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ABSTRACT

INCORPORATING NON-VERBAL MODALITIES IN

SPOKEN LANGUAGE UNDERSTANDING FOR

MULTIMODAL CONVERSATIONAL SYSTEMS

By

Shaolin Qu

Interpreting human language is a challenging problem in building human—machine

conversational systems due to the flexibility of human language behavior. This prob-

lem is further signified by insufficient speech understanding and system knowledge

representation. When unreliable and unexpected language inputs are received, con-

versational systems tend to fail. Robust language interpretation is essential for build-

ing practical conversational systems.

To address this issue, this thesis investigates the use of non-verbal modalities for

robust language interpretation in human-machine conversation. Specifically, this the—

sis investigates the use of deictic gesture and eye gaze to address two interrelated

problems of language interpretation: unreliable speech input due to weak speech

recognition, and unexpected speech input containing words that are not in the sys-

tem’s knowledge base. The underlying assumption is that deictic gesture and eye gaze

indicate the user’s visual attention and signal the salient visual context in which the

user’s spoken language is situated. This context constrains what the user is likely to

say to the system and therefore can be used to help understand the user’s language.

To facilitate this investigation, we developed a multimodal conversational sys-

tem on 3D-based domains. The system supports speech, deictic gesture, and eye

gaze input during human-machine conversation. Using this system, we conducted

user studies to collect speech-gaze and speech-gesture data sets for the investigation.

For the first topic, using non-verbal modalities to improve speech recognition and



understanding, we built different salience driven language models to incorporate ges-

ture/gaze in different stages of speech recognition. We also experimented different

model-based and instance-based approaches to incorporate gesture in recognizing the

intention of the user’s spoken language. Our experiments show that using gesture

and eye gaze significantly improves speech recognition and understanding. The use

of gesture has also been shown to achieve significant improvement on user intention

recognition.

For the second topic, using non-verbal modalities for automatic word acquisition,

we developed different approaches to incorporate speech-gaze temporal information

and domain knowledge with eye gaze to facilitate word acquisition during human-

machine conversation. To further improve word acquisition, we also incorporated

user interactivity to pick out the “useful” speech-gaze data for word acquisition. Our

findings indicate that word acquisition is significantly improved when speech-gaze

temporal information and domain knowledge are incorporated. Moreover, acquisition

performance is further improved when the words are acquired from the automatically

identified “useful” speech-gaze data.

The results form this thesis have important implications in building robust and

practical multimodal conversational systems. They demonstrate how non—verbal

modalities can be combined successfully at different stages of spoken language pro-

cessing to improve robustness in language interpretation.

I
‘



Copyright by

SHAOLIN QU

2009

 



ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Joyce Chai, for her guidance and support

over the years. Dr. Chai introduced me into the world of multimodal conversation and

helped set up the direction of my research. Her devotion to research, commitment to

professionalism, and relentless seeking of perfection have greatly inspired me through

the completion of my study. I would also like to thank my guidance committee, Dr.

John Deller, Dr. Anil Jain, and Dr. George Stockman for their insightful comments

and suggestions that have greatly enhanced this thesis.

Many fellow graduate students have helped me for the work reported in this thesis.

Special thanks to Zahar Prasov, who not only collaborated with me on the user study

designs and data collection, but also had many valuable discussions with me that

have helped shape my research. Tyler Baldwin, Matthew Gerber, and Chen Zhang

also have contributed to the data collection and shared their valuable comments and

suggestions to my work.

And finally, I want to thank my parents and my sister for their support all these

years.



TABLE OF CONTENTS

LIST OF TABLES ..............................

LIST OF FIGURES .............................

1 Introduction ................................

1.1 Overview of Multimodal Conversation .................

1.2 Problems in Multimodal Language Understanding ...........

1.2.1 Unreliable Speech Input .....................

1.2.2 Unexpected Speech Input ....................

1.3 Research Questions ............................

1.4 Road Map .................................

2 Background ................................

2.1 Why Multimodal Design? ........................

2.2 Non-Verbal Modalities in Multimodal Conversational Systems . . . .

2.2.1 Gesture ..............................

2.2.2 Eye Gaze .............................

2.3 Using Non-Linguistic Information for Language Understanding . . . .

2.3.1 Multimodal Language Processing ................

2.3.2 Context-aware Language Processing ...............

2.4 Automatic Word Acquisition .......................

3 A Multimodal Conversational System ................

3.1 System Architecture ...........................

3.2 Input Modalities .............................

3.2.1 Speech ...............................

3.2.2 Deictic Gesture ..........................

3.2.3 Eye Gaze .............................

3.3 Domains of Application ..........................

3.3.1 Interior Decoration ........................

3.3.2 Treasure Hunting .........................

4 Incorporation of Non-verbal Modalities in Language Models for Spo-

ken Language Processing ........................

4.1 A Salience Driven Framework ......................

4.1.1 Salience ..............................

4.1.2 Salience Driven Interpretation of Spoken Language in Multi-

modal Conversation. . ._ .....................

4.2 Gesture-Based Salience Modeling ....................

vi

O
C
'
O
O
C
U
C
I
I
C
J
O
I
O
l
—
l

‘20

‘29

29



4.3 Gaze-Based Salience Modeling ...................... 35

4.4 Salience Driven Language Modeling ................... 37

4.4.1 Language Models for Speech Recognition ............ 37

4.4.2 Salience Driven N—Gram Models ................. 38

4.4.3 Salience Driven PCFG ...................... 39

4.5 Application of Salience Driven Language Models for ASR ....... 42

4.5.1 Early Application ......................... 42

4.5.2 Late Application ......................... 43

4.6 Evaluation ................................. 44

4.6.1 Speech and Gesture Data Collection .............. 44

4.6.2 Evaluation Results on Speech and Gesture Data ........ 45

4.6.3 Speech and Eye Gaze Data Collection .............. 52

4.6.4 Evaluation Results on Speech and Eye Gaze Data ....... 54

4.6.5 Discussion ............................. 57

4.7 Summary ' ................................. 66

Incorporation of Non-verbal Modalities in Intention Recognition for

Spoken Language Understanding ................... 67

5.1 Multimodal Interpretation in a Speech-Gesture System ........ 68

5.1.1 Semantic Representation ..................... 68

5.1.2 Incorporating Context in Two Stages .............. 69

5.2 Intention Recognition ........................... 70

5.3 Feature Extraction ............................ 71

5.3.1 Semantic Features ........................ 71

5.3.2 Phoneme Features ........................ 72

5.4 Model-Based Intention Recognition ................... 73

5.5 Instance-Based Intention Recognition .................. 74

5.6 Evaluation ................................. 76

5.6.1 Experiment Settings ....................... 76

5.6.2 Results Based on Traditional Speech Recognition ....... 78

5.6.3 Results Based on Gesture-Tailored Speech Recognition . . . . 79

5.6.4 Results Based on Different Sizes of Training Data ....... 80

5.6.5 Discussion ............................. 84

5.7 Summary ................................. 86

Incorporation of Eye Gaze in Automatic Word Acquisition . . . . 88

6.1 Data Collection .............................. 89

6.2 Translation Models for Automatic Word Acquisition .......... 90

6.2.1 Base Model I ........................... 90

6.2.2 Base Model II ........................... 90

6.3 Using Speech-Gaze Temporal Information for Word Acquisition . . . 91

vii



6.4 Using Domain Semantic Relatedness for Word Acquisition ...... 93

6.4.1 Domain Modeling ......................... 94

6.4.2 Semantic Relatedness of Word and Entity ........... 95

6.4.3 Word Acquisition with Word-Entity Semantic Relatedness . . 95

6.5 Grounding Words to Domain Concepts ................. 97

6.6 Evaluation ................................. 97

6.6.1 Evaluation Metrics ........................ 98

6.6.2 Evaluation Results ........................ 99

6.6.3 An Example ............................ 105

6.7 Summary ................................. 106

7 Incorporation of Interactivity with Eye Gaze for Automatic Word

Acquisition ................................ 107

7.1 Data Collection .............................. 108

7.1.1 Domain .............................. 108

7.1.2 Data Preprocessing ........................ 109

7.2 Identification of Closely Coupled Gaze-Speech Pairs .......... 110

7.2.1 Features Extraction ........................ 110

7.2.2 Logistic Regression Model .................... 113

7.3 Evaluation of Gaze-Speech Identification ................ 114

7.4 Evaluation of Word Acquisition ..................... 116

7.4.1 Evaluation Metrics ........................ 116

7.4.2 Evaluation Results ........................ 117

7.5 The Effect of Word Acquisition on Language Understanding ..... 122

7.5.1 Simulation 1: When the System Starts with No Training Data 123

7.5.2 Simulation 2: When the System Starts with Training Data . . 124

7.6 Summary ................................. 126

8 Conclusions ................................ 128

8.1 Contributions ............................... 128

8.2 Future Directions ............................. 130

APPENDICES ................................ 132

A Multimodal Data Collection ....................... 132

Al Speech-Gesture Data Collection in the Interior Decoration Do-

main ................................ 132

A.2 Speech-Gaze Data Collection in the Interior Decoration Domain 132

A3 Speech-Gaze Data Collection in the Treasure Hunting Domain 135

B Parameter Estimation in Approaches to Word Acquisition ...... 137

B.1 Parameter Estimation for Base Model-1 ............ 137

B2 Parameter Estimation for Base Model-2 ............ 138

viii



B.3 Parameter Estimation for Model-2s ...............

B.4 Parameter Estimation for Model-2t ...............

B.5 Parameter Estimation for Model-2ts ..............

BIBLIOGRAPHY

ix

139

"
“
‘
1
1

r
.



4.1

4.2

4.3

4.4

5.1

5.2

5.3

6.1

7.1

LIST OF TABLES

Performances of the early application of different language models on

speech-gesture data ............................ 48

Performance of the late application of LMs on speech-gesture data . . 51

WER of the early application of LMs on speech-gaze data ...... 55

WER of the late application of LMs on speech-gaze data ....... 55

Intentions in the 3D interior decoration domain ............ 70

Accuracies of intention prediction based on standard speech recognition 78

Accuracies of intention prediction based on gesture-tailored speech

recognition ................................. 79

N-best candidate words acquired for the entity dresserzl by different

models ................................... 105

Gaze-speech prediction performances with different feature sets for the

instances with 1—best speech recognition ................ llo



LIST OF FIGURES

1.1 Architecture of multimodal conversation ................ 3

1.2 Semantics-based multimodal interpretation ............... 4

3.1 Multimodal conversational system architecture ............. 26

3.2 Eye gaze on a scene ............................ 28

3.3 A 3D interior decoration domain ..................... 29

3.4 A treasure hunting domain ........................ 30

4.1 Salience driven interpretation ...................... 33

4.2 Gesture-based salience modeling ..................... 34

4.3 An excerpt of speech and gaze stream data ............... 36

4.4 Context free grammar for the 3D interior decoration domain ..... 40

4.5 Trained PCFG for entity lamp in the 3D interior decoration domain . 41

4.6 Application of salience driven language model in speech recognition . 42

4.7 A* search in word lattice ......................... 43

4.8 An Excerpt of XML Data File ...................... 46

4.9 Performance of the early application of LMs on speech-gesture data of

individual users .............................. 50

4.10 Performance of the late application of LMs on speech-gesture data of

individual users .............................. 53

4.11 WERs of application of LMs on speech-gaze data of individual users . 56

4.12 N-best lists of speech recognition for utterance “show me details on

this desk” ................................. 58

4.13 Word lattice of utterance “show me details on this desk” generated by

using standard bigram model .................... 59



4.14

4.15

4.16

4.17

4.18

4.19

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

Word lattice of utterance “show me details on this desk” generated by

using salience driven bigram model .................

N-best lists of speech recognition for utterance “move the red chair

over here” .................................

Word lattice of utterance “move the red chair over here” generated by

using standard bigram model ....................

Word lattice of utterance “move the red chair over here” generated by

using salience driven bigram model .................

N-best lists of speech recognition for utterance “I like the picture with

like a forest in it” .............................

N-best lists of an utterance: early stage integration v.s. late stage

integration .................................

Semantic frame of a user’s multimodal input ..............

Using context (via gesture) for language understanding ........

Phonemes of an utterance ........................

Intention prediction performance of Naive Bayes based on different

training size ................................

Intention prediction performance of Decision Tree based on different

training size ................................

Intention prediction performance of SVM based on different training

Intention prediction performance of S-KNN based on different train-

ing size ...................................

Intention prediction performance of P-KNN based on different train-

ing size ...................................

Intention prediction performance of SP-KNN based on different train-

ing size ...................................

Using gestural information in different stages for intention recognition

xii

60

61

62

63

64

81

81

82

83

83



6.1

6.2

6.3

6.4

6.5

6.6

6.7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Al

A2

Parallel speech and gaze streams .................... 89

Histogram of truly aligned word and entity pairs over temporal distance

(bin width = 200ms) ........................... 92

Domain model with domain concepts linked to WordNet synsets . . . 94

Precision of word acquisition ....................... 101

Recall of word acquisition ........................ 102

F—measure of word acquisition ...................... 103

MRRRs achieved by different models .................. 104

A snapshot of one user’s experiment (the dot on the stereo indicates

the user’s gaze fixation, which was not shown to the user during the

experiment) ................................ 109

Precision of word acquisition on 1-best speech recognition with Model-

2t-r ..................................... 118

Recall of word acquisition on l-best speech recognition with Model-2t-r 118

F-measure of word acquisition on 1-best speech recognition with

Model-2t-r ................................. 119

Precision of word acquisition on speech transcript with Model-2t-r . . 120

Recall of word acquisition on speech transcript with Model-2t-r . . . 120

F—measure of word acquisition on speech transcript with Model-2t-r . 121

MRRRs achieved by Model—2t-r with different data set ........ 121

CIR of user language achieved by the system starting with no training

data .................................... 124

CIR of user language achieved by the system starting with 10 users

training data) ............................... 126

Instruction for scenario 1 in the interior decoration domain ...... 133

Instruction for scenario 2 in the interior decoration domain ...... 134

xiii



A.3 Questions for users in the study ..................... 135

A4 Instruction for the user study ...................... 136

xiv



CHAPTER 1

Introduction

Speech is the most natural means for humans to communicate with each other.

Due to its naturalness, speech is also a desirable communication mode in human-

computer interaction. .A lot of research has been done on spoken dialog sys-

tems [1, 17,64,65,78, 110], where users communicate with the system through speech.

In recent years, the development of multimodal conversational systems has gained

more interest. Besides speech input, multimodal conversational systems also support

inputs from other modalities such as gesture and eye gaze during human—machine

conversation. Compared to the conventional speech-only interfaces in spoken dialog

systems, multimodal conversational interfaces provide users with greater expressive

power, naturalness, and flexibility. Moreover, multimodal conversational systems can

achieve better interpretation of user input due to mutual disambiguation among com-

plementary modalities [74].

Despite recent advances in multimodal conversational systems, interpreting what

a user communicates to the system is still a significant challenge due to insufficient

speech recognition and language understanding performance. Moreover, when the

user’s utterances contain unexpected words that are out of the system’s knowledge,

interpretation of the user language tends to fail even when these words are correctly

recognized, which also makes robust language interpretation a big challenge.

Towards building more practical multimodal conversational systems, this thesis



explores the use of non-verbal modalities for robust language interpretation in two

related directions. First, to improve spoken language understanding, the domain con-

textual information indicated by non-verbal modalities is incorporated in language

modeling to get better speech hypotheses. Second, this thesis explores the use of eye

gaze to acquire words automatically during human-machine conversation, in particu-

lar, by incorporating speech-gaze temporal information, domain semantic knowledge,

and interactivity in word acquisition.

1.1 Overview of Multimodal Conversation

Figure 1.1 shows the typical interaction process between a user and a multimodal

conversational system. The user talks to the system using speech and pen-based

deictic gesture. The user’s eye gaze is captured by the system. The Multimodal

Interpreter identifies semantic meaning of the user’s multimodal input. Given the

interpretation, the Conversation Manager informs the Action Manager what action

(e.g., information query, removing an object on the graphical display) to take. The

Action Manager performs the action in the application domain and provides results to

the Conversation Manager. Based on the results, the Conversation Manager decides

what responses (e.g., inquired information not found, confirmation of object deletion)

to give back to the user. The Presentation Manager presents the system’s response

to the user in one or more formats (e.g., audio, video, graphics).

To be able to provide intelligent responses to the user, the system first needs

to understand user input, which makes Multimodal Interpreter a key component in

multimodal conversational systems. This thesis focuses on building robust spoken

language understanding in Multimodal Interpreter.
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Figure 1.1. Architecture of multimodal conversation

   

1.2 Problems in Multimodal Language Understanding

Multimodal interpretation is to derive semantic meaning from the user’s multimodal

input. The interpretation process involves recognition, understanding, and integra-

tion of the user’s multiple inputs of different modalities. In most multimodal con-

versational systems, input interpretation is based on a semantic fusion approach. In

this approach, the system first creates all possible partial meaning representations in-

dependently from individual modalities. Then these partial meaning representations

identified from each modality are fused in a multimodal integration process to form

an overall meaning representation. Previous studies have shown that multitnodal

interpretation can achieve better performance than unimodal interpretation because

of the mutual disambiguation among complementary modalities during multimodal

integration process [74].

Figure 1.2 shows an example of the semantics—based approach to the interpretation

of speech and gesture input. In the example, the user says “what is the price of this

painting?” and at the same time points to a position on the screen. The system

first creates all possible partial meaning representations from speech and gesture

independently. The partial meaning representations from the speech input and the

gesture input are shown in (a—b) in Figure 1.2. In this case, the gesture could be



pointing to a wall or a picture. The system uses the partial meaning representations

to disambiguate one and another and combines compatible partial representations

together into an overall semantic representation as shown in Figure 1.2(c).

‘What is the price of this painting?" (Pointing to a position on the screen)
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Figure 1.2. Semantics—based multimodal interpretation

In the semantics-based multimodal interpretation, the partial semantic represen-

tations from individual modalities are crucial for mutual disambiguation during mul-

timodal fusion. A robust recognition and understanding of the user’s speech is very

important. However, there are two main barriers to robust spoken language under-

standing: unreliable speech input and unexpected speech input. We address these

two problems of language understanding as follows.



1.2.1 Unreliable Speech Input

Unreliable speech input refers to the input that can not be correctly recognized due to

weak speech recognition. For example, in Figure 1.2, if the speech input is recognized

as “what is the pr_i_z§ of this panting .9”, then the partial representation from the speech

input will not be correctly created in the first place. Without a correct candidate

partial representation, it is not likely for multimodal fusion to reach a correct overall

meaning of the input.

A potential solution to the above problem is to incorporate contextual information

in recognition and understanding of speech at an earlier stage before semantic fusion in

the pipelined process of multimodal interpretation. The context of human-computer

interaction constrains what users are likely to interact with the system, and thus can

be used to help user input interpretation. In the example, the user is talking about

a picture. Suppose we already have the knowledge that the word “price” is more

likely to appear in an utterance talking about a picture than the word “prize”. By

identifying the visual context (i.e., the picture object) from deictic gesture, the system

can use the domain knowledge associated with the visual context to help recognize

the word “price” correctly and thus achieve correct language understanding.

Following this idea, this thesis presents a salience driven framework in which

gesture/gaze—based salience driven language models are built to improve recognized

speech hypothesis. During speech recognition, these salience driven language models

will guide the'system to pick the speech hypothesis that is more likely describing the

currently salient object as indicated by the user’s gesture or eye gaze. Our experi-

mental results have shown the potential of gesture and eye gaze in improving spoken

language processing.

Besides using non-verbal modalities to obtain better speech recognition hypothe-

sis, we also apply non-verbal modalities directly in the language understanding pro-

cess to better interpret the user’s spoken language, specifically, the user’s intention



reflected in the Spoken language. In conversational systems, the “meaning” of user in-

put can be generally categorized into intention and attention [33]. Intention indicates

the user’s motivation and action. Attention reflects the focus of the conversation, in

other words, what has been talked about. In the speech-gesture system where speech

is the dominant mode of communication, the user intention (such as asking for price of

an object) is generally expressed by spoken language and attention (e.g., the specific

object) is indicated by the deictic gesture on the graphical display. Based on such

observations, many speech-gesture systems mainly identify intention from speech and

identify attention using deictic gesture [4, 27,53]. In our view, deictic gestures not

only indicate users’ attention, but also can activate the relevant domain context. This

context can constrain the type of intention associated with the attention and thus

provide useful information for intention recognition.

Based on this assumption, we experimented with model-based and instance-based

approaches to incorporate gestural information to recognize the user’s intention. We

examined the effects of using gestural information for user intention recognition in two

stages — speech recognition stage and language understanding stage. Our empirical

results have shown that using gestural information improves intention recognition and

the performance is further improved when gestures are incorporated in both speech

recognition and language understanding stages compared to either stage alone.

1.2.2 Unexpected Speech Input

Unexpected speech input happens when the user speaks some words that the sys-

tem can not recognize. When the encountered vocabulary is outside of the system’s

knowledge, conversational systems tend to fail. For example, in Figure 1.2, if the user

says “what is the cost of this painting?” and the word “cost” is not in the system’s

vocabulary, then the system would not be able to understand that the user is asking

for the price of the painting. Therefore, it is desirable that conversational systems can



learn new words automatically during human-machine conversation. While automatic

word acquisition in general is quite challenging, multimodal conversational systems

offer an unique opportunity to explore word acquisition. In a multimodal conversa-

tional system where users can talk and interact with a graphical display, users’ eye

gaze, which occurs naturally with speech production, provides a potential channel for

the system to learn new words automatically during human-machine conversation.

