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ABSTRACT

IMPROVING WILDLIFE HABITAT MODEL PERFORMANCE: SENSITIVITY TO

THE SCALE AND DETAIL OF VEGETATION MEASUREMENTS

By

Lance Jay Roberts Jr.

Monitoring the impacts of resource use and landscape change on wildlife habitat

over large areas is a daunting assignment. Forest land managers could benefit from

linking the fiequent decisions ofresource use (timber harvesting) with a system of

wildlife habitat accounting, but to date these tools are not widely available. I examined

aspects of wildlife habitat modeling that: (in Chapter 2) could potentially lead to the

establishment of wildlife habitat accounting within a resource decision support tool, (in

Chapter 3) improve our theoretical understanding and methods to interpret the accuracy

of wildlife habitat models, (in Chapter 4) explore the effects of vegetation classification

systems on wildlife habitat model results, and (in Chapter 5) show that forest structural

estimates from satellite imagery can improve potential habitat distribution models (GAP)

for forest bird species.

The majority of the analyses in this dissertation were done using a forest resource

inventory developed by the State of Michigan (IFMAP). Paired with field vegetation and

bird samples from sites across the lower peninsula of Michigan, we compared the relative

accuracy ofwildlife habitat relationship models built with plot-scale vegetation samples

and stand-scale forest inventory maps. Recursive partitioning trees were used to build

wildlife habitat models for 30 bird species. The habitat distribution maps from the

Michigan Gap Analysis (MIGAP) were used as a baseline for comparison ofmodel



accuracy results. Both the plot and stand-scale measurements achieved high accuracy

and there were few large differences between plot and stand-scale models for any

individual species. Where the plot and stand-scale models were different, they tended to

be species associated with mixed habitats. This may be evidence that scale of vegetation

measurement has a larger influence on species associated with edges and ecotones.

Habitat models that were built solely with land cover data were less accurate than models

that included detailed vegetation composition and structure information. This result was

supported in multiple analyses, including forest structural estimates generated from

satellite imagery.

There are distinct patterns ofmodel accuracy and especially commission and

omission errors that are linked to species ecological traits and method of error

calculation. These patterns are illustrated with figures that relate the model results to a

conceptual relationship between a species’ probability of presence at a given location and

the suitability of the habitat at that location. The correct application of accuracy

assessment is key to correctly understanding the utility of a model and to avoid

discounting a model as useless when it is in fact informative. I also compared the relative

accuracy of wildlife habitat relationship models built with three different hierarchical

vegetation classifications. Despite major differences in the distribution of field sites

among the classes, there was little difference in terms ofbird habitat model accuracy

between the classifications at any given level. The number of classes (level of the

hierarchy) appeared to be more important to bird habitat model accuracy than did the

nature of the classification itself.
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CHAPTER 1

INTRODUCTION TO THE USE OF WILDLIFE HABITAT MODELS IN

CONSERVATION AND MANAGEMENT

A model is an abstraction or simplified representation of reality. We use models

to simplify concepts and to help us understand systems that are too complex to measure

directly. The abundance, distribution, and dynamics of wildlife populations are examples

of system states that are far too complicated to measure with any confidence or without

unfeasible levels of effort. We can, however, measure the abundance, distribution, and

dynamics of vegetation across a landscape with much less effort and much higher

confidence. And since the distribution of wildlife populations depends in large part on

the distribution of their habitats (e.g. Grinnell 1917), we can use these data to produce

simplified representations (i.e. models) ofwhere we expect wildlife to be distributed.

These simplified representations of wildlife habitat distributions can be used, within

certain limits (Guisan and Thuiller 2005), to guide our use ofnatural resources.

Wildlife habitat models are vital to managers who must plan and perform

conservation activities, as well as anticipate landscape and climatic changes, all with very

limited information. The task ofmonitoring and maintaining biological diversity (and

especially species of special concern) creates a monumental task for public land

managers who, by law, are required to complete these difficult mandates (Manley et a1.

2004). Wildlife habitat modeling is also an active branch of ecology and conservation,

and ecologists strive to improve the quality of these models through a wide variety of

means (Austin 2007).



As habitat modeling and other conservation projects are implemented there are a

multitude of choices that must be made as to the features that will be included in the

models, and the sources of these data. These choices go hand in hand with the limitations

provided by research budgets and the difficulty (cost) of acquiring more detailed and

accurate data. Typically the independent variables will consist of environmental data that

may include categorical habitat classes, vegetation or substrate measurements, and

climate or other abiotic features. These can be generated in any number of ways, from

classified satellite imagery to intensive field samples. Dependent variables consist of

species occurrence records, and these data also require many methodological choices

involving tradeoffs in accuracy, information content, and cost to acquire. Alternatively,

when species occurrence data are not available, expert opinions can be used to draw the

links between species and the habitats they are associated with. But with expert opinion

at least some objectivity is lost. These options should be taken very seriously in the

design of a wildlife habitat modeling project, and managers and scientists alike should

weigh the costs of acquiring data against the incremental benefits that result from

including more detail in a model.

Knowledge of the ecology of the species is vitally important in building wildlife

habitat models (McPherson and Jetz 2007). Species that are abundant, prevalent (present

on a large proportion ofthe study area), conspicuous, have high site fidelity (return to

same breeding locations every year), and have close associations with measureable

vegetation characteristics (habitat specific) are likely to be more accurately modeled than

species that are rare, nomadic, or not closely associated with vegetation characteristics

(Seoane et al. 2005b). As long as the time and resources are available, each species



should be considered a unique case and knowledge of the species’ life history taken into

account in model development (meaning both the type ofmodel and the input data), as

opposed to a single modeling method applied to all species. Knowledge of a species’ life

history can also aid users of wildlife habitat models in their interpretation of the results.

Care should especially be taken to understand the assumptions that were used in model

construction process, and to apply the model outputs at the correct scale and level of

certainty.

I have crafted four projects based on wildlife habitat models in order to illustrate

some of the potential uses, limitations, and advances that are achievable in the field. In

Chapter 2 I use the data generated by a forest inventory database for state lands in

Michigan to evaluate the potential for its use in wildlife habitat modeling. This database

is continuously updated and managed as a resource use decision support tool. If wildlife

habitat can be accounted using the same system, it will allow state land managers to

incorporate wildlife habitat into resource use decisions, and to forecast wildlife habitat

conditions into the future. Chapter 3 explores in more detail some ofthe effects of

ecological traits that are particular to each species, and how we can use this knowledge in

constructing and interpreting models, model results, and model accuracy calculations.

Chapter 4 examines the influence that vegetation classification systems (the most

common environmental variable input) have on wildlife habitat model use and accuracy.

Chapter 5 describes a method ofusing satellite imagery to build estimates of forest

structure that can be used with estimates of land cover built at the same scale and using

the same imagery, and describes the magnitude of improvement fi'om including such



data. And I close in Chapter 6 with a summary of the important conclusions and overall

lessons that one can take home from this dissertation.



CHAPTER 2

ASSESSING THE UTILITY OF A FOREST RESOURCE INVENTORY

DATABASE FOR USE IN MONITORING WILDLIFE HABITAT

Introduction

One major task of state and federal land managers is to provide accurate

information to policy makers on the impacts of various land use decisions on non-

consumptive natural resources like wildlife habitat. Monitoring the impacts of resource

use and landscape change on wildlife habitat throughout a natural area, state, or region is

a daunting assignment. There are, however, significant assets available to managers and

researchers interested in accomplishing this task. Many national forests, wildlife

preserves, and state land management agencies keep detailed accounts of vegetation

resources in spatially explicit and regularly updated databases. These data have been

limited in their application for tasks such as monitoring wildlife habitat due in large part

to the general complexity of wildlife habitat modeling.

Michigan Department of Natural Resources (MDNR) personnel are seeking to

implement a system of habitat accounting for all species, not just the important game

species or rare species that have been monitored in the past. To this end, I assessed the

utility of Michigan’s Integrated Forest Monitoring, Assessment, and Prescription

(IFMAP) database as a tool for tracking statewide quantities of wildlife habitat. I used

vegetation and bird data from field sites to build wildlife habitat models. The results are

used to: 1) show the potential magnitude of improvement available when detailed

vegetation data are used in comparison to land cover data that has been relied upon in



habitat models to date, and 2) investigate the relative accuracy ofmodels built with

vegetation measurements recorded at different scales (plot vs. stand).

Wildlife-habitat models can be a useful component of ecosystem management and

play a critical role in determining conservation priorities and making land management

decisions. The effects of forest management on wildlife populations are numerous and

varied, including: removing individuals, interrupting dispersal between populations,

changing the patterns ofmovement and migration, and altering abiotic conditions

(Wigley and Roberts 1997). All of these effects can have considerable influence on

population vital rates. Forest management creates a dynamic mosaic ofhabitat on the

landscape, altering plant species composition and especially age distributions. These

fluid conditions require wildlife populations to continually adjust through changes in

abundance, movements, and persistence (Villard et a1. 1999, Donovan and Flather 2002,

Gu et al. 2002, Thompson et a1. 2003, Hanley et a1. 2005). Natural resource managers are

actively seeking new and innovative ways to account for wildlife-habitat dynamics, in

large part through modeling and landscape-level assessments ofvegetation conditions.

In some cases natural resource managers do not incorporate available forest

inventory data, instead relying solely on land cover type maps to assess habitat

distributions (Lawler et a1. 2004, Seoane et al. 2004a). This can be because vegetation

information is not available at a sufficient resolution, accuracy, and/or sampling intensity

that would make predictive wildlife habitat models accurate enough to be usefiil. Or, it

can be a result ofthe complexity of building wildlife-habitat models. As a result,

landscape-scale models of potential wildlife habitat like GAP are frequently relied upon

for local conservation projects. Systematically collected forest inventory data can have



significant value in developing wildlife habitat models (Karl et al. 1999, Welsh et al.

2006), but it is still uncommon to include these data in models of wildlife habitat

distribution (Flather et al. 1992, Imhoff et al. 1997, He et al. 1998, Osborne et a1. 2001 ,

Heikkinen et al. 2004, Seoane et al. 2004b).

As inventory technology and data resources become more available, evaluation

and refinement of these emerging assets can ensure that they are efficiently translated to

conservation research and management applications. This study highlights the potential

benefits of applying systematic forest resource inventories for modeling wildlife-habitat

distributions, and their use in local monitoring and decision-making. By utilizing local

and regional database resources, modelers and managers can apply more detailed

vegetation inventory to generate more accurate spatial habitat assessments to “step down”

regional habitat assessments like GAP to local applications and provide information for

tactical resource management decisions (Noon et al. 2003, Gottschalk et al. 2005, Austin

2007)

Natural resource managers are burdened with the fact that resource use decisions

affect wildlife populations not just in the immediate area at the present time, but over

larger spans of space and time. Combining natural resource management (especially

timber harvesting decisions) with regularly maintained and accessible wildlife habitat

information creates near real-time opportunities for adaptive management. The

projection of future conditions in vegetation and subsequent assessment of wildlife

population abundance is inevitably associated with large levels ofuncertainty. This is an

inherent, and sometimes overlooked, part of species distribution modeling (Whittaker et

al. 2005).



Apart from the uncertainty that arises in the absence of detailed vegetation

information, wildlife habitat models are susceptible to many sources of error that must be

carefully considered and accounted for. The habitat resources that limit the occurrence of

a species can vary across its range, and its absence in a location can be due to many

factors (in addition to habitat associations) including; competition (Herzog and Kessler

2006), population abundance (Linder et al. 2000), dispersal (Mortberg 2001), and more

(McPherson and Jetz 2007). Species location data is typically sparse, and where these

data are available, perhaps only a small portion of the species sampled are abundant

enough to be useful for statistical modeling (Araujo and Guisan 2006). This supports the

idea that for conservation of all species, especially the rare ones, expert-based

descriptions of habitat associations may be necessary (Hernandez et al. 2008), but see

also Seoane (2005a).

Ofien, habitat resources are evaluated for only a limited number ofeconomically

important species, such as game animals or endangered species (Hansen et al. 1999, Karl

et al. 1999). In Michigan, the initial approach has been to institute a Gap Analysis

Program (MIGAP) for the state (Donovan et al. 2004), following the National GAP

protocol (Scott et al. 1993). The GAP protocol relies on a state or region-wide land cover

map derived from Landsat satellite imagery (MDNR 2001), and expert-based

assessments ofhabitat associations to build potential habitat distribution maps (Edwards

et al. 1996). GAP was not designed to inform local resource use decisions, but instead to

coordinate conservation efforts between management groups. Nevertheless they are

often inappropriately applied in local and tactical-level conservation projects. The proper

use ofGAP is to identify locations ofpotential conservation value, and then use more



detailed approaches to convert the potential habitat distributions into maps that more

accurately represent habitat suitability for each species (Edwards et al. 1996, Edwards et

al. 1998, Peterson 2005).

In a previous study I found that MIGAP models overestimate the amount of

available habitat for most species (unpublished report). When treated as a prediction of

presence/absence, the MIGAP models result in a high rate of commission error (predicted

present but not detected) but low omission error rates (predicted absent when actually

detected). This result was also shown by Petersen and Kluza (2003). Of the many

possible reasons for this pattern of errors, two are most likely. First, the landscape-level

land cover maps derived from most satellite image classifications (MDNR 2001) do not

have the spatial accuracy or vegetation description detail necessary for revealing an

accurate distribution of habitats on the ground (Roloff et al. 2008), so GAP models

typically err on the side of including areas with even a very small chance of species

occurrence. Second, published wildlife-habitat relationships are in many cases not

refined enough to describe the specific vegetation elements that drive habitat

associations, nor are they detailed enough to compensate for the geographical differences

in habitat associations across a species’ range. Both ofthese issues result in the inclusion

ofmore locations (as potential habitat) than each species would actually occupy.

The Michigan DNR instituted a resource inventory called the Integrated Forest

Monitoring, Assessment, and Prescription (IFMAP) program. IFMAP is a Geographic

Decision Support System (DSS) that tracks the stand-scale forest composition and

structure for state-owned lands throughout Michigan, and contains detailed vegetation

information on non-forested areas. Given its detail, IFMAP appears to be ideal for



purposes of wildlife habitat evaluation. The goals of this project are: l) to determine the

amount of improvement (if any) in prediction accuracy of wildlife habitat distribution

models when forest inventory data is included in the habitat descriptions, and 2) to

determine whether it would be appropriate to build a wildlife-habitat modeling

component into the IFMAP DSS so that tactical-level wildlife habitat evaluations can

occur simultaneously with resource management decisions. The future of wildlife

decision support in Michigan is a refined modeling protocol that can reduce the error

rates inherent in the currently available tools and can track the changes in area and

distribution ofwildlife habitat with each management action on state-owned lands.

These data could be valuable for making resource use decisions, especially in a DSS

environment like Michigan’s IFMAP program.

Methods

The study area is located in the Lower Peninsula of Michigan, which is separated

into two ecoregional divisions (Albert 1995). At approximately the midpoint north-south

there is a border between the Laurentian Mixed Forest Province to the north, and the

Eastern Deciduous Forest Province to the south. The northern landscape is primarily

forested, with a wide variety of coniferous and deciduous species present, and the

southern landscape is primarily an agricultural matrix with pockets ofdeciduous forest,

largely in riparian and wet areas not suitable for agriculture (MDNR 2001). The

landscape of Michigan has changed significantly since presettlement, including the near

complete elimination ofdominant old growth hemlock/hardwood forests in exchange for

second growth hardwoods and conifers (White and Mladenoff 1994).
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In 2005, a survey crew visited five locations in the northern Lower Peninsula

consisting of separate management units of the Pere Marquette State Forest in Grand

Traverse, Benzie, and Manistee counties. In 2006 and 2007, six State Game Areas in the

southern Lower Peninsula were sampled. The southern sites cover a wide variety of

habitats including forested, lowland, and agricultural land cover types, the northern units

were all primarily forested. These 2000-3000 acre units were selected to match locations

that IFMAP stand-scale surveys had been completed by MDNR personnel.

In each unit, thirty randomly distributed plots were selected from a larger set of

randomly generated coordinates, and stratified according to the relative abundance of

different land cover types. GPS units were used to locate the field sites where bird and

vegetation surveys were performed within a 50m radius of the plot center. Bird and

vegetation surveys were conducted between late May and early July. On average 26 of

the 30 sites per compartment were surveyed, the remaining sites were excluded due to

access restrictions or time constraints in the field. Results were calculated for 393 sites in

total.

Field vegetation surveys were based on the IFMAP protocol used by MDNR

personnel (MDNR 2005). This method relies on visual estimates ofcanopy closure,

canopy and sub-canopy species cover, average height, ground cover type and density, and

measurements ofbasal area, and diameter. Basal area measurements were carried out

using a 10 basal area factor prism, and diameter measurements were taken with a

diameter tape. The dominant habitat type at each survey site was also classified into a

hierarchical vegetation cover class following IFMAP classification rules.
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Songbird surveys were conducted between mid May and early July in response to

the return of migrants and onset of the breeding season. A regionally standard bird

survey protocol (Ralph et al. 1995, Howe et a1. 1997) was used for conducting the

songbird surveys: point counts were carried out by identifying bird species and their

individual locations from the centers ofthe survey circles using sight and sound within a

10 minute time interval. The surveys were conducted between 6:00AM and 11:00AM.

No surveys were conducted during rain or strong wind.

