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ABSTRACT 
 

DEVELOPMENT AND APPLICATIONS OF NEW PERIDYNAMIC MODELS 
 

By 
 

Tao Jia 
 

Studies of solid mechanics are traditionally based on continuum mechanics which utilizes 

differential equations. Differential equations, however, become troublesome when damage takes 

place. Instead of differential equations, this study presents a theory, so-called peridynamics, 

based on integral equations. Similar to molecular dynamics, peridynamics assumes that the 

domain of interest is organized by points. Each point interacts with every other point within a 

horizon through a bond. Damage at a point takes place when a critical amount of bonds 

associated with the point are broken. Besides the bond strength, peridynamics does not impose 

any additional damage theory such as fracture mechanics used in continuum mechanics. 

Peridynamics is still in its infant stage. New models need to be developed. In this study, a one-

dimensional model was firstly proposed and verified by an associated solution based on 

continuum mechanics. The model was then used to simulate wave propagations in split 

Hopkinson’s pressure bar (SHPB) and was validated by the experiment results. The peridynamic 

model was then used for designing required shapers in SHPB application and greatly improves 

the experiment efficiency. Secondly, a two-dimensional model was proposed and verified by an 

associated solution based on continuum mechanics. Two computational algorithms were then 

proposed and incorporated into peridynamic programming to significantly improve its 

computational efficiency. The uses of the two-dimensional peridynamic model for simulating 

dynamic damage progression were favorably validated by experiments. A four-parameter 

peridynamic model was finally presented for investigating orthotropic materials. The model was 



 
 

verified by analyses involving uniaxial tension and vibration. It was also validated with single-

edge-notch testing results. 
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Chapter 1  

Introduction 

 

1.1 Background 

The governing equation of continuum mechanics is a partial differential equation as given in the 

following equation 

ሷݑߩ					                                                   ൌ ߪ׏ ൅ ܾ                                                                        (1.1) 

 

All solutions to solid mechanics problems, analytical as well as numerical, are based on this 

governing equation. The divergence of stresses in Eqn. 1.1 requires that the displacement field to 

be continuous. This requirement cannot be continuously satisfied when cracks occur since new 

cracks come with new boundaries which require new boundary conditions for solving the partial 

differential equation. Numerical techniques based on continuum mechanics such as finite 

element method are commonly used for investigating dynamic crack propagation in structures 

with complex geometry. However, prior knowledge of crack position and orientation is required. 

The simulation of dynamic crack propagation can become even more challenging, if not 

impossible, for fiber composites due to their high inhomogeneity and high anisotropy.  

 

Silling [1] proposed an alternative formulation, so-called peridynamics. Its equation of motion 

can be expressed as follows 

ߩ                                                        ሷ࢛ ൌ ׬ ܸ݀	ࢌ ൅                          (1.2)                                                                ࢈

where ߩ is mass density, ݑሷ  is acceleration, ࢌ is bond force and ࢈ is body force. The bond force ࢌ 

is a function of displacements. The integration in Eqn. 1.2 is applied to the entire domain of 
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study. In peridynamics, the domain of study is assumed to be organized by points. Each point is 

connected to all points within its horizon. Eqn. 1.2 can be applied to continuous as well as 

discontinuous domains such as those with cracks. This ability renders peridynamics more useful 

for progressive damage analysis than commonly used finite element method which requires 

constant remeshing of the domain. Besides, peridynamics does not require any additional 

damage theory such as fracture mechanics since it is essentially based on the bond strength 

between points.  

 

1.2 Literature review 

The peridynamic theory proposed by Silling [1] assumes that all points in a domain of interest 

are connected by bond forces. A two-point bar model is used in Ref. [1] and the bond force ݂ 

between the two points is dependent on the positions of the two points. The properties of the bar 

are related to the properties of the material of the domain. A shear crack propagation is also 

presented in Ref. [1] to show the benefit of the peridynamic theory. Silling [2] mentioned that 

peridynamics is similar to molecular dynamics in accounting of all points within a horizon of a 

point for calculating the internal forces of the point. However, the peridynamic domain is 

continuous and the grid can be of any size based on numerical consideration. This is a major 

difference from molecular dynamics in which the points can only be molecules or atoms. Hence, 

the molecular dynamics cannot be used to solve any solid mechanics problem in reasonable time 

due to the overwhelmingly large number of molecules involved in any structure. The bar-based 

peridynamic model is similar to the models proposed by Kunin [3] and Rogula [4] in the 

investigation of continuum properties of crystals based on interatomic interactions.  
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Several one-dimensional peridynamic solutions can be found in Refs. [5-8]. The studies include 

the effects of infinite horizon and comparisons of peridynamic solutions with those from 

continuum mechanics. Silling, Simmermann and Abeyaratne [5] studied an infinite long bar 

subject to two concentrated loads. They found the displacements away from the loading points 

are the same between peridybnamic analysis and classical mechanics. However, the 

peridynamics-based displacements oscillate when points are close to the loading. Weckner and 

Abeyaratne [6] studied dynamic deformation of an infinite bar with various initial functions. 

They found the influence of horizon on the results. The displacements were discontinuous even 

though they started with continuous functions. However, the displacements converged to the 

classical mechanics solution when horizon approached zero. Silling [9,10] discussed the 

numerical implementations of peridynamics and EMU code [9]. Bobaru, Yang, Alvels, Silling, 

Askari and Xu [11] discussed the convergence issues in a one-dimensional static problem. They 

investigated an infinitely long bar with two concentrated forces by using analytical method and 

then compared the solution with that from numerical solution. In peridynamic solution, 

displacement was not continuous at points where forces were applied. There were singularity 

points (infinite jump). Three convergence techniques were studied in the paper: (1) fixing 

horizon and increasing the number of nodes in each horizon, (2) decreasing horizon and 

increasing the number of nodes per horizon and (3) decreasing the horizon and fixing the number 

of nodes per horizon. In case (1), the numerical solution converged to the analytical solution with 

a finite displacement jump. In case (2), the numerical solution converged to the peridynamic 

solution with singularity. In case (3), singularity disappeared when the horizon became zero. The 

peridynamic solution converged to the solution of classical mechanics when the horizon reduced 

to zero. However, it is almost impossible to have a zero horizon since the grid size will become 
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zero. Adaptive refinement of mesh was also discussed to improve the computational efficiency 

by Silling [12].  

 

Applications of peridynamics for isotropic materials can be found in Refs. [2,9,12-15]. Silling 

and Bobaru [2] applied peridynamics to one-dimensional fiber structures and two-dimensional 

membrane structures. They investigated central crack propagation, burst of balloon, and tearing 

of rectangular sheet. They also simulated deformation of a fiber with different parts of the fiber 

interacting with each other through van der Waals force. Gerstle, Sau and Silling [13] studied 

dynamic crack propagation without initial crack in a two-dimensional plate. Silling [9] used 

EMU code to simulate crack propagation in a two-notch plate under drop weight. These studies 

showed the advantage of using long-range force in peridynamics for dealing with contact issues. 

Weckner, Askari and Xu [14] simulated three-dimensional crack branching in a unitized metal 

structure. Bobaru [15] studied a three-dimensional nano-fiber network using a similar method as 

that used in Ref. [2]. It was found that there was no need of a separate failure theory in 

peridynamic analysis. 

 

The application of peridynamics on fiber-reinforced composite materials and the validation of 

peridynamics with experiments can be found in Refs. [16-18]. Silling, Xu and Askari [16,17] 

modeled fiber-reinforced composite materials by using two kinds of bonds, fiber bonds and 

matrix bonds. They then studied central crack and delamination problems. Xu, Askari and 

Weckner [19] compared the results from Refs. [16,17] with experiment results. Bobaru and 

Silling [18] modeled composite materials with micro-structure based on the method mentioned in 

Ref. [2].  
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The Poisson’s ratio in the bar model introduced by Silling [1] and Zimmerman [20] was a fixed 

value. Gerstle, Sau and Silling [21], however, included pairwise moments in a model to account 

for various Poisson’s ratios. A state-based peridynamic model was proposed in Refs. [22-26]. In 

this model, there were interactions between two points in two parts. The first part depended on 

the positions of the two points, similar to the bond-based model. The second part depended on all 

points in the horizon.  Warren, Silling, Askari, Weckner, Epton and Xu [23] studied damage with 

state-based peridynamics. Silling and Lehoucq [25] defined a stress tensor in peridynamics. 

When the horizon goes to zero, the stress tensor converged to Piola-Kirchhoff stress tensor. 

Demmie and Silling [24] simulated gas using only the second part of the state-based peridynamic 

model.  

 

1.3 Motivations and objectives 

Computational methods, such as finite element method, based on Eqn. 1.1 require a continuous 

displacement field. The information concerning crack location and dimension also need to be 

known and included in the numerical model prior to computation to avoid imposing exhausted 

boundary conditions and crack surfaces everywhere in the domain of study. These prerequisites 

are almost impossible for problems involving dynamic crack propagation in fiber-reinforced 

composite materials which can have very complex damage configurations. The integral equation 

based peridynamic theory, on the contrary, does not have any prerequisite since it is essentially 

based bond force between points. The modeling of the damage process of fiber composites can 

be benefited from peridynamics since crack can occur whenever bonds break and there is no 

need of any additional damage theory other than the bond strength. 
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As a novel theory, peridynamics is still in its infant stage. More advanced models are needed. 

Analytical verifications and experiment validations are also required for justifying the models. 

Silling’s bar model [10] assumes that two points are linked by a bar and there is only one 

material property – the modulus - and the Poisson’s ratio is limited to be ¼ in three-dimensional 

problems.  Silling, Xu and Askari’s fiber-reinforced composite material model [16,17] is also 

based on the bar model. There are only two independent material properties in their models 

although there are four independent material properties for two-dimensional orthotropic 

materials and six independent material properties for three-dimensional orthotropic materials.  

 

A new beam model for two-dimensional problems with two independent material properties will 

be presented in this dissertation research. This model should be capable of simulating isotropic 

materials with various Poisson’s ratios. An orthotropic material model will also be proposed 

based on the new beam model. There will be four independent material properties in this model 

to accommodate the four independent material properties in orthotropic materials. With this 

material model and bond failure criterion, it should be sufficient to simulate dynamic damage 

crack propagation in fiber composite materials.  

 

1.4 Outline of dissertation 

The basic formulation of peridynamics is introduced in Chapter 2. In Chapter 3, one-dimensional 

equation of motion is investigated. A simple bar model is proposed and the associated material 

property is identified from energy method. The convergence of the numerical method is then 

studied. The one-dimensional model can be used to study split Hopkinson’s pressure bar (SHPB) 
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for verification and validation of the bar model. The bar model can also be used for studying 

two-dimensional problems with a fixed Poisson’s ratio. In Chapter 4, a beam model is proposed 

to simulate two-dimensional isotropic materials. The beam model is able to capture various 

Poisson’s ratios. The verification of numerical studies requires a comparison with an analytical 

solution based on classical mechanics. A failure theory is then established with the use of energy 

method. The failure theory is subsequently used for investigating three problems concerning 

dynamic damage propagation. The results are validated by experiment results from literature. A 

model for anisotropic materials is proposed in Chapter 5, in which there are four independent 

material properties. This model is verified by a static problem and a dynamic vibration problem. 

The dynamic damage propagation in composites is then simulated by the proposed four-

parameter model and the results are validated by experiment results from published works. 
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Chapter 2  

Basic Formulations 

 

2.1 Peridynamic model of a continuum 

The acceleration of any particle at ࢞	in the reference configuration at time ݐ	can be expressed by 

the following equation [1] 

ߩ																					 ሷ࢛ ሺݔ, ሻݐ ൌ ,ሺ࢛ሺ࢞ᇱࢌ׬ ሻݐ െ ࢛ሺ࢞, ,ሻݐ ࢞ᇱ െ ࢞ሻ	݀ ௫ܸᇱ ൅ ,ሺ࢞࢈  ሻ                                     (2.1)ݐ

where ࢛ is displacement, ࢈ is body force density, ߩ is mass density and ࢌ is force per volume 

square which exerts on particle ࢞ by particle ࢞ᇱ. Fig. 2.1 shows the relation.  

 

The relative position of these two particles in the reference configuration is denoted by	ࣈ, i.e. 

ࣈ																																																																											 ൌ ࢞ᇱ െ ࢞                                                                (2.2) 

 while the relative displacement is denoted by	ࣁ, i.e. 

ࣁ																																																																						 ൌ ࢛ሺ࢞ᇱ, ሻݐ െ ࢛ሺ࢞,  ሻ                                                  (2.3)ݐ

 

Accordingly, ࣈ ൅  represents the current relative position vector between the two particles in ࣁ

the current configuration as shown in Fig. 2.2. 

 

It is convenient to assume that there exists a positive number ߜ, called horizon, also shown in 

Fig. 2.1, such that the force ࢌ vanishes when |ࣈ| is greater than ߜ, i.e. 

|ߦ|																																																													 ൐ ߜ ⇒ 	݂ሺߟ, ሻߦ ൌ  (2.4)                                             ߟ∀								0

 

The domain of the integration in Eqn. 2.1 should be the spherical neighborhood of ࢞ with a 
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radius equal to	ߜ. 

 

Bases on the conservation of angular momentum, the following equation should hold  

																																																							ሺࣈ ൅ ሻࣁ ൈ ,ࣁሺࢌ ሻࣈ ൌ ,ࣈ	∀								0  (2.5)                                               ࣁ

That is                                    ࢌሺࣁ, ሻࣈ ൌ መ݂ሺࣁ, ሻࣈ ∙ ሺࣈ ൅ ࣈ|/ሻࣁ ൅  (2.6)                                           |ࣁ

where መ݂ሺࣁ,  ሻ is a scalar function. This is to say, the force vector between the two particles isࣈ

parallel to their current relative position vector.  

 

The natural boundary condition and external forces are applied through the body force density	࢈. 

They can be made nonzero within a boundary layer. The thickness of the boundary layer is 

commonly assumed to be equal to the horizon ߜ. 

 

2.2 Constitutive modeling 

If the material of interest is isotropic, መ݂	from Eqn. 2.6 does not depend on the direction of	ࣈ. For 

simplicity, it can be assumed that the scalar bond force መ݂ depends only on the bond stretch,	ݏ, 

defined by 

ݏ																																											 ൌ |కାఎ|ି|క|

|క|
                                                                                          (2.7)                         

where ݏ is positive when the bond is in tension and negative when the bond is in compression.  

 

Accordingly, 

																																										 መ݂ ൌ ܿ ∙        (2.8)                                                                                                 ݏ

where ܿ is stiffness which depends on both material and the geometrical property of the material.  
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A material is said to be micro-elastic [1] if the force function is derivable from a scalar micro-

potential ݓ௕: 

,ࣁሺࢌ																																											 ሻࣈ ൌ డ௪್ሺࣈ,ࣁሻ

డࣁ
,ࣈ	∀																							  (2.9)                                                  ࣁ

 

The micro-potential is the energy in a single bond and has the dimension of energy per unit 

volume square. The energy per unit volume at a given point, i.e. the strain energy density, then 

becomes 

																																										ܹ ൌ ଵ

ଶ
,ࣁ௕ሺݓ׬ ݀	ሻࣈ  (2.10)                                                                         ࣈܸ

 

The domain of integration is the same as that of Eqn. 2.1. The factor of ½ is imposed because 

each point of a bond owns only half the energy in the bond.  

 

2.3 Failure criterion 

The bond between two particles will break if they are stretched beyond a critical value	ݏ଴ defined 

as the critical stretch. Once the bond fails, there is no tensile force between the two points. The 

force function መ݂ሺߟ,  :ሻ can be modified as history dependentߦ

																																														 መ݂ሺߟ, ሻߦ ൌ ܿ ∙ ݏ ∙ ,ݐሺߤ  ሻ                                                                     (2.11)ߦ

where ߤ	is a history-dependent scalar function, i.e. 

,ݐሺߤ                                          ሻࣈ ൌ ൜	
,ᇱݐሺݏ	݂݅								1 ሻࣈ ൏ 0	݈݈ܽ	ݎ݋݂		଴ݏ ൑ ′ݐ ൑ 	ݐ
,ᇱݐሺݏ	݂݅				0 ሻࣈ ൒ 0	ݕ݊ܽ	ݎ݋݂		଴ݏ ൑ ′ݐ ൑ 	ݐ

                    (2.12) 

 

The damage at a point can be defined by a function	߮ሺ࢞,  ሻ, whereݐ

																																														߮ሺ࢞, ሻݐ ൌ 1 െ
ௗ௏഍	ሻࣈ,ఓሺ௧׬

ௗ௏഍׬
                                                                  (2.13) 
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The domain of integration is the same as that of Eqn. 2.1. Note that 0 ൑ ߮ ൑ 1,	where 0 

represents virgin material and 1 represents complete disconnection of the point from all points 

with which it initially interacted. A value of ߮ should be defined as the criterion of the beginning 

of the crack (discontinuity in displacement). A value of 0.3 is used in [2].  

 

2.4 Numerical method 

The force function ݂ is usually very complex for integration. Numerical integration hence should 

be used. To begin with, the integral form of Eqn. 2.1 is replaced by a finite summation 

ሷݑߩ                                           ௜
௡ ൌ ∑ ݂ሺݑ௣௡ െ ௜ݑ

௡, ௣ݔ െ ௜ሻݔ ௣ܸ௣ ൅ ܾ௜
௡                                         (2.14) 

where superscript n is the integration step number,		 ௣ܸ is the volume of node p and subscripts ݅ 

denotes the node number as shown in Fig. 2.3. The summation is taken over all nodes p such that   

௣ݔ|																																																 െ |௜ݔ ൑  (2.15)                                                                                 ߜ

 

After obtaining ݑሷ ௜
௡ at each point, the displacement of the next integration step ݑ௜

௡ାଵ can be found 

from the formula for finite difference, i.e. 

ሷݑ									                  ௜
௡ ൌ

ೠ೔
೙శభషೠ೔

೙

∆೟
ି
ೠ೔
೙షೠ೔

೙షభ

∆೟

∆௧
ൌ

௨೔
೙శభିଶ௨೔

೙ା௨೔
೙షభ

ሺ∆௧ሻమ
                                       (2.16) 

Fig. 2.4 shows the flow chart of the numerical program.  
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Figure 2.1  Horizon of point . 
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Figure 2.2 Reference configuration and current configuration. 
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Figure 2.3 Finite summation domain in numerical computation. 
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Figure 2.4  Flow chart of a peridynamic program. 
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Chapter 3 

One-Dimensional Wave Propagation Analysis 

 

3.1 Identification of stiffness 

Based on the peridynamic theory established in Chapter 2, this chapter investigates one-

dimensional wave propagation. To obtain the peridynamic equation of motion for the one-

dimensional problem, consider a bar with a length L and a constant cross-sectional area A.  Eqn. 

2.1 is integrated over the cross-section and divided by A, resulting in 

ሷݑߩ																																																				 ሺݔ, ሻݐ ൌ ,ݔሺ݂׬ ,ᇱݔ ′ݔሻ݀ݐ ൅ ܾ																																																											(3.1)  

,ଵݔሺݑ                                                ሻݐ ൌ
ଵ

஺
׬ ,ଵሺ࢞ݑ ሻݐ  (3.2)                                                           ܣ݀

                                               ܾሺݔଵ, ሻݐ ൌ
ଵ

஺
׬ ܾଵሺ࢞, ሻݐ                       (3.3)                                                           ܣ݀

                                          ݂ሺݔଵ, ଵݔ
ᇱ , ሻݐ ൌ ଵ

஺
∬ ଵ݂ሺ࢞, ࢞ᇱ,  (3.4)                                                ܣ݀′ܣሻ݀ݐ

where ݔ ≡ ଵ and ܸ݀ᇱݔ ൌ ′ܣ݀ ∙  are used. The bond force f is expressed in terms of force per ′ݔ݀

unit length per unit volume, e.g. ܰ/݉ସ.  

 

A simple model of the bond force can be expressed as  

                                                           ݂ ൌ ܿ ∙  (3.5)                                                                           ݏ

where c is stiffness and ݏ is strech. To find ܿ, it is necessary to find the strain energy density from 

peridynamics and set it equal to that used in classical mechanics.  