Psycholinguistic studies have shown that eye gaze is tightly linked to human lan-

guage processing. Eye gaze is one of the reliable indicators of what a person is “think-

ing about” [37]. The direction of eye gaze carries information about the focus of the

user’s attention [49]. The perceived visual context influences spoken word recognition

and mediates syntactic processing of spoken sentences [97,101]. In addition, directly

before speaking a word, the eyes move to the mentioned object [31,68,88].

Motivated by these psycholinguistic findings, we investigate the use of eye gaze for

automatic word acquisition in multimodal conversation. Particulary, this thesis in-

vestigates the use of temporal alignment of speech and eye gaze and domain semantic

relatedness for automatic word acquisition. The speech-gaze temporal information

and domain semantic information are incorporated in statistical translation models

for word acquisition. Our experiment results demonstrate that eye gaze provides

a potential channel for acquiring words automatically. The use of extra speech-gaze

temporal information and domain semantic knowledge can significantly improve word

acquisition.

Furthermore, since eye gaze could have different functions during human-machine

conversation, not all speech and eye gaze data are useful for word acquisition. To

further improve word acquisition, the thesis also presents approaches that automat-

ically identify potentially “useful” speech and eye gaze based on information from

multiple sources such as the user’s speech, eye gaze behavior, interaction activity,

and conversation context. Our experimental evaluation shows that using only the



identified “useful” speech and gaze significantly improves word acquisition compared

to using all speech and gaze data.

1.3 Research Questions

Addressing the above problems, this thesis investigates the following specific questions

about language interpretation in speech and gesture/gaze systems:

0 How can the non-verbal modalities be used to improve speech recognition?

0 How can the non-verbal modalities be used to help language understanding,

specifically, to help recognition of the user’s intention?

o How can the non—verbal modalities be used to acquire new words automatically

during multimodal conversation?

To facilitate the investigations described above, this thesis has accomplished the

following objectives:

0 Development of a multimodal system that supports inputs of speech, gesture

and eye gaze in 3D-based domains.

0 Collection of corpora of speech and gesture/gaze data from user studies.

0 Design and implementation of approaches to incorporating non-verbal modal-

ities in spoken language understanding and automatic vocabulary acquisition

during multimodal conversation.

0 Evaluation and analysis of these approaches that incorporate non-verbal modal-

ities.

1.4 Road Map

The remainder of the thesis is organized as follows:



0 Chapter 2: background on relevant aspects of multimodal conversation and

review of previous work on multimodal language processing and language ac—

quisition.

0 Chapter 3: description of a multimodal conversational system developed for this

thesis investigation. The developed system supports inputs of speech, deictic

gesture, and eye gaze in a 3D interior decoration domain and a 3D treasure

hunting game domain.

0 Chapter 4: investigation of incorporating non-verbal modalities to improve rec-

ognized speech hypotheses for better language understanding. This chapter

describes different approaches in a gesture/gazebased salience driven frame-

work. Evaluation and analysis of these approaches are also presented in this

chapter.

0 Chapter 5: investigation of incorporating non-verbal modalities to improve user

intention recognition for better language understanding. This chapter describes

different model-based and instance-based approaches for intention recognition

and presents evaluation and analysis of these approaches.

0 Chapter 6: investigation of incorporating eye gaze in automatic vocabulary

acquisition for robust language understanding. This chapter describes the ap-

proaches of incorporating speech-gaze temporal information and domain seman-

tic relatedness to facilitate word acquisition. Evaluation and analysis are also

presented in this chapter.

0 Chapter 7: investigation of using user interactivity related information for iden-

tifying “closely-coupled” gaze and speech streams and its effect on word acqui-

sition. This chapter describes the prediction of “closely-coupled” gaze—speech



instances for word acquisition. Evaluations of gaze—speech prediction and its

effect on word acquisition are also presented in this chapter.

9 Chapter 8: contributions of this thesis work.
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CHAPTER 2

Background

This chapter presents a review of the topics that are relevant to this thesis. We begin

by explaining the motivation for multimodal design in conversational systems, then

introduce the non-verbal modalities that have been explored in multimodal conver-

sation, and finally review the previous work on multimodal language interpretation

and automatic word acquisition.

2.1 Why Multimodal Design?

One motivation for multimodal design is users’ strong preference to interact mul-

timodally. Unlike the traditional keyboard and mouse interface or a unimodal

recognition-based interfaces, multimodal interfaces allow users to choose which modal-

ity to use depending on the types of information to convey, to use combined input

modes, and to alternate between modes at any time. This flexible choice of input

modes is preferred by users in human-computer interaction. It has been found that

more than 95% percent of users chose to interact multimodally when they were free

to use either speech or pen input in a map-based spatial domain [73].

Multimodal design is also motivated by the potential of multimodal systems in

expanding the accessibility of computing to a broader range of users. There are large

individual differences in ability and preference to using different modes of commu—
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nication. These differences could be age, skill level, culture, and sensory, motor, or

intellectual impairments. For example, a user with accented speech may prefer pen

input rather than speech, whereas a visually impaired user may prefer speech input

and text-to—speech output.

Besides expanding the range of users, multimodal systems can also expand the

usage contexts. Multimodal systems allow users to switch input modes when environ-

ment condition changes or in mobile use, the user is unable to use a particular input

mode temporarily. For example, users can use pen input in a noisy environment and

use speech in a quiet environment, and a user of an in-vehicle multimodal application

can use speech when he or she is unable to use gestural input while driving.

Another major motivation for multimodal design is the error avoidance and recov-

ery in multimodal systems. There are user-centered and system-centered reasons why

multimodal systems facilitate error recovery [75]. The user-centered reasons include:

0 Users select the input mode they judge less error prone for particular lexical

content, which usually leads to error avoidance. For example, in a speech and

pen system, the user may prefer speech input, but will switch to pen to com-

municate a foreign surname.

0 User’s language often is simplified when interacting multimodally, which leads

to better speech recognition and language understanding. For example, in a

multimodal system involving a room scene, a user wants to move one of the

chairs beside the bed to the window. Using only speech, the user might need

to say “move the left red chair beside the bed to the window”. When using

both speech and gesture, the user only needs to say “move this chair here”,

along with two pointing gestures. This observation is most relevant to the work

presented in this thesis.

0 Users tend to switch modes after a system recognition error, which can prevent
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repeating errors and facilitate error recovery.

The system-centered reason for error recovery in multimodal systems lies in the mul-

timodal architecture. A well designed multimodal architecture with two semantically

rich input modes can support mutual disambiguation [74] of input signals. Mutual

disambiguation involves disambiguation of signal or semantic-level information in one

input mode from partial information supplied by another input mode. It leads to re-

covery from unimodal recognition errors within a multimodal architecture, with the

net effect of suppressing errors experienced by the user. The mutual disambiguation

of speech and gestural inputs has been successfully demonstrated in [14, 20,48, 106].

2.2 Non-Verbal Modalities in Multimodal Conversational

Systems

Since the appearance of Bolt’s “Put That There” [4] demonstration system, which

supported speech and touch-pad pointing, a variety of new multimodal conversational

systems have emerged. In most of these multimodal conversational systems, the

other modality besides speech is either gesture or eye gaze. Besides speech and

gesture/gaze systems, there are also speech and lip movement systems where speech

is processed with corresponding human lip movement information during human-

computer interaction [24,94,102]. In speech and lip movement systems, the visual

features of human lip movement is fused together with the acoustic features in the

speech decoding process to perform the so—called audio-visual speech recognition [79].

The use of lip movement in audio-visual speech recognition is beyond the scope

of this thesis. Moveover, speech recognition is not a focus of this thesis. This thesis

focuses on the use of gesture and eye gaze in improving language understanding

for multimodal conversation. An overview of the use of gesture and eye gaze in

multimodal systems is presented as follows.
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2.2.1 Gesture

In speech and gesture systems, spoken language is processed along with its accompa-

nying gestures. The gestural input can be a simple pen-based deictic gesture (e.g.,

pointing, circling) [11,15,40,104,107,108], a complex pen-based gesture involving

symbolic interpretations [20,47,114], or a manual gesture [9,38,59,69].

This thesis focuses on the use of pen-based deictic gesture in spoken language

processing. Deictic gesture is an active input mode, which is deployed by the user

intentionally as an explicit command to the computer system. Deictic gesture has

been widely used in multimodal map-based systems to indicate the focus of the user’s

attention (objects, locations, or areas on the map) [11,25,71,92,95,99]. Beyond only

using deictic gesture as an indicator of the user’s attention focus, in this thesis, we

use deictic gesture to influence the recognition and understanding of the user’s spoken

utterances.

2.2.2 Eye Gaze

Eye gaze has been studied in various research fields such as cognitive science, psy-

cholinguistics, and human-computer interaction. In human-computer interaction, eye

gaze has long been explored for direct manipulation interfaces in which eye gaze is used

as a pointing device [43,56,112,113,120]. Eye gaze as a modality in multimodal inter-

action goes beyond the function of pointing. In different speech and eye gaze systems,

eye gaze has been explored for the purpose of mutual disambiguation [100,121], as a

complement to the speech channel for reference resolution [8,52,80] and speech recog-

nition [21], and for managing human-computer dialogue [87]. Eye gaze has also been

used as a facilitator in computer supported human-human communication [103,105].

In this thesis, we use eye gaze and the gaze perceived visual context to help spoken

language understanding in multimodal conversation.

Cognitive scientists have been studying eye movements to understand brain pro-
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cesses [36,88]. In psycholinguistics, eye gaze has been shown its tight link to both

language comprehension [2,23,97] and language production [3,7, 30]. Psycholinguis-

tic studies have found that the gaze perceived visual context influences spoken word

recognition and mediates the syntactic processing in real-time spoken language com-

prehension. For language production, psycholinguistic studies found that the user’s

eyes move to the mentioned object directly before speaking a word. These psycholin-

guistic findings are the motivations for this thesis’s work on the use of eye gaze for

spoken language processing in human-computer interaction.

Eye gaze can be captured by eye trackers, which track the user’s eye movements

during human-computer interaction. Two main types of eye trackers have been used in

interaction study — head mounted and display mounted. Head mounted eye trackers

can provide accurate gaze direction, but they are intrusive. It is unnatural and

inconvenient for a user to interact with the computer system with an eye tracker

mounted on the head. The state-of-the—art eye tracking technologies have enabled the

eye tracking system to be embedded in a monitor. The display mounted eye trackers

are non-intrusive and more appropriate for the use in human-computer interaction.

2.3 Using Non-Linguistic Information for Language Under-

standing

This thesis’s work on using non-verbal inputs to improve spoken language under-

standing is inspired by previous research on multimodal language processing and

context-aware language processing.

2.3.1 Multimodal Language Processing

Multimodal language processing combines speech with non-verbal modalities such

as gesture, eye gaze, and lip movements for language processing. There are two
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levels of multimodal language processing: 1) feature-level processing; 2) semantic—

level processing.

Feature-Level Processing

Feature-level processing fuses low-level feature information from parallel input signals

in a multimodal architecture. Feature-level processing is most appropriate for closely

synchronized modalities such as speech and lip movements. In audio-visual speech

recognition [79], features of speech and lip movements are first extracted by acoustic

signal processing and vision analysis respectively. The extracted audio features and

visual features are then fused together for speech decoding.

Feature-level multimodal integration of speech and lip movement is beyond the

scope of this thesis. This thesis investigates the use of deictic gesture and eye gaze

in multimodal language processing. These modalities do not have the close coupling

with acoustic speech as lip movement does, so the feature-level processing is not

appropriate. Moreover, this thesis focuses on language understanding rather than

speech recognition. In audio—visual speech recognition, extracted acoustic and visual

features are fused for speech decoding. In this thesis, gesture/gaze is incorporated in

language modeling to tailor speech hypotheses for better semantic interpretation.

Semantic-Level Processing

Semantic-level processing is to integrate semantic information derived from parallel

input modes in a pipelined multimodal architecture (as seen in Figure 1.2). Semantic-

level processing is mostly used for less coupled modalities such as speech and gesture.

In semantic-level processing, the system first recognizes each modality independently

and then creates all possible partial semantic representations individually for each

modality. Then the system uses these partial semantic representations to disam-

biguate each other and form a joint semantic representation [10,44,45]. This fusion
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of multimodal input at the semantic level is called late fusion [76].

Late semantic integration systems use individual recognizers for different input

modes. These individual recognizer can be trained using unimodal data, which are

easier to get and already publicly available for modalities such as speech [18] and

handwriting [41,61]. Multimodal systems based on semantic fusion can also take

advantage of the existing relative mature unimodal recognition techniques and off-

the—shelf recognizers, which can be directly integrated in the late semantic integration

architecture. In this respect, multimodal systems based on semantic fusion can be

scaled up easier in the number of input modes.

Previous work on semantic fusion of multimodal input has been more focused on

the integration of speech and gesture, especially pen-based gesture, than on integra-

tion of speech and eye gaze. In multimodal interaction, pen-based gesture is a much

more reliable input mode for object selection than eye gaze. Moreover, pen-based

gesture can contain more semantic meaning by drawing symbols or writing letters.

Due to the limitation of eye gaze, multimodal integration of speech and eye gaze

has mainly been studied for simple object selection and reference resolution. In the

experiments of object selection [100,121], the user selects an object (icon) on the

screen using speech, user’s speech and eye gaze are both used to decide the selected

object by the system. In [121], both speech and eye gaze of user generate an n-best list

of potential objects, the system decides the selected object by taking the common one

on both n-best lists. In [100], the selected object is decided by computing the posterior

probabilities of the objects on screen being selected by the multimodal input. In the

applications of reference resolution [8,52], the object that is fixated by eye gaze prior

to user’s mention of the object in speech is taken as the referent for simple commands

like “move it there” and “open the door”.

Integration of speech and gesture for multimodal interpretation is more mature

than integration of speech and eye gaze. Many integration approaches have been
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explored for a variety of speech and pen-based gesture systems. Those integration

approaches can be categorized into the following types based on their integration

mechanisms: frame—based approaches, unification—based approaches, finite-state ap-

proaches, optimization-based approaches, and statistics-based approaches.

Frame is a data structure used for knowledge representation. A frame has a

number of slots in it. The slots represent object properties, actions, or an object’s

relation with other frames. Frame-based multimodal integration approaches use indi-

vidual frames to represent semantic meanings obtained from different modalities and

achieve multimodal integration by merging those complementary individual frames to

one unified frame. Frame-based integration approaches have been used in speech and

gesture systems for applications such as multimodal text editing [109], multimodal

drawing [93], and multimodal appointment scheduling [106]. Frame-based approaches

are simple and efficient, but they are specific to application.

Unification-based approaches are derived from computational linguistics, in which

formal logics of typed feature structures have been well deve10ped. The primary

Operation in the logics of feature structure is unification — determining the consistency

of two feature structures and combining them into a single feature structure if they

are consistent. Using feature structures for meaning representation, unification-based

approaches achieve multimodal integration by performing unification operation over

the feature structures of different modalities. Compared to frame merging, unification

of typed feature structures provides a more general, formally well-understood, and

reusable mechanism for multimodal integration. Unification-based approaches haven

been used in the QuickSet system for the integration of speech and pen-based gesture

input [44,48].

Johnston and Bangalore [45,46] employed finite-state transducers to achieve mul-

timodal integration in a multimodal messaging application, in which users interact

with a company directory using synergistic combinations of speech and pen input.
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Multimodal context-free grammar (CFC) was introduced for integrating speech and

gesture with finite-state transducers. The finite-state approach enables a tighter cou-

pling of speech and gesture by using gesture to guide speech recognition, which can

lead to improved speech recognition and understanding. However, the finite-state

approach has one major limitation in that it requires a multimodal grammar to be

created to define the language allowed in a particular application domain, which makes

them only applicable for very constrained domains that involves small vocabulary and

simple expressions.

Optimization-based approaches use Optimization methods of machine learning for

multimodal integration. Chai et al. [14] modeled integration of multimodal inputs as

graph matching and applied the graph-based approach to achieve reference resolution

in a map-based real estate domain, where users use speech and gesture to inquire es—

tate information. In [27], for the purpose of multimodal reference resolution, gestures

and spoken words are aligned by minimizing a penalty function defined to penalize

the gesture-speech bindings that violate the empirically preferred binding rules.

Wu et al. [116] proposed a statistical hierarchical framework, Members-Teams-

Committee (MTC), for the integration of speech and gesture in a simulated commu-

nity fire and flood control domain. In this framework, all possible multimodal in-

terpretations are predefined and the interpretation of a multimodal input is decided

by the posterior probabilities of unimodal speech and gesture recognition hypotheses

and the statistics of predefined multimodal interpretations. Since this statistics-based

approach requires all possible speech and gesture interpretations to be pre—defined for

a particular domain, it is only appropriate for constrained domains involving simple

speech and gesture commands.

In the above late semantic fusion approaches, information from multiple modalities

is only used at the fusion stage. Some low probability information (e.g., recognized

alternatives with low probabilities) that could turn out to be very crucial in terms
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of the overall interpretation may never reach the fusion stage. Therefore, it is desir-

able to use information from multiple sources at an earlier stage, for example, using

one modality to facilitate semantic processing of another modality. Addressing this

problem in late semantic fusion, Chapter 4 of this thesis presents the use of deic-

tic gesture and eye gaze in an earlier stage to facilitate language processing before

semantic fusion.

2.3.2 Context-aware Language Processing

The context of human-computer interaction constrains what a user is likely to interact

with the system, thus can be utilized for user language interpretation. A variety of

research work has been done on using contextual information for spoken language

processing. There are mainly two types of context used in context-aware language

processing: conversation context and domain context.

All information related to the discourse prior to an utterance constitutes the

conversation context of the utterance. Chotimongkol and Rudnicky [16] used con-

versation contextual feature to improve speech recognition and understanding by

rescoring the n-best output of speech recognizer with a linear regression model. The

conversation contextual feature was represented by the correlation of the current

user utterance and the previous system utterance. Solsona et al. [96] combined con-

versation context-specific finite state grammar (FSG) and general n-gram model to

improve speech recognition for a conversational system. The conversation context

was represented by the types of previous system prompts and questions. Lemon and

Gruenstein [62] also built conversation context-specific grammars to improve speech

recognition and understanding. The conversation context was represented by the

types of dialog move. Gruenstein et al. [34] built context-sensitive class-based n-gram

model to improve speech recognition for a flight reservation system. The conversation

context was represented by the current information state, which indicates whether
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certain information about the flight has been collected from previous conversation.

All domain related information constitutes the domain context, which could be

the visual content of the graphical display in a domain, or the task knowledge in

a specific domain application. Roy and Mukherjee [89] incorporated visual domain

context in language model to improve spoken language comprehension in a synthetic

visual scene description domain. The visual context was represented by the visual

features (e.g., color, size, shape) of the objects in the scene. Coen et al. [19] built

visual context-specific grammars to improve speech recognition and understanding

in an Intelligent Room where a user can operate computer controlled devices by

speaking. What is currently nearby the user in the room constitutes the visual con-

text. Carbini et al. [9] used domain contextual information to help interpretation

of ambiguous speech-gesture commands and enable short multimodal commands in

a chess game domain. The domain contextual constraints include the displacement

rules of chess game and current game position. Gorniak andRoy [29] incorporated

both physical domain context and conceptual domain task related context to resolve

spoken referring expressions in a 3D game domain. The physical context includes

information about the physical objects in the game, such as location and type of the

objects. The conceptual context consists of a set of hierarchical plan fragments to

complete the specific task of the game. Due to the constrained game setting, users

must follow certain steps to complete the task. Therefore, given the previous steps

(physical context) and the hierarchical plan segments (task conceptual context), it is

possible to predict which plan fragment the user will take, specifically which object

the user will likely to refer to in his/her spoken commands.

Motivated by context—aware language processing, Chapters 4 & 5 of this thesis

investigate the use of domain contextual information for improving speech recognition

and understanding. Different from the context in previous work, the domain context

in this thesis work is dynamically signaled by non-verbal modalities such as gesture
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and eye gaze during multimodal conversation. Cooke [21] also explored the use of

eye gaze for spoken language processing in a map route description domain. In

[21], eye gaze was used to improve speech recognition by rescoring the n-best list of

speech recognition with the landmark-specific n—gram models that correspond to the

gaze fixated landmarks. Different from [21], in this thesis, we explore more ways of

integrating eye gaze in spoken language processing and present a better integration

strategy than n-best list rescoring for the use of eye gaze in speech recognition.

2.4 Automatic Word Acquisition

Word acquisition is to learn the semantic meanings of new words. In this thesis,

we focus on the automatic word acquisition by a computer system during human-

computer interaction. The purpose of automatic word acquisition is to enlarge the

system’s knowledge base of vocabulary and therefore better interpret the user’s spoken

language.

In the conversational systems with which users interact through a visual scene,

users talk to the system based on what is being shown on the scene and the system

“understands” the user’s language by mapping the spoken words to the semantic

concepts in its domain knowledge base. These semantic concepts of words represent

the visual entities and their prOperties in the domain. For these systems, the Specific

task of word acquisition is to ground words to the visual entities and their related

properties in the domain. Word acquisition by grounding words to visual entities has

been studied in various language acquisition systems.