At each of the plot coordinates I sampled the IFMAP GIS stand inventory maps

and calculated a set of habitat conditions (Table 2.1) including: vegetation cover class,

average basal area, average diameter of all canopy trees, canopy closure, proportion of

canopy cover from deciduous trees, canopy species richness, canopy species diversity

(Simpson’s Reciprocal Index), subcanopy cover, subcanopy species diversity, overall

size, upland/lowland (binary), plantation (binary), and location (binary — North/South).

‘ All maps were built on the same resolution (30m x 30m cells) and extent as the original

2001 MIGAP/IFMAP land cover dataset. This same set of habitat variables was created

from the plot-scale vegetation survey data.

The IFMAP forest inventory contains a four level hierarchical classification of

land cover for each stand. In the 393 field plot samples there are 75 level four land cover

classes. These 75 classes are unevenly distributed among the sites, dominated by 11

classes which were assigned to over 50% of the sites, while 54 classes were represented

by five or fewer sites (<2% ofthe total). I included only level three classes in the

statistical models, which have a much more even distribution of sites among the classes.
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The IFMAP level three classes are similar in number and description to the MIGAP land

cover types (MDNR 2001).

The list of species in this analysis included only the bird species that are likely to

be detected in field surveys, i.e. eliminating nocturnal, non-vocal, and rare birds. The

majority of species in the overall sample were not present in large enough numbers to

build prevalence-based habitat-association models; so all analyses have been conducted

on a set of thirty of the most prevalent bird species that represent a variety ofupland,

lowland, forest, and non-forest habitats (Table 2.2). I simplified the recorded abundance

of each species at each site into the binary variable of presence/absence (detected/not

detected). The size of this sample does not support the use of abundance for these

statistical models.

I constructed three ‘phases’ ofmodels to assess the relative differences in

accuracy as a result of adding either more detailed (e.g. additional vegetation structure

and composition information) or higher spatial resolution vegetation data (e.g. stand-scale

measurements to plot-scale estimates). The accuracy ofpredicted bird species

distributions at each model phase was assessed against field survey data using three

statistical criteria; omission/commission error, kappa, and area under the curve of

receiver—operator characteristic plots (ROC/AUC). The accuracy measures were

averaged over all species to evaluate overall patterns. The purpose of this phased,

multiple accuracy-test scenario was to illustrate the applicability of wildlife habitat

models given the restrictions of different input data sources.

Two ofthe three phases of wildlife-habitat models were generated with a

statistical model known as recursive partitioning trees (Feldesman 2002), also known as
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classification and regression trees or CART (De'ath and Fabricius 2000). Recursive

partitioning models were generated with the ‘RPART’ module in R (Atkinson and

Themeau 2000), and accuracy measures were calculated with the ‘PresenceAbsence’

package (Freeman and Moisen 2008a). Recursive partitioning is a statistical classifier

that iteratively divides the samples into increasingly homogeneous groups based on a

cutofi value for a single independent variable, and is similar to (non parametric)

discriminant analysis. Recursive partitioning performs well in comparison to most other

statistical wildlife habitat relationship models and provides a flexible and easily

interpreted method for linking vegetation data with species occurrences (Segurado and

Araujo 2004, Prasad et al. 2006). The structure of expert-based models is similar to those

generated with recursive partitioning (i.e. a set of logical conditions or rules defining

vegetation classes and cutoffs in structure or composition variables). I used recursive

partitioning to predict each species’ probability of presence at each sample location, and

compared these predictions to the field observations. I sought to keep the complexity of

the recursive partitioning models low so I used a relatively large complexity parameter

(value used to decide whether to include a new split) and limited the number of splitting

levels to four in the trees to prevent over fitting of the independent data (Anderson and

Bumham 2002). Unsupported splits and branches were pruned with a leave-one-out

cross-validation routine. The resulting models have a maximum of 15 splits resulting in

16 classified groups (end nodes of the classification tree).

For the MIGAP models, I overlaid the habitat distribution maps on the field

survey plot locations to identify the sites where appropriate habitat was predicted to be

available. I treated this list of sites as predicted presences, and compared them with the
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observed locations in the field surveys. The accuracy of each species’ model was

assessed using 2x2 error matrices (actual presence/absence vs. predicted

presence/absence) to calculate commission error (sites where the species was incorrectly

predicted to be present), omission error (sites where the species was incorrectly predicted

to be absent), and kappa. Kappa accounts for large differences in the number of sites in

the present and absent categories (Karl et al. 2000, Manel et al. 2001). The construction

of error matrices for RPART models requires that a response threshold (probability of

occurrence value that separates presence from absence) be set so that sites could be

classified into the binary presence/absence categories. The threshold used in this study is

the value that sets the predicted prevalence equal to the observed prevalence of each

species, a method supported by Freeman and Moisen (2008b). With this technique the

threshold for common species will be higher than for less prevalent species, preventing

artificially inflated omission errors for less prevalent species (Chapter 3). For the

MIGAP models, both the predicted and observed values are binary so no threshold is

necessary.

To provide an additional measure of accuracy, and a comparison to kappa, I used

ROC/AUC (Fielding and Bell 1997, McPherson et al. 2004, Allouche et al. 2006).

ROC/AUC provides an accuracy measurement that is independent of the response value

threshold. In general, kappa and ROC/AUC are highly correlated, but ROC/AUC is more

apt to represent the accuracy ofmodels built for less prevalent species.

For the first model phase I used the MIGAP potential habitat distribution models

(Donovan et al. 2004). MIGAP will be used as a baseline for comparison against the

statistical and expert wildlife-habitat models (described below). The MIGAP models
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consist of cross-walking the vegetation cover classes identified in a database of wildlife

habitat associations to the MIGAP land cover classes (MDNR 2001), then producing a

binary (present/absent) map output for each of 327 bird, mammal, reptile, and amphibian

species. The habitat distribution maps were then clipped to each species’ range extent.

These potential habitat distribution maps were overlaid on the field site locations to

determine the predicted presence or absence for the thirty species of interest (Table 2.2)

and tested with field detections. I expected the models described below to achieve higher

accuracy than the MIGAP models.

The second phase ofhabitat models used RPART to determine the set of

vegetation cover classes (but not structure or composition) that best accounted for the

detection of individuals among the surveys. Any improvement from the MIGAP models

to the more detailed IFMAP stand-scale land cover models (Phase 2a) or the plot-scale

land cover models (Phase 2b) could be the result oftwo differences: 1) a more refined

selection of appropriate land cover types in the statistical models vs. the original MIGAP

(expert-based) habitat list, and/or 2) a more accurate depiction of the spatial arrangement

of cover types in the Phase 2 models vs. the MIGAP satellite land cover classification. In

the case ofthe IFMAP GIS database (Phase 2a) the maps are derived from aerial imagery

and field surveys, and in the case ofthe field plots (Phase 2b) the vegetation and bird

samples were conducted on the same 50m radius plots. A third difference between the

models has the potential for influencing different accuracy results between phase 1 and 2

models. There are slightly different land cover class definitions between the two data

sets. Some ofthe classes that are unique to one land cover map may be important habitat

descriptors for certain species.
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In addition to assigning a vegetation cover class to each stand, IFMAP inventories

collect data on canopy and sub-canopy cover, species composition, and related forest

structural variables (Table 2.1). The same set of survey data that is included in IFMAP

inventories was gathered on a 50-meter radius sample plot by field technicians skilled in

plant identification and measurement. The third phase ofmodels includes these

additional variables in statistical (recursive partitioning) habitat association models. If

the accuracy ofmodels improves between Phase 23 and 3a, and/or 2b and 3b, this can be

attributed to the additional vegetation information accounting for more of the variation in

the wildlife field samples, but not because of the spatial arrangement ofthe vegetation.

Since the Phase 3a and 3b models were built with the same set of variables, but recorded

on a different scale, any differences in accuracy can be attributed to the differences in

scale (plot vs. stand) of the vegetation measurements.

Results

The overall accuracy of the three model phases ranked in an expected order

(Figure 2.1). Kappa values measure the departure from randomness, 0.0 being no

different from random, 1.0 representing perfect prediction. The average kappa values for

the original MIGAP models (Phase 1, kappa=0.09) are lower than for recursive

partitioning stand and plot-scale cover type only models (Phase 2a and 2b, kappa=0.29,

0.31). When vegetation composition and structure data are included, the average kappa

values increase (kappa=0.39 and 0.40, respectively for Phase 3a and 3b models). The

majority of the Phase 3a and 3b species models (25/30 and 27/30, respectively) scored

0.3 or better vs. halfof the Phase 2a and 2b models (16/30 and 15/30 respectively) and
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very few of the Phase 1 models (2/30). Overall, the differences between phases 2 and 3

are significant but the differences between the stand and plot level models are not (Figure

2.1).

ROC/AUC results show a similar difference in accuracy between Phases 2 and 3

(Figure 2.2), and the trend of higher accuracy for Phase 3 vs. Phase 2 is repeated. These

results (Figures 2.1 and 2.2) show that the scale at which these vegetation measurements

are recorded (Phase 2a vs. 2b, and 3a vs. 3b) accounts for less of a difference in model

accuracy than does the addition of detailed vegetation characteristics (Phase 2a vs. 3a,

and 2b vs. 3b). This pattern is consistent for both kappa and ROC/AUC, which are

correlated in these data (Phase 33: R2 = 0.55, 3b: R2 = 0.47).

The MIGAP models (Phase 1) revealed higher rates of commission error, but

lower omission errors, when compared with the other model phases (Figure 2.3). All of

the recursive partitioning statistical models (Phase 2 and 3) showed similar omission and

commission error rates, but Phase 3 models trended lower. The differences between

phase 2 and 3 omission and commission errors are highly significant (p<0.01), but the

differences between the stand and plot scale models are not.

The accuracy of the stand and plot-scale models (Phase 3a and 3b) are similar for

most species. The exceptions to this pattern (with a difference between stand and plot-

scale models ofkappa >= 0.2) were seen for Field Sparrow, Tufted Titrnouse, and

Northern Flicker (all of which are associated with mixed habitats, Table 2.2). Other

species that showed relatively large differences between stand and plot-scale models

were also mostly from the mixed habitat guild. ROC/AUC supports this result, the

largest differences in AUC values between Phase 3a and 3b models were for Cedar
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Waxwing (mixed habitat guild) and Northern Flicker. For Field Sparrow, Northern

Flicker, and Cedar Waxwing the plot-scale models were more accurate, but for Tufted

Titmouse it was the stand-scale. For a more detailed examination ofthese results,

including correlation between model accuracy and species prevalence, and results

aggregated by habitat guild see Chapter 3.

There was a wide range of variables included in the Phase 3 models. Every

model included cover type at least once (average = 1.6, Table 2.3), the majority of the

models (3a: 21/30, 3b: 24/30) included cover type at the root node (first split). Location

(north or south) was the next most common first splitting variable (3a: 6/30, 3b: 6/30).

Diameter, basal area, subcanopy cover, and canopy diversity were the next most common

variables included in the recursive partitioning models. Site descriptors such as overall

size, upland/lowland, and plantation were included only rarely. On average each model

included approximately five variables and six splits (out of a maximum of 15).

Discussion

These results establish that forest resource databases like IFMAP can be as useful

as intensive plot-scale field samples in monitoring wildlife habitat, and suggest that a

wildlife habitat resource module could be successfully implemented into forest resource

decision support tools. This will make it possible to track changes in wildlife habitat

resources that result fi'om each timber resource management action. There are numerous

practical and technological hurdles that need to be accounted for in this process. Since

appropriate statewide wildlife survey data from which to fit statistical models rarely exist,

I advise following a strategy similar to gap analysis; creating expert-based models for
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each species based on published habitat accounts and local habitat associations. While

the accuracy shown by expert models is likely to be lower than models fit with statistical

algorithms, they could prove to be a dramatic improvement over GAP models, assuming

continued efforts to refine habitat definitions as additional wildlife location data become

available (Seoane et al. 2005a).

One of the most important results from this study is that the resolution at which

- these vegetation measurements were recorded (small plot measurements vs. entire stand

summaries) is less vital to model accuracy than is the addition of detailed vegetation

characteristics (i.e. vegetation structure and composition vs. land cover types). When

results are averaged over many species there is very little difference in accuracy between

these two scales of habitat measurement (Figures 2.1 and 2.2). However, looking

further into this comparison reveals some interesting differences. Those species that

show a large difference in accuracy between stand and plot-scale models belong to the

mixed/edge habitat guild (Table 2.2). The majority of forest and other habitat guild birds

have a small difference in accuracy between their plot and stand-scale models. It appears

that the hard stand-edge delineations in the IFMAP GIS database may mask some ofthe

important ecotonal features of wildlife habitat, and thus lead to lower accuracy for

mixed/edge habitat species. In contrast, the plot-scale vegetation samples are more likely

to accurately depict these edge and mixed conditions. Still, at least one mixed habitat

species was more accurately modeled with stand data (Tufted Titrnouse). An additional

explanation could be that the selection ofhabitat variables (Table 2.1) is biased towards

aboveground vegetation characteristics. Spatial pattern metrics (e.g. edge indices) could
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provide some important additional information to stand level vegetation information in

this context.

In addition to being a rich source of habitat information, the nature of the stand

level IFMAP GIS inventory data lends itself to the calculation of landscape pattern and

context variables that could add important habitat information for many species. A small

set of spatial variables (Riitters et al. 1995, Gustafson 1998) such as edge density, patch

size, patch shape, distance to important landscape features such as water or roads, and

other metrics could account for a significant amount of variation in bird habitat locations

and improve habitat model predictions even further (MacFaden and Capen 2002). A

major restriction to the use of landscape pattern metrics with the IFMAP stand data,

however, is the prevalence of artificial edges created by ownership and jurisdictional

boundaries. It was for this reason that I did not include landscape pattern metrics in this

analysis.

There was a wide variety of vegetation structural and composition variables that

were included in the statistical models (Table 2.3), and most species were associated with

at least two of these. Cover types from the IFMAP ecological classification system were

included in every species’ model, often at more than one level in the classification tree

(Table 2.3), which indicates that the vegetation community plays an important role in

wildlife habitat models. Cover type was also the most common first splitting variable

among all the species, followed by location (north/south). All of these provide evidence

of a broad to fine scale hierarchy ofhabitat selection cues.

The MIGAP models (Phase 1) are unique in this study in having many

commission errors and few omissions. This is consistent with their intended purpose, to
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track the distribution of potential habitat and identify those species which do not have an

appropriate amount of habitat under the protection of reserves (Rodriguez et al. 2007).

For this reason omission errors could be much more damaging to conservation purposes

than commission errors. The rest of the statistical models show rates ofomission and

commission error that are nearly equal (Figure 2.3). I included MIGAP in this study as a

predictive habitat model despite knowing that this application is inconsistent with its

desired purpose.

The automatic selection of thresholds for calculating error matrices for each

species appears to have found a balance between omission and commission error that

maximizes model quality (kappa). Depending on the choice of threshold, there can be

positive or negative relationships between commission/omission errors and prevalence,

and these choices should be part of the a priori strategy of the habitat modeling project

(see Chapter 3).

It is important to note the effects that the method of accuracy assessment has on

these results. Calculating the accuracy ofbinary models (habitat or not) is relatively

simple. At any given location the model predicts either the presence or absence of each

species, and field wildlife samples can confirm this. A 2x2 error matrix is then built, and

% correctly classified (PCC), omission/commission errors, and kappa can easily be

calculated. Statistical models like recursive partitioning are seemingly more refined in

that at each location a continuous (0.0 — 1.0) probability ofpresence is generated. This

continuous scale, in theory, more accurately fits the actual probability that a species will

be present at that location. In other words, for any given location there is some

probability between 0 and 1 that a species will actually be present there. For common
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species, and in very appropriate habitats this value might be close to one, but in

inappropriate habitats might be low or even zero.

This phenomenon can be described as a probability of occurrence function (Karl

et al. 2000) where the probability ofpresence can be graphed against a gradient of

different habitats, each of which is unique to that species (Chapter 3). Rarer species are

likely to show either a lower probability of occurrence across their habitat suitability

gradient or a narrower range ofhabitats with a high probability of occurrence, and thus

may be less likely to be accurately modeled by binary predictions. Accuracy measures

calculated fiom a error matrix (kappa, omission/commission error) suffer from the same

limitation as GAP models, essentially binning a continuous prediction scale into a binary

one. ROC/AUC on the other hand is calculated over all possible thresholds in the

probability ofpresence value and is therefore an attractive accuracy measure (Freeman

and Moisen 2008b). The kappa statistic accounts for large differences in the numbers of

presences and absences in a sample, but requires the careful choice of thresholds to

adequately represent model quality. ROC/AUC is independent of threshold and may

therefore be a less biased measure ofmodel quality (Manel et al. 2001, Allouche et al.

2006)

Despite the steps I took to prevent over fitting ofthe RPART models (namely

limiting the number ofbranching levels to four, and using a relatively high complexity

parameter), there were instances where careful examination ofthe classification tree

revealed splitting definitions that do not make sense in terms of current knowledge of

species-habitat associations. These issues and others can be eliminated over time with

23



careful examination and continuous refinement of the wildlife habitat models and

definitions.

All of these models, and especially GAP, are prone to inherently large

commission errors. As the ultimate goal of the work described in this paper is the

conservation of wildlife habitat, we should seek to minimize the omission error rate even

at the expense of increasing the commission error rate. The reason for this would be to

preserve as much potential habitat for each species as possible, as any increase in

omission errors associated with wildlife habitat models will lead to neglecting potential

habitat for that species. The omission error rate can be minimized in relation to the

commission error by choice of a different threshold for the probability ofpresence value

(see Chapter 3 and Freeman and Moisen 2008b).