 

Consider a bar under a uniform stretch of ݏ. Based on the bond micro-potential of Eqn. 2.9, 

integrate f to find 
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௕ݓ																																																									 ൌ
௖∙|ఎ|మ

ଶ∙|క|
ൌ

௖∙௦మ∙|క|

ଶ
                                                    (3.6) 

 

This is the energy in one bond. From Eqn. 2.10, the strain energy density based on peridynamic 

analysis becomes 

																															ܹ ൌ
ଵ

ଶ
׬ ݀	௕ݓ
ାఋ
ିఋ

 ൌ
ଵ

ଶ
׬

௖∙ୱమ∙| |

ଶ
	݀

ାఋ
ିఋ

 ൌ
௖∙ୱమ∙ఋమ

ସ
                         (3.7) 

 

The strain energy density from classical mechanics is 
ଵ

ଶ
 ଶ. Setting it equal to that obtainedݏܧ

from peridynamic analysis, i.e. Eqn. 3.7, the stiffness c in Eqn. 3.5 can be found to be  

                                                                       ܿ ൌ
ଶா

ఋమ
                                                                (3.8) 

 

3.2 Definition of stress in peridynamics 

One way to verify a peridynamic model is to compare it with the associated term in classical 

mechanics. Most classical mechanics results are presented by stresses. Therefore, to verify 

peridynamics, it is useful to define stress in peridynamics and compare it with the classical 

mechanics counterpart. This definition is for comparison purpose only since stress is not 

commonly used in peridynamics. As shown in Fig. 3.1, the stress at a point ݔ is defined as the 

force connecting the two half-domains together at point ݔ, i.e. the summation of all positive bond 

forces crossing the point ݔ.  

ߪ                                                ൌ ׬ ׬ ܿ ∙ ݄݀	ݔ݀	ݏ
ఋି௛
଴

ఋ
଴ ൌ

௖௦ఋమ

ଶ
ൌ ܧ ∙  (3.9)                            ݏ

where stiffness ܿ is defined in Eqn. 3.8. Hence, the stress in peridynamics, shown in Eqn. 3.9, is 

exactly the same as that in classical mechanics.  
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3.3 Comparison with analytical solution 

Consider the wave propagation in a one-dimensional bar due to an initial uniform strain ߝ଴, as 

depicted in Fig. 3.2. Both ends of the bar are assumed to be free of load.  

 

3.3.1 Analytical solution 

The equation of motion for the bar [1] is   

                                                
డమ௨

డ௧మ
െ

ா

ఘ

డమ௨

డ௫మ
ൌ 0                                                                    (3.10)                      

where u is displacement, t is time, E is Young’s modulus, ߩ is density and x is position.  

 

The boundary conditions are 

                                                  
డ௨

డ௫
ሺ0, ሻݐ ൌ 0                                                                        (3.11) 

                                                  
డ௨

డ௫
ሺܮ, ሻݐ ൌ 0                                                                        (3.12) 

where ܮ is the length of the bar.  

 

The initial conditions are 

,ݔሺݑ                                                 0ሻ ൌ  (3.13)                                                                           ݔ଴ߝ

ሶݑ                                                 ሺݔ, 0ሻ ൌ 0                                                                               (3.14) 

 

Using the method of separation of variables, the displacement can be expressed as a product of 

position ݔ and time ݐ, i.e. 

,ݔሺݑ                                                ሻݐ ൌ ܺሺݔሻܶሺݐሻ                                                                   (3.15) 
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Substituting Eqn. 3.15 into Eqn. 3.10, it yields 

                                                             
்ᇲᇲ

்
ൌ

ா

ఘ

௑ᇲᇲ

௑
                                                                  (3.16) 

 

Since the left-hand side of the equation is dependent on ݐ only and the right-hand side of the 

equation is dependent on x only, both sides of Eqn. 3.16 then must be equal to a constant, such as 

െ߱ଶ.   

 

Rewrite Eqn. 3.16 as 

																																																																									ܶᇱᇱ ൅ ߱ଶܶ ൌ 0                                                         (3.17) 

                                                                ܺᇱᇱ ൅ ଶܺߣ ൌ 0                                                          (3.18) 

where ߣଶ ൌ ఘ

ா
߱ଶ. 

 

A general solution of Eqn. 3.17 is  

                                                     ܶ ൌ ܣ sin߱ݐ ൅ ܤ cos߱(3.19)                                                     ݐ 

 

In order to satisfy the initial condition of Eqn. 3.14, ܣ ൌ 0. Similarly, a general solution of Eqn. 

3.18 is  

                                                   ܺ ൌ ܥ sin ݔߣ ൅ ܦ cos  (3.20)                                                       ݔߣ

 

In order to satisfy the boundary condition given in Eqn. 3.11, ܥ ൌ 0. Similarly, in order to satisfy 

the boundary condition given in Eqn. 3.12, sin ܮߣ ൌ 0. Hence, 
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ܮߣ                                                       ൌ ,ߨ݅ ݅ ൌ 0, 1, 2, 3, … 

 

Redefine 

௜ߣ                                                     ൌ
௜గ

௅
, ݅ ൌ 0, 1, 2, 3, …                                                 (3.21) 

 

The solution to Eqn. 3.10 can be expressed as  

,ݔሺݑ                                                   ሻݐ ൌ ∑ ௜ܣ
ஶ
௜ୀ଴ cos ݔ௜ߣ cos߱௜(3.22)                                          ݐ 

where ߱ in Eqn. 3.19 has been replaced by ߱௜  (݅ ൌ 0, 1, 2, 3, … ሻ and a new coefficient ܣ௜  has 

been installed.  

 

Eqn. 3.13 can be rewritten as 

                                                             ∑ ௜ܣ
ஶ
௜ୀ଴ cos ݔ௜ߣ ൌ  (3.23)                                                  ݔ଴ߝ

 

In order to find ܣ௜ in Eqn. 3.23, multiply both sides of the equation with cos  and integrate ݔ௞ߣ

them from 0 to ܮ, i.e.  

௞ܣ                                    ׬ cos ݔ௞ߣ ∙ cos ݔ௞ߣ ݔ݀	 ൌ ׬ ݔ଴ߝ cos ݔ௞ߣ ݔ݀	
௅
଴

௅
଴                                 (3.24)    

       

Hence,     

௞ܣ                                                    ൌ
ଶఌబ
௅ఒೖ

మ ሾሺെ1ሻ
௞ െ 1ሿ                                                     (3.25) 

ݑ                                      ൌ
ଶ

௅
଴ߝ ∑ ሾሺെ1ሻ௜ െ 1ሿஶ

௜ୀ଴
ଵ

ఒ೔
మ cos ݔ௜ߣ ∙ cos߱௜  (3.26)                       ݐ

ߝ                                    ൌ
డ௨

డ௫
ൌ

ଶ

௅
଴ߝ ∑ ሾ1 െ ሺെ1ሻ௜ሿஶ

௜ୀ଴
ଵ

ఒ೔
sin ݔ௜ߣ ∙ cos߱௜  (3.27)                 ݐ
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in which ߣ௜ ൌ
௜∙గ

௅
 and ߱௜ ൌ ට

ா

ఘ
௜ߣ	 .           

       

This analytical solution will be used to justify numerical solutions based on peridynamics. It will 

also be used to study the convergence of parameters used in peridynamic analysis. Fig. 3.3 shows 

the strain history of a bar under an initial strain of 0.0001. The bar is made of a material with 

Young’s modulus ܧ ൌ ߩ and density ܽܲܩ	193 ൌ 8027	݇݃/݉ଷ. The ripples at the corners are 

due to Gibbs phenomenon [2], which states that the truncated Fourier series of a discontinuous 

signal will exhibit high frequency ripples and overshoot near the discontinuities. The overshoot 

does not die out as the frequency increases, but approaches a finite limit.  

 

3.3.2 Numerical studies 

Three parameters are involved in the peridynamic numerical analysis. They are the time step ݀ݐ, 

the size of horizon ߜ and the number of nodes within the horizon ݉. Fig. 3.4 shows a one-

dimensional peridynamic model and the associated horizon. When solving the peridynamic 

problem and comparing its results with those obtained from classical mechanics analysis, it is 

found that the magnitudes of waves from both analyses are always the same. However, the wave 

speed and wave period vary with ݉ and ߜ. Table 3.1 shows the wave periods based on nine 

combinations of  ݉ and ߜ.   

 

Based on theory of vibration, the wave period in the bar is equal to 

                                                          2 ൈ ௅

ඥா/ఘ
ൌ  (3.28)                                                       ݏ݉	0.41

where L is the bar length and ඥߩ/ܧ	 is wave speed.  
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Table 3.1 Wave period (݉ݏ) based on various of ݉ and ߜ   

 mm 5 mm 10mm 1 ߜ    

1 0.2912 0.2893 0.2873 

5 0.3761 0.3747 0.3732 

10 0.3827 0.3915 0.3903 

 

Comparing the peridynamic results given in Table 3.1 with that from vibration theory, the 

numerical solution becomes closer to the analytical solution when the number of nodes within 

the horizon (݉) increases, i.e., the distance between nodes decreases. Besides, when ݉ is fixed, 

the peridynamic solution becomes closer to the classical mechanics solution if the horizon ߜ 

decreases. This result is thought to be due to the fact that classical mechanics is based on contact 

force. When ߜ decreases, the bond force in peridynamics becomes closer to the contact force in 

classical mechanics and the peridynamics solution converges to the classical mechanics solution. 

It then seems to be ideal to use small ߜ and large ݉ in peridynamic analysis. However, this will 

pose a significant increase in computational time. Fig. 3.5 shows comparison between classical 

mechanics and peridynamic analysis. Numerical studies based on ߜ ൌ 2.2	݉݉  and ݀ݔ ൌ

0.5	݉݉ (with m = 4) give peridynamic results within 1.2% of discrepancy from that of classical 

mechanics. The convergence of time step based on these parameters is also shown in Fig. 3.6. As 

long as ݉ and ߜ  are fixed, the result does not vary too much with the change of time step. 

Consequently, ݀ݐ ൌ 1 ൈ 10ି଻ݏ ݔ݀ , ൌ 0.5	݉݉  and ߜ ൌ 2.2	݉݉  will be used in subsequent 

numerical investigations.  

 

݉	



28 
 

3.4 Comparison with experiment results 

For studying one-dimensional wave propagation, the commonly used split Hopkinson’s pressure 

bar (SHPB) [3] is taken as an example in this study. SHPB consists of three bars, a striker bar, an 

incidence bar and a transmission bar as shown in Fig. 3.7. It is commonly used for characterizing 

material constitutive relations. Table 3.2 shows an example of dimensions and material 

properties of bars used in SHPB. The results from the experiments based on SHPB can be used 

to justify the peridynamic analysis.  

 

Table 3.2 Dimensions and material properties of the SHPB in Fig. 3.7 

 Striker Incidence bar Transmission bar 

Length 191 mm 991 mm 724 mm 

Diameter 13 mm 13 mm 13 mm 

Young’s modulus 193 GPa 193 GPa 193 GPa 

Mass density 8027 ݇݃/݉ଷ 8027 ݇݃/݉ଷ 8027 ݇݃/݉ଷ 

 

In performing the SHPB test, a specimen is placed in between the incidence bar and the 

transmission bar. The striker is then accelerated to collide with the incidence bar, creating a strain 

wave. The strain wave will propagate through the two bars and rebound from any surface 

between any two bars. A pair of strain gages are installed on each of the incidence bar and 

transmission bar to record the strain wave history. From the strain wave, the dynamic stress-

strain curve of the specimen can be identified.  

 

When the striker bar is fired onto the incidence bar, it creates a constant pressure over a period of 
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time. The strain wave then propagates toward the specimen with partial transmission into the 

specimen and partial reflection from the specimen, which has different material properties and 

cross-sectional areas than the split bars as shown in Fig. 3.8. The reflected strain ߝ௥	is related to 

the strain in the specimen ߝ	by the following relation 

                                                        
ௗఌ

ௗ௧
ൌ െ

ଶඥா/ఘ

௅
 ௥                                                            (3.29)ߝ

where ܧ ߩ ,  and ܮ  are Young’s modulus, mass density and length of the incidence bar, 

respectively. The transmitted strain ߝ௧ is related to the stress in the specimen ߪ by the following 

relation 

ߪ                                                         ൌ ܧ
஺బ
஺
 ௧                                                                    (3.30)ߝ

where ܧ and ܣ are Young’s modulus and cross-sectional area of the transmission bar and ܣ଴ is 

the original cross-sectional area of the specimen. The stress-strain relation of the material can 

then be found from Eqn. 3.29 and Eqn. 3.30.  

 

The goal of this study is to validate peridynamic models and associated computational results 

with experiment results from SHPB tests, i.e. validation of theory by experiment. Hence, 

materials with known properties will be used as input for peridynamic analysis. The strain 

history in the incidence bar and the transmission bar will be computed based on peridynamics 

and the results will be compared with the experiment results.  

 

3.4.1  Square wave input 

A perfect impact between a striker bar and an incidence bar can result in a square-shaped pulse 

with a stress magnitude ߪ ൌ
௏ఘ஼బ
ଶ

 and a duration ܶ ൌ 2
௅ೞ
஼బ

, where ܸ, ܥ ,ߩ଴ and ܮௌ are velocity 
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before impact, mass density, wave velocity and length of the striker bar. In peridynamic analysis, 

the constant pressure ߪ ൌ
௏ఘ஼బ
ଶ

 and duration ܶ ൌ 2
௅ೞ
஼బ

, shown in Fig. 3.9, are used as input in 

the computational program. 

 

Study One - one bar 

In this study, no specimen is used and the transmission bar is isolated from the incidence bar, 

resulting in only wave propagation in the incidence bar. Experiment results and computational 

results are shown in Fig. 3.10 for comparison.  

 

Study Two - two bars 

In this study, no specimen is used and the incidence bar and the transmission bar are put in 

contact with each other as shown in Fig. 3.11. The testing results are compared with peridynamic 

simulation as shown in Fig.3.12. They are the strain histories of the incidence bar and the 

transmission bar. One obvious observation is that the majority of the wave enters the 

transmission bar with only a small portion of approximately 12% reflected. At the end of wave 

propagation, the two bars separate from each other.  

 

Based on theoretical analysis, the wave period in the transmission bar is 

																																																							2 ൈ	
௅೟
௩೎
ൌ 2.95 ൈ 10ିସ(3.31)                                             ݏ 

where ܮ௧  is the length of transmission bar and ݒ௖  is the wave velocity. The experiment 

measurement gives an average wave period of 2.99 ൈ 10ିସݏ, which is 1.4% higher than the 

theoretical value, while the peridynamic simulation gives an average of 3 ൈ 10ିସs, which is 
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1.7% higher than the theoretical value.  

 

In the peridynamic simulation of SHPB, the bond force crossing the interface between two bars 

can only be negative, otherwise the two bars will separate. At each time step of calculation, the 

stretch of the bond between the two bars is calculated. If the stretch is greater than zero, it 

implies there is a separation between two bars. Hence, the bond force is set to zero. When the 

bond stretch is negative, the bond force can then be calculated by Eqn. 3.5. Using this technique, 

there will be no interaction between the incidence bar and the transmission bar when they are 

separated. The comparison between the simulation and experiment for the transmission bar 

shows good agreement. The periods also match well even after several periods. However, the 

comparison for the incidence bar shows a discrepancy. Oscillations on the incidence bar do not 

look like reflection waves. They are smaller than the reflection wave shown in Fig. 3.12. 

 

In the experiment of SHPB, a layer of grease may be applied to the interface between two bars to 

promote the continuity of wave propagation. The effect of the grease layer on the wave 

propagation should then be considered in the investigation. The testing result given in Fig. 3.13 

shows almost no reflection in the incidence bar, implying the complete wave transmission 

through the grease layer to the transmission bar. 

 

Study Three – specimen with different property 

The wave propagation through an interface can be affected by the material change and the cross-

sectional area change across the interface. Both the changes can cause wave reflection on the 

interface. This study investigates the effect of material change on the wave propagation. A study 
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model given in Fig. 3.14 is used for the study. In identifying the interfacial bond force, it is 

necessary to determine a composite stiffness c, given in Eqn. 3.5 and a composite cross-sectional 

area A, given in Eqn. 3.2. The composite stiffness c can be expressed in terms of the individual 

stiffness on ܿଵ and ܿଶ on both sides of the interface with the coordinate ݔଷ and the displacement 

 .ଷ of the interfaceݑ

 

The bond force for material with stiffness equal to ܿଵ is defined as  

																																																																	 ଵ݂ ൌ ܿଵ
௨యି௨భ
௫యି௫భ

                                                      (3.32) 

while that for material with stiffness ܿଶ is defined as 

																																																																 ଶ݂ ൌ ܿଶ
௨మି௨య
௫మି௫య

                                                       (3.33) 

 

Both of them should be equal to the composite bond force, i.e.  

																																																									݂ ൌ ଵ݂ ൌ ଶ݂ ൌ ܿ
௨మି௨భ
௫మି௫భ

                                             (3.34) 

 

Solving for ܿ, it yields 

																																																							ܿ ൌ
ଵ

೎భ

ೣయషೣభ
ሺೣమషೣభሻ

ା
೎మ

ೣమషೣయ
ሺೣమషೣభሻ

                                                  (3.35) 

 

In order to demonstrate the effect due to the change of material across an interface, an aluminum 

specimen with a cross-sectional area identical to that of SHPB (Fig. 3.15) is used. The specimen 

is made of AL6061 with a Young’s modulus of 69 GPa and a mass density of 2700 ݇݃/݉ଷ. 
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Results are shown in Fig. 3.16 for comparison. The simulation results match reasonably well 

with the experiment counterparts. The technique for modeling an interfacial bond joining 

different materials is thus validated.  

 

Study Four – specimen with smaller cross-sectional area 

This study investigates the effect of different cross-sectional areas across an interface on the 

wave propagation. A specimen made of Steel 347, identical to that used for the SHPB is used. 

The diameter of the specimen is 10 ݉݉ and the length of it is 26 ݉݉. Since the specimen 

diameter is smaller than the incidence bar diameter, the bond stiffness of the specimen should be 

modified with the area ratio between them, i.e. 

                                              	ܿ ൌ ଶா

ఋమ
ൈ

஺ೞ೛೐೎೔೘೐೙

஺೔೙೎೔೏೐೙೟
                                                                      (3.37) 

 

Once the specimen bond stiffness is defined, the composite bond stiffness can be found from 

Eqn. 3.35. The result is given in Fig. 3.18.  

 

3.4.2 Using filter for computational results  

All the four computational results given above match reasonably well with their experiment 

counterparts. However, it is necessary to point out that the computational results always show 

square waves with overshoots around the corners when a square wave as shown Fig. 3.9 is used 

as input.  The experiment results, however, show trapezoidal waves with smooth, low shoulders. 

The overshoots are likely due to numerical process while the low shoulders are likely due to the 

bandwidth limit of data acquisition system. The sharp rise of the square wave is of a very high 

frequency signal. It is almost impossible to have a perfectly square wave in experiment since all 
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electrical devices work as low-pass filters and they have a limited bandwidth. Based on this 

realty, a filter is added to the following computational investigations. 

 

The Fourier transform for a discrete-time function [2] is 

                                    ܺሺ߱ሻ ൌ ∑ ሾ݊ሿ݁ି௝ఠ௡௡ୀାஶݔ
௡ୀିஶ                                                                   (3.38) 

 

The inverse Fourier transform, back to time domain, is 

ሾ݊ሿݔ                                     ൌ ଵ

ଶగ
׬ ܺሺ߱ሻଶగ ݁௝ఠ௡݀߱                                                                (3.39) 

where ω is the frequency. If the high frequency part of function ܺሺ߱ሻ is cut off and Eqn. 3.39 is 

added to transform back to the time domain, a low-pass filter can be achieved. In computation, 

Matlab function ݂݂ݐ	[4] shown below may be used 

                                             ܻ ൌ  ሻ                                                                         (3.40)݊݅ܽݎݐݏሺݐ݂݂

where ݊݅ܽݎݐݏ is the strain history vector and ܻሺ݆ሻ is the magnitude of the ݆-th frequency term.  

 

Once a cutoff value is set, the first ݇ components of ܻ can be used to find a new strain history by 

inverse Fourier transform function ݂݂݅[5] ݐ, i.e 

݊݅ܽݎݐܵݓ݁݊                                        ൌ ,ሺܻݐ݂݂݅ ݇ሻ                                                                  (3.41) 

 

Simulation results for Study One, Study Two, Study Three and Study Four with filters are 

compared with experiment results. Fig. 3.19, Fig. 3.20, Fig. 3.21 and Fig. 3.22 show the 

comparisons. The cut-off frequency used is 100 MHz. As can be seen from the four sets of 

comparison, the computational results with filers are of trapezoidal shape and the overshoots are 

smaller. The numerical solutions match more favorably with the experiment results with the use 
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of filter.   

 

3.4.3 Using the incidence wave as the computational input  

Another source to cause the discrepancies between the computational simulations and the 

experiment results is likely due to the imperfect impact between the striker bar and the incidence 

bar. The computational study is based on a perfect impact while the experiment study is not. One 

way to eliminate the discrepancy is to use the incidence wave from experiment as input for 

computation. Take Study Two as an example, the incidence wave can be extracted from the 

experiment shown in Fig. 3.23. It then can be used as the input wave for the computational study. 

The computational result is given in Fig. 3.25. The computational result is almost the same as the 

experiment result. With the incidence waves from experiments as the computational inputs, 

computational simulations for Study One, Study Two, Study Three and Study Four are shown in 

Fig. 3.24, Fig. 3.25, Fig. 3.26 and Fig. 3.27, respectively. The results between experiments and 

computations match very well.  