Sankar and Grorin [91] acquired words by grounding words to visual properties

(color, shape) of objects in a synthetic blocks world, in which the user interacted with

the system by typing sentences. The system started with no semantic associations

of words and visual properties. The only innate knowledge of the system was the

semantic level signal “good” and “no”. During the human-computer interaction,
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the user instructed the system to focus on certain objects and gave responses (e.g.,

“good”, “no”) indicating whether the system followed the instructions correctly. The

goal of the system was to learn to focus on the object that the user referred to

by building associations of words and visual properties. The mutual information

between the occurrences of words and object shape/color types was used to evaluate

the strength of the association of a word and a color/shape type.

Roy and Pentland [90] proposed a computational model that could learn words

directly from raw multimodal sensory input. In their experiments, infant caregivers

were asked to play toys with their infants while giving infant-directed speech. Given

speech paired with video images of single objects (toys), the temporal correlation of

speech and vision was used to learn words by associating the automatically segmented

acoustic phone sequences with the visual prototypes (color, shape, size) of the objects.

Yu and Ballard [118] investigated word learning in a visual scene description do-

main in which users were asked to describe nine oflice objects on a desk and how

to use these office tools. Given speech and the co—occurring video images captured

by a head-mounted camera, a generative model was used to find the associations of

automatically recognized spoken words and visual objects.

Towards the goal of robust multimodal interpretation, this thesis explores the

use of eye gaze for automatic word acquisition. Eye gaze is an implicit and subcon-

scious input, which brings additional challenges into word acquisition. Eye gaze has

been explored for word acquisition in [117], in which eye gaze and other non-verbal

modalities such as the user’s perspective video image and hand movement were used

together with speech to learn words. In the experiments, users were asked to describe

what they were doing while performing three required activities: “stapling a letter”,

“pouring water”, and “unscrewing a jar”. Head-mounted eye tracker and camera

were used to capture gaze and video data. Given speech paired with gaze positions

and video images, a translation model was used to associate acoustic phone sequences
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to the four objects and nine actions in the domain.

Liu et al. [66] also investigated the use of eye gaze for word acquisition. In [66],

speech and eye gaze data were collected from simplified human-computer conversation

in which users verbally answered the system’s questions about the decoration of a 3D

room. A translation model was used to acquire words from transcribed speech and

its accompanying gaze fixations.

This thesis’s work on the use of eye gaze for word acquisition is different from

previous work. Besides gaze positions, we use extra information such as speech-gaze

temporal information and domain semantic knowledge to facilitate word acquisition.

Moreover, not all co-occurring speech and gaze data are useful for word acquisition.

This was not considered in the previous work on using eye gaze for word acquisition.

In this thesis, we investigate the automatic identification of “useful” speech and gaze

fixations and its application on word acquisition.
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CHAPTER 3

A Multimodal Conversational System

To explore the incorporation of non-verbal modalities in language interpretation dur-

ing multimodal conversation, we built a multimodal conversational system that sup-

ports speech, deictic gesture, and eye gaze inputs. This chapter presents the archi-

tecture of the system and the processing of different input modalities.

3.1 System Architecture

Our multimodal conversational system is built on a client/server architecture as shown

in Figure 3.1. In this architecture, the user interacts with the client, a graphic inter-

face, using speech and other modality (e.g., deictic gesture, eye gaze). The results of

speech recognition and gesture/gaze recognition are sent to the server via TCP/IP

network. The Multimodal Interpreter derives semantic meaning of the user’s mul-

timodal input and sends the interpretation result to a dialog manager. The Dialog

Manager controls the interaction flow and decides what the system should do based

on the interpretation of the user’s input. The Presentation Manager decides how to

present the system’s responses to the user and transmits the responses to the client

through the network. The system’s responses are presented to the user on the client

by graphics or/and speech.

25



Gesture/Gaze Speech

Recognizer Recognizer

    

  ’ sentation graphic?

Manager ontro er

Server " Client

Figure 3.1. Multimodal conversational system architecture

3.2 Input Modalities

Users can interact with our multimodal conversational system using speech, deictic

gesture, and eye gaze.

3.2.1 Speech

As the major input mode in multimodal conversational systems, speech enables users

to interact with the system naturally and efficiently. To be able to give intelligent

replies to the user, the system first needs to recognize the user’s speech. Speech

recognition is to convert acoustic speech signals to text. Automatic speech recogni-

tion (ASR) has been progressing steadily in the last three decades, which have resulted

in commercial ASR systems that can recognize human speech with sufficient accuracy

under optimal conditions. However, during natural conversation, environment noise

and disfluency in users’ speech can deteriorate speech recognition performance signif-

icantly. Accents in users’ speech can also make speech recognition difficult. Because

of these reasons, speech recognition remains a major bottleneck for building robust
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conversational systems.

The CMU Sphinx-4 speech recognizer [111] is used in our system for recognizing

users’ spoken utterances. Sphinx-4 is an open source speech recognizer based on

Hidden Markov Model (HMM).

How non-verbal modalities can be incorporated to improve speech recognition is

presented in Chapter 4.

3.2.2 Deictic Gesture

Besides speech, users can use deictic gesture (e.g., pointing, circling on a graphical

display) to make interaction easier. For example, instead of say “how much is the red

chair in the left corner?”, the user can say “how much is this chair?” while pointing

to the attended chair on the screen.

In our system, users’ deictic gestures are captured by a touch screen. Based on the

position of the gesture on the screen, we can infer which object the user is referring to.

How this gestural information can help recognize and understand the users’ speech is

presented in Chapter 4 and Chapter 5.

3.2.3 Eye Gaze

Eye gaze indicates the user’s focus of attention [26,49,101]. The published results

on eye gaze and human language production have led to the hypothesis that users

tend to look at the objects on the graphical display when they are talking about

them. Based on this hypothesis, by tracking the user’s eye gaze during human-

machine conversation, the system is likely to infer the user’s attended objects on

the screen and use this attention information to help recognize and understand the

user’s speech. Moreover, using eye gaze information, the system can potentially learn

new words from the user’s language by associating semantics of the attended objects

(indicated by eye gaze) with words in the user’s spoken utterances.
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'Eye gaze is captured by an eye tracker. The raw gaze data points consists of

the screen coordinates of each gaze point with a particular timestamp. As shown in

Figure 3.2(a), this raw data is not very useful for identifying fixated objects. The

raw gaze data is processed to eliminate the invalid and saccadic gaze points, leaving

only pertinent eye fixations. Invalid gaze points occur when users look off the screen.

Saccadic gaze points occur during ballistic eye movements between fixations. Vision

studies have shown that no visual processing occurs in the human mind during sac-

cades (i.e., saccadic suppression). It is well known that eyes do not stay still, but

rather make small, frequent jerky movements. In order to best determine fixation lo-

cations, nearby gaze points are averaged together to identify fixations. The processed

eye gaze fixations is shown in Figure 3.2(b).

 
(3) Raw gaze points (b) Processed gaze fixations

Figure 3.2. Eye gaze on a scene

How eye gaze information can be used in language models to potentially help

spoken language processing is presented in Chapter 4. How eye gaze information is

used for automatic vocabulary acquisition in multimodal conversation is presented in

Chapter 6.
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3.3 Domains of Application

Two application domains were designed and implemented for our investigation. Both

domains were constructed based on 3D graphics.

3.3.1 Interior Decoration

Figure 3.3 shows the 3D interior decoration domain. In this domain, users can interact

with the system using both speech and deictic gestures to query information about the

entities or arrange the room by adding, removing, moving, and coloring the entities.

For example, the user may say “remove this lamp” or ask “what’s the power of this

lamp .9” while pointing at a lamp in the scene.

 
Figure 3.3. A 3D interior decoration domain

There are 13 types of entities (3D objects, e.g., chair, bed, lamp) in this domain.

3.3.2 Treasure Hunting

Figure 3.4 shows the 3D treasure hunting domain. In this domain, users walk around

in a 3D castle trying to find treasures that are hidden somewhere in the rooms of a

castle. Unlike the interior decoration domain where users give spoken commands to

the system to move around and change decoration, in the treasure hunting domain,

users walk around inside the castle and move objects by themselves, but the user has
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to talk to the system to get hints about where to find the treasure. Users’ eye gaze

fixations are recorded during the human—machine conversation.

 
Figure 3.4. A treasure hunting domain

Compared to the interior decoration domain, the treasure hunting domain pro-

vides a richer interactive environment that involves more complex scenes and tasks,

which enables studies on automatic vocabulary acquisition during human-machine

conversation.

The underlying architecture supporting these two domains can be used to deveIOp

similar 3D applications such as virtual tourism guide and virtual reality personnel

training.
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CHAPTER 4

Incorporation of Non-verbal Modalities in

Language Models for Spoken Language

Processing

In multimodal conversational systems, speech recognition performance is critical in

interpreting user inputs. Only after speech is correctly recognized, is the system able

to further extract semantic meaning from the recognized hypothesis. Although mutual

disambiguation of multiple modalities [74] can alleviate the problem with speech

recognition, speech recognition is still a bottleneck to achieving robust multimodal

interpretation.

This chapter presents the use of non—verbal modalities to help speech recognition

in multimodal conversation. In particular, we describe a salience driven approach to

incorporate the contextual information activated by deictic gesture and eye gaze in

speech recognition. This approach combines gesture-based and gaze-based salience

modeling with language modeling. We further describe the application of the salience

driven language models in speech recognition across different stages and present eval-

uation results.

31



4.1 A Salience Driven Framework

In this section, we first introduce the notion of salience and its applications in language

processing, then describe a salience driven framework for interpretation of language

in multimodal conversation.

4.1.1 Salience

Salience modeling has been used in both natural language and multimodal language

processing. Linguistic salience describes entities with their accessibility in a hearer’s

memory and their implications in language production and interpretation. Many

theories on linguistic salience have been developed, including how the salience of

entities affects the form of referring expression as in the Givenness Hierarchy [35] and

the local coherence of discourse as in the Centering Theory [32]. Linguistic salience

modeling has been used for both language generation [98] and language interpretation.

Most salience-based language interpretation have focused on reference resolution [27,

42, 58]. 8

Visual salience measures how much attention an entity attracts from a user. An

entity is more salient when it attracts a user’s attention more than other entities. The

cause of such attention depends on many factors including user intention, familiarity,

and physical characteristics of objects. For example, an object may be salient when

it has some properties the others do not have, such as it is the only one that is

highlighted, the only one in its size, category, or color [57]. Visual salience can also

be useful in multimodal language interpretation. Studies have shown that a user’s

perceived salience of entities on the graphical interface can tailor the user’s referring

expressions and thus can be used for multimodal reference resolution [54].



4.1.2 Salience Driven Interpretation of Spoken Language in Multimodal

Conversation

During multimodal conversation, a user’s deictic gesture or eye gaze fixation on the

graphical display indicates the user’s attention and therefore indicate salient entities.

The more likely is an entity selected by a gesture or eye gaze, the more salient is this

entity.

We developed a salience driven framework [13] for language interpretation in multi-

modal conversational systems. Figure 4.1 illustrates the salience driven interpretation

of speech in this framework. As shown in the figure, the user’s deictic gesture or eye

gaze fixation on the graphic display signals a distribution of entities that are salient at

that particular time of interaction. The contextual knowledge associated with these

salient objects constitutes the salient context. This salient context can be used to

help speech recognition and understanding by constraining speech hypotheses.
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Figure 4.1. Salience driven interpretation
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In this framework, there are two important operations involved: 1) the salience

modeling based on gesture/gaze, and 2) the incorporation of salience information in

language processing. We address these two operations in the following sections.

4.2 Gesture-Based Salience Modeling

As mentioned earlier, a deictic gesture on the graphical display can signal the under-

lying context that is salient at that particular time of communication. In other words,

the deictic gesture will activate a salience distribution over entities in the domain.

As illustrated in Figure 4.2, the salience value of an entity 6 at time t is calculated

based on the probabilities that e is selected by the gestures g = {9,} occurring prior

to time t.

Utterance: @ . . . ® @ . . . @

 

Gesture:

,P,l(eig,) Pt,(elg2) P,_,(elg3)§ % Pt(e)

 
, ag3(t)
 

“82“) 
 

 “81“)
 

Figure 4.2. Gesture-based salience modeling

More specifically, for an entity e in the domain, its salience value at time t is

calculated as follows [13]:

:09”?

2am 8|:W)W6”69 (4.1)

 

Pt(€) =
3,9

0 290490)p(e|g) = 0
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where p(elg) is the probability of entity 6 being selected by gesture g (calculated

based on the distance from the gesture point to the center of the entity), ag(t) is the

weight of gesture g contributing to the salience distribution at time t.

Gesture weight ag(t) is defined as follows:

t—t

e_700‘8 tZt

age): 0 Mtg (4.2)

9

where tg stands for the beginning time (in milliseconds) of gesture g. Weight ag(t)

says that gesture g has more impact on the salience distribution at a time closer to

the gesture’s occurrence. Note that at any time t, only gestures occurring before t

(i.e., t 2 tg) can contribute to the salience distribution at time t.

4.3 Gaze-Based Salience Modeling

Psycholinguistic experiments have shown that eye gaze is tightly linked to human

language processing. Eye gaze is one of the reliable indicators of what a person is

“thinking about” [37]. The direction of gaze carries information about the focus of the

users attention [49]. The perceived visual context influences spoken word recognition

and mediates syntactic processing [89,101]. In addition, directly before speaking a

word, the eyes move to the mentioned object [31].

Motivated by these psycholinguistic findings about eye gaze’s link to speech, we

use eye gaze information in salience models to help spoken language processing.

Figure 4.3 shows an excerpt of the speech and gaze fixation stream. In the speech

stream, each word starts at a particular timestamp. In the gaze stream, each gaze

fixation f has a starting timestamp tf and a duration Tf. Gaze fixations can have

different durations. An entity 6 on the graphical display is fixated by gaze fixation f

if the area of 6 contains the fixation point of f. One gaze fixation can fall on multiple

entities or no entity.



2 72 2872 17 7SJ 1 310353813 36 (ms)

 

This room has a chandelier

f gaze fixation
Speech stream

 

5 6 9 8 1668 2096 2692 32 2 (ms)

F

" gaze stream

it Tr

[19] [1 [17] [19ll22][1[10] [10] [10] [fixatedentity]

[11] [11] [11]

([10] — bedroom; [11] - chandelier; [17] — lamp_2; [l9] - bedframe; [22] — door)

Figure 4.3. An excerpt of speech and gaze stream data

We first define a gaze fixation set Ftt8+T(e), which contains all gaze fixations that

fall on entity e within a time window to ~ (to + T):

Fttg+T(e) = {flf falls on e within to ~ (to + T)} (4.3)

We model gaze-based salience in two ways [82]:

o Gaze Salience Model 1

Salience model 1 is based on the assumption that when an entity has more gaze

fixations on it than other entities, this entity is more likely attended by the user

and thus has higher salience:

#elements in Fttg+T(e)

Z(#elements in Ftt8+T(e))

8

 

12,010?) = (4.4)

Here, pt0,T (e) tells how likely it is that the user is focusing on entity e within

time period to ~ (to + T) based on how many gaze fixations are on e among all

gaze fixations that fall on entities within to ~ (to + T).

o Gaze Salience Model 2

Salience model 2 is based on the assumption that when an entity has longer

gaze fixations on it than other entities, this entity is more likely attended by
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the user and thus has higher salience:

t +T

Dtg (e)

= t +T

ZDtg (e)
e

pt0,T(e)

where

D§3+T(e) = Z Tf (4.6)

t +T

1:6th (e)

Here, pt0,T(e) tells how likely it is that the user is focusing on entity e within

time period to ~ (to + t) based on how long e has been fixated by gaze fixations

among the overall time length of all gaze fixations that fall on entities within

to N (to + T).

4.4 Salience Driven Language Modeling

Given salience models, the next question is how to incorporate this salient contex-

tual information in language processing. In this section, we describe the building

of salience driven language models for speech recognition. We first give a review of

the typical language models used in speech recognition, then describe how to build

salience driven language models based on those baseline models.

4.4.1 Language Models for Speech Recognition

The task of speech recognition is to, given an observed spoken utterance 0, find the

word sequence W" such that

W” = arg max p(O]W)p(W) (4.7)

W

where p(OIW) is the acoustic model and p(W) is the language model.

In speech recognition systems, the acoustic model provides the probability of

observing the acoustic features given hypothesized word sequences, and the language
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model provides the prior probability of a sequence of words. The language model is

represented as follows:

p(W)= pat): P(w1)P(IU2lUJ1)P(w3lwi) . . -p(wn|w?-1) (4.8)

The language model can be approximated by a bigram model using first-order

Markov assumption:

n

=lewklwk—1l(4-9l

or by a trigram model using second-order1Markov assumption:

n

p(w?) = H palm—1. wit—2) (4.10)

k=1

By clustering words into classes, the class-based n-gram model reduces the training

data requirement and improves the robustness of probability estimates compared to

the word n—gram model. The class-based bigram model is given by [6]:

P(wilwi—1) = P(wt|Ct)p(CtICt—1) (4-11)

where c,- and 01-1 are the classes of word w,- and w,_1 respectively.

Probabilistic context free grammar (PCFG) can also be used as a language model

in speech recognition by constraining the speech recognizer to generate only gram-

matical sentences as defined by the grammar.

4.4.2 Salience Driven N-Gram Models

Statistical n—gram models are widely used in speech recognition. We incorporate

the gesture/gazebased salience modeling into the bigram model and the class-based

bigram model to build salience driven n-gram models [13,81] for speech recognition.

0 Salience driven bigram model

The salience driven bigram probability p3(w,-|w,-_1) is given by:

lez‘lwt—il + AZP(wilwi—1ve)Pt(e)

Ps(wilwi—1)= 18+ A (4.12) 
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where pt(e) is the salience distribution, as modeled in equation (4.1), A is the

priming weight. The priming weight /\ decides how much the original bigram

probability will be tailored by the salient entities that are indicated by gestures.

Currently, we set /\ = 2 empirically. We also tried to learn the priming weight

by an EM algorithm. However, we found out that the learned A performed

worse than the empirical one in our experiments. This is partially due to in-

sufficient development data. Bigram probabilities p(w,]w,-_1) were estimated

by the maximum likelihood estimation using Katz’s backoff method [51] with

frequency cutoff of 1. The same method was used to estimate p(w,]w,-_1,e)

from the users’ speech transcripts with entity annotation of e.

Salience driven class-based bigram model

The salience driven class—based bigram probability p3(w,-|w,-_1) is given by:

P(CilCi-1) :20thsz €)Pi(€) 21W?) 79 0

(4.13)

P(wilwi—1) Zpde) = 0

Ps(wilwi—1)=

where pt(e) is the salience distribution, c, and c,-_1 are the semantic classes of

words w,- and wi_1 respectively, p3(w,-|c,', e) is learned with maximum likelihood

estimation from the utterances talking about entity e.

4.4.3 Salience Driven PCFG

Building salience driven PCFG [81] as language model includes three steps: 1) con-

struct a context free grammar (CFG) specific to the application domain; 2) for each

entity in the domain, train entity-specific PCFG based on the utterances talking about

that particular entity; 3) create salience driven PCFG based on the entity salience

distribution and entity-specific PCFGs.

More specifically, we build salience driven PCFG for the 3D interior decoration

domain (Section 3.3.1) as follows. Based on the domain knowledge, we first define
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a domain-specific CFG as shown in Figure 4.4. This CFG covers all the language

that is “legal” in the interior decoration domain. An utterance is said to be“legal”

in the domain if a semantic representation specific to the domain can be built from

the utterance. The defined grammar covers the “legal” commands like “this table”,

“remove this chair”, “move this plant on this table”, and query questions like “how

much is this table .9”, “who is the artist of this painting .9”, “what is the wattage of this

 

lamp?”.

S —+ NP I VP I WRB JJ VBZ NP I WRB JJ NN VBZ NP VB]

WP VBZ NP PP I WRB VBZ NP VBN I VBZ NP NP

VP —+ VBNPIVBNPPPIVBNPJJIVBNPRB

NP —> NN I DT NN I PRP

PP -—> IN DT NN I TO DT NN

WP —> what I who

WRB -—> how I where

JJ -—> big I black I blue I dark I expensive I gray I green I

VBZ —» does I is

VB —> add I align I bring I buy I change | delete I

RB —> back I backward I backwards I down I forward I here I

NN —> age I alternative I artist I artwork | back I bar I bed

DT —> a | an I that I the I these I this I those

PRP —> it I them

IN —» about I above I against I among I around I at I behind

TO —+ to

VBN —i made I produced  
 

Figure 4.4. Context free grammar for the 3D interior decoration domain

We build the entity-specific PCFGs by first using the Stanford Parser [55] to parse

users’ transcribed utterances, then for each entity e in the domain, training a PCFG

with maximum likelihood estimation based on the utterances talking about entity e.

In the trained PCFG, only the lexicon-part rules are associated with probabilities.

An example of trained PCFG for entity lamp is shown in Figure 4.5. The PCFG

in Figure 4.5 is in the Java Speech Grammar Format (JSGF) and the numbers in

the “/ /” are the weights of the rules. When normalized, the weights are the rule

probabilities. As we can see in Figure 4.5, the words closely related to entity lamp
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such as “lamp” and “wattage” achieve higher weights in the trained PCFG. It means

that those words closely related to lamp will be more likely chosen during the speech

recognition process when the entity lamp is salient.

