we have assumed

that such a resonance would be above +3 MeV; however, the shell model produces this

state at a much lower energy around 2 MeV [50]. Resolving experimentally the position of

d-states in 10Li will settle once and for all the structure of the ground state of 11Li. Such

an experiment should be done with a reaction starting from 9Li rather than knock-out

from 11Li since there is not much d—waves in 11Li. One possibility would be to repeat the

9Li(d,p)10Li experiment [114] at a higher beam energy.

2.4 6He in the three-body model

In this section, we repeat some calculations for 6He published in [94]. The goal is to gain

access to three-body results for 6He and have them available for a comparative study with

the outcome of MiCH for this nucleus in Chapter 5. The main purpose of the original

three-body paper [94] was to investigate three-body continuum structure and response

functions in 6He, but as part of the work the wavefunction for the ground state of 6He was
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constructed as well. In that work, hyper-spherical expansion and Pauli blocking along the

lines described in this chapter were employed. The ground state of 6He in the cited work

is regarded as possibly the best within the formalism presented in this chapter [115].

2.4. 1 Introduction

The nucleus 6He, the lightest of the two-neutron halo nuclei, has been used throughout

the years as a reference nucleus in the realm of Borromean nuclei. Thisnucleus has been

tackled in a variety of models, ranging from three-body [13,94,116] through microscopic

cluster [76,78,79] to fully microscopic models [69,117]. Because of the fairly simple struc-

ture of 6He, many theoretical models are in agreement on the bulk properties of the

ground state, such as binding energies, radii and the occurrence of halo structure. How-

ever, as will be demonstrated in Chapter 5, one needs to look deeper to find discrepancies

between different models. Here, we focus on the three-body description of this nucleus.

In the three—body picture, 6He in its ground state is considerably simpler to tackle

than llLi. In fact, 6He is probably the two-neutron halo nucleus on which any three-body

model would stand the most firmly for several reasons. First, a free 4He is exceptionally

well bound among light nuclei, its JW = 0+ ground state has zero quadrupole moment,

and the first excited state (also 0+) is above 20 MeV [118]. Moreover, from the microscopic

point of view, 4He is a fairly simple object: in a first approximation, 4He contains four

nucleons in the lowest possible spherical 131/2 mean-field orbit. Here, the nlj notation

from Section 2.3.2 is used. Within the three-body approximation, it is then reasonable

to assume that 4He remains hardly polarized in 6He, even though this assumption may

contradict conclusions of some microscopic models in which distortion of the core in 6He

has been found important [76]. Thus, in three-body calculations of 6He, we consider

the 4He core only in its non-deformed ground state. Second, the core-n potential can

be conveniently fitted to experimentally known scattering phase shifts. But there is no

such thing as a free lunch: even with the core-n interaction fitted to scattering data, 6He

suffers from underbinding, as will be shown in Section 2.4.2. Third, ground states of both
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4He and 6He are J7r 2 0+ objects which considerably decreases the number of valence

channels open for the two extra neutrons. Finally, the 1.91/2 neutron orbital (consequently

the lowest J7' = 1/2+ state of 4He+n subsystem) produced by the core-n potential is the

only one that needs to be projected out of the valence model space.

2.4.2 Interactions

The two-body interactions from Eq. (2.22) are adjusted as follows. The 4He-n interac-

tion Vcore—n combines a central Woods-Saxon and a spin—orbit Woods-Saxon—derivative

parts as in Eq. (2.34). The nuclear field is spherically symmetric because the core is

undeformed. Parameters of the core-n interaction are taken from [94]: Rm 2 2.0 fm,

R30 = 1.5 fm, aw, = 0.7 fm, aw = 0.35 fm, V53, = 145,. = —43.0 MeV, V3,, = —21.5 MeV,

V30 2: —40.0 MeV. The core-n interaction is zero for partial waves with l > 2. This inter-

action reproduces a-n scattering phase shifts satisfactorily. As for the interaction between

valence neutrons V""", a realistic Gogny (GPT) force is used [109].

With these two-body interactions, the three-body model of 6He suffers from the prob-

lem of underbinding [13,116]. It is commonly argued that physics underlying the problem

of insufficient three-body binding may have to be explored beyond three-body models.

Possible reasons for underbinding include polarization of the core and the influence of

closed channels, most important of which is 3H+3H; use of local energy-independent

potentials neglecting exchange interactions that would be introduced through antisym-

metrization effects; and two—body interactions may not be the same in the presence of

the third cluster as those in a free space. To cure the underbinding problem in [94], an

effective three-body force was introduced:

 v3b0dy= ‘1‘50 [MeV] (2.35)
1+(p/5.0)3

to simulate the effects of the closed 3H+3H channel.

41



t
w
i
l
l

 

 

 

Fiatrro 2.12: ll

nlrir'lt’l 5pm 1“ (1t

tints. For ('éll'fl

wawhun t it in.

2.4.3
Rom

lr. this With in.

rest of the Ilia '11

(“He are (“Hm

mmirlor a mm l

in the T .IdHJlll

Lit'lrrticd.

The corrvvrg.

Sartre drip

It

rmirm

'mqr :
4”

ill!

:trbtainrxl from a
T

~

A

rhrralore. result:

For the (mm-1

flat-tibi basis: arr

”5‘5. d0 not lun

(ere srrtrrnml 0W '

amun: for r‘icar‘lx'



 

 

  
 

-o.6- ' .

Jl .
5. -o

o r

gig-0.8- ' -

_ _ ' exp=-O.97Mev
I]? 0.9 . \-l

, - .

-1o~ ' F' ' .

5 4 15 ' 25 l 35 1 45

Kmax

Figure 2.12: Dependence of the three-body binding energy of 6He on the size of the

model space determined by the maximum hyper-momentum Km included in calcula—

tions. For each point, all possible valence channels with K 3 Km” are included in the

wavefunction.

2.4.3 Results

In this section, some results for 6He studied in the three-body model are presented; the

rest of the discussion will be delayed until Chapter 5. Because the three—body calculations

of 6He are computationally cheap compared to the case of 11Li in Section 2.3, we can

consider a much larger model space than for 11Li. The wavefunction for 6He is written

in the T Jacobi basis, and all hyper-radial Laguerre basis functions with may 3 25 are

included.

The convergence of the three-body binding energy of 6He with the size of the model

space determined by the maximum hyper-momentum Kmax is shown in Figure 2.12. For

Kmaflc = 40, the three-body binding energy is -0.98 MeV, a value that would also be

obtained from an exponential fit to the high-Km“; tail of data points in Figure 2.12.

Therefore, results for Xmas: = 40 are considered converged.

For the converged state, the weights of the five dominant valence configurations in the

T Jacobi basis are shown in Table 2.1. As we explained in Section 2.1, hyper-radial basis

states do not have a well defined physical meaning. Therefore, the weights in the table

were summed over nlag for a given combination {K, 13;, lg, L, S} The five configurations

account for nearly the entire wavefunction. However, this group of components is by itself
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Table 2.1: Probabilities of the five dominant components in the T Jacobi basis in the

ground state of 6He. Here, la; and ly are orbital momenta associated with Jacobi coordi-

nates 53' and 37 from Figure 2.1, L and S are the total orbital momentum and spin of the

valence part of the wavefunction, as in Eq. (2.18).

T Jacobi basis

 

 

 

 

alias K la, ly L S probability [%]

K = 2 s-waves 2 0 0 0 0 80.89

K = 2 p—waves 2 1 1 1 1 11.03

K = 0 s-waves 0 0 0 0 0 4.17

K = 6 d-waves 6 2 2 0 0 1.64

K = 6 f-waves 6 3 3 1 1 0.78

E = 98.51

 

not large enough to deliver converged results, as can for example be seen from Figure 2.12

where the three-body binding energy for Kmax = 8 is about 400 keV above its converged

value. The ground state of 6He is controlled by K = 2 valence components. The spin—

singlet (S = 0) valence configurations account for about 86.7% of the wavefunction; the

admixed spin-triplet (S = 1) components exist only due to a spin-orbit coupling.

Similarly, the probabilities of dominant configurations in the Y Jacobi basis are shown

in Table 2.2. In the Y Jacobi basis, the ground state of 6He is dominated by valence

terms with la; 2 1, i.e. by terms in which the valence neutrons orbit the core in relative

p—waves in agreement with the shell-model picture where the lowest p-shell is the first

shell available for valence neutrons outside the 4He core.

Figure 2.13 shows the hyper-radial dependence of valence configurations from Table 2.1.

Again, for a given valence configuration, hyper-radial dependences were summed over mag

and multiplied by a factor p"5/2 to bring them to the form u(p) introduced in Eq. (2.11).

This form of hyper-radial functions is preferred because of its simpler asymptotic prop-

erties from Eq. (2.14) and Eq. (2.15). As expected, all hyper-radial functions vanish at

small hyper-radii. Probabilities of valence configurations in Table 2.1 were obtained by

integrating squared hyper-radial functions from Figure 2.13 over the hyper-radius.

Further discussion on 6He is postponed until Chapter 5 where the three-body results
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Table 2.2: Probabilities of the three dominant components in the Y Jacobi basis in the

ground state of 6He. Here, jj coupling is used. Schematically jz- = I, <8) 3i, i = x, y, where

Q are orbital momenta associated with Jacobi vectors (If and 37 in the Y Jacobi basis

in Figure 2.1 and s,- are spins of neutrons sitting at the ends of corresponding Jacobi

vectors.

 

Y Jacobi basis

15,; jg; ly jy probability [%]
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Figure 2.13: Hyper-radial dependence of the five dominant channels from Table 2.1 in

the three-body wavefunction of 6He.

will be compared with those obtained in MiCH.
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Chapter 3

Core

In the previous chapter, the formalism for the valence part attached to a macroscopic core

was outlined. The three-body-like construction of the valence part should guarantee the

proper Borromean asymptotics of the wavefunction. To develop MiCH further, we now

wish to find a suitable microscopic model for the core to replace the core’s macroscopic

representation in Eq. (2.21).

Let us start the search for the core’s model by defining our needs. First, for the

purposes of the present work, we need a microscopic model of 4He. Our ultimate future

goal, however, is to tackle heavier two-neutron halo nuclei, especially 11Li. Therefore, to

have MiCH developed in a unified fashion, the model for the core should be capable to

describe heavier cores, such as 9Li. However, in the light of upcoming chapters, there is a

risk of running into computational difficulties for systems heavier than 6He. It is known

that the size of calculations in microscopic models grows rapidly with mass number. In

fact, some models such as Green’s function Monte Carlo are currently limited to masses

A g 12 [67] due to computational demand. For future applications, the model for the

core needs to be flexible enough to provide either a fully microscopic or microscopic

cluster picture of the core. In the later version, the core would be built from microsc0pic

clusters with some internal degrees of freedom frozen. Second, the core’s model should

provide reasonably accurate structure information so that we can focus on effects due

to the valence particles. This constraint requires a certain level of sophistication in the
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description of the core. Third, the model must handle central as well as non-central

nucleon-nucleon forces. This requirement is important because the studied two-neutron

halo nuclei lie outside of the lowest s-shell in the region where non-central forces are

known to play an important role. Fourth, unlike for the valence part, there is no need to

impose special asymptotic requirements on the core’s wavefunction, because all potential

cores are tightly bound systems. Last, the wavefunction of the core should be expressed

completely in Jacobi coordinates. Along with the valence part given in terms of Jacobi

coordinates, fulfilment of this constraint removes by construction the spurious center-of-

mass motion.

At first sight, the literature is very rich in microscopic structure models of light nu-

clei, some of which were mentioned in Chapter 1. In [119], several sophisticated models

were applied to 4He bound by the realistic AV8’ nucleon—nucleon force [120] and their re-

sults were found to be essentially the same. Models tested in [119] (see references therein)

include: the Faddeev-Yakubovsky method, the coupled-rearrangement-channel Gaussian-

basis variational model, the stochastic variational model, the hyper-spherical variational

model, the Green’s function Monte Carlo, the no—core shell model, and the effective inter-

action hyper-spherical harmonic method. Many microscopic structure models mentioned

in Chapter 1 and [119] meet some of the criteria imposed above on microscopic treatment

of the core, but the pool of models meeting all of them is very limited. The most restric-

tive requirement turns out to be usage of Jacobi coordinates. From all the mentioned

structure models, the stochastic variational model meets all our criteria. The rest of this

chapter is dedicated to this model.

3.1 Stochastic variational model

As its name suggests, the stochastic variational model (SVM) represents a variational

approach to many-body problems. SVM relies on the expansion of wavefunctions in terms

of functionally simple basis states and a stochastic Optimization of variational parameters.

The original idea of stochastic Optimization appeared in [121]. Later, the method was
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improved further [74,122]. The basis functions used in the original and later version are

different, though. Hereafter, we shall by SVM refer to the later version of the model.

SVM has been also applied to a variety of problems in other branches of physics [123].

There are two versions of the model, differing by the treatment of the angular part of

the wavefunction: vector-coupled and global. Following [124], the vector-coupled version

of SVM is used in the present work.

In this section, a microscopic version of SVM applied to the core nucleus in 6He,

4He, is described first. This version of the model has been used to calculate properties of

nuclear systems with mass numbers less than eight bound by effective central nucleon-

nucleon interactions [74]. Later, the method was extended to include non-central nucleon-

nucleon interactions. PrOperties computed for 3H and 4He bound by non-central forces

agreed with those from other microscopic structure models [119,125]. There also exists a

microscopic cluster version of SVM, which has been applied to somewhat heavier nuclear

systems, and which potentially could be used to describe 9Li core in 11Li studied within

MiCH. The microscopic cluster version of the model is outlined at the end of this section.

The accuracy of any variational method crucially depends on the choice of trial wave-

functions. SVM prefers correlated Gaussians [126,127] as trial variational basis functions.

Before their adoption in SVM, these functions proved to be remarkably flexible in various

few-body calculations, mainly in atomic and molecular physics, see for example [128,129].

Also, the basis of correlated Gaussians allows analytical computation of many matrix el-

ements and is easily adaptable to the permutational symmetry of fermionic systems.

In principle, any one-body square-integrable function of vector 7'" and with angular

momentum l and its projection m can be approximated to any accuracy by a linear

combination of Gaussians of continuous size parameter a:

exp (—;a2) Mme), mm = r’thtaa, (3.1)

where 321m and Ylm are solid and spherical harmonics, respectively, and 0,. comprises

the polar and azimuthal angles associated with F. The radial factor in solid harmonics

47



.
4
1

Qt

 

 

improves
the ~

rle particle ea:

or a correlat
ed

wild consist H

 apprt ,tar'h. int f -r-

SVM follow|

icilftji'fl (‘UUTI [111.11

Being rf‘lathe t-t

but also make If

hart-antisi'rnniet;

-411"? ‘lr-r.

Rh? 1 7
(ff JCUN (It‘llfl

l

”[Tr‘tflrf an) the ll

Fr

] l\

afit)‘. little-x ~,
“l,

identifier K or if

P

H

]l]2]JI‘l2[‘{j-.] i\ (

fJill'tlirraro“..



improves the short-range behavior of basis states. This simple observation for a sin-

gle particle can be easily generalized to an A-body problem in either an uncorrelated

or a correlated fashion [130]. In an uncorrelated approach, the many-body basis states

would consist of Slater determinants of single-particle Gaussian packets; in a correlated

approach, inter-particle correlations are explicitly built into basis states.

SVM follows the correlated approach and employs basis states expressed fully in

Jacobi coordinates. Jacobi coordinates for a four-particle system are defined in Figure 3.1.

Being relative coordinates, Jacobi coordinates not only engage inter-particle correlations,

but also make the removal of the spurious motion of the center of mass trivial. Then, a

non-antisymmetrized basis term for 4He in either K- or H-like Jacobi basis is written as:

_. 1

¢7COT€ Jgore TCOTB NITCOTC (II), A) = exp (" 51:14.73) X

[611l2l3L12L (if) ® X5125123S]
11'

Jcore

TT12T123TcoreA/[TCOTC 1 (3'2)

where J3me denotes the total angular momentum and the parity of the state, Tom-e and

MTcore are the total isospin and its projection. The projection of Jame is suppressed for

clarity. Index 760"; comprises all other quantum numbers as well as the Jacobi channel

identifier K or H, i.e. "more = {11,l2,13, L12, L, 812, 3123, S, T12,T123, K/H}. The function

6,1,213L12L(f) is chosen as a vector-coupled product of solid harmonics of relative Jacobi

coordinates:

(Mamie) = [[37, (a) 5 372052)] L12 8 3353)] L. (3.3)

The spin x51231235 and isospin TT12T123Tc07‘e MTcoq-e parts consist of successively coupled
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single-particle spins and isospins:

X8123123S = [le <83 Xp2]512 ® Xp3]Sl23 <83 Xp4] S , (3.4)

69 71,4] . (3.5)

TCOT'BMTCOTB
 7T12T123TcoreMTcore : [[[Tpl ‘3 71,2]le ® 3’3]T123

The projection number MTcore is fixed by the number of protons and neutrons in the nu-

cleus. Constrained by vector coupling, different sets of orbital momenta {l1,l2,13, L12, L},

spins {$12, 3123, S}, and isospins {T12, T123, Tome} may exist and they shall be referred

to as different orbital, spin, and isospin channels, respectively.

The Gaussian part in Eq. (3.2) deserves‘closer attention. The symbol A stands for a

3 x 3 dimensional positive-definite, symmetric matrix of non-linear parameters, specific to

each basis element. The quadratic form mAa: involves scalar products of Jacobi vectors:

Aawe—l

:rAcc a Z A,,-.5,- . 5,- (3.6)

i,j=1

with Accra = 4 being the mass number of the core nucleus. Due to the symmetricity

requirement, the number of independent elements in matrix A is Accre(Acore — 1)/2 = 6.

Also notice that, due to dimensions of matrix A, the summation in Eq. (3.6) goes only

up to Acme — 1 = 3 which prevents the Awre-th Jacobi coordinate 554, the position of

the center of mass of the nucleus, to enter calculations. The Gaussian argument can also

be written in a slightly different form:

ACO’I‘B 2

32.41! = Z aij (Fpi — ij) (3.7)

i<j=1

with a simple relationship between elements of matrix A and coefficients a:

Acore—1 Acore—l

a'ij = — Z Z Uk-iAklUlja i< 3', (3-8)

k=l [=1

where U is a transformation matrix introduced in Figure 3.1. All coefficients a are non-
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Let us consider a system of four identical particles phi = 1, 2, 3, 4 at positions sz. in lab—

oratory frame. Then, there are two different—K— and H—like—sets of Jacobi coordinates

if: {jig-J = 1,2,3,4}:

 

 

K H

P1 532 P3 P1 P3

5' 5* f31 _. 1 "

333 552

P2 P2

P4 P4

 

The first three Jacobi coordinates are relative coordinates: they originate and terminate

at centers of masses of subgroups of particles they connect. The last Jacobi coordinate

554 (not shown in the graphics) is the same in the two Jacobi sets and is equal to the

position of the center of mass of the four—particle system in the laboratory frame. Jacobi

and single-particle coordinates are related simply as:

4

i=1

with the transformation matrix U being:

 

K H

-—1 1 0 0 \ ( ——1 1 0 0

—1/2 —1/2 1 0 v 0 0 —1 1

—1/3 —1/3 —1/3 1 ~ —1/2 —-1/2 1/2 1/2

1/4 1/4 1/4 1/4] ]\ 1/4 1/4 1/4 1/4

 

 

 

Figure 3.1: Definition of Jacobi coordinates for a system of four identical particles.

negative, and their number equals to the number of independent elements in matrix A.

The advantage of coefficients a is that, unlike elements of A, they scale directly inter-

particle distances in the Gaussian and thus provide better intuitive feeling for the size of

the nucleus. This advantage is useful during the process of parameter optimization.