 

3.5 Simulation with a striker 

All simulations given above use a mathematical stress function as the input pressure. The 

function is either a perfect square function or an incidence wave from an experiment. The 

simulations do not model the impact process between the striker bar and the incidence bar. To 

simulate and validate the true impact process, an impact bar system shown in Fig. 3.28 is 

considered. Only a striker bar and an incidence bar are needed for investigating the incident 

wave created by the impact. Their dimensions and material properties are listed in Table 3.3. A 

velocity sensor is installed right before the incidence bar to monitor the striker velocity right 
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before the impact.  

 

Table 3.3 Dimensions and material properties of the split bar in Fig. 3.28 

 Striker Incidence bar 

Length 491 ݉݉ 2743 ݉݉ 

Diameter 25.4 ݉݉ 25.4 ݉݉ 

Young’s modulus 227.26 ܽܲܩ 227.26 ܽܲܩ 

Mass density 7610.5 ݇݃/݉ଷ 7610.5 ݇݃/݉ଷ 

 

The simulation begins when the striker just touches the incidence bar without causing any 

deformation to the incidence bar. It is a two-bar problem with the striker bar having an initial 

velocity while the incidence bar stays static.  

 

From the velocity sensor, the striker has a velocity of 4.12 ݉/ݏ right before impact. The strain 

history in the incidence bar after the impact is recorded by the strain gages mounted on it. In 

simulation, the velocity of 4.12 ݉/ݏ is the only input for the computation, i.e. all nodes within 

the striker bar (491 ݉݉) have an initial velocity of 4.12 ݉/ݏ. Fig. 3.30 shows the comparison 

between the experiment and the simulation. Results from simulation with a stress input, similar 

to Study One, is also presented in Fig. 3.30. The two simulation results are exactly the same.  

 

Another way to verify the aforementioned results is to study the impact of two bars using 

classical mechanics. Consider a short cylindrical bar, with a length ܮ௦, a cross-sectional area of 

 ௦, is travelling to a long cylindrical bar with a cross-sectional area ofߩ ௦ and a mass density ofܣ
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 ௜. Right before the impact, the short bar has a velocity of ଴ܸ and bothߩ ௜ and a mass density ofܣ

bars are stress free as shown in Fig. 3.31. After impact (Fig. 3.32), a compressive wave travels in 

both bars. Two conditions must be satisfied at the interface between the two bars. The first 

condition is the continuity of velocity. If the interface velocity after the impact is ܸ, the particle 

velocity at the interface of the short bar is ௦ܸ. The following relation holds for  ܸ, ଴ܸ and ௦ܸ. 

                                                                    ܸ ൌ ଴ܸ െ ௦ܸ                                                          (3.42) 

 

The particle velocity at the interface of the long bar is ௜ܸ, i.e. 

                                                                    ܸ ൌ ௜ܸ                                                                   (3.43) 

 

Combining Eqn. 3.42 and Eqn. 3.43, it yields 

                                                                   ௜ܸ ൌ ଴ܸ െ ௦ܸ                                                           (3.44)  

 

Another condition which must be satisfied is the balance of forces at the interface, i.e. 

௦ܨ                                                               ൌ  ௜                                                                        (3.45)ܨ

where ܨ௦ and ܨ௜ are axial forces on the short bar and long bar, respectively. The relation between 

the particle velocity and the axial force can be derived from wave theory as follows 

௦ߪ                                                            ൌ ௦ܿ௦ߩ
డ௨ೞ
డ௧

                                                                 (3.46) 

where ߪ௦ ൌ
ிೞ
஺ೞ

,  ௦ܸ ൌ
డ௨ೞ
డ௧

 and ܿ௦ ൌ ට
ாೞ
ఘೞ

. 

 

௜ߪ                                                 ൌ ௜ܿ௜ߩ
డ௨೔
డ௧

                                                                              (3.47) 

where ߪ௜ ൌ
ி೔
஺೔

 and ௜ܸ ൌ
డ௨೔
డ௧

 and ܿ௜ ൌ ට
ா೔
ఘ೔

. 
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Combining Eqn. 3.44, Eqn. 3.45, Eqn. 3.46 and Eqn. 3.47, the following relations can be 

concluded 

                                              ௜ܸ ൌ
ఘೞ஺ೞ௖ೞ௏బ

ఘ೔஺೔௖೔ାఘೞ஺ೞ௖ೞ
                                                                        (3.48) 

                                              ௦ܸ ൌ
ఘ೔஺೔௖೔௏బ

ఘ೔஺೔௖೔ାఘೞ஺ೞ௖ೞ
                                                                        (3.49) 

 

In SHPB, the striker bar is the short bar while the incidence bar is the long bar. The two bars 

have identical mass density, Young’s modulus and cross-sectional area. From Eqn. 3.44, Eqn. 

3.48 and Eqn. 3.49, it yields 

                                                           ௜ܸ ൌ ௦ܸ ൌ
ଵ

ଶ ଴ܸ                                                                (3.50) 

 

Combining Eqn. 3.46, Eqn. 3.47 and Eqn. 3.50, the following stresses can be obtained 

௦ߪ                                                        ൌ ௜ߪ ൌ
ଵ

ଶ
଴ܿ଴ߩ ଴ܸ                                                            (3.51) 

where ߩ଴ ൌ ௜ߩ ൌ ௦ and ܿ଴ߩ ൌ ܿ௜ ൌ ܿ௦. Then the strain on the incidence bar becomes 

௜ߝ                                                       ൌ
ଵ

ଶ
଴ܿ଴ߩ ଴ܸ/ܧ                                                                (3.52) 

 

Consider an SHPB system of ܧ ൌ ଴ߩ ,ܽܲܩ	227.26 ൌ 7610.5	݇݃/݉ଷ  and the diameter of the 

bars ݀଴ ൌ 25.4	݉݉. Also, from the velocity sensor, the striker velocity before the impact is 4.12 

Substituting these values into Eqn. 3.52, the magnitude of strain is found to be 3.77 .ݏ/݉ ൈ

10ିସ. The magnitude of strain wave from computation is 3.79 ൈ 10ିସ. A difference of only 

0.5% exists.  
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In conclusion, based on the assumption of perfect impact and perfect signal acquisition, the study 

based on striker impact is the same as the square function input as shown in Fig. 3.9. Therefore, 

there is no need to include the striker impact in the simulation, hence significant computational 

effort can be save. Another observation is that peridynamics is convenient for simulating the 

impact process without using the complex theory involved in contact mechanics. The long range 

force covers the contact between two bodies automatically.  

 

3.6 Validation with results in literature 

The purpose of the previous study is to validate the elastic model of peridynamics. The initial 

velocity of the striker bar is controlled to be small so the deformation of the specimen is always 

within elastic range. In SHPB experiment, the deformations of the bars are always within elastic 

range.  

 

Most of the existing work on SHPB is to find material properties of a specimen, i.e. stress-strain 

curve, in elastic as well as in plastic range. To simulate an SHPB test from the existing works, a 

plastic or nonlinear bond function must be used for the specimen.  

 

An SHPB system is given in Fig. 3.33. The dimensions and material properties are listed in Table 

3.4. An aluminum specimen with a length of  25.38	݉݉ and a diameter of  12.6	݉݉ is used in 

the SHPB study. From the reflection wave and the transmission wave, the stress-strain relation of 

the specimen can be identified and is shown in Fig. 3.35.  
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Table 3.4 Dimensions and material properties of the SHPB in Fig. 3.33 

 Striker Incidence bar  Al Specimen Transmission bar 

Length 203 mm 838 mm 25.38 mm 419 mm 

Diameter 19 mm 19 mm 12.6 mm 19 mm 

Young’s modulus 191.4 GPa 191.4 GPa Fig. 3.35 191.4 GPa 

Mass density 7858	݇݃/݉ଷ 7858 ݇݃/݉ଷ 2700 ݇݃/݉ଷ 7858 ݇݃/݉ଷ 

 

 

Fig. 3.35 is then used as the input material property for peridynamic simulations. The 

computational results are then compared with the experiment results from Ref. [6]. Matlab 

curve-fitting toolbox [7] is used to convert the curve in Fig. 3.34 for a piece-wise linear function. 

For every strain, the corresponding stress calculated from the fitted function is divided by the 

strain to obtain an equivalent Young’s modulus which is subsequently used to find the bond 

stiffness. Fig. 3.35 compares experiment results with computational results. They show a good 

correlation except some discrepancies around the corner. Fig. 3.36 shows the filtered 

computational results with the experiment results. The agreement between the two is 

significantly improved. This study demonstrates the capability of peridynamics in modeling 

plastic materials.  

 

3.7 Modeling shaper in SHPB 

In performing SHPB tests, it is necessary to maintain constant strain rate during the loading 

process. This requires a slow loading process such as a triangular incidence wave as shown in 

Fig. 3.37. A square incidence wave, as shown previously for computational purpose, can cause a 
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rapid loading in the beginning of testing and hence is not suitable since it can damage the 

specimen prematurely. A so-called shaper must be installed between the striker bar and the 

incidence bar as shown in Fig. 3.38 to slow down the initial loading rate. 

 

The selection of the shaper materials and its dimensions, however, requires significant 

experience and trial and error. A computer simulation based peridynamics may help to ease the 

selection process.  

 

Frew [8] used a copper shaper in SHPB tests. To study the shaping effect, only the striker and the 

incidence bar are needed. Table 3.5 shows dimensions and material properties of the individual 

bars. The strain wave propagated into the incidence bar is altered due to the plastic deformation 

of the shaper during impact. Frew [8] proposed the following stress-strain model for the copper 

shaper  while Fig. 3.40 shows the plot of it, i.e. Eqn. 3.53, 

ߪ                                                                ൌ ఙబఌ೙

ଵିఌ೘
                                                                    (3.53) 

where ߪ଴ ൌ ܽܲܯ	625 , ݊ ൌ 0.32  and ݉ ൌ 4.25 . The unloading process is elastic and the 

Young’s modulus is 117	ܽܲܩ. 

   

Table 3.5 Dimensions and material properties of the SHPB used 

 striker shaper incidence bar 

length 152mm 1.6mm 2130mm 

diameter 12.7mm 4.8mm 12.7mm 

Young’s modulus 200 GPa Fig. 3.40 200 GPa 

Mass density 8100 ݇݃/݉ଷ 8910 ݇݃/݉ଷ 8100 ݇݃/݉ଷ 
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Similar to those presented in Section 3.6, the stresses from Fig. 3.40 are divided by the strain to 

gain an equivalent Young’s modulus ܧ௘௤. The deformed cross-sectional area of the shaper, ܣ, is 

calculated from the following equation 

ܣ                                                                      ൌ ஺బ௅బ
௅

                                                               (3.54) 

where ܮ is the deformed shaper length, ܣ଴ is the original shaper area and ܮ଴ is the original shaper 

length. The equivalent strain ܧ௘௤ is modified by the change of the cross-sectional area as shown 

below 

௘௤ᇱܧ                                                                     ൌ ௘௤ܧ
஺

஺బ
                                                         (3.55) 

 

The bond stiffness involved in the shaper can then be calculated by using Eqn. 3.35. It should be 

pointed out that the significant change of area should be considered in Eqn. 3.53 because the 

deformation of the shaper can be quite large, deviating from one-dimensional assumption. 

 

Simulation of the shaped incidence wave is compared with the experiment results in Fig. 3.41. 

They agree with each other very well. Overall, this study shows that peridynamics is able to 

simulate the shaping effect required for SHPB operations. It provides an efficient way to select a 

shaper material with associated dimensions without numerous trial-and-errors.  

 

3.8 Conclusions  

A one-dimensional peridynamic model is proposed and its engineering applications are 

evaluated. The numerical solutions from peridynamic analyses are well compared with the 

associated analytical solutions in both convergence and accuracy studies. The feasibility of using 
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peridynamics in modeling Split Hopkinson Pressure Bar (SHPB) is also validated by the 

experiments. Since SHPB tests performed in this dissertation are essentially focused on 

validating the peridynamic theory, the tests are specifically designed for comparison purpose, 

some assumptions and requirements of SHPB technique are not be completely satisfied. For 

example, it is required in SHPB tests that the specimen diameter be smaller than that of the 

striker, incidence and transmission bars. Study Three, however, does not follow this guideline. 

The experiment data from Study Three is able to validate Eqn. 3.35 but may be not able to get 

the accurate material properties from Eqn. 3.29 and Eqn. 3.30. Peridynamics is convenient for 

simulating impact process with its long range force. All fundamental elements for mechanical 

analysis are included in the formulation of peridynamics. No additional theory, such as contact 

mechanics, is required. Because of its numerical nature, peridynamic method can be used to 

simulate the shaper of the SHPB. This can help accelerate the use SHBP in dynamic material 

characterizations significantly.  
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Figure 3.1 Calculation of stress. 
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Figure 3.2 Wave propagation in a one-dimensional bar. 
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Figure 3.3 Analytical solution for wave propagation. 
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Figure 3.4 Number of nodes within a horizon. 
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Figure 3.5 Comparison between classical mechanics and peridynamics. 

  



49 
 

 

Figure 3.6 Convergence of time step size.  
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Figure 3.7 Set up of Split Hopkinson pressure bar (SHPB). 
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Figure 3.8 Wave propagation in SHPB.  
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Figure 3.9 Square wave input for computational simulation.  
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Figure 3.10 Comparison in Study One with a square wave input. 
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Figure 3.11 Study Two: Two Bar. 
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Figure 3.12 Study Two: comparison between experiment results and numerical solution, strain 
history in incidence bar (top) and strain history in transmission bar (bottom). 
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Figure 3.13 Study Two: comparison between experiment results and numerical solution with 
grease, strain history in incidence bar (top) and strain history in transmission bar (bottom). 
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                                      Figure 3.14 A bond crossing an interface. 
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Figure 3.15 Study Three: aluminum specimen with the same cross-section area as the split bars. 
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Figure 3.16 Study Three: Aluminum specimen with the same-cross section area as the split bars, 
incidence bar strain history (top) and transmission bar strain history(bottom). 
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Figure 3.17 Study Four: Steel specimen with a smaller cross-section area. 
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Figure 3.18 Study Four: Steel specimen with a smaller cross-section area, incidence bar strain 
history (top) and transmission bar strain history (bottom). 
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Figure 3.19 Study One: computational results with filter compared with experiment results. 
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Figure 3.20 Study Two: Computational results with filter compared with experiment results. 
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Figure 3.21 Study Three: Computational results with filter compared with experiment results. 
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Figure 3.22 Study Four: Computational results with filter compared with experiment results. 
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Figure 3.23 Incidence wave from Study Two. 
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Figure 3.24 Study One: Incident wave as computational input. 
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Figure 3.25 Study Two: Incident wave as computational input. 
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Figure 3.26 Study Three: Incident wave as computational input. 
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Figure 3.27 Study Four: Incident wave as computational input. 
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Figure 3.28 Split bar system for validating impact process. 
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Figure 3.29 Simulation of impact process. 

For interpretation of the references to color in this and all other figures, the reader is referred to 
the electronic version of this dissertation.  
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Figure 3.30 Comparison between experiment and simulation with velocity input. 
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Figure 3.31 Impact of two cylindrical bars right before impact. 
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Figure 3.32 Impact of two cylindrical bars after impact. 
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Figure 3.33 SHPB system [6]. 
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Figure 3.34 Stress-strain relation of the aluminum specimen from [6]. 
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Figure 3.35 Comparing computational results with experiment results from [6]. 

  



79 
 

 

Figure 3.36 Computational results with filter compared with experiment results. 
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Figure 3.37 Incidence wave after filter from Ref. [8]. 
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Figure 3.38 SHPB with a shaper. 
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Figure 3.39 Split bar system in Ref. [8]. 
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Figure 3.40 Stress-strain relation for the copper shaper given in Ref. [8]. 
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Figure 3.41 Simulation results compared with experiment results from Ref. [8]. 
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Chapter 4 

Two-Dimensional Peridynamic Studies 

 

The one-dimensional bar-like model presented in the previous chapter is excellent for one-

dimensional analysis. This chapter investigates a beam-like model for two-dimensional analysis. 

The two-dimensional governing equation of peridynamics [1] is 

ߩ																																																								 ሷ࢛ ൌ ׬  (4.1)                                                                             ܣ݀	݂

where the integration domain is horizon ߜ. 

 

4.1 Bar model 

Similar to the bar model given in section 3.1, a simple model of bond force can be expressed as 

                                                                  ݂ ൌ ܿ ∙  (4.2)                                                                    ݏ

where c is a material property, such as stiffness. To identify ܿ, it is necessary to find strain energy 

density based on peridynamics and set it equal to that based on classical mechanics.  

                         

Consider a plane stress problem with the following displacement field 

௥ݑ ൌ  ݎ଴ߝ

ఏݑ																																																																																 ൌ 0                                                                  (4.3) 

as shown in Fig. 4.1. 

 

 For the point at the origin ࢞, the bond stretch is 

ݏ                                                        ൌ ௥௥ߝ ൌ    ଴                                                                        (4.4)ߝ
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From Eqn. 2.7, it is defined that                                    

ߟ																																													                   ൌ  (4.5)                                                                               ߦݏ

 

Substituting Eqn. 4.5 into Eqn. 4.2, it yields 

                                                    ݂ ൌ ܿ ∙ ݏ ൌ ܿ ∙  (4.6)                                                                 ߦ/ߟ

 

Based on the definition of the micro-potential (Eqn. 2.9), it follows that 

௕ݓ                                                    ൌ
௖ఎమ

ଶక
ൌ  (4.7)                                                                 2/ߦଶݏܿ

 

This is the strain energy in one bond. Integrating ݓ௕ over the horizon of ࢞, the strain energy 

density becomes 

                              ܹ ൌ ଵ

ଶ
ܣ݀	௕ݓ׬	 ൌ

ଵ

ଶ
׬ ׬

௖௦మక

ଶ

ଶగ
଴

ఋ
଴ ߦ݀ߠ݀	ߦ ൌ ௖గ௦మఋయ

଺
                                       (4.8) 

 

The strain energy density can also be calculated from theory of elasticity. From Eqn. 4.3, the 

strain components [2] are            

௥௥ߝ							                                                            ൌ
డ௨ೝ
డ௥

ൌ  ଴                                                           (4.9)ߝ

ఏఏߝ																																																																										 ൌ
௨ೝ
௥
ൌ 	଴ߝ  (4.10)                         

௥ఏߛ																																																																											 ൌ 0	                                                                  (4.11) 

 

Using Hook’s law [2], the stress elements  are found to be 

௥௥ߪ                                                             ൌ
ா

ଵିఔమ
௥௥ߝ ൅

ாఔ

ଵିఔమ
                                             (4.12)	ఏఏߝ

ఏఏߪ                                                           ൌ
ாఔ

ଵିఔమ
௥௥ߝ ൅

ா

ଵିఔమ
               ఏఏ                                              (4.13)ߝ
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The strain energy density from classical mechanics then becomes    

                                                     ܹ ൌ ଵ

ଶ
ሺߪ௥௥ߝ௥௥ ൅ ఏఏሻߝఏఏߪ ൌ

ாఌబమ

ଵିఔ
                                        (4.14) 

 

Setting the two strain energy densities, i.e. Eqn. 4.8 and Eqn. 4.14, equal to each other, it yields  

                                                                  
ா௦మ

ଵିఔ
ൌ ௖గ௦మఋయ

଺
                                                            (4.15) 

 

Rearranging Eqn. 4.15, the material property ܿ can be found as follows 

                                                                   ܿ ൌ ଺ா

గఋయሺଵିఔሻ
                                                           (4.16)          

  

4.2 Definition of stress in peridynamics 

Similar to Section 3.2, the definition of stress is only sought for comparison purposes since there 

is no need of stress in peridynamic simulations. In two-dimensional analysis, the traction [3] at 

point ࢞ is defined as the total internal force applied on the segment [െߜ, 0] by the domain on the 

right-hand side of ࢞ as shwon in Fig. 4.2 and can be expressed by the following equation   

                                                 ࣎ሺ࢞ሻ ൌ ׬ ׬ ௫ᇱ݄݀ோାܣ݀	ࢌ
ఋ
଴                                                          (4.17)  

where ܴା  is the domain on the right-hand side of point ࢞ ′ݔ ,  is a point in ܴା ௫ᇱܣ݀ ,  is the 

integration element area of ݔ′ and ࢌ is the bond force applied on ݄݀ by ݔ′. It should be noted that 

all points on the ܴା apply forces not only on point ࢞ but also beyond ࢞ along a layer of thickness  

 ௫௫ and is defined asߪ componet of ࣎ሺ࢞ሻ is ݔ which is the horizon. The ,ߜ

௫௫ߪ																																																											 ൌ ׬ ׬ 	 ௫݂݀ܣ௫ᇱ݄݀ோା
ఋ
଴                                                        (4.18) 
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Consider a deformation with strains ߝ௫௫ ൌ ௬௬ߝ ଵ andߝ ൌ  ଶ, the bond stretch should becomeߝ

ݏ                                                     ൌ ଵߝ cos ଶߠ ൅ ଶߝ sin   ଶ                                                     (4.19)ߠ

 

Then the ݔ component of the bond force is 

																																																													 ௫݂ ൌ ܿ ∙ ݏ ∙ cos  (4.20)                                                                 ߠ

 

Substituing Eqn. 4.20 into Eqn. 4.18, it arrives  

௫௫ߪ ൌ න න න 	 ௫݂	ݎ
ୡ୭ୱషభ௛௥

ିୡ୭ୱషభ௛௥

ఋ

௛

ఋ

଴
݄݀ݎ݀ߠ݀ ൌ න න න 	ܿ ∙ ଴ߝ ∙ ଶߠ݊݅ݏ ∙ ݎ	ߠݏ݋ܿ

ୡ୭ୱషభ௛௥

ିୡ୭ୱషభ௛௥

ఋ

௛

ఋ

଴
 ݄݀ݎ݀ߠ݀

																		ൌ ଷாఌభ
ସሺଵି௩ሻ

൅ ாఌమ
ସሺଵି௩ሻ

	                                                                                                     (4.21) 

 

The integration domain shown in Fig. 4.3 can be explained as that 	 ௫݂ is the ݔ component of the 

force applied by ܴା on point A. The distance from point ࢞ to point A is ݄ which covers from 0 to 

 ݄ For point A, which is located a distance .ߜ because ܴା has no interaction with points beyond ߜ

from ࢞, the distance between a point in ܴା and point A is ݎ. The smallest value of ݎ is ݄ and the 

largest value of ݎ is ߜ. For every ݎ, only points from ߠ ൌ െcosିଵ ௛
௥
	 to ߠ ൌ cosିଵ ௛

௥
  are in  ܴା 

domain. Points outside this range are not in ܴା  domain. The symbolic integration can be 

calculated by Mathematica [4].  