 

<S> = <NP> I <VP> I <WRB> <JJ> <VBZ> <NP> I

<VP> = <VB> <NP> | <VB> <NP> <PP> I <VB> <NP> <JJ> |

<VB> <NP> <RB>;

<NP> = <NN> I <DT> <NN> I <PRP>;

<PP> = <IN> <DT> <NN> | <TO> <DT> <NN>;

<DT> = /117/ this I /59/ the I /16/ that I /3/ these I /1/ those I

/1/ a I /1/ an;

<IN> = /34/ of] /17/ on I /10/ about I /7/ with I /4/ in I

/2/ behind I ...;

<JJ> = /8/ many I /2/ much I /1/ small I /1/ left I /1/ expensive I ...;

<NN> = /144/ lamp I /24/ wattage I /7/ place I /7/ information I

/6/ table I ...;

<PRP> = /3/ it I /1/ them;

<RB> = /9/ here I /2/ back I /2/ up I /2/ there;

<TO> = to;

<VB> = /27/ remove I /18/ move I /7/ show I /6/ put I

/6/ change I ...;

<VBN> = /2/ made I /1/ produced;

<VBZ> = /30/ is I /3/ does;

<WP> = /26/ what I /4/ who;

<WRB> = /9/ how I /5/ where;  
 

Figure 4.5. Ttained PCFG for entity lamp in the 3D interior decoration domain

Given entity-specific PCFGS, salience driven PCFG is created by combining the

PCFGs associated with the salient entities. The weight of a rule r in the salience

driven PCFG is given by:

wtr) = Zwetrme (4.14)

C

where p(e) is the salience distribution, we(r) is the weight of rule r in the PCFG

specific to entity e.
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4.5 Application of Salience Driven Language Models for ASR

The salience driven language models can be integrated into speech recognition in two

stages: an early stage before word lattice (n-best list) is generated, or in a later stage

where the word lattice (n-best list))is post-processed (Figure 4. 6).

gesture /

9829 Lang.ane A.coustlc

M-del Model

word lattice

speech (n-best list)

——> Speech Decoder L———>

 

   

(a) Early application

gesture / -

Lang.ane A.coustic 9829 Language

Mod-I Model Model

H word lattice fl

599°C“ (n--best list) n-best list

——H Speech Decoder 5 Rescorer a

 
 

  

      

(b) Late application

Figure 4.6. Application of salience driven language model in speech recognition

4.5.1 Early Application

For the early application, as Figure 4.6(a) shows, salience driven language model

is used together with the acoustic model to generate the word lattice, typically by

Viterbi search.

Compared to n-gram models, CFG-based language models put more strict con-

straint on the speech recognition process, specifically on choosing the next set of

possible words following a path during the searching process. When an n-gram model

is used, the next set of possible words includes any words in the vocabulary with non-

zero transition probabilities (as specified by the n-gram model) from the previous n-1

words along the path. When a CFC-based language model is used, the next set of
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possible words only includes those allowable words as defined by the grammar.

4.5.2 Late Application

For the late application, as shown in Figure 4.6(b), the salience driven n-gram lan-

guage model is used to rescore the word lattice generated by a speech recognizer with

a basic language model not involving salience modeling. A word lattice consists of

a list of nodes and edges (Figure 4.7). In the word lattices, each node represents a

word hypothesis and each edge represents a word transition. Each path going from

the start node <s> to the end node </s> forms a sentence recognition hypothesis.

Given a word lattice, A* search can be applied to find the n—best paths in the word

@: a 0 ...>@

Figure 4.7. A* search in word lattice

lattice.

A* search finds in a graph the optimal path from a given initial node to a given

goal node. Specifically, in the word lattice shown in Figure 4.7, the task of A* search

is to find a path from sentence start node “<S>” to sentence end node “</s>” that

has the highest score. The score of a path L = (w0, w1, . . . ,wn) is defined as

11

NM = ZUOgPaWi) +108P(wz'lwz'—1)) (4-15)

i=0

where pa(w,-) is the acoustic model probability and p(w,Iw,-_1) is the language model

probability. The language model probabilities can be tailored by the salience driven

language models described in Section 4.4.2.
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In the word lattice, each node (i.e., a word hypothesis) is associated with a score.

The score of a word w,- depends on two parts: the true score g(wi) that measures the

actual score of the path from the start node to the current node, and the heuristic

score h(wi) that measures the expected score of the path from the current node to

the goal node. In each step of the A* search, the next node to expand is chosen as

the one with the highest score (g(wi) + h(w,)) among the ending nodes of all previous

partial paths that have been explored.

Before A* search begins, the heuristics at each node w,- are first calculated:

h(w,) _—. m£x{h(w,’-°+1) + log pa(wf+1) + log p(wf+,|w,)} (4.16)

where h(</s>) = 0.

During the A* searching process, the score of the path up to node w,- is calculated

90%) = g(wi—tl +108Pa(wz') +10gP(wz'|wz'—1) (4-17)

where g(<s>) = 0.

A late application of gaze-tailored language model was reported in [21], where the

language model tailored by eye gaze was used to directly reorder the n-best list of

speech recognition to get better 1-best recognition. We will show in Section 4.6.5 that

the early application works better than the late application.

4.6 Evaluation

In the 3D interior decoration domain, we empirically evaluate the different salience

driven language models when applied at the two stages for speech recognition.

4.6.1 Speech and Gesture Data Collection

We conducted a wizard-of—oz study to collect speech and gesture data for our eval-

uation using the system described in Chapter 3. In the study, users were asked to
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accomplish two tasks. Task 1 was to clean up and redecorate a messy room. Task

2 was to arrange and decorate the. room so that it looks like the room in the pic-

tures provided to the user. Each of these tasks put the user into a specific role (e.g.,

college student, professor, etc.), and the task had to be completed with a set of con-

straints (e.g. budget of furnishings, bed size, number of domestic products, etc.). A

detailed description of the user study in the interior decoration domain is given in

Appendix A.1.

From 5 users’ interactions with the system, we collected 649 utterances with ac-

companying gestures. The vocabulary size of the collected utterances is 250 words.

Each utterance was transcribed and annotated with referred entities. For example,

an utterance like “remove this lamp” accompanied by a deictic gesture was annotated

with the true entity lamp] as indicated by the gesture, while an utterance like “move

this lamp to this table” accompanied by two deictic gestures were annotated with the

entities lamp] and table] as indicated by the two gestures respectively.

Each gesture results in a set of possibly selected entities. The selection probabili-

ties of the entities are calculated based on the distances from the gesture point to the

center of the entities.

All the collected data, together with the speech transcripts and entity annotation,

are saved in XML format. Figure 4.8 shows an excerpt form one of the XML data

files. The excerpt is the record of one turn in the conversation between the system and

one user. In this turn, the user pointed to the entity picture_girl and said “flip this

picture one hundred eighty degrees”. The pointing gesture resulted in an ambiguous

selection of three entities (bedroom, picture_girl, table_pc) with different probabilities.

4.6.2 Evaluation Results on Speech and Gesture Data

We compare the performances of the following different language models trained in

our domain:
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<turn>

<user,input>

<gesture>

<curve start-"2153" end="2309">

<point>613 183</point>

<point>613 183</point>

</curve>

<selection>

(entity text="bedroom">0.458000</entity>

(entity text="picture_girl">0.530700</entity>

<entity text="tab1e_pc">0.011300</entity>

</selection>

</gesture>

<speech>

<entity_annotation>

picture_girl

</entity_annotation>

<transcription>

</transcription>

</speech>

</user-input>

</turn> 
flip this picture one hundred eighty degrees

<waveform>2005916-144311-707.wav</waveform>

 
 

Figure 4.8. An Excerpt of XML Data File

0 Standard bigram model (Bigram)

0 Standard trigram model (Trigram)

0 Standard class-based bigram model (C-Bigram)

o Salience driven bigram model (S-Bigram)

Salience driven class-based bigram model (S-C-Bigram)

Standard PCFG (PCFG)

Salience driven PCFG (S-PCFG)

The evaluation metrics include the following aspects related to recognition results:

0 Word error rate of the best hypothesis (WER)
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0 Word lattice WER (Lattice-WER)

The minimal WER of all possible paths through the word lattice (output Of

speech recognition).

Since we are building a conversational system, we are also interested in the fol-

lowing metrics related to semantic interpretation:

0 Concept identification precision (CI-Precision)

The percentage of correctly identified concepts out of the total number of con-

cepts in the 1-best recognition hypothesis.

0 Concept identification recall (CI-Recall)

The percentage of correctly identified concepts out of the total number of con-

cepts in a user’s utterance (speech transcript).

o F-measurement (F-score)

F _ (52 + 1) x CI-Precision x CI-Recall

— 62 x CI—Precision + CI—Recall

 

where 6 = 1 in this experiment.

The evaluation was done by an eight—fold cross validation. We compare the per-

formances of the salience driven language models for both early and late applications.

RESULTS OF EARLY APPLICATION

Table 4.1 shows the experimental results of the early application of different language

models on the utterances with accompanying gestures. Among the n-gram models,

the performance of the trigram model is roughly the same as the bigram model. The

salience driven bigram (S—Bigram) model improved speech recognition and under-

standing compared to the three baselines (Bigram, Trigram, and C-Bigram). Com—

pared to the best baseline of the trigram model, the S-Bigram model reduced the

WER by 7%. A t-test showed that this was a significant change: t = 3.38, p < 0.004.
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I Language Model I Lattice-WER I WER I CI-Precision I CI-Recall I F-Score I
 
 

 

 

 

 

 

 

 

      

Bigram 0.250 0.321 0.830 0.793 0.811

Trigram 0.258 0.312 0.838 0.797 0.817

C-Bigram 0.292 0.371 0.856 0.748 0.798

S-Bigram 0.243 0.291 0.861 0.830 0.845

S-C-Bigram 0.412 0.448 0.863 0.623 0.724

PCFG 0.323 0.360 0.819 0.816 0.817

S-PCFG 0.319 0.355 0.862 0.845 0.853
  

Table 4.1. Performances of the early application of different language models on speech-

gesture data

The S—Bigram model increased the precision and recall of concept identification by

3% and 4% respectively. The overall F-measurement achieved by the S-Bigram model

gained an increase of 3%. A t-test showed that this was also a significant improve-

ment: t = 3.01, p < 0.002. The S-C—Bigram model achieved the best result on the

precision of concept identification, but had the worst results on all other metrics.

Comparing class-based n-gram models (C-Bigram, S-C-Bigram) to n—gram models

(Bigram, Trigram, S-Bigram), we can see that class-based n-gram models achieve

better concept identification precision but worse concept identification recall and

WER. The performances of the class-based n-gram models depend on how the classes

of words are defined. When one unique class is defined for each unique word, there

will be no difference between n-gram models and class-based n-gram models. In our

experiment, we define different classes for the words with key semantic concepts,

whereas a single class is assigned to all other words. With this class definition, the

class-based bigram models contain n-gram probability information about the words

with key semantic concepts but lost the information for the non-key words with one

same class. Therefore, using the class-based n—gram models in speech recognition, it is

hard to correctly recognize the non-key words with one same class, whereas the words

with key semantic concepts are more likely to appear in the recognition result, though

many of them incorrectly recognized. This leads to a better concept identification

precision but worse concept identification recall and WER.
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Compared to the standard PCFG model, the salience driven PCFG (S-PCFG)

model increased the precision and recall of concept identification by 5% and 3.5%

respectively. The overall F-measurement was increased by 4%. A t-test confirmed

that this was a significant improvement: t = 3.30, p < 0.001. The S-PCFG model

did not change the WER much compared to the standard PCFG model. A t-test

confirmed that this change in WER was not significant.

When compared to the trigram model, the S-PCFG model did not improve the

WER but improved the language understanding. The F-measurement was increased

by 4%. A t-test showed that this was a significant improvement: t = 2.77, p < 0.003.

The worse WER of the S-PCFG model is due to the lesser flexibility of grammar-based

language models than n-gram language models. Grammar-based language models

place too much constraint on what language can be recognized, which hurts the

recognition of complex utterances. On the other hand, after salience tailoring, the

more strict constraints on what words of key semantic concepts can be recognized for

the salient entity makes the S-PCFG model achieve better language understanding

performance than the n-gram model.

We also Show the experimental results for individual users. Figure 4.9 compares

the performances of different salience driven language models in early application for

each user. From the results for individual users, we can see that for most users, the

performances of different salience driven language models are consistent. Compared to

the best baseline of the trigram model, the S-Bigram model achieved lower WER and

higher F—score for each user. The S-C-Bigram model did not show improvement over

the trigram model for all users. The S-PCFG model showed its merit on improving

language understanding by achieving higher F-scores than the baseline for all users

except user 2. And for 3 of the 5 users, the S-PCFG model achieved the best language

understanding among all different language models.

Overall, the results of the early application of the gesture-based salience driven
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vidual users

Figure 4.9. Performance of the early application of LMs on speech-gesture data of indi-

(b) F-score
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language models show that:

o In terms of WER, the S-Bigram model performed the best. N-gram models

performed better than class-based n—gram models, and all n-gram models except

the S-C-Bigram model performed better than the PCFG-based models.

0 In terms of language understanding metrics, the S-PCFG model performed the

best in that it achieved the highest concept identification recall and overall

F-measurement.

0 Overall, the S-Bigram model appears to be the best one for the early application

in that it not only achieved the lowest WER but also achieved a high F-score on

concept identification (close to the highest one achieved by the S-PCFG model).

RESULTS OF LATE APPLICATION

We further compared different n—gram models: C-Bigram, S-Bigram, and S-C-Bigram

during the late application. In these experiments, the standard trigram model trained

on our domain was first used to generate word lattices, then the salience driven models

were used in A* search (Section 4.5.2) to find the best paths in the word lattices.

 

I Language Model I Lattice-WER I WER] CI-Precision I CI-RecallI F-score I
 

 

 

 

C-Bigram 0.258 0.334 0.831 0.784 0.807

S-Bigram 0.258 0.294 0.854 0.834 0.844

S-C-Bigram 0.258 0.316 0.858 0.786 0.821        

Table 4.2. Performance of the late application of LMS on speech-gesture data

Table 4.2 shows the results of the three models on the utterances with accompa-

nying gestures. In the late application, the S-Bigram model performed the best with

the exception of concept identification precision. Compared to the trigram model,

the S-Bigram in late application decreased the WER by 6%. A t-test showed that

this was a significant change: t = 2.66, p < 0.005. On language understanding, the
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S-Bigram model increased the F-measurement by 3% compared tO the trigram model.

A t-test confirmed that this was a significant improvement: t = 2.92, p < 0.002.

Compared to Table 4.1, Table 4.2 shows that there is no difference in performance

whether the S-Bigram model is applied early or later. However, a significant difference

is Observed for the S-C-Bigram model. The S-C-Bigram model performed much better

when it was applied in a later stage. However, its performance was close to the

baseline (trigram model). The WER change achieved by the S—C—Bigram model

was not statistically significant from the t-test (t = 0.94, NS), neither was the

F-measurement (t = 0.22, NS).

The experimental results of the late application Of the three n-gram models for

individual users are shown in Figure 4.10. The results demonstrate the consistency

of the performances of different salience driven language models in late application

for most users. Compared to the baseline of the trigram model, the S-Bigram model

improved both Speech recognition and language understanding when applied in a

late stage. The S-C-Bigram model did not improve speech recognition either when

applied in a late stage, but it improved language understanding for most of the users.

Compared to its performance on speech recognition in early application, the SC-

Bigram model performed better in late application for all the users.

4.6.3 Speech and Eye Gaze Data Collection

We conducted user studies to collect speech and eye gaze data. In the experiments,

a static 3D bedroom scene was Shown to the user. The system verbally asked the

user a list of questions one at a time about the bedroom and the user answered the

questions by speaking to the system. A detailed description of the user study is given

in Appendix A2.

The user’s speech was recorded through an open microphone and the user’s eye

gaze was captured by an Eye Link II eye tracker. From 7 users’ experiments, we col-
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Figure 4.10. Performance of the late application of LMS on speech-gesture data of indi-

vidual users
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lected 554 utterances with a vocabulary of 489 words. Each utterance was transcribed

and annotated with entities that were being talked about in the utterance.

4.6.4 Evaluation Results on Speech and Eye Gaze Data

Evaluation was done by a 14-fold cross validation. We compare the performances of

the early and late applications of two gaze-based salience driven language models:

0 S-Bigraml — salience driven language model based on salience modeling 1 (Equa-

tion (4.4))

o S-Bigram2 — salience driven language model based on salience modeling 2 (Equa-

tion (4.5))

Table 4.3 and Table 4.4 show the results of the early and late applications of

the salience driven language models based on eye gaze. We can see that all word

error rates (WERs) are high. In the experiments, users were instructed to only

answer systems questions one by one. There was no flow of a real human—machine

conversation. In this setting, users were more free to express themselves than in the

situation where users believed they were conversing with a machine. Thus, we observe

much longer sentences that often contain disfluencies. Here is one example:

System: “How big is the bed .9”

User: “I would to have to offer a guess that the bed, if I look the chair

that ’s beside it [pause] in a relative angle to the bed, it’s probably six feet

long, possibly, or shorter, slightly shorter.”

The high WER was mainly caused by the complexity and disfluencies of users’

speech. Poor speech recording quality is another reason for the bad recognition per-

formance. It is found that the trigram model performed worse than the bigram model

in the experiment. This is probably due to the sparseness of trigrams in the corpus.

The amount of data available is too small considering the vocabulary size.
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I Language Model I Lattice-WER I WER]
 

 

 

 

 

Bigram 0.613 0.707

Trigram 0.643 0.719

S-Bigram 1 0.605 0.690

S—Bigram 2 0.604 0.689     
Table 4.3. WER of the early application of LMS on speech-gaze data

 

I Language Model I Lattice-WER I WER]

S-Bigram 1 0.643 0.709

S-Bigram 2 0.643 0.710

Table 4.4. WER of the late application of LMS on speech-gaze data

 
 

 

     

The S-Bigraml and S-Bigram2 achieved similar results in both early application

(Table 4.3) and late application (Table 4.4). In early application, the S—Bigraml

model performed better than the trigram model (t = 5.24, p < 0.001) and the bigram

model (t = 3.31, p < 0.001). The S-Bigram2 model also performed better than the

trigram model (t = 5.15, p < 0.001) and the bigram model (t = 3.33, p < 0.001) in

early application. In late application, the S-Bigraml model performed better than

the trigram model (t = 2.11, p < 0.02), so did the S-Bigram2 model (t = 1.99,

p < 0.025). However, compared to the bigram model, the S-Bigraml model did not

change the recognition performance significantly in late application, neither did the

S-Bigram2 model.

We also compare performances of the salience driven language models for individ-

ual users. In early application (Figure 4.11a), both the S-Bigraml and the S-Bigram2

model performed better than the baselines of the bigram and trigram models for all

users except user 2 and user 7. T-tests have shown that these are significant im-

provements. For user 2, the S—Bigraml model achieved the same WER as the bigram

model. For user 7, neither of the salience driven language models improved recogni-

tion compared to the bigram model. In late application (Figure 4.11b), only for user 3

and user 4, both salience driven language models performed better than the baselines

of the bigram and trigram models. These improvements have also been confirmed by
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Figure 4.11. WERs of application of LMs on speech-gaze data of individual users
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t-tests as significant.

Comparing early and late application of the salience driven language models, it

is observed that early application performed better than late application for all users

except user 3 and user 4. T-tests have confirmed that these differences are significant.

It is interesting to see that the effect of gaze—based salience modeling is different

among users. For two users (i.e., user 3 and user 4), the gaze-based salience driven

language models consistently out-performed the bigram and trigram models in both

early application and late application. However, for some other users (e.g., user 7),

this is not the case. In fact, the gaze-based salience driven language models performed

worse than the bigram model. This observation indicates that during language pro-

duction, a user’s eye gaze is voluntary and unconscious. This is different from deictic

gesture, which is more intentionally delivered by a user.

4.6.5 Discussion

Gesture-based salience driven language models are built on the assumption that the

entity selected by the accompanying gesture of a user’s utterance is the topic of the

user’s utterance. Similarly, gaze-based salience driven language models are built on

the assumption that when a user’s eye gaze is fixating on an entity, the user is saying

something related to the entity. With this assumption, gesture/gazebased salience

driven language models have the potential to improve speech recognition by biasing

the speech decoder to favor the words that are consistent with the entity indicated by

the user’s gesture or eye gaze fixation, especially when the user’s utterance contains

words describing unique characteristics of the object. These particular characteristics

could be the object’s name or physical properties (e.g., color, material, size).

An example where the gesture-based salience driven language model helped speech

recognition is shown in Figure 4.12. In this example, a user pointed to the entity

tablasquare in the bedroom scene and said “show me details on this desk”. The
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Utterance: “show me details on this desk”

Gesture selection:

p(bedroom) = 0.0050

p(lamp_floor) = 0.1954

p(couchnnrsofa) = 0.1409

p(lamp_floor2) = 0.0510

p(tablesquare) = 0.6077

Bigram n-best list: S-Bigram n-best list:

show me details on this bed show me details on this desk

show me details on this desk show me details on this bed

show me details on this back show me details on this back

show me details on that’s desks show me details on this desk a

show me details on that’s desk show me details on that’s desk

show me details on that’s that’s show me details on that’s desk a    
Figure 4.12. N-best lists of speech recognition for utterance “show me details on this

desk”

user’s gesture resulted in a set of candidate entities being selected, in which the correct

one (i.e., table_square) was assigned the highest selection probability of 0.6077. Two

n-best lists, the bigram n—best list and S-Bigram n-best list, were generated by the

speech recognizer when the standard bigram model and the salience driven bigram

model were applied respectively. When the standard bigram model was applied, the

speech recognizer did not get the correct recognition. When the salience driven bigram

model was applied, the speech recognizer recognized the user’s utterance correctly.