The Gaussian in Eq. (3.2) as a whole is a spherically symmetric object. However, as

long as the matrix A is non-diagonal, the Gaussian carries angular information due to

cross terms 5:”, ~93}. The power series expansion of exp(—A,-j:it’,- - 533) contains high powers

of 55,- - 553-, which can describe higher partial waves associated with the coordinates 12',- and
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53-. In such a case, quantum numbers 11,12,13 in 9111213L12L123L (f) loose their meaning

of orbital momentum quantum numbers for a given basis state, and can be considered

discrete variational parameters, instead.

The full wavefunction is then written as an antisymmetrized linear combination of

basis sets from Eq. (3.2):

= Acore CA

700"? Jgo-re Tcore MTcore (157007? Jdrore Tcore AITcor‘e ' (

3.9)
Jgore T60” MTcore

Here, Acme is the antisymmetrization operator which runs over all permutations of par-

ticles inside the nucleus, i.e. Acme = Z?core!(—-1)”P with P being the permutation

operator and p being the permutation parity. The sum in Eq. (3.9) is left without any

summation index because the wavefunction is constructed stochastically as will be ex—

plained below. Due to the stochastic optimization, there may be several basis terms

present in the wavefunction with exactly the same combination of cycore and differing

only by A. Therefore, the linear coefficient c in Eq. (3.9) must also carry the A-matrix

index.

The nuclear Hamiltonian for the core nucleus includes kinetic energies of all nucleons

T,- and nucleon-nucleon potentials Vij:

ACOTB ACOT‘B

H: 2 71+ 2 Vij. (3.10)

i=1 1=i<j

Note that the kinetic energy of the total center of mass does not need to be subtracted,

because such component is removed by construction of basis terms in Eq. (3.2). Linear

expansion coeflicients c in Eq. (3.9) can be obtained through the energy matrix diagonal-

ization in Eq. (2.25). To do that, the wavefunction in Eq. (3.9) is written schematically

as (I) = Z,- c,-<I>,', and energy and overlap matrix elements are computed as in Eq. (2.26)

with the Hamiltonian from Eq. (3.10).

It is instructive to visualize the effects of the antisymmetrizer Acme on the wavefunc-

tion in Eq. (3.9). To do that, a new set of vectors, a set of spots 7"},2' = 1, 2, 3, 4, is defined.
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For the non-antisymmetrized system of particles, spots coincide with single-particle vec-

tors, that is 1", = FPi' When the antisymmetrizer is invoked, spots are not affected, but

particles are: in particle permutations, particles are moved around between spots. As a

consequence, each particle index in the definition of Jacobi coordinates in Figure 3.1 and

also in Eq. (3.2) needs to be replaced by an index of the spot hosting that particle in a

given permutation. This way, not only single-particle spins and isospins travel between

spots, but also Jacobi coordinates are changed. As an example, the permutation swapping

particles 2 and 3 causes the following reorientation of Jacobi vectors:

4 q

_, $1 1‘1

P1 332 P3 P1 P2 P1 P3 P1 P2

-' (-—) " -' f3 _, H .3
3:1 53 P2 P3 3:2 5;}, 11:1 332 P2 P3 1123

P2 194 P3 134 P2 194 P3 52 p4

Through the distinction of particles and spots, the wavefunction automatically adjusts

itself to the action of the antisymmetrizer. Once the antisymmetrizer has been com—

pletely executed, spot indexes are the only ones prevailing, while all particle indexes

have vanished. Needless to say, particles are dummy objects. Yet in literature, the term

“particles” is used to refer to both our particles and what we call spots. For the clarity

of the upcoming discussion, however, we find the concept of spots useful.

In SVM, all variational parameters are optimized stochastically. The main arguments

for random optimization go as follows:

a The simplest choice of non-linear parameters would be to use only a diagonal matrix

A, elements of which could be chosen deterministically, for example in a geometric

progression [131]. The problem with such an approach is that the parameter grid

for each diagonal element of A would need to be dense enough which would re-

sult in wavefunctions with many terms. Even then, using deterministic methods of

parameter selection, it would be hard to avoid local minima in multi-dimensional

parameter spaces. Moreover, not all of the parameter grid points would be equally

important. The reason is that for a given set of Jacobi coordinates and orbital,
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spin, and isospin channels, a linear combination of correlated Gaussians forms a

dense, non-orthogonal set. As a consequence, different sets of coefficients A (or a)

represent the wavefunction equally well and none of them are really indispensable.

This property of basis functions suggest the idea of a completely random selection

of non-linear parameters.

Furthermore, the nuclear interactions are strongly state dependent and for a realis-

tic description of a nucleus, many different orbital, spin, and isospin channels need

to be considered. The number of possible channels grows rapidly with the number

of nucleons; but again, some channels will receive larger weights in the wavefunction

than others.

Also, in principle, all basis terms could be expressed in the same Jacobi set which

would, as in three-body models, require inclusion of high partial waves to reach

converged results. The convergence in orbital momentum is very slow in general, as

we have seen for three-body results in Chapter 2, for example. Moreover, in practical

many-body calculations, matrix element computation involving high partial waves

is tedious and time consuming. On the other side, mixing different Jacobi sets in the

wavefunction delivers faster convergence and only the low terms of the partial wave

expansion are needed. This is because different Jacobi sets bring in different inter-

particle correlations and, as demonstrated by Eq. (2.27) for a three-body problem,

low partial waves in one Jacobi set may contain higher partial waves in other Jacobi

sets.

As a result, even for fairly simple systems, such as 4He bound by realistic nucleon-

nucleon forces, the combined number of orbital, spin, and isospin channels, Jacobi

sets, and non-linear parameters becomes prohibitively large. Therefore, the calcu-

lation of all of the matrix elements and diagonalization including all potentially

important basis states of type Eq. (3.2) may be out of the question. In SVM, in

addition to the random selection of the Gaussian non-linear parameters, a ran-

dom selection of the orbital, spin, and isospin channels, as well as Jacobi sets is
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introduced. Random sampling also eliminates the danger of local minima traps

in the multi-dimensional parameter space. The linear expansion parameters c in

Eq. (3.9) are determined via energy matrix diagonalization, as explained before in

this section.

Following these arguments, the wavefunction in Eq. (3.9) is constructed term by term in

a trial-and-error method. Let us assume that the wavefunction already contains N —- 1

basis states. Then the “construction” part of the optimization procedure reads:

1. Generate M random candidates to find the Nth basis function. Each new candidate

is assembled in two steps:

(a) Pick a Jacobi set and an orbital, spin, and isospin channel randomly from

among all possible channels.

(b) Randomly generate non-linear coefficients A (or a) from a “physically” rele-

vant interval.

2. Through energy matrix diagonalization, calculate the energy with the N basis states

formed out of the already adopted N —— 1 states complemented with each of the M

new candidates.

3. Among the random candidates, find the one providing the lowest energy in the

previous step, add it to the wavefunction and increase the basis dimension to N.

Discard all other random candidates.

The construction process is continued as long as some minimum amount of binding

energy is gained with the acceptance of each new basis state. After that, the energy

can be improved further without increasing the basis size by fine-tuning the non-linear

coefficients. The “refinement” is done by applying steps 1(b)—3 to the already admitted

basis states, i.e. by changing the non-linear parameters of one of the basis states already

present in the wavefunction. The non-linear parameters of a single basis state are changed

in the same way as before by randomly selecting the best combination. The refinement
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is done cyclically for each term in the wavefunction. Again, this fine-tuning is continued

as long as binding energy is being gained. After that, more basis terms are added to the

wavefunction through the construction algorithm. Several construction-refinement cycles

may be needed before full convergence of the binding energy is reached.

We conclude this section by outlining a microscopic cluster version of SVM which

was developed to account better for clustering in light nuclei and make the many-body

calculations more tractable [132]. Over the years, the cluster version was applied to

neutron-rich isotopes of elements with masses between six and eleven [75,77,133]. In this

version, the nuclei are comprised of individual nucleons and microscopic clusters of 3H,

3He, and 4He. The intrinsic wavefunctions of composite clusters are constructed from

simple ls harmonic-oscillator Slater determinants of a common width parameter. The

inter-cluster wavefunction is modelled by correlated Gaussians and optimized by SVM.

In such calculations, effective central nucleon-nucleon forces with occasional addition of

spin-orbit and Coulomb interactions were used to bind the nuclei under study.

3.2 4He in the stochastic variational model

Having the framework of SVM outlined, we now wish to construct the wavefunction of 4He

within this model. In Chapter 5, such 4He will serve as a core in 6He. For 4He bound by

effective and realistic nucleon-nucleon forces, SVM results are in perfect agreement with

other microscopic models. For effective nucleon-nucleon interactions, converged results

can be obtained with less than a hundred correlated Gaussians [74]; for realistic forces

with strong repulsion at short distances, several hundred basis states are needed to reach

convergence [125].

3.2. 1 Interactions

In microsc0pic calculations, the choice of the effective nucleon-nucleon interaction is of

crucial importance. If one wants a model to have anything to do with the real physical

problem, one must make sure that the inter-nucleon force is appropriate for all subsystems
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appearing in the model. As we have learned in Section 2.4, spin-singlet configurations

of valence neutrons dominate the three-body wavefunction of 6He, and as expected,

these configurations have also been found to play a major role in this nucleus studied in

microscopic models, e.g [134]. The spin-singlet state of two neutrons is unbound. Many

effective nucleon-nucleon interactions do not take special care of this state, and in fact

they often do not distinguish such state from a deuteron, which is a bound spin-triplet

neutron-proton state. A popular potential of such kind is the Volkov force [135].

As the basis in the present work, the Minnesota nucleon-nucleon interaction [136] is

used. This force reproduces the most important low energy nucleon-nucleon scattering

data and therefore it does not bind the di—neutron. The force renormalizes effects of

the tensor force into its central component and binds the deuteron by the right amount

assuming a proton and a neutron in a relative s—wave. It also gives realistic results for

the bulk properties of nuclei in the lowest s—shell. Furthermore, when supplemented by

a spin-orbit force [137], the force reproduces low-energy a-nucleon scattering data. For

two nucleons at positions (or spots) 7",- and f}, the form of this interaction in Eq. (3.10)

with the spin-orbit force included is:

 

_. 1 1 u 2 —u

1 .. _, _.

Here, 17,-]: = 7‘} — f}. The exchange mixture parameter u has a default value 1.0 and can be

tuned slightly to adjust the strength of the interaction. P;- is the spin-exchange operator

exchanging spins at spots 2' and j. Pi; is the coordinate-exchange operator exchanging

positions of spots 2' and j in the wavefunction. ('7' are the Pauli vectors of the nucleonic

spin. f is the orbital momentum of the relative motion of two nucleons at spots 2' and j:

1": 43(73- — i=1) x (v,- — 6,). (3.12)
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Finally, the potential has the following Gaussian form factors:

Vn = VOn exp (—nnri2j), n = 1,... ,4 (3.13)

with numerical parameters:

 

n V0,, [MeV] ran [fm‘2]

 

1 200.00 1.487

2 ——178.00 0.639

3 —91.85 0.465

4 —591.10 3.000

 

For the central components (n = 1, 2, 3), the potential parameters are from [136]. In that

reference, it is advised to employ a short-range spin-orbit force to supplement the central

interaction. Therefore, in the present work, the parameters of the spin-orbit force (n = 4)

are those of the set IV in Table 1 from [137]. In [137], several sets of spin-orbit parameters

are given, and among them the set adopted in this work is of the shortest range.

In Chapter 5, two cases of 6He bound by different nucleon-nucleon interactions will be

considered. In one of them, to be called MN (Minnesota), only the central component of

the Minnesota force with the mixture parameter u = 1.15 will be used. In the other case,

referred to as MN-SO (Minnesota with spin-orbit), the entire force from Eq. (3.11) with

the mixture parameter u = 1.015 will be used. In both cases, the mixture parameters

were adjusted to bind 6He by approximately the right amount against the break-up into

4He and two neutrons. More emphasis will be put to MN-SO results, and for that case the

radial behavior of the central part of the Minnesota interaction for different spin-isospin

nucleon doublets is shown in Figure 3.2. The exchange parameter does not affect the two

dominant interaction channels: S = 0, T = 1 and S = 1, T = 0.

57



TE

1 .

 

 

 

figuri-

Eq. ; 3

to thin

3.2.2

and 5;)

Chart lit"

Cu;

Iflllt‘hnd

Slumtr

The Spit

ill that

3118;”) l

[U [)9 t)

W, 311;“.

l

in t.



 

 
 

 

V
;
j
(
r
i
j
)
[
M
e
V
]

  
  2 3

rij [fm]

Figure 3.2: Radial dependence of the central part of the Minnesota potential from

Eq. (3.11) with u = 1.015 in different spin-isospin channels of two nucleons coupled

to total spin S and isospin T. Here, rij = |7'"',-j|.

3.2.2 Results

For the two cases MN and MN-SO defined in the previous section wavefunctions of the

ground state of 4He were obtained within SVM. Both K— and H-like Jacobi sets from

Figure 3.1 were mixed in the wavefunction. Due to the absence of non—central forces in

the MN case, the wavefunction of 4He contains only orbital channels with L = 0 and

spin channels with S = 0. On the contrary, the spin-orbit force in MN-SO invites orbital

and spin channels with L aé 0 and S aé 0 to the wavefunction. In both cases, all orbital

channels with l S 2 were present in the model space.

Convergence of the binding energy of 4He with the number of Gaussian basis states in-

cluded in the wavefunction is shown in Figure 3.3. The convergence for MN-SO is slightly

slower than for MN. Because the case MN-SO is more realistic due to the inclusion of

the spin-orbit interaction, more effort was made to obtain a well converged wavefunction

in that case. In converged states containing 20 and 75 basis states, 4He is bound by

-30.85 MeV and -30.93 MeV in MN and MN—SO, respectively. Therefore, 4He turns out

to be overbound relative to its experimental binding energy —28.30 MeV [118] which is

not surprising given the effective nucleon—nucleon interactions employed.

In this chapter, the treatment of microscopic cores in two-neutron halo nuclei has
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Figure 3.3: Convergence of the binding energy of the MN and MN-SO 4He with the

number of Gaussian basis states included in the wavefunction.

been presented. Having the MN and MN-SO wavefunctions for 4He obtained within the

SVM model, we now leave the discussion of microscopically described cores to be used

in MiCH. Later in Chapter 5, 6He built on MN and MN-SO 4He cores will be studied in

detail.
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Chapter 4

MiCH: final assembly

Until now, we have separately introduced two building blocks of MiCH. To capture both

the short- and long—distance correlations in two-neutron halo nuclei properly, we wish to

combine the three-body-like approach from Chapter 2 to the valence part of the wavefunc-

tion with a microsc0pic core expressed within the SVM framework outlined in Chapter 3.

We are now at the point where the two pieces, the core and the valence part, can finally

be put together.

In this chapter, we first present the final form of the wavefunctions within MiCH.

Driven by a desire for physical insight into extended Borromean halo systems, we are

trying to build wavefunctions from functionally very different components for the core

and the valence part. In doing so, we sacrifice computational ease, which has serious

computational implications that need to be elaborated. Variational Monte Carlo is in-

troduced as a suitable computational framework. Several methods aimed on improving

numerical integrations are outlined. The chapter concludes with a discussion of varia-

tional optimization of wavefunctions in MICH.

4.1 Core and valence together

In essence, MiCH is a microscopic cluster model of two—neutron halo nuclei in which the

clusters are a composite core and two valence neutrons. The form of the wavefunction
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in MiCH is based on the three-body—like decomposition in Eq. (2.21) with the following

modifications:

1. The core is now a microscopic object described by a wavefunction (ngore Tome MT

core

from Eq. (3.9).

2. Similarly to nucleons inside the core, the valence neutrons need to be treated care-

fully as particles in the manner described in Section 3.1. This is necessary because

the valence nucleons are indistinguishable from those inside the core. If the core con-

tains Acme nucleons, then the two extra neutrons are labelled as particles pAcm.6+1

and pA607.81%, and they are assigned isospins 71,};me and TpAcore+2' Other than

that, the valence particles are attached to the core as in the three-body model

in Chapter 2. Accounting for isospins of valence particles, a definition of hyper-

harmonics in Eq. (2.19) is extended to:

 

_ la; 1,,

Eel/”(val J30; 1‘1 _ t‘OK (6) X

[le(flx) ® Yly(9y)] L ® lXpAcore+1 ® XpAcore+2] S] F x

:
val

iTpACOTe'l'l ® TpAcore+2]1_1 ’
(4.1)

which gives the valence term from Eq. (2.18) the following form:

wnlag 7va1J3a11_1 : 72%ng P0) 379m, J30, 1—1- (4.2)

By convention, neutrons are particles with isospin projection -1/2. Therefore, the

total isospin and isospin projection of the valence part of the wavefunction are 1

and -1, respectively.

3. The final modification of Eq. (2.21) is needed to antisymmetrize the wavefunc-

tion properly. The core itself comes already antisymmetrized. As it was argued in

Chapter 3, it is advantageous to mix different Jacobi channels to accelerate the

optimization of variational parameters. For the valence part, there exist Y and T
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Jacobi configurations from Figure 2.1. All valence terms of the type of Eq. (4.2)

are antisymmetrized in the T Jacobi basis by construction, but those in the Y

basis are not. To ensure the proper antisymmetry between valence particles in a

unified fashion, an additional antisymmetrization operator Aval = 23—1)?!) is

needed to act on all valence terms. In addition, the antisymmetry between valence

nucleons and those inside the core is ensured by the action of yet another antisym-

metrizer Acme‘val = 214(A_1)/2(—1)19P, where A = Acme + 2 is the mass number

of the halo nucleus. In Aval, operators P act only on valence particles, whereas in

Acme-”at, operators P permute valence particles with those inside the core.

With these modifications to Eq. (2.21), the wavefunction for a two-neutron halo nu-

cleus modelled in MiCH takes the form:

PO core—val
c A

JgOTC ”lag 7:001 Jgral

' ‘I’JWMJTMT= 2:

(D ® Avalw

J, (.43)
JZ‘rore T60"? Nchore ”lag 7val val 1_1] JWMJ T MT

For reasons explained later in this chapter, the sum is left without a summation index

and compared to Eq. (2.21), the linear expansion coefficient c carries an additional index

p0 to account for the possibility of different values of po in different valence terms. Also, it

is implicitly assumed that parities 7r carry the same subscripts as their corresponding J.

More schematically, the wavefunction can be written as:

\I! = ACOTBFWI [core <8) val] . (4.4)

This form is used to clarify further the meaning of terms “core” and “valence” first defined

in Section 2.1. These terms keep their definite intuitive meanings only until Acme-val

is executed; after that, the nucleons belonging originally to the core and to the valence

part become indistinguishable. Therefore, the terms “core” and “valence” will refer to

the situation before the antisymmetrizer Acme—”“1 has acted.
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Similarly to Chapter 3, the nuclear Hamiltonian includes the kinetic energies T,- of all

nucleons and two—body nucleon-nucleon potentials Vij:

A

H=ZT3+ Z sz. (4.5)

The kinetic energy of the total center of mass does not need to be subtracted, because

the. wavefunction in Eq. (4.3) is expressed completely in the center-of-mass system.

In spite of fixed isospin projections of the core and the valence part, the total wave—

function in Eq. (4.3) has good isospin T = lMTl as long as the core is considered in

its ground state only. In all potentially interesting two-neutron halo nuclei, cores have

either the same number of protons and neutrons, and thus have isospin 0 (as in the

case of 4He), or are on the neutron-rich side of the chart of nuclei, thus having isospin

Tcore == |MTme| = |(Zcm.e — Nara/2| where Nam-e and Zoom are the proton and neu-

tron numbers of the core. Because only neutrons are added on top of an already neutron-

rich core, the total isospin and its projection are simply equal to the sums of isospins of

the core and the valence part. In the present work, the core is considered in its ground

state only.