Only half ofpublished studies evaluate model performance, many fewer used

statistics designed to account for abundance/prevalence (Manel et al. 2001). The models

produced in this project are not built with separate training and validation samples. I did

not have a large enough sample size, especially in the case of the least abundant species

included in this project. I believe it was justified in this case because I am not currently

using these data to predict the locations for any real applications. The results shown here

are simply used to describe the relative utility of the IFMAP forest inventory database in

relation to other sources like field plot vegetation samples.
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CHAPTER 3

PATTERNS OF WILDLIFE HABITAT MODEL PERFORMANCE IN

RELATION TO THE HABITAT SPECIFICITY AND PREVALENCE OF

SPECIES

Introduction

Wildlife habitat models are an important component of ecosystem management

and often play a critical role in determining conservation priorities and making land

management decisions. They are vital to land managers who must perform conservation

activities with limited information. The accuracy of wildlife habitat models is a popular

area of study, and ecologists strive to improve the quality of these models by improving I

statistical methods (Elith et al. 2006, Hernandez et al. 2008), using more detailed

environmental predictors (Gottschalk et al. 2005, Bergen et al. 2007), using better

methods for testing model quality (Manel et al. 2001, Vaughan and Ormerod 2005),

optimizing the spatial scale of vegetation samples (Karl et al. 2000, Lawler and Edwards

2006), accounting for spatial artifacts (Segurado et al. 2006, Bahn and McGill 2007), and

more (Araujo and Guisan 2006).

The success ofmany conservation activities is closely tied to the proper

application of wildlife habitat models (Fahrig 2001, Jetz et al. 2008). Successful

application of models can be disrupted by poor-quality input data, a lack of understanding

of species ecology leading to incorrect model design, or by inappropriate conclusions

fi'om model results (Austin 2007). For example, using a model to predict the distribution

of birds dming the breeding season may give good results for abundant species, but the

same technique might fail (result in very inaccurate predictions) for rare species. The
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optimal set of input data may be very different for different species (e.g. habitat

generalists and specialists). Sometimes, models built for use as a coarse-filter description

ofpotential habitat distribution (like GAP) are incorrectly applied as a prediction of

species occurrence (Scott et al. 1993). Problems such as these can be avoided ifwe

refine our understanding ofthe relationship between wildlife habitat model accuracy and

species traits such as prevalence, habitat specificity, and detectability (Seoane et al.

2005b). A better understanding of the inherent relationships between species ecological

traits and model performance would provide a basis for properly (and more successfully)

implementing wildlife habitat models for use in monitoring and decision-making

(McPherson and Jetz 2007).

There are many examples that illustrate the relationship between species ecology

and the ability to predict distribution of habitats and species occurrence. Rater species

tend to result in models with lower accuracy than abundant species for many reasons, in

part because ofuncertainty due to small sample size (Karl et al. 2002), and in part due to

ecological reasons like the more frequent local extinctions associated with

metapopulation dynamics (Storch and Sizling 2002). Species that have greater

specialization with measureable environmental characteristics are more accurately

modeled than generalists because statistical models are able to discriminate between used

and unused sites (Seoane et al. 2005b, Tsoar et al. 2007). Generally, the more

environmental variables included, the better the model performance (sometimes due to

the inclusion of an important limiting resource, sometimes due to a serendipitous

correlation unrelated to species ecology). Ideally, model variables should be chosen to

reflect specific habitat cues that are important for the group of species included in the
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study. It is hard to know which variables are important, and it is impossible to include

everything, even expert opinion may not provide usefirl information (Seoane et al. 2004b,

2005a).

In addition to questions about model construction and application, predictive

wildlife habitat models are susceptible to many sources of error and uncertainty that must

be carefirlly considered and accounted for. The habitat resources that limit the

occurrence of a species can vary in different parts of its range, and its absence in a

location can be due to many factors (in addition to habitat associations) including; inter

and intra-specific competition (Whittaker and Levin 1975, Herzog and Kessler 2006),

population abundance or conservation status (Linder et al. 2000, Hepinstall et al. 2002),

dispersal and site fidelity (Knick and Rotenberry 2000, Pulliarn 2000, Mortberg 2001),

and more (Guisan and Thuiller 2005). Species location data is typically sparse, leading to

a high rate of sampling error and the inability of statistical methods to fit models to sparse

data (Araujo and Guisan 2006). In predictive habitat mapping science there is a large

population of statistical models to choose from. The various statistical approaches have

been evaluated in numerous studies (e.g. Segurado and Araujo 2004, Elith et al. 2006,

Austin 2007), and no method has emerged as the single best one (Seoane et al. 2005b).

In fact, model quality appears to be more dependent on characteristics of the species

being modeled and especially the detail ofthe environmental input data than choice of

algorithm (Guisan et a1. 2007). In this paper, I used recursive partitioning (RPART),

which performs well in comparison to most other statistical wildlife habitat models and

provides a flexible and easily interpretable method for linking vegetation data with

species occurrences (Segurado and Araujo 2004, Prasad et al. 2006). Recursive
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partitioning models are transparent and easy to interpret, and the structure of their

classification rules are similar to expert-based habitat definitions.

Most wildlife habitat models assign a likelihood ofoccurrence (or detection or

presence) for each species to each site in a field sample. When sites (or habitat classes or

a gradient in some other vegetation characteristic) are ranked and plotted against the

probability of occurrence, the result is a declining function representing the likelihood of

the species’ presence on each habitat type (dotted line in Figure 3.1). The shape of this

function differs for each species, and in reality is unknown. The purpose of wildlife

habitat models is to estimate this unknown relationship. For the most common species

there may be a high probability ofoccurrence across a large portion ofthe habitats (as in

Figure 3.1a). Less common species may show a lower probability ofoccurrence on a

smaller proportion ofthe habitats (as in Figure 3.1b), or alternatively a high probability of

occurrence on a very small proportion of the habitats. The prevalence ofeach species is

shown by the area under the curve of the likelihood of occurrence function (dotted lines

in Figure 3.1). Habitat specialists will be associated with a narrower range of habitats

than generalists, and in combination with high or low prevalence these ecological

characteristics of each species will largely determine the success ofhabitat models.

Wildlife habitat models attempt to fit the likelihood ofoccurrence function as

closely as possible, based on the habitat information (vegetation and environmental

measurements) that is provided to them. The simplest models are binary (like GAP).

The shaded area in Figure 3.1 represents the set of habitats that the model (in this case a

hypothetical one) identifies as appropriate for that species. The area of the plot where the

prediction surface (shaded area) overlaps the occurrence function reveals the correct
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presences, while the area above the curve reveals the incorrect presence predictions

(commissions). The breadth of the model prediction surface has a large effect on the

proportion of omissions and commissions. If a larger threshold in probability of

occurrence is chosen (for example 0.5: Figure 3.1c, 3.1d), this defines the boundary of

the prediction surface and can have a large effect on the number of omissions and

commissions. Comparing Figures 3.1a and 3.10, the narrower prediction surface (defined

by the probability of occurrence threshold = 0.5) has the result of decreasing the number

of commissions, but increasing the omissions. Figures 3. lb and 3.1d show a similar

situation for a rare species. In this case, the use of the 0.5 threshold results in a very large

proportion of all the habitats occupied by this species to be predicted as absent. Despite

being a very commonly used (i.e. default) threshold value, 0.5 is rarely appropriate for

use with a large set of species with varying prevalence and ecological traits. A threshold

tied to each species’ prevalence is a better approach (Freeman and Moisen 2008b).

Most wildlife habitat models give a continuous probability of occurrence value to

each habitat instead ofbinary as shown in Figure 3.1. These models have the potential to

fit the probability of occurrence function more closely. But the use of a probability

threshold is still necessary to calculate many model accuracy measurements — like

percent correctly classified (PCC), kappa, omission and commission error, sensitivity,

and specificity — that are calculated from an error matrix (Table 3.1). Kappa and some

other metrics [like the true skill statistic (Allouche et al. 2006)], are designed to correct

for bias induced by large differences in the number of presences and absences between

species, but these measures are still very sensitive to the choice of a threshold in

probability of occurrence that defines the boundary between presence and absence. For
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this reason, threshold independent measures, like area under the receiver-operator

characteristic curve (ROC/AUC) have become popular, but still are susceptible to

problems (Lobo et al. 2008).

No accuracy measure is best in all situations. For a successful conservation

project, wildlife habitat model users need to be aware ofnot only the weaknesses of each

accuracy measurement, but also of the types of errors that are likely to result fi'om

building models for species with particular ecological traits and prevalence. In this study,

I attempt to link wildlife habitat model performance with the specificity of species’

habitat associations, and prevalence. The results should help modelers know what to

expect, in terms ofmodel quality and accuracy, fiom their particular data.

Methods

The study area is located in the Lower Peninsula of Michigan, which is separated

into two ecoregional divisions (Albert 1995). At approximately the midpoint north-south

there is a border between the Laurentian Mixed Forest Province to the north, and the

Eastern Deciduous Forest Province to the south. In 2005 a survey crew visited five

locations in the northern Lower Peninsula, and in 2006 and 2007 six locations in the

southern Lower Peninsula were sampled. In each unit (~2000-3000 acres), thirty

randomly distributed plots per year were sampled for birds and vegetation within a 50m

radius of the plot center. The complete dataset consists of 393 locations where both

vegetation and birds were sampled. At each ofthese locations I also have stand-scale

vegetation measurements from a statewide forest resource database. A more detailed

description of the study area can be found in Chapter 2.
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At each site I calculated a set of habitat conditions (Table 3.2) from both the plot

and stand-scale vegetation measurements, and these data are compared in this study to

examine the effect of resolution on the habitat association models. The choice of

variables to include in this dataset was large. In this particular resource database (MDNR

2005) each measurement unit included the size and cover of each canopy species; the

size, density, and height of sub-canopy species; dominant ground cover; and stand-scale

variables such as basal area, presence of slash, overall size, land cover type/vegetation

cover class, management type (plantation, even or uneven aged), upland or lowland, and

canopy closure.

The list of species included in this analysis was reduced to include only those

species that are likely to be observed in field surveys, i.e. eliminating nocturnal and non-

vocal birds, and with high enough prevalence to produce statistical habitat models (Table

3.2). These species are found in a variety ofupland, lowland, forest, and non-forest

habitats. I simplified the recorded abundance of each species at each site into the binary

variable ofpresence/absence.

Wildlife habitat models were generated with a statistical algorithm known as

recursive partitioning (Feldesman 2002), also known as classification and regression trees

or CART (De'ath and Fabricius 2000). Recursive partitioning models were run using the

‘RPART’ module (Atkinson and Themeau 2000) in R version 2.8.0. Recursive

partitioning is a classifier that iteratively divides the samples by selecting a cutoff value

for a single variable that separates samples into increasingly homogeneous groups

(Segurado and Araujo 2004, Prasad et al. 2006). I used recursive partitioning to predict

each species’ probability ofpresence at each sample location, and compared these
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predictions to the field observations. I sought to restrict the complexity of the models to

prevent overfitting the habitat measurements by limiting the number of splitting levels to

four and I used leave-one-out cross-validation to prune unsupported branches (Anderson

and Bumham 2002). This resulted in trees that have a maximum of 16 habitat groups

(defined by recursive partitioning tree end nodes).

Each model was evaluated using multiple statistical criteria (Table 3.1). I show

the results for omission/commission error, kappa, and area under the curve of the

receiver-operator characteristic plot (ROC/AUC). All the accuracy measures except

ROC/AUC require using a 2x2 error matrix (actual presence/absence vs. predicted

presence/absence). The construction of error matrices requires that a response value

cutoff (threshold in probability of occurrence that separates presence fiom absence) be set

so that sites are binned into the binary presence/absence categories. I used two

thresholds, the first sets the threshold equal to each species’ prevalence. Species with

lower prevalence (rarer species) will therefore have a lower threshold and will include

relatively more sites in the predicted ‘present’ category (and potentially also more

commission errors). The second threshold is set at whatever value makes the model’s

predicted prevalence equal to the observed prevalence for each species, a method

supported by Freeman and Moisen (2008b). In this case, the quality of the model has

more to do with threshold value than does species prevalence.

Kappa accounts for large differences in the number of sites in the present and

absent categories (Karl et al. 2000, Manel et al. 2001) and reflects the improvement over

a random distribution among the categories. But kappa is calculated from the error

matrix, and therefore still relies on choice ofthreshold values. To provide a threshold
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independent measure of accuracy I used ROC/AUC (Fielding and Bell 1997, McPherson

et al. 2004). In general, kappa and ROC/AUC are highly correlated, but ROC/AUC is

more apt to represent the accuracy ofmodels built for less prevalent species (Allouche et

a1. 2006).

Two models were built for each species, one with plot-scale vegetation

measurements and one with stand-scale data. The accuracy measures were averaged over

all 30 species to evaluate overall patterns, and detailed model results are shown for four

individual species that differ in prevalence and habitat specificity (Table 3.3). Ovenbird

is the most prevalent bird in this sample, American Robin is a prevalent bird that is a

decicuous forest generalist, Black-throated Green Warbler is a low-prevalence bird in this

sample that has specific habitat associations (deciduous forest with conifer understory),

Yellow-billed Cuckoo is a low-prevalence bird associated with mixed (especially edge)

habitats. For each of these species I show detailed model results, and link the model to a

conceptual diagram that displays model structure in relation to measures of accuracy.

Results

When the probability of occurrence threshold for binning a site in the present

category is equal to each species’ prevalence, the average kappa values were similar for

both the stand and plot-scale models (kappa=0.37 and 0.39, respectively). The majority

of the species models in each set (22/30 for stand-scale and 27/30 for the plot-scale data)

scored 0.3 or better (Figure 3.2a and 3.2b). The only species that showed a large

difference between the stand and plot-scale models (defined as a difference between the

models ofkappa >= 0.15) were mostly mixed habitat species, including Field Sparrow
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(mixed habitat guild), Yellow-billed Cuckoo (mixed habitat guild), Nashville Warbler

(forest habitat guild, but is also found in shrub habitats), Gray Catbird (mixed habitat

guild), and Northern Flicker (mixed habitat guild). ROC/AUC supports this result, the

largest differences in AUC values between stand and plot-scale models were for Cedar

Waxwing (mixed habitat guild) and Northern Flicker. For all of these species the plot-

scale models were more accurate.

When the threshold that sets predicted prevalence equal to actual prevalence is

used, the results are similar (Figures 3.2c and 3.2d). The overall difference between

stand and plot-scale models is slightly smaller (kappa = 0.39 and 0.40 respectively), and

there are fewer species that show a large difference between the stand and plot-scale

models (Northern Flicker, Tufted Titrnouse, and Field Sparrow), but again all were of the

mixed habitat guild.

The association between species prevalence and model prediction accuracy shows

mixed results. With both of the thresholds, kappa shows no correlation for either the

stand-scale vegetation models (Figures 3.2a and 3.2c, R2 < 0.05) or the plot-scale models

(Figure 3.2b and 3.2d, R2 < 0.01). ROC/AUC, however, appears to show an increase in

model accuracy with decreasing species prevalence for both the stand-scale (Figure 3a,

R2 = 0.10) and the plot-scale vegetation data (Figure 3.3b, R2 = 0.27) although the

correlations are weak.

Threshold choice had a minimal effect on kappa (see above), but a large effect on

commission and omission error rates. With the threshold equal to prevalence for each

species (Figures 3.4a and 3.4b), commission errors increase consistently with declining

prevalence for both the stand-scale (Figure 3.4a, R2 = 0.47) and plot-scale (Figure 3.4b,
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R2 = 0.57) models. Omission errors decrease slightly as prevalence declines, with no

correlation (R2 = 0.02 for stand-scale models, R2 = 0.04 for plot-scale). Nearly all of the

models showed lower omission error rates than commission error. With the threshold set

where the predicted prevalence equals the actual prevalence for each species (Figures

3.4c and 3.4d), the trends associated with prevalence are much less distinct. In addition,

there is less of a difference overall between commission and omission error rates. When

the 0.5 threshold in probability of occurrence is used, the results change drastically due to

some low prevalence species showing 0% commission and 100% omission error rates

(i.e. the models predicted no presences).

Looking at kappa and ROC/AUC, Ovenbird and Black-throated Green Warbler

had relatively accurate models for both the stand and plot-scale vegetation data, while

American Robin and Yellow-billed Cuckoo had relatively inaccurate models (Table 3.4).

This result fit with groups of species based on habitat specificity. Specialists showed a

significantly higher accuracy with both kappa and ROC/AUC for the stand-scale

vegetation measurements, but ROC/AUC was not significant for plot-scale models.

Choice ofthreshold value had a small effect on kappa (exceptions to this are the stand-

scale models for Yellow-billed Cuckoo, and the plot-scale models for Black-throated

Green Warbler). ROC/AUC is threshold independent, but there are relatively large

differences in commission and omission errors between the two threshold choices (Tables

3.4a and 3.4b). Commission error is higher when threshold is equal to species prevalence

(Table 3.4a), and omission errors are higher when threshold is the value that sets the

model’s predicted prevalence equal to the actual prevalence of each species. There did

not appear to be a relationship between habitat specificity and omission and commission
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errors (the differences between generalists and specialists are not significant).

Commission errors appear to be more correlated with species prevalence (Figures 3.4a-d)

than with habitat specificity.