Figures 4.13 and 4.14 Show the word lattices of the utterance generated by the

speech recognizer using the standard bigram model and the salience driven bigram

model respectively. The n—best lists in Figure 4.12 were generated frOm those word

lattices. In the word lattices, each path going from the start node <s> to the end

node </s> forms a recognition hypothesis. The bigram probabilities along the edges

are in the logarithm of base 10. In the standard bigram case, although the probability

of bigram “this desk” (-1.3952) is slightly higher than the probability of “this bed”

(-1.4380), the speech recognizer got the wrong recognition, i.e., the correct speech
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Figure 4.13. Word lattice of utterance “show me details on this desk” generated by using

standard bigram model

recognition hypothesis is not the first one in the n-best list (Figure 4.12). This is

because the system tries to find an overall best speech recognition hypothesis by

considering both language confidence and acoustic confidence. After tailoring the
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Figure 4.14. Word lattice Of utterance “show me details on this desk” generated by using

salience driven bigram model
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standard bigram model with gesture selection, in the resulting salience driven bigram

model, the probability of bigram “this desk” is increased (-0.8309) while the probabil-

ity of “this bed” is decreased (—1.9182). This enlarged bigram probability difference

ensures that “this desk” is on the overall best speech hypothesis generated by the

speech recognizer with the salience driven language model.

 

Utterance: “move the red chair over here”

Gesture selection:

p(bedroom) = 0.0001

p(curtainsJ) = 0.0061

p(table_pc) = 0.2229

p(chairJ) = 0.7196

p(lamp_floor) = 0.0512

Bigram n—best list: S-Bigram n-best list:

move the rid chair over here move the red chair over here

move the rid chair over here a move the red chair over here a

move the rid chair over here i move the red chair over here i

move the rid chair over here the move the red chair over here the

move the rid chair over here it move the red chair over here it    
Figure 4.15. N-best lists of speech recognition for utterance “move the red chair over

here”

Figure 4.15 shows another example where the salience driven language model

helped recognize an utterance that referred visual properties of an entity. In this

example, the user pointed to a red chair and then pointed to a location while saying

“move the red chair over here”. In the resulting gesture selections, the truly selected

entity chair..1 was assigned the highest probability. As shown in the bigram n-best list

and the S—Bigram n-best list, the speech recognizer with the standard bigram model

did not get the correct recognition result while the one with the salience driven bigram

model recognized the user’s utterance correctly.

The word lattices of the utterance are shown in Figures 4.16 and 4.17. In the

standard bigram case, as Shown in Figure 4.16, the probability of bigram “rid chair”
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Figure 4.16. Word lattice Of utterance “move the red chair over here” generated by using

standard bigram model

(-3.3811) is higher than the probability of “red chair” (-3.8231). This makes the

wrong speech hypothesis the top one in the n-best list (Figure 4.15). After tailoring
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Figure 4.17. Word lattice of utterance “move the red chair over here” generated by using

salience driven bigram model

63



the bigram model with gesture selection, in the salience driven bigram model (Fig-

ure 4.17), the probability of bigram “red chair” is much higher than the probability

of “rid chair”, which makes the correct speech hypothesis the best one in the n-best

list and thus gets correct speech recognition.

 

Utterance: “I like the picture with like a forest in it”

Gaze salience:

p(bedroom) = 0.5960 p(chandelierJ) = 0.4040

Bigram n-best list:

and i eight that picture rid like got five

and i eight that picture rid identifiable

and i eight that picture rid like got forest

and i eight that picture rid like got front

and i eight that picture rid like got forest a

S-Bigram2 n-best list:

and i that bedroom it like upside

and i that bedroom it like a five

and i that bedroom it like a forest

and i that bedroom it like a forest a

and i that bedroom it like a forest candle  
 

Figure 4.18. N-best lists of speech recognition for utterance “I like the picture with like a

forest in it”

Unlike the active input mode Of deictic gesture, eye gaze is a passive input mode.

The salience information indicated by eye gaze is not as reliable as the one indicated

by deictic gesture. When the salient entities indicated by eye gaze are not the true

entities the user is referring to, the salience driven language model can worsen speech

recognition. Figure 4.18 shows an example where the S-Bigram2 model in early

application worsened the recognition of a user’s utterance “I like the picture with like

a forest in it” because of wrong salience information. In this example, the user was

talking about a picture entity picture_bamboo. However, this entity was not salient,

only entities bedroom and chandelierJ were salient as indicated by the user’s eye
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gaze. As a result, the recognition with the S-Bigram2 model becomes worse than

the baseline. The correct word “picture” is missing and the wrong word “bedroom”

appears in the result.

The failure to identify the actual referred entity picture_bamboo as salient in the

above example can also be caused by the visual properties of entities. Smaller entities

on the screen are harder to be fixated by eye gaze than larger entities. To address

this issue, more reliable salience modeling that takes into account the visual features

is needed.

 

Utterance: “remove this lamp”

Gesture salience:

p(bedroom) = 0.0995

p(lamp_bank) = 0.5288

p(table_dresser) = 0.3604

p(table_pc) = 0.0114

N-best list of standard trigram model:

remove this stand

remove this them

remove this left

N-best list of S-Bigram model in early integration:

remove this lamp

remove this lamp a

N—best list of S-Bigram model in late integration:

remove this left

remove this stand

remove this them    
Figure 4.19. N-best lists of an utterance: early stage integration v.s. late stage integration

Early application has an advantage over the late application on bringing the good

hypothesized words with low acoustic probabilities into the word lattice. This is par-

ticularly important when using the Sphinx-4 speech recognizer, because the current

release Of Sphinx-4 does not provide a full word lattice. When the correct words are

not in the word lattice output, a late application Of salience driven language models

will never succeed in retrieving those correct words by rescoring the word lattice.
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Figure 4.19 shows one example that demonstrates the difference between the early

application and the late application. Here the correct word “lamp” did not appear in

the word lattice generated by the trigam model, and thus could not be retrieved by

the late application of the salience driven bigram model. When the salience driven

bigram model was applied in an early stage, the top one in the generated n-best list

turned out to be the correct recognition result.

4.7 Summary

This chapter presents a systematic investigation Of incorporating gesture/gaze into

speech recognition and understanding via salience driven language modeling. Three

salience driven language models based on the bigram model, the class-based bigram

model, and the PCPG are compared. Our experimental results have shown that the

salience driven bigram model can improve spoken language understanding in both

early and late applications, while the salience driven class-based bigram model seems

only useful for the late application. In the early application, the salience driven

PCFG model has also Shown a potential advantage in improving spoken language

understanding.
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CHAPTER 5

Incorporation Of Non-verbal Modalities in

Intention Recognition for Spoken

Language Understanding

In multimodal interpretation, the user’s speech is first converted to text by speech

recognition. To understand the user’s speech, the system further extracts semantic

meaning from the user’s recognized utterance. The previous chapter has addressed

speech recognition in multimodal conversation. In this chapter, we address the un-

derstanding of the recognized speech during multimodal conversation.

In speech and deictic gesture systems, deictic gestures have been mainly used

for attention identification (i.e., identifying which object the user is talking about).

Many approaches have been developed to incorporate gestural information to resolve

referring expressions (e.g., using gesture information to resolve what this refers to in

the utterance “how much does this cost?) I12,14,42,54,72,119]. Different from these

earlier works, our work focuses on how to take gesture beyond attention identification

to help intention recognition (i.e., inferring what the user intends to do with an

object), which is the main task of language understanding.

Traditional language understanding is solely based on the text input. In multi-

modal conversational systems, besides the user’s language, it is possible to infer the
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context of the user’s language from other non-verbal modalities (e.g. gesture) and

use this context for language understanding. In speech and deictic gesture systems,

deictic gestures on the graphical display indicate the user’s attention, which consti-

tutes the context of the user’s utterance. Since the context of the identified attention

can potentially constrain the associated intention, the deictic gestures can go beyond

attention and apply to recognize the user’s intention.

Within the context of a speech and gesture system, this chapter systematically

investigates the role of deictic gestures in incorporating contextual information to

help language understanding, specifically, to help recognize the user’s intention. We

experiment with different model-based and instance-based approaches to incorporate

gestural information for intention recognition. We also examine the effects of us-

ing gestural information for intention recognition in two different processing stages:

speech recognition stage and language understanding stage.

5.1 Multimodal Interpretation in a Speech-Gesture System

Multimodal interpretation involves extraction of semantic meanings from multimodal

inputs. In human-machine conversation, the specific task of multimodal interpreta-

tion is to convert the user’s multimodal input into a semantic representation that is

recognizable to the system.

5 . 1 . 1 Semantic Representation

Semantic meanings from user input can be generally categorized into intention and

attention [33]. Intention indicates the user’s motivation and action. Attention reflects

the focus of the conversation. Structuring semantic meanings in this way, we represent

the semantic meaning of a user’s input by a semantic frame containing intention and

attention of the user. Figure 5.1 shows the semantic frame of a user’s multimodal

input. In the example, the user asks “who is the artist of this picture?” while pointing
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to a picture object (identified as picture_lotus) on the screen. The intention indicates

that the user wants the artist information, whereas attention indicates picture_lotus

is the object that the user is interested in.

 

Intention

action: ACT-INF0-REQUEST

aspect: ARTIST

Attention

Object id: picture_lotus   
 

Figure 5.1. Semantic frame of a user’s multimodal input

Representing semantic meaning as semantic frames, the specific task of multimodal

interpretation is to fill intention and attention units in the semantic frames based on

the user’s multimodal input.

5.1.2 Incorporating Context in Two Stages
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Figure 5.2. Using context (via gesture) for language understanding

Context can be incorporated in two stages to help language understanding in

multimodal interpretation [83]. Take Speech and gesture systems for example, as

illustrated by (a) in Figure 5.2, contextual information (inferred from gesture) can
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be used together with recognized speech hypotheses directly in language understand-

ing (LU) stage to improve language understanding. Since speech recognition is not

perfect, and better speech recognition should lead to better language understanding,

contextual information can also be used in speech recognition (SR) stage to improve

Speech recognition hypotheses and thus improve language understanding (Figure 5.2-

(b))-

5.2 Intention Recognition

We investigate using the context identified by gesture for intention recognition in a

speech-gesture system that is built for a 3D interior decoration domain (Section 3.3.1).

In this domain, the user’s intention is represented by an action and its corresponding

aspect. All actions and corresponding aspects in the interior decoration domain are

shown in Table 5.1. Note that for action ACT-INFQREQUEST, the aspect includes

different domain properties such as ARTIST, AGE, and PRICE.

 

 

Action Aspect

ACT-ADD <null>

ACT—ALTERNATES.SHOW <null>

ACT-INFO_REQUEST <domain property> or <null>

A(IT-MOVE <location> or <null>

ACT-PAINT <color> or <null>

ACT-REM0VB <null>

ACT—REPLACE <replacement> or <null>

ACT-ROTATE <direction> or <null>  
Table 5.1. Intentions in the 3D interior decoration domain

Given this representation, intention recognition can be formulated as a classifi-

cation problem. Each action-aspect pair can be considered as a particular type of

intention. For action ACT-INFO.REQUEST, there are 11 possible aspect values

which result in 11 classes. For all other 7 actions, each action is treated as one type

of intention despite multiple possible aspect values. During interpretation, additional

70



post-processing will take place to identify different aspects. For example, for action

ACT—PAINT, the system will try to identify the <color> value (e.g., red, blue) from

the user’s utterance after ACT-PAINT is predicted as the user’s intended action.

Here, we only focus on the classification of intention without elaborating on the post-

processing. In total, there are 19 target classes for intention recognition (including

class NOT- UNDERSTOOD to represent the intention that is not supported in the

domain).

5.3 Feature Extraction

To predict user intention, we first need to extract features from the user’s multimodal

input. Two types of features are used for intention prediction: semantic features and

phoneme features.

5.3.1 Semantic Features

The semantic features of users’ multimodal input consist of two parts: lexical features

extracted from users’ spoken utterances, and contextual features extracted from users’

deictic gestures.

o Lexical features

Lexical feature is represented by a binary feature vector which indicates what

semantic concepts appear in the user’s utterance. The semantic concepts are

extracted from the recognized speech hypotheses (could be n-best hypotheses

or 1-best hypothesis) based on lexical rules. Currently, we have 18 semantic

concepts in the interior decoration domain with 130 lexical rules.

0 Contextual features

When a deictic gesture takes place, the selected object and its properties as

defined in the domain are activated, which form the context of the user’s ut-
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terance. This context constrains what the user is likely talking about. For

example, the user is unlikely to ask the artist of a lamp or the wattage of a

picture. Therefore, this context can be used to help predict user intention. For

each gesture that accompanies the user’s utterance, we choose the most likely

object selected by the gesture and use the semantic type of the object as the

contextual feature. There are 14 semantic types of objects in the domain.

5.3.2 Phoneme Features

Besides semantic features, we also use phoneme features of users’ spoken utterances for

intention prediction. For each speech recognition hypothesis of the user’s utterance,

we can get a phoneme sequence. Each phoneme sequence is treated as a phoneme

feature.

 

User utterance: “information on this”

Phonemes: [ih n f er m ey sh ax n] [ao n] [dh ih 3]

Speech recognition: “and for mission on this”

Phonemes: [ax n d] [f er] [m ih sh ax n] [ao n] [dh ih s]   
 

Figure 5.3. Phonemes of an utterance

We give an example to show the potential of using phoneme features to help

user intention prediction. As shown in Figure 5.3, the user’s utterance is not cor-

rectly recognized and as a result, the semantic feature extracted from the recog-

nized speech does not give any useful information about the user’s intention of ACT-

INFO-REQUEST. Therefore, using semantic features alone will fail to predict the

user’s intention. However, if we compare the two phoneme sequences of the true ut—

terance and the speech recognition result, we can find that the phoneme sequences of

the mis-recognized speech, [ax n d] [f er] [m ih sh ax n], is close to the true phoneme

sequence [ih n f er m ey sh ax n]. This means that using phoneme sequence sim-

ilarity can help recover the word “information”, which is the key to identifying the
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user’s intention in this utterance, and therefore can help predict the user’s intention.

5.4 Model-Based Intention Recognition

Given an instance x that is represented by semantic features, we applied three clas-

sifiers to predict user intention.

o Naive Bayes

The prediction c* of instance x is given by

c” = arg maxp(c|x) = argmaxp(c|x1,:cg,. ..,:1:m) (5.1)

C C

where cc,- is the i-th feature of instance x.

Applying Bayes’ theorem and assuming the features are conditionally indepen-

dent given a class, we have

 

p(ClX) =

 

o< p(e) Hume) (5.2)

Estimating p(c) and p(xilc) from the training data, we can get the prediction

of a testing instance by Equation (5.1). In our evaluation, add-one smoothing

was used in the estimation of p(c) and p(xilc) for predicting user intention.

0 Decision Tree

In a decision tree, each root node provides the classification of the instances,

each non-leaf node specifies a test of some attribute of the instances, and each

branch descending from that node corresponds to one of the possible values for

73



this attribute. Decision trees classify instances by sorting them down the tree

from the root node to some leaf node through a list of attribute tests. We used

C4.5 algorithm [86] to construct decision trees for intention prediction based on

the semantic features of users’ multimodal input.

0 Support Vector Machines (SVM)

The SVM [22] is built by mapping instances to a high dimensional space and

finding a hyperplane with the largest margin that separates the training in-

stances into two classes in the mapped space. In prediction, an instance is

classified depending the side of the hyperplane it lies in. A kernel function a:

is used in SVM to achieve linear classification in the high dimensional space.

Based on the semantic features of users’ multimodal input, we used a polynomial

kernel for user intention prediction.

Since SVM can only handle binary classification, a “one-against-one” method

is applied to use SVM for multi-class classification [39]. For a classification task

of c classes, c(c — 1)/2 SVMS are built for all pairs of classes and each SVM

is trained on the data from the pair of two classes. In the testing phase, a

test instance x is classified through a majority voting strategy. For each of the

c(c - 1)/2 binary classifiers built for class pair (Ci, cj), if the classifier decides x

belongs to the class 0;, the vote for class c,- increases by one. Otherwise, the vote

for class cj increases by one. After all binary classifiers have been used to vote

for the classes, the one which wins the most votes is picked as the prediction of

X.

5.5 Instance-Based Intention Recognition

We also applied k-nearest neighbor (KNN), an instance-based approach, to predict

user intention. Given a set of training instances with known intention, the KNN
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method (k=1) predicts the intention of a testing instance by finding the testing in-

stance’s closest match in the training instances and using the match’s intention as

the prediction.

We applied KNN to predict user intention based on semantic features and phoneme

features. The similarity between a testing instance xt and a training instance x" is

defined as

d3p(xt,xr) = d3(xt, x") + apart, x’") (5.3)

where d, (xt, x7") is the Hamming distance between the nominal semantic features and

dp(xt, xr) is the distance between the phoneme features.

Hamming distance ds(xt, X?) is defined as:

m

d,(xt,x") = 2(1— (safe, :49) (5.4)

k=1

where rump is the k-th attribute in the semantic feature, and

t_ r
“332,513“: 0 113:: —:ck

1 331:7533;

Phonemes distance dp(xt,x") is defined as follows based on different configura-

tions:

0 when n-best speech recognition hypotheses are used, and no gestural informa-

tion is used:

dp(x‘,x'") = mkin MED(P,f., PT) (5.5)

0 when n-best speech recognition hypotheses are used, and gestural information

(i.e., objects indicated by deictic gestures) is used

dp(xt,xr) = mkin MED(P,§, P') + we(ot,or) (5.6)
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where,

MED

PT

we(0t, 01‘)

minimum edit distance

phonemes of the k-th speech recognition hypothesis of testing

instance xt

phonemes of the speech transcript of training instance xr

distance between the object 0t selected by the gesture

accompanying testing instance xt and the object or selected by

the gesture accompanying training instance xr (0 if 0t and o,—

are of the same semantic type, otherwise a non-zero constant)

5.6 Evaluation

We empirically evaluated the role of contextual information in intention recognition.

We applied both model-based and instance-based approaches, and investigated the

incorporation of contextual information for intention recognition in language under-

standing and speech recognition stages.

5.6.1 Experiment Settings

The CMU Sphinx-4 speech recognizer [111] was used for speech recognition. An

open acoustic model and a domain dictionary were used in recognizing users’ spoken

utterances.

For model-based intention prediction, we evaluated the intention prediction accu-

racies with the following classifiers based on semantic features:

0 NBayes — naive bayes

. o DTree — decision tree (C46)

0 SVM — support vector machine (polynomial kernel)
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For instance-based intention prediction, we evaluated the intention prediction ac-

curacies with KNN classifiers based on different instance similarity functions:

0 S—KNN — instance distance defined on semantic features (Equation (5.4))

o P—KNN — instance distance defined on phoneme features (Equations (5.5) and

(5.6) depending on whether gestural information is incorporated)

o SP-KNN - instance distance defined on combinational features of semantics

and phonemes (Equation (5.3))

For each approach, we compared the performances of using only the l-best speech

recognition hypothesis and using all n-best speech recognition hypotheses for inten-

tion prediction. Also, to compare the influences of gestural information on intention

prediction, we evaluated intention prediction under three gesture configurations:

o noG’est — no gestural information is used.

c recoGest - with gesture recognition results, i.e., the most likely objects selected

by the user’s gestures as recognized by the system.

0 tmeG’est — with ground truth gesture recognition results, i.e., the objects truly

selected by the user’s gestures.

For each approach, we further evaluated intention prediction based on standard

speech recognition and gesture-tailored speech recognition. When intention prediction

is based on standard speech recognition, gestural information is incorporated only

in language understanding for intention prediction. When intention prediction is

based on gesture-tailored speech recognition, gestural information is already used in

speech recognition and can also be used in language understanding stage for intention

prediction.

The evaluations were done by a 10-fold cross validation on the speech and gesture

data set as described in Section 4.6.1.
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5.6.2 Results Based on Traditional Speech Recognition

Table 5.2 shows the intention prediction accuracies based on the standard speech

recognition results that did not use gestural information. The intention prediction

accuracies based on transcripts of users’ spoken utterances are also given in the table

to show the upper-bound performance when speech is perfectly recognized.

 

[ I NBayes 1 DTree [SVM 1 s-KNN] P-KNNTSP-KNN J
 

 

 

 

 

 

 

 

 
 

        

noGest 0.860 0.881 0.878 0.881 0.918 0.937

transcript recoGest 0.878 0.888 0.884 0.888 0.921 0.934

trueGest 0.874 0.889 0.884 0.884 0.921 0.934

west noGest 0.709 0.718 0.713 0.700 0.790 0.824

recoGest 0.741 0.729 0.749 0.740 0.797 0.826

hYPOtheses trueGest 0.755 0.738 0.744 0.737 0.806 0.832

Lbest noGest 0.721 0.727 0.730 0.730 0.798 0.820

. recoGest 0.747 0.755 0.747 0.757 0.801 0.834

hypOth‘f‘S trueGest 0.763 0.769 0.760 0.758 0.804 0.844
 

 
Table 5.2. Accuracies of intention prediction based on standard speech recognition

For all model-based approaches (i.e., NBayes, DTree, SVM), the results show that

using gestural information together with recognized speech (1-best or n-best) in in-

tention prediction achieves significant improvement on prediction accuracy compared

to not using gestural information. Among instance-based approaches (i.e., S-KNN, P-

KNN, SP-KNN), only for the S-KNN that uses semantic features, intention prediction

accuracies are improved significantly when gestural information is used together with

recognized speech (1—best or n—best hypotheses). For the P-KNN, where only phoneme

features are used, there is no significant change between the intention prediction using

gesture and not using gesture, no matter gestural information is used together with

1-best speech recognition or n-best speech recognition. For the SP-KNN that uses

both semantic and phoneme features, intention prediction is significantly improved

only when gestural information is used together with l-best speech recognition.