 

In classical mechanics, ߪ௫௫ is defined as follows 

௫௫ߪ                                                     ൌ
ா

ଵି௩మ
ଵߝ ൅

ா௩

ଵି௩మ
 ଶ                                                        (4.22)ߝ
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Eqn. 4.21 and Eqn. 4.22 are equal to each other when ݒ ൌ 1/3. There is only one material 

property defined in the bar model based on peridynamic analysis as opposed to two independent 

properties used in classical mechanics. Hence, the Poisson’s ratio for the peridynamic bar model 

has to be 1/3. 

 

4.3 Beam model 

In order to accommodate two material properties, an upgraded peridynamic model resembling a 

beam is proposed here. The interaction force between two points depends not only on the 

deformation along the axial direction but also along the transverse direction as depicted in Fig. 

4.4.  

 

Consider a point ݔଶ located away from ݔଵ, with an angle ߠ. The bond forces between ݔଵ and ݔଶ, 

based on the local coordinate on ݔଵ, are 

                                                                ݂′௫ ൌ ܿଵሺݑ′ଶ െ                          (4.23)                             ݎ/ଵሻ′ݑ

                                                               ݂′௬ ൌ ܿଶሺݒ′ଶ െ  ଷ                                             (4.24)ݎ/ଵሻ′ݒ

where ݂′௫ is the axial force appiled on ݔଵ by ݔଶ,  ݂′௬ is the transverse force applied on ݔଵ by ݔଶ 

and r is the original length of the bond ݔଵ-ݔଶ. The transformation equations between the local 

coordinate and the global coordinate are                                                          

ᇱݑ	                                                             ൌ ݑ cos ߠ ൅ ݒ sin  (4.25)                                                 ߠ

ᇱݒ                                                              ൌ െݑ sin ߠ ൅ ݒ cos  (4.26)                                              ߠ

 

Consider a case with strains in ݔ and ݕ directions are ߝଵ and ߝଶ, i.e. ߝଵ ൌ
௨మି௨భ
௥௖௢௦ఏ

		and ߝଶ ൌ
௩మି௩భ
௥௦௜௡ఏ

. 

Eqn. 4.23 and Enq. 4.24 become 
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 ݂′௫ ൌ
ܿ1ሺ2ݑ cosߠ൅2ݒ sinߠെ1ݑ cosߠെ1ݒ sinߠሻ

ݎ
	ൌ ܿ1 ቀݎ1ߝ cosߠ

2 ൅ ݎ2ߝ sinߠ
2ቁ  (4.27)       ݎ/

݂′௬ ൌ
ܿ2ሺെ2ݑ sinߠ൅2ݒ cosߠ൅1ݑ sinߠെ1ݒ cosߠሻ

3ݎ
ൌ ሺെݎ1ߝ cosߠ sinߠ ൅ ݎ2ߝ cosߠ sinߠሻ/3ݎ        

(4.28) 

 

The strain energy of this bond becomes 

௕ݓ                    ൌ
௖భሺఌభ௥ ୡ୭ୱఏమାఌమ௥ ୱ୧୬ఏమሻమ

ଶ௥
൅

௖మሺିఌభ௥ ୡ୭ୱఏ ୱ୧୬ఏାఌమ௥ ୡ୭ୱఏ ୱ୧୬ఏሻమ

ଶ௥య
            (4.29) 

 

Integrating Eqn. 4.29, the strain energy density at ݔଵ becomes 

 ܹ ൌ ଵ

ଶ
ܣ݀	௕ݓ׬ ൌ

ଵ

ଶ
׬ ׬ ௕ݓ

ଶగ
଴ ݎ݀ߠ݀ݎ

ఋ
଴  

ൌ ଵ

ସ଼
ଵߝሾ3ܿଶሺߜߨ െ ଶሻଶߝ ൅ ܿଵሺ3ߝଵ

ଶ ൅ ଶߝଵߝ2 ൅ ଶߝ3
ଶሻߜଶሿ                                                             (4.30) 

where ߜ is the horizon.  

 

On the other hand, from classical mechanics, the stresses are defined as  

ଵߪ                                                             ൌ
ா

ଵି௩మ
ሺߝଵ ൅  ଶሻ                                              (4.31)ߝݒ

ଶߪ                                                             ൌ
ா

ଵି௩మ
ሺߝଶ ൅  ଵሻ                                       (4.32)ߝݒ

 

The strain enery density is 

                       ܹ ൌ
ଵ

ଶ
ଵߝଵߪ ൅

ଵ

ଶ
ଶߝଶߪ ൌ

ா

ଶሺଵି௩మሻ
ଵߝ
ଶ ൅

ா௩

ሺଵି௩మሻ
ଶߝଵߝ ൅

ா

ଶሺଵି௩మሻ
ଶߝ
ଶ           (4.33) 

 

Set Eqn. 4.30 and Eqn. 4.33 equal to each other, the following solutions can be obtained 
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                                                                ܿଵ ൌ െ
଺ா

గఋయሺ௩ିଵሻ
                                                    (4.34) 

                                                       ܿଶ ൌ െ
ଶாሺଵିଷ௩ሻ

గఋሺ௩మିଵሻ
                                            (4.35) 

where ܿଵ and ܿଶ are the two independent material properties of the beam model. When ݒ ൌ 1/3 

and ܿଶ ൌ 0, the beam model can be reduced to the bar model presented in Section 4.1.  

 

From Eqn. 4.34 and Eqn. 4.35, Young’s modulus ܧ and Poisson’s ratio ݒ can also be expressed 

by ܿଵ and ܿଶ             

ܧ                                                              ൌ
௖భሺଷ௖మା௖భఋమሻగఋయ

ଽሺ௖మା௖భఋమሻ
                                          (4.36) 

ݒ                                                             ൌ െ1 ൅
ସఋమ

ଷሺ௖మ/௖భାఋమሻ
                                              (4.37)         

                            

From Eqn. 4.37, it can be concluded that ݒ can vary from -1 to infinity. This implies that the 

peridynamic beam model is capable of modeling any isotropic material which has ݒ raging from 

-1 to 0.5.  

 

Similar to Section 4.2, the stresses can be calculated from the peridynamic beam model and 

compared with those given in classical mechancis. Consider a deformation with strains ߝ௫௫ ൌ  ଵߝ

and ߝ௬௬ ൌ   component of bond force is ݔ ଶ. In the beam model, theߝ

                                                    ௫݂ ൌ ݂′௫ ∙ cos ߠ െ ݂′௬ ∙ sin  (4.38)                                                ߠ

 

This is different from the bar model which gives  ௫݂ ൌ ݂′௫ ∙ cos ߠ . Eqn. 4.18 can then be 

expressed as 



94 
 

௫௫ߪ ൌ න න න 	ሺ݂ݔᇱ ∙ cos ߠ െ ᇱݕ݂ ∙ sin ݎሻߠ
ୡ୭ୱషభ

௛
௥

ିୡ୭ୱషభ
௛
௥

ఋ

௛

ఋ

଴
 ݄݀ݎ݀ߠ݀

                          ൌ
గఋ

ଶସ
ሾܿଵߜଶሺ3ߝଵ ൅ ଶሻߝ ൅ 3ܿଶሺߝଵ െ  ଶሻሿ                                     (4.39)ߝ

 

Substituing Eqn. 4.34 and Eqn. 4.35 into Eqn. 3.39, it yields 

௫௫ߪ                                          ൌ
ா

ଵି௩మ
ଵߝ ൅

ா௩

ଵି௩మ
 ଶ                                              (4.40)ߝ

 

The interpretation of Eqn. 4.39 is similar to that of Eqn. 4.21. As can be seen, Eqn. 4.40 is 

exactly the same as  ߪ௫௫ in Eqn. 4.22 obtained from classical mechanics analysis. 

 

4.4 Computational efficiency  

From Fig. 2.4, it can be seen that there are three loops in peridynamic calculations, namely time 

loop, domain loop and neighbor loop. With the loops, small time step and small distance between 

nodes, peridynamic calculations will become very time consuming. For example, Study Three in 

Chapter 3 has about 3500 nodes in the one-dimensional domain. It takes about two hours to 

complete the calculation using the serial computational algorithm shown in Fig. 2.4. Hence, it 

can be expected that two-dimensional peridynamic problems containing more nodes will further 

slow down the calculation process if the serial computational algorithm shown in Fig. 2.4 is 

used. This section studies methods to improve the compuational efficiency of peridyamics.  

 

4.4.1 Using matrix computation  

For problems involving infinitesimal deformation, the relationships between nodes may be 
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considered unchanged during the deformation process. The calculation of these relationships in 

each time step shown in the flowchart given in Fig. 2.4 may be disregarded. For computational 

efficiency, it is desired to calculate these relationships before the beginning of computation and 

store them in a matrix like the stiffness matrix practiced in finite element analysis. Therefore, 

only matrix multiplication is required in each time step. 

 

For two-dimensional analysis, the peridynamic equation of motion can be rewritten in the 

following discrete form based on node	݅  

ߩ	                                                            ሷ࢛ ௜ ൌ ∑ ௜௦ܣ∆	ࢌ ൅  ௜                                                    (4.41)࢈

where ݅ݏ is any node in the horizon of point ݅ shown in Fig. 4.5. Other notations are mass density 

acceleration (of node ݅) ሷ࢛ ,ߩ ௜, force (between node ݅ and node	݅ݏሻ ࢌ, area (of node ݅ݏሻ ∆ܣ and 

body force (of node ݅ሻ ࢈௜. The following notations are also defined below: 

nodal positions: [ݔଵ, ,ଵ௦ݔ] ଶሿ for node ݅ andݔ  ݏ݅ ଶ௦] for nodeݔ

node displacements: [ݑଵ, ,ଵ௦ݑ] ଶ] for node ݅ andݑ  ݏ݅ ଶ௦] for nodeݑ

relative displacement: ࣁ ൌ ሾሺݑଵ௦ െ ,ଵሻݑ ሺݑଶ௦ െ  ሻሿ	ଶݑ

relative position: ࣈ ൌ ሾሺݔଵ௦ െ ,ଵሻݔ ሺݔଶ௦ െ  ሻሿ	ଶݔ

bond stretch: ݏ ൌ |ࣈାࣁ|

|ࣈ|
െ 1 

force between node ݅ and node	݅ࢌ :ݏ ൌ ܿ ∙ ݏ ∙ ࣈାࣁ
|ࣈାࣁ|

                                                                  (4.42) 

 

The ݔଵ component of ࢌ is 

                                          ଵ݂ሺݑଵ, ,ଶݑ ,ଵ௦ݑ ଶ௦ሻݑ ൌ ܿ ∙ ݏ ∙ ሺ௨భೞି௨భା௫భೞି௫భሻ
|ࣈାࣁ|

                                   (4.43)                        
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To express ଵ݂ in a matrix form, the following truncated Taylor’s series may be used 

ଵ݂ሺݑଵ, ,ଶݑ ,ଵ௦ݑ ଶ௦ሻݑ ൌ ଵ݂ሺ0,0,0,0ሻ ൅
డ௙భ
డ௨భ

ሺ0,0,0,0ሻ ∙ ଵݑ ൅
డ௙భ
డ௨మ

ሺ0,0,0,0ሻ ∙ ଶݑ ൅
డ௙భ
డ௨భೞ

ሺ0,0,0,0ሻ ∙ ଵ௦ݑ ൅

డ௙భ
డ௨మೞ

ሺ0,0,0,0ሻ ∙ ଶ௦ݑ ൅
ଵ

ଶ
ቀడ

మ௙భ
డ௨భమ

ሺ0,0,0,0ሻ ∙ ଵଶݑ ൅ 2 డమ௙భ
డ௨భడ௨మ

ሺ0,0,0,0ሻ ∙ ଶݑଵݑ ൅ 2 డమ௙భ
డ௨భడ௨భೞ

ሺ0,0,0,0ሻ ∙

ଵ௦ݑଵݑ ൅ 2 డమ௙భ
డ௨భడ௨మೞ

ሺ0,0,0,0ሻ ∙ ଶ௦ݑଵݑ ൅
డమ௙భ
డ௨మమ

ሺ0,0,0,0ሻ ∙ ଶଶݑ ൅ 2 డమ௙భ
డ௨మడ௨భೞ

ሺ0,0,0,0ሻ ∙ ଵ௦ݑଶݑ ൅

2 డమ௙భ
డ௨మడ௨మೞ

ሺ0,0,0,0ሻ ∙ ଶ௦ݑଶݑ ൅
డమ௙భ
డ௨భೞమ

ሺ0,0,0,0ሻ ∙ ଵ௦ଶݑ ൅ 2 డమ௙భ
డ௨భೞడ௨మೞ

ሺ0,0,0,0ሻ ∙ ଶ௦ݑଵ௦ݑ ൅

డమ௙భ
డ௨మೞమ

ሺ0,0,0,0ሻ ∙ ଶ௦ଶቁݑ ൅ ⋯                                                                                                      (4.44) 

 

The ݔଶ component of ࢌ is 

                                          ଶ݂ ൌ ܿ ∙ ݏ ∙ ሺ௨మೞି௨మା௫మೞି௫మሻ
|ࣈାࣁ|

                                                              (4.45)   

 

Similarly, to express ଶ݂ in a matrix form, the following truncated Taylor’s series may be used 

ଶ݂ሺݑଵ, ,ଶݑ ,ଵ௦ݑ ଶ௦ሻݑ ൌ ଶ݂ሺ0,0,0,0ሻ ൅
డ௙మ
డ௨భ

ሺ0,0,0,0ሻ ∙ ଵݑ ൅
డ௙మ
డ௨మ

ሺ0,0,0,0ሻ ∙ ଶݑ ൅
డ௙మ
డ௨భೞ

ሺ0,0,0,0ሻ ∙

ଵ௦ݑ ൅
డ௙మ
డ௨మೞ

ሺ0,0,0,0ሻ ∙ ଶ௦ݑ ൅

ଵ

ଶ
ቀడ

మ௙మ
డ௨భమ

ሺ0,0,0,0ሻ ∙ ଵଶݑ ൅ 2 డమ௙మ
డ௨భడ௨మ

ሺ0,0,0,0ሻ ∙ ଶݑଵݑ ൅ 2 డమ௙మ
డ௨భడ௨భೞ

ሺ0,0,0,0ሻ ∙ ଵ௦ݑଵݑ ൅

2 డమ௙మ
డ௨భడ௨మೞ

ሺ0,0,0,0ሻ ∙ ଶ௦ݑଵݑ ൅
డమ௙మ
డ௨మమ

ሺ0,0,0,0ሻ ∙ ଶଶݑ ൅ 2 డమ௙మ
డ௨మడ௨భೞ

ሺ0,0,0,0ሻ ∙ ଵ௦ݑଶݑ ൅

2 డమ௙మ
డ௨మడ௨మೞ

ሺ0,0,0,0ሻ ∙ ଶ௦ݑଶݑ ൅
డమ௙మ
డ௨భೞమ

ሺ0,0,0,0ሻ ∙ ଵ௦ଶݑ ൅ 2 డమ௙మ
డ௨భೞడ௨మೞ

ሺ0,0,0,0ሻ ∙ ଶ௦ݑଵ௦ݑ ൅

డమ௙మ
డ௨మೞమ

ሺ0,0,0,0ሻ ∙ ଶ௦ଶቁݑ ൅ ⋯                                                                                                      (4.46) 

 

The equation of motion can then be written in a matrix form 
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ߩ                                          ∙ ሷࢊ ൌ ࡷ ∙ ࢊ ൅ ்ࢊ ∙ ࡹ ∙ ࢊ ൅  (4.47)                                                       ࢈

where ࢊ is a displacement vector and is defined as 

݀ଶ௜ିଵ ൌ  ଵݑ

݀ଶ௜ ൌ  ଶݑ

݀ଶ௜௦ିଵ ൌ  ଵ௦ݑ

                                                                       ݀ଶ௜௦ ൌ  ଶ௦                                                          (4.48)ݑ

 

 is the first-order term matrix (two-dimensional symmetric matrix) and is defined as ࡷ

ଶ௜ିଵ,ଶ௜ିଵܭ ൌ
߲ ଵ݂

ଵݑ߲
ሺ0,0,0,0ሻ 

ଶ௜ିଵ,ଶ௜ܭ ൌ
߲ ଵ݂

ଶݑ߲
ሺ0,0,0,0ሻ 

ଶ௜ିଵ,ଶ௜௦ିଵܭ ൌ
߲ ଵ݂

ଵ௦ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜ିଵ,ଶ௜௦ܭ ൌ
߲ ଵ݂

ଶ௦ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜,ଶ௜ିଵܭ ൌ
߲ ଶ݂

ଵݑ߲
ሺ0,0,0,0ሻ 

ଶ௜,ଶ௜ܭ ൌ
߲ ଶ݂

ଶݑ߲
ሺ0,0,0,0ሻ 

ଶ௜,ଶ௜௦ିଵܭ ൌ
߲ ଶ݂

ଵ௦ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜,ଶ௜௦ܭ                                                             ൌ
డ௙మ
డ௨మೞ

ሺ0,0,0,0ሻ                                                 (4.49) 

 

M is the second-order term matrix (three-dimensional matrix) and is defined as 



98 
 

ଶ௜ିଵ,ଶ௜ିଵ,ଶ௜ିଵܯ ൌ
1
2
߲ଶ ଵ݂

ଵଶݑ߲
ሺ0,0,0,0ሻ 

ଶ௜ିଵ,ଶ௜,ଶ௜ିଵܯ ൌ
߲ଶ ଵ݂

ଶݑଵ߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜ିଵ,ଶ௜௦ିଵ,ଶ௜ିଵܯ ൌ
߲ଶ ଵ݂

ଵ௦ݑଵ߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜ିଵ,ଶ௜௦,ଶ௜ିଵܯ ൌ
߲ଶ ଵ݂

ଶ௦ݑଵ߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜,ଶ௜,ଶ௜ିଵܯ ൌ
1
2
߲ଶ ଵ݂

ଶଶݑ߲
ሺ0,0,0,0ሻ 

ଶ௜,ଶ௜௦ିଵ,ଶ௜ିଵܯ ൌ
߲ଶ ଵ݂

ଵ௦ݑଶ߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜,ଶ௜௦,ଶ௜ିଵܯ ൌ
߲ଶ ଵ݂

ଶ௦ݑଶ߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜௦ିଵ,ଶ௜௦ିଵ,ଶ௜ିଵܯ ൌ
1
2
߲ଶ ଵ݂

ଵ௦ଶݑ߲
ሺ0,0,0,0ሻ 

ଶ௜௦ିଵ,ଶ௜௦,ଶ௜ିଵܯ ൌ
߲ଶ ଵ݂

ଶ௦ݑଵ௦߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜௦,ଶ௜௦,ଶ௜ିଵܯ ൌ
1
2
߲ଶ ଵ݂

ଶ௦ଶݑ߲
ሺ0,0,0,0ሻ 

ଶ௜ିଵ,ଶ௜ିଵ,ଶ௜ܯ ൌ
1
2
߲ଶ ଶ݂

ଵଶݑ߲
ሺ0,0,0,0ሻ 

ଶ௜ିଵ,ଶ௜,ଶ௜ܯ ൌ
߲ଶ ଶ݂

ଶݑଵ߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜ିଵ,ଶ௜௦ିଵ,ଶ௜ܯ ൌ
߲ଶ ଶ݂

ଵ௦ݑଵ߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜ିଵ,ଶ௜௦,ଶ௜ܯ ൌ
߲ଶ ଶ݂

ଶ௦ݑଵ߲ݑ߲
ሺ0,0,0,0ሻ 
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ଶ௜,ଶ௜,ଶ௜ܯ ൌ
1
2
߲ଶ ଶ݂

ଶଶݑ߲
ሺ0,0,0,0ሻ 

ଶ௜,ଶ௜௦ିଵ,ଶ௜ܯ ൌ
߲ଶ ଶ݂

ଵ௦ݑଶ߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜,ଶ௜௦,ଶ௜ܯ ൌ
߲ଶ ଶ݂

ଶ௦ݑଶ߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜௦ିଵ,ଶ௜௦ିଵ,ଶ௜ܯ ൌ
1
2
߲ଶ ଶ݂

ଵ௦ଶݑ߲
ሺ0,0,0,0ሻ 

ଶ௜௦ିଵ,ଶ௜௦,ଶ௜ܯ ൌ
߲ଶ ଶ݂

ଶ௦ݑଵ௦߲ݑ߲
ሺ0,0,0,0ሻ 

ଶ௜௦,ଶ௜௦,ଶ௜ܯ                                                      ൌ
ଵ

ଶ

డమ௙మ
డ௨మೞమ

ሺ0,0,0,0ሻ                                               (4.50) 

 

Eqn. 4.49 and Eqn. 4.50 are calculated before the first time step. Once the K matrix and the M 

matrix are built, each step can be carried out by Eqn. 4.47. The computational flowchart is shown 

in Fig. 4.6. As compared with that shown in Fig. 2.4, two layers of loop in each time step are 

eliminated. A significant amount of time can then be saved. For a one-dimensional problem with 

about 3500 nodes as used in Study Three of Chapter 3, it takes about two hours to complete the 

simulation on a PC with an Intel(R) Core(TM) i7-2860QM CPU based on the algorithm showing 

in Fig. 2.4. However, it only requires approximately five seconds to complete the simulation on 

the same PC using the matrix computation algorithm.  