Recursive partitioning models (using plot-scale vegetation measurements) for

each ofthe four species are represented in Figure 3.5 (in a manner similar to Figure 3.1).

Each vertical box shows one habitat class (group of sample sites with similar habitat

features) generated by the recursive partitioning tree, and the width of each box is

proportional to the number of samples included in that class. The classes are ranked

along the horizontal axis in order of decreasing predicted presence value, shown on the

vertical axis. Dark shaded portions of each box represent the predicted presences (which

is equal to the proportion ofpresences observed in the data), and light shaded areas

represent absences. Threshold values for generating the error matrix are the same as

described previously, and are shown graphically by using dashed and dotted lines. The

first is set at the prevalence of each species (along the vertical axis, dotted line), the

second at the point where observed prevalence equals predicted prevalence for each

species (along the t0p horizontal, dashed lines).

The more accurate models (Ovenbird [Figure 3.5a] and Black-throated Green

Warbler [Figure 3.5d]) have a smaller proportion of their habitat classes near

intermediate (0.5) values in predicted presence probability, while the less accurate

models (American Robin [Figure 3.5b] and Yellow-billed Cuckoo [Figure 3.5c]) have a

relatively large proportion of predictions at intermediate values. The two methods of

selecting threshold values result in a large difference for the less prevalent species while

the more prevalent species have thresholds at similar values (as noted previously and
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shown in Table 3.4). For American Robin (Figure 3.5b) both thresholds give exactly the

same model results, but for Yellow-billed Cuckoo (Figure 3.5c) and Black-throated

Green Warbler (Figure 3.5d) the two thresholds result in drastically different prediction

surface. The prediction surface is only slightly different for Ovenbird (Figure 3.5a) with

the two thresholds.

The second method of selecting threshold values (where the model’s predicted

prevalence = the actual prevalence of each species) appears to set the number of

omissions and commissions very close to equal, while the first method (threshold =

species prevalence) tends to minimize omissions (Table 3.4, Figure 3.4). With the

threshold = species prevalence, the increase in commission error rates with less prevalent

species (Figures 3.4a and 3.4b) can be explained by the fact that there tend to be more

predicted presences for rare species than with the second threshold, and a larger

proportion of these are incorrect (“b” in Table 3.1).

Discussion

It is important for users of wildlife habitat models to fully understand the methods

of accuracy assessment they are using in conservation projects. But it is difficult to grasp

the meaning of accuracy measurements without a solid understanding ofhow the outputs

of a statistical model relate to the calculations inherent in the accuracy assessments. I

have attempted to show this relationship graphically in Figure 3.1 (hypothetical binary

models) and Figure 3.5 (actual recursive partitioning model output). In both figures, the

horizontal axis represents a ranked list of habitats, arranged in order ofhighest (at the

left) to lowest (at the right) quality. In Figure 3.1 the horizontal axis is gradient made up
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of all possible sample sites, in Figure 3.5 these are groups of sample sites with similar

vegetation measurements (binned by the recursive partitioning model). The vertical axis

refers to the probability that a species will be present. In Figure 3.1 it is the theoretical

probability of occurrence which takes into account the influence of population size,

growth, dispersal ability, fidelity, and site history. In Figure 3.5, the scale of the vertical

axis is the predicted probability ofpresence for each group of sample sites output by the

recursive partitioning model. This probability is the actual proportion of samples within

each group where the species was recorded as present, and therefore includes all of the

same influences as Figure 3.1 (population vital rates, fidelity, site history) plus

detectability of the species. Detection probabilities vary quite drastically by species, and

add a significant amount of uncertainty to the probability of occurrence (or predicted

presence probability) values.

What some have considered relatively unimportant details or arbitrary

assumptions (e.g. the choice of threshold value for converting continuous predictions into

a binary error matrix) can have large effects on the results and/or interpretation. Kappa,

omission error, and commission error are all calculated by selecting a threshold

probability of occurrence value (for example 0.5, Figures 3.1c and 3.1d) that determines

where the prediction surface (shaded areas in Figure 3.1) ends. This essentially forces a

continuous prediction scale into a binary one, with the result of treating all the predictions

of probability of occurrence less than 0.5 as ‘absent’ (see shaded areas and the threshold

[dashed line] in Figure 3.1c and 3.1d). An effective method is to set this threshold

dependent on each species’ prevalence (2008b), as has been done in this study, and to
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understand that species’ ecological characteristics may affect the quality of wildlife

habitat models.

I have summarized some patterns of wildlife habitat model utility and have given

specific examples. Wildlife habitat models for habitat specialists can be inherently more

accurate than generalists because statistics can more easily define habitat classes that

clearly delineate appropriate from poor habitats (given the limitations of the resolution,

extent, and accuracy ofvegetation resources measurements included in the model). The

detail and scale of habitat model inputs plays a large role in the ability to accurately

predict species locations. Stand-scale vegetation measurements (in comparison to plot-

scale measurements) may not be as appropriate for describing edge and mixed habitat

associations, but tend to be well suited to other species and have the added advantage of

providing the possibility of calculating spatial pattern information (not included in this

study).

The correlation between model accuracy and prevalence is typically positive (e.g.

Vaughan and Ormerod 2005) since rarer species are simply less likely to be present on

any given location of appropriate habitat (Manel et al. 2001). The challenge in building

wildlife habitat models is to predict appropriate habitat sites with a high probability of

presence, but this can be difficult because of the fact that rare species may actually have a

low probability ofbeing detected on even the best sites. Accuracy measures fail to take

this into account and therefore may not reflect an actual measure ofmodel quality, but

instead an inability to account for uncertainty in species occurrence. The uncertainty in

species occurrences can be due to a myriad of ecological reasons unrelated to habitat
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(Storch and Sizling 2002), as well as detectability (MacKenzie et al. 2005, Royle et al.

2005).

Most common accuracy measures, including kappa when a 0.5 threshold is used,

are relatively inflexible to the species’ ecological characteristics (such as habitat

specificity and prevalence). Kappa, however, can be used effectively when the choice of

threshold in probability of occurrence is flexible, and tied to each species’ prevalence

(2008b). In this study, the relationship between prevalence and model accuracy was

weak (kappa, Figure 3.2) or even negative (ROC/AUC, Figure 3.3).

For wildlife habitat models there is a tradeoff between sensitivity and specificity

(Allouche et al. 2006). Sensitivity is the probability of correctly classifying a presence,

specificity is the probability of correctly classifying an absence (Table 3.1). By changing

the probability of occurrence threshold to increase one, the other declines. ROC/AUC

assesses model accuracy across all values of sensitivity/specificity and therefore is no

affected by threshold choice, but kappa can change drastically (Allouche et a1. 2006,

Freeman and Moisen 2008b). The proper choice of threshold values can optimize the

specificity vs. sensitivity tradeoff, even when using kappa, but see Manel et al. (2001).

The two threshold values used in this study had relatively small effects on kappa (Figure

3.2, Table 3.4), but large effects on commission and omission error rates (Figure 3.3,

Table 3.4).

All of these models, except for species with very specific habitat associations, are

prone to inherently large commission error rates. As the ultimate goal of all the work

described in this paper is the conservation of wildlife habitat, it may be desirable to

minimize the omission error rate even at the expense of increasing the commission error
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rate. The reason for this would be to preserve as muchpotential habitat for each species

as possible, as any increase in omission errors associated with wildlife habitat models

will lead to neglecting potential habitat for that species (Wilson et al. 2005). If this is a

desirable condition of a wildlife habitat modeling project for a large set of species, then

the threshold for considering a location as appropriate habitat should be equal to the

prevalence of the species (the first threshold used in this study). When this is the case,

commission error rates increased with less prevalent species, but omission errors were

low across all species (Figures 3.4a and 3.4b). However, when resources are limited and

only a small set of locations can be targeted for conservation, then a different approach

may be necessary so that the most important locations are protected.

When a model performs poorly, it can be due to many factors, and a poor quality

model may not in fact be useless. Some species have a low prevalence across their range

and are not likely to have a high probability of occurrence at any given location. For

example, species that show low site fidelity and instead are nomadic or focused on a

spatially patchy/irruptive food resource may be recorded in many different locations over

different years, but still within similar habitats. In this case a model that does not

incorporate the food resource will be unable to predict those locations year to year.

Accuracy measures will show that this model performs poorly, but in fact it does a very

good job of describing the distribution of appropriate habitat. This model, with very poor

accuracy, may in fact be very useful. Other examples of important vegetation and

environmental measurements may be immeasurable and therefore will not be included in

model construction, but if this is known beforehand the model may still be usefirl

depending on the application. Often, higher-level effects such as community interactions,
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predation, and inter-specific competition can add variation to species distributions that

habitat models cannot track. Species undergoing rapid population increases or declines

can be difficult to model accurately, but if these patterns are understood then steps can be

taken to make interpretation ofmodel results more feasible.
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CHAPTER 4

INFLUENCE OF VEGETATION CLASSIFICATIONS ON WILDLIFE HABITAT

MODEL PERFORMANCE

Introduction

Wildlife habitat models are an important component of ecosystem management

and often play a critical role in determining conservation priorities and making

management decisions. They are vital to managers who must perform conservation

activities with limited information. The accuracy of wildlife habitat models is a popular

area of study, and ecologists strive to improve the quality ofthese models by improving

statistical methods (Elith et al. 2006, Hernandez et al. 2008), using more detailed

environmental predictors (Gottschalk et al. 2005, Bergen et al. 2007), using better

methods for testing model quality (Manel et al. 2001, Vaughan and Ormerod 2005),

optimizing the spatial scale ofvegetation samples (Karl et al. 2000, Lawler and Edwards

2006), accounting for spatial artifacts (Segurado et al. 2006, Hahn and McGill 2007), and

more (Araujo and Guisan 2006).

Frequently the availability, rather than the suitability, of environmental and

habitat information is the determining factor as to whether a predictor variable will be

included in a wildlife habitat model (Roloff et al. 2008). Often, the only habitat data that

are available for modeling wildlife distributions are spatial classifications ofvegetation or

land cover (from aerial or satellite imagery). The number and type of classes in these

data are not necessarily determined by their appropriateness for wildlife habitat modeling

(i.e. the perceived differences in habitat types by each species), but instead by the
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limitations of a satellite image classification technique and/or the perception of land

management professionals. The effects of vegetation classification system design

(specifically the number and type of classes) on wildlife habitat models is an

underrepresented topic in the large volume of literature on wildlife habitat modeling

(Scott et al. 2002). As an artifact of the statistics used to build wildlife habitat models,

more classes will often lead to better model fit, but it is difficult to determine the effects

of altering the arrangement of samples among classes (i.e. changing the class definitions)

on model results.

Terrestrial vegetation classification has a long history in ecological theory (Watt

1947, Kuchler 1951, Daubenmire 1952, Grime 1974). Classifications have taken many

forms, from a posteriori statistical analysis of field measurements (Bray and Curtis 1957,

Greig-Smith et al. 1967), to a priori potential climax vegetation community states (Pfister

and Arno 1980, Cook 1996), to large scale ecoregional assessments (Bailey 1983). If the

environmental gradients, disturbance dynamics, and management goals are properly

weighed, then environmental classifications can be very usefiil in a wide variety of

conservation projects (Bourgeron 1988). Otherwise classifications can suffer from a lack

ofrigor (they are not valid outside a limited area), or they will not represent real

ecological processes and landscape dynamics like successional trends and the distribution

of species along the ecological gradients in a particular location (Grossman et al. 1999).

A posteriori classifications may be more susceptible to these issues because they

are dependent on the quality of the field samples used in their construction. Statistical

clustering algorithms also tend to minimize the within-class variability and maximize the

between-class variability, which may mask true ecological processes that represent



themselves as very fine patterns. It is possible that a priori classification systems could

identify these less obvious patterns and provide a more accurate representation of

landscape dynamics. Modern vegetation classification systems are often a mix ofa priori

class selection and a posteriori statistical analyses (Grossman et al. 1999). Even if a

classification system achieves all of the requirements listed above and is an accurate

representation of the environmental gradients and landscape dynamics of the region, the

vegetation classes and spatial patterns of their distribution on a landscape may not be the

same as those perceived by wildlife species (i.e. may not reflect the factors that represent

limiting resources (O’Connor 2002)).

As wildlife habitat modeling and other conservation projects are implemented

there are a multitude of choices that must be made as to the specific components that will

be included in the models, not to mention the sources of these data. These choices go

hand in hand with the limitations provided by research budgets and the difficulty (cost) of

acquiring more detailed and accurate data. Typically the independent variables will

consist of environmental data that may include categorical habitat classes, vegetation or

substrate measurements, and climate or other abiotic features. These can be generated in

any number ofways, from classified satellite imagery to intensive field samples.

Although it seems clear that systematically collected forest inventory data,

including both vegetation composition and structure, can have significant value in

developing wildlife habitat models (Karl et al. 1999, Welsh et al. 2006), it is uncommon

to include these data in models ofwildlife habitat distribution (Flather et al. 1992, Irnhoff

et al. 1997, He et al. 1998, Osborne et al. 2001, Heikkinen et al. 2004, Seoane et al.

2004b). In many cases, the detailed vegetation information that would improve the
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accuracy ofpredictive wildlife habitat models are simply not available without intensive

field sampling, and so modelers rely solely on vegetation classifications. Depending on

the level of detail included in the classification this could be an appropriate strategy, but

it depends on the biological characteristics of the species in question and the purpose of

the modeling project. For regional assessments of potential habitat distribution (like

GAP), a simple land cover classification may be appropriate. But land cover based

habitat assessments like GAP are frequently, and inappropriately, applied to local

conservation projects or resource management decisions (Noon et al. 2003).

In a previous study examining the accuracy ofGAP models in Michigan

(MIGAP, Donovan et al. 2004) I found that MIGAP models overestimated the amount of

available habitat for most species. When treated as a prediction ofpresence/absence, the

MIGAP models result in high rates of commission error (predicted present but not

detected) but low omission error rates (predicted absent when actually detected). Of the

many possible reasons for these errors, two are most likely. First, the landscape-level

land-cover maps derived from satellite image classifications (MDNR 2001) contain

relatively broad vegetation cover classes with no categories for mixed deciduous and

conifer forest, which are abundant in the western Great Lakes landscape. Therefore, land

cover maps may not have the spatial accuracy or vegetation description detail necessary

for revealing an accurate distribution of habitats for many species, so MIGAP models

typically err on the side of including areas with even a small chance of species

occurrence. Second, published accounts of wildlife-habitat relationships are in many

cases not refined enough to describe specific vegetation elements that drive habitat

associations, nor are they detailed enough to compensate for the geographical differences
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in habitat associations across a species’ range. Both of these issues result in the inclusion

ofmore locations (as potential habitat) than each species regularly occupies.

The particular class definitions in a classification are important to the accuracy of

a wildlife habitat model (Roloff et al. 2008). If the classes are such that used vs. unused

habitats are clearly divided for a particular species, then a statistical model will be very

accurate. However, a classification with a large number of classes will be likely to

predict species presence more accurately than one with fewer classes, simply by chance

and the ability of because statistical algorithms. It may be difficult therefore to determine

whether it is the quality ofthe class definitions or the number of classes that leads to

differences in wildlife habitat model accuracy between two vegetation classifications.

There are many examples that illustrate the relationship between species ecology

and the ability to predict distribution of habitats and species occurrence. Species that

have greater specialization on measureable environmental characteristics are more

accurately modeled that generalists because statistical models are better able to

discriminate between used and unused sites (Seoane et al. 2005b, Tsoar et al. 2007).

Rarer species are typically associated with less accurate habitat distribution models than

are abundant species. This pattern can result from sampling issues (Karl et al. 2002), or

for ecological reasons like the more frequent local extinctions associated with the

metapopulation dynamics of less common species (Storch and Sizling 2002). Generally,

the more variables included, the better the model performance, but care should be taken

to avoid spurious relationships due to chance. Ideally, these variables should be chosen

to reflect specific habitat and environmental cues (potentially limiting resources) that are

important for the group of species included in the study. But it is difficult to avoid
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inclusion of characteristics that are in fact arbitrary, even expert opinion may not provide

useful information (Seoane et al. 2004b, 20053).

In this study, I compare the relative accuracy of wildlife habitat relationship

models built with three different hierarchical vegetation classifications. The first

classification was developed for a statewide forest resource inventory database, the

second is a statistically fit set using the first as training data, and the third comes from an

unsupervised clustering routine. I compare the effects of the classification system, in

particular the definition and number of classes, on the success of wildlife habitat models.

Methods

The study area is located in the Lower Peninsula of Michigan, which is separated

into two ecoregional divisions (Albert 1995). At approximately the midpoint north-south

there is a border between the Laurentian Mixed Forest Province to the north, and the

Eastern Deciduous Forest Province to the south. The northern landscape is primarily

forested, with a wide variety of coniferous and deciduous species present, and the

southern landscape is primarily an agricultural matrix with pockets of deciduous forest,

largely in riparian and wet areas not suitable for agriculture (MDNR 2001). In 2005 a

survey crew visited five locations in the northern Lower Peninsula, and in 2006 and 2007

six locations in the southern Lower Peninsula were sampled. In each unit (~2000-3000

acres), up to thirty randomly distributed plots were sampled each year for birds and

vegetation within a 50m radius of the plot center. The complete dataset consists of460

locations where both vegetation and birds were sampled. A more detailed description of

the study area and methods can be found in Chapter 2.
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To determine the potential influence of habitat classification type and number of

classes, I developed three different classifications, each with three levels (defined by the

number of classes). The baseline vegetation classification was developed a priori by the

Integrated Forest Monitoring, Assessment, and Prescription (IFMAP) program in

Michigan as a result of a process involving foresters and ecologists (MDNR 2004, 2005).