It is found that, used together with recognized speech hypotheses in model-based

approaches, ground truth gesture selection achieves more accurate intention predic-
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tion than recognized gesture selection in most configurations. This indicates that

improving gesture recognition and understanding can further enhance intention pre-

diction when speech recognition is not perfect. When SVM is applied on semantic

features extracted from all n-best speech recognition hypotheses, using the true ges-

ture selection achieves slightly worse performance than using the recognized gesture

selection. However, this is not a significant difference. In instance-based approaches,

using true gesture selection makes no significant difference than using recognized

gesture selection for user intention prediction.

5.6.3 Results Based on Gesture-Tailored Speech Recognition

Table 5.3 shows the intention prediction accuracies based on the gesture-tailored

speech recognition hypotheses. Note that in Table 5.3, gestural information (all pos-

sible gesture selections recognized by the system) has been utilized in speech recog-

nition [81], the configurations noGest, recoGest, and tr‘ueGest only apply to how

gestural information is used in language understanding stage for intention prediction.

Therefore, in Table 5.3, the results under configurations n-best hypotheses + noGest

and 1-best hypothesis + noGest are actually the intention prediction performance

when gestural information is used in only speech recognition stage.
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noGest 0.860 0.881 0.878 0.881 0.918 0.937

transcript recoGest 0.878 0.888 0.884 0.888 0.921 0.934

trueGest 0.874 0.889 0.884 0.884 0.921 0934

West noGest 0.727 0.749 0.750 0.753 0.826 0.858

recoGest 0.753 0.766 0.780 0.770 0.829 0.857

hYPOtheses trueGest 0.766 0.781 0.786 0.781 0.827 0.860

l-best noGest 0.735 0.743 0.752 0.758 0.812 0.843

, recoGest 0.764 0.772 0.764 0.778 0.815 0.855

hYPOtheS‘S trueGest 0.783 0.795 0.777 0.795 0.817 0.860
  

Table 5.3. Accuracies of intention prediction based on gesture-tailored speech recognition

Compared to using gestural information only in speech recognition, the accuracies
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of intention prediction are significantly improved in all model-based approaches when

gestural information is used in both speech recognition and language understand-

ing, no matter it is used together with 1-best or n-best speech recognition. Among

instance-based approaches, only in S—KNN, that using gestural information in both

speech recognition and language understanding (with l-best or n-best recognition

hypotheses) significantly improves intention prediction compared to using gestural

information only in speech recognition. For P-KNN, whether or not using gestural

information in language understanding does not make significant change on inten-

tion prediction. For SP-KNN, only when gestural information is used together with

1-best Speech recognition hypothesis in language understanding that intention predic-

tion is significantly improved compared to using gestural information only in speech

recognition.

In all model-based approaches, together with recognized speech, using ground

truth gesture selection in language understanding is found to improve intention pre-

diction more than the recognized gesture selection. Again, this indicates that im-

proving gesture recognition and understanding is helpful for intention prediction. In

instance-based approaches, using true or recognized gesture selection in language un-

derstanding stage for intention prediction does not make significant differences when

phoneme features are used.

5.6.4 Results Based on Different Sizes of Training Data

The empirical results have shown that using gestural information improves user inten-

tion recognition. To examine whether this improvement by using gestural information

is dependent on the size of training data, we compare the accuracies of intention pre-

diction with different sizes of training sets. The results of the approaches are shown in

Figures 5.4—5.9. The semantic features and phoneme features are extracted from the

l-best speech recognition and the recognized gesture selection are used in intention
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prediction.
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Figure 5.7. Intention prediction performance of S-KNN based on different training size

The intention prediction accuracy curves are generated in the following way. The

whole data set is first separated into 5 folds in a stratified way such that the class
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distributions in each fold are the same. In each round of evaluation, two different

folds are picked as the testing set and initial training set, instances in the other 3

folds are added to the training set incrementally by random picking to get intention
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prediction accuracies based on different sizm of training sets. After each fold of data

has been used as testing set and initial training set, the intention prediction accuracy

curves of the 20 round evaluations are averaged to get the curves in Figures 5.4—5.9.

We can see that, for all model-based and instance-based approaches, using gestural

information in both speech recognition stage and language understanding stage al-

ways outperforms using gestural information in only language understanding stage or

not using gestural information at all for intention prediction. Using gestural informa-

tion only in speech recognition stage is found to always outperform not using gestural

information for intention prediction in all model-based and instance-based approaches

despite the training size. When gestural information is used only in language under-

standing stage, Naive Bayes and S—KNN always improve intention prediction despite

the training size. For the other approaches (Decision Titee, SVM, P-KNN, and SP-

KNN), sufficient training data is needed to make gestural information helpful for

intention prediction.

5.6.5 Discussion

The empirical results lead to several findings about the role of deictic gestures in

incorporating domain context in intention recognition.

First, deictic gesture helps intention recognition given the current speech recogni-

tion technology. The earlier deictic gesture is used in the speech processing, the more

efifect it brings to intention recognition. Figure 5.10 shows the performance of inten-

tion recognition by different approaches when gestural information is not used (i.e.,

only recognized speech hypotheses are used), used only in speech recognition stage,

used only in language understanding stage, and used in both speech recognition and

language understanding stages. We can easily see that using gestural information

in speech recognition stage or language understanding stage improves intention pre-

diction. Using gestural information in both Speech recognition stage and language
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Figure 5.10. Using gestural information in different stages for intention recognition

understanding stage further improves intention prediction. Therefore, it is desirable

to incorporate gesture earlier in the spoken language processing.

Second, deictic gesture does not help much in intention recognition for a sim-

ple/small domain if speech is perfectly recognized. As we can see in Table 5.2, when

gestural information is used together with the transcripts of user utterances to pre-

dict intention, the effect is not as Significant as when gesture information is used

with recognized Speech hypotheses. This is within our expectation. Given a simple

domain with a limited number of words (the vocabulary size for our current domain

is 250), it is relatively easier to come up with sufficient semantic grammars to cover

the variations of language. In other words, once user utterances are correctly rec-

ognized, the semantics of the input can most likely be correctly identified by the

language understanding component. So the bottleneck in interpretation appears in

speech recognition (due to many possible reasons such as background noise, accent,

etc.) The better is speech recognition, the better the language understanding compo-
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nent processes the hypotheses, and the less effect the gesture is likely to bring. When

Speech is perfectly recognized (i.e., same as transcriptions), the addition of gesture

information will not bring extra advantage. In fact, it may hurt the performance if

gesture recognition is not adequate. However, we feel that when the domain becomes

more complex and the variations of language become more difficult to process, the

use of gesture may begin to Show advantage even when speech recognition performs

reasonably well. After all, speech recognition is far from being perfect in reality, which

makes gestural information valuable in intention recognition.

Third, deictic gesture helps more significantly when combined with semantic fea-

tures than with phoneme features for intention prediction. As shown in Figure 5.10,

for NBaeys, DTree, SVM and S-KNN where only semantic features are used, the

addition of deictic gesture in both speech recognition and language understanding

can improve the performance between 4.7% and 6.6%. For P-KNN where only the

phonemes features are used, the improvement is 2.1%. Although the addition of

phoneme features significantly improves the intention recognition performance, it is

computationally much more expensive than the use of only semantic features. Using

phoneme features may become impractical in real-time systems for complex domains.

Thus the incorporation of the gestural information could be even more important.

5.7 Summary

This chapter systematically investigates the role of deictic gesture in recognizing user

intention during interaction with a Speech and gesture interface. Different model-

based and instance-based approaches using gestural information have been applied

to recognize user intention. Our empirical results have Shown that using gestural

information in either speech recognition or language understanding stage is able to

improve user intention recognition. Moreover, when gestural information is used

in both speech recognition and language understanding, intention recognition can be
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further improved. These results indicate that deictic gesture, although most indicative

to reflect user attention, is helpful in recognizing user intention. These results further

point out when and how deictic gesture should be effectively incorporated in building

practical speech-gesture systems.
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CHAPTER 6

Incorporation of Eye Gaze in Automatic

Word Acquisition

Chapter 4 and Chapter 5 investigate the use of non-verbal modalities to improve Spo-

ken language understanding in multimodal conversational systems. Another signifi-

cant problem with language understanding in multimodal conversation is the system’s

lack of knowledge to process user language. Language is flexible, different users may

use different words to express the same meaning. When the system encounters a word

that is out of its knowledge base (e.g., vocabulary), it tends to fail in interpreting the

user’s language. It is desirable that the system can learn new words automatically

during human-machine conversation.

In this chapter, we present the investigation of using eye gaze for automatic word

acquisition. The speech-gaze temporal information and domain semantic relatedness

are incorporated in statistical translation models for word acquisition. Our experi-

ments show that the use of speech-gaze temporal information and domain semantic

relatedness significantly improves word acquisition performance.

This chapter begins with a description of the speech and gaze data collection,

followed by an introduction of the basic translation models for word acquisition. Then,

we describe the enhanced models that incorporate temporal and semantic information

about speech and eye gaze for word acquisition. Finally, we present the results of
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empirical evaluation.

6.1 Data Collection

We used the same set of speech and eye gaze data as described in Section 4.6.3.

25712 28712 31170 35'28 l3736 (ms)

This room has a chandelier

f gaze fixation
Speech stream

 

5 6 9 8 1668 2096 2692 32 2 (ms)

P

gaze stream

is te

[19] [1 [17] [19] [2211100] [10] [10] [fixatedentity]

[11] [11] [ll]

([10] — bedroom; [1 l] — chandelier; [l7] — lamp_2; [l9] - bedframe; [22] —- door)

Figure 6.1. Parallel speech and gaze streams

Figure 6.1 Shows an excerpt of the collected speech and gaze fixation in one ex-

periment. In the speech stream, each word starts at a particular timestamp. In the

gaze stream, each gaze fixation has a starting timestamp t3 and an ending timestamp

te. Each gaze fixation also has a list of fixated entities (3D objects). An entity e on

the graphical display is fixated by gaze fixation f if the area of e contains fixation

point of f.

Given the collected Speech and gaze fixations, we build a parallel speech-gaze data

set as follows. For each Spoken utterance and its accompanying gaze fixations, we

construct a pair of word sequence and entity sequence (w, e). The word sequence w

consists of only nouns and adjectives in the utterance. Each gaze fixation results in

a fixated entity in the entity sequence e. When multiple entities are fixated by one

gaze fixation due to the overlapping of the entities, the forefront one is chosen. Also,

we merge the neighboring gaze fixations that contain the same fixated entities. For

the parallel speech and gaze streams Shown in Figure 6.1, the resulting word sequence
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is w = [room chandelier] and the entity sequence is e = [bed_frame lamp_2 bed. ame

door chandelier].

6.2 Translation Models for Automatic Word Acquisition

Since we are working on conversational systems where users interact with a visual

scene, we consider the task of word acquisition as associating words with visual en-

tities in the domain. Given the parallel speech and gaze fixated entities {(w,e)},

we formulate word acquisition as a translation problem and use translation models

to estimate word-entity association probabilities p(wle). The words with the highest

association probabilities are chosen as acquired words for entity 6.

6.2.1 Base Model I

Using the translation model I [5], where each word is equally likely to be aligned with

each entity, we have

1:2)(wle=l———+1)1m H Zoptwjlen (6.1)
j=1i=0

where l and m are the lengths of entity and word sequences respectively. We refer to

this model as Model-1.

6.2.2 Base Model II

Using the translation model II [5], where alignments are dependent on word/entity

positions and word/entity sequence lengths, we have

m l

p<>=wle 11122292a-=z‘0.m.0p<w.-Ie.) (62)
3'1: i=0

where aj = i means that wj is aligned with 8,. When aj = 0, wj is not aligned with

any entity (e0 represents a null entity). We refer to this model as Model-2.
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Compared to Model-1, Model-2 considers the ordering of words and entities in

word acquisition. EM algorithms are used to estimate the probabilities p(wle) in the

translation models.

6.3 Using Speech-Gaze Temporal Information for Word Ac-

quisition

In Model-2, word-entity alignments are estimated from co—occurring word and entity

sequences in an unsupervised way. The estimated alignments are dependent on where

the words/entities appear in the word/entity sequences, not on when those words and

gaze fixated entities actually occur. Motivated by the finding that users move their

eyes to the mentioned object directly before speaking a word [31], we make the word-

entity alignments dependent on their temporal relation in a new model (referred as

Model-2t) [85]:

m l

P(W|e) = H Zpdaj = ilj,e,W)P(wJ'|€i) (6-3)

j=1i=0

where pt(aj = 2]j, e, w) is the temporal alignment probability computed based on the

temporal distance between entity e, and word wj.

We define the temporal distance between e,- and wj as

0 ts(ei) S ts(wj) S t«2(81)

d(eiijl = te(ei) — t3(wj) t3(wj) > te(ei) (6.4)

ts(€i) - ts(wj) ts(wj) < ts(ei)

where ts(wj) is the starting timestamp (ms) of word wj, t3(e,') and te(e,-) are the

starting and ending timestamps (ms) of gaze fixation on entity e.

The alignment of word wj and entity e, is decided by their temporal distance

d(e,-, wj). Based on the psycholinguistic finding that eye gaze happens before a spo-

ken word, wj is not allowed to be aligned with ei when wj happens earlier than e,-

(i.e., d(e,-,wJ-) > 0). When wj happens no earlier than ei (i.e., d(e,-,wj) S 0), the
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closer they are, the more likely they are aligned. Specifically, the temporal alignment

probability of wj and ez- in each co—occurring instance (w, e) is computed as

0 d(e,-,wj) > 0

expla-d(€iawj)l d e. w- < 0 (6-5)Zexpla-d(ei,wjll (is J)_

l

 pt(aj = ilj,e,w) =

where a is a constant for sealing d(e,-, wj).

An EM algorithm is used to estimate probabilities p(wle) and a in Model-2t.
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Figure 6.2. Histogram of truly aligned word and entity pairs over temporal distance (bin

width = 200ms)

For the purpose of evaluation, we manually annotated the truly aligned word and

entity pairs. Figure 6.2 shows the histogram of those truly aligned word and entity

pairs over the temporal distance of aligned word and entity. We can observe in the

figure that 1) almost no eye gaze happens after a spoken word, and 2) the number of

word-entity pairs with closer temporal distance is generally larger than the number

of those with farther temporal distance. This is consistent with our modeling of the

temporal alignment probability of word and entity (Equation (6.5)).
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6.4 Using Domain Semantic Relatedness for Word Acquisi-

tion

Speech-gaze temporal alignment and occurrence statistics sometimes are not sufficient

to associate words to entities correctly. For example, suppose a user says “there is a

lamp on the dresser” while looking at a lamp object on a table object. Due to their

co—occurring with the lamp object, the words dresser and lamp are both likely to

be associated with the lamp object in the translation models. As a result, the word

dresser is likely to be incorrectly acquired for the lamp object. For the same reason,

the word lamp could be acquired incorrectly for the table object. To solve this type

of association problem, the semantic knowledge about the domain and words can be

helpful. For example, the knowledge that the word lamp is more semantically related

to the object lamp can help the system avoid associating the word dresser to the lamp

object. Therefore, we are interested in investigating the use of semantic knowledge

in word acquisition.

On one hand, each conversational system has a domain model, which is the knowl-

edge representation about its domain such as the types of objects and their properties

and relations. On the other hand, there are available resources about domain inde-

pendent lexical knowledge (e.g., WordNet [28]). The question is whether we can use

the domain model and external lexical knowledge resource to improve word acqui-

sition. To address this question, we link the domain concepts in the domain model

with WordNet concepts, and define semantic relatedness of word and entity to help

the system acquire domain semantically compatible words.

In the following sections, we first describe our domain modeling, then define the

semantic relatedness of word and entity based on domain modeling and WordNet

semantic lexicon, and finally describe different ways of using the semantic relatedness

of word and entity to help word acquisition.
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6.4. 1 Domain Modeling

We model the 3D room decoration domain as shown in Figure 6.3. The domain model

contains all domain related semantic concepts. These concepts are linked to the

WordNet concepts (i.e., synsets in the format of “word#part-of-speech#sense—id”).

Each of the entities in the domain has one or more properties (e.g., semantic type,

color, size) that are denoted by domain concepts. For example, the entity dresser_1

has domain concepts SEM_DRESSER and COLOR. These domain concepts are linked

to “dresser#n#4” and “color#n#1” in WordNet.

1 Domain Model

Entities: . . . @

5 - l l l l i
£3321; [SEM_DRESSER ] COLOR I I SEM_BED ][ COLOR [F9125 ]:

  

  

  

  

  

--—--——_--_-_--_-_ __.__.____ --—--———————__-_—_ __-—_— __——--__ -___

“color#n#l ”

«a...

w:

Figure 6.3. Domain model with domain concepts linked to WordNet synsets

    
WordNet

concepts:

Note that in the domain model, the domain concepts are not specific to a cer-

tain entity, they are general concepts for a certain type of entity. Multiple entities

of the same type have the same properties and Share the same set of domain con-

cepts. Therefore, properties such as color and size of an entity have general concepts

“color#n#1” and “size#n#1” instead of more specific concepts like “yellow#a#1”

and “big#a#1”, so their concepts can be shared by other entities of the same type,
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but with different colors and sizes.

6.4.2 Semantic Relatedness of Word and Entity

We compute the semantic relatedness of a word w and an entity e based on the se-

mantic Similarity between w and the properties of e. Specifically, semantic relatedness

SR(e,w) is defined as

SR(e, w) = nzizgx sim(s(cg), sj(w)) (6.6)

where cf3 is the i-th pr0perty of entity e, s(cé) is the synset of property of. as designed

in domain model, sj(w) is the j-th synset of word w as defined in WordNet, and

sim(-, ) is the Similarity score of two synsets.

We computed the similarity score of two synsets based on the path length between

them. The similarity score is inversely proportional to the number of nodes along the

shortest path between the synsets as defined in WordNet. When the two synsets

are the same, they have the maximal similarity score of 1. The WordNet—Similarity

tool [77] was used for the synset similarity computation.

6.4.3 Word Acquisition with Word-Entity Semantic Relatedness

We can use the semantic relatedness of word and entity to help the system acquire

semantically compatible words for each entity, and therefore improve word acquisition

performance. The semantic relatedness can be applied for word acquisition in two

ways: post process learned word-entity association probabilities by rescoring them

with semantic relatedness, or directly affect the learning of word-entity associations

by constraining the alignment of word and entity in the translation models.

Rescoring with Semantic Relatedness

In the acquired word list for an entity ei, each word wj has an association probability

p(wJ-Iei) that is learned from a translation model. We use the semantic relatedness
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SR(ei,wJ-) to redistribute the probability mass for each wj. The new association

probability is given by:

P(wjl€i)SR(ei.wj)

’(w'lei) = (6-7)

p J ZP(wjlei)SR(eiawjl

J

 

Semantic Alignment Constraint in Translation Model

When used to constrain the word-entity alignment in the translation model, semantic

relatedness can be used alone or used together with Speech-gaze temporal information

to decide the alignment probability of word and entity [84].

0 Using only semantic relatedness to constrain word-entity alignments in Model-

23, we have

m I

With?) = H 2173(0)“ = ili,e,W)p(wjlei) (6-8)

j=1i=0

where p3(aj = 2|j, e, w) is the alignment probability based on semantic related-

ness,

330%,le

ZSRfeitwj)

i

 

Maj = zlien”) = (6-9)

0 Using semantic relatedness and temporal information to constrain word-entity

alignments in Model-2ts, we have

m l

p(wle) = II Zpt8(aj = 1]], e,w)p(wjle,-) (610)

j=1 i=0

where pts(aj = 2]j, e,w) is the alignment probability that is decided by both

temporal relation and semantic relatedness of e,- and wj,

Ps(aj = ilj,e.W)pt(aj = z'lJ',e.W)

2:10st = ilj,e,W)Pt(aj = z'IJ'.e.W)

1

 Pts(aj = ilj,e,W) = (6.11)

where p3(aj = i]j, e, w) is the semantic alignment probability in Equation (6.9),

and pt(aj = z|j, e,w) is the temporal alignment probability given in Equa-

tion (6.5).

96



EM algorithms are used to estimate p(wle) in Model—2s and Model-2ts.

6.5 Grounding Words to Domain Concepts

As discussed above, based on translation models, we can incorporate temporal and

domain semantic information to obtain p(wle). This probability only provides a

means to ground words to entities. In conversational systems, the ultimate goal of

word acquisition is to make the system understand the semantic meaning of new

words. Word acquisition by grounding words to objects is not always sufficient for

identifying their semantic meanings. Suppose the word green is grounded to a green

chair object, so is the word chair. Although the system is aware that green is some

word describing the green chair, it does not know that the word green refers to the

Chair’s color while the word chair refers to the chair’s semantic type. Thus, after

learning the word-entity associations p(wle) by the translation models, we need to

further ground words to domain concepts of entity properties.