 

4.4.2 Using parallel computing 

Another problem continues to hinder the computational process in the matrix computation is 

associated with damage process. When damage takes place, bond stretches still have to be 

calculated and checked one by one to identify the locations and directions of the damage. Once 
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damage is identified, the corresponding elements of ࡷ and M will have to be nulled to represent 

the loss of bond stiffness due to the broken bonds. This process will also slow down the 

peridynamic computation and hinders the convenience of the peridynamic method in damage 

problems.  

 

Since the computation of peridynamic nodes is independent of one another, there is a great 

advantage to use parallel computing in peridynamic simulations. Therefore, the algorithm shown 

in Fig. 2.4 is modified for parallel computing. As shown in Fig. 4.7, the computation of 

individual nodes are carried out independently.  

 

In this study, the Matlab parallel computing toolbox [5] is used to implement the parallel 

computing. . The program is modified as shown in Fig. 4.8. As can be seen from Fig. 4.7, the 

neighboring loop is also eliminated by using matrix computation in Matlab. Instead of processing 

one neighboring node to another, it is possible to use Matlab matrix computation to manipulate 

all neighboring nodes at the same time. The facility located at High Performance Computing 

Center (HPCC) at MSU [6] is used to run the modified program. However, due to the limited 

resources at the HPCC, eight workers are considered as a balanced choice between queue time 

and computation time. When solving a two-dimensional problem with 10,201 nodes, it takes 215 

seconds to compute 100 time steps based on serial computing while it only takes 27 seconds to 

complete the same task based on eight-worker parallel computing. Ideally, if resource is 

available, it is possible to use the same number of workers as the numbber of nodes to 

significantly reduce the computational time. 
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4.5 Comparison with vibration theory 

4.5.1 Vibration theory 

In a two-dimensional polar coordinate system ሺݎ, ,ߠ  ሻ, consider the free vibration of a circularݐ

plate, shown in Fig. 4.9, under the following initial conditions 

,ݎ௥ሺݑ	                                                              ,ߠ 0ሻ ൌ  (4.51)                                                        ݎ଴ߝ

,ݎఏሺݑ                                                              ,ߠ 0ሻ ൌ 0                                                            (4.52) 

 

Since the circumference of the circle, ݎ ൌ ܴ, is a free boundary, the boundary condition should 

be 

,௥௥ሺܴߪ                                                               ,ߠ ሻݐ ൌ 0                                                          (4.53) 

 

Apparently, this is an axisymmetric problem and the displacements can be redefined as 

,ݎ௥ሺݑ                                                               ,ߠ ሻݐ ൌ ,ݎሺݑ          ሻ                                                   (4.54)ݐ

,ݎఏሺݑ                                                               ,ߠ ሻݐ ൌ 0                                                            (4.55) 

 

Hence, the strains are [2] 

௥௥ߝ                                                                      ൌ
డ௨

డ௥
                                                             (4.56)   

ఏఏߝ                                                                      ൌ
௨

௥
                                                              (4.57)                         

௥ఏߛ                                                                       ൌ 0                                                               (4.58)  

 

By substituting Eqn. 4.56, Eqn. 4.57 and Eqn. 4.58 into Hook’s law, the following stresses can be 

found 
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௥௥ߪ                                        ൌ
ா

ଵି௩మ
௥௥ߝ ൅

ா௩

ଵି௩మ
ఏఏߝ ൌ

ா

ଵି௩మ
డ௨

డ௥
൅

ா௩

ଵି௩మ
௨

௥
                   (4.59) 

ఏఏߪ                                  ൌ
ா

ଵି௩మ
ఏఏߝ ൅

ா

ଵି௩మ
௥௥ߝ	 ൌ

ா

ଵି௩మ
௨

௥
൅

ா

ଵି௩మ
డ௨

డ௥
                  (4.60) 

௥ఏߪ                                                                  ൌ 0                                                                    (4.61) 

 

The polar coordinates based equation of motion in r-direction is defined as 

ሷݑߩ               ൌ
డఙೝೝ
డ௥

൅
ଵ

௥

డఙഇഇ
డఏ

൅
ఙೝೝିఙഇഇ

௥
ൌ

ா

ଵି௩మ
డ௨మ

డ௥మ
൅

ா

௥ሺଵି௩మሻ

డ௨

డ௥
െ

ா

ଵି௩మ
௨

௥మ
          (4.62) 

 

The equation of motion can be solved using numerical method. With ܧ ൌ ݒ ,ܽܲܩ	75 ൌ 0.3,  

ߩ ൌ 2800	݇݃/݉ଷ and ܴ ൌ 0.1	݉, the strain history of point B on the circular plate is shown in 

Fig. 4.10.  

 

4.5.2 Numerical studies 

There are three parameters in numerical calculation. They are time step ݀ݐ, number of nodes in 

horizon ݉ and the size of horizon ߜ. As discussed in Chapter 3, the smaller the horizon, the 

closer the solution will be to that of classical mechanics. When the horizon is fixed, more nodes 

within the horizon, i.e. smaller node size, will give higher solution accuracy. However, smaller 

node size and higher node number in the horizon will require higher computational time. A 

practical computation should have a balance between computational efficiency and numerical 

accuracy.  

 

Twelve pairs of ݉ and ߜ are investigated for comparison. They are shown in Table 4.1. Fig. 4.11 

shows the computational results of case 10, case 11 and case 12 along with their analytical 
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solution. Although ߜ ൌ 10݉݉ is a large horizon, it still can be seen that the increase of the node 

number in the horizon, i.e. the decrease of node size, improves the accuracy of the peridynamic 

solution to the theoretical solution. Fig. 4.12 compares case 5 and case 6 with the solution from 

vibration theory. When the number of nodes in a horizon is fixed at 4, two different horizons, 

ߜ ൌ 2.2	݉݉ and ߜ ൌ 2.5	݉݉, are used. As shown in Fig. 4.12, the smaller the horizon, the 

closer the peridynamic solution becomes to the solution from vibration theory solution.  

 

Table 4.1  Twelve pairs of ݉ and ߜ  

 ݉ ൌ 1 ݉ ൌ 3 ݉ ൌ 4 ݉ ൌ 5 ݉ ൌ 10 

ߜ ൌ 1 1   2 3 

ߜ ൌ 1.6	݉݉  4    

ߜ ൌ 2.2	݉݉   5   

ߜ ൌ 2.5	݉݉   6   

ߜ ൌ 5	݉݉ 7   8 9 

ߜ ൌ 10	݉݉ 10   11 12 

 

 

When ݉ ൌ 4 and ߜ ൌ 2.2	݉݉, the size of time step ݀ݐ is studied. As shown in Fig. 4.13, two 

different time steps, ݀ݐ ൌ 1 ൈ 10ି଻s and ݀ݐ ൌ 1 ൈ 10ି଼s, are used and the results are compared 

with the results from the vibration theory. The result with ݀ݐ ൌ 1 ൈ  is slightly better than ݏ10ି଼

that from ݀ݐ ൌ 1 ൈ 10ି଻ݏ at the rising time of the radial strain. Other than that, the two results 

are almost the same. However, the case with ݀ݐ ൌ 1 ൈ  is about ten times slower than the ݏ10ି଼

case with  ݀ݐ ൌ 1 ൈ 10ି଻ݏ.  
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Based on these results, ݀ݔ ൌ ߜ ,0.5݉݉ ൌ 2.2	݉݉ and ݀ݐ ൌ 1 ൈ 10ି଻ݏ are used and the strain 

histories of point A, point B and point C, as shown in Fig. 4.9, are compared with the vibration 

theory results in Fig. 4.14, Fig. 4.15 and Fig. 4.16 respectively. They agree well.   

 

4.6 Convergence to the one-dimensional results 

To further verify the two-dimensional peridynamic model, it is also of interest to compare the 

results from the two-dimensional peridynamic simulations with those from the one-dimensional 

peridynamic simulations.  

 

The free vibration of a rectangular plate as shown in Fig. 4.17 is considered. The length of the 

plate is ܮଵ ൌ 0.4	݉ and the aspect ratio is ܽ ൌ ܧ ଶ. The material properties areܮ/ଵܮ ൌ  ,ܽܲܩ	75

ݒ ൌ 0.3 and ߩ ൌ 2800	݇݃/݉ଷ. The boundaries are all free and the initial conditions are  

,ଵݔଵሺݑ                                                     ଶሻݔ ൌ ଵߝ ∙  ଵ                                                              (4.63)ݔ

,ଵݔଶሺݑ                                                     ଶሻݔ ൌ െߝݒଵ ∙  ଶ                                                         (4.64)ݔ

 

The vibration process is simulated by the two-dimensional peridynamic method and the strain 

history of point A, shown in Fig. 4.17, is recorded and compared with the results from the one-

dimensional peridynamic analysis.  

 

Figs. 4.18, 4.19, 4.20, 4.21 and 4.22 show the comparison for ܽ ൌ 0.2, ܽ ൌ 1, ܽ ൌ 10, ܽ ൌ 50 

and ܽ ൌ 100, respectively. As can be seen, the results based on the two-dimensional theory 

converge to those based on the one-dimensional theory when the aspect ratio becomes larger. 
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4.7 Axisymmetric problems 

In this section, an axisymmetric model of peridynamics is proposed. Similar to classical 

mechanics, the calculation of an axisymmetric problem can be simplified and the dimension can 

be reduced. A two-dimensional axisymmetric problem can be reduced to a one-dimensional 

problem. This will simplify the calculation and reduce the computational time significantly.  

 

For a two-dimensional axisymmetric problem, as shown in Fig. 4.23, consider a point ܲሺܴ଴ሻ. 

The governing equation of point ܲ using local radial coordinate ሺݎ,  ሻ is expressed as followsߠ

ሷݑߩ                                                             ሺܴ଴ሻ ൌ ׬ ׬ ோ݂	ݎ݀ߠ݀ݎ
ଶగ
଴

ఋ
଴                                           (4.65) 

where ߜ is horizon and ோ݂ is the force applied on point P by point Q in global radial direction ܴ.  

 

The ܴ component of bond force ோ݂ is 

                                                             ோ݂ ൌ ܿ ∙ ݏ ∙ sin  (4.66)                                                          ߠ

and ݏ is the stretch between the two points, which can be defined as 

ݏ                                                             ൌ
|࢞ೂା࢛ೂି࢞೛ି࢛೛|

|࢞ೂି࢞ು|
െ 1                                                  (4.67)     

where 

                                                                 ࢞௉ ൌ ܴ଴ࢋො࢐                                                                (4.68) 

                                           ࢞ொ ൌ ݎ cos ߠ ࢏ොࢋ ൅ ሺܴ૙ ൅ ݎ sin  (4.69)                                              ො࢐ࢋሻߠ

                                                           ࢛௣ ൌ  (4.70)                                                                ො࢐ࢋሺܴ଴ሻݑ

                                             ࢛ொ ൌ ሺܴሻݑ cos߆ ࢏ොࢋ ൅ ሺܴሻݑ sin߆  (4.71)                                          ො࢐ࢋ
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Substituting Eqn. 4.67, Eqn. 4.68, Eqn. 4.69 and Eqn. 4.70 into Eqn. 4.71, it yields  

ݏ                           ൌ
ඥሾ௥ ୡ୭ୱఏା௨ሺோሻ ୡ୭ୱ௵	ሿమାሾ௥ ୱ୧୬ఏା௨ሺோሻ ୱ୧୬௵ି௨ሺோబሻ	ሿమ

௥
െ 1                  (4.72) 

 

The two radial coordinate systems are used for convenience. They are local coordinate ሺݎ,  ሻ andߠ

global coordinate ሺܴ,    ሻ. The relationship between them, as shown in Fig. 4.22, is߆

ݎ                                               ൌ ටܴଶ ൅ ܴ଴
ଶ െ 2ܴܴ଴ ݊݅ݏ  (4.73)                                                   ߆

ߠ                                                      ൌ tanିଵ ோ ୱ୧୬௵ିோబ
ோ ୡ୭ୱ௵

 	                                                           (4.74) 

 

After substituting Eqn. 4.73 and Eqn. 4.74 into Eqn. 4.72, the governing equation at point P in 

global coordinate can be found as 

ሷݑߩ                                        ሺܴ଴ሻ ൌ ׬ ׬ ோ݂ሺܴ, ߆ሻܴ݀߆
ഏ
మ
ିାೃబ

మశೃమషഃమ

మೃబೃ

ഏ
మ
ିୡ୭ୱషభೃబ

మశೃమషഃమ

మೃబೃ

ோାఋ
ோିఋ 	ܴ݀                        (4.75) 

where the integration bound can be found from the triangle shown in Fig. 4.24.  

 

The innermost integration of Eqn. 4.75 is a function of ܴ only. Let 

ሺܴሻܨ                                           ൌ ׬ ோ݂ሺܴ, ߆ሻܴ݀߆
ഏ
మ
ିାೃబ

మశೃమషഃమ

మೃబೃ

ഏ
మ
ିୡ୭ୱషభೃబ

మశೃమషഃమ

మೃబೃ

                                        (4.76) 

 

Eqn. 4.75 then becomes 

ሷݑߩ                                               ሺܴ଴ሻ ൌ ׬ ሺܴሻܨ
ோାఋ
ோିఋ 	ܴ݀                                                          (4.77)  

 

A two-dimensional problem is therefore reduced to a one-dimensional problem with the 
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assumption of axisymmetry. 

 

The same problem solved in Section 4.5.1 is simulated using the axisymmetric peridynamic 

model proposed above and the strains at points A, B and C are compared with the results from 

Section 4.5.1 in Fig. 4.25, Fig. 4.26 and Fig. 4.27. Good matches are shown between the two 

results.  

 

4.8 Failure theory 

The critical stretch ݏ଴ in Eqn. 2.12 can be found from the energy method similar to Eqn. 4.7. 

Consider a fracture surface in a large homogeneous body. In order to completely seperate the 

body into two halves, it will require breaking all the bonds crossing the two halves. Let ݓ௕଴ 

denote the work required to break a single bond, 

௕଴ݓ                                                   ൌ ׬ 	 መ݂ሺݏሻ݀ߟ
௦బ
଴                                                                   (4.78) 

where ݀ߟ ൌ   . ݏ݀ߦ

 

Using Eqn. 4.2, Eqn. 4.78 becomes 

௕଴ݓ																																																											 ൌ
ଵ

ଶ
଴ݏܿ

ଶ(4.79)                                                                        ߦ 

 

The work ܩ଴ required to break all the bonds per unit fracture surface area shown in Fig. 4.28 can 

then be expected as follows 

଴ܩ																																					 ൌ ׬ ׬ ׬ ௕଴ݓ ∙ ߠ݀ݎ
ୡ୭ୱషభ ௛/௥
ିୡ୭ୱషభ ௛/௥ ݎ݀

ఋ
௛ ݄݀

ఋ
଴ ൌ ଵ

ସ
଴ݏܿ

ଶߜସ                                 (4.80) 

The calculation of this intrgration is similar to that of Eqn. 4.21.  
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Solving for ݏ଴, the critical bond stretch can be related to the energy per unit fracture area for 

completely separating the two halves of the body, i. e. 

଴ݏ                                                            ൌ ටସீబ
௖ఋర

                                                                      (4.81) 

 

4.9 Comparisons of crack propagation velocity with experiments 

It is challenging to validate the dynamic crack propagation obtained from numerical simulation 

since there is no analytical solution which can be readily compred with the numerical solution 

[7]. Therefore, experiment results are often used to compare and validate the numerical models.  

 

Many crack propagation problems were simulated by finite element method. Song [7] compared 

three different finite element analysis (FEA) techniques with experiment results. The three 

methods are the extended finite element method (XFEM), element deletion method and 

interelement crack method. The element deletion method is unable to predict crack branching. 

The XFEM and the interelement method showed similar crack velocity and crack paths but both 

failed to predict a benchmark experiment without an adjustment of the energy release rate. 

 

Crack tip propagation from peridynamic analysis are compared with exerperimental study here. 

Boudet [8] studied the crack propagation in a PMMA plate which has a mass density ߩ ൌ

1200	݇݃/݉ଷ  and a Young’s modulus ܧ ൌ ܽܲܩ	2.5 . The experiments were conducted on a 

100݉݉ ൈ 290݉݉ plate with a 10݉݉ notch in the middle of a boundary, as shown in Fig. 4.29. 

The velocity of the crack propagation was measured using several equally spaced conductive 

strips deposited on one of the surfaces of the sample.  
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In the experiment, the specimen was first loaded by displacement control and the apllied 

displacement was slowly increased every 10 seconds. Because 10 seconds is too long for 

computaitonal method, an initial strain just below what is  needed to trigger crack propagation is 

applied as the initial condition. The starter crack is made by releasing all bonds crossing the 

10݉݉ notch.  

 

Fig. 4.30 shows the predicted crack length as a function of time. Using the predicted crack 

length, crack propagation velocity can be calculated and is shown in Fig. 4.31. The maximum 

crack propagation velocity is about 600 m/s, which is less than the Rayleigh wave speed of the 

PMMA material, 930 m/s. The predicted crack propagation velocity is within the theoretical limit 

for steady mode-I fracture [9]. The peridynamic results are compared with the experiment results 

given in Ref. [8]. Both Fig. 4.30 and Fig. 4.31 show good agreements between the two results.   

 

4.10  Dynamic crack branching 

Experiments on crack branching were reported in literature [10-14]. In these experiments, a 

crack starts to propagate from a notch. At a certain point, the crack branches into at least two 

cracks. The angle of the branches, however, varies from one experiment to another. Sharon and 

Fineberg [13] showed that the branching angles were in Gaussian distribution with an average of 

30°. Numerical methods to predict crack branching were studied. The Yoffe calculation [15] 

predicted an angle of 60° while molecular simulations [16] predicted an angle of 30°. An angle 

of 18° was also predicted using an energy criterion with consideration of nonsingular terms in 

the stress field [17].  
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The qualitative comparison between peridynamic prediction of crack branching and associated 

experiment study is to be examined. The goal is to see if peridynamics is able to predict crack 

branching without requiring additional theories.  

 

Consider a pre-notched glass plate with ߩ ൌ 2450	݇݃/݉ଷ ܧ , ൌ ܽܲܩ	32  and ݒ ൌ 0.2 . The 

dimensions of the plate is 100	݉݉	 ൈ 100	݉݉ with a 10	݉݉ notch located in the middle of the 

left boundary as shown in Fig. 4.32.  A tensile stress ߪ ൌ  is applied at both top and ܽܲܯ	2

bottom boundaries. The initial displacement and the initial velocity is zero. Fig. 4. 33(a) shows 

the crack path at different times calculated by peridynamics. Fig. 4.33(b) is strain energy density 

of the corresponding steps. Crack branching can be clearly seen in Fig. 4.33(a) and Fig. 4.33(b) 

and there is always stress concentration at the crack tips.  