IFMAP is a geographic decision support system (DSS) that tracks stand-level forest

composition and structure for state-owned lands throughout Michigan, and contains

detailed vegetation information on non-forested areas. The vegetation classification

system is a combined physiognomic and floristic hierarchical design with each level

separating finer classes, similar to Anderson et al. (1976). As it is designed primarily for

forestry purposes, there are more forest vegetation classes (70+) than open land or

wetland classes (~40) at the finest level of the classification. The logical structure of the

classification consists of a series ofmany ‘IF-THEN-ELSE’ decisions which bin every

location into a single class. Each decision is made based on the presence or amount of

abiotic features or plant cover.

I manually assigned one hierarchical class value to each ofthe 460 field plots

based on the IFMAP decision rules as applied to the field vegetation measurements.

These samples resulted in 52 level-four, 16 level-three, and 9 level-two classes (Table

3.1). The distribution of sites among the classes is moderately skewed, with the largest

five level-four classes comprising 25% of all the sites, and 22 classes made up of only

five sites or fewer (average number of sites per class = 8.9, s.d. = 7.6).

The predicted classes were generated with a statistical algorithm known as

recursive partitioning (Feldesman 2002), also known as classification and regression trees
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or CART (De'ath and Fabricius 2000). Recursive partitioning models were run using the

‘RPART’ module in R (Atkinson and Themeau 2000). One ofthe advantages of

recursive partitioning is the similarity between the decision rules used to classify sites in

the IFMAP database and those generated with recursive partitioning. The training data

for the predicted vegetation classes were the field plot class assignments as the dependent

variable and a large set of vegetation measurements as the independent variables. The

vegetation measurements included three site descriptors, eleven calculated composition

and structure variables, and the percent cover of each canopy tree species within the plot

boundary (47 species were recorded over all the field plots). The recursive partitioning

models were then used to predict the vegetation class for each site, and this set of

predictions (one for each level from 2 through 4) is used as the second classification in

wildlife habitat model comparisons.

The third vegetation classification used in the wildlife habitat model comparisons

is a set of classes assigned by a ‘partitioning around medoids’ cluster analysis, calculated

with the ‘Cluster’ module in R (Maechler 2008). This approach allows the user to choose

a number ofdesired clusters (k), then the algorithm chooses the k representative samples

(medoids) that minimize the stress of the final clustering based on a dissimilarity matrix

of all the plots. The dissimilarity matrix was generated with the Bray-Curtis distance

measure. I assigned all field plots to a 9, 16, and 52 group classification to compare with

the actual and predicted level-2, 3, and 4 classifications.

The list ofbird species included in this analysis was reduced to include only those

species that are likely to be observed in field surveys, i.e. eliminating nocturnal and non-

vocal birds, and abundant enough to plausibly calculate a statistical habitat model
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(present at > 5% of sites). These 30 species represent a variety of upland, lowland, forest,

and non-forest habitats. l simplified the recorded abundance of each species at each site

into the binary variable of presence/absence. Recursive partitioning was used again to

predict each species’ probability ofpresence at each sample location, and accuracy

measures were calculated by comparing these predictions to the field (presence/absence)

observations. A more detailed description of the model construction methods is covered

in Chapter 2.

I show the results for omission/commission error, kappa, and area under the curve

of the receiver-operator characteristic plot (ROC/AUC). All the accuracy measures,

except ROC/AUC, require using a 2x2 error matrix (actual presence/absence vs.

predicted presence/absence). The construction of these error matrices required that a

response value cutoff (probability level that separates presence from absence) be set so

that the sites were classified into the binary presence/absence categories. I used a unique

threshold for each species that sets the predicted prevalence ofthe recursive partitioning

model equal to the observed prevalence for that species. This method is supported by

Freeman and Moisen (2008b). Kappa accounts for large differences in the number of

sites in the present and absent categories (Karl et al. 2000, Manel et al. 2001) and reflects

the improvement over a random distribution among the categories. To provide a

threshold independent measure of accuracy I used ROC/AUC (Fielding and Bell 1997,

McPherson et al. 2004). In general, kappa and ROC/AUC are highly correlated, but

ROC/AUC is more apt to represent the accuracy ofmodels built for less prevalent species

(Allouche et al. 2006). I averaged error and accuracy measures over all 30 species and

tested for significance between means with a paired t-test (species defined the pairings).
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Even with large within group variation, a paired t-test can produce a significant result by

a consistent in crease or decrease in value for each pair between two samples.

Results

The IFMAP vegetation classification system is a detailed hierarchical assembly of

over 115 land cover and vegetation classes (Table 4.1, part 1). Ofthese, more than 70

can be characterized as forest vegetation classes. When the IFMAP classes are compared

to the recursive partitioning predictions, there is little support for the number of classes,

especially at levels 3 and 4. 7 of 9 level-2 classes, 10 of 16 level-3 classes, and 21 of 52

level-4 classes were retained in the recursive partitioning classification (Table 4.1, part

2). The disagreement between these two classifications is not dominated by any one

general (level-1) vegetation or land-cover type. In fact, all of the level-l classes show a

similar reduction in the number of predicted classes from the IFMAP training data. The

classes that tend to be eliminated in the predicted classification are the least frequent

IFMAP classes in the dataset.

Despite low levels of class representation in the predicted classification, the

recursive partitioning predictions were fairly accurate. 85% of the sites were classified

correctly at level-2 (kappa = 0.83), 75% at level-3 (kappa = 0.73), and 53% at level-4

(kappa = 0.51). Given that many ofthe classes were not retained between the original

IFMAP classification and the prediction classification, and that the kappa values are quite

high, the recursive partitioning classification seems to support (at least the major classes

of) the IFMAP classification system.
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There is no direct way to compare the IFMAP classification with the cluster

analysis classes, but some summary statistics are revealing. The moderately skewed

distribution of sites among the IFMAP classes contrasts with a relatively even

distribution of sites among the cluster analysis classes for level-2, while levels 3 and 4

show a skewed distribution of sites among classes, very similar to the IFMAP

classification. The mean number of sites per class is the same in both classifications at

each level, but the standard deviation is much larger in level-2 for the IFMAP

classification than the cluster analysis classification, and similar for levels 3 and 4 (Table

4.2).

When looking for agreement between the IFMAP classification and the clusters,

only three classes in the level-2 cluster classification have 50% or more of their sites

within a single IFMAP classification (herbaceous agriculture, upland shrub, and upland

coniferous forest). All of the other IFMAP classes have sites spread out over many

clusters. Similarly for levels 3 and 4, many of the IFMAP classes have sites distributed

across a wide variety of cluster classes. Six out of 16 level-3 IFMAP classes share more

than 50% oftheir sites with a single cluster class. These are: agricultural crops, oak

deciduous forest, aspen deciduous forest, planted pine forest, natural pine forest, and

upland mixed forest. The latter three of these were all associated with a single cluster

class. At level-4, 16 out of 52 IFMAP classes shared 50% or more of their sites with a

single cluster. These were spread out over a wide variety of upland, lowland, forest, and

non-forest classes.

There were small differences in overall accuracy of the bird habitat models

between the IFMAP and cluster classifications. Within each classification type, the
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higher levels (more classes) were significantly more accurate over all 30 species (paired

t-test, p<0.05) than the lower levels (fewer classes). The IFMAP classification resulted in

the highest accuracy at every level. The predicted classes showed lower accuracy at

level-4 (kappa, Figure 4.1 and AUC, Figure 4.2) but not at level-2 or 3. There were no

significant differences in commission or omission errors (Figure 4.3a) between any of the

classifications at any hierarchical level. The differences in accuracy between the IFMAP

classes and the predicted classes were only significant at levels 3 and 4 (paired t-test,

p<0.05). The predicted classification had only 21 classes at level-4, compared to 52 in

both the IFMAP and cluster classifications (Table 4.1). At level-4, there were more

species with relatively accurate models (kappa>0.2, AUC>0.75) using the IFMAP classes

than with the predicted or cluster classes (29 for IFMAP vs. 26 for both the predicted and

cluster classes). The difference was even larger at level-3 (26 for IFMAP vs. 21 for both

the predicted and cluster classes), but there was little difference at level-2 (16 vs. 14 for

predicted and 15 for cluster classes).

Discussion

Comparing the two alternate classifications to the IFMAP classification shows a

declining level of agreement with increasing number of classes. The disagreement

increased both in the number of sites assigned to different classes, and (comparing

IFMAP to the predicted class) in the number of classes themselves. Despite this

disagreement, the accuracy ofbird habitat models increased with higher levels (more

classes) of each classification, indicating that number of classes does in fact increase the

ability of statistical wildlife habitat models to fit sample data. However, there were
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significant differences between the classifications (within each level) that indicate the

quality and format of the classification can also influence wildlife habitat model

performance.

These results show that the IFMAP habitat classification system is as useful, or

better than, an a posteriori statistical clustering classification for modeling habitat

associations of a large suite of bird species. The detail of the forested habitat classes (at

level-3 or above) appears to be adequate for describing habitat types used by a set of bird

species in the Midwest. The IFMAP data and variables selected for this study are biased

towards canopy and forest measurements. If the IFMAP resource database fails to be

appropriate for any particular species it would most likely be for open habitat (e.g.

grassland and wetland), or mixed habitat and edge species where the compartment based

GIS data fail to adequately describe complex ecotonal conditions (Chapter 1).

The major differences between the IFMAP classification system and the two

alternatives presented in this study are the number of less frequent classes, and/or the

composition (habitat type definition) ofthe classes themselves. When comparing the

IFMAP classification to the predicted classes, the identity and composition ofthe classes

are roughly the same but the least frequent classes are absent in the predicted set. The

bird habitat model results show that removing the least frequent classes does have a

significant negative effect, but the magnitude of this effect appears to be small (IFMAP

vs. predicted, Figures 4.1 and 4.2).

When comparing the IFMAP classification to the cluster classes, the number of

classes is the same but the identity ofthe classes (i.e. distribution of sites among the

classes) differs. Looking at the level-3 classifications, there is a significant difference in
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accuracy (kappa and AUC, Figures 4.1 and 4.2) between the model results, but the

difference at level-4 is not significant. This implies that the effect of the distribution of

sites among classes on wildlife habitat models accuracy (i.e. using different classification

systems) can be offset if you: 1) include a large enough number of classes, and 2) make

sure the classes represent some portion ofthe ecological processes the lead to vegetation

community formation (i.e. the classes represent reality).

Whether these results support the use ofa priori/expert models (like IFMAP) or a

posteriori/statistical habitat classifications (like the cluster analysis) is not clear. But

since the IFMAP classification system led to higher accuracy at every level of the

classification and resulted in nearly every species showing more accurate models than

with either the predicted or cluster analysis classifications, I feel its use is warranted.

Given the long history of study in community ecology, perhaps a priori and expert

models are more likely to represent the fine scale landscape processes that might be

missed with more objective statistical (a posteriori) methods of ecological classification.

It is difficult to determine whether the IFMAP level-3 classification (16 classes) would be

preferable to the level-4 (52 classes) in this context. The notable improvement (kappa =

0.31 for level-3, kappa = 0.36 for level-4) could be the result of the more accurate

depiction of vegetation communities across this landscape, thus leading to more accurate

predictions, or it could be a statistical artifact of dividing the sites up into arbitrarily small

groups thus over-fitting the sample data.
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CHAPTER 5

MAPPING FOREST STRUCTURE FROM SATELLITE IMAGERY FOR

WILDLIFE HABITAT DISTRIBUTION MODELS

Introduction

Land cover maps derived from satellite imagery are useful in coarse-filter

approaches to identifying the distribution of wildlife habitat (Boone and Krohn 2000).

The gap analysis program (GAP) is an example of a widely used wildlife habitat

monitoring program that has been implemented at a nearly continental extent. The GAP

protocol (Scott et al. 1993) relies on a statewide land cover map derived from Landsat

satellite imagery (MDNR 2001), and expert-based descriptions of wildlife habitats that

define a set of land cover types that are preferred by each species (Edwards et al. 1996).

GAP wildlife habitat distribution maps have been used to identify local land units that

should receive priority in conservation inventory or management projects (e.g. Rodriguez

et al. 2007), and to allocate funding for a given species or habitat (e.g. Kiester et al.

1996). The use ofGAP maps is limited to showing the distribution ofhabitat potential at

a coarse (landscape to regional) scale (Edwards et a1. 1996). They are not reliable as

predictive models of species locations at a local scale, but when they are used as such

they are susceptible to large rates of commission error (Peterson and Kluza 2003 and

Chapters 2 and 3).

Since land cover maps bin all locations into a set of vegetation or land-cover

classes, there is the potential for large variation of habitat characteristics within the

classes. Forest vegetation classes would be particularly prone to this variation due to the
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three-dimensional properties of a tree-dominated plant community. Many wildlife

species are dependent on these three-dimensional characteristics of forest habitats for nest

locations and feeding platforms, so forest structure measurements could be valuable data

for modeling efforts (Karl et al. 1999). The addition of forest structural characteristics to

wildlife habitat models based on land cover (like GAP) could lead to more accurate

habitat distribution estimates and more successful conservation planning.

In contrast to land-cover data, field-based forest inventory programs often collect

numerous plot-level measurements valuable for a wider range of applications. For

example, the USDA Forest Service has systematically inventoried forests nationwide

since the 193Os under the Forest Inventory and Analysis (FIA) program (Hansen et al.

1992). The information generated from forest inventories forms the basis for developing

management policies, habitat protection strategies, and resource utilization decisions.

Forest inventory programs like FIA monitor many forest conditions (e.g. timber volume,

age distribution), but not in a spatially explicit format (GIS-based compartment and stand

records). Managers rely on these data even though spatial conditions such as adjacency

can have a significant impact on resource utilization decisions (Borges and Hoganson

1999). There are a few forest inventories maintained as spatially explicit GIS databases

by state and federal natural resource agencies. These datasets include several timber

production centered parameters that provide useful information for characterizing forest

composition and structural conditions within patches (stands), but their spatial extent is

limited by jurisdictional boundaries.

Combining plot-level forest inventories and satellite imagery through

classification can extrapolate the detail of forest plot surveys across the entire spatial
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coverage of a satellite image scene, and spatial patterns of forest resources can therefore

be assessed. These data could lead to more accurate areal summaries than a randomized

plot-level survey, and would allow managers to strategically plan for the spatial

distribution of successional and development stages of the forest across the landscape.

Despite the fact that the most successful remote sensing examples have been cover type

classifications (e.g. Wolter et al. 1995), techniques designed to assess forest structure

have been increasingly successful (Wulder 1998, Scarth and Phinn 2000, Moisen and

Frescino 2002, Moisen et al. 2006).

One of the largest advantages ofremote sensing for forest inventory is that

satellite remote sensors are not restricted by jurisdictional boundaries, and therefore can

provide a more inclusive estimate of forest resources than institutional inventories. The

diversity of spatial scales, temporal reproducibility, and the wealth of information that is

possible to glean from remotely sensed imagery make these data very attractive for

conservation and wildlife management projects. However, the technical expertise

required to develop these data is limiting, as is the quality of the training data required

(number and detail of reference plots). In relatively simple and homogeneous forests

(e.g. boreal conifers) where classification of forest structure is most successful, there is

often a significant correlation between vegetation density and the structure variable being

classified (e.g. Turner et al. 1999, Cohen et al. 2003). In other words, “greenness” is

proportional to basal area, stem density, or biomass. In the complex and mixed forests

that are present in the western Great Lakes, however, relatively simple classification

techniques, like regression, may not be effective. Fortunately, many classification

algorithms are designed to identify minute spectral differences between land-cover
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classes and exploit these responses to generate accurate classifications of continuous-

scale forest attributes (Wulder 1998, Moisen and Frescino 2002).

Optical and infrared sensors record only the electromagnetic signal that is

reflected and emitted from the sum of all targets in a pixel, and cannot penetrate the

surface ofmany targets. In closed-canopy deciduous forests, for example, little of the

recorded radiance per pixel is contributed by sub-canopy elements like tree branches,

stems, understory plants, and ground cover. Due to this phenomenon, it is unlikely that

forest structural characteristics like the diameter of tree trunks, or the height of the

canopy will contribute identifiable spectral patterns to satellite image pixels. For

example, a closed-canopy young maple forest will look very similar to a closed-canopy

mature maple forest even though structural aspects such as basal area, average stem

diameter, biomass, and canopy height may be very different. However, in temperate

forests deciduous tree species lose their leaves during the fall and develop anew in spring.

Timing the acquisition of satellite imagery during these times allows the sub-canopy

elements to contribute to the radiance signal that is recorded in a satellite image (Wolter

et al. 1995). The spectral characteristics ofmany deciduous species’ leaves change due

to changes in leaf chemistry, and these patterns also help to discern forest community

types with satellite imagery (Dymond et al. 2002). In some situations, forest structural

characteristics can be strongly associated with particular spectral bands of imagery, like

aboveground biomass and NIR (Zheng et al. 2004). Lu et al. (2004) have shown that

there are correlations between Landsat TM spectral values and measured forest structure

(average stand diameter, average stand height, basal area, and aboveground biomass) in

deciduous South American forests.
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For assessments of forest cover or other stand-level information, a gain size of

10-100 meters appears to be ideal for aggegating the spectral qualities of tree crowns,

canopy gaps, and sub-canopy elements (Wulder and Franklin 2003). Grains smaller than

10 meters are susceptible to being dominated by any individual portion ofthe target (like

shadow, backgound, or canopy) which means that these targets must be surveyed

individually and provided to the classifier. Fine-gained imagery will not adequately

reflect the continuous nature of forest stands, but may be more useful for classifying

variables related to individual trees, while imagery with pixel dimensions larger than 100

meters has the potential to aggegate the features of interest (Wulder et al. 2004).