In Chapter 5, 6He will be studied within MiCH. As we have argued in Section 2.4.1,

this two-neutron halo nucleus is particularly simple to model, because both 4He and 6He

have J7r = 0+ ground states, leaving only valence channels with Jill = 0 open. Then,

the angular momentum couplings in Eq. (4.3) can be simplified and the wavefunction

takes a simple product form:

6 = P0 core—val

4 l

]¢0+00 ( He) Ava wnlag 711a! 0+1_1(p0) - (4'6)

The form of the wavefunction in Eq. (4.3) can be encountered in other microscopic

cluster models, too. Among such models applied to 6He are SVM [76,133] and the hyper-
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spherical model from [79]. There are several differences between MiCH and the other

models. The most obvious is the treatment of the valence part. In MiCH, a functionally

correct, exponentially decaying valence basis is adopted from three-body models, while

the other microscopic cluster models employ Gaussians of some sort in the valence part

of the wavefunction to reduce the computational demand. As we argued in Chapter 1,

however, a Gaussian basis may not be the Optimal choice to capture the asymptotic trends

in Borromean nuclei. Another difference is the amount of details built into the core. In

other microscopic cluster models applied to 6He, the 4He core is normally approximated

by a single Slater determinant of single-particle harmonic oscillator wavefunctions. It was

pointed out in [76,134], however, that such a simplified treatment of the core may lead

to underbinding of 6He relative to the three-body break-up threshold. It was argued that

other configurations such as 3N + N (here, N stands for a nucleon) should be present

in the 4He to account for a possible distortion of the core in 6He. In MiCH, on the

other hand, a converged 4He from Section 3.2 is used as the core in 6He, which should

diminish the underbinding problem. Last, but not least, in Chapter 5 we will extract

information about the 4He + n + n decomposition of 6He modelled within MiCH in the

form suitable for feeding calculations of transfer reactions through which halo nuclei are

commonly studied. This step has not been reported from other microscopic structure

models.

In MiCH, the wavefunction in Eq. (4.3) is assembled in two steps. First, the core

is constructed as a free nucleus. Once optimized, the core’s variational parameters are

excluded from optimizations in the second step of the wavefunction assembly. In other

words, the distortion of the core due to valence neutrons is not considered explicitly, and

like in many other microscopic models, a possible distortion of the core is accounted for

only through the core-valence antisymmetrization. 1n the second stage of the wavefunc-

tion construction, the focus is on the valence part containing discrete (nlagflval, .1301),

continuous non-linear (p0), and continuous linear variational parameters (c). These va-
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lence parameters are to be varied until the expectation value of the Hamiltonian:

_ (‘I’IHI‘I’>
E _W (4.7)

is minimized. Here, ‘11 is the wavefunction from Eq. (4.3). To minimize the energy, we

need a reliable and efficient method to compute integrals in Eq. (4.7).

Essentially the same integration/optimization problem from Eq. (4.7) was encoun-

tered in both the three—body model in Chapter 2 and SVM in Chapter 3. In the three-

body model, the integrals involved in Eq. (4.7) are low-dimensional and can be easily

evaluated. In the three-body model, it is then possible to have the same non-linear pa-

rameter p0 in all valence terms and to simply enlarge the space of discrete variational

parameters until energy convergence is reached. In SVM, the integrals are multidimen-

sional, but because of the Gaussian basis, the integrals can be evaluated analytically in a

closed form. Therefore, SVM can rely on a random trial-and-error selection of variational

parameters.

In MiCH, the situation is different. The wavefunction in Eq. (4.3) combines a core

with a functionally very different valence part. Upon the action of Ame—val, the core

and the valence part of the wavefunction are blended together and there does not seem

to be an easy way to move between permuted Jacobi sets in order to find the set most

appropriate for the computation of a given matrix element. To make calculations easier,

one could consider expanding the valence hyper-spherical functions in Eq. (4.2) in terms

of Gaussians and thus make the core and the valence part functionally identical. Then,

all calculations could be carried out in the SVM fashion. However, such an expansion

could compromise the long-distance behavior of the wavefunction, and so was abandoned.

In MiCH, the only option seems to be a numerical evaluation of the matrix elements in

Eq. (4.7). In the case of 6He, the integrals involve 6 x 3 = 18 spatial and 2 x 6 = 12

spin-isospin dimensions.

Due to their numerical evaluation, matrix elements in Eq. (4.7) come with uncertain-

ties. However, one must still be able to evaluate the integrals with sufficient accuracy to
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perform a meaningful variational calculation. The computational problem at hand is far

from trivial, especially in the context of nuclear physics, where the interactions are highly

state-dependent. Moreover, due to the dimensionality of the integration space, standard

methods of on—grid integrations are out of the question. In conventional quadrature meth-

ods of numerical integration, the accuracy depends on the density of the integration mesh.

For example, if one uses a d-dimensional cubic mesh to evaluate a d—dimensional integral

using Simpson’s rule, the error scales as N"4/d, where N is the total number of mesh

points [138]. Therefore, as the dimension d increases, the error falls off increasingly slowly

with N. Therefore, a better way to evaluate multidimensional integrals is to scan the in—

tegration space to find the regions most relevant for a given physical problem. This opens

the door to Monte Carlo integration techniques, in which the statistical error in the value

of the integral falls off as N’1/2 regardless of the integral’s dimensionality. In particular,

variational Monte Carlo has proven to be a very powerful tool to tackle mathematical

problems of the type of Eq. (4.7).

4.2 Variational Monte Carlo

As stated in the previous section, we are dealing with a variational problem in which

matrix elements must be evaluated by means of multi-dimensional numerical integrals.

To simplify the notation in this section, we shall use ‘II(7"', s, t, p) for the wavefunction in

Eq. (4.3) depending on all spatial (F: (Fl, . . . ,FA}), spin (3 2 {X1,. . . ,XAI) and isospin

(t = {T1,. . . ,TA}) degrees of freedom as well as on a set of variational parameters (p).

The expectation value of the Hamiltonian H with the wavefunction gives an estimate of

the ground-state energy:

(‘1’0‘3 8, t,p)lH|‘1’(7‘3 s,t,p)>

01’0", 8. t,p)l‘1’(fi 8, t,p)>

 

(H(10)) = Eh?) = (4-8)

On the left-hand side, the braces denote expectation (mean) value of the operator, on

the right-hand side, they mean integration over all 7", s and t. By minimizing E(p) with
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respect to all variational parameters, one obtains the approximation to both the energy

and the wavefunction of the true nuclear ground state. Integrals involved in Eq. (4.8) are

to be computed by means of variational Monte Carlo (VMC).

Mathematical foundations of various Monte Carlo techniques can be found for ex—

ample in [139]. VMC has been applied to problems in nuclear [66,140] as well as other

areas of physics [138]. For a general description of VMC, we shall lean mostly on [138—140]

supplemented by other references. The term “variational Monte Carlo” comprises two as—

pects of the problem in Eq. (4.8). The “variational” part refers to the variational nature

of the problem, whereas the “Monte Carlo” part is responsible for the actual evaluation

of the integrals involved. The general concept of VMC, however, does not provide any

guidance on moving within the space of variational parameters that would help us move

towards the variational energy minimum.

In the following text, we first] focus on numerical aspects of Eq. (4.8). The Metropolis

algorithm along with other techniques used to evaluate integrals will be described. Then,

VMC will be applied to a simplified case of 6He to convince ourselves that the integrations

are done properly in MiCH. The section on VMC will conclude with the discussion of

parameter optimization techniques used in MiCH.

4.2.1 Monte Carlo essentials

The Monte Carlo approach to the evaluation of multi-dimensional integrals relies on

statistical sampling and averaging of the integrand. In this section, the essentials of the

Monte Carlo integration are presented.

Adhering to the physical problem at hand, let us consider many-body functions de-

pending only on A spatial coordinates concisely denoted as 7" 2 {F1,. . . ,FA}; complica-

tions due to spins and isospins will be discussed later. The goal is to find the integral of

some function f (7"):

12/f(fldf, (4.9)

where the integral is taken over the relevant space of 1". An underlying idea of Monte Carlo
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integration lies in transforming the integrand into a product of two auxiliary functions

19(1") and g(F). The former function, also called the importance or sampling function, is

chosen first such that it obeys:

pm 2 o, /pm (,4: 1, (4.10)

and hence may be ascribed a meaning of a probability density. Consequently, the vector

1" may be considered a random variable. The other function g(F) is computed accordingly

as g = f/p. Then, the original integral can be written as:

I = / gm node (4.11)

and interpreted as nothing more than the mean or expectation value of the function g('F).

Due to its dependence on the random vector 7", the function 9(7‘) is a random variable

distributed around its mean value I with variance:

vartg) s / tgta - Iran at. (4.12)

In principle, the value of I may be obtained by drawing an infinite set of mutually

independent random vectors from the distribution p0") and computing the sample average

of local values g(f):

1

I: 1' —
Ngnoo N

M
2

g (7701)) . (4.13)

n=l

Here, Fm) means the n—th set of vectors F. A Monte Carlo estimate of I may be obtained

by averaging over a finite sample:

1 z [N = N E 90702)). (4.14)
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The variance of function 9(7") from Eq. (4.12) can be estimated in an unbiassed way as:

 

var(g) z chug) _=_ N _ ,aittg), (4.15)

where 012V(9)1s a commonly computed biassed estimator of the variance of values g(F(n) )

distributed around their mean value IN3

)2(g)%§::l(]g(FM)” —IN]2. (4.16)

The quantity 0N_1(g) is called the unbiassed standard deviation of the sample g(F(n)).

In the nomenclature of quantum Monte Carlo, the vector F is said to be a walker,

wandering around the integration space. A random stop, 77(71), of the walker is called

a configuration or a sampling point, and a chain of sampling points is referred to as

a random walk. In the present work, we prefer to use the term integration point over

sampling point. Referring back to Chapter 3, an integration point F(7‘) consists of a set

ofspotsFlm),. mfg”).

It is important to realize that different random walks may yield different values of

IN- In fact, for any N, the Monte Carlo estimator IN by itself is a random variable

distributed with its own probability density, the expectation value of which is equal to

I, and the variance of which is:

var(g)

N . var(IN) = (4-17)

Using the Monte Carlo estimator from Eq. (4.15) for var(g), the variance of integral

estimates IN can be estimated as:

012V_1(9).

var(IN) z N (4.18)

We point out that, when the original integral Eq. (4.9) is estimated by Eq. (4.14) on short

random walks, the distribution of values of IN may not be Gaussian and so (/var(1N)
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can not be attributed the typical meaning of an error bar. As N —+ 00, however, the

central limit theorem shows that the distribution of values IN will converge toward a

normal distribution regardless of the sampling distribution p(F) or the distribution of

local values g(F(")). Only then is it meaningful to estimate a one-standard-deviation

error of the Monte Carlo estimate of the mean (also called the standard error of the

mean or simply the error):

58(1N) = Elli—(91, whenN ——» oo. ' (4.19)
W

Therefore, the error bar on the integral estimate IN will decrease as 1/\/N regardless

of the integral dimensionality in Eq. (4.9). We emphasize again that the Monte Carlo

estimate of the integral IN and the error Se are trustworthy only when they are estimated

on large samples of statistically independent integration points F(n).

A judicious choice of the importance function significantly reduces the variance for

a fixed sample size. The variance of the integral estimate var(IN) in Eq. (4.17) would

vanish for a constant function g(F) = const = I. However, this choice is not available

since the integral I is not known a priori. In practice, we want an importance function

that matches the general behavior of the function g(F). In many quantum—mechanical

problems, the importance function is taken to be the square of the actual wavefunction.

Once the importance function is chosen, the integral in Eq. (4.9) can be estimated

by means of Eq. (4.14). We rely upon the MetrOpolis algorithm [141] for generating

a random walk with integration points distributed according to the sampling function

p(F). Considered a golden standard for integration space sampling, this algorithm has

been employed in nearly all other variational Monte Carlo calculations. The description

of the Metropolis algorithm with all non-trivial details can be found for example in [139].

For our purposes, we use the following simple version of the algorithm encountered in

most practical applications:

1. Given a walker at point F, generate a trial vector Ftrial randomly from within a

3A-dimensional cube of volume (Ar)3A surrounding the point F.
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2. Calculate the probabilities p(F) and p(Ft,.,-a)). The acceptance probability for a move

from F to fit-tat is given by the expression:

.. _. - 17(7vtrial)
P 'r —-> 7‘ - = min 1, ——-— .

( trzal) { 130—3) }

In actual calculations, the ratio in brackets is compared with a random number

between 0 and 1; if the ratio is greater, the proposed move is accepted.

3. If the move is accepted, set F = Fm-a) and return to step 1. Otherwise, discard the

point Fm-a; and generate the next trial move from the original position F.

The very first sampling point is chosen completely randomly. By construction, the al-

gorithm satisfies the condition of detailed balance. This condition ensures that if many

walkers originating from different positions are launched simultaneously, at any time

later the number of walkers flowing from one integration point to another is the same

as the number of walkers flowing in the opposite direction. Therefore, any point in the

integration space can be reached by the walker from any other point.

Despite its simplicity, the Metropolis algorithm is of a great power, as it can be used

to sample essentially any importance function regardless of the number of dimensions.

Another advantage is that to generate a walk the importance function does not need to

be normalized because the acceptance probability P(F ——> Fm-al) depends only on a ratio

of local values of the importance function. There are, however, a few complementary

disadvantages of the algorithm. First, the sampling is correct only asymptotically. The

initial integration points generated depend on the starting point and should be discarded.

In all our calculations, at least 1,000 generated integration points are discarded before

local values of the operators are first evaluated. Second, successive integration points are

correlated, which violates the assumption of their statistical independence needed to make

the Monte Carlo estimates reliable. This correlation is obvious because the new point F in

step 3 is either equal to F from step 1, or is somewhere nearby. Consequently, successive

local values of the function g(F) are likely to be correlated. Due to such correlations, the
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effective number of independent samples is less than the actual number of points in the

random walk, which slows down the convergence of the integral estimate in Eq. (4.14)

and also makes the formulae in Eq. (4.15) and Eq. (4.19) underestimate true statistical

deviations. Therefore, great care must be taken to ensure that the integral is estimated on

a sufficiently large set of statistically independent configurations F(n), as will be discussed

in Section 4.2.2.

Having outlined the Monte Carlo integration, we now turn back to the evaluation of

expectation values of physical observables depending on the many-body wavefunctions

\II = \II(F, s, t):

(mom), a)?

(0) =W = / t (4.20)

W PM

where O is an operator and (I) S.t denotes the inner product in the spin-isospin space. In

quantum mechanics, the square of the normalized wavefunction is a good candidate for

the sampling function:

(lqunst

Pm =W (4-21)

With this choice of the importance function and the following definition of a local value

of the operator 0:

 

010cm 5 (1141:)“, ’ (4.22)

Eq. (4.20) takes a very simple form:

<0) = / 010man at (4.23)

suitable for the Monte Carlo evaluation. At each integration point, a local value in

Eq. (4.22) is calculated and the expectation value (0) and its error are estimated by

means of Eq. (4.14) and Eq. (4.19). Local values of total energy will be denoted as E106.

In practical calculations, the norm (MW) of the wavefunction is often not known and

in fact is not needed. It is because the norm appears in Eq. (4.20) that we can adapt the

Monte Carlo machinery to the computation of (O) and never actually compute the norm
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of the wavefunction. Formally, the importance function in Eq. (4.21) is normalized to

unity to make Eq. (4.23) work; however, as we explained before, the Metropolis algorithm

does not care about whether the importance function is normalized or not. Therefore, to

generate a random walk needed to evaluate Eq. (4.23), p(F) = (\It|\I!)s,t can be used.

In a more general case, any importance function having sufficient overlap with the

square of the actual wavefunction can be used to sample the physical space. One then talks

about correlated sampling, in which the expectation value of an operator is computed as:

  

wow, 3 .

%P(fldr [0mm winan dr
(0) = = , (4.24)

(\I’l‘p>3,t —¢ —'

f—pfif—PW) d7“ [10(5) P(F) d7”

where w(F) is a local weight defined as:

w(F) E 0PM)” (4.25)

190"”) '

Both integrals on the right-hand side of Eq. (4.24) are approximated by finite sums of

the type in Eq. (4.14). As far as the expectation values of operators are concerned, the

sampling function in correlation sampling does not need to be normalized because its

overall normalization would enter both integrals in Eq. (4.24) and so would be cancelled

out.

The material contained in this section is sufficient to evaluate multi-dimensional inte-

grals encountered in the variational problem in Eq. (4.7). Further discussion on technical

details and the implementation of VMC can be found in Appendix A. Before we proceed

further towards techniques used to optimize variational parameters, we have to make sure

that the integral estimates are reliable. As mentioned before, the Metropolis algorithm

has several drawbacks that need to be thoroughly examined.
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4.2.2 Can we trust ourselves?

In this section, we examine the inner workings of the numerical Monte Carlo integrations

presented in the previous section. In particular, we look at correlations between local

values inherent in the Metropolis algorithm. We discuss several methods to attenuate the

degree of such undesired correlations.

As a test case, a simple 6He is considered bound by the central part of the Minnesota

interaction from Eq. (3.11) with the mixture parameter set to its standard value u = 1.0.

This interaction is similar to MN from Section 3.2. To optimize the wavefunction of the

4He core, both K- and H-like Jacobi channels and all orbital channels with l S 2 and

L = 0 are present in the model space. Variationally Optimized 4He core contains 20

Gaussian basis terms and its binding energy is -30.77 MeV. To assemble the 6He guinea

pig, a single valence term in the T Jacobi basis with K = 2, la; = ly = L = S = 0 and

may = 0 is attached to the core as in Eq. (4.6). The non-linear parameter in the valence

part is set to p0 = 1.0 fm to reproduce approximately the experimentally known size

of 6He. The choice of the valence channel is given by its major role in the three-body

wavefunction of 6He in Section 2.4.3. Therefore, in spite of its simplicity, this 6He is

expected to provide a reliable testing ground. Unless noted otherwise, this 6He is used in

all calculations in the rest of the current section.

As mentioned in Section 4.2. 1, successive integration points generated by the Metropo-

lis algorithm may be correlated, often very strongly. Let us consider a random walk

containing N integration points. At each point, a local value of some function g(F) is

evaluated. To assess quantitatively the degree of correlation between local values g(F(”))

k: integration points apart, we use a biassed estimator of auto-correlation coefficient:

N—k

1 _. n .. n
r(g,k) = (N _ k) ”1211(9) 1; [g(rt )) _ 1N] [g(rt +10) _ [N] (4.26) 

with the notation preserved from Section 4.2.1. By definition, r(g, 0) = 1, and for N = 2,

r(g, 1) = —1. The auto-correlation coefficient takes positive values for highly correlated
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local values g(F(”)) and vanishes for uncorrelated samples. The distance I: will be called

the correlation distance.

In this section, the focus is on correlations between local values of total (kinetic plus

potential) energy, because in light of the variational principle in Eq. (4.8), the total

energy is of primary interest. Hereafter, by energy we mean the total energy, and a local

value of the total energy is shortened to a local energy, unless stated otherwise. In the

MetrOpolis algorithm, the degree of correlation can be controlled by the linear size A,—

of the 3A-dimensional cube from which trial moves are drawn. To illustrate the effect of

Ar, three random walks were produced with values of A). = 4.5 fm, 1.4 fm and 0.15 fm,

corresponding to Metropolis acceptance probabilities (or rates) of about 5%, 50% and

95%, respectively. Each walk contains 10,000 integration points and the sampling function

was taken as the square of the wavefunction of 6He. For each walk, auto-correlation

coefficients were computed and are shown in Figure 4.1 along with fragments of Monte

Carlo histories of local energies.

It is evident from Figure 4.1 that local energies are tightly correlated, especially for

extrema of MetrOpolis acceptance rates. The explanation in terms of A). is simple. Imag-

ine a walker at some point F in space with a presumably large probability p(F), Then a

trial move drawn from a cube with large A,— may easily end up in a region with much lower

probability, and so be rejected, which gives raise to flat sections in Monte Carlo histories.

On the other hand, when AT is small, a trial move does not disturb the probability p(F)

too much and will most likely be accepted, which results in fairly smooth Monte Carlo

histories. These arguments are also reflected by the very slow decay of auto-correlation

curves in Figure 4.1. On the other hand, the case with moderate Metropolis acceptance

produces fairly weakly correlated local energies. Based on this observation, we shall here—

after adhere to the lore of quantum Monte Carlo holding that the Metropolis algorithm

should accept about fifty percent of trial moves in order to produce good results.