 

4.11 Edge-cracked plate under impulsive loading 

Kalthoff and Winkler [18] studied crack propagation of an edge-cracked plate under impulsive 

loading and found that the crack propagated in a direction approximately 70° from the origianl 

crack. In this section, the same problem is simulated by the proposed peridynamic model and the 

results are to be compared with the experiment results from [18].  

 

Consider a 100݉݉ ൈ 200݉݉ maraging steel 18Ni1900 plate as shown in Fig. 4.34. There are 

two parallel notches along the left edge of the plate. The material properties [19] are ߩ ൌ

8000	݇݃/݉ଷ, ܧ ൌ ݒ and ܽܲܩ	190 ൌ 0.3. The two edge notches are impacted by a projectile 

with an intial velocity of 36	݉/ݏ. This impact results in a compressive wave propagating to the 

interior of the plate. Once the compressive wave arrives at the notch tips, a mode-II brittle failure 
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occurs. The crack do not propagate in the same direction as the original crack but in a direction 

that is about 70° away from the original direction.  

 

In numerical simulation based on peridynamics, it is assumed that the projectile has the same 

material properties as the specimen. Hence, one half of the initial velocity, 18	݉/ݏ, is used as the 

initial condition at the left edge [20, 21] and all boundaries are free. Fig 4.35 shows the simulated 

crack path from peridynamic computation. The crack path is about 68° from the original notch. 

Fig. 4.36 shows the horizontal displacement of the plate at ݐ ൌ ݏߤ	33.2 . The displacement 

discontinuity shows the crack path which is 68°  from the original notch. The peridynamic 

computation successfully predicts the experimentlly observed crack propagation angle.  

 

4.12 Conclusion 

A novel two-parameter beam model for peridynamic analysis is proposed in this chapter. The 

numerical solution of peridynamics has been verified by an analytical solution and it converges 

to the analytical solution. To improve the computational efficiency in two-dimensional 

simulations, two computational techniques are implimented in this work.  One uses matrix 

computation and the other parallel computation. The first method works well for elastic problems 

without damage while the second method is proved to be excellent for simulating dynamic 

damage propagation.  Failure theory of peridynamics is also studied and applied to simulate 

several dynamic damage propagation problems. Three experiment studies from literature [8, 

10,18] are used to validate the two-dimensional peridynamic model and algorithm. 

 

Being a reformulation of continuum mechanics, peridynamics covers fracture mechanics 
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automatically. This poses a great potential for peridynamics since it is convenient for simulating 

dynamic damage propagation. Compared with the commonly used finite element method, there 

is no need of remeshing in peridynamics since peridynamics is mesh free. Peridynamics does not 

require additional external theories for crack growth since it is controlled by bond strength. 

Besides, peridynamics does not require tracking individual cracks since cracks occur when the 

bonds are damaged. As shown in this work, peridynamics is also capable of simulating elastic 

deformations without damage.  
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Figure 4.1 Two-dimensional domain under radial deformation. 
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Figure 4.2 Definition of stress in peridynamics. 
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Figure 4.3 Calculation of stress at point ݔ. 
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Figure 4.4 Bond force in beam model. 
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Figure 4.5 Original configuration and current configuration. 
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Figure 4.6 Flow chart of algorithm in peridynamic matrix calculation. 
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Figure 4.7 Flow chart for parallel computing. 
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Figure 4.8 Code before parallel modification and code after parallel modification.                                                  

Original program: 
 
… 
for k=1:nt                 % time loop  
  for i=1:n       % domain 
loop 
 
    … 
 
  end 
end 
… 

Current program: 
 
… 
matlabpool(8)       %open matlab pool: 8 workers 
for k=1:nt                      % time loop 
  parfor i=1:n     % domain loop 
 
    … 
 
  end 
end 
… 
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Figure 4.9 Vibration of a circular plate. 
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Figure 4.10 Strain history on a circular plate. 
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Figure 4.11 Convergence of numerical solution to analytical solution. 
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Figure 4.12 Convergence of numerical solution to analytical solution. 
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Figure 4.13 Convergence of numerical solution to vibration theory. 
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Figure 4.14 Peridynamic calculation of strains at point A compared with results from vibration 
theory. 
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Figure 4.15 Peridynamic calculation of strain at point B compared with results from vibration 
theory. 
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Figure 4.16 Peridynamic calculation of strain at point C compared with results from vibration 
theory. 
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Figure 4.17 Rectangular plate for free vibration study 
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Figure 4.18 One-dimensional result compared with two-dimensional result for aspect ratio of 0.2. 
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Figure 4.19 One dimensional result compared with two-dimensional result for aspect ratio of 1. 
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Figure 4.20 One-dimensional result compared with two-dimensional result for aspect ratio of 10. 
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Figure 4. 21 One-dimensional result compared with two-dimensional result for aspect ratio of 50. 
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Figure 4. 22 One-dimensional result compared with two-dimensional result for aspect ratio of 
100. 
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Figure 4.23 A two-dimensional axisymmetric model. 
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Figure 4.24 Angular integration boundary of Eqn. 4.75. 
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Figure 4.25 Comparison of peridynamic calculation of strain at Point A using axisymmetric 

model with results from the vibration theory.  
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Figure 4.26  Comparison of peridynamic calculation of strain at Point B using axisymmetric 

model with results from the vibration theory. 
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Figure 4.27  Comparison of peridynamic calculation of strain at Point C using axisymmetric 

model with results from the vibration theory.  
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Figure 4.28 Calculation of the critical stretch. 
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Figure 4.29 Schematic drawing of the sample for crack propagation test. 
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Figure 4.30 Comparison of crack propagation simulated by peridynamics with experiment result. 
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Figure 4.31 Comparison of crack propagation speed simulated by peridynamics with experiment 
result. 
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Figure 4.32 A plate with single notch for crack branching study. 
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Figure 4.33 Computational crack path (a) damage and (b) strain energy density simulated by 
peridynamics. 
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Figure 4.34 A two-notch plate under impulsive loading. 
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Figure 4.35 Computational crack path of the top notch. 
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Figure 4.36 Horizontal displacement at 33.2	ݏߤ from computational study.  
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Chaper 5 

Orthotropic Model Analysis 

 

It has been shown in Chapter 4 that peridynamic simulation of damage process does not require 

any knowledge of the damage location and orientation prior to the simulation. This is 

fundamentally different from finite element analysis which requires knowledge of damage 

location and orientation in advance to impose special finite element mesh, such as initial damage 

elements and cohesive zone layers [1], for damage simulations. This prerequisite becomes even 

more challenging when inhomogeneous and anisotropic composite materials are of interest. In 

addition, peridynamic simulation does not require remeshing at the end of each damage 

processing step since it is a mesh free method. On the contrary, finite element analysis does. 

Based on these difference, peridynamics should be more suitable for simulating dynamic damage 

process in composite materials which have different properties in different locations and different 

orientations.  

 

Quite some simulations of composite damage process have been available in the literatures. 

Dwivedi [1] modeled the propagation of single-edge notch (SEN) in 0° laminated plate using 

cohesizve zone method. Xu [2] and Hu [3] proposed a two-parameter discrete peridynamic 

model for composite damage simulations, in which there were two kinds of bonds: fiber bond 

and matrix bond. Two material properties, ܽଵ  and ܽଶ , were associated with the two types of 

bonds. Only the bonds along the fiber direction were associated with the material property ܽଵ 

while all other bonds with the material property ܽଶ. This model required remeshing for different 

fiber directions. For example, a 0°-90° grid mesh could only be used for a 0° or 90° laminae. For 
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a 45° lamina, a grid mesh consisting of 45° and 135°	was required. The two-parameter model 

was an aproximation of the four material properties invovled in orthotropic materials. They were 

mainly associated with two Young’s moduli, ܧଵ and ܧଶ. Its capability of modeling shear behavior 

is unknown.  

 

In this study, a continuous orthrotropic material model is proposed. It is based on continuous 

trigonometric functions. With the continuous material property functions, it is not necessary to 

have bond in fiber direction and therefore, this model is mesh independent.   

 

5.1 Bar model for orthotropic materials 

This model is based on the bar model presented in Seciton 4.1. The peridynamic equation of 

motion [4] in two-dimensional domain can be expressed as 

ߩ																																																								 ሷ࢛ ൌ ׬ 	ܣ݀	ࢌ ൅  (5.1)                                                                    	࢈

where ࢈ is external force. The force boundary condition can be included in the external force. 

 

For bar model, the bond function ݂ is 

                                                 ݂ ൌ ܿ ∙  (5.2)                                                                                     ݏ

where ݏ is bond stretch. Contrary to the isotropic material model, bond material property ܿ is 

assumed to be a trigonometric function 

                               ܿ ൌ ݀ଵ cosሺߠ െ ሻସߙ ൅ ݀ଶ cosሺߠ െ ሻଶߙ ൅ ݀ଷ                                              (5.3) 

where ݀ଵ, ݀ଶ and ݀ଷ are constants and can be identified from composite material properties. ߠ is 

bond direction and ߙ is the fiber direction as shown in Fig. 5.1.  
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Similar to the analysis in the previous chapters, ݀ଵ, ݀ଶ and ݀ଷ can be identified from comparing 

the strain energy densities based on peridynamic analysis and those based on classical 

mechanics. 

 

Consider a composite plate with the fibers oriented in ߙ° direction and subjected to the following 

strain field 

௫௫ߝ                                                               ൌ  ଵ                                                                        (5.4)ߝ

௬௬ߝ                                                               ൌ  ଶ                                                                       (5.5)ߝ

௫௬ߛ                                                               ൌ  ଵଶ                                                                      (5.6)ߛ

The three components are independent of one another.  

 

For a bond in ߠ direction, and connected to a point ࢞ in the domain, the bond force should be 

                                 ݂ ൌ ܿ ∙ ሺߝଵ cos ଶߠ ൅ ଶߝ sin ଶߠ ൅ ଵଶߛ sin ߠ cos  ሻ                                     (5.7)ߠ

 

From Eqn. 4.7, the strain energy in the bond becomes 

௕ݓ                                                         ൌ
௖ఎమ

ଶక
ൌ   (5.8)                                                            2/ߦଶݏܿ

 

Substituting Eqn. 5.3 and Eqn. 5.7 into Eqn. 5.8 and integrating ݓ௕ over the horizon, the strain 

energy density at the point ࢞ should be  

                              ܹ ൌ ଵ

ଶ
ܣ݀	௕ݓ׬	 ൌ

ଵ

ଶ
׬ ׬

௖௦మక

ଶ

ଶగ
଴

ఋ
଴ ߦ݀ߠ݀	ߦ ൌ ሼ16ሺ݀ଵߨଷߜ ൅ ݀ଶሻሺߝଵ െ ଵߝଶሻሺߝ ൅

ଶሻߝ cos ߙ2 ൅ ݀ଵሾሺߝଵ െ ଶሻଶߝ െ ଵଶߛ
ଶ ሿ cos ߙ4 ൅ 2ሾሺ3݀ଵ ൅ 4݀ଶ ൅ 8݀ଷሻሺ3ߝଵ

ଶ ൅ ଶߝଵߝ2 ൅ ଶߝ3
ଶ ൅ ଵଶߛ

ଶ ሻ ൅

8ሺ݀ଵ ൅ ݀ଶሻሺߝଵ ൅ ଵଶߛଶሻߝ sin ߙ2 ൅ ݀ଵሺߝଵ െ ଵଶߛଶሻߝ sin  ሿሽ/768                                             (5.9)ߙ4
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Eqn. 5.9 can be simplified to find the coefficient of each independent term, as shown in Table 

5.1. The simplification is achieved based on Mathematica [5]. 

 

Table 5.1 Simplified Eqn. 5.9 in terms of independent terms 

Coefficients Independent terms 

݀ଵߜଷ96/ߨ cos ସߙ ଵߝ
ଶ 

݀ଵߜଷ96/ߨ cos ସߙ ଶߝ
ଶ 

െ݀ଵߜଷ48/ߨ cos ସߙ  ଶߝଵߝ

െ݀ଵߜଷ96/ߨ cos ସߙ ଵଶߛ
ଶ  

ሺ3݀ଵ ൅ 4݀ଶሻߜଷ96/ߨ cos ଶߙ ଵߝ
ଶ 

ሺെ5݀ଵ െ 4݀ଶሻߜଷ96/ߨ cos ଶߙ ଶߝ
ଶ 

݀ଵߜଷ48/ߨ cos ଶߙ  ଶߝଵߝ

݀ଵߜଷ96/ߨ cos ଶߙ ଵଶߛ
ଶ  

ሺ3݀ଵ ൅ 8݀ଶ ൅ 48݀ଷሻߜଷߝ 768/ߨଵ
ଶ 

ሺ35݀ଵ ൅ 40݀ଶ ൅ 48݀ଷሻߜଷߝ 768/ߨଶ
ଶ 

ሺ5݀ଵ ൅ 8݀ଶ ൅ 16݀ଷሻߜଷߝ 384/ߨଵߝଶ 

ሺ5݀ଵ ൅ 8݀ଶ ൅ 16݀ଷሻߜଷߛ 768/ߨଵଶ
ଶ  

ሺ3݀ଵ ൅ 4݀ଶሻߜଷ96/ߨ sin ߙ cos ߙ  ଵߝଵଶߛ

ሺ5݀ଵ ൅ 4݀ଶሻߜଷ96/ߨ sin ߙ cos ߙ  ଶߝଵଶߛ

݀ଵߜଷ48/ߨ sin ߙ cos ଷߙ  ଵߝଵଶߛ

െ݀ଵߜଷ48/ߨ sin ߙ cos ଷߙ  ଶߝଵଶߛ
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On the other hand, from the theory of composite materials [6], the strain energy density under 

௫௫ߝ ൌ ௬௬ߝ ,ଵߝ ൌ ௫௬ߛ ଶ andߝ ൌ  ଵଶ isߛ

                                 ܹ ൌ ଵ

ଶ
ଵߝ௫௫ߪ ൅

ଵ

ଶ
ଶߝ௬௬ߪ ൅

ଵ

ଶ
 ଵଶ                                                          (5.10)ߛ௫௬ߪ

 

The stresses in Eqn. 5.10 can be calculated by 

                                   ൥
௫௫ߪ
௬௬ߪ
௫௬ߪ

൩ ൌ ቎
ܳ௫௫ ܳ௫௬ ܳ௫௦
ܳ௫௬ ܳ௬௬ ܳ௬௦
ܳ௫௦ ܳ௬௦ ܳ௦௦

቏ ൥
௫௫ߝ
௬௬ߝ
௫௬ߛ

൩                                                         (5.11) 

where,           

                                    ܳ௫௫ ൌ ܳଵଵ݉ସ ൅ ܳଶଶ݊ସ ൅ 2݉ଶ݊ଶܳଵଶ ൅ 4݉ଶ݊ଶܳ଺଺                            (5.12) 

                                    ܳ௬௬ ൌ ܳଵଵ݊ସ ൅ ܳଶଶ݉ସ ൅ 2݉ଶ݊ଶܳଵଶ ൅ 4݉ଶ݊ଶܳ଺଺                           (5.13) 

                                 ܳ௫௬ ൌ ܳଵଵ݉ଶ݊ଶ ൅ ܳଶଶ݉ଶ݊ଶ ൅ ሺ݉ସ ൅ ݊ସሻܳଵଶ െ 4݉ଶ݊ଶܳ଺଺               (5.14)        

                    ܳ௫௦ ൌ ݉ଷ݊ܳଵଵ െ ݉݊ଷܳଶଶ െ ݉݊ሺ݉ଶ െ ݊ଶሻܳଵଶ െ 2݉݊ሺ݉ଶ െ ݊ଶሻܳ଺଺             (5.15) 

                    ܳ௫௦ ൌ ݉݊ଷܳଵଵ െ ݉ଷ݊ܳଶଶ ൅ ݉݊ሺ݉ଶ െ ݊ଶሻܳଵଶ ൅ 2݉݊ሺ݉ଶ െ ݊ଶሻܳ଺଺             (5.16) 

                             ܳ௦௦ ൌ ݉ଶ݊ଶܳଵଵ ൅ ݉ଶ݊ଶܳଶଶ െ 2݉ଶ݊ଶܳଵଶ ൅ ሺ݉ଶ െ ݊ଶሻଶܳ଺଺                  (5.17) 

 

                                                                     ݉ ൌ cos  (5.18)                                                           ߙ

                                                                      ݊ ൌ sin(5.19)                                                            ߙ 

 

                                                               ܳଵଵ ൌ
ாభ

ଵି௩భమ௩మభ
                                                       (5.20)            

                                                                ܳଶଶ ൌ
ாమ

ଵି௩భమ௩మభ
                                                      (5.21) 

                                                                ܳଵଶ ൌ
ாమ௩భమ

ଵି௩భమ௩మభ
                                              (5.22) 
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                                                                 ܳ଺଺ ൌ  ଵଶ                                                                (5.23)ܩ

 .ଵଶ are the four material properties of orthotropic materials. Substituting Eqnsܩ ଵଶ andݒ ,ଵܧ ,ଵܧ

5.11 - 5.23 into Eqn. 5.10, it yields  

ܹ ൌ ଵ

ଶ൫ாభିாమ௩భమ
మ ൯
ሼሺߝଵ

ଶܧଵ
ଶ ൅ ଶߝଵܧ

ଶܧଶ ൅ ଵଶߛଵଶܩଵܧ
ଶ ൅ ଵଶݒଶܧଶߝଵܧଵߝ2 െ ଵଶߛଵଶܩଶܧ

ଶ ଵଶݒ
ଶ ሻ cos ସߙ ൅

ଵଶܩଵ൫2ܧଶ൫ߝଵଶሾߛ2 ൅ ଶሺെ1ܧ ൅ ଵଶሻ൯ݒ െ ଵଶݒଵଶܩଶܧ2
ଶ ൯ ൅ ଵܧଵ൫ߝ

ଶ ൅ ଵଶݒଵଶܩଶܧ2
ଶ െ ଵଶܩଵሺ2ܧ ൅

ଵଶሻ൯ሿݒଶܧ cos ଷߙ sin ߙ ൅ ሾ2ߝଵܧଵߝଶሺܧଵ ൅ ଶሻܧ ൅ ଵܧ
ଶߛଵଶ

ଶ ൅ ଵߝ2
ଶܧଵܧଶݒଵଶ ൅ ଵଶߛଵଶܩଶܧ2

ଶ ଵଶݒ
ଶ ൅

ଵଶߛଵଶܩଵ൫െ2ܧ
ଶ ൅ ଵଶߛଶሺܧ

ଶ ൅ ଶߝ2
ଶݒଵଶ െ ଵଶߛ2

ଶ ଵଶሻ൯ሿݒ cos ଶߙ sin ଶߙ ൅ ଵܧଵଶሾߛ2
ଶߝଶ ൅ 2ሺെߝଵ ൅

ଵଶݒଵଶܩଶܧଶሻߝ
ଶ ൅ ଵܧ ቀߝଵ൫2ܩଵଶ ൅ ଶሺെ1ܧ ൅ ଵଶሻ൯ݒ െ ଵଶܩଶሺ2ߝ ൅ ଵଶሻቁሿݒଶܧ cos ߙ sin ଷߙ ൅ ሾܧଵ

ଶߝଶ
ଶ െ

ଵଶߛଵଶܩଶܧ
ଶ ଵଶݒ

ଶ ൅ ଵߝଵሺܧ
ଶܧଶ ൅ ଵଶߛଵଶܩ

ଶ ൅ ଵଶሻሿݒଶܧଶߝଵߝ2 sin ସߙ ൅ ሺߝଵ െ ଵܧଵଶሺܩଶሻଶߝ െ ଵଶݒଶܧ
ଶ ሻ sin           ଶሽߙ2

                                                                                                                                                  (5.24) 

 

After simplification processes, the coeffiencet of each independent terms can be found. They are 

listed in Table 5.2.  