Techniques designed to assess forest vertical structure from reflected spectral

sigratures have seen mixed success (Scarth and Phinn 2000, Hansen et al. 2001, Xian et

al. 2002, Cohen et a1. 2003, Zheng et al. 2004). However, the non-parametric k-Nearest

Neighbors (kNN, Denoeux 1995) technique has been successful in mapping landscape-

scale assessments of forest structure and cover from medium resolution satellite imagery.

Researchers in Minnesota used kNN to classify cover type, basal area, and diameter

(Franco-Lopez et al. 2001, Haapanen et al. 2004). In Sweden researchers mapped wood

volume, age, and biomass (Reese et al. 2002). And kNN has been employed extensively

to map diameter, height, age, basal area, and volume in Finland (Maltarno and Kangas

1998, Tomppo et al. 2002, Tuominen et al. 2003). Liu et al. (2003) compared kNN to

other cover type classification methods including traditional parametric classifiers and

artificial neural network models. They found that kNN equaled the accuracy of the

neural network models (geater than 90% overall accuracy for six classes) despite its
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much simpler implementation. Both the kNN and neural network models performed

sigrificantly better than traditional classifiers.

With kNN, pixel-level errors are generally large for continuous-scale forest

structural classifications. Accuracy measures are typically reported in RMSE (root mean

square error), or RMSE as a percentage ofthe mean ofthe reference sample plot values

(relative RMSE or %RMSE). Often the %RMSE values are as much as 50-100% (Reese

et al. 2002, Makela and Pekkarinen 2004). However, when estimates are aggegated over

a larger area, e.g. within a patch or stand, the estimates are often as good as field

measurements (Trotter et al. 1997, Holmstrom et al. 2001, Reese et al. 2002). The

difficulty in assessing the accuracy of continuous scale variables and the natural variance

in structural measurements in temperate mixed deciduous forests create a large amount of

uncertainty in these data, and add to the apparent error in accuracy calculations.

The goal of this study is to classify a set of forest structure measurements for a

heavily forested area in northern Michigan, and assess their utility for wildlife habitat

modeling. As noted, there are numerous examples ofmapping land-cover from satellite

imagery, but relatively few examples ofmapping forest structural variables. If cover type

and forest structure maps can be produced in combination and at a useful resolution and

level of accuracy, it would represent a valuable tool to monitor wildlife habitat resources

at a minimum of effort and cost. Other wildlife habitat monitoring progams require

many person-hours to gather both wildlife occurrence data and vegetation measurements.

With both land cover and vegetation structure mapped on the same spatial extent and

resolution, we may be able to more effectively (and efficiently) monitor the habitat

resources ofmany species across jurisdictional boundaries.
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Methods

The study area for this project lies in the eastern Upper Peninsula of Michigan

(UP). This approximately 2 million acre (800,000 hectare) landscape is 80% forested by

area, and ownership is split into four major goups; National Forest (35%), state forest

(35%), industrial and non-industrial private (25%), and protected wilderness (5%). The

major vegetation types include northern hardwood forests, white and red pine forests,

jack pine barrens, aspen monocultures, mixed hardwood-conifer forests, conifer swamps,

and bogs (Albert 1995) but there is considerable overlap in species composition. Forests

in the Upper Great Lakes region are managed primarily for timber production, and this

anthropogenic influence is the primary form of disturbance, replacing fire in many

locations (White and Mladenoff 1994).

I classified forest structural characteristics using the kNN algorithm and multi-

temporal Landsat 7 Landsat Enhanced Thematic Mapper imagery (Franco-Lopez et al.

2001, Haapanen and Bk 2001). Up to five dates of imagery (Table 5.1) were included for

each oftwo scenes: Row 28, Paths 22 and 23. All imagery was acquired between 2000

and 2003, and has been georectified in the UTM coordinate system (spheroid GRSSO,

datum NAD83, zone 16) to less than 1/3 of a pixel using nearest-neighbor resarnpling. I

corrected diffuse haze on each image using the Haze-optimized Transformation (Zhang et

al. 2002, Zhang and Guindon 2003), and combined all the bands into a multi-temporal

raw digital number (DN) composite image for each scene. Over 1000 Forest Inventory

and Analysis (FIA) (Hansen et al. 1992) survey plots for each scene were used as gound

control points to train and test the kNN classifier. I created maps for five vegetation
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measurements; basal area (units: square feet per acre), average diameter at breast height

(units: inches), total biomass (units: tons per acre), canopy height (units: feet), and stem

density (units: number of stems per acre).

The FIA database represents the most detailed and extensive forest inventory in

the United States. I accessed FIA sample data and plot coordinates through a cooperative

ageement with the USDA Forest Service North Central Research Station in St. Paul,

MN. All image classifications and accuracy assessments were performed by Forest

Service staff on Forest Service computers. Classified image products were altered to

assure that FIA plot locations cannot be identified from published FIA sample data. The

FIA progam began their sixth forest inventory cycle in Michigan in 2000, and these

training data include samples from the first three sub-cycles (2000 through 2003).

FIA plots are arranged in a four-subplot array, and I tested the effectiveness of

both the plot and subplot level aggegation of vegetation measurements for training the

kNN image classifier. The subplots are 8 meters in width and three of the subplots are

arranged around a center subplot at 36.6m center to center. The spatial resolution at

which the FIA survey data are gathered is smaller than a single Landsat pixel, and it is

unlikely that two sub-plots will be associated with a single pixel (Haapanen et al. 2004).

I used two different methods for aggegating FIA plot measurements to use as

training data for satellite image classifications, aggegating the four subplots together into

a single sample, or treating each of the four subplots as a separate sample. When the four

subplot measurements were aggegated over the entire plot, the vegetation information

was associated with a 3x3 mean filtered image pixel for classifications. When each sub-

plot was used separately as a gound control point, the 8-meter diameter sub-plot
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information was matched to a single 30—meter Landsat pixel. The sub-plot aggegation,

therefore, results in four times as many reference plots (4000+ per image) as the plot-

level aggegation. Correlations between structural measurements and spectral values

were calculated to examine the information content of the imagery. For each

classification, 90% of the plots were used in training, and 10% were held out for accuracy

calculations.

I examined a set of inputs and parameters to determine the optimal conditions that

maximize kNN classification accuracy. These included altering the spectral band

combinations of the imagery, kNN classification parameters, training data aggegation

(plot vs. subplot), removing FIA plots with large variation between subplot

measurements, and post processing of classified imagery. Parameters of the kNN

classifier included k (the number ofreference plots used to calculate unknown pixel

predictions), geogaphical distance weighting, and stratifying the classifications by

upland/lowland or general forest cover type (upland conifer/lowland

conifer/hardwood/aspen). I tested transformations to lower the dimensionality of the

spectral data inputs, including NDVI, principal components analysis, and Tasseled Cap. I

also removed the least correlated spectral bands, and various combinations of

transformed and untransformed imagery in an attempt to optimize the spectral inputs.

Finally, I used post-classification processing ofthe imagery with a 3x3 mean filter. All

the accuracy measures were calculated for path 22 and those results are shown below.

Final structure variable classifications for both paths were developed based on the

optimal set ofparameters and inputs as determined from the path 22 image classification

trials. Accuracy was calculated with root mean square error (RMSE) of the predicted
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values vs. actual values of the test plots (10% of all the FIA plots), and R2 of the plotted

actual vs. predicted values. I also calculated RMSE ofthe difference between the

classified images on the region of overlap between the scenes.

The resulting classified images were used as landscape-level habitat assessments

in wildlife habitat models. I used the habitat distribution maps developed by the

Michigan Gap Analysis Progarn (MIGAP) (Scott et al. 1993, Donovan et al. 2004) as a

baseline to examine whether accuracy could be improved with the addition ofkNN

classified structure maps. In a previous study I found that the MIGAP models

overestimate the amount of available habitat for most species. When treated as a

prediction ofpresence/absence, the MIGAP models result in a high rate of commission

error (predicted present but not detected) but low omission error rates (predicted absent

when actually detected).

I examined the published habitat descriptions (Brewer et al. 1991 , Donovan et al.

2004) that were used to develop the MIGAP models and identified species that had

specific forest structural associations that were likely to be ignored in the original

MIGAP models. I then used 169 locations from the Hiawatha National Forest Breeding

Bird Survey where I assessed the presence/absence of five ofthese species: Scarlet

Tanager, Eastern Wood-pewee, Chipping Sparrow, Black-throated Blue Warbler, and

Pine Warbler. Each of these species was present at 15-40% ofthe survey sites, and also

had MIGAP models that resulted in a better than random prediction (kappa = 0.0 is

random, all the models for the species listed above had a kappa >= 0.15). These

conditions were used to see if an already successful model could be improved with the
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addition ofone or two simple structural characteristics to the vegetation cover data that

were used to build the original MIGAP model.

I overlaid the MIGAP habitat distribution maps and the kNN structure

classifications on the field survey plot locations to identify the sites where the

combination ofmaps predicted the location of appropriate habitat. For each of the

species listed above, I selected up to two of the structural variables and subset the

classified map at the average, or average +/— 0.5 standard deviations (Table 5.5). The

cutoff value was selected to make the predicted prevalence close to, but not less than, the

actual prevalence from the Hiawatha National Forest bird survey records (Table 5.7). I

treated this list of sites as predicted presences, and compared them with the observed

locations fi'om the field surveys. The accuracy of each set ofmodels was assessed using

2x2 error matrices (actual presence/absence vs. predicted presence/absence) to calculate

the number of commission errors (incorrect presence predictions), omission errors

(incorrect absence predictions), percent correctly classified sites (PCC), and kappa.

Kappa accounts for large differences in the number of sites in the present and absent

categories (Karl et a1. 2000, Manel et al. 2001).

Results

The five structural variables used in this analysis show patterns ofhigh correlation

with each other (Table 5.2). Height, diameter, and biomass all show correlations (R)

above 0.50 when aggegated at the subplot level. Similarly, basal area and stem density

are highly correlated, as well as basal area and biomass. Stem density and canopy height,

as well as stem density and diameter are negatively correlated. The two goups of
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variables linked by the largest correlations could be summarized as ‘size’ (height,

diameter, and biomass) and ‘density’ (basal area and stem density), although basal area

and biomass are also highly correlated.

Patterns of correlation between forest structure measurements and spectral values

differ by type of measurement, season, and spectral band. Overall, the association

between spectral values and structure are rather weak. All of the measured maximum

correlation (R2) values for subplot-level aggegations of FIA data are below 0.22, and

average less than 0.13 (Table 5.3a). Plot-level correlations are consistently higher than

subplot-level (Table 5.3b), but the values are still low. There is a large amount of

variation in correlation values across spectral bands. ETM+ bands 3, 5, and 7 tend to

have the highest correlations. High correlations were seen in the summer and early fall

images (Table 5.3), but there were high correlations for all image dates with the

exception of the early spring (April) image. The highest average correlations over all

image dates and spectral bands are seen for the structural variables stem density and basal

area (note that these are also highly correlated in the FIA subplots). Stem density and

basal area show relatively high correlation with spectral bands across all the seasons.

Average diameter, canopy height, and total biomass show weaker correlations with

spectral values, limited mainly to the summer and early fall (July, August, and

September) images. Overall, the lowest correlations were seen in ETM+ band 4 (near

infi'ared), while the highest correlations were seen in ETM+ bands 5 and 7 (the longer

wavelength infrared bands).

The plot-level reference data used to classify 3x3 mean-filtered spectral data lead

to higher classified map accuracy than do subplot values with the unfiltered imagery,
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matching the correlation results. The lowest RMSEs were generated with higher values

for k in the classification parameters, but higher values ofk also lowered R2 values by

shrinking the range ofthe predicted values. The tradeoffbetween R2 and RMSE takes

place in the k=3 to k=5 range. None of the other kNN parameters (geogaphical distance

weighting or stratifying the classifications by upland/lowland or general forest cover

type) improved the accuracy of the predictions.

Optimizing the spectral band inputs by statistical transformations (PCA and

tasseled cap) or removing uncorrelated bands did not improve, and usually decreased, the

accuracy of classifications. Removing the plots with large variability between subplot

measurements also lowered accuracy. Post processing the classified images with a 3x3

mean filter did improve the accuracy calculations sigrificantly. Therefore, it appears that

the spatial aggegation of these data (3x3 mean filtered spectral inputs, FIA plot-level

measurements, and post-classification smoothing) have a larger effect on the quality of

the map outputs than do altering the spectral band combinations of the input data, or other

parameters ofthe classifications.

Table 5.4 shows the classification accuracy results for all five structure variables,

from classifications with k=5, 3x3 mean filtered spectral values, no band selection or

transformations, and plot-level aggegation of FIA measurements. Diameter showed the

lowest R2 and highest %RMSE (root mean square error as a percentage of the average

reference plot value), but also had the lowest range ofany of the five structure variables I

classified. Height and stem density had the lowest %RMSE values, but intermediate R2.

Basal area and biomass showed the highest R2, but had intermediate %RMSE values.

The range ofpredicted values is reduced in comparison to the reference samples. On the
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overlap region between paths 22 and 23, RMSE values calculated from the difference

between image pixels were very similar to within-image RMSE (Table 5.4). The

exceptions were height, which actually showed much lower RMSE between image paths

than within path 22, and stem density, which had the lowest %RMSE within the path 22

image, showed a much larger RMSE on the overlap region.

A visual evaluation of the classified images reveals a very close association with

aerial photogaphy and the Hiawatha National Forest GIS inventory database. Stand

boundaries that correspond to breaks in structure values on the classified imagery are

frequently visible, and other patterns (e.g. linear features like roads, and open areas like

lakes) are readily recognizable. When the pixel values for the basal area kNN predictions

are averaged within national forest stands and compared to the GIS inventory database

basal area measurement records, there is a high correlation (R2 = 0.61). Despite the high

correlation, the range of the Hiawatha inventory basal area measurements (0 - 270 square

feet per acre) is larger than the kNN predictions (0 - 180 square feet per acre). Even with

respect to the high pixel-level RMSE values, and decreased range of predicted values,

these data are clearly are representative of forest structural conditions on the gound.

Adding the classified structure maps to the MIGAP models showed marked

improvement for the five species included in this analysis. In every case, both kappa and

percent correctly classified (PCC) increased when the structure elements were added

(Table 5.6). The apparent source ofimprovement was the reduction ofcommission

errors, at the expense of a smaller increase in omission errors (Table 5.7). The largest

improvements were seen for Chipping Sparrow, Black-throated Blue Warbler, Eastern

Wood-pewee, and Scarlet Tanager. Pine Warbler showed only a small improvement.
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Discussion

These results show that simple forest structural estimates built at the same

resolution as currently available land cover distribution maps can significantly improve

the accuracy of wildlife habitat distribution models. The technical challenge in

developing these data is not as geat as many may assume, but the success of classifying

continuous-scale forest structural elements depends largely on the quality ofthe gound

control data (i.e. the forest structural measurement used for reference samples). FIA

represents an excellent and highly valuable source of information for this type of

analysis, but access to these data (specifically the plot locations) is restricted, and few

sources of reference data like it are available.

Accuracy assessment of continuous-scale vegetation structure maps is difficult

and perhaps even uninforrnative when classified at the pixel level and using point

samples. The natural variation of the forest structural measurements used in this study

appears to be at a scale larger than an 8-meter subplot, or potentially even a 30-meter

pixel. There is a clear potential for scaling discontinuities in the use of 8 meter diameter

FIA subplot surveys to classify 30 meter Landsat ETM pixels, and I suspect that is a main

reason why the plot level aggegation of FIA data returned higher correlations with

spectral values (smoothed with a 3x3 mean filter) than subplot level aggegation (and

unfiltered spectral data). Because per pixel errors (RMSE) are high, it may give the

impression that the classifications were unsuccessful. For continuous-scale

classifications such as these, I feel that it is necessary to include assessments that reveal

accuracy at a scale larger than a single pixel, e.g. averaged over a forest stand or other
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type of patch. Evidence for this is shown by the visual evaluation of the structural maps

in comparison to aerial photogaphy and a national forest GIS inventory database.

Perhaps another method to assess the pattern of association over space would be more

useful than the per pixel methods I used (RMSE and R2). RMSE may be a highly

misleading accuracy measure because it is dependent on the range of each variable. Also,

different results were obtained when calculated against the test plots vs. the image path

overlap areas, where at least two of the classified variables revealed opposite trends.