We further apply WordNet to ground words to domain concepts. For each entity e,

based on association probabilities p(wle), we can choose the n-best words as acquired

words for e. Those n-best words have the n highest association probabilities. For

each word w acquired for e, the grounded concept c; for w is chosen as the one that

has the highest semantic relatedness with w:

c; = arg zrnax]:mJax sim(s(cg), sj(w))] (6.12)

where sim(s(cf3), sj(w)) is the semantic similarity score defined in Equation (6.6).

6.6 Evaluation

To evaluate the acquired words for the entities, we manually compile a set of “gold

I

standard” words from all users’ speech transcripts and gaze fixations. Those ‘gold

standard” words are the words that the users have used to refer to the entities and
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their properties (e.g., color, size, shape) during the interaction with the system. The

automatically acquired words are evaluated against those “gold standard” words.

6.6.1 Evaluation Metrics

The following metrics are used to evaluate the words acquired for domain concepts

(i.e., entity properties) {c2}.

0 Precision .

ZZ# words correctly acquired for c;

e i
 

ZZ# words acquired for cf.

8 i

0 Recall
.

Z:Z # words correctly acquired for c;

e i
 

ZZ# “gold standard” words of cf,

8 t

e F-measure

2 x precision x recall
 

precision + recall

The metrics of precision, recall, and F-measure are based on the n-best words

acquired for the entity properties. Therefore, we have different precision, recall, and

F-measure when n changes.

The metrics of precision, recall, and F-measure only provide evaluation on the top

n candidate words. To measure the acquisition performance on the entire ranked list

of candidate words, we define a new metric as follows:

0 Mean Reciprocal Rank Rate (MRRR)

Ne
1

Z inde:c(wf3)
i=1

N

e :81

i

i=1

#e

 

 MRRR =
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where Ne is the number of all ground-truth words {wfg} for entity e, indea:(wf3)

is the index of word w}; in the ranked list of candidate words for entity e.

Entities may have a different number of ground-truth words. For each entity e,

we calculate a Reciprocal Rank Rate (RRR), which measures how close the ranks

of the ground-truth words in the candidate word list is to the best scenario where

the top Ne words are the ground-truth words for e. RRR is in the range of (0,1].

The higher the RRR, the better is the word acquisition performance. The average of

RRRs across all entities gives the Mean Reciprocal Rank Rate (MRRR).

Note that MRRR is directly based on the learned word-entity associations p(wle),

it is in fact a measure of grounding words to entities.

6.6.2 Evaluation Results

To compare the effects of different speech-gaze alignments on word acquisition, we

evaluate the following models:

0 Model—1 — base model I without word-entity alignment (Equation (6.1)).

Model-2 — base model II with positional alignment (Equation (6.2)).

Model-2t — enhanced model with temporal alignment (Equation (6.3)).

Model-2s — enhanced model with semantic alignment (Equation (6.8)).

Model-2ts - enhanced model with both temporal and semantic alignment (Equa-

tion (6.10)).

To compare the different ways of incorporating semantic relatedness in word ac-

quisition as discussed in Section 6.4.3, we also evaluate the following models:

0 Model-l-r — Model-1 with semantic relatedness rescoring of word-entity associ-

ation.
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e Model-2t-r — Model-2t with semantic relatedness rescoring of word-entity asso-

ciation.

Figures 6.4, 6.5, and 6.6 compare the results of models with different Speech-gaze

alignments and models with semantic relatedness rescoring. In the figures, n-best

means the top it word candidates are chosen as acquired words for each entity. The

Mean Reciprocal Rank Rates of all models are compared in Figure 6.7.

Results of Using Different Speech-Gaze Alignments

As shown in Figures 6.4(a), 6.5(a), and 6.6(a), Model-2 does not Show a consistent

improvement compared to Model-1 when a different number of n-best words are

chosen as acquired words. This result shows that it is not very helpful to consider

the index-based positional alignment of word and entity for word acquisition.

Figures 6.4(a), 6.5(a), and 6.6(a) also show that models considering tempo-

ral or/and semantic information (Model-2t, Model-2S, Model-2ts) consistently per-

form better than the models considering neither temporal nor semantic information

(Model-1, Model-2). Among Model-2t, Model-2s, and Model-2ts, it is found that they

do not make consistent differences.

As Shown in Figure 6.7, the MRRRS of different models are consistent with their

performances on F-measure. A t-test has shown that the difference between the

MRRRs of Model-1 and Model-2 is not statistically significant. Compared to Model-

1, t-tests have confirmed that MRRR is Significantly improved by Model-2t (t =

2.29,p < 0.016), Model-2s (t = 3.40,p < 0.002), and Model—2ts(t = 3.12,p < 0.003).

T-tests have shown no significant differences among Model-2t, Model-2s, and Model-

2ts.
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Figure 6.4. Precision of word acquisition
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Figure 6.6. F-measure of word acquisition
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Results of Applying Semantic Relatedness Rescoring

Figures 6.4(b), 6.5(b), and 6.6(b) Show that semantic relatedness rescoring improves

word acquisition. After semantic relatedness rescoring of the word-entity associations

learned by Model-1, Model-l—r improves the F-measure consistently when a different

number of n-best words are chosen as acquired words. Compared to Model-2t, Model-

2t-r also improves the F-measure consistently.

Comparing the two ways of using semantic relatedness for word acquisition, it is

found that rescoring word-entity association with semantic relatedness works better.

When semantic relatedness is used together with temporal information to constrain

word-entity alignments in Model-2ts, word acquisition performance is not improved

compared to Model-2t. However, using semantic relatedness to rescore word-entity

association learned by Model-2t, Model-2t-r further improves word acquisition.

As shown in Figure 6.7, the MRRRs of Model-l-r and Model-2t-r are consistent

with their performances on F—measure. Compared to Model-2t, Model-2t-r improves
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MRRR. A t-test has confirmed that this is a significant improvement (t = 1.96, p <

0.031). Compared to Model-1, Model-l-r significantly improves MRRR (t = 2.33, p <

0.015). There is no Significant difference between Model-l-r and Model-2t/Model-

2s/Model—2ts.

In Figure 6.5, we notice that the recall of the acquired words is still comparably

low even when 10 best word candidates are chosen for each entity. This is mainly

due to the scarcity of those words that are not acquired in the data. Many of the

words that are not acquired appear less than 3 times in the data, which makes them

unlikely to be associated with any entity by the translation models. When more data

is available, we expect to see higher recall.

6.6.3 An Example

Table 6.1 Shows the 5—best words acquired by different models for the entity dresserJ

in the 3D room scene. In the table, each word iS followed by its word-entity association

probability p(wle). The correctly acquired words are Shown in bold font.

 

Model Model-1 Model-2t Model-2t-r

Rank 1 table(0.173) table(0.196) table(0.294)

Rank 2 dresser(0.067) dresser(0.101) dresser(0.291)

Rank 3 area(0.058) area(0.056) vanity(0.147)

Rank 4 picture(0.053) vanity(0.051) desk(0.038)

Rank 5 dressing(0.041) dressing(0.050) area(0.024)

 

 
 

Table 6.1. N-best candidate words acquired for the entity dresser.1 by different models

As Shown in the example, the baseline Model-1 learned 2 correct words in the 5-

best list. Considering Speech-gaze temporal information, Model-2t learned one more

correct word vanity in the 5—best list. With semantic relatedness rescoring, Model—2t-r

further acquired word desk in the 5-best list because of the high semantic relatedness

of word desk and the type of entity dresserJ. Although neither Model-1 nor Model-2t

successfully acquired the word desk in the 5-best list, the rank (=7) of the word desk

in Model-2t’s n-best list is much higher than the rank (=21) in Model-1’s n-best list.
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6.7 Summary

This chapter investigates the use of eye gaze for automatic word acquisition in mul-

timodal conversational systems. Particularly, we investigate the use of speech-gaze

temporal information and word-entity semantic relatedness to facilitate word acqui-

sition. The experiments Show that word acquisition is significantly improved when

temporal information is considered, which is consistent with the previous psycholin-

guistic findings about Speech and eye gaze. Moreover, using temporal information

together with semantic relatedness rescoring further improves word acquisition.
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CHAPTER 7

Incorporation of Interactivity with Eye

Gaze for Automatic Word Acquisition

In the previous chapter, we describe the use of the speech-gaze temporal information

and domain semantic relatedness for automatically acquiring words from the user’s

Speech and its accompanying gaze fixations. Successful word acquisition relies on the

tight link between what the user says and what the user sees. Although published

studies provide us with a sound empirical basis for assuming that eye movements are

predictive of Speech, the gaze behavior in an interactive setting can be much more

complex. There are different types of eye movements [50]. The naturally occurring eye

gaze during speech production may serve different functions, for example, to engage in

the conversation or to manage turn taking [70]. Furthermore, while interacting with

a graphic display, a user could be talking about objects that were previously seen

on the display or something completely unrelated to any object the user is looking

at. Therefore using all the speech-gaze pairs for word acquisition can be detrimental.

The type of gaze that is mostly useful for word acquisition is the kind that reflects

the underlying attention and tightly links to the content of the co-occurring spoken

utterances. Thus, one important question is how to identify the closely coupled speech

and gaze streams to improve word acquisition.

To address this question, in this chapter, we develop an approach that incorporates
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interactivity (e.g., user activity, conversation context) with eye gaze to identify the

closely coupled speech and gaze streams. We further use the identified speech and

gaze streams for word acquisition. Our studies indicate that automatic identification

of closely coupled gaze-speech stream pairs is an important first step that leads to

performance gains in word acquisition. Our simulation studies further demonstrate

the effect of automatic online word acquisition on improving language understanding

in human-machine conversation.

In the following sections, we first describe the data collection in a new 3D in-

teractive domain, then present the automatic identification of the closely coupled

gaze-Speech pairs and its effect on word acquisition. The last part of this chapter

presents a simulation study that exemplifies how word acquisition can be automati-

cally achieved and how the acquired words affect language interpretation during online

conversation.

7. 1 Data Collection

We recruited 20 users to interact with our speech-gaze system to collect data.

7.1.1 Domain

We used the 3D treasure hunting domain (see Section 3.3.2) for the investigation of

automatic word acquisition in multimodal conversation. In this application, the user

needs to consult with a remote “expert” (i.e., an artificial system) to find hidden

treasures in a castle with 115 3D objects. The expert has some knowledge about the

treasures but can not see the castle. The user has to talk to the expert for advices

of finding the treasures. The application is developed based on a game engine and

provides an immersive environment for the user to navigate in the 3D space. A

detailed description of the user study is given in Appendix A.3.

During the experiment, the user’s speech was recorded, and the user’s eye gaze was
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captured by a Tobii eye tracker. Figure 7.1 shows a snapshot of one user’s experiment.
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Figure 7.1. A snapshot of one user’s experiment (the dot on the stereo indicates the user’s

gaze fixation, which was not shown to the user during the experiment)

It’s worthwhile to note that the collected data set is different from the data set

used for the investigation in Chapter 6. The difference lies in two aspects: 1) the data

for this investigation was collected during mixed initiative human-machine conversa-

tion whereas the data in Chapter6 was based only on question and answering; 2)

user studies were conducted in a more complex domain for this investigation, which

resulted in a richer data set that contains larger vocabulary.

7.1.2 Data Preprocessing

From 20 users’ experiments, we collected 3709 utterances with accompanying gaze

fixations. We transcribed the collected speech. The vocabulary size of the speech

transcript is 1082, among which 227 words are nouns and adjectives. The user’s

speech was also automatically recognized online by the Microsoft speech recognizer

with a word error rate (WER) of 48.1% for the 1-best recognition. The vocabulary size

of the 1-best speech recognition is 3041, among which 1643 are nouns and adjectives.

The collected speech and gaze streams are automatically paired together by the
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system. Each time the system detects a sentence boundary of the user’s speech, it

pairs the recognized speech with the gaze fixations that the system has been accumu-

lating since the previously detected sentence boundary. Given the paired Speech and

gaze streams, we build a parallel data set of word sequence and, gaze fixated entity

sequence {(w, e)} for the task of word acquisition. For the gaze stream, e contains

all the gaze fixated entities. For the speech stream, we can build w based on speech

transcript or the 1-best speech recognition. The resulting word sequence w contains

all the nouns and adjectives in the transcript or the l-best recognition.

7.2 Identification of Closely Coupled Gaze-Speech Pairs

AS mentioned earlier, not all gaze-speech pairs are useful for word acquisition. In

a gaze-speech pair, if the Speech does not have any word that relates to any of the

gaze fixated entities, this instance only adds noise to word acquisition. Therefore,

we Should identify the closely coupled gaze-Speech pairs and only use them for word

acquisition.

In this section, we first describe the feature extraction, then describe the use

of a logistic regression classifier to predict whether a gaze-speech pair is a closely

coupled gaze-speech instance — an instance where at least one noun or adjective in

the speech stream is referring to some gaze fixated entity in the gaze stream. For the

training of the classifier for gaze-speech prediction, we manually labeled each instance

whether it is a closely coupled gaze-speech instance based on the speech transcript

and gaze fixations.

7.2.1 Features Extraction

For a parallel gaze-speech instance, the following sets of features are automatically

extracted.
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SPEECH FEATURES (S-FEAT)

Let cw be the count of nouns and adjectives in the utterance, and l3 be the temporal

length of the Speech. The following features are extracted from speech:

0 0w — count of nouns and adjectives.

More nouns and adjectives are expected in the user’s utterance describing enti-

ties.

e ow/ls - normalized noun/adjective count.

The effect of speech length ls on cw is considered.

GAZE FEATURES (G-FEAT)

For each fixated entity ei, let ll, be its fixation temporal length. Note that several

gaze fixations may have the same fixated entity, lg is the total length of all the gaze

fixations that fixate on entity ei. We extract the following features from gaze stream:

0 cc — count of different gaze fixated entities.

Less fixated entities are expected when the user is describing entities while

looking at them.

0 ce/ls - normalized entity count.

The effect of speech temporal length ls on Ca is considered.

0 mam-(lg) — maximal fixation length.

At least one fixated entity’s fixation is expected to be long enough when the

user is describing entities while looking at them.

0 mean(lg) - average fixation length.

The average gaze fixation length is expected to be longer when the user is

describing entities while looking at them.
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e var(lg) — variance of fixation lengths.

The variance of the fixation lengths is expected to be smaller when the user is

describing entities while looking at them.

The number of gaze fixated entities is not only decided by the user’s eye gaze, it

is also affected by the visual scene. Let C: be the count of all the entities that have

been visible during the length of the gaze stream. We also extract the following scene

related feature:

0 Ce /cg — scene normalized fixated entity count.

The effect of the visual scene on Ca is considered.

USER ACTIVITY FEATURES (UA-FEAT)

While interacting with the system, the user’s activity can also be helpful in deter-

mining whether the user’s eye gaze is tightly linked to the content of the speech. The

following features are extracted from the user’s activities:

0 maximal distance of the user’s movements — the maximal change of user position

(3D coordinates) during the speech length.

The user is expected to move within a smaller range while looking at entities

and describing them.

0 variance of the user’s positions

The user is expected to move less frequently while looking at entities and de-

scribing them.

CONVERSATION CONTEXT FEATURES (CC-FEAT)

While talking to the system (i.e., the “expert”), the user’s language and gaze behavior

are influenced by the state of the conversation. For each gaze-speech instance, we use
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the previous system response type as a nominal feature to predict whether this is a

closely coupled gaze—speech instance.

In our treasure hunting domain, there are 8 types of system responses in 2 cate-

gories:

System Initiative Responses:

0 specific-see — the system asks whether the user sees a certain entity, e.g., “Do

you see another couch?”.

e nonspecific-see — the system asks whether the user sees anything, e. g., “Do you

see anything else?”, “Tell me what you see”.

0 previous-see ~ the system asks whether the user previously sees something, e.g.,

“Have you previously seen a Similar object?”.

0 describe — the system asks the user to describe in detail what the user sees, e.g.,

“Describe it”, “Tell me more about it”.

0 compare - the system asks the user to compare what the user sees, e.g., “Com-

pare these objects”.

0 clarify — the system asks the user to make clarification, e.g., “I did not under-

stand that”, “Please repeat that”.

. action-request — the system asks the user to take action, e.g., “Go back”, “Try

moving it”.

User Initiative Responses:

0 misc — the system hands the initiative back to the user without specifying

further requirements, e.g., “I don’t know”, “Yes”.

7.2.2 Logistic Regression Model

Given the extracted feature x and the “closely coupled” label y of each instance in

the training set, we train a ridge logistic regression model [60] to predict whether an
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instance is a closely coupled instance (y = 1) or not (y = 0).

In the logistic regression model, the probability that y,- = 1, given the feature

x,- = (Tiara, . . . ,Tfn), is modeled by

9XP(Z?=1 5373-)

1 + €XP(Z?-1:15j$§)

where 63- are the feature’s weights to be learned.

The log-likelihood l of the data (X, y) is

 
P(yilxi) =

1(fl) = Zhn 108P(yilxil + (1 - yil108(1— p(inXiD]

i

In ridge logistic regression, parameters 63- are estimated by maximizing a regularized

log-likelihood

c(c) = 1(6) — Allan?

where /\ is the ridge parameter that is introduced to achieve more stable parameter

estimation.

We used the Weka toolkit [115] for the training of the ridge logistic regression

model.

7.3 Evaluation of Gaze-Speech Identification

We evaluate the gaze-speech identification for the instances with l-best speech recog-

nition. Since the goal of identifying closely coupled gaze-speech instances is to improve

word acquisition and we are only interested in acquiring nouns and adjectives, only

the instances with recognized nouns/adjectives are used for training the logistic re-

gression classifier. Among the 2969 instances with recognized nouns/adjectives and

gaze fixations, 2002 (67.4%) instances are labeled as closely coupled. The gaze-speech

prediction was evaluated by a 10~fold cross validation.

Table 7.1 shows the prediction precision and recall when different sets of features

are used. As seen in the table, as more features are used, the prediction precision
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goes up and the recall goes down. It is important to note that prediction precision is

more critical than recall for word acquisition when sufficient amount data is available.

Noisy instances where the gaze does not link to the speech content will only hurt word

acquisition since they will guide the translation models to ground words to the wrong

entities. Although higher recall can be helpful, its effect is expected to become less

when more data becomes available.

 

 

 

 

 

 

 

 

 

 
    

Feature sets Precision Recall

Null (baseline) 0.674 1

S-Feat 0.686 0.995

G-Feat 0.707 0.958

UA-Feat 0.704 0.942

CC-Feat 0.688 0.936

G-Feat + UA-Feat 0.719 0.948

G-Feat + UA-Feat + S-Feat 0.741 0.908

G-Feat + UA-Feat + CC-Feat 0.731 0.918

G-Feat + UA-Feat + S-Feat + CC-Feat 0.748 0.899  
Table 7.1. Gazespeech prediction performances with different feature sets for the instances

with l-best speech recognition

The results show that speech features (S-Feat) and conversation context features

(CC-Feat), when used alone, do not improve prediction precision much compared to

the baseline of predicting all instances “closely coupled” with a precision of 67.4%.

When used alone, gaze features (G-Feat) and user activity features (UA-Feat) are

the two most useful feature sets for increasing prediction precision. When they are

used together, the prediction precision is further increased. Adding either speech

features or conversation context features to gaze and user activity features (G-Feat

+ UA-Feat + S—Feat/CC—Feat) increases the prediction precision more. Using all

four sets of features (G-Feat + UA-Feat + S-Feat + CC-Feat) achieves the highest

prediction precision, which is significantly better than the baseline: 2 = 5.93,}? <

0.001. Therefore, we choose to use all feature sets to identify the closely coupled

gaze-speech instances for word acquisition.

To compare the effect of the identified closely coupled gaze-speech instances on
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word acquisition from different Speech input (l-best speech recognition, speech tran-

script), we also use the logistic regression classifier with all features to predict closely

coupled gaze-Speech instances for the instances with speech transcript. For the in-

stances with speech transcript, there are 2948 instances with nouns/adjectives and

gaze fixations, 2128 (72.2%) of them being labeled as closely coupled. The prediction

precision is 77.9% and the recall is 93.8%. The prediction precision is significantly

better than the baseline of predicting all instances as coupled: z = 4.92, p < 0.001.

7.4 Evaluation Of Word Acquisition

In Chapter 6, we have shown that Model-2t-r (Section 6.4), where the temporal align-

ment between speech and eye gaze and domain semantic relatedness are incorporated,

achieves Significantly better word acquisition performance. Therefore, this model is

used for the word acquisition in this investigation. The word acquired by Model-2t-r

are evaluated against the “gold standard” words that we manually compiled for each

entity and its properties based on all users’ Speech transcripts and gaze fixations.

Those “gold standard” words are the words that the users have used to describe the

entities and their properties during the interaction with the system.

7.4. 1 Evaluation Metrics

We evaluate the n-best acquired words on

0 Precision

0 Recall

e F-measure

When a differen n is chosen, we will have different precision, recall, and F-measure.

We also evaluate the whole ranked candidate word list on
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0 Mean Reciprocal Rank Rate (MRRR) (see Section 6.6.1)

7.4.2 Evaluation Results

We evaluate the effect of the closely coupled gaze-Speech instances on word acquisition

from the 1-best Speech recognition. To Show the influence of speech recognition qual-

ity on word acquisition performance, we also evaluate word acquisition from speech

transcript. The predicted closely coupled gaze—speech instances in the evaluations are

generated by a 10-fold cross validation with the logistic regression classifier.