 

Table 5.2 Simplified Eqn. 5.12 in terms of independent terms 

Coefficients Independent 

terms 

ଵܧ
ଶ ൅ ଵଶݒଵଶܩଶܧ4

ଶ ൅ ଶܧଵሺܧ െ ଵଶܩ4 െ ଵଶሻݒଶܧ2
2ሺܧଵ െ ଵଶݒଶܧ

ଶ ሻ
 

cos ସߙ ଵߝ
ଶ 

ଵܧ
ଶ ൅ ଵଶݒଵଶܩଶܧ4

ଶ ൅ ଶܧଵሺܧ െ ଵଶܩ4 െ ଵଶሻݒଶܧ2
2ሺܧଵ െ ଵଶݒଶܧ

ଶ ሻ
 

cos ସߙ ଶߝ
ଶ 

െ
ଵܧ
ଶ ൅ ଵଶݒଵଶܩଶܧ4

ଶ ൅ ଶܧଵሺܧ െ ଵଶܩ4 െ ଵଶሻݒଶܧ2
ሺܧଵ െ ଵଶݒଶܧ

ଶ ሻ
cos ସߙ  ଶߝଵߝ
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Table 5.2 (cont'd) 

െ
ଵܧ
ଶ ൅ ଵଶݒଵଶܩଶܧ4

ଶ ൅ ଶܧଵሺܧ െ ଵଶܩ4 െ ଵଶሻݒଶܧ2
2ሺܧଵ െ ଵଶݒଶܧ

ଶ ሻ
cos ସߙ ଵଶߛ

ଶ  

ଵଶܩଵሺ2ܧ ൅ ଶሺെ1ܧ ൅ ଵଶሻሻݒ െ ଵଶݒଵଶܩଶܧ2
ଶ

ଵܧ െ ଵଶݒଶܧ
ଶ  

cos ଶߙ ଵߝ
ଶ 

െܧଵ
ଶ ൅ ଵଶܩଵܧ2 ൅ ଵଶݒଶܧଵܧ െ ଵଶݒଵଶܩଶܧ2

ଶ

ଵܧ െ ଵଶݒଶܧ
ଶ  

cos ଶߙ ଶߝ
ଶ 

ଵܧ
ଶ ൅ ଵଶݒଵଶܩଶܧ4

ଶ ൅ ଶܧଵሺܧ െ ଵଶܩ4 െ ଵଶሻݒଶܧ2
ଵܧ െ ଵଶݒଶܧ

ଶ  
cos ଶߙ  ଶߝଵߝ

ଵܧ
ଶ ൅ ଵଶݒଵଶܩଶܧ4

ଶ ൅ ଶܧଵሺܧ െ ଵଶܩ4 െ ଵଶሻݒଶܧ2
2ሺܧଵ െ ଵଶݒଶܧ

ଶ ሻ
 

cos ଶߙ ଵଶߛ
ଶ  

ଶܧଵܧ
2ሺܧଵ െ ଵଶݒଶܧ

ଶ ሻ
 

ଵߝ
ଶ 

ଵܧ
ଶ

2ሺܧଵ െ ଵଶݒଶܧ
ଶ ሻ

 
ଶߝ
ଶ 

ଵଶݒଶܧଵܧ
ଵܧ െ ଵଶݒଶܧ

ଶ  
 ଶߝଵߝ

ଵଶܩଵܧ െ ଵଶݒଵଶܩଶܧ
ଶ

2ሺܧଵ െ ଵଶݒଶܧ
ଶ ሻ

 
ଵଶߛ
ଶ  

ଵଶܩଵሺ2ܧ ൅ ଶሺെ1ܧ ൅ ଵଶሻሻݒ െ ଵଶݒଵଶܩଶܧ2
ଶ

ଵܧ െ ଵଶݒଶܧ
ଶ  

sin ߙ cos ߙ  ଵߝଵଶߛ

ଵܧ
ଶ ൅ ଵଶݒଵଶܩଶܧ2

ଶ ൅ ଵଶܩଵሺെ2ܧ െ ଵଶሻݒଶܧ
ଵܧ െ ଵଶݒଶܧ

ଶ  
sin ߙ cos ߙ  ଶߝଵଶߛ

ଵܧ
ଶ ൅ ଵଶݒଵଶܩଶܧ4

ଶ ൅ ଶܧଵሺܧ െ ଵଶܩ4 െ ଵଶሻݒଶܧ2
ሺܧଵ െ ଵଶݒଶܧ

ଶ ሻ
 

sin ߙ cos ଷߙ ଵߝଵଶߛ

െ
ଵܧ
ଶ ൅ ଵଶݒଵଶܩଶܧ4

ଶ ൅ ଶܧଵሺܧ െ ଵଶܩ4 െ ଵଶሻݒଶܧ2
ሺܧଵ െ ଵଶݒଶܧ

ଶ ሻ
sin ߙ cos ଷߙ ଶߝଵଶߛ
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Eqn. 5.9 should be equal to Eqn. 5.24. Hence, it is possible to set the coefficients of identical 

terms equal to each other and identify ݀ଵ, ݀ଶ and ݀ଷ.  

       ݀ଵ ൌ
ଶସ

ఋయாభగ
ቌܧଵ

ଶ ൅ ଶܧଵܧ െ ଵଶܩଵܧ12 ൅
ாభටாభாమାସீభమ

మ

ඥாమ ாభ⁄
൅ ඥܧଵܧଶඥܧଵܧଶ ൅ ଵଶܩ4

ଶ ቍ    

                                                                                                                             (5.25) 

   

݀ଶ ൌ

଺

ఋయாభగ
ቌെ3ܧଵ

ଶ െ ଶܧଵܧ5 ൅ ଵଶܩଵܧ48 െ
ଷாభටாభாమାସீభమ

మ

ඥாమ ாభ⁄
െ 5ඥܧଵܧଶඥܧଵܧଶ ൅ ଵଶܩ4

ଶ ቍ        

                                                                                                                                                  (5.26) 

      ݀ଷ ൌ
ଷ

ଶఋయாభగ
ሺܧଵ

ଶ ൅ ଶܧଵܧ5 െ ଵଶܩଵܧ20 ൅
ாభටாభாమାସீభమ

మ

ඥாమ/ாభ
൅ 5ඥܧଵܧଶඥܧଵܧଶ ൅ ଵଶܩ4

ଶ               

                                                                                                                                                  (5.27) 

ଵଶݒ                                        ൌ
ିாభாమାඥாభாమටாభாమାସீభమ

మ

ଶாమீభమ
                                                     (5.28) 

 

The composite model has three parameters and it can model shearing deformation. The bond 

stiffness is a continuous function so the stiffness at any direction can be calculated. It can be 

found that the bond becomes stronger as the angle between the bond and the fiber becomes 

smaller. Similar to the bar model in Section 4.1, the Poisson’s ratio of this model is fixed and is 

related to the remaining three independent material properties. For example, the Poisson’s ratio 

of Kevlar/Epoxy is 0.34 while the Poisson’s ratio calculated from this model is 0.39. 
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5.2 Beam model for orthotropic materials 

To accomondate the four material properties of orthotropic materials, a beam model based on 

Section 4.2 is proposed here.  

 

From the composite theory, there are four independent material properties, ܧଵ, ,ଶܧ  .ଵଶܩ ଵଶ andݒ

The composite stiffness varies with fiber orientation. Bond functions are  

                                                          ݂ᇱ௫ ൌ
௖భ൫௨ᇲమି௨ᇲభ൯

௥
                             (5.29)                         

                                                          ݂ᇱ௬ ൌ
௖మ൫௩ᇲమି௩ᇲభ൯

௥య
                                                             (5.30) 

 

They are identifcal to Eqn. 4.23 and Eqn. 4.24. However, ܿଵ and ܿଶ for a bond in ߠ direction will 

be dependent on fiber orientations as follows, 

                                    ܿଵ ൌ ݀ଵ cosሺߠ െ ሻସߙ ൅ ݀ଶ cosሺߠ െ ሻଶߙ ൅ ݀ଷ                                     (5.31) 

                                                            ܿଶ ൌ ݀ସ                                                                         (5.32) 

where ߙ is the orientation of the fiber, as shown in Fig. 5.3. The coefficients ݀ଵ, ݀ଶ, ݀ଷ and ݀ସare 

four independent material properties. They are related to the four material properties defined in 

the composite theory.  

 

Consider a composite plate with fiber in ߙ direction and subject to the following strain field 

௫௫ߝ                                                                 ൌ  ଵ                                                                    (5.33)ߝ

௬௬ߝ                                                                 ൌ  ଶ                                                                   (5.34)ߝ

௫௬ߛ                                                                 ൌ  ଵଶ                                                                  (5.35)ߛ

The three strains are independent from each other. 
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Similar to Eqn. 4.29, the strain energy in one bond becomes 

௕ݓ                    ൌ
௖భሺఌభ௥ ୡ୭ୱఏమାఌమ௥ ୱ୧୬ఏమሻమ

ଶ௥
൅

௖మሺିఌభ௥ ୡ୭ୱఏ ୱ୧୬ఏାఌమ௥ ୡ୭ୱఏ ୱ୧୬ఏሻమ

ଶ௥య
            (5.36) 

 

Integrate Eqn. 5.36 to find the strain energy density  for a point  

ܹ ൌ ଵ

ଶ
ܣ݀	௕ݓ׬ ൌ

ଵ

ଶ
׬ ׬ ௕ݓ

ଶగ
଴ ݎ݀ߠ݀ݎ

ఋ
଴ ൌ ଵ

଻଺଼
ሼ16ሺ݀ଵߜߨ ൅ ݀ଶሻߜଶሺߝଵ

ଶ െ ଶߝ
ଶሻ cos ߙ2 ൅

݀ଵߜଶሺߝଵ
ଶ െ ଶߝଵߝ2 ൅ ଶߝ

ଶ െ γଵଶ
ଶ ሻ cos ߙ4 ൅ 2ሾ24݀ସሺߝଵ െ ଶሻଶߝ ൅ 9݀ଵߜଶߝଵ

ଶ ൅ 12݀ଶߜଶߝଵ
ଶ ൅

24݀ଷߜଶߝଵ
ଶ ൅ 6݀ଵߜଶߝଵߝଶ ൅ 8݀ଶߜଶߝଵߝଶ ൅ 16݀ଷߜଶߝଵߝଶ ൅ 9݀ଵߜଶߝଶ

ଶ ൅ 12݀ଶߜଶߝଶ
ଶ ൅ 24݀ଷߜଶߝଶ

ଶ ൅

24݀ସγଵଶ
ଶ ൅ 3݀ଵߜଶγଵଶ

ଶ ൅ 4݀ଶߜଶγଵଶ
ଶ ൅ 8݀ଷߜଶγଵଶ

ଶ ൅ 8ሺ݀ଵ ൅ ݀ଶሻߜଶሺߝଵ ൅ ଶሻγଵଶߝ sin ߙ2 ൅

݀ଵߜଶሺߝଵ െ ଶሻγଵଶߝ sin  ሿሽ                                                                                                       (5.37)ߙ4

 

The Strain energy density based on the composite theory is the same as Eqn. 5.24. Similar to 

Section 5.1, by setting Eqn. 5.24 equal to Eqn. 5.37 and comparing the coefficients of the 

independent terms, the following equations are obtained 

                                         ݀ଵ ൌ
ସ଼ሺாభ

మାாభாమିସாభீభమିଶாభாమ௩భమାସாమீభమ௩భమ
మ ሻ

గሺாభିாమ௩భమ
మ ሻఋయ

                     (5.38) 

                   ݀ଶ ൌ െ
ଵଶሺଷாభ

మାହாభாమିଵ଺ாభீభమି଼ாభாమ௩భమାଵ଺ாమீభమ௩భమ
మ ሻ

గሺாభିாమ௩భమ
మ ሻఋయ

                           (5.39) 

                   ݀ଷ ൌ
ଷሺாభ

మାହாభாమି଼ாభீభమିଶாభாమ௩భమା଼ாమீభమ௩భమ
మ ሻ

గሺாభିாమ௩భమ
మ ሻఋయ

                                     (5.40) 

																																				݀ସ ൌ െ
ସሺିாభீభమାாభாమ௩భమାாమீభమ௩భమ

మ ሻ

గሺாభିாమ௩భమ
మ ሻఋ

                                              (5.41) 

 

5.3 Calculation of stresses from peridynamics  
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Similar to Section 4.2, stresses can be defined and calculated from peridyamics. They can be 

used for some special comparison but not necessary in peridynamic simulations.  

 

Consider a case with ߝ௫௫ ൌ ௬௬ߝ ଵ andߝ ൌ  ௫௫ can be calcualted by using Eqn. 4.39ߪ ଶ. The stressߝ

and is given below 

௫௫ߪ ൌ ׬ ׬ ׬ 	ሺ݂ݔᇱ ∙ cos ߠ െ ᇱݕ݂ ∙ sin ݎሻߠ
ୡ୭ୱషభ೓

ೝ

ିୡ୭ୱషభ೓
ೝ

ఋ
௛

ఋ
଴ ݄݀ݎ݀ߠ݀ ൌ ଵ

ଷ଼ସ
ଵߝሼ48݀ସሺߜߨ െ ଶሻߝ ൅

2ሺ3݀ଵ ൅ 4݀ଶ ൅ 8݀ଷሻሺ3ߝଵ ൅ ଶߜଶሻߝ ൅ ଵߝଶሾ16ߜ cos ߙ2 ሺ݀ଵ ൅ ݀ଶሻ ൅ ݀ଵሺߝଵ െ ଶሻߝ cos  ሿሽ     (5.42)ߙ4

 

Substituting Eqns. 5.38 - 5.41 into Eqn. 5.42, it yields 

௫௫ߪ ൌ

ଵ

଼ሺாభିாమ௩భమ
మ ሻ
൛3ߝଵܧଵ

ଶ ൅ ଵܧଶߝ
ଶ ൅ ଶܧଵܧଵߝ3 ൅ ଶܧଵܧଶߝ ൅ ଵଶܩଵܧଵߝ4 െ ଵଶܩଵܧଶߝ4 ൅ ଵଶݒଶܧଵܧଵߝ2 ൅

ଵଶݒଶܧଵܧଶߝ6 െ ଵଶݒଵଶܩଶܧଵߝ4
ଶ ൅ ଵଶݒଵଶܩଶܧଶߝ4

ଶ ൅ ଵܧଵሺܧଵߝ4 െ ଶሻܧ cos ߙ2 ൅ ሺߝଵ െ ଵܧଶሻ൫ߝ
ଶ ൅

ଵଶݒଵଶܩଶܧ4
ଶ ൅ ଶܧଵሺܧ െ ଵଶܩ4 െ ଵଶሻ൯ݒଶܧ2 cos                                                                     (5.43)	ൟߙ4

 

While from the composite theory, ߪ௫௫ can be expressed as 

௫௫ߪ ൌ ܳ௫௫ߝଵ ൅ ܳ௫௬ߝଶ ൌ
ଵ

ሺாభିாమ௩భమ
మ ሻ
ሼܧଵሺߝଵܧଵ ൅ ଵଶሻݒଶܧଶߝ cos ܽସ ൅ ሾܧଵ

ଶߝଶ ൅ 4ሺെߝଵ ൅

ଵଶݒଵଶܩଶܧଶሻߝ
ଶ ൅ ଶܧଶߝଵሺܧ ൅ ଵଶܩଵߝ4 െ ଵଶܩଶߝ4 ൅ ଵଶሻሿݒଶܧଵߝ2 cos ܽଶ sin ܽଶ ൅ ଵߝଶሺܧଵܧ ൅

ଵଶሻݒଶߝ sin ܽସሽ                                                                                                                           (5.44) 

 

With further simplification, it can be found that Eqn. 5.43 is identical to Eqn. 5.44. 

 

5.4 Laminated plate under static loading 
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In this section, it is to verify the proposed peridynamic model with an anlytical solution. A 

simple tensile test is performed on a laminated plate. The peridynamic results will be compared 

with the results obtained from the composite theory.   

 

Consider a 100	݉݉ ൈ 100	݉݉ laminated plate with fibers in ߙ direction as shown in Fig. 5.4. A 

tensile pressure of 10	ܽܲܯ is applied at the bottom and the top of the plate. The plate is made of 

E-Glass/Epoxy and the material properties are shonw in Table 5.3. 

 

Table 5.3 Material propteties of E-Glass/Epoxy 

Longitudinal Young’s modulus, ܧଵ 41  ܽܲܩ

Transverse Young’s modulus, ܧଶ 10.4  ܽܲܩ

Poisson’s ratio, ݒଵଶ 0.28 

Shear modulus, ܩଵଶ 4.3  ܽܲܩ

Mass density, 1970 ߩ ݇݃/݉ଷ

 

Based on the composite theory [6], the components of the complicance matrix are 

                                                                ଵܵଵ ൌ  ଵ                                                               (5.45)ܧ/1

                                                                ܵଶଶ ൌ  ଶ                                                               (5.46)ܧ/1

                                                                ଵܵଶ ൌ െݒଵଶ/ܧଵ                                                         (5.47) 

                                                                ܵ଺଺ ൌ  ଵଶ                                                             (5.48)ܩ/1

 

Strains from the composite theory can be calcuated as follows 
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                                               ൥
௫௫ߝ
௬௬ߝ
௫௬ߛ

൩ ൌ ቎
ܵ௫௫ ܵ௫௬ ܵ௫௦
ܵ௫௬ ܵ௬௬ ܵ௬௦
ܵ௫௦ ܵ௬௦ ܵ௦௦

቏ ൥
௫௫ߪ
௬௬ߪ
௫௬ߪ

൩                                               (5.49) 

 

The transformed compliance matrix is caculated as 

                                   	൦

ܵ௫௫ ܵ௫௬ ܵ௫௦
ܵ௫௬ ܵ௬௬ ܵ௬௦
ଵ

ଶ
ܵ௫௦

ଵ

ଶ
ܵ௬௦

ଵ

ଶ
ܵ௦௦

൪ ൌ ܶିଵ ቎
ଵܵଵ ଵܵଶ 0
ଵܵଶ ܵଶଶ 0

0 0 ଵ

ଶ
ܵ଺଺

቏ ܶ                               (5.50) 

where 

                                                ܶ ൌ ൥
݉ଶ ݊ଶ 2݉݊
݊ଶ ݉ଶ െ2݉݊
െ݉݊ ݉݊ ݉ଶ െ ݊ଶ

൩                                                  (5.51) 

and ݉ ൌ cos ݊ and ߙ ൌ sin  .ߙ

 

From Eqn. 5.49, the displacement field can be obtained from the composite theory. 

Displacements from peridynamics are compared with those from the composite theory in Fig. 

5.5-Fig. 5.10 with ߙ ൌ 0°, 45°	and 60°. As can be seen, the results from peridynamics and those 

from composite theory are identical to each other.  

 

5.5 Free vibration of a laminated beam 

The free vibration of a laminated beam is investigated in this section by the Classical Laminated 

Beam Theory and the solution will be used to verify that obtained from peridynamic model. 

 

Consider a simply supported beam as shown Fig. 5.11. The length of the beam is ܮ ൌ ܽ ∙ ݄ and 

the thickness of the beam is ݄ ൌ 10	݉݉, where ܽ is the aspect ratio of the beam. The beam is 

made of Kevlar/Epoxy with fibers oriented in ݔ direction. The material properties are shonw in 



165 
 

Table 5.4.   

 

Table 5.4 Material propteties of Kevlar/Epoxy 

Longitudinal Young’s modulus, ܧଵ 80  ܽܲܩ

Transverse Young’s modulus, ܧଶ 5.5  ܽܲܩ

Poisson’s ratio, ݒଵଶ 0.34 

Shear modulus, ܩଵଶ 2.2  ܽܲܩ

Mass density, 1380 ߩ ݇݃/݉ଷ

 

From [7], the governing equations of the beam are 

ଵଵܣ                                       
ௗమ௨°

ௗ௫మ
െ ଵଵܤ

ௗయ௪

ௗ௫య
െ °ݑଶ߱ߩ ൌ 0                                             (5.52) 

ଵଵܦ                                
ௗర௪

ௗ௫ర
െ ଵଵܤ

ௗయ௨°

ௗ௫య
െ ݓଶ߱ߩ ൌ 0	                                               (5.53) 

where 

ଵଵܣ                                                   ൌ ׬ ܳଵଵ
௛/ଶ
ି௛/ଶ ݖ݀ ൌ ܳଵଵ݄                                                   (5.54) 

ଵଵܤ                                                   ൌ ׬ ܳଵଵ
௛/ଶ
ି௛/ଶ ݖ݀ݖ ൌ 0                                                       (5.55) 

ଵଵܦ                                                   ൌ ׬ ܳଵଵݖଶ
௛/ଶ
ି௛/ଶ ݖ݀ ൌ ܳଵଵ݄ଷ/12	                                      (5.56) 

 

A solution satisfying the governing equations is 

଴ݑ                                                     ൌ ܷ cos  (5.57)                                                                      ݔ݌

ݓ                                                     ൌ ܹ sin  (5.58)                                                                       ݔ݌
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Eqn. 5.57 and Eqn. 5.58 satisfy the simply supported boundary conditions automatically. 