The kNN estimator is a flexible method for imputing continuous scale forest

structural values to unknown pixels (Meng et al. 2007). I have found it to be data hungy,

both in terms of the number of spectral layers and reference points, supporting the

findings of other users of this classification technique (Franco-Lopez et al. 2001,

Holmstrom and Fransson 2003, Budreski et al. 2007, Koukal et al. 2007). Any efforts to

optimize the spectral inputs resulted in either no effect or a decrease in accuracy. I also

found that it was not just the number of reference points supplied to the classifier, but the

spatial scale (see Barth et al. 2009 for a discussion ofthe impacts of scale on kNN

results) at which the measurements were assembled that increased the accuracy of

classifications (plot-level aggegation resulted in 25% as many reference points as

subplot aggegation, yet achieved geater accuracy). The number ofreference plots used

in the pixel value calculations (k) has a significant effect on the results. I used k=5 and

achieved relatively high accuracy numbers but a shrinking of the range of predicted

values. But in my trials, k=3 was nearly as accurate and would have resulted in a smaller

reduction ofpredicted variable ranges (Franco-Lopez et al. 2001).
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GAP models were not intended for use as predictive models of species

occurrence, rather they are intended to show a coarse assessment of the distribution of

potential habitat. Still, combining land cover and forest structural information would be

valuable to create potential habitat distributions with less uncertainty, thereby reducing

the risk of overestimating the amount ofhabitat resources available on the landscape for

any particular species. Overestimating the available habitat for species ofmanagement

concern has deep implications given the importance of thresholds in habitat amount

(Fahrig 2001), and disproportionately large effects of landscape patterns (Donovan and

Flather 2002).

The five species selected for this study were expected to show improvements with

the addition of structure information. These are not intended to be final products or to

show conclusions about the ecology ofthese species, but instead to show that the

potential for improvement ofGAP models with simple forest structural elements exists

and the magnitude of improvement that might be possible. Adding simple forest

structural information could represent the highest potential for increased accuracy in

large scale wildlife habitat models at the lowest cost per effort. Assembling wildlife

occurrence data will always be effort intensive, but using remote sensors shows

continued potential for reducing the effort and cost necessary to monitor the distribution

of wildlife habitat and to identify gaps in our conservation networks.
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CHAPTER 6

CONCLUSION AND SYNTHESIS

I have summarized some patterns of wildlife habitat model utility and have given

specific examples. Habitat specialists are more likely to produce accurate m6dels than

generalists because statistics can more easily define habitat classes that clearly delineate

appropriate from poor habitats for these species. Scale plays a large role also, as coarser

data may not be as appropriate for describing edge and mixed habitat associations as

higher resolution data. The correlation between model accuracy and prevalence is

typically positive (e.g. Vaughan and Ormerod 2005) since rarer species are simply less

likely to be present on any given location of appropriate habitat (Manel et al. 2001). The

challenge-in building wildlife habitat models is to predict appropriate habitat sites where

there is a high probability of presence, but this can be difficult because of the fact that

rare species may actually have a low probability ofbeing detected on even the best sites.

Accuracy measures fail to take this into account and therefore may not reflect an actual

measure ofmodel quality, but instead an inability to account for uncertainty in species

occurrence. The uncertainty in species occurrences can be due to a myriad of ecological

reasons unrelated to habitat (Storch and Sizling 2002), as well as detectability

(MacKenzie et al. 2005, Royle et al. 2005).

Most common accuracy measures, including kappa when a 0.5 threshold is used,

are relatively inflexible to the species’ ecological characteristics (such as habitat

specificity and prevalence). Kappa, however, can be used effectively when the choice of

threshold in probability of occurrence is flexible, and tied to each species’ prevalence
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(Freeman and Moisen 2008b). In this study, the relationship between prevalence and

model accuracy was weak (kappa, Figure 3.2) or even negative (ROC/AUC, Figure 3.3).

For wildlife habitat models there is a tradeoff between sensitivity and specificity

(Allouche et al. 2006). Sensitivity is the probability of correctly classifying a presence,

specificity is the probability of correctly classifying an absence (Table 3.1). By changing

the probability of occurrence threshold to increase one, the other declines. ROC/AUC

assesses model accuracy across all values of sensitivity/specificity and therefore is not

affected by threshold choice, but kappa can change drastically (Allouche et al. 2006,

Freeman and Moisen 2008b). The proper choice of threshold values can optimize the

specificity vs. sensitivity tradeoff, even when using kappa, but see Manel et al. (2001).

The two threshold values used in this study had relatively small effects on kappa (Figure

3.2, Table 3.4), but large effects on commission and omission error rates (Figure 3.3,

Table 3.4).

All of the models I developed, except for species with very specific habitat

associations, were prone to inherently large commission error rates. As the ultimate goal

of all the work described in this paper is the conservation of wildlife habitat, it may be

desirable to minimize the omission error rate even at the expense of increasing the

commission error rate. The reason for this would be to preserve as much potential habitat

for each species as possible, as any increase in omission errors associated with wildlife

habitat models will lead to neglecting potential habitat for that species (Wilson et al.

2005). If this is a desirable condition of a wildlife habitat modeling project for a large set

of species, then the threshold for considering a location as appropriate habitat should be

equal to the prevalence of the species (the first threshold used in this study). When this is
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the case, commission error rates increased with less prevalent species, but omission errors

were low across all species (Figures 3.4a and 3.4b). However, when resources are

limited and only a small set of locations can be targeted for conservation, then a different

approach may be necessary so that the most important locations are protected.

When a model performs poorly, it can be due to many factors, and a poor quality

model may not in fact be useless. Some species have a low prevalence across their range

and are not likely to have a high probability of occurrence at any given location (Seoane

et al. 2005b). For example, species that show low site fidelity and instead are nomadic or

focused on a spatially patchy/irruptive food resource may be recorded in many different

locations over different years, but still within similar habitats. In this case a model that

does not incorporate the food resource will be unable to predict those locations year to

year. Accuracy measures will show that this model performs poorly, when in fact it does

a very good job of describing the distribution of appropriate habitat. This model, with

very poor accuracy, may in fact be very useful for conservation activities. Other

examples of important vegetation and environmental measurements may be

immeasurable and therefore will not be included in model construction, but if this is

known beforehand the model may still be useful depending on the application. Often,

higher-level effects such as community interactions, predation, and inter-specific

competition can add variation to species distributions that habitat models cannot track.

Species undergoing rapid population increases or declines can be difficult to model

accurately, but if these patterns are understood then steps can be taken to make

interpretation ofmodel results more feasible.
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Low resolution landscape and regional-scale models (like GAP) were not

intended for use as predictive models of species occurrence, rather they are intended to

show the distribution of potential habitat. But models such as these can also be improved

(have less uncertainty) by combining land cover and forest structural information.

Adding estimates of forest vertical structure and composition can reduce the risk of

overestimating the amount ofhabitat resources available for species that are associated

with forest habitats. This was one of the primary goals in Chapters 2 and 5.

Overestimating the available habitat for species ofmanagement concern has deep

implications given the importance of thresholds in habitat amount (Fahrig 2001), and

disproportionately large effects of landscape patterns (Donovan and Flather 2002).

Though I didn’t specifically test it, I suspect that improving the detail and optimizing the

scale of the vegetation data used as inputs to wildlife habitat models would have a much

larger effect upon the utility of models than using newer and more elaborate statistical

methods, despite the many efforts devoted to the latter.
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TABLES

APPENDICES

Table 2.1: List of habitat variables included in each modeling phase. The number and

detail of vegetation cover classes are comparable to Level 3 in the hierarchical ecological

classification system developed by Anderson et al. (1976). Phases 1-3 are ordered fi'om

less to more vegetation information and/or lower to higher spatial resolution. The number

of vegetation classes varies between phases. MIGAP: 19 classes (11 forest types); Stand-

scale: 20 classes (8 forest types); Plot-scale: 19 classes (9 forest types).

 

 

Habitat model MIGAP and cover Stand and plot-scale

variable class (1I2al2b) vegetation models (3al3b)

Vegetation cover . .
class variable Variable

Average of three

Basal area NIA measurements per stand

Diameter at breast NIA Proportional average for all

height species in stand

Visual estimate (four 25%
Canopy closure NIA categories)

Deciduous canopy NIA Sum of deciduous cover

cover divided by total

Canopy species .
richness NIA Count of canopy specres

Canopy species N/A Simpson’s (1/P) diversity of

diversity canopy species cover

Subcanopy cover NIA Sum of individual species cover

Deciduous N/A Sum of deciduous cover

subcanopy cover divided by total

Subcanopy richness NIA Count of subcanopy species

Subcanopy species NIA Simpson’s (1/P) diversity of

diversity subcanopy species cover

Overall size of NIA Average size of dominant trees

canopy trees (sap, pole, log)

Upland or lowland NIA Binary marker

Plantation N/A Binary marker

Location Inherent m MIGAP Binary (North/South)
maps, or binary
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Table 2.2: List of bird species included in models. Prevalence lists the proportion of

survey sites at which each species was present (out of 393 total). Most (17) of the species

are associated with forest habitats, some (9) are associated with mixed (edge) habitats,

and fewer are wetland (3) and gassland (1) species (Peterjohn and Sauer 1993).

 

Common Name Scientific Name Prevalence Habitat
 

Ovenbird Seiurus aurocapillus 0.55 Forest

Red-eyed Vireo Vireo olivaceus 0.55 Forest

American Goldfinch Carduelis histis 0.41 Grassland

Blue Jay Cyanocitta cristata 0.42 Forest

Common . .
Yellowthroat Geothlyprs trrchas 0.32 Wetland

Black-capped . . .
Chickadee Poecrle atncaprllus 0.40 Forest

American Robin Turdus migratorius 0.34 Mixed

Rose-breasted . . .
Grosbeak Pheuctrcus Iudovrcranus 0.31 Forest

Red-winged . .
Blackbird Agelarus phoenrceus 0.20 Wetland

Chipping Sparrow Spizella passerina 0.30 Mixed

Eastern .
Wood-Pewee Contopus vrrens 0.31 Forest

Veery Catharus fuscescens 0.25 Forest

American Redstart Setophaga rutici/la 0.22 Forest

Gray Catbird DumeteI/a carolinensis 0.25 Mixed

Scarlet Tanager Piranga olivacea 0.24 Forest

Indigo Bunting Passerina cyanea 0.24 Mixed

Wood Thrush Hylocichla mustelina 0.19 Forest

Great Crested . . .
Flycatcher Myrarchus crrnrtus 0.21 Forest

Eastern Tufted . .
Titrnouse Baeolophus brcolor 0.19 Mixed

Eastern Towhee Pipilo erythrophthalmus 0.18 Forest

Field Sparrow Spizel/a pusilla 0.17 Mixed

Hermit Thrush Catharus guttatus 0.13 Forest

White-breasted . . .
Nuthatch Srtta carolmensrs 0.15 Forest

Northern Flicker Colaptes auratus 0.16 Mixed

Yellow-billed Cocc us americanus 0 13 Mixed
Cuckoo yz '

Cedar Waxwing Bombycilla cedrorum 0.13 Mixed

Nashville Warbler Vermivora ruficapilla 0.07 Forest

Pine Warbler Dendroica pinus 0.09 Forest

Alder Flycatcher Empidonax alnorum 0.05 Wetland

BIack-throated . .
Green Warbler Dendrorca vrrens 0.07 Forest
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Table 2.3: Inclusion rate ofhabitat variables in the stand and plot-scale statistical models

(phases 3a and 3b). The RPART algorithm fits a recursive partitioning tree to the

vegetation data that best accounts for the presence and absence of each species. At each

node one variable is selected and used to split the sites into two goups. Numbers reveal

the average number of times each variable was included per model.

 

 

Variable Phase 3a Phase 3b

Cover class 1.60 1.60

Basal area 0.53 0.47

Diameter 0.50 0.60

Canopy closure 0.17 0.27

Canopy % deciduous 0.20 0.43

Canopy richness 0.33 0.20

Canopy diversity 0.43 0.63

Subcanopy cover 0.57 0.47

Subcanopy % deciduous 0.23 0.43

Subcanopy richness 0.23 0.20

Subcanopy diversity 0.43 0.37

Overall size 0.17 0.13

Upland or lowland 0.10 0.03

Plantation 0.03 0.00

Location 0.33 0.47
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Table 3.1: Error matrix used to calculate kappa, omission and commission error rates,

sensitivity and specificity, and other accuracy measures (but not ROC/AUC). Cells ‘a’

and ‘d’ are the number of correct presence and absence predictions, respectively. Cell ‘b’

is the number of incorrect presence predictions, and cell ‘c’ is the number of incorrect

absence predictions.

 

 

 

Observations

Presence absence

Predictions presence a b

absence c d
 

Accmrcv mea_sure equations:

(total number ofsamples = n = a + b + c + d)

((LLLQ) _ ((a + b)(a + c)T-lI-2(c -l- d)(b + (1))

1 _ ((a + b)(a + c) + (c + d)(d + b))

Kappa: n2

 

b C

a+c

 

 

Commission error = a 'I' b Omission error =

a b

Sensitivity = a + C Specificity = b + d

 

a + d

Percent correctly classified (PCC) = n

 

a

a+b

 

User’s accuracy = 1 — commission error =

a

 

Producer’s accuracy = 1 — omission error = a + C = sensitivity
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Table 3.2: List of habitat variables included in the recursive partitioning models. The

number and detail of vegetation cover classes are comparable to Level 3 in the

hierarchical ecological classification system developed by Anderson et al. (1976).

 

Habitat variable

Vegetation cover class

Basal area

Diameter at breast height

Canopy closure

Proportion of deciduous

canopy cover

Canopy species richness

Canopy species diversity

Subcanopy cover

Proportion of deciduous

subcanopy cover

Subcanopy richness

Subcanopy species

diversity

Overall size of canopy

trees

Upland or lowland

Plantation

Location

Vegetation measurements

20/19 classes, 8/9 forest types

(stand/field)

Average of three measurements

per stand

Proportional average for all

species in stand

Visual estimate (four 25%

categories)

Sum of deciduous cover divided

by total

Count of canopy species

Simpson's (1/P) diversity of

canopy species cover

Sum of individual species cover

Sum of deciduous cover divided

by total

Count of subcanopy species

Simpson’s (1/P) diversity of

subcanopy species cover

Average size of dominant trees

(sap. pole. I09)

Binary marker

Binary marker

North/South
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Table 3.3: List of bird species included in models. Prevalence lists the proportion of

survey sites at which each species was present (out of 393 total). Most (17) of the species

are associated with forest habitats, some (9) are associated with mixed (edge) habitats,

and fewer are wetland (3) and gassland (1) species (Peterjohn and Sauer 1993).

Prevalence rank shows the order that species are listed in Figures 3.2-3.4.

 

 

Common Name Scientific Name Prevalence Habitat Specificity

Ovenbird Seiurus aurocapillus 0.55 Forest Specialist

Red-eyed Vireo Vireo olivaceus 0.55 Forest Specialist

Black-capped . . . .
Chickadee Poecrle atrrcaprllus 0.40 Forest Generalist

American Robin Turdus migratorius 0.34 Mixed Generalist

Blue Jay Cyanocitta cristata 0.42 Forest Specialist

Rose-breasted . . . . .
Grosbeak Pheucticus ludovrcranus 0.31 Forest Specralrst

Common . . . .

Yello l oat Geothlyprs trichas 0.32 Wetland Specralrst

American Goldfinch Carduelis tristis 0.41 Grassland Specialist

Chipping Sparrow Spizella passerina 0.30 Mixed Generalist

Eastern . . .

Wood-Pewee Contopus vrrens 0.31 Forest Specralrst

Veery Catharusfirscescens 0.25 Forest Specialist

American Redstart Setophaga ruticilla 0.22 Forest Specialist

Scarlet Tanager Piranga olivacea 0.24 Forest Specialist

Indigo Bunting Passerina cyanea 0.24 Mixed Generalist

Hermit Thrush Cat/rams guttatus 0.13 Forest Specialist

Great Crested . . . . .

Flycatcher Myzarchus crmrtus 0.21 Forest Specralrst

Red-winged . . . .

Blackbird Agelaius phoemceus 0.20 Wetland Specralrst

Northern Flicker Colaptes auratus 0.16 Mixed Generalist

Gray Catbird Dumetella carolinensis 0.25 Mixed Generalist

Wood Thrush Hylocichla mustelina 0.19 Forest Specialist

Cedar Waxwing Bombycilla cedrorum 0.13 Mixed Generalist

Eastern Towhee Pipilo erythrophthalmus 0.18 Forest Specialist

White-breasted . . . . .
Nuthatch Sitta carolmensrs 0.15 Forest Specralrst

Nashville Warbler Vermivora ruficapilla 0.07 Forest Specialist

Eastern Tufted . . .

. Baeolophus brcolor 0.19 Mixed Generalist

Tntmouse

Yellow-billed Coccyzus americanus 0.13 Mixed Generalist
Cuckoo

Field Sparrow Spizella pusilla 0.17 Mixed Generalist

Black-throated . . .

Green Warbler Dendroica vrrens 0.07 Forest Speciahst

Pine Warbler Dendroica pinus 0.09 Forest Specialist

Alder Flycatcher Empidonax alnorum 0.05 Wetland Specialist
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Table 3.4: Results ofmodel accuracy measurements for the four species targeted for

detailed examination and averaged for the 10 habitat generalists and 20 habitat specialists

included in this analysis. Table 3.4a shows kappa and commission/omission error

calculated with the threshold = prevalence, Table 3.4b uses the threshold where predicted

prevalence = actual prevalence. One asterisk indicates that the average values for

generalists and specialists are significantly different from each other at P=0.1 (two

asterisks for P=0.05). Significance calculated with an independent goups T-test.