Even when the Metropolis acceptance rate is close to 50%, local energies are still

correlated, but the degree of correlation is quickly attenuated as the correlation distance

increases. This observation suggests an improved sampling algorithm in which every
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(a) Monte Carlo histories of the first 1,000 local (b) Auto-correlation coefficients between local
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Figure 4.1: Effects of correlations in the Metropolis algorithm on local energies. The

results are for three random walks with Ar = 4.5 fm, 1.4 fm, and 0.15 fm corresponding

to Metropolis acceptance rates of about 5%, 50% and 95%, respectively.

integration point is decorrelated a certain number of times before local values of operators

are evaluated again, as is schematically illustrated in Figure 4.2. The auto-correlation

curve in Figure 4.1(b) with A). = 1.4 fm suggests that about 5—10 decorrelation steps

should suffice to substantially decorrelate local energies. In Figure 4.3 we show auto—

correlation curves for local energies produced in three new independent walks with 1,

10, and 30 decorrelation steps. From this figure it is also clear that having about 10

decorrelation steps is indeed good enough to break correlations between local energies.

Using more decorrelation steps hardly improves the results.

An alternative approach to decorrelated sampling is the data reblocking (or bunching)

method [142]. The method works as follows. At reblocking level 0, a set of local values

{g(F(")),n = 1,... ,N} is considered a set of N(0) E N blocks, each block holding a

single local value and thus having a block average value of @510) E g(F(")). Then, for any

higher reblocking level b, new blocks are formed by merging the two neighboring blocks
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Figure 4.2: Flow chart for the decorrelated Metropolis algorithm.

from the previous level. Therefore, the new block averages are equal to:

_ b 1 _ b— _ b—l
9:1,) 2 5 [gén,1)l+gén, )] b=1,2,... (4.27)

with n’ = 1,... ,Nlb), where N(b) = int(N(b‘1)/2). Here, the operation int means trun-

cation to the nearest integer. The reblocking continues as long as at least two new blocks

can be formed. At each level, the sample mean value and its error Slab) are computed by

applying Eq. (4.14) and Eq. (4.19) to the block averages 517(3). One can even estimate the
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Figure 4.3: Auto—correlation coefficients between local energies as a function of the corre-

lation distance k in three independent walks with 1, 10, and 30 decorrelation steps. Each

walk contains 216 integration points and the Metropolis acceptance rate is about 50%.
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error on the standard error Séb) as Séb)/ (/ 2(Nlb) — 1) [142].

The idea behind the reblocking algorithm is the following. As the reblocking level

increases, each new block contains more and more original local values and so, on the basis

of the central limit theorem, block averages approach independent Gaussian stochastic

variables. When the sample size N is a power of twol, the sample mean is invariant under

the blocking transformation. Furthermore, for statistically independent block averages,

the standard error Séb) is also blocking-invariant. For correlated data, blocking typically

yields increasingly uncertain estimates of 81gb) and the best error estimate is obtained for

the smallest blocking level beyond which 31”) saturates. At very high reblocking levels,

the error estimate may become unreliable because of the small number of remaining

blocks.

To see the effect of reblocking, in Figure 4.4 the bunching algorithm is applied to the

data from Figure 4.3. In general, energy block averages become less correlated as the

level of reblocking increases. However, for the walk with a single decorrelation step the

reduction of correlations is still fairly slow, the error estimate Séb) barely saturates, and

the error estimated directly from the local energies (reblocking level 0) severely underes-

timates the true error. In agreement with previous observations, about ten decorrelation

steps are needed for the error estimate of the mean energy to quickly form a distinct

plateau, the appearance of which is a fully convincing signal that energy block averages

have become statistically uncorrelated and saturated error estimates can be trusted. Note

that for well decorrelated walks saturated error estimates are almost identical to those

for no reblocking. In most of our calculations, blocks are formed from 100 local values

which corresponds to reblocking levels 6—7.

For the walk with 30 decorrelation steps from Figure 4.3, the evolution of the mean

energy and the energy error estimate is plotted in Figure 4.5. At the beginning of the

walk, the running mean energy is poorly defined due to low statistics. Later into the

walk, the energy curve flattens and the statistical error in the energy is reduced. Even

 

1Otherwise, at some reblocking levels, single excess blocks are dropped in order for Eq. (4.27) to

work, which results in a data loss.
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Figure 4.4: Effects of bunching on data from Figure 4.3 at different reblocking levels b.

though not visible in the figure, the error falls off as N‘1/2 towards the end of the walk

where a sufficient number of integration points has been averaged.

For an additional insight into the effects of correlations, Figure 4.6 shows block aver-

ages and unbiassed standard deviations of local values within blocks of kinetic, potential

and total energies for data from Figure 4.3. First, we notice large cancellations between

kinetic and potential energy resulting in a fairly narrow interval of block averages of total
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Figure 4.5: Mean energy and energy error estimate computed along the walk with 30

decorrelation steps from Figure 4.3. Local energies are divided into blocks of 100 values.
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Figure 4.6: Block values of kinetic (solid black squares), potential (empty red circles),

and total (solid blue stars) energy for data from Figure 4.3. Each block contains 100 local

values. Panels from bottom to top correspond to walks with 1, 10, and 30 decorrelation

steps.

energy. The undesired spread of block averages and deviations within blocks is reduced

as the number of decorrelation steps increases, which can be explained as follows. Cor-

related local values tend to follow one another more closely (see cases with A,» = 4.5 fm

and 0.15 fm in Figure 4.1(a)) such that there will be entire blocks of them with a fairly

small internal spread, but which lie on average quite far from the walk average. On the

contrary, well decorrelated local values are more evenly distributed on both sides of the

walk average, the consequences of which are a more eflicient averaging within blocks re-

sulting in a narrower distribution of block averages and larger deviations within blocks.

Again, taking more than ten decorrelation steps hardly improves the results.

In summary it is obvious that the Metropolis algorithm used to generate random

walks may easily provide biassed results. In this section, the focus was on the energy as

the observable crucial for variational optimization, but the observations made are valid
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for other observables as well. Based on the arguments presented, in this work we adhere

to the following rules:

a The Metropolis acceptance rate should be close to 50% Of proposed trial moves.

0 Each walk is decorrelated by a sufficient number Of decorrelation steps. In most

calculations, we use 30 or more decorrelation steps.

0 The reblocking algorithm is used to reliably estimate the error in the energy.

0 For increased accuracy, results computed on several independent random walks may

be averaged.

Appendix B contains additional reliability tests.

4.2.3 Wavefunction optimization

Having introduced the Monte Carlo background needed for evaluation of integrals in

Eq. (4.7), we now turn to the actual problem of wavefunction optimization. The goal is

to optimize variational parameters in the valence part Of the wavefunction in Eq. (4.3).

In this section, these variational parameters are called simply parameters. VMC, as pre-

sented so far in Section 4.2, provides a general framework to compute expectation values

of energy for a given set of parameters, but the method must be accompanied by addi-

tional tools to give any sort Of guidance in the parameter space.

From a physics standpoint, the parameter optimization is achieved via minimization

Of energy in Eq. (4.7). From a practical standpoint, the variational problem is more

complicated due to the statistical evaluation of matrix elements required. Local energies

fluctuate around the estimated mean energy and, as we have seen in Figure 4.5, along the

course Of a random walk the running mean energy may drop below its converged value.

For a. given set of parameters, it is a matter of luck whether the energy estimate is below

or above the true energy, which is not known anyway. Therefore, energy estimates may

be misleading, especially when one compares energies for difl'erent sets of parameters. It

has been argued [143,144] that a numerically more stable parameter Optimization can
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be achieved by minimizing the variance, Eq. (4.16), of local energies, or by minimizing

a linear combination of the energy and the variance of the energy [144]. The major

argument for variance minimization is that at the minimum the variance is known to

be zero a priori. Moreover, each term in the sum Eq. (4.16) is bounded from below

by zero. The major drawback of variance minimization is that, from the physical point

of view, one typically seeks the lowest energy, which is not guaranteed to be delivered

by variance minimization unless the true eigenstate is found. Furthermore, it has been

Observed [145] that energy Optimized wavefunctions give on average better expectation

values for other observables. Sometimes, the energy and variance minimizations are used

to Optimize different parts of the wavefunction [146]. In the present work, the expectation

value of energy is minimized. As the energy is minimized, the variance Of local energies

is reduced as well.

Regardless of the actual Optimization procedure, one needs to ensure that the energy

is really being lowered. Correlated sampling introduced in Section 4.2.1 is a useful trick

commonly employed to roughly disentangle the effect Of a small change in the parameters

on energy from ambiguities arising due to the statistical sampling. One begins with a

wavefunction \Ilref containing reference values Of parameters. For this wavefunction, a

reference random walk {F("),n = 1,. . . ,N} is generated and energy Eref is estimated

from Eq. (4.23). Suppose (some of) the parameters in ‘I’ref are slightly2 disturbed result-

ing in a new wavefunction \Il. Then, instead Of generating a new walk for ‘11, we can use

the reference walk to estimate the energy E corresponding to \II. Because both energies E

and Eref are computed on the same walk, statistical ambiguities potentially arising from

different walks are suppressed. One normally looks at the difference between the two en-

ergies because they are highly correlated, and the error of the difference is much smaller

than errors on the two energies themselves. Using Eq. (4.24) with p(F) = (‘I’refl‘I'reflat3

 

2The term “slightly” needs tO be defined with care. It includes not only a slight change of continuous

parameters, but also a change of discrete parameters due to a change, addition and/or removal Of valence

channels. A quantitative measure Of “slightness” will be provided later in terms of local weights.

3The importance function for correlated sampling does not need to be normalized, as discussed in

Section 4.2.1.
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for E, the energy difference is estimated as:

N

1 Eloc(F(n))w(F(n)) 1 -o(n)

_, _ — (Eloc)re (7A ) (4'28)
 

N

AE=E—Eref% Zn:

with local values at any point F(7‘) defined as in Eq. (4.22) and Eq. (4.25):

(lelwist

(\PIW) , (Elam):(Wrele'q’mW w: (414)..
s,t (Wreflq’refisJ , (wreflq’ref)s,t.

(4.29)

Eloc Z

  

Taking advantage Of correlated sampling, the same reference walk can be used in

several subsequent adjustments of parameters before a new reference walk should be

generated for the best new wavefunction. A good reason to produce a new reference walk

is when the energy has been lowered significantly, i.e. when the absolute value of the

energy gain AE between the reference and the best new energy becomes larger than

the error on the reference energy, ideally by at least a factor of two. Another reason to

update the reference walk is if the wavefunction \II with adjusted parameters starts to

differ significantly from ‘I’ref: which is signalled by local weights. Correlated sampling is

reliable provided that local weights w('r}',) in Eq. (4.29) do not significantly exceed their

average value. If the parameters are changed too much, a single weight or a few large

weights will dominate over the others in Eq. (4.28), thus biasing the energy difference

estimate. TO avoid this negative effect in MiCH, all local weights should be smaller than

about 10-20 times their average.

The valence part Of the wavefunction in Eq. (4.3) is a linear combination Of basis

functions, each Of which depends on continuous and discrete parameters. When these

parameters are changed, the linear expansion coefficients 0 in Eq. (4.3) can be determined

via the energy matrix diagonalization in Eq. (2.25). Formally, the wavefunction is written

as \11 = Z,- c,-\II,; and matrix elements Hij and I23' in Eq. (2.26) are computed in correlated

sampling on a reference walk generated by the previous best guess for the wavefunction.

Again, as for expectation values Of Operators in Eq. (4.24), the overall normalization

of the sampling function is not needed. Unlike the overlap matrix I, the Hamiltonian
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matrix H estimated on a finite random walk may not be symmetric. Following the

arguments in [146], we do not symmetrize the energy matrix. The overlap matrix may

be ill-conditioned because Of the possible linear dependence Of valence terms. When that

happens, the overlap matrix is regularized by a singular value decomposition from Sect.

2.6 in [147] and the non-symmetric generalized eigenvalue problem of type Eq. (2.25) is

solved with the aid Of numerical libraries [148].

In general, non—linear parameters p0 do not need to be the same in all valence terms in

Eq. (4.3), as is common in three—body models. In fact, as suggested by the success of SVM,

it could be beneficial to mix valence terms with different values of po, eSpecially because

the core-valence antisymmetrizer in Eq. (4.3) removes the orthogonality properties Of

valence terms. We have tested several methods to Optimize non-linear parameters in tan-

dem with energy matrix diagonalization and correlated sampling. A stochastic selection

in the fashion of SVM turns out to be inefficient because of the computational demand

required to calculate the energy for a single set of parameters. There exist determinis-

tic Optimization methods analyzing the local dependence of the mean energy (Newton

method) [149] and the wavefunction [150] on variational parameters. These deterministic

methods have been tuned for and proved efficient in atomic and molecular physics, but

upon testing them in MiCH, they do not seem to be adequately robust to meet our needs.

In MiCH, the added complexity is most likely due to spin-isospin contaminations in the

wavefunction and highly state-dependent, (non-)central, nuclear interactions. Also, at

the beginning of the Optimization route, the nucleus is three—body unbound. This can

be seen, for example, from Figure 4.5, where 6He containing a single valence term is

bound by about -27.5 MeV, a value to be compared with the binding energy of the 4He

core, -30.77 MeV, given in Section 4.2.2. All the Optimization methods mentioned tend

to break the nucleus apart, unless the radius of the nucleus is constrained. Additionally,

correlated sampling is reliable only for small changes in non-linear parameters.

The easiest way tO control the size of the nucleus is to make the non-linear parameter

p0 the same in all valence terms, and that is the approach in this work. Even then,

however, this parameter is a true variational parameter, which needs to be tuned to
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minimize the binding energy. From a distant view, our Optimization method resembles

that of three-body models: for an Optimum value of the parameter p0, the number of

valence channels in the wavefunction is increased until convergence in energy is reached.

However, on closer inspection, there are some major differences.

All the previous comments on parameter Optimization are valid in general. We now

turn to 6He, the nucleus to be studied in Chapter 5. First, we consider the nucleus bound

by a soft-core effective central nucleon-nucleon interaction, such as MN in Section 3.2.1.

In this case, the 4He core contains only basis terms with L = S = 0, as we have seen in

Section 3.2.2. This makes valence neutrons in spin-singlet and spin-triplet states orthog-

onal. In the three-body analysis of 6He in Section 2.4.3, spin-triplet states were present

in the wavefunction only due to the spin-orbit interaction. It is then suflicient to con-

sider spin-singlet valence terms only. The optimization begins with a single, K = 0 or 2,

mag = 0 valence term attached to the core. Valence terms with higher hyper-momenta

and degree Of hyper-radial polynomials are added to the wavefunction until convergence

in the binding energy is reached. The value of po is adjusted to keep the rms proton radius

Of 6He close to its experimental value. To avoid high partial waves in the valence part,

both Y and T Jacobi configurations are mixed. After each addition Of (few) new valence

terms, linear coefficients c in Eq. (4.6) are determined via energy matrix diagonalization.

Despite numerical evaluation Of energy and overlap matrices, the lowest eigensolution of

Eq. (2.25) is numerically stable even when the matrices are of appreciable size, Of the

order of 100 x 100 elements. Starting with a converged wavefunction, different values

of po are tested using correlated sampling and energy matrix diagonalization to finally

locate the energy minimum.

To prevent numerical difficulties, valence terms with may 75 0 should be avoided until

a preliminary convergence of mag = 0 terms with the hyper-momentum K has been

reached. The reason is that higher-order hyper-radial terms may produce extraordinarily

large local values of kinetic energy making the Monte Carlo energy averaging harder to

converge. In the present work, the problem of large local kinetic energies is called the

problem of bad points and is discussed in detail in Section BI.
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Parameter Optimization is more involved in the presence of the non-central spin—

orbit force between nucleons. As mentioned in Section 3.2.2, the spin-orbit force mixes

L = S = 0 and L =2 S = 1 Gaussians in the wavefunction of 4He. When attached to

such a core, valence spin-singlet and spin-triplet terms are not necessarily orthogonal in

the fully antisymmetrized wavefunction of 6He; some of them may be almost orthogo-

nal, though. Consequently, the overlap matrix I may contain many very small elements

which are hard to distinguish from statistical noise. The energy matrix H is affected

less severely. Under such circumstances, the energy matrix diagonalization may be nu-

merically unstable yielding unreliable eigenvectors of linear coeflicients c. Thankfully,

the lowest energy eigenvalues are still numerically stable. These are effects at the edge

Of numerical stability and given the statistical sampling, their severity varies between

random walks. To circumvent this problem, a major modification was introduced into

the parameter Optimization procedure described above for 6He bound by central forces,

namely a comparative optimization on two independent random walks. The details Of

this improved method are rather technical and as such are relegated to Appendix C.
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Chapter 5

6He in MiCH

We are now ready to put the model developed in this work to the test. In previous

chapters, we have described all components going into the model including numerical

techniques needed to evaluate matrix elements and the variational optimization method.

In this chapter, the model is applied to the ground state of the simplest two—neutron halo

nucleus, 6He.

The chapter starts with a study Of antisymmetrization effects in 6He. As we will

see, these effects are crucial for binding Of 6He. Then, basic observables computed for

optimized 6He wavefunctions will be presented and compared with experimental data and

values Obtained in other theoretical models. To appreciate the amount of details going into

different models, the discussion will continue with a more detailed comparison of results

Obtained within MiCH and within the three-body model from Section 2.4. Finally, the

chapter will be concluded by an application of MiCH to a two-neutron transfer reaction

involving 6He.

5.1 Antisymmetrization effects in 6He

In this section, the effects of antisymmetrization Operators in Eq. (4.6) are studied. Unlike

in three-body models, wavefunctions in MiCH can be properly antisymmetrized to ac-

count for the fermionic nature Of nucleons. Core-valence antisymmetrization should make
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states occupied inside 4He unavailable for valence particles. The antisymmetrization Of

the valence part ensures the Pauli principle between valence neutrons, a requirement

important especially in the Y Jacobi basis in which, unlike in the T basis, the valence

basis terms from Eq. (4.2) do not meet the Pauli principle by construction.

In the current section, “a (valence) channel” means 6He containing the MN-SO

4He core from Section 3.2 and a single valence term characterized by a set of numbers

{K, lx,ly,L, S, nlag,Y/T}. Ground states of both 4He and 6He have J7r = 0+, and so

the total angular momentum and parity of each valence channel must be J30; = 0+. The

system is bound by the MN-SO interaction from Section 3.2.1.

We focus on valence channels with the lowest hyper-momenta, namely with K = 0

and 2.1. Possible combinations Of angular momentum quantum numbers for such channels

are shown in Table 5.1. The table also shows whether a given channel in the T Jacobi

basis is blocked by the Pauli principle between valence neutrons. Due to their trivial

(constant) hyper-angular dependence, K = 0 channels contain the “lowest” core-valence

s-waves (lm = 0) in the Y Jacobi basis, and as such are expected to be the most core-

valence Pauli-blocked.2 On the other hand, K = 2 channels are expected to be crucial

for the structure Of 6He, as has been demonstrated in Section 2.4.3. For K = 2 channels,

squares Of the Raynal—Revai coefficients for angular transformations between Y and T

Jacobi sets from Eq. (2.27) are shown in Table 5.2.

Figure 5.1 shows binding energies of channels with K = 0 and 2, and mag = 0 and

1 for different values of the valence hyper-radial parameter p0. For each channel, three

energy curves are shown differing by whether the antisymmetrizers AMI and Acme-val

in Eq. (4.6) are active or not. For each channel, both antisymmetrizers are first disabled,

then Aval is switched on, followed by the activation of floofe—va'l . We observe in Figure 5.1

that when the core-valence antisymmetrizer does not act, the valence antisymmetrizer

has barely any effect on T Jacobi channels. It must be so because these channels satisfy

 

1K = 1 channels are not allowed because they would have to combine 3- and p-waves due to Eq. (2.8)

The parity of such channels would be negative which violates the requirement of positive parity of the

valence part.