Substituting Eqn. 5.57 and Eqn. 5.58 into Eqn. 5.52 and Eqn. 5.53, it yields 

                                       െܣଵଵ݌ଶܷ െ ଶܷ߱ߩ ൌ 0                                                                     (5.59) 

ସܹ݌ଵଵܦ                                         െ ଶܹ߱ߩ ൌ 0                                                                     (5.60) 

 

Solving Eqn. 5.59 and Eqn. 5.60, it can be concluded that 

                                                ߱ଶ ൌ
ொభభ௣ర௛య

ଵଶఘ
                                                                 (5.61) 

                                                           ܷ ൌ 0                                                                             (5.62) 

 

If the initial condition of the beam is  

ݐሺݓ                                              ൌ 0ሻ ൌ 1 ൈ 10ିହ sin గ

௅
 (5.63)                                                      ݔ

then 

                                                       ܹ ൌ 1 ൈ 10ିହ                                                                   (5.64)    

݌                                                              ൌ
గ

௅
                                                                          (5.65) 

 

The solution of the problem should have the following forms 

,ݔᇱሺݓ                                                ሻݐ ൌ ܹ sin ݔ݌ cos߱(5.66)                                                      ݐ 

,ݔᇱሺݑ                                      ,ݖ ሻݐ ൌ െܹ݌ݖ cos ݔ݌ cos߱(5.67)                                                      ݐ 

where ܹ, ݌ and ߱ can be found from Eqn. 5.64, Eqn. 5.65 and Eqn. 5.61, respectively.  

 

The same problem can be simulated by peridynamics. The displacement history of point A and 

point B (Fig. 5.11) are recorded. Fig. 5.12 compares the peridynamic results with those from the 
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composite beam theory for the aspect ratio ܽ ൌ 5.  Fig. 5.13 compares the peridynamic results 

with those from the composite beam theory for the aspect ratio ܽ ൌ 20. Results from the two 

methods show good match in vertical displacement ݓ of point B. For horizontal displacement ݑ 

of point A, peridynamic result is almost the same as the beam theory result when the aspect ratio 

ܽ ൌ 20. However, there is difference between the peridynamic result and the beam theory result 

when the aspect ratio ܽ ൌ 5. This is because the beam theory assumes no variation of vertical 

displacement when the beam is slender. With a small aspect ratio, such as ܽ ൌ 5, this variation is 

not neglible and the beam theory does not provide a good approximation.  

 

5.6 Comparisons of crack propagation velocity with experiments 

Experiment studies on dynamic crack propagation in fiber-reinforced composite materials have 

been conducted by Zheng[9], Rosakis[8], Stout[10] and Coker[11,12]. It has been shown that a 

weak fracture plane usually occurs between fiber and matrix in unidirectional fiber-reinforced 

composites. Due to material anisotropy, the wave speed along the fiber direction is very different 

from that along the perpendicular direction. Dynamic crack propagation has been commonly 

investigated by finite element method. A limited number of computational studies have been 

reported by Huang [13], Hwang [14], Kumar [15], Stout [10], Lo [16], Sun [17] and Pandey[18]. 

The limit of computational works is likely due to the requirement of remeshing and the 

complexity of handling elements once crack starts. In this section, dynamic crack propagation in 

a unidirectional graphite/epoxy composite is studied with the use of peridynamics. The 

computational results are validated by the experiment results given in refefrence [8]. 

 

Consider a 76	݉݉ ൈ 152	݉݉ unidirectional graphite/epoxy fiber-reinforced composite plates 
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under three-point bending [8] as shown in Fig. 5.14. The fiber is in 90° direction. The material 

properties are shown in Table 5.5 [8, 22]. There is a notch with a length of 15.2	݉݉, i.e. 20% of 

the plate width, at the left boundary of the plate. This crack length is used because it was used in 

the past to produce reliable results in dynamic fracture experiements [19]. To minimize residual 

stresses due to machining, a low-speed diamond saw was used to produce the initial notch with a 

widtch of approximately 1.5	݉݉.  

 

Table 5.5 Material propteties of graphite/epoxy 

Longitudinal Young’s modulus, ܧଵ 150  ܽܲܩ

Transverse Young’s modulus, ܧଶ 11.6  ܽܲܩ

Poisson’s ratio, ݒଵଶ 0.36 

Shear modulus, ܩଵଶ 3.5  ܽܲܩ

Mode I intralaminar fracture energy for longitudinal loading, ܩଵ଴ 77.9  ଶ݉/ܬ

Mode I intralaminar fracture energy for transver loading, ܩଶ଴ 5  ଶ݉/ܬ

Mass density, 1590 ߩ ݇݃/݉ଷ 

 

A drop-weight tower is used to introduce impact on the opposite side of the notch with an 

impacting speed of ݒ଴ ൌ  After the impact, stress waves propagate to the interior of the .ݏ/݉	4

plate and then reflects from the boundaries. Because of the anisotropy of the material, stress 

waves travel in different directions at different velocities. Experiments show that the crack starts 

to propagate at about 25ݏߤ after the impact so the effects of dispersion are not very important 

since the applied stress pulse is very long (about 120	ݏߤ) compared with the time of crack 

initiation. Therefore, loading is continuously applied throughout the entire event.  
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The real-time visualization of dynamic fracture is produced by an optical method of coherent 

gradient sensing (CGS) in reflection [20, 21]. Imaging is performed with a rotating-mirror high-

speed camera. Details of the CGS system  can be found in [8, 20, 21].  

 

Fig. 5.15 shows the crack propgation velocity from the peridynamic simulation. The initial ime 

ݐ ൌ 0 is used to denote the beginning of the crack propagation. For negtive time, ݒ ൌ  .ݏ/݉	0

The crack starts from about 700	݉/ݏ and accelerates to 900	݉/ݏ within about 10	ݏߤ. It then 

decelerates to less than 500	݉/ݏ in 40	ݏߤ after the initiation. This deceleration is believed to be 

due to the fact that the growing crack tip enters a region of high compressive stress zone as it 

appoaches the loading area. The peridynamic computational results are compared with the 

experiment results from Ref. [8].  As shown in Fig. 5.15, they agree each other reasonably well.  

 

5.7 Dynamic fracture mode in unidirectional composites 

In order to investigate the behavior of cracks, Wu [24] conducted experiments with 

unidirectional, fiberglass-reinforced Scotch composites with a centered precrack in the direction 

of fibers. The composites were loaded with tension, pure shear and combined tension and shear. 

In all three cases, it was observed that the crack propagated in the same direction as the fiber 

direction. Finite element analysis were also used to study the damage path and failure initiation 

of pre-notched composites by Boger [25] and Satyanarayana [26]. They prediected damge in 

composite plates notched in the center for different layups under tension. Both experiment results 

and simulation results showed that the crack path and failure initiation depends on fiber 

orientation.  
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In this section, the crack propagation path and dynamic fracture mode of unidirectional fiber-

reinforced composites are studied using the proposed peridynamic model. The qualitive 

comparison of the peridynamic results with those from experiments are of interest.  

 

Consider the compact tension test on a 100	݉݉ ൈ 200	݉݉  carbon/epoxy unidirectional 

composite plate with a 20	݉݉ pre-notch at the center as shown in Fig. 5.16. The plate is loaded 

at the top and the bottom boundary by a uniform stress ߪ. The fiber orientation is ߙ. The material 

properties of the carbon/expoxy plate are shown in Table 5.6 [23].  

 

Table 5.6 Material propteties of carbon/epoxy 

Longitudinal Young’s modulus, ܧଵ 329  ܽܲܩ

Transverse Young’s modulus, ܧଶ 6  ܽܲܩ

Poisson’s ratio, ݒଵଶ 0.346 

Shear modulus, ܩଵଶ 4.4  ܽܲܩ

Mode I intralamina fracture energy for longitudinal loading, ܩଵ଴ 15.49  ଶ݉/ܬ	݇

Mode I intralamina fracture energy for transver loading, ܩଶ଴ 0.168  ଶ݉/ܬ	݇

Mass density, 1630 ߩ ݇݃/݉ଷ 

 

Fig. 5.17, Fig. 5.18, Fig. 5.19, Fig. 5.20 and Fig. 5.21 show the peridynamic simulation results 

for ߙ ൌ ߙ	,0° ൌ ߙ	,30° ൌ ߙ	,45° ൌ 60° and ߙ ൌ 90°, respectively. In each figure, there are three 

contour plots with (a) vertical diaplacement of the plate, (b) strain energy density distribution and 

(c) local damge of the plate. Different color bars are associated with different plots with red 
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indicating the highest value while blue the lowest value. Crack paths can be clearly seen from the 

strain energy density contour plot as there are always strain energy concentraions at the crack 

tips. The local damage is defined by Eqn. 2.12 and Enq. 2.13, which show different levels of 

damage. A proper cuttoff value can be defined to judge if there is a crack. In all cases, the crack 

propagates in the same direction as the fibers, which is consistent with the experiment 

observations from Wu [24]. The damage is due to the seperation between matrix and fiber. There 

is no fiber breakage.  

 

As expected, in the  ߙ ൌ 0° case, the crack propagates in the same direction as the pre-notch. 

This also matches with the computational and experiment results in Section 5.6. In the smaller 

angle case ߙ ൌ 30° , aside from the major crack, which propagates in 30° , there is matrix 

shattering at the sides of the plate in 0° direction. The matrix shattering happens before the crack 

starts to propagate as shown in Fig. 5.22. It starts at the lateral of the plate and propagates to the 

interior of the plate. From Fig. 5.18 (c), the matrix shattering is not as severe as the major crack 

since only 20% of the bonds are broken. However, in the major carck, more than 70% of the 

bonds are broken. This is why matrix shattering is only a material softening and may not be seen 

from experiment observation as reported in [24]. For the ߙ ൌ 90° case, the composite plate fails 

due to splitting caused by shear stress in the matrix. It which matches with the findings of Boger 

[25].  

 

5.8 Conclusions 

A peridynamic orthotropic material model baesd on the beam model is proposed in this chapter. 

There are four independent mateiral parameters in this model and it matches with the four 
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material properties for two-dimensional orthotropic materials. The bond material properties 

depend on these four mateiral parameters and the angle between the bond orientation and fiber 

orientation. This results in the continuity of  the bond stiffness function with no need of 

remeshing for different fiber orientations. This model is verified by a static tensile test and a 

vibration problem of a laminated beam.  

 

Dynamic damage propagation problems in composite materials can br greatly benefited from 

peridynamics. The prediction of damage initiation and crack proagation of composite materials is 

complex using traditional methods, such as finite element analysis, due to its anisotropy. As 

investigated in peridynamic simulations, there is no need of tracking each crack propagation, 

finding different damage modes and applying different damage rules. Damage happes 

automatically. A single edge notch test is simulated in this chapter and the results match with the 

experiment results. Crack path and failure initiation of a center notch plate is predicted 

successfully by peridynamics when comparing with the experiment results.  
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Figure 5.1 A composite plate with fiber in ߙ° direction and a bond in ߠ° direction. 
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Figure 5.2 Coordinate system for calculating strain energy density at point ݔ. 
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Figure 5.3 Beam model for orthotropic materials.  
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Figure 5.4 Pulling test in a composite laminate. 
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Figure 5.5 Comparison of ݑ௫ of 0° laminate calculated from peridynamics (top) and composite 

theory (bottom). 
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Figure 5.6 Comparison of ݑ௫ of 45° laminate calculated from peridynamics (top) and the 

composite theory (bottom).
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Figure 5.7 Comparison of ݑ௫ of 60° laminate calculated from peridynamics (top) and the 

composite theory (bottom). 
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Figure 5.8 Comparison of ݑ௬ of 0° laminate calculated from peridynamics (top) and the 

composite theory (bottom). 

Peridynamics 
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Figure 5.9 Comparison of ݑ௬ of 45° laminate calculated from peridynamics (top) and the 

composite theory (bottom). 
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Figure 5.10 Comparison of ݑ௬ of 60° laminate calculated from peridynamics (top) and the 

composite theory (bottom). 



183 
 

 

 

 

 

 

Figure 5.11 Free vibration of a laminated beam with fibers in ݔ direction. 
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Figure 5.12 Peridynamic results compared with composite beam theory results with ܽ ൌ 5. 

Top: horizontal displacement ݑ of point A. Bottom: vertical displacement ݓ of point B. 
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Figure 5.13 Peridynamic results compared with composite beam theory results with ܽ ൌ 20. 

Top: horizontal displacement ݑ of point A. Bottom: vertical displacement ݓ of point B. 
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Figure 5.14 An unidirectional composite plate with single edge notch under three point bending. 
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Figure 5.15 Comparison of crack propagation velocity between peridynamics and experiment.  
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Figure 5.16 Compact tension test for a unidirectional composite plate. 

 

 

 

 



189 
 

(a)                                                                           (b) 

 

 

 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 

Figure 5.17 Simulation results for ݐ ൌ ߙ and  ݏߤ	50 ൌ 0°: 

(a) vertical displacement, (b) strain energy density, (c) local damage. 
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(a)                                                                           (b) 
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Figure 5.18 Simulation results for ݐ ൌ ߙ and ݏߤ	70 ൌ 30°:  

(a) vertical displacement, (b) strain energy density, (c) local damage. 
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 (a)                                                                           (b) 
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Figure 5.19 Simulation results for ݐ ൌ ߙ and ݏߤ	70 ൌ 45°:  

(a) vertical displacement, (b) strain energy density, (c) local damage. 
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 (a)                                                                           (b) 

 

 

 

 

 

 

 

 

 

 

 (c) 

 

 

 

 

 

 

 

 

 

Figure 5.20 Simulation results for ݐ ൌ ߙ and ݏߤ	90 ൌ 60°:  

(a) vertical displacement, (b) strain energy density, (c) local damage. 
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(a)                                                                           (b) 
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Figure 5.21 Simulation results for ݐ ൌ ߙ and ݏߤ	100.5 ൌ 90°:  

(a) vertical displacement, (b) strain energy density, (c) local damage. 
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 (a)                                                                           (b) 
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Figure 5.22 Simulation results for ݐ ൌ ߙ and ݏߤ	40 ൌ 30°:  

(a) vertical displacement, (b) strain energy density, (c) local damage. 
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Chapter 6 

Conclusions and Recommendations 

 

6.1 Conclusions  

The governing equations of commonly used continuum mechanics are of differential equations. 

In simulating damage process, special techniques and updated boundary conditions must be 

applied on the crack surfaces. Since the differential governing equations require displacement 

continuity in the domain of study, they become troublesome when damage takes place. In 

modeling dynamic crack propagation, knowledge of crack positions and propagation directions 

are also required. It then is difficult and often times impossible for studying dynamic crack 

propagation of fiber-reinforced composite materials based on the traditional continuum 

mechanics. The following conclusions can be drawn from this dissertation research. 

 

1. Instead of differential equations, peridynamics uses integral equations. Similar to molecular 

dynamics, peridynamics assumes that the domain of interest is organized by points. Each point 

interacts with every other point within the horizon through a bond. Damage at a point takes place 

when a critical number of bonds associated with the point are broken. There is no need to impose 

a separate damage theory such as fracture mechanics used in continuum mechanics. Chapter 2 

introduced the governing equation of peridynamics and some basic properties of the 

peridynamics.  

 

2. Being a novel method, peridynamic theory is still in its infant stage. New models are needed 

and require analytical verifications and experiment validations. In Chapter 3, the governing 
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equation and a bond function for one-dimensional problems were proposed. The model was 

verified by the analytical solution of a wave propagation problem. The analytical solution was 

also used to study the convergence of numerical method and a balanced set of parameters were 

identified. Split Hopkinson’s pressure bar (SHPB) tests were conducted and the experiment 

results were used to validate the one-dimensional peridynamic model. Cross-interface bond 

models were proposed to study the interface related issues and contact problems of peridynamics. 

Both elastic model and plastic model were proposed so the peridynamic theory could be used to 

simulate SHPB tests in validating both elastic and plastic deformations. Several issues involved 

in the experiments were discussed and it was shown that peridynamic results matched well with 

the experiment results.  Finally, using the plastic model, the shaping effects in the SHPB tests 

were simulated and the results suggested that the peridynamic model could be used for designing 

the shaper. The one-dimensional model was validated in this chapter and it was concluded that 

the impact process could be successfully simulated by peridynamics with its long range forces 

without involving contact mechanics.  

 

3. In Chapter 4, a bar model and a beam model were proposed for two-dimensional problems. 

The two-parameter beam model was capable of presenting two independent material properties 

required by isotropic materials. The proposed model was verified by a two-dimensional vibration 

analysis. Compared with the solutions from classical mechanics, numerical parameters were 

studied to show the convergence of peridynamic solutions to classical mechanics solutions. Two 

computational techniques were also proposed and implemented. The computational efficiency 

was greatly improved using these techniques. The ability for executing two-dimensional analysis 

was thus proved feasible. Three dynamic damage propagation experiments from the literature 
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were also used to validate the peridynamic model and its damage theory. In the first experiment, 

the crack velocity in the single edge notch (SEN) test was simulated by peridynamics and the 

results matched well with those from experiment given in the literature. In the second experiment, 

peridynamics was shown to be capable of producing crack branching as reported in literature. In 

the third experiment, an impulse loading was simulated and peridynamic results showed the 

same crack propagation direction as given in the experiment. It was shown that the damage 

propagated in peridynamic simulation without any additional damage theory. There was no need 

of tracking individual crack paths or using special elements.  

 

4. The orthotropic material models and their applications were studied in Chapter 5. A four-

parameter peridynamic model for orthotropic materials was proposed to coincide with the four 

independent material properties required for orthotropic materials. This four-parameter model 

was different from the previous developed ones as it had four parameters and was mesh 

independent. The model was verified by a static tensile test and a vibration excitation of a 

laminated beam. An SEN (single edge notch) test of a 0° laminated plate was simulated by 

peridynamics and the computational results matched with published experiment results. Fracture 

initiation and crack path of laminated plates with different fiber orientations were also studied 

using peridynamics. The mesh-free peridynamic model was convenient and efficient since there 

was no need to have different meshes for different fiber orientations. Without using special 

meshes and requiring prior knowledge of fracture paths, a general peridynamic code was able to 

predict fracture velocity and crack path successfully. 
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In conclusion, a peridynamic code was generalized in this work using Matlab. Two 

computational techniques were proposed and implemented to improve the computational 

efficiency dramatically. This rendered simulations of large domains feasible and paved a way for 

peridynamics in simulating even larger structures in the future. Besides, material models for one-

dimensional problems, two-dimensional problems and orthotropic materials were proposed and 

they matched well with the two material properties in isotropic materials and the four material 

properties in orthotropic materials, respectively. Elastic models, plastic models and damage 

theories of peridynamics were proposed and studied in this thesis work. These models were 

compared with either analytical solutions or experiment results. All the comparisons showed 

good matches. Finally, it is worth noting that the integral governing equation of peridynamics 

covers the entire domain regardless the continuity or discontinuity of the displacement. 

Therefore, as shown in this work, there is no need to apply special techniques or models on 

displacement discontinuity. Cracks or material weakening can grow automatically whenever and 

wherever they have to grow.  

 

6.2 Recommendations  

1. A three-dimensional peridynamic model can be developed in the future to simulate three-

dimensional problems. Silling’s bar model [1] is only able to model materials with Possion’s 

ratio of ¼. The three-dimensional model can be developed from the beam model in Chapter 4 to 

accommodate two material properties for isotropic materials. With the help of this three-

dimensional model, a three-dimensional axisymmetric peridynamic model can be developed 

from the axisymmetric model in Chapter 4. The experiment data in Chapter 3 can be 

conveniently used to validate this model.  
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2. More complex constitutive functions can be proposed to accommodate material nonlinearity. 

It has been shown that experiment based stress-strain data can be used as the computational input 

for the peridynamic code. More experiments can be performed to study material properties and 

the experiment data can help refining peridynamic models. Strain-rate dependent materials can 

also be modeled by peridynamics. Besides the spring model, elastic or plastic, a dash pot can be 

added to the constitutive bond function. Since a dash pot is velocity dependent, a material model 

with a dash pot can be strain rate dependent.  

 

3. Multi-physical loads can be modeled using peridynamics. Currently, peridynamics is only 

used in solid mechanics. Gas and liquid can be modeled using similar governing equations as the 

peridynamics for solid mechanics. The constitutive functions of gas and liquid, however, will be 

greatly different from those for solids. Other than the mechanical loads, thermal loads, acoustic 

loads and electromagnetic loads can also be modeled in peridynamics. In peridynamics, all 

external loads are applied as body forces. The effects of all non-mechanical loads need to be 

studied and can be applied as mechanical effects in the peridynamic domain.  

 

4. Once a three-dimensional peridynamic model is developed, a three-dimensional orthotropic 

materials can be modeled similar to the two-dimensional orthotropic material models in Chapter 

5. This model can be conveniently used to model woven composite, which is a difficult subjects 

in commonly used finite element analysis. When modeling woven composite, the weaving 

structures of the woven composite need to be known to set up the material properties of bonds in 
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different directions. Deformations and damages of each bond are independent and crack can 

grow in any directions.  

 

5. Currently, the peridynamics code is developed using Matlab. The domain grid is generalized 

manually. It will be better to use commercial mesh generalizers to define problem domains and 

generalize mesh in any size. Moreover, it will be better to embed the peridynamics code in a 

commercial software because commercial software are robust and likely more efficient.  

 

6. Validations of new developed theories and models are necessary. Problems requiring 

peridynamic analysis are likely complex and it is almost impossible to find analytical solutions 

for these problems. To develop more complex peridynamic models, more experiments 

specifically designed for validating the peridynamic models are necessary.  
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