Threshold = prevalence
 

 

 

Table 3.4a Kappa AUC % Commission/Omission

Stand Plot Stand Plot Stand Plot

Ovenbird 0.61 0.61 0.86 0.84 16.3/ 19.8 17.2/ 16.0

American Robin 0.35 0.33 0.72 0.70 43.5/41.8 48.7/35.1

Yell°w‘b‘""d 0.14 0.36 0.78 0.76 80.6/2.0 61.4/44.3
Cuckoo

Black-throated

Green Warbler 0.54 0.49 0.89 0.85 523/250 568/290

Generalists 0.30“ 0.35* 0.74" 0.77 561/282 568/296

Specialists 0.40” 0.41 * 0.80" 0.81 51 .4/25.8 50.6/26.1
 

Threshold where predicted prevalence = actual
 

 

 

 

Table 3.4b Kappa AUC % Commission/Omission

Stand Plot Stand Plot Stand Plot

Ovenbird 0.60 0.61 0.86 0.84 189/161 172/160

American Robin 0.35 0.33 0.72 0.70 43.5/41.8 48.7/35.1

Yellow’b‘lled 0.31 0.32 0.78 0.76 596/620 594/574
Cuckoo

Black-throated

Green Warbler 0.59 0.59 0.89 0.85 424/321 67/548

Generalists 0.31** 0.34** 0.74“ 0.77 380/597 440/505

Specialists 0.44M 0.43 *"' 0.80" 0.81 41 .4/42.1 37.9/45.7
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Table 4.1: List of vegetation and cover classes defined in the hierarchical IFMAP

classification system (used as a baseline in this study). Top table shows the number of all

classes defined in the classification, the lower table shows the number of classes sampled

in this study (460 total field plots).

 

 

 

 

 

 

Complete list

am

Level-1 class descriptlons Level-2 Level-3 Level-4

Urban 2 4 4

Agricultural 2 4 7

Upland Openland 4 4 14

Upland Forest 3 10 47

Water 1 1 1

Wetlands 2 7 38

Sparsely vegetated 1 4 4

Total 1 5 34 1 1 5

Field sample totals

# classes retained in predicted

. 35% classification

Level-1 classes Level-2 Level-3 Level-4 Level-2 Level-3 Level-4

Agricultural 1 1 3 0 0 0

Upland
Openland 3 3 7 3 2 2

Upland Forest 3 8 27 2 5 13

Wetlands 2 4 1 5 2 3 6

Total 9 16 52 7 10 21

 

 

Table 4.2: Comparison of the distribution of sites among classes, and the number of

classes at each level for each classification.

 

 

 

# sites/class (std. dev.) # classes

Classification Level Level

.2. 2 fl Z. 2 1

IFMAP 51.33 28.88
(54.4) (19.1) 8.88 (7.6) 9 16 52

Predictions 66 (54.2) 46.2 (20.6) 22 (19.7) 7 10 21

Clusters 51.33 28.88
(21.2) (17.3) 8.88 (6.2) 9 16 52
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Table 5.1: Image dates and phenology information. The selection of imagery was

targeted at providing a range of (snow free) leaf-off and leaf-on images across the

phenological range of tree species in the northern Great Lakes region.

 

 

Path/Row

P23/R28 P22/R28 Phenology

n/a April 26, 2000 Early spring, leaf-off

May 19, 2000 May 21, 2003 Mid-spring, early leaves

July 28, 2003 August 03, 2001 Mid-summer, full leaves

September 9, 2000 September 17, 2000 Early-fall, beginning senescence

October 10, 2000 October 19, 2000 Late fall, complete senescence
 

Table 5.2: Correlations (R) between FIA vegetation measurements aggegated at the

subplot level for path 22 reference plots.

 

Diameter Height Stem density Biomass Basal area
 

Diameter 1 0.6690 -0.2646 0.5768 0.2890

Height 1 -0.1432 0.6164 0.2310

Stem density 1 0.3366 0.6029

Biomass 1 0.6705

Basal area 1
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Table 5.3: Correlation (R2) between satellite spectral values and vegetation measurements

aggegated at the (5.3a) sub-plot level, and (5.3b) plot level summarized across all image

dates for path 22 imagery. Sub-plot measurements are matched with raw spectral data.

Plot values are matched with 3x3 mean filtered spectral values. The three bands showing

the largest correlations are also listed.

 

 

 

 

 

Table 5.3a

Max Avg. St Dev Max Band IDs

Basal area 0.179 0.093 0.053 SeptETM7, SeptETMS, JulyETMS

Biomass 0.129 0.049 0.042 JulyETM3, SeptETM3, SeptETM7

Height 0.180 0.067 0.060 JulyETM3, SeptETM7, JulyETM2

Diameter 0.212 0.089 0.063 SeptETM7, SeptETM3, JulyETM3

Stem density 0.216 0.122 0.069 SeptETMS, JulyETMS, SeptETM7

Table 5.3b

Max Avg. St Dev Max Band IDs

Basal area 0.340 0.174 0.104 SeptETM7, SeptETMS, SeptETM3

Biomass 0.213 0.071 0.065 JulyETM3, SeptETM3, SeptETM7

Height 0.224 0.075 0.070 SeptETM7, SeptETM3, JulyETM3

Diameter 0.274 0.106 0.081 SeptETM7, SeptETM3, JulyETM3

Stem density 0.301 0.172 0.098 SeptETMS, JulyETMS, SeptETM7
 

Table 5.4: Accuracy of the kNN classifications for each ofthe five structural

measurement maps for path 22 imagery. The inputs for these maps were plot-level FIA

measurements, and a 3x3 mean filtered image composite of raw DN spectral values. The

maps were generated with a 90% build set of over 1000 FIA plots, and accuracy (R2 and

RMSE) were calculated with the remaining 10% ofthe plots. %RMSE is calculated from

RMSE as a percentage of the mean for each structure variable. Overlap RMSE shows the

RMSE for approximately 3.5 million pixels in the region of overlap between paths 22 and

 

 

23.

Mean RMSE %RMSE R2 overlap
RMSE

Basal area 74.9 19.8 26.4 0.40 26.7

Biomass 29.7 12.0 40.6 0.43 1 1.9

Height 45.3 11.2 24.7 0.30 9.7

Diameter 6.9 4.4 64.1 0.10 1.5

Stem density 179.2 31.1 17.4 0.33 64.9
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Table 5.5: Bird species and habitat model descriptions. Habitat descriptions were taken

from the species habitat rules and descriptions in the MIGAP habitat decision rules

(Brewer et al. 1991, Donovan et al. 2004). The strategy for building structure models

was to identify up to two structure variables from the MIGAP habitat descriptions and

choose a cutoff at the average value or average +/- units of 0.5 x standard deviation,

while keeping the predicted prevalence similar to (but not less than) the Hiawatha

National Forest Bird Survey recorded prevalence (Table 7). Forest structural

associations from the MIGAP habitat descriptions are highlighted in bold.

 

 

Species Scnentrfic MIGAP habitat Structure model

name description

Black-throated Dendroica 1:238]:31,111:((11:32: MIGAP + high stem
I . . .

Blue Warbler 089'“ 9809/78 undergowth densrty + high height

Chipping Spizella Open mixed forest .

Sparrow passerina and savannah MIGAP + low biomass

Eastern Wood- Contopus Mature, open MIGAP + large diameter

pewee virens deciduous woodlands + low stem density

Piranga Tall, mature mixed MIGAP + high height +

Scarlet Tanager olivacea hardwood forest large diameter

. . Dendroica Widely spaced,
Pine Warbler pinus mature pine forest MIGAP + low basal area

 

Table 5.6: Bird habitat model results are shown for each species (percent correctly

classified [PCC] and kappa) comparing the original MIGAP models with the MIGAP

plus structure models. On average, both PCC and kappa are higher for the MIGAP plus

structure models. The difference between the averages for both PCC and kappa is

significant at p<0.05 (paired t-test).

 

 

 

I_’C_C Kappa

Species MIGAP Structure MIGAP Structure

Black-throated 59.8 78.1 0.30 0.56

Blue Warbler

Chipping Sparrow 66.9 75.1 0.38 0.50

Eastern 54.4 65.7 0.13 0.31

Wood-pewee

Scarlet Tanager 45.6 73.4 0.14 0.40

Pine Warbler 75.1 82.8 0.33 0.34

Average 60.4 75.0 0.26 0.42
 

88



Table 5.7: Bird habitat model results are shown for each species (commission and

omission errors) comparing the original MIGAP models with the MIGAP plus structure

models. The addition of structure elements in the models has the effect of reducing the

number of commissions more than the increase in omissions.

 

  

 

 

#records # predictions # commissions # omissions

Species HNF MIGAP Struct. MIGAP Struct. MIGAP Struct.

Black-throated

Blue Warbler 58 124 81 67 30 1 7

Ch‘ppmg 65 11 1 79 51 28 5 14
Sparrow

Eas‘em 76 121 78 61 30 16 28
Wood-pewee

scarlet 39 127 66 90 36 2 9
Tanager

Pine Warbler 20 56 31 39 20 3 9

Average 51.6 107.8 67.0 61.6 28.8 5.4 13.4
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Figure 2.1: Model accuracy (kappa, scale -1 to +1) by model type, results averaged for

all 30 species. Label codes refer to the Phases: 1 — MIGAP, 2 — vegetation cover classes

only, 3 — full set of vegetation measurements and cover classes, a - stand-scale

measurements, b — plot-scale measurements. Error bars show 1 standard deviation.

Paired t-tests reveal that between Phases 1, 2, and 3 the accuracy increases significantly

(p<0.05), but not between scales of vegetation measurements (a and b).
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Figure 2.2: Model accuracy (ROC/AUC, scale 0.5 to 1.0) by model type, results

averaged for all 30 species. Label codes refer to the Phases: 1 — MIGAP, 2 — vegetation

cover classes only, 3 — full set of vegetation measurements and cover classes, a — stand-

scale measurements, b — plot-scale measurements. The difference between the cover type

models (Phase 2) and the fiill vegetation measurements models (Phase 3) is similar with

ROC/AUC and Kappa (Figure 2). The MIGAP models are not included because they are

binary models so there is no way to calculate ROC/AUC. Error bars show 1 standard

deviation. Paired t-tests reveal that between Phases 2 and 3 the accuracy increases

significantly (p<0.05), but not between scales of vegetation measurements (a and b).
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Figure 2.3: Model accuracy (commission and omission error rates) by model type,

results averaged for all 30 species. Label codes refer to the following: 1 — MIGAP, 2 —

vegetation cover classes only, 3 — full set of vegetation measurements and cover classes,

a — stand-scale measurements, b -— plot-scale measurements. Commission error is the

percentage of sites incorrectly predicted as present, omission error is the percentage of

absent sites that were incorrectly predicted. In comparison to the statistical models

(Phases 2 and 3) MIGAP models show relatively high commission error rates, while

keeping omission errors rates lower. Error bars show 1 standard deviation. The

differences between 2a and 3a, and 2b and 3b are significant at p<0.01 for both omission

and commission error. The differences between 2a and 2b, and 3a and 3b are not

significant.
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Figure 3. l a: A binary model (e.g. GAP potential habitat) for an abundant habitat

generalist includes nearly all of the habitats that are potentially used by this species.

Omission errors are low because a large proportion of all the sites are predicted as present

in the model (shaded area), and commission errors are high because this species is

present with a relatively low probability in many ofthe locations where the model

predicts its presence.
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Figure 3.1b: A binary model (e.g. GAP potential habitat) for a rare habitat specialist

includes nearly all of the habitats that are potentially used by this species. Omission

errors are relatively low because a large proportion of all the habitats used by this species

are included, and commission errors are high because this species has a relatively low

probability of presence on the sites predicted as present in the model (shaded area), even
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Figure 3.1c: A binary model for an abundant habitat generalist with a threshold for

probability of occurrence set at 0.5. The predicted present area includes most ofthe

habitats that are potentially used by this species, but fewer than in Figure 1a. Omission

errors have increased, but commission errors are lower.
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Figure 3.1d: A binary model for a less prevalent habitat specialist with a threshold for

probability of occurrence set at 0.5. The predicted presence area includes a relatively

small portion of the habitats that are potentially used by this species because the required

probability of occurrence (0.5) is met at only a few of the sites. Omission errors are high

because a large proportion of all the habitats used by this species are not included in the

predicted presence set, and yet commission errors are still high because this species is

present with a low probability, even on its most appropriate habitats.
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Figure 3.2a: Stand-scale model accuracy (kappa) for all 30 species as a function of

species prevalence rank for stand-scale vegetation models (solid line is a linear

regession, R2 = 0.05). Threshold = prevalence for each species.
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Figure 3.2b: Plot-scale model accuracy (kappa) for all 30 species as a function of s ecies

prevalence rank for plot-scale vegetation models (solid line is a linear regession, R =

0.01). Threshold = prevalence for each species.
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Figure 3.2c: Stand-scale model accuracy (kappa) for all 30 species as a function of

species prevalence rank for stand-scale vegetation models (solid line is a linear

regession, R2 = 0.01). Threshold is set where the predicted prevalence of the model =

actual prevalence for each species.
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Figure 3.2d: Plot-scale model accuracy (kappa) for all 30 species as a function of s ecies

prevalence rank for plot-scale vegetation models (solid line is a linear regession, R =

0.00). Threshold is set where the predicted prevalence of the model = actual prevalence

for each species.
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Figure 3.3a: Model accuracy (ROC/AUC) for all 30 species as a function of s ecies

prevalence for stand-scale vegetation models (solid line is linear regession, R = 0.10).
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Figure 3.3b: Model accuracy (ROC/AUC) for all 30 species as a function of species

prevalence for plot-scale vegetation models (solid line is linear regession, R2 = 0.28).
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Figure 3.4a: Omission and commission error rates for all 30 species as a function of

species prevalence for stand-scale vegetation models (solid lines are linear regessions,

commission error R2 = 0.47, omission error R2 = 0.02). Threshold = prevalence for each

species.
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Figure 3.4b: Omission and commission error rates for all 30 species as a function of

species prevalence for plot-scale vegetation models (solid lines are linear regessions,

commission error R2 = 0.57, omission error R2 = 0.04). Threshold = prevalence for each

species.
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Figure 3.4c: Omission and commission error rates for all 30 species as a function of

species prevalence for stand-scale vegetation models (solid lines are linear regessions,

commission error R2 = 0.16, omission error R2 = 0.13). Threshold is set where the

predicted prevalence = actual prevalence for each species.
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Figure 3.4d: Omission and commission error rates for all 30 species as a function of

species prevalence for plot-scale vegetation models (solid lines are linear regessions,

commission error R2 = 0.00, omission error R2 = 0.27). Threshold is set where the

predicted prevalence = actual prevalence for each species.
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Model prevalence = 0.55
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Figure 3.5a: Graphical representation of the Ovenbird plot-scale recursive partitioning

model. The height of the dark shaded boxes represent the predicted presence probability

for a goup of sites, the width of each box represents the proportion of all sites that fall

into that goup. The threshold values for calculating accuracy measures are shown by the

dotted and dashed lines (see text for details), and in this case both thresholds result in the

same error matrix values.
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, Model prevalence = 0.34
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Figure 3.5b: Graphical representation ofthe American Robin plot-scale recursive

partitioning model. The height ofthe dark shaded boxes represent the predicted presence

probability for a goup of sites, the width of each box represents the proportion of all sites

that fall into that goup. The threshold values for calculating accuracy measures are

shown by the dotted and dashed lines (see text for details), and in this case both

thresholds result in the same error matrix values.
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4, Model prevalence = 0.13
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Figure 3.5c: Graphical representation of the Yellow-billed Cuckoo plot-scale recursive

partitioning model. The height of the dark shaded boxes represent the predicted presence

probability for a goup of sites, the width of each box represents the proportion of all sites

that fall into that goup. The threshold values for calculating accuracy measures are

shown by the dotted and dashed lines (see text for details), and in this case the two

thresholds result in different error matrix values.
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_ Model prevalence = 0.07
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Figure 3.5d: Graphical representation ofthe Black-throated Green Warbler plot-scale

recursive partitioning model. The height ofthe dark shaded boxes represent the predicted

presence probability for a goup of sites, the width of each box represents the proportion

of all sites that fall into that goup. The threshold values for calculating accuracy

measures are shown by the dotted and dashed lines (see text for details), and in this case

the two thresholds result in different error matrix values.
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Figure 4.1: Accuracy (kappa) averaged over all 30 bird species, with error bars showing

one standard deviation. Level-2 models are not significantly different fiom each other

(paired t-test). Within level-3, the difference between IFMAP and the predicted

classification models are significantly different (p < 0.1, paired t-test), as are IFMAP and

cluster models (p < 0.05). At level-4, the IFMAP and predicted classifications are

significantly different (p < 0.05), but the IFMAP and cluster classifications are not. All

of the between level differences (within the same classification) are significant (p<0.05).
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Figure 4.2: Accuracy (AUC) averaged over all 30 bird species, with error bars showing

one standard deviation. None ofthe classifications within a given level are significantly

different (p < 0.05, paired t-test), except for the IFMAP and cluster vs. predicted

classifications in level-4. Only the between level-3 and level-4 differences for IFMAP

and cluster classifications are significant (p<0.05).
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Figure 4.3a: Rates ofcommission error averaged over all 30 bird species, with error bars

showing one standard deviation. None of the classifications within or between levels are

significantly different (p < 0.05, paired t-test).
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Figure 4.3b: Rates of omission error averaged over all 30 bird species, with error bars

showing one standard deviation. None ofthe classifications within or between levels are

significantly different (p < 0.05, paired t-test).
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