2Remember that in a first approximation 4He can be thought Of as four nucleons sitting in the lowest

s—shell.
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Table 5.1: Possible combinations of angular momentum quantum numbers for K = 0 and

K = 2 channels.
 

Pauli blocked by Eq. (2.23)

 

 

K I“: I” L S in T Jacobi basis 81138

0 0 0 0 0 no K = 0 s-waves

2 0 0 0 0 no K = 2 s-waves (spin-singlet)

2 1 1 0 0 yes K = 2 p-waves spin-singlet

2 1 1 1 1 no K = 2 p-waves spin-triplet

 

the Pauli principle between valence neutrons by construction.

For a given "lag, K = 0 s-waves are essentially identical in Y and T Jacobi bases,

as we discussed in Section 2.2. Without core-valence permutations, K = 0 s-waves with

may = 0 and 1 form deep energy minima in Figure 5.1(a). These minima, however, are

removed upon the action of Acme—val. Interestingly enough, the fully antisymmetrized

K = 0, may = 1 channel is bound more than the most trivial Of all valence channels, the

channel with K = 0, may = 0, which is simply a manifestation Of the Pauli principle.

The K = 0, mag = 0 channel puts a neutron in the Y basis into the radially most trivial

s—wave (la; 2 0) motion around the core, which makes this channel strongly forbidden by

the core-valence Pauli blocking. On the other hand, due to its non-trivial hyper-radial

dependence, the channel with K = 0,7116,g = 1 contains “less” trivial core-valence s—waves,

which makes it “less” forbidden by the Pauli principle.

We start the analysis of K = 2 channels by K = 2 s-waves in the T Jacobi basis,

i.e. by Figure 5.1(b). When the valence neutrons are not antisymmetrized with nucleons

Table 5.2: Squares Of the Raynal-Revai coefficients (lglgllzly)KL from Eq. (2.27) for

angular transformations of K = 2 valence channels between Jacobi sets. (lglgllxly)KL

corresponds to a transformation from the unprimed to the primed Jacobi set, or schemat-

ically unprimed —+ primed.

[(00|00)2ol2 [<11|00)2012 [(000020]2 [<11l11)20l2 Illlllllml2

Y —> T 0.04 0.96 0.96 0.04 1.00

T —> Y 0.04 0.96 0.96 0.04 1.00
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Figure 5.1: Three-body binding energy of valence channels as a function of the non-

linear parameter p0 for different antisymmetrization settings. The legend is the same in

all panels. For each channel, the OFF/ON switches indicate whether the corresponding

antisymmetrizer in Eq. (4.6) is active or not: the first switch controls Aval, the second

switch is for Acme—val. Energy curves are constructed in correlated sampling on walks

for reference values of po; for each curve, reference energy is depicted by a star. Error

bars appear on reference values only.
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inside the core, 6He behaves as a pure three-body system core + n + n. It is three-body

unbound with binding energy monotonically heading towards the three-body threshold

(i.e. towards the binding energy of 4He) as the hyper—radial scaling length p0 increases.

Larger p0 implies larger average hyper-radii and thus larger 6He through the three-body

relationship in Eq. (2.29). Therefore, the gain in binding energy with increased p0 is

misleading, because the nucleus gradually breaks apart into the core and two neutrons.

This undesired trend is changed dramatically once Acorewal is switched on, because

the core-valence exchange effects deliver extra binding to the system. Such a simple,

fully antisymmetrized 6He with mag = 0 remains three—body unbound, but the binding

energy saturates for a fairly large interval of po in Figure 5.1(b). This saturation forms a

foundation on which a variationally optimized 6He in Section 5.2 will eventually become

bound against the three-body break-up. Using Table 5.2, K = 2 s-waves in the T Jacobi

basis consist of 96% K = 2 p-waves spin-singlet state in the Y basis. Therefore, in the

Y basis a neutron is mostly in a relative p—wave motion around the core, making the

channel K = 2 s—waves in the T Jacobi basis mostly Pauli allowed.

The response of the other two K = 2 spin-singlet channels from Table 5.1, s-waves

and p—waves spin-singlet in the Y basis, can also be easily understood. We first look at

K = 2 s-waves in the Y basis, i.e. by Figure 5.1(a). In the absence of both AMI and

Acme—val antisymmetrizers, this channel (for a given may) is bound the most among

all K = 2 channels, as can be seen from Figure 5.1. The reason for this is that in this

channel one of the neutrons would be in an s-wave (l3 = O) motion relative to the core,

making the entire channel fairly bound. The binding is weaker than for K = 0 s-waves

though. As soon as the valence particles are antisymmetrized, however, several MeV of

the binding energy in Figure 5.1(c) are lost in this channel, which can be explained as

follows. Using Table 5.2, we can write schematically:

K=2s—wavesinY —> 4%K=2s—wavesinT+

96% K = 2 p — waves spin — singlet in T.
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However, the p—wave admixture in the T basis is completely eliminated by the action of

AMI, because it is Pauli blocked in Table 5.1, and the original channel effectively turns

to K = 2 s-waves in the T basis. Upon a rotation back to the Y basis and using Table 5.2

again, one obtains:

val

K=2s—wavesinY3—4——>K=2s—wavesinT———>

4% K = 2 s —- waves in Y + 96% K = 2 p — waves spin — singlet in Y.

The result is a dramatic structural change: the original s-waves in the Y basis become

mostly p-waves in the same basis putting a neutron into a p—wave (lx = 1) relative to

the core. The net result is the above-mentioned loss of binding. Similar analysis can be

done for K = 2 p-waves spin-singlet in the Y basis (Figure 5.1(d)):

val

K=2p—wavesspin—singletinY —A—>K=28——wavesinT——+

4% K = 2 s — waves in Y + 96% K = 2 p — waves spin — singlet in Y,

and so the structural change due to the action of Ava! is far less dramatic because the

channel remains mostly p-waves in the Y basis. Once valence particles in K = 2 spin-

singlet states in the Y basis are antisymmetrized, these channels become equivalent to

K = 2 s-waves in the T basis. Therefore, the core-valence exchange effects in these

channels can be understood on the merit of the discussion for K = 2 s-waves in the T

basis.

The remaining K = 2 channels in Table 5.1 contain valence particles in a spin-triplet

state. For a given mag, there is only one such state in the Y basis and one in the T

basis. Therefore, they must be essentially identical upon rotations of Jacobi bases, as is

also demonstrated by corresponding Raynal-Revai coefficients in Table 5.2. The energy

gain in these channels due to antisymmetrization effects is not large enough to produce

a saturated energy curve in Figure 5.1(e).
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In summary, at the level of single valence channels, the antisymmetrization exchange

effects have significant impact on 6He. Not only do they enforce the fermionic nature of

the nucleus, but they also deliver extra binding to the system. Similar analysis could be

done for valence channels with higher hyper—momenta, but we have limited our discussion

to valence channels that are crucial for the structure of 6He. We convinced ourselves that

general observations made in this section depend neither on the value of the mixture

parameter u in the Minnesota interaction nor on inclusion of the spin-orbit force.

5.2 Converged 6He

Having understood the behavior of single valence channels, we now proceed to the op-

timization of the wavefunction of 6He. Results are presented for two cases: MN and

MN-SO defined in Section 3.2.1. More emphasis is put on MN—SO because it employs

a more realistic nucleon-nucleon interaction due to the spin-orbit force. In both cases,

the mixture parameter u in the central part of the interaction was adjusted to bind 6He

by about the right amount against the break-up into 4He and two neutrons. Essentially,

the interaction mixture parameter is the only free parameter in MiCH. The Coulomb

interaction is neglected since it would barely shift absolute binding energies of both 4He

and 6He by about the same amount. The wavefunctions for the 4He core are taken from

Section 3.2.2.

The convergence of the binding energy of 6He relative to the three-body threshold

with the number of valence terms in the wavefunction is shown in Figure 5.2. The varia-

tional optimization technique used in MiCH was described in Section 4.2.3. Here, a few

comments are given on chronology in Figure 5.2.

The case MN is discussed first. The construction of the wavefunction begins with a

single K = 0, ”lug = 0 valence channel with which the nucleus is three-body unbound.

The scaling length p0 is set to 0.80 fm to keep the rms proton radius of 6He close to its

experimental value 1.91 fm. Next, all valence channels with K g 10 and mag = 0 in both

Y and T Jacobi bases are gradually added to form a fairly well defined wavefunction
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Figure 5.2: Convergence of the three-body binding energy of 6He with the number of

valence terms included in the wavefunction. In MN, the variational parameter p0 is

adjusted along the optimization route; in MN-SO, the results are for a fixed value p0 =

0.45 fm. See text for details. Error bars were not computed for all points, and even when

present, they may be smaller than the actual symbol.

before valence terms with higher hyper-radial orders may are considered. The parameter

p0 is slightly enlarged because the radius has become smaller due to stronger binding.

The three-body binding energy of a still three-body unbound 6He is about +0.5 MeV

in Figure 5.2. Next, all valence terms with K = 0 and 2 and may = 1 are added to

the wavefunction and the three-body break-up threshold is finally crossed. By crossing

the three-body threshold, the binding energy as a function of po forms a variational

minimum. Horn this moment on, p0 is adjusted to approximately minimize the energy.

It then takes another 118 valence terms to reach the converged value —0.90 MeV for the

three-body binding energy. At the end, all spin-singlet valence terms with K g 12 and

may 3 5 in both Y and T bases are included in the wavefunction.

Figure 5.3 shows the dependence of the three-body binding energy and the rms pro—

ton radius on the scaling length p0 for converged 6He. In the MN case, the variational

energy minimum is located around p0 = 0.45 fm. The steep reduction in binding below

p0 = 0.40 frn in Figure 5.3(a) reflects trends observed in Figure 5.1. By reducing p0, the

nucleus becomes smaller in Figure 5.3(b) because the valence neutrons are forced to stay

closer to the core. As a consequence, the binding of 6He is reduced due to the increase
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(a) Three-body binding energy. (b) Rms proton radius.

Figure 5.3: Dependence of the three—body binding energy and the rms proton radius of

converged 6He on the non-linear parameter p0. All curves are constructed in correlated

sampling on walks for reference values of po. Reference values of observables are depicted

by stars.

of total kinetic energy of the system. On the other side, for very large values of po, the

valence neutrons are forced to spend more time farther from the core, and the size of the

nucleus increases and the binding becomes weaker.

The optimization procedure in the MN-SO case is more complicated, as described

in Appendix C. In this case, the wavefunction is tailored to a specific value of po. The

wavefunction is first optimized for p0 = 0.70 fm, a value that prevents 6He from get-

ting too large at the beginning of the optimization when the nucleus is still three-body

unbound. Using the method of a comparative optimization outlined in Appendix C, a

fairly converged wavefunction is constructed. For this wavefunction, a reference walk is

produced. On this walk in correlated sampling, the binding energy is estimated for an

auxiliary 6He containing a set of all 222 valence terms with K g 14 and may 3 5 for

different values of po. The corresponding energy curve is shown in Figure 5.3(a). Be-

cause for this auxiliary 6He only energy eigenvalues are reliably determined in the energy

matrix diagonalization, neither error bars nor radii are shown. The energy minimum is

formed around p0 = 0.45 frn, a value for which the wavefunction is optimized again, and

the convergence plot is shown in Figure 5.2. At the point where 6He becomes three-body
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bound, a subset of about 15 valence terms with K S 6 and may 3 2 is included in

the wavefunction. Altogether ninety carefully selected valence terms having K S 14 and

may 3 5 are needed to reach energy convergence in the MN-SO case.

Several extra remarks regarding the variational Optimization are appropriate at this

point. First, the convergence plots in Figure 5.2 are not unique. If the history plots were

constructed again, they would look differently depending on several factors, such as the

order in which valence terms are added to the wavefunction; the exact values of po used

throughout the optimization; statistical effects due to random sampling etc. However,

we convinced ourselves that the converged results from Figure 5.2 would be reproduced.

Second, in Chapter 2, the valence basis in Eq. (2.18) is orthogonal and complete, and

converged results obtained within the three-body model should be independent of po.

In MiCH, the orthogonality of valence terms is destroyed by the core-valence antisym-

metrizer. As expected, the non-linear parameter p0 is then a variational parameter, as

would also be suggested by a formation of energy minima in Figure 5.3(a). Last, in the

following discussion, converged results for 6He are for p0 = 0.45 fm in both MN and

MN—SO cases.

Once the wavefunctions have been optimized, we can calculate binding energies and

rms point matter, point proton and point neutron radii for 6He. Radii are computed as

square roots of expectation values of operators in Eq. (2.28), Eq. (2.30) and Eq. (2.32).

The results are shown in Table 5.3 along with experimental values and results obtained

in a variety of other models: the macroscopic three-body model from Chapter 2 and

Section 2.4 in particular, SVM [76] as a representative of microscopic cluster theories,

and the Green’s function Monte Carlo (GFMC) [117] representing microscopic models.

Preliminary results from the MN model have been published in [153].

Let us first comment on experimental values of radii. What has become experimentally

known with a great accuracy are nuclear charge radii (1:3)”2 of 4He and 6He. However,

in our calculations, nucleons are treated as point particles, and rms point proton radii

(7%)”2 are calculated. Following [47], the charge and the point proton radii are related
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Table 5.3: Binding energies E and three-body binding energies E3b0dy in [MeV] and rms

point nucleon radii in [fm] of 4H6 and 6H6 from various models along with experimental

values. MN and MN-SO are results of this work, the other models are the three-body

model from Chapter 2, SVM [76] and GFMC [117]. Experimental proton radii were com-

puted by means of Eq. (5.1) using charge radii from references cited in the table. Values

labelled with * were computed; for radii, the relationship from Eq. (2.33) was used,

GFMC three-body binding energy was obtained using binding energy -29.4(1) MeV of

6He from [117]. The thickness of the neutron halo is defined as Ar = (1%)”2 — (7%)1/2.

 

 

 

 

 

MN MN-SO 3body SVM GFMC exp.

4He E -30.85 -3093 N/A -25.60 -28.37(3) -28.30[118]

(1,2,)1/2 1.40 1.40 1.40 1.41 145(0) 146(1) [151]

E31,“), 090(5) 102(3) -0.98 -O.96 -1.03(10)* -097[25]

(1%,)1/2 241(1) 232(1) 2.49 2.42 2.55(1)* 248(3) [152]

233(4) [18]

6He (1%)”? 181(1) 175(1) 1.86 1.31 191(1) 1.91(2)[47]

(7,2,)1/2 267(1) 256(1) 2.75 2.68 282(1) 2.72(4)*

2.51(6)*

Ar 086(1) 081(1) 0.89 0.87 091(1) 081(4)

060(6)

as

N

(2%) = 02> — (12%) — <63.) (51)E,

where 02%,)”2 = 0.895(18) fin [154] is the rms chargeradius of the proton, (Ra) =

—0.120(5) frn2 [155,156] is the mean-square charge radius of the neutron, and N and

Z are nuclear neutron and proton numbers. We used values 1.681(4) fm [151] and

2.054(14) fm [47] for charge radii of 4He and 6He, respectively. The corresponding proton

radii are shown in Table 5.3. In literature, matter radius of 6He has been extracted from

relevant interaction cross-section data; however, the extracted values disagree, as listed

in Table 5.3, according to the type of analysis performed.

In our calculations, a free 4H6 in Table 5.3 turns out to be overbound and smaller

relative to experimental data. The fact that we differ from experimentally known abso-

lute binding energies was expected because of the effective nucleon—nucleon interactions

employed. We are, however, mostly interested in three-body—like features of 6He. The
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three-body binding energy is approximately reproduced after a slight tuning of the mix-

ture parameter u in the Minnesota interaction. Our proton radii of 6He are smaller

than they should be which may be a consequence of a smaller 4He core. On the other

hand, matter radii are comparable with those deduced from experiments. Perhaps due

to stronger three-body binding, MN—SO 6He is slightly smaller than its MN counterpart.

Nevertheless, proton and neutron radii change consistently so that the thickness of the

neutron halo does not change dramatically between MN and MN-SO.

Next, MN and MN—SO results are compared with those of other models listed in

Table 5.3. In the three-body calculations in Section 2.4, the binding energy and the size

of 4He core do not enter the actual three-body calculations, but the radius of the core

is needed to compute the size of 6He. In the three-body picture, radii of 6He are simply

related to the radius of the core via Eq. (2.29) and Eq. (2.31). For the best comparison

between our and three—body results, we assume the same radius of 4He in the three-body

model as in MN-SO. Then, in a naive three-body picture, the larger size of 6H6 in the

three-body model (when compared to MN-SO) is solely due to the valence neutrons living

on average slightly farther from the core. The three-body model is also useful to assess

how strongly radii of 6He depend on the size of the core. If the radius of the core is

increased to its experimental value 1.46 fm, then radii of 6He become (7%,)1/2 = 2.51 fm,

(7%)”2 = 1.90 fm, (7,2,)1/2 = 2.77 fin and Ar = 0.86 fm. With these new values, the ex-

perimental proton radius of 6He is perfectly reproduced, and the neutron halo shrinks a

bit.

Within SVM, 6He has been studied in the past repeatedly [76,132,133]. In Table 5.3,

SVM results obtained in [76] are quoted where central and spin—orbit Minnesota and

Coulomb interactions were employed. In the later reference, several different cluster com-

positions were considered to study break-up of the core in 6He. In Table 5.3, results for

4He correspond to model 02 in [76], i.e. to an a-particle wavefunction of which is a su-

perposition of three 1s harmonic oscillator Slater determinants with common oscillator

parameters set to minimize the a’s ground-state energy. Due to this very simple picture,

SVM 4H6 in table Table 5.3 is bound less than 4He in MN and MN-SO cases. The SVM
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results for 6He in Table 5.3 are those from model (b) in [76]. In that model, 6He was

modelled as a combination of 4He + n + n and t + t with tritons again built from simple

1s harmonic oscillators. The importance of the triton channel was first observed in [134],

where this channel was introduced to overcome the insufficient three-body binding of 6He.

SVM three-body binding energies and radii of 6He are comparable with ours, especially

with the MN model.

For the sake of completeness, we also show microscopic GFMC results in Table 5.3.

These were obtained using realistic two-body AV18 and three-body IL2 interactions. We

show GFMC results to point out that by using modern realistic potentials in microscopic

calculations, absolute binding energies and proton radii of 4He and 6tHe can indeed be

reproduced. However, as we argued in Chapter 1, questions may arise about how micro-

scopic models treat asymptotic regions so important for Borromean halo nuclei.

We have also computed the point nucleon density distributions. For the more realistic

MN-SO case, they are plotted in Figure 5.4 along with density distributions obtained in

other models from Table 5.3. For comparison, the figure also contains the proton (equal

to neutron) density for the MN-SO 4He. These nucleon densities are calculated as simple

6—function expectation values:

  

2::

1 1 q, A 1472,25 4 .. q, 52

471—7‘2 (why) :1 2 (T- [Tl—TONISI) ( ' )

with :l: for proton and neutron densities, respectively. Here, 7’; is the operator of isospin

projection from Appendix A. For a nucleus with mass number A, the integral is carried

over all spatial coordinates 1",- as well as all nucleonic spins and isospins. To compute

the densities corresponding to the three—body model, we constructed an auxiliary wave-

function of 6He of type Eq. (4.6) by combining the MN-SO 4He and the valence part

taken from the three-body wavefunction of 6He obtained in Section 2.4. In such auxiliary

wavefunction, the core-valence antisymmetrizer in Eq. (4.6) was switched off because the

Pauli principle was approximately taken into account when the three-body wavefunction

was constructed in Section 2.4. In logarithmic scale, proton and neutron densities from
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Figure 5.4: Point proton and point neutron density distributions in 6He for models from

Table 5.3 except MN. The GFMC densities are from [66]. Also, for comparison, the proton

(=neutron) density of the MN-SO 4He is shown. All proton (neutron) distributions are

normalized to the number of protons (neutrons).

different models of 6H6 are close to one another with small differences reflecting slightly

different radii and wavefunction compositions. All models reproduce the most pronounced

property, namely the neutron distribution extending far beyond that of protons. In other

words, they reproduce the neutron halo of 6He. Depleted at short distances, the proton

density of 6H6 stretches farther out than that for a free 4He. A partial explanation of

this effect comes from the three-body model: in 6He, the a core does not sit at the cen-

ter of mass of the entire system, and its motion relative to the center of mass spreads

out the proton distribution. Due to the same effect, the neutron density in 6He is also

expected to be depleted at small distances relative to that of a free 4He, as is also visible

in Figure 5.4.

The effects of the Pauli blocking from Section 5.1 were tested further in the MN model.

First we consider a case with the core—valence antisymmetrizer switched off. When the

K = 0 valence channels are present in the wavefunction, the nucleus is three-body over-

bound by several tens of MeV, as one would expect based on Figure 5.1(a), where K = 0

s—waves are deeply three-body bound. When, however, K = 0 s-waves are all removed

from the wavefunction, the nucleus becomes three-body unbound regardless of inclusion

of valence terms with higher hyper-momenta. When the core-valence antisymmetrizer
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is switched back on, the converged 6He is three-body bound by about -0.9 MeV from

Table 5.3. When all the lowest K = 0 hyper-spherical channels are now removed from

the converged wavefunction, the three-body binding decreases to about -0.75 MeV. It

becomes evident that, to produce a meaningful 6H8, it is not sufficient to simply neglect

the most Pauli-blocked K = 0 valence channels. Rather, all contributing valence channels

should be included in the model space and subjected carefully to the antisymmetriza—

tion. This message is important especially for few-body models in which the core-valence

forbidden states are removed approximately by different Pauli blocking techniques.

We can see that all models mentioned in Table 5.3, although different in their nature,

are in a fair agreement on most commonly computed properties of 6He. The agreement

between densities in the three-body and MN-SO models is especially remarkable given

how those densities were obtained. In MN-SO, the valence part of the microscopic wave-

function was built from the very beginning on top of a microscopic 4He core; in the

three-body model, the internal structure of the core was roughly accounted for through

Pauli blocking, and only the final optimized three-body wavefunction was attached to

a microscopic MN-SO core in order to obtain nucleon densities. In linear scale, densi-

ties from MN-SO and the three-body model are shown again in Figure 5.5. It looks like

highly integrated properties, such as radii and densities, may not appreciate the amount

of details built into different models of 6He. We may then pose a question: is it really

worthwhile to pursue a time-consuming microscopic approach to 6He if a computation-

ally cheap three—body route works so well? Provided the three-body picture of 6He is well

suited for a problem at hand, can we not simply use three-body wavefunctions for all our

needs? One way to shed more light at this issue is to compare three-body wavefunctions

directly with their analogs extracted from MiCH, with overlap functions.

5.3 Overlap functions

For a more detailed comparison with results obtained in the three-body model, the three-

body—like core + n + n information needs to be extracted from MiCH. To access this
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Figure 5.5: Point proton and point neutron density distributions in 6He for MN-SO and

three—body models from Table 5.3.

information, an overlap integral between a microscopically described two-neutron halo

nucleus (\II) and its core ((1)) is computed:

A

1MJudi—1 = (2) (‘I’Jgoremjcm Tom MTcml‘I’JWMJTMT) (5-3)

The binomial factor accounts for the number of combinations to pick two out of A nucle-

ons. The integration is done over all degrees of freedom in the core (I), and so the overlap

integral I depends on degrees of freedom of two valence neutrons remaining outside the

core. The integral has a good isospin and isospin projection 1 and -1, respectively, but

it does not have a good angular momentum. It can be expanded in a complete set of

hyper-harmonics with good angular momentum Jgal from Eq. (4.1):

JA! 3/4

I _ = J , [ a ]
[VJval1 1 Z CJCOTeA/[Jcore JvalAI-I 07001 leral (,0) (#1H2) 7’0“! Jam! 1_1 ,

,7 l J1r val

va val

(5.4)

where C are Clebsch—Gordan coefficients. As in Chapter 2, 7w) = {K, l$,ly,L,S,T}.

The expansion is carried out in the T Jacobi basis where the hyper-harmonics W sat-

isfy the Pauli principle by construction. The numerical factor (111112)3/4 is included to

make the spatial part of hyper-harmonics orthonormal with respect to the weight factor
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‘3/2 sin2600326 from the hyper-spherical volume element in Figure 2.1.3 Note(#142)

that the hyper-radial part in Eq. (5.4) is not expanded in the Laguerre basis from

Eq. (2.16) because the basis functions ’R’r‘lag do not have a good physical meaning.

Instead, the overlap functions (9 are computed directly from:

A
’ _ 3/4

07%, J30, (P) - (2) (Ml/12) X (5-5)

5(p — p’)

< [(DJgore Tcore NITCO’I‘e ® W’Yval Jgall_1] '17,.le TMT __p5 \I’J’IrA/[J T MT ,

  

where the integration is carried over degrees of freedom of all nucleons. Using these

overlap functions, the three-body—like core + n + n component of the wavefunction ‘II

can be written as:

I

337143me = Z (mm/4x (5.6)
Jg0T€70a1 J30]

(I)

l J3me Tcore MTcore ® 0700’ ijral gym” mall—1 J7fMJ T MT

in the form similar to the three-body decomposition in Eq. (2.21). Moreover, the overlap

wavefunction ‘Iloverlap satisfies a three-body Schréidinger equation with an additional

source term due to the residual interaction between valence particles and those in the

core [157]. Therefore, at least in the asymptotical regions, the three-body wavefunction

from Eq. (2.21) and the overlap wavefunction \Ilo’vefmp from Eq. (5.6) should behave

similarly. On this merit, the three-body results and those from MiCH for 6He can now

be compared at the level of wavefunctions rather than integrated observables. A valence

term characterized by a set firm) will be refereed to as an overlap or a three-body channel.

For 6He, the three-body decomposition takes a simple product form:

overlap 6 _ 3 4

\II0+01_1 ( He) _ (2/3) / ¢0+00 Z 0711010 Wfi’vaz 0+1—1 (5'7)

71ml

 

3Even though not mentioned, this factor was also included in three-body terms in Eq. (2.18).
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In analogy with the three-body model and Eq. (2.11), it may be useful to work with

modified overlap functions 11:

24p) = pm 00) (5.8)

Because of the orthonormality of hyper-harmonics, the norm of an overlap channel is

given by:

00 oo

_. 2 5 _ 2
SIUGlJflal —A 070711 J1r (p)p dp——‘/0 117%le (p) dp. (5.9)

val val

The last quantity is often called a spectroscopic factor. We will use this term also in con-

nection with the three-body results for 6He, where a spectroscopic factor gives the prob-

ability of a given channel in the three-body wavefunction, as we have seen in Table 2.1.

To compute overlap functions in a meaningful way, wavefunctions of both 4He and 6He

need to be normalized. The normalization of the the core’s wavefunction is known from

SVM. The norm of 6He wavefunction can be computed numerically, as is demonstrated

in Appendix D. Here, both wavefunctions are assumed to be normalized to unity. The

integration space in Eq. (5.5) is sampled by the square of the wavefunction ‘1! (6He).

We extracted overlap functions for the MN-SO 6He. To ensure small statistical errors,

overlap functions were computed on two separate random walks, each containing four

million integration points. At the end, the overlap functions from such two walks were

averaged in each overlap channel to improve statistics even further.

Ordered by spectroscopic factors, the five strongest overlap channels in the MN-

SO 6He are listed in Table 5.4. These are the only channels that could be resolved, all

other potential overlap channels have spectrosc0pic factors too small and as such are

buried in numerical noise.4 The table also contains spectroscopic factors for 6He studied

in the three-body model from Table 2.1. Surprisingly enough, not only the dominant

channels are exactly the same in MN-SO and the three-body model, but also their order

is preserved. In the three-body model, these five channels account for more than 98%

of the wavefunction. Therefore, we expect that these channels should also grasp most

 

4It seems that an overlap channel can be resolved if its spectrosc0pic factor is larger than about 0.01,

or equivalently about one hundredth of that for the strongest K = 2 s-waves channel. -
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Table 5.4: Spectroscopic factors of the five dominant overlap channels in 6He. Three-body

results are from Table 2.1. Numbers in parentheses are relative errors.

T Jacobi basis

 

 

 

 

channel S

alias K lg; lg L S 3body MN-SO MN-SO / 3body

K = 2 s-waves 2 0 0 0 0 0.8089 1.1155 (0.5%) 1.38

K = 2 p-waves 2 1 1 1 1 0.1103 0.1859 (0.7%) 1.69

K = 0 s—waves 0 0 0 0 0 0.0417 0.0555 (2.1%) 1.33

K = 6 d-waves 6 2 2 0 0 0.0164 0.0266 (3.5%) 1.62

K = 6 f-waves 6 3 3 1 1 0.0078 0.0122 (3.0%) 1.56
 

)3: 0.9851 1.3957
 

of the 4He + n + n decomposition of the MN—SO 6He. In the three-body model, the

wavefunction is normalized to unity, and as a consequence, all spectroscopic factors are

less than one. In MN—SO, however, K = 2 s—waves channel has a spectroscopic factor

larger than one. To understand this difference, we need to dig deeper.

To see more clearly the difference between the three—body and the microscopically de-

rived overlap wavefunctions, Figure 5.6 and Figure 5.7 show the hyper-radial dependence

of the five channels from Table 5.4. We chose to show these functions as u(p) because of

their simpler asymptotic fall-off in Eq. (2.15). It is satisfying to observe that for all five

channels, three-body and overlap hyper-radial functions agree on their rough properties,

such as overall shape, and number of nodes. There are, however, a few obvious differences.

First, absolute values at peaks are larger for overlap functions than for three—body func-

tions. This difference is responsible for larger spectroscopic factors in Table 5.4 associated

with overlap functions. Second, overlap functions tend to peak and reach nodes (other

than the trivial node at p = 0 fm) slightly before three-body functions do. Also, peaks

of overlap functions are steeper. Third, at larger hyper-radii, overlap functions decay a

bit faster, as can also be seen from both Figure 5.6 and Figure 5.7. Overall, the overlap

functions on average put more weight on smaller hyper-radii. We could then speculate

that this shift of preferred hyper-radii might be indirectly reflected by smaller radii of

the MN-SO 6He in Table 5.3 when compared to radii from the three-body model.
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Figure 5.6: Hyper-radial dependence of overlap and three-body wavefunctions for channels

from Table 5.4. The three—body functions are from Figure 2.13. The legend is the same

in all panels.

At hyper-radii beyond about 12 fm, MN-SO overlap functions in Figure 5.6 and

Figure 5.7 become unreliable and their statistical fluctuations take over. The reason is

that very large hyper-radii would place two neutrons into regions very distant from the
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Figure 5.7: Hyper-radial dependence of absolute values of overlap and three-body wave-

functions for channels from Table 5.4. The three-body functions are from Figure 2.13.

The legend is the same in all panels.

core. In extreme configurations, a hyper-radius of 15 fm would correspond to a di-neutron

at distance of about 13 fm from the center of the 4He core, or to two neutrons on Op-
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Figure 5.7: Hyper-radial dependence of absolute values of overlap and three-body wave—

functions for channels from Table 5.4. The three—body functions are from Figure 2.13.

The legend is the same in all panels.

core. In extreme configurations, a hyper-radius of 15 fm would correspond to a di-neutron

at distance of about 13 fm from the center of the 4He core, or to two neutrons on op-



posite sides of the core at a mutual distance of about 21 fm. And because the sampling

probability is proportional to (@(GHe)|‘II(6He)) 3,15, such extreme spatial configurations

are very unlikely to be visited by a walker during the course of a random walk. Moreover,

samples in such distant regions may be highly correlated, an effect that has been seen in

other Monte Carlo calculations, for example [90].

It is interesting to look at asymptotics of overlap functions a bit closer. As two neu-

trons are pulled out of 6He, effects of the core-valence antisymmetrizer in Eq. (4.6) grad-

ually vanish, and the full six-body wavefunction decouples into its 4He + n + n asymp-

totical form. In asymptotic regions, the six—body wavefunction can be written as nothing

else but a sum of overlap functions. Therefore, the asymptotics of overlap functions goes

hand in hand with asymptotics of the many-body wavefunction in the core + n + n

cluster channel. Both three-body and overlap hyper-radial functions should fall off ex-

ponentially with the decay parameter r; depending on the three-body binding energy

via Eq. (2.13). For E3body (6He) = —1 MeV, we get n z 0.22 fm‘l. However, as dis-

cussed before, we found the value p0 = 0.45 fm to be optimal for the valence part of the

fully antisymmetrized wavefunction. Relating the two decay parameters as r. = 1/(2p0),

p0 = 0.45 fm would correspond to n = 1.11 fm‘l, or E3body z —25 MeV. In other

words, individual valence terms in our microscopic wavefunction decay much faster than

the expected asymptotic form of overlap (and three-body) functions. The asymptotical

form should be most clearly realized for K = 0 s-waves thanks to a small, yet non—

vanishing, centrifugal barrier in Eq. (2.12). In Figure 5.8, we plot again the three-body

and overlap hyper-radial functions for K = 0 s—waves along with two asymptotical forms

corresponding to decay scales n = 0.22 fm‘1 and p0 = 0.45 fm. It is gratifying to see

that the overlap function is almost perfect asymptotically in the computationally safe

region of p S, 12 fm. The right asymptotical trend is recovered regardless of the fact that

all valence terms in the wavefunction are asymptotically wrong. These results have been

obtained from the MN-SO wavefunction containing hyper-radial Laguerre polynomials

of order five and less. Perhaps, if needed, the asymptotics could be improved further

with inclusion of Laguerre polynomials of higher orders. In either case, presented results
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Figure 5.8: Behavior of K = 0 s—waves overlap and three—body functions from Figure 5.6

at large hyper-radii. Also shown are two different predictions for asymptotics, one corre—

sponding to the three-body binding energy E3body = —1 MeV (14 = 0.22 fm‘l) of 6He,

the other to the asymptotics of individual valence terms in the MN-SO wavefunction of

6He (p0 = 0.45 fm).

clearly demonstrate that the three-body hyper—spherical/hyper-radial basis is suitable

not only for few-body, but also for microscopic calculations. The basis is flexible enough

to catch simultaneously short- as well as long-distance correlations, a quality especially

appreciable in the realm of Borromean halo systems. Based on these arguments, we be-

lieve that microsc0pic wavefunctions in MiCH have asymptotics very close to the proper

one, indeed.

Using the analogy between overlap functions and three-body wavefunctions, we can

also estimate relative probabilities of MN-SO overlap channels in the 4He + n + 11 de—

composition of 6He. Because of the orthogonality of overlap channels, we can define such

probability simply as a ratio of a spectroscopic factor and the value 1.3957, the sum of

spectroscopic factors from the MN-SO model in Table 5.4. These probabilities are listed

in Table 5.5 and they are very similar to the weights of corresponding channels in the

three-body wavefunction of 6He. Such a comparison is only approximate because the

five overlap channels account for only 98.5% of the three-body wavefunction and overlap

channels with spectroscopic factors smaller than about 0.01 were not extracted from the

MN-SO 6He. Nevertheless, mixing of overlap channels in both models is about the same.
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Table 5.5: Probabilities of overlap channels from Table 5.4 in the 4He + n + n decom-

position of 6H6. Three-body probabilities are those from Table 2.1. MN-SO probabilities

were computed as ratios of MN-SO spectroscopic factors from Table 5.4 and the value

1.3957 also from that table.
 

probability [%]

3body MN-SO

K = 2 s—waves 80.89 79.92

K = 2 p—waves 11.03 13.32

K = 0 s-waves 4.17 3.98

K = 6 d-waves 1.64 1.91

K = 6 f-waves 0.78 0.87

channel  

 

 

We now present two more comments regarding spectroscopic factors. Even though not

mentioned so far, we also computed overlap functions from the MN model. Because the

central nucleon-nucleon interaction does not mix valence spin-singlets and spin-triplets in

the full microscopic wavefunction, overlap channels containing spin-triplets were absent

in the MN model. At the same time, spectroscopic factors of the spin—singlet channels

were about the same as those for the MN-SO model in Table 5.4. By not having spin-

triplet overlap channels in the MN case, about 14% of spectroscopic strength resolved in

the MN-SO case would be missing in MN. This potentially missing spectroscopic strength

is estimated as a sum of MN-SO probabilitias of spin-triplet channels in Table 5.5 and

it represents one possible way to estimate the importance of non-central forces on the

structure of 6He.

Another comment regards the fact that the MN-SO spectros00pic factor for the dom-

inant K = 2 s-waves overlap channel is larger than one in Table 5.4. This is expected [89]

because in the overlap integral in Eq. (5.3), the a particle does not sit at the center

of mass of 6He. In other words, spectroscopic factors larger than one are there due to

recoil effects. In [89], an upper limit on the spectroscopic factor of the dominant K = 2

s—waves channel was estimated to be about 25/16215625 times the probability of this

state in the shell-model. If we further assume that the probability in the shell-model can

be approximated by the three-body model (as was in fact done in the cited work), then
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using Table 5.4 the upper limit on the spectroscopic factor of K = 2 s—waves channel

would be 1.26, a value indeed larger than that extracted the MN-SO model. But the

ratio of MN-SO and three-body spectroscopic factors in Table 5.4 varies between chan-

nels. This observation suggests that to account for microscopic information missing in the

three-body model, it may not be sufficient to simply renormalize the entire three-body

wavefunction by a common factor such as 25/16 suggested in [89].

Finally, overlap functions (also three—body wavefunctions) can be used to shed more

light on clustering in 6He. Additional insight is gained by calculating the probability of

finding definite distances within the three-body decomposition of 6He from Eq. (5.7):

2

P(Tn—mrcore—nn) = ng—nrgore—nn/ (2/3)3/4 Z 0712a10+g7val0+1_1 dag; (19y,

7val .

(5.10)

where rn_n and rme_nn are the valence neutron-neutron separation and the distance

between centers of masses of the core and the valence neutron pair, respectively. These

distances would correspond to lengths of vectors :31 and :52 in the T Jacobi basis in

Figure 2.1. The probability plot for the MN-SO 6He is presented in Figure 5.9. The

figure exhibits two peaks: a di—neutron-like peak positioned at about Tn-” :2 1.93 fm and

rem-3-7m = 2.63 fm (p = 3.33 fm) with the two neutrons close together located outside

4He, and a cigar-like peak at rm." = 3.82 fm and rme_.nn = 1.03 fm (p = 2.95 fm)

with the two neutrons positioned on opposite sides of the core. Qualitatively the same

clustering picture would be obtained within the three-body model and has also been

reported from other models, such as SVM [133].

The occurrence of two prominent clustering peaks in Figure 5.9 is not surprising

because the overlap channels are dominated in the T Jacobi basis by K = 2 s—waves.

Using definitions from Figure 2.1, the distances man and reme_nn in 6He are related to

hyper-spherical coordinates as

m-.. = \/2 p sin 0; r6044", —_— ,/3/4p cos 0. (5.11)
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Figure 5.9: Correlation density plot for the ground state of the MN-SO 6He. The di-

neutron and cigar-like configurations are shown schmetically.

Neglecting for a while the constant factors in Eq. (5.11), the hyper-angle serves as the

polar angle in Figure 5.9, and the directional distribution of the clustering probability is

given by the probability to find different hyper-angles. For K = 2 s-waves, the hyper-

angular probability is shown in Figure 5.10. There are indeed two peaks in Figure 5.10

allowing the formation of two prominent peaks in Figure 5.9. Despite the symmetricity

of the hyper—angular distribution in Figure 5.10, the clustering probability is not sym-

metrical due to mass factors in Eq. (5.11) and the influence of overlap channels other

than K = 2 s-waves in the three—body decomposition of 6He.

In summary, it becomes obvious that to appreciate the amount of details involved

in few-body and microscopic models of 6He, one should look beyond the few commonly

studied features such as the three—body binding energy, nuclear radii and nucleon densi-

ties. At the level of wavefunctions, the differences between macroscopic and microscopic

models are clear. To our knowledge, the overlap functions for 6He have been extracted

in this work for the first time from a microscopic structure model in a form that allows

their direct comparison with few-body wavefunctions. By comparing our micrscopically

derived overlap functions with three-body wavefunctions we concluded that a simple

renormalization of three-body wavefunctions may not be sufficient to account properly

for the microscopic information missing in few-body models. Besides their usefulness for

a comparative study of different structure models, the overlap functions presented in this
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Figure 5.10: The probability to find different hyper-angles in the K = 2 s-waves

overlap channel. For this channel, the hyper-angular probability is proportional to

P11/2’1/2(cos 26) sin26cos20 shown in the plot. The factor sin20cos20 is the hyper-

angular part of the hyper-spherical volume element in Figure 2.1.

section provide a crucial input to reaction calculations involving 6He, in particular, to

two-neutron transfer reaction models.

5.4 Two-neutron transfer reactions

An immediate practical application of overlap functions obtained in the previous section is

in reaction calculations involving 6He. In particular, overlap functions enter directly in the

formulation of two-nucleon transfer reactions. Several experiments have been performed

to study the two—neutron transfer from 6He onto hydrogen, helium, carbon, and copper

targets [53,158-161]. Of those experiments, we concentrate on p(6He,4He)t with incident

energy of 6He 25 MeV/A [160], which is simpler to model due to the trivial structure

of the target nucleus. This reaction was later reanalyzed in [89], where several possible

drawbacks of the original analysis in [160] were indicated. It is clear from previous works

that, for a given beam energy, the reaction mechanism contains both sequential and

simultaneous transfers. In the former reaction mechanism, two neutrons are transferred

one by one whereas in the later case they are transferred both at once as a pair. However,

given that the sequential process involves the continuum and we do not yet have a fully
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microscopic description in that case, the comparative study here will focus only on the

simultaneous transfer component, which is the only two-neutron transfer mode considered

in previous works [89,160].

Let us first analyze the transfer reaction p(6He,4He)t qualitatively. At the beam

energy 25 MeV/A, the reaction happens well above the Coulomb barrier between proton

and 6H8. Therefore, the neutron transfer can happen at any impact parameter. If the

two neutrons are transfered in a single step as a pair, it is reasonable to expect that they

are preferably picked from the di-neutron configuration in 6He. Located almost entirely

outside of 4He, the di-neutron peak in Figure 5.9 reaches its maximum at a distance

of about 2.6 fm between 4He and the di-neutron. Given the radius 1.46 fm of 4He, we

then expect the reaction to be mostly peripheral relative to 4He with small scattering

angles in the reaction center-of-mass system. In terms of hyper-radii, peripherality of the

reaction may be misleading, because the location of the di-neutron peak in Figure 5.9

corresponds to a fairly small hyper-radius of about 3.3 fm in Figure 5.6. Therefore, the

transfer should be sensitive not only to distant tails of overlap functions in Figure 5.6,

but also to their volume parts, or in other words to spectroscopic factors.

Quantitatively, the transfer reaction is analyzed within the distorted wave Born ap-

proximation (DWBA). Here, we briefly present the main ingredients of DWBA linking

us to overlap functions; details can be found elsewhere [162]. Under the 1-step DWBA,

the reaction amplitude for the simultaneous transfer of two neutrons in the p(6He,4He)t

reaction can be written in prior form as (see for example Eq. (9) in [89]):

D . — _ +

6514-4th" 4.2-44) <52

where git and ¢6He are overlaps between pairs of initial and final composite systems (t,p)

(+) (-)

6He— 4He—t

6He—p and exit 4He—t channels. The interaction causing the transition from the initial

and (4He, 6He), respectively. X p and X are the distorted waves in the entrance

to the final state has two parts. The first part is the sum of potentials binding the two

transferred neutrons to a proton: Vp_(nn) = Vp‘ml + Vp_n2. The other term 6V, the so
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called remnant potential, contains potentials for a proton interacting with 4He and 6He:

5v = V4He-P — UGHe‘P.

Tfaditionally, both overlaps <1), and ¢6He would be taken as three-body wavefunctions

of a triton and 6He, an approach perfectly justified for the triton but arguable for 6He.

It is here where overlap functions from Section 5.3 obtained within MiCH enter the

game: they are exactly ¢6He' To examine the impact of the differences seen in Figure 5.6

between three-body wavefunctions and overlap functions on a physical observable, we

calculate the reaction cross section for simultaneous two—neutron transfer between 6He

and a proton. Within DWBA and apart from additional constants, the differential cross-

section is proportional to the square of the reaction amplitude from Eq. (5.12):

2

TDWBA (5.13)
pfior

d0

56 0‘ |

All DWBA reaction calculations presented here are finite-range and have been per-

formed with the code Fresco [163]. The triton three-body wavefunction (zit and the binding

potential V4He_p as well as Optical potentials U6H8“) and U4He“ are the same as in [89].

For consistency, the nucleon-nucleon interactions in Vp“(nn) are the same as those used

to bind the triton [115]. For the optical potential between triton and 4He in the exit

channel, we adopted the parameter set I from Table I in [89], in which the potential was

fitted to elastic scattering data, thus significantly reducing uncertainties in cross-sections.

We have found the effects of the remnant potential to be large. Therefore, all presented

cross-sections were obtained with the full complex remnant term included.

The cross-sections of simultaneous two-neutron transfer in the reaction p(6He,4He)t

are finally shown in Figure 5.11. We considered two scenarios differing by treatment of

the overlap ¢6Hez three-body, where the overlap was taken as the three-body wavefunc-

tion from Section 2.4, and MN-SO with the overlap replaced by microscopically founded

overlap functions from the MN-SO model of 6He in Section 5.3. We have found that

the cross-sections are mostly sensitive to the components of ¢6He containing s-waves be-

tween the two neutrons, and between 4He and the di-neutron. This sensitivity is expected
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Figure 5.11: Cross-section of the p(6He,4He)t reaction at 25 MeV/A. Lines are theoretical

results for the simultaneous two—neutron transfer process in the three-body, MN-SO and

rescaled three-body model. See text for details.

because the reaction favors low momentum transfer. From the structure point of view,

the major role of overlap channels containing s-waves is due to their dominance in the

three-body 4He + n + n decomposition of 6He, as we have seen in Section 5.3.

At small angles, the ratio of the three-body and MN-SO cross-sections in Figure 5.11

is very close to the ratio of spectroscopic factors for K = 2 s-waves in Table 5.4, i.e.

close to 1.38. This observation reflects our suspicion that the reaction at small angles is

sensitive to almost the entire overlap functions from Figure 5.6. except perhaps at very

small hyper-radii. Moreover, at small angles, the effects due to slightly different shapes

of three-body and overlap functions are “integrated out”, and the only thing that seems

to matter is the difference in spectroscopic factors. For comparison, Figure 5.11 also

contains the three-body cross-section renormalized by an additional spectroscopic factor

25/ 16 = 1.5625 suggested in [89]. When one uses three-body wavefunctions in place of

overlaps ¢6He’ a simple additional renormalization of cross-sections is the only way to

account for missing microsc0pic structure input. Observing the similar shapes of cross-

sections in the three-body and MN-SO cases in Figure 5.11, one could try to argue in favor

of such ad-hoc renormalization of three-body cross-sections. However, we have to realize
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that here we study only one reaction mechanism at a single energy; the cross-sections for

other reactions and/or at different energies could be more sensitive to differences between

three-body wavefunctions and microscopically derived overlap functions. Also, the three-

body renormalization factor 25/ 16 is just an upper estimate based on a simple shell-model

picture of 6H6. In either case, by using microsc0pically derived overlap functions, the

cross-section is increased by about 40% compared to that obtained by using three-body

wavefunctions, which by itself is significant given the quality of the experimental data in

Figure 5.11.

Looking at Figure 5.11, one can see the disagreement between experimental data and

theoretical calculations despite using microscopically derived overlap functions. It has

been concluded in [89] that the disagreement most likely indicates the influence of other

reaction channels not included in calculations, such as sequential transfer and/or 6He

break-up. Also, in the range of angles where the theory predicts a strong rise of the

cross-section, there are no experimental data to guide the theory in the right direction.
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Chapter 6

Summary and outlook

6.1 Summary

Halo nuclei are composite systems with prominent features of few-body correlations. The

best examples of nuclear halo species are known to exist among light neutron-rich nuclei,

in which a single or few neutrons may be partially decoupled from the rest of the system,

from the core. The weak attraction to the core experienced by halo neutrons allows them

to swim in distant, classically forbidden regions.

Particularly interesting are two—neutron halo nuclei, such as 6He and 11Li, with two

correlated neutrons forming the halo. Typically, these nuclei are studied within few-

body models, in which the long-distance inter-cluster motion is treated properly, but

the inert—core picture used in such models is undoubtedly a simplification to the many-

body problem. Nevertheless, few-body models supply the structure information for many

reaction calculations involving two—neutron halo nuclei. On the other hand, microscopic

models find halo species very challenging and these models may fail to capture the few-

body long-distance correlations so important for halo nuclei.

At the heart of this dissertation is MiCH, a microscopic cluster model of two-neutron

halo nuclei. Designing MiCH, the goal was to combine advantages of few-body and mi-

croscopic nuclear structure models to create a microsc0pic model capable to deal simul-

taneously with short- and long-range effects in two-neutron halo nuclei. To accomplish
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this goal, a properly antisymmetrized wavefunction in MiCH consists of a microscopic

core—like piece and a three-body-like valence part expressed in terms of hyper-spherical

functions. In the present work, MiCH has been applied to the ground state of the sim-

plest two—neutron halo nucleus, 6He, bound by the effective nucleon-nucleon Minnesota

interaction. The results for this nucleus can be summarized as follows.

The Pauli principle is crucial for the binding and structure of 6He, because it does not

only eliminate forbidden states between the core and the valence neutrons and between

the valence neutrons themselves, but it also delivers extra binding to the system through

exchange effects. Through explicit antisymmetrization done in MiCH we have found,

that the lowest hyper-spherical K = 0 three-body states are strongly blocked by the

Pauli principle between the core and the valence neutrons. This observation is important

especially in connection to three-body models, from which the hyper-spherical basis has

been adopted,and which employ different methods to account approximately for the core-

valence Pauli principle. The message here is that all three-body hyper-spherical states,

but especially those with K = 0, ought to be subjected carefully to the Pauli principle

if one is to describe 6He realistically. It is through the core—valence exchange effects that

the nucleus becomes three-body bound.

For a variationally Optimized 6He, the binding energy relative to the three-body

threshold, rms radii, the thickness of the neutron halo, and nucleon densities were com-

puted and found to agree with experimental values and results obtained in a variety of

structure models. The halo nature of the nucleus can be seen from its extended neutron

density resulting in the large difference between the matter and proton radius. It seems

that commonly computed and highly integrated observables such the three-body binding

energy and radii may not appreciate the amount of details built into different models of

6He. For these observables, a three-body approach with its simplistic description of the

4He core is as reliable as microscopic models.

To extract information about the 4He + n + n component in 6He, we have computed

the overlap integral between 6He and 4He. The integral was expanded in hyper-spherical

functions to make it comparable with three-body wavefunctions and applicable to re-
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action calculations involving 6He. To our knowledge, this is the first time that overlap

functions for 6H8 have been calculated in this form from a microscopic structure model.

In agreement with three-body models, the microscopically founded three-body decom-

position from MiCH suggests that the same overlap channels dominate the 4He + n + n

cluster-division in 6He. On the other hand, MiCH predicts spectroscopic factors larger

by at least 30% than those from a three-body model for the dominant overlap channels

in 6He. This difference in spectrosc0pic factors reveals a deficiency of few-body models,

namely the inert-core approximation. Moreover, the relative enhancement of spectro-

scopic factors in MiCH varies between overlap channels, and so it may not be sufficient

in three-body models to simply renormalize the wavefunction to account for missing

microscopic information. In agreement with other models, we predict two major cluster-

ization patterns in 6He: the di-neutron-like and the cigar-like. In the former pattern, two

neutrons stay close together outside the 4He core, in the later pattern, two neutrons are

positioned on opposite sides of the core.

Finally, as a practical application of overlap functions obtained in MiCH, we car-

ried out a calculation for the reaction p(6He,4He)t at 25 MeV/A assuming that the

reaction proceeds only through the simultaneous transfer of two neutrons. The angu-

lar distribution of the reaction cross-section is similar to that obtained with three-body

wavefunctions for 6He, but the cross—section with microscopically derived overlap func-

tions is larger by about 40% due to the above-mentioned difference in spectroscopic

factors between MiCH and three-body models. Even with microscopically derived input

for this reaction about the 4He + n + n component in 6He, theoretical predictions for the

cross—section assuming only the simultaneous two-neutron transfer do not reproduce ex-

perimental data. Therefore, we assert that other reaction mechanisms such as sequential

transfer and break-up should be included in theoretical considerations for this reaction.
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6.2 Outlook

In the present work, the model MiCH has been formulated for bound states of two-

neutron halo nuclei and applied to the simplest case, 6He, bound by an effective soft—core

nucleon-nucleon interaction. For this nucleus, the model has proved to be working and the

original goal of combining advantages of few-body and microsc0pic models to describe

simultaneously the short-distance and the long-distance few-body halo correlations in

6He have been met. This success opens the door to possible future applications and

improvements of the model.

Even for 6He, there is still work to be done. An interesting application aimed on the

halo aspects would be the fi-decay of 6He to 6Li. There is experimental evidence that the

decay takes place essentially in the halo region in 6He. For such a study, a microscopic

wavefunction for 6Li is needed and we could attempt to produce it within MiCH despite

the fact that the ground state of 6Li does not have a Borromean character. 6Li would be

modelled as 4He + n + p with a microscopic 4He core.

The most exciting case to study among two-neutron halo nuclei is 11Li. This nucleus

has a very small two—neutron separation energy and a well developed neutron halo. As

part of the present work, 11Li has been studied within a deformed-core three-body model,

and it has been found that the core deformation plays an important role in the structure

of this nucleus. Given the physics insight built into MiCH, the model is well suited to

face the challenge of the unique neutron halo in 11Li. Going to mass eleven, however,

we would most likely encounter (serious) computational difficulties due to the memory

and CPU time required to carry out the Monte Carlo integration of matrix elements.

We believe that with the increasing computational power, improved algorithms and code

parallelization, this computational difficulty could be overcome which would bring 11Li

to our grasp.

A further improvement of the model could be achieved by the implementation of more

realistic nucleon-nucleon interactions and the inclusion of excited states. For light two—

neutron halo nuclei, including excited states means extension to the continuum, which is
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important for reaction calculations involving these nuclei due to the proximity of break—up

thresholds. This brings us to the interplay between the structure and reactions.

In the present work, we have studied a two—neutron transfer reaction involving 6He

in the approximation of simultaneous transfer. Our results and those of other works

suggest that the experimental transfer data can not be reproduced unless other reaction

channels, such as sequential transfer and break-up, are included in the calculation. These

other channels involve continuum states of 6He as well as of 5H6. Our long-term goal is to

describe transfer reactions involving two-neutron halo nuclei in their full complexity with

a microscopically derived structure input for all nuclei involved in the reaction. This task

is important because it is at the intersection between nuclear structure and reactions,

where we have learnt most about two—neutron halo nuclei.

Finally, MiCH could be extended to study other light nuclei with less—straightforward

cluster divisions, but still showing few-body features. Among them are 8He with its

neutron-skin and 12C with its famous Hoyle state. For 8He (= 4He + n + n + n + n),

the hyper-spherical formalism in MiCH adopted from few-body models would be extended

to deal with the five-body inter-cluster motion, and for 12C (= 4He + 4He + 4He), the

two valence neutrons in the current version of MiCI-ll would be replaced by two microscopic

4He clusters. In both nuclei, all binary subsystems are unbound which makes MiCH well

suited to deal with such nuclei.
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Appendix A

Implementation details

Along a random walk, local values of matrix elements in the spin-isospin space are com-

puted many times. This is done not only at each integration point, where local values

of operators such as 0106 in Eq. (4.22) and local weights such as w in Eq. (4.25) are

evaluated, but also at each trial move prOposed by the MetrOpolis algorithm, where a

local value of importance function needs to be calculated. In either case, the first thing

we need is a local representation of the wavefunction in Eq. (4.3).

A.1 Local representation of wavefunction

The concise coupled form of the wavefunction in Chapter 4 is not suitable for local ma—

nipulations. The reason is at least twofold. First, the angular momentum couplings hide

projections of orbital momenta along Jacobi coordinates, which are needed to evaluate the

spatial part of the wavefunction locally. Second, operators such as Hamiltonian contain

pair-wise (between two spots) operators acting on spin and isospin degrees of freedom in

the wavefunction, and so one must be able to identify spin-isospin ”values” of each spot.

A convenient basis of spin/—sospin states is provided by those sets in which each spot

has a definite third components of spin and isospin [140]. Therefore, at any set of spots

7" = {”1 , . . . ,FA}, angular momentum couplings in the wavefunction are decoupled so that

third components of orbital momenta along Jacobi coordinates and those of single-spot
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spins and isospins can be identified. The difference between spots and particles has been

explained in Section 3.1.

In the system with A spots (particles), there are 2A possible permutations of spin

projections over spots. To represent a single spin in the computer, 0 is used fOr spin

”down” and 1 for spin ”up”. Each spin basis state in the wavefunction can then be

represented in a simple binary fashion. For example, for 4 particles we have:

 

spots —* 1 2 3 4

binary bits —> 3 2 1 0 binary #

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

 111115

This basis only keeps a record of how spin projections are distributed over spots. Under

particle permutations imposed by Ava! and Acme—”“1 antisymmetrizers in Eq. (4.3),

particles carrying Spins jump between spots, but once the antisymmetrization of the

wavefunction has been completed, the only thing one needs to know is whether there is

a spin up or down at a given spot regardless of which particle brought it in.

The isospins can be handled similarly, but due to charge conservation, the number of

(2‘),

where Z is the number of protons. The number of isospin basis states could be reduced

isospin basis states can be reduced to:

further by constructing states with good total isospin, but then the action of isospin-

related Operators would be more involved.

After spatial parts of the wavefunction have been evaluated for each particle permu-

tation, all pieces of the antisymmetrized wavefunction belonging to a given spin-isospin

basis state are gathered. Ultimately, the wavefunction is represented locally as a two di-
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mensional array of complex numbers with elements corresponding to different spin-isospin

basis states.

A.2 Operators

In the spin-isospin basis described in the previous section, the Hamiltonian containing

two-nucleon interactions is a sparse matrix, since two-body interactions can only change

the spins or isospins of two nucleons at a time. Any operator involving spins or isospins

is written in the form in which it acts directly on spin or isospin projections. Under the

action of such an operator, spin-isospin projections at some spots may be changed, and

the spin-isospin basis states are transformed among themselves. Spin-dependent operators

include for example interaction terms, the spin-orbit force, operators S2 and 82 of the

total spin and J2 and J; of the total angular momentum.

At the level of individual spots, a single spin Operator 8’ = éc‘f is expressed in terms

of raising 3+, lowering s‘ and oz operators:

1 3+ + s— 1 5+ — .9— 1

33; = 503; = —2—', 8y 2 §0y = T, S; = "2—0'z. (A.1)

When permitted, the z—projection of a single spin is raised and lowered upon the action

of 3+ and s‘, respectively. The spin projection is not changed by oz, but an extra

factor (—1) is acquired when the spin is down. An equivalent treatment is given to a

single isospin operator 5= %'F. The interaction spin-exchange operator Pi‘; in Eq. (3.11)

simply swaps spin projections at spots 2' and j. The coordinate-exchange operator Pij

in Eq. (3.11) is written as Pi“;- = (—1)P,-‘;P,ZJ'-, where the isospin-exchange operator Pi;

swaps isospin projections at spots 1' and j. Sometimes, the central part of a two-nucleon

interaction is written in a form containing a,- - 0j and 7',- - 'rj operators instead of Pf; and

Pz-S. These Operators can be written as:

Ui-Uj=2P,g--1, Ti-Tj=2PZ:S-—1. (A.2)
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Momentum-dependent Operators, such as the kinetic energy, the spin-orbit force, op-

erators L2 and L2 of the total orbital momentum and operators Jz, J2 of the total

angular momentum, involve first- and second-order derivatives of the wavefunction. All

required derivatives are obtained simply by moving each spot by a small distance in both

the positive and negative directions along each axis. If, for brevity, we consider a function

f (11:, y) of two variables a: and y, then its partial first- and second-order derivatives may

approximately be obtained from:

f(rc+A,y) — f(-”v— A41)
 

 

 

f5; = 2A , (A.3)

II f(+A1)+f( -A3)_2f(’)

rm: 2 a: y :2 y a: y ’ (AA)

II A7 A —A3 —A _ 1 II IIfry 2 f(a:+ 9+ )+f(::"l2 y ) 2f(rI=1/)_ m_ yy, (A5)

where A represents a small shift and the subscripts on f denote differentiating variables.

First- and second-order derivatives with respect to y would be obtained by making a small

shift in y instead of at. The dependence of derivatives on A must be tested carefully to

ensure their reliability. There should exist an interval of optimal values of A within which

the approximations to derivatives are A-independent. In MiCH, the value A = 0.001 fm

is used.

To obtain first- and second—order derivatives of the wavefunction in MiCH, Fq (A.3)~

Eq. (A5) are applied to each spot in each x, y, z direction which requires 2 X 3 x A ad-

ditional evaluations of the wavefunction. This is the reason why, from the computational

point of view, short but well decorrelated random walks may be much cheaper to work

with than long but highly correlated walks. Remember that when integration points are

being decorrelated, a single new evaluation of the wavefunction at Ftrz'al is needed in each

decorrleation step to check the Metropolis acceptance condition.
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Appendix B

Further tests

For a success of any variational calculation in the framework of VMC, the reliability

and accuracy of matrix element evaluation are crucial. In Section 4.2.2, the Metropolis

algorithm has been checked for reliability, issues related to correlations inherent in the

algorithm were pointed out and methods of their suppression were outlined. In this Ap-

pendix, additional tests are presented to convince ourselves that numerical manipulations

and integrations in MiCH are carried out properly. Also, the problem of “bad points”

first mentioned in Section 4.2.3 is discussed

B.1 Triton tests and the story of bad points

This section summarizes some numerical results obtained within MiCH for the simplest

core + n + n bound nuclear system, the triton. In triton, the wavefunction in Eq. (4.3)

does not need to be core-valence antisymmetrized, because the core contains a single

proton distinguishable (by its isospin projection) from valence neutrons and there are no

core-valence forbidden states. This makes the triton a perfect case to check the imple-

mentation of the valence part of the wavefunction in Eq. (4.3).

We start with a triton containing a single valence term in the T Jacobi basis charac-

terized by {K, lx, ly, L, S, Jval, mag} and p0 from Section 2.1. By using the definition of a

local value of an operator from Eq. (4.22) and after applying the kinetic energy operator

127



from the left-hand side of Eq. (2.4) on triton’s wavefunction \I' from Eq. (4.3), the local

kinetic energy can be written as:

The“) =

(‘I’lTl‘m34 _ i 1

(‘qu’lsJ _ 2m P2115

_15 5_£’__1 P 2 5 P P 2 6 _ .0 2 7

[( 4 +214) 4(90) )Lnlag+(spo po Lnlag"1 po Lnlag‘z

52 K 32 K 52+__( + /)g + /)
(13.1) 

2m p

with indexes on \11 omitted. Here, all L]‘(p/p0) are associated Laguerre polynomials having

the following explicit form taken from the relationship 22.3.9 in [97]:

L,((:::) =1i(—))m(n+k)—xm, 120/420 (B.2)
l

m=0 177.

By definition, we set Lil = LE2 E 0. For small hyper-radii, the local kinetic energy

diverges as:

K = 0: any nlag : Tloc(p _’ 0) z (1 + ”lag/3) /)0, (BB)

K 74 01 any "lag : Tloc(p _’ 0) z K(K + 4)/P2, (BA)

where the advantage was taken of the limiting form of Eq. (B.2). Furthermore, hyper—radii

in the triton are distributed according to:

1002) = p5 (7341.ng2, (8.5)

where ’leag is a hyper-radial basis function from Eq. (2.16) and p5 is the phase-factor

from the hyper-spherical volume element in Figure 2.1. By using Eq. (B.2), the hyper-
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radial probability at small hyper-radii is:

n a 5 !

W —> 0) 4 1475-53-78 (8.6)

and it increases with the fifth power of may. At small hyper-radii, however, the local

kinetic energy in Eq. (8.3) and Eq. (B.4) diverges. Therefore, valence terms with higher

mag may trigger “bad points”, i.e. integration points with extraordinarily large local

kinetic energies. When that happens, the Monte Carlo energy averaging is harder to

converge.

To illustrate the effect of bad points, we consider a triton containing a single valence

term in the T Jacobi basis with l;c 2 lg = L = S = 0 and p0 = 0.50 fm. For the

hyper-spherical part of the wavefunction, two scenarios are considered: K = 0, may = 0

and K = 4, "lug = 2. The former case represents spatially the simplest possible triton,

whereas the later case contains non-trivial hyper-angular and hyper-radial parts. For

each of these tritons, a random walk is produced and the local kinetic energies and the

distribution of hyper-radii are shown in Figure B.1.

In the figure, our suspicion about bad points is clearly confirmed. Compared to the

hyper-radial distribution for the triton with K = 0, ”lug = 0 in Figure B.1(e), hyper-radii

for the triton with K = 4, ”log = 2 in Figure B.1(f) are shifted towards smaller values and

their probability grows rapidly near the origin, which gives birth to very large local kinetic

energies in Figure B.1(b) and Figure B.1(d) for that triton. Even though the number of

bad points is small, once they occur, they severely bias the Monte Carlo estimate of the

triton’s kinetic energy, sometimes making the estimate completely unreliable. A similar

effect has been observed in a fully antisymmetrized 6He, where inclusion of valence terms

with higher mag may trigger bad points, especially when there are only a few valence

terms in the wavefunction. In 6He, bad points may occur if any two spots and the

center-of-mass of remaining spots are close to each other. Then, in some core—valence

permutations, the valence part of the wavefunction is susceptible to large local kinetic

energies. Therefore, valence terms with may 91$ 0 should be added to the model space
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channels. Theoretical curves correspond to Eq. (B.1) for kinetic energy and Eq. (B.5)

for the hyper-radial probability.
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of 6He only after a preliminary convergence in hyper-momentum has been reached for

may = 0.

It is gratifying to see that the theoretical predictions from Eq. (BI) and Eq. (8.5)

are perfectly reproduced by MiCH in Figure B.1. Finally, local kinetic energies can be

negative, as can be seen from Figure B.1(a) for the triton with K = 0, may = 0. When

the. wavefunction contains more valence terms, local kinetic energy can take negative

values even for small hyper-radii due to interference effects.

To put MiCH to a further test, we now try to reproduce basic observables of an

auxiliary triton produced within the three-body model described in Chapter 2. For this

purpose, we use the three-body code FaCE [93] to generate the wavefunction of a triton

within a limited model space containing all valence terms in the T Jacobi basis with

K g Kmax, may 3 10 and p0 = 0.50 fm. The nucleus is bound by the Volkov I interaction

with the mixing parameter set to m = 0.0 [135]:

Vi,- = —83.34 exp [—(r,-,-/1.60)2] + 144.83 exp [—(r,-,-/082)2] (13.7)

where rij 2 IF, — Fjl is the distance between nucleons z' and j. For several values of Kmax,

the binding energy and the rms radius of a triton produced by FaCE are estimated by

MiCH. The results are shown in Figure B.2. The binding energy of the triton predicted

by the three-body model is perfectly reproduced numerically by MiCH in Figure B.2(a).

For rms matter radii, there is a slight discrepancy (S, 1%) between the three—body and

MiCH values in Figure B.2(b). Even in the three-body calculations, some integrals are

carried out numerically with no error estimates provided. Therefore, the origin of the

mentioned discrepancy remains unknown. The actual difference between three-body and

our values may be beyond the accuracy of three-body calculations.

In summary, passing these triton and other tests, we have convinced ourselves that the

valence part of the wavefunction is implemented properly in MiCH. It is the valence part

of the wavefunction that is responsible for bad points plaguing Monte Carlo estimates of

matrix elements.

131



 

 

'7.4 I ' I ' I ' I 1 .75 *r ' I ' I V I . I I I

  

 

     
 

 

—-D—- FaCE

-7.6 _ o MiCH DID

. I— 1 1.74 r u—n/U

'7-8 - '1 H b /D/?/

5- .E.

0 -8.0 ' I! 1.73 ‘ ‘

2. FA

I“ -8.2 - « «$5

D\D ‘ 1.72 I ?_

-8.4 - \'\D~D——O—u—u 1 r —o- FaCE

[ . 1 . 1 . 1 . 1 . 1 ' 1 71 l A l A l A 1 . MiCH

'8'6 0 4 8 12 16 20 ' 0 4 8 12 16 20

Kmax Kmax

(8.) Binding energy. (b) Rms matter radius.

Figure B.2: The binding energy and the rms matter radius of a triton bound by the

Volkov I nucleon-nucleon interaction (m = 0). Empty squares are values calculated by

the three-body code FaCE. For Kmaa; = 0, 2, 4 and 10, the observables are estimated

by MiCH using wavefunctions produced by FaCE. Each value shown for MiCH is the

average value from eight independent random walks each containing 100,000 integration

points.

B.2 Additional tests and checks

Here, we briefly comment on some other tests of the accuracy of calculations in MiCH:

e For any wavefunction for the core produced within SVM as described in Chapter 3,

the binding energy is also estimated in MiCH by simply switching off the valence

part in Eq. (4.3). Our numerical estimates of the binding energy of the 4He core

are always in perfect agreement with values predicted by SVM.

o Occasionally, local values of the kinetic energy of the total center of mass are

computed at several integration points. Typically, the values for 6He are of the

order of 10"7 MeV, i.e. at the level of numerical noise.

0 At the beginning of each random walk, local values of the total orbital momentum

L = 2:421 I; and L2, total spin S = 2:le 3',- and S2, and total angular momentum

j = L + S and j2 are computed at a single integration point. Among them, only

local values of .12 and f2 are conserved. In 6He bound by central nucleon-nucleon

interactions, the core has L = S = J = 0 and the same is true for the valence part.
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Then all operators have definite eigenvalues equal to 0. In such a case, typical local

values Of Operators are:

 

local value

operator

real part imaginary part

 

L1. -1.781E—16 207913107

Ly -2.664E—16 -2.282E—07

L... 2.559E-16 127313107

L2 1.300E-06 1.5215111

 

Sm 0.000E+00 0.000E+00

S, 0.00013+00 0.000E+00

S, 0.000E+00 0.000E+00

S2 5.0995131 -4.902E51

 

J3, -1.781E-16 2.079307

J, -2.664E—16 -2.282E-07

J2 2.559E—16 4.273507

.12 1.300E-06 1.5211911

 

Thus, all expected values are reproduced up to a numerical noise.

0 Also, at the beginning of each walk, the antisymmetry of the wavefunction is checked

at a single integration point. A properly antisymmetrized wavefunction III changes

its phase by (-1) when two particles are permuted under the action of the permu-

tation operator P. Therefore, the sum ‘1! + P‘IJ must vanish for any P. Again, this

is confirmed numerically up to numerical noise.
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Appendix C

Comparative optimization on two

independent random walks

This Appendix presents the details of the improved optimization method employed

for 6He bound by central and non—central spin-orbit nucleon-nucleon interactions. The

method has been developed to circumvent numerical instabilities encountered for such a

6He due to the mixing of spin-singlet and spin-triplet valence terms in the wavefunction,

as mentioned in Section 4.2.3. The idea behind the method is to attenuate the effects of

statistical noise in the computation of overlap and energy matrix elements by comparing

results obtained on two independent random walks. In this section, energy means the

binding energy of 6He.

Let us suppose that somewhere along the optimization route, we have produced a

new best guess for the “stable” wavefunction containing “stable” valence terms. Two

independent “reference” (random) walks are produced for this wavefunction and the

reference energy of 6He is estimated on each of them. Then, several (many) “trial” valence

terms are temporarily added to the stable wavefunction. Such a temporary wavefunction

is called a “trial” wavefunction. Normally, trial terms include all valence terms absent

among the stable terms up to some maximum values of the hyper-momentum K and the

order of hyper-radial valence functions mag. Actually, two identical trial wavefunctions

(called trial wavefunctions) are created, each linked to one reference walk. For a given
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trial wavefunction, all computations will be done on the reference walk attached to it. In

the following, energies are determined via the energy matrix diagonalization in correlated

sampling on reference walks. “A gain” is a difference between energy and the reference

energy. Trial terms are thinned out as follows:

1. Estimate the gain for each trial wavefunction. Except pathological situations, these

gains represent the maximum possible gains due to all trial terms.

2. On each reference walk, determine gains for all possible wavefunctions containing

“all stable + single trial” terms. A trial term is removed from a trial wavefunction

if its gain is positive, or is small in absolute value relative to the maximum possible

gain from step 1.

3. Compare trial terms outstanding in both trial wavefunctions and remove those

terms not present in both wavefunctions. This condition is highly selective.

4. On each reference walk, compute “cumulative” gains due to a singlet, doublet,

triplet, . . .of remaining trial terms with largest (in absolute value) individual gains

from step 2. Due to interference effects, a cumulative gain is not equal to a sum of

individual gains from step 2. A trial term is removed whenever its addition makes

the cumulative gain increase by more than a factor 2—3 compared to its individual

gain from step 2; large contribution to the cumulative gain could be an interference

effect or a numerical instability, two effects hard to disentangle.

5. Apply point 3 again on remaining trial terms.

6. At this point, there should be only few (5, 10) trial terms left and they are the same

in both trial wavefunctions. The number of remaining trial terms is controlled by

restrictions in steps 2 and 4. On each reference walk, find a trial term lowering

the energy the most, a pair of trial terms lowering the energy the most among all

pairs of trial terms, and so on for triplets, quadruplets, etc. When taken as absolute

values, the gain due to the most contributing singlet, doublet, . . .of trial terms is an
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increasing function. The combination of trial terms for which the gain (in absolute

value) begins to saturate can be finally accepted to the stable wavefunction. The

selected final combination of trial terms must be the same on both reference walks,

though, which is normally true; when it is not true, all trial terms remaining after

step 5 can simply be accepted because they are guaranteed to be the same on both

reference walks. If the number of trial terms about to be admitted to the stable

wavefunction is too high, we restrict the pool of remaining trial terms by imposing

stricter conditions in steps 2 and 4.

Note that up to this point, we are only concerned about energy eigenvalues, which

are numerically stable.

7. In the previous step, a winning set of several trial terms has been found. These trial

terms came as winners on two independent reference walks. Therefore, their selec-

tion should be barely affected by possible numerical instabilities in the computation

of overlap and energy matrix elements and the energy matrix diagonalization. The

final energy matrix diagonalization for the system containing all stable + selected

trial terms provides numerically stable lowest eigenvalues and eigenvectors of linear

expansion coefficients in the wavefunction. The winning set of trial terms can be

safely accepted to the family of stable terms and a new stable wavefunction is thus

obtained.

However, the eigenenergies and eigenvectors in the last mentioned diagonalization

will most certainly differ on the two reference walks, which implies that two new sta-

ble wavefunctions are actually produced. The final check involves cross-correlated

runs, in which energy of a new stable wavefunction obtained on one reference walk

is computed in correlated sampling on the other reference walk and vice versa. If

everything is OK, linear coefficients in the two new stable wavefunctions can be av-

eraged coefficient by coefficient and the final new stable wavefunction is constructed

by using the averaged linear coeflicients.

As described in Section 4.2.3, several optimization cycles can be executed on the same
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pair of reference walks. It needs to be emphasized that any failed trial valence term from

one cycle will appear on the list of trial terms in any subsequent cycle. Again, it is wise

to first build a wavefunction with several mag = 0 terms before higher-order Laguerre

polynomials are considered as trial terms. As optimization process progresses, the pool

of trial terms is broadened by an addition of terms with higher hyper-momentum and

mag. The Optimization continues until the convergence in the binding energy is reached.

In the present work, the non-linear parameter p0 is the same in all valence terms.

The optimization procedure described above assumes a constant value of po. Therefore,

the Optimal value of the non-linear parameter corresponding to the energy minimum still

needs to be found. An attempt to localize the global energy minimum by simply changing

the non-linear parameter in the converged wavefunction (accompanied by the energy

matrix rediagonalization) is doomed to fail. Such search would point to a fake energy

minimum formed at or close to the value of po, for which the wavefunction was originally

constructed. This is because due to the competitive selection, many valence terms have

not been admitted to the wavefunction, which makes the converged wavefunction firmly

tailored to a given non-linear parameter. This is to be compared with the case of central

forces, where all possible valence terms up to maximum values of K and ”tag are present

in any converged wavefunction, as explained in Section 4.2.3. To localize the global energy

minimum, we have to use a wavefunction containing all possible valence terms present

and absent in the originally optimized wavefunction. Once the global energy minimum is

found, the entire optimization process outlined above must be repeated for the optimum

value of pg.
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Appendix D

Wavefunction normalization

In this Appendix, we discuss how to calculate the normalization of the 6He wavefunction.

In the present work, the normalization of 6He is needed to compute the overlap integral

between 4He and 6He in Section 5.3 in a meaningful way.

We rely on the Monte Carlo formalism developed in Section 4.2.1 and assume that

the wavefunction of a nucleus depends on all spatial, spin and isospin degrees of freedom,

i.e. \II = \I'(7"’, s, t). By using the Monte Carlo estimator from Eq. (4.14), the norm of the

wavefunction can be estimated as:

where w is a local weight:

 
w(T—.o(n)) _ (\Pl‘p>8,t

_ . D2

190"("0 ( )

The sampling function p(f') satisfies Eq. (4.10) and can be chosen as a square of an

auxiliary sampling wavefunction ‘I’samplingffl depending on spatial coordinates only:

p(fl : wgampling(fl' (D3)

The sampling wavefunction should span the integration space of \IJ as closely as possible,

and yet the norm (‘1!samplingl‘I’sampling) must be known analytically to be equal to one.
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For compact nuclei such as 4He, the norm (\II|\II) can be estimated accurately by using

a simple Gaussian as the sampling wavefunction:

A

wgggggmg = Cexp £8 2 (F, — 18,-)? , (D.4)

i<j=1

where C is a normalization coefficient and a is adjusted to reproduce the rms matter

radius of the nucleus.

For 6He, however, the sampling wavefunction from Eq. (D4) is not flexible enough

to mimic the extended neutron density and a more sophisticated sampling function is

needed. For 6He, we have tested several sampling wavefunctions. The most accurate

results for Eq. (D.1) have been obtained with the symmetrized product of a Gaussian

for the 4He core (particles p1,. . . ,p4) and a hyper-radial Gaussian for the valence part

(particles p5 and p5):

GGU«SS+GGUSS,33/m _ Score—valeausM-Gauss (D 5)

sampling — sampling ’ '

where:

0 +0 1 4 2 192auss auss _ __ -' _ -' ___

‘IJsampling _ Cexp 2a 2 (TPi ij) exp 2 pg 1 (D6)

i<j=1 0

and Score—val = 21101—1)” P is the core-valence symmetrizer running over all particle

permutations between the core and the valence part. The hyper-radius p is computed

assuming two valence particles attached to the core as in Figure 2.1. Parameters a and

p0 are adjusted to produce the most reliable estimate in Eq. (D.1). The normalization

coefficient C in Eq. (D.6) can be computed analytically.

Gauss+Gauss,sym . 6 .

sampling , the wavefunction of He can eas11yUsing the sampling function \I!

be normalized to unity with an accuracy of 0.3% or better. This accuracy is sufficient for

the computation of the overlap integral between 4He and 6He in Section 5.3.
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