Figures 7.2 ~ 7.7 Show the precision, recall, and F-measure of the n-best words

acquired by Model-2t-r using all instances (all), only predicted closely coupled in-

stances (predicted), and true (manually labeled) closely coupled instances (true). In

Figures 7.2 ~ 7.4, the acquired words come from the 1-best Speech recognition of

users’ utterances. In Figures 7.5 ~ 7.7, the acquired words come from the transcripts

of users’ utterances.

Figure 7.8 compares the MRRRs achieved by Model-2t-r using different set of

instances (all instances, predicted closely coupled instances, true closely coupled in-

stances) with different speech input (1-best speech recognition, Speech transcript).

Results of Word Acquisition on 1-best Speech Recognition

As Shown in Figure 7.4, using predicted instances achieves consistent better perfor-

mance than using all instances except the case where only the 3—best word candidates

are evaluated. These results Show that the prediction of closely coupled gaze-speech

instances helps word acquisition. When the true closely coupled gaze-speech instances

are used for word acquisition, the word acquisition performance is further improved.

This means that higher gaze-speech prediction precision will lead to better word ac-

quisition performance.

We notice that using all instances actually achieves higher F-measure than using
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Figure 7.2. Precision of word acquisition on 1-best speech recognition with Model-2t-r
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Figure 7.3. Recall of word acquisition on 1-best speech recognition with Model-2t-r

predicted instances for the 3—best word candidates. This is because there are few

“gold standard” words that do not appear in the predicted gaze-speech instances due

to the scarcity of these words in the whole data set. In the word acquisition with all
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instances, these words will not appear in the 10-best list if word acquisition is only

based on co—occurring statistics (as in Model-1). In Model-2t-r, with domain semantic

relatedness rescoring, these words are boosted up to the 3—best list. However, this can

not happen in the word acquisition with the predicted gaze-speech instances because

the predicted instances do not contain these few words and therefore it is impossible to

acquire them. Therefore, for Model-2t-r, using all instances accidentally outperforms

using predicted instances when only the 3—best word candidates are evaluated. We

believe this will not happen when a fairly large amount of data is available for word

acquisition.

As Shown in Figure 7.8, the MRRRs achieved by Model-2t—r using different sets of

instances with the 1-best Speech recognition are consistent with their performances

on F-measure. Using predicted instances results in significantly better MRRR than

using all instances (t = 1.89,p < 0.031).
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Figure 7.6. Recall of word acquisition on speech transcript with Model-2t-r

Results of Word Acquisition on Speech Transcript

For the word acquisition on speech transcript, as shown in Figure 7.7, using predicted

closely coupled instances results in better F-measure than Using all instances. When
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the true closely coupled instances are used for word acquisition, the F-measure is

further improved.

As shown in Figure 7.8, consistent with its F—measure performance, using pre-

dicted instances results in significantly better MRRR than using all instances (t =
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2.66,p < 0.005).

The quality of Speech recognition is critical to word acquisition performance. Fig-

ure 7.8 also compares the word acquisition performance on the l-best speech recogni-

tion and speech transcript. AS expected, the word acquisition performance on speech

transcript is much better than on 1-best speech recognition. This result Shows that

better speech recognition will lead to better word acquisition.

7.5 The Effect Of Word Acquisition on Language Under-

standing

One important goal of word acquisition is to use the acquired new words to help lan-

guage understanding in subsequent conversation. To demonstrate the effect of online

word acquisition on language understanding, we conduct simulation studies based on

our collected data. In these Simulations, the system starts with an initial knowledge

base — a vocabulary of words associated to domain concepts. The system contin-

uously enhances its knowledge base by acquiring words from users with Model-2t-r

(Section 6.4) that incorporates both speech-gaze temporal information and domain

semantic relatedness. The enhanced knowledge base is used to understand the lan-

guage of new users.

We evaluate language understanding performance on concept identification rate

(CIR):

CIR _ #correctly identified conepts in the 1-best speech recognition
 

#concepts in the speech transcript

We simulate the process of online word acquisition and evaluate its effect on

language understanding for two situations: 1) the system starts with no training data

but with a small initial vocabulary, and 2) the system starts with some training data.
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7.5.1 Simulation 1: When the System Starts with No Training Data

To build conversational systems, one approach iS that domain experts provide domain

vocabulary to the system at design time. Our first simulation follows this practice.

The system is provided with a default vocabulary to start without training data. The

default vocabulary contains one “seed” word for each domain concept.

Using the collected data of 20 users, the Simulation process goes through the

following steps:

0 For user index i = 1,2, . . . ,20:

— Evaluate CIR of the i-th user’s utterances (1-best speech recognition) with

the current system vocabulary.

— Acquire words from all the instances (with 1-best speech recognition) of

users 1mi.

— Among the 10-best acquired words, add verified new words to the system

vocabulary.

In the above process, the language understanding performance on each individual

user depends on the user’s own language as well as the user’s position in the user

sequence. To reduce the effect of user ordering on language understanding perfor-

mance, the above Simulation process is repeated 500 times with randomly ordered

users. The average of the CIRs in these simulations is shown in Figure 7.9.

Figure 7.9 also Shows the CIRs when the system is with a static knowledge base

(vocabulary). The curve is drawn in the same way as the curve with a dynamic

knowledge base, except without word acquisition in the random simulation processes.

As we can see in the figure, when the system doest not have word acquisition capa-

bility, its language understanding performance does not change after more users have

communicated to the system. With the capability of automatic word acquisition, the
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Figure 7.9. CIR of user language achieved by the system starting with no training data

system’s language understanding performance becomes better after more users have

talked to the system.

7.5.2 Simulation 2: When the System Starts with Training Data

Many conversational systems use real user data to derive domain vocabulary. To

follow this practice, the second Simulation provides the system with some training

data. The training data serves two purposes: 1) build an initial vocabulary of the

system; 2) train a classifier to predict the closely coupled gaze—speech instances of

new users’ data.

Using the collected data of 20 users, the simulation process goes through the

following steps:

0 Using the first m users’ data as training data, acquire words from the training

instances (with speech transcript); add the verified 10—best words to the sys—
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tem’s vocabulary as “seed” words; build a classifier with the training data for

prediction of closely coupled gaze-speech instances.

0 Evaluate the effect of incremental word acquisition on CIR of the remaining

(20-m) users’ data. For user index i = 1, 2, . . . , (20—m):

- Evaluate CIR of the i-th user’s utterances (1—best speech recognition).

—— Predict coupled gaze-Speech instances of the i-th user’s data.

— Acquire words from the m training users’ true coupled instances (with

Speech transcript) and the predicted coupled instances (with 1-best speech

recognition) of users 1mi.

— Among the 10-best acquired words, add verified new words to the system

vocabulary.

The above simulation process is repeated 500 times with randomly ordered users

to reduce the effect of user ordering on the language understanding performance.

Figure 7.10 shows the averaged language understanding performance of these random

simulations.

The language understanding performance of the system with a static knowledge

base is also shown in Figure 7.10. The curve is drawn by the same random simulations

without the steps of word acquisition. We can observe a general trend in the figure

that, with word acquisition, the system’s language understanding becomes better after

more users have communicated to the system. Without word acquisition capability,

the system’s language understanding performance does not increase after more users

have conversed with the system.

The simulations show that automatic vocabulary acquisition is beneficial to the

system’s language understanding performance when training data is available. When

training data is not available, vocabulary acquisition could be more important and

beneficial to robust language understanding. It is worth to mention that the results
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data)

shown here are based on the 1-best recognized speech hypotheses with a relatively

high WER (48.1%). With better Speech recognition, we expect to have better concept

identification results.

7.6 Summary

This chapter investigates the automatic identification of closely coupled gaze-Speech

instances and its application for automatic word acquisition in multimodal conver-

sational systems. Particulary, this chapter explores the use of the features extracted

from speech, eye gaze, user interaction activities, and conversation context for pre-

dicting whether the user’s naturally occurring eye gaze links to the content of the

user’s Speech.

This chapter also investigates the application of the identified closely coupled
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gaze—speech instances for word acquisition The gaze-speech prediction and its effect on

word acquisition are evaluated on the l-best speech recognition and speech transcript.

The experiments demonstrate that the automatic identification of the closely coupled

gaze-speech instances significantly improves word acquisition, no matter the words

are acquired from the 1-best speech recognition or from the speech transcript.

Moreover, this chapter demonstrates that, during multimodal conversation pro-

cess, the system with word acquisition capability will be able to better understand

the user’s language after more users have communicated to the system.
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CHAPTER 8

Conclusions

8.1 Contributions

In this thesis, we present our work on using non-verbal modalities for human language

interpretation in multimodal conversational systems. Particularly, we present a joint

solution to the problems of unreliable speech input and unexpected speech input in

multimodal conversational systems, which includes two aspects: 1) use deictic gesture

and eye gaze to improve speech recognition and understanding, and 2) use eye gaze to

acquire new words automatically during multimodal conversation. Our evaluations

have demonstrated the promise of incorporating non-verbal modalities to help speech

recognition and language understanding during multimodal conversation.

Specific contributions of this thesis include:

0 Systematic investigation of incorporating deictic gesture and eye gaze to improve

speech recognition hypotheses for spoken language understanding. We have de-

veloped salience driven approaches to incorporate the domain context activated

by gesture/gaze in speech recognition. The gesture/gazebased salience driven

language models are used in different stages of speech recognition to improve

recognition hypotheses. Experimental results show that, by using non-verbal

salience driven language models, the word error rate of speech recognition is

decreased by 6.7% and the concept identification F-measure is increased by
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4.2%.

0 Systematic investigation of using deictic gesture to improve spoken language

understanding in multimodal interpretation. We have developed model-based

and instance—based approaches to incorporate gestural information in language

understanding. Experimental results have shown that the accuracy of intention

recognition in language understanding is increased by 6% ~ 6.6% by differ-

ent approaches that incorporate gestural information. We further analyze the

implications of these results in building practical conversational systems.

0 Systematic investigation of using eye gaze for automatic word acquisition in

multimodal conversation. We have developed word acquisition models that

incorporate speech—gaze temporal information and domain semantic relatedness

to improve word acquisition. By using the temporal and semantic information,

the mean reciprocal rank rate (MRRR) of word acquisition is increased by

43.2% in our experiment. To further improve word acquisition performance,

we build a classifier based on user interactivity to pick out “useful” speech-

gaze instances before word acquisition, which results in a further increase of

MRRR by 3.6%. Our simulation studies have shown that automatic online

word acquisition improves the system’s language understanding performance.

0 A Multimodal conversational system supporting speech, deictic gesture, and

eye gaze developed for 3D domains. Integrating techniques from speech recog-

nition, eye tracking, and computer graphics, we have implemented a multimodal

conversational system based on 3D interior domains. The system can support

speech, deictic gesture, and eye gaze inputs from the user during multimodal

conversation. It provides a framework to develop different multimodal applica-

tions.

0 Corpora of multimodal data collected through user studies. This research results
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in 3 sets of data to study multimodal conversation. These data provide user

speech and the accompanying deictic gestures and eye gaze fixations during

multimodal conversation. The data has been annotated for this thesis research.

The annotation includes the transcript of speech, the timestamps of transcribed

words, the referred entity in users’ speech, and the labeling of closely-coupled

gaze-speech pairs. These data will be available for research communities.

8.2 Future Directions

Some future directions for the research on using non-verbal modalities in language

processing include:

o In this thesis’s work on automatic word acquisition, new words are grounded to

the domain concepts representing entities and their properties. These domain

concepts are already given to the system. It is interesting for future work to

automatically learn these domain concepts.

0 The current implementation of word acquisition by means of eye gaze learns

words referring to entities and their physical properties (color, size, materia,

shape). It may be extended to learn words that describe the spatial relations

of entities and the user actions.

0 Besides word acquisition, eye gaze can also be used to help syntactic parsing

of the user’s spoken language. For example, suppose the user says “there is a

book on a table with a brown cover”. It is ambiguous in the parsing whether the

prepositional phrase “with a brown cover” should be attached to “a book” or “a

table”. However, using eye gaze fixations, the system can decide which entity

the phrase “with a brown cover” should be attached to based on its domain

knowledge about the properties of the fixated entities (book, table).
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A Multimodal Data Collection

This section describes the user studies that we conducted to collect the speech-gesture

and speech-gaze multimodal data sets for the investigations in this thesis.

A.1 Speech-Gesture Data Collection in the Interior Decoration Domain

We collected speech-gesture data by conducting user studies in the interior decoration

domain (Section 3.3.1). In this study, users were asked to accomplish tasks in two

scenarios. Scenario 1 was to clean up and redecorate a messy room. Scenario 2 was to

arrange and decorate the room so that it looks like the room in the pictures provided

to the user. Each scenario put the user into a specific role (e.g., college student,

professor, merchant, etc.), and the task had to be completed with a set of constraints

(e.g., budget of furnishings, bed size, number of domestic products, etc.). Figures

A.1 & A.2 show the instructions for scenario 1 and scenario 2 that were given to the

user before the study.

We recruited 5 users for the study. During the study, the user’s speech was

recorded through an open mic'rophone and the user’s deictic gesture was captured

by a touch-screen. From the user studies, we collected 649 spoken utterances with

accompanying gestures

A.2 Speech-Gaze Data Collection in the Interior Decoration Domain

We also collected a corpus of speech-gaze data in the interior decoration domain with

a different user task. In this study, a static 3D bedroom scene was shown to the

user. The system verbally asked the user a list of questions one at a time about the

bedroom and the user answered the questions by speaking to the system. Figure A.3

lists the questions that are asked by the system.

We recruited 7 users for the study. During the study, the user’s speech was

recorded through an open microphone and the user’s eye gaze was captured by an
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Description of Scenario 1

1. You are planning to have an important meeting at your apartment. Cur-

rently, your apartment is a mess. You would like to clean it up and redecorate.

You have found a computer program that will allow you to manipulate the fur-

niture arrangement and style in the apartment. This will allow you to decorate

the virtual replica of your apartment prior to redecorating your real apartment.

This will minimize heavy lifting and save you lots of time! You have two goals.

The first goal is to clean up your messy apartment by removing, replacing, or

modifying objects that appear to be either out of place or have strangelooking

characteristics. The second goal is to redecorate your apartment. This can be

accomplished by adding, removing, or modifying objects.

2. You are not a millionaire, so you will have to stay under a specific budget during

the decoration process. You also have certain personality traits and practical

needs which will constrain the redecoration process. The budget along with

these needs will be defined by a character role card which will be given to you at

the beginning of this scenario.

3. Additionally you will need to write down certain information about the result—

ing redecorated apartment for future reference. The information that is important

to you will be determined by your character role.

Role: College Student

You are a college student. You want to have an exotic and colorful apartment,

but price is a major concern. You require a quality desk that will last for a long

time. You need cabinets with many drawers to store all your school work. You

prefer dim lighting and lots of plants and artwork. You want your apartment

to look as exotic and colorful as possible while satisfying your basic needs and

staying under a budget of $1800.

Role: Patriotic Family (with kids)

You are a former US Marine. You are very patriotic and have a family (with

kids) that share your values. You want your apartment to contain as many

objects made in the US (especially objects that have recently been made in the

US) and be symbolic of the US, yet you also want your apartment to be practical

and safe for your children. You prefer soft unbreakable furniture without sharp

corners that has be recently been produced in the US. You need a large bed and

would prefer to have at least one reclining piece of furniture. You must satisfy

these preferences while staying under a budget of $2500.
 

Figure A.1. Instruction for scenario 1 in the interior decoration domain
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Description of Scenario 2

1. Imagine that you are searching for a new place to live. You have found a

computer program that will allow you to manipulate the furniture arrangement

and style in a perspective apartment. When you recently visited an old friend,

you really enjoyed the layout of his/her apartment. The images of this apartment

are vividly engrained in your mind. Your goal is to arrange your perspective

apartment in the mold of those images. To help with the story, sample images

will be provided for you.

2. While the layout of your friend’s place was aesthetically pleasing to you, certain

aspects of the apartment need to be modified to fulfill your own personality traits

and practical needs. These needs will be defined by a character role card which

will be given to you at the beginning of this scenario. Based on your chosen

character role, you will need to modify certain pieces of furniture to adhere to

your character’s needs.

3. Additionally you will need to write down certain information about the per-

spective apartment for future reference. The information that is important to

you will be determined by your character role.

Role: Collector You are an art and antiques collector. You prefer old, ex-

pensive, and aesthetically pleasing furniture. You sometimes take prospective

customers to your apartment and need to keep up the appearance that you know

what you are talking about. Your goal for this apartment is that it contains a

lot of art (paintings), old and expensive furniture, objects from a wide variety

of countries with a minimal number of US—produced objects. You will need to

modify the existing furniture to adhere to your preferences.

Role: Professor You are a college professor. The apartment’s practicality is

very important to you. You require a quality desk that will last for a long time.

You need cabinets with many drawers. Light is very important to you. You

prefer powerful (high-wattage) lamps. Additionally you require that a recliner

is available when you need to relax from your busy day. You want to efficiently

balance comfort vs. price — you generally don’t want furniture made out of the

cheapest or more expensive material.    
Figure A.2. Instruction for scenario 2 in the interior decoration domain

Eye Link 11 eye tracker. From the user studies, we collected 554 spoken utterances

with accompanying gaze streams.
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Describe this room.

What do you like/dislike about the arrangement?

Describe anything in the room that seems strange to you.

Is there a bed in this room?

How big is the bed?

Describe the area around the bed.

Would you make any changes to the area around the bed?

Describe the left wall.

How many paintings are there in this room?

Which is your favorite painting?

Which is your least favorite painting?

What is your favorite piece of furniture in the room?

What is your least favorite piece of furniture in the room?

How would you change this piece of furniture to make it better?
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Figure A.3. Questions for users in the study

A.3 Speech-Gaze Data Collection in the Treasure Hunting Domain

We collected another corpus of speech-gaze data by conducting user studies in the

treasure hunting domain (Section 3.3.2). In this study, the user’s task is to find some

treasures that are hidden in a 3D castle. The user can walk around inside the castle

and move objects. The user needs to consult with a remote “expert” (i.e., an artificial

agent) to find the treasures. The expert has some knowledge about the treasures but

can not see the castle. The user has to talk to the expert for advices of finding the

treasures. Figure A.4 shows the instruction that is given to the user before the study.

We recruited 20 users for the study. During the study, the user’s speech was

recorded through an open microphone and the user’s eye gaze was captured by a

Tobii eye tracker. From the user studies, we collected 3709 spoken utterances with

accompanying gaze streams.
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Instruction

Your mission, if you choose to accept it (by signing the consent form), is to

immerse yourself into the world of treasure hunting and find Zahalin’s treasure.

With the help of an artificial conversational agent, you will navigate Zahalin’s

castle in search for the treasure. Some of the treasure will be hidden, while some

of it will be in plain sight. To communicate with your artificial assistant, speak

clearly into the microphone using your natural tone of voice.

The assistant is an old criminal who is familiar with Zahalin’s castle. He has

partial knowledge about where the treasure is and how to find it, but cannot

see what is inside the castle. You have additional knowledge about what can be

seen in the castle environment. It is your responsibility to communicate with the

artificial assistant and provide as much detail about the layout of the castle as

the he requires.

You have the ability to open, move, and pick up various objects in the castle.

However, you must be careful! Some objects are booby trapped and you will be

penalized for manipulating these objects. Make sure to ask the artificial assistant

if an object is safe before manipulating it.

Together you will decipher this puzzle. Good luck!

While you navigate through the castle and converse with your artificial assistant,

we will track your speech and eye gaze. This data will be used to make further

improvements to the conversational agent’s spoken language understanding. The

system will inform you if it fails to recognize either your speech or eye gaze. If

this happens at any point during the study, please ask your proctor for assistance.
 

Figure A.4. Instruction for the user study
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B Parameter Estimation in Approaches to Word Acquisition

Given parallel data set (W,E) where W = {w1,w2,...,wn} and E =

{e1,e2, . . . ,en}, EM algorithms are used to estimate the probabilities p(wle) that

maximize the likelihood of the data set

p()=W|E fiP(Wklek)

k=1

B.1 Parameter Estimation for Base Model-1

The Base Model-1 is

IWI lel

p(wle)= P(wjlei)

(T———e|+11)'w'jl:11§

Use EM algorithm to estimate the parameters 0 = (p(wle)) that maximize

p(WlE)=

o E—step: compute the expected value of the log-likelihood with respect to the

distribution of the alignments a]-

Q = E[1ogp(lea<old>)]

n

= 23%(lek|+1) 'wk'

n IWkllekl

+ Z ZZPW— llwkjiekiaaww)108P(wz.~j|6ki)

k=1j=1i:

 

where for each instance,

01d) P(wkjleki)

’= lekl

Zkajleki)

i=0

(3.1) 

p(aj = ilwkj, eki, 6(

o M-step: find the new parameters

60"”) = arg maxQ
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and we have

kaI lekl

 

n

ZZ 2W2“ = ilwkja elm 9(0’d’)5(w,wkj)5(e, ea)

k=1j=1 i=0

=
B.2p(wle) n W M, < >

ZZZ 229% = ilwkj’eki’6(01d))5(wawkj)5(ea er.)
w k=1 j=l i=0

where,

1 wk- = w

5(wawkj) = J _ (B-3)

0 otherwrse

I. eki = 8

5(eaekz’) = (8.4)

0 otherwise

B.2 Parameter Estimation for Base Model-2

The Base Model-2 is

IWI lel

P(W|e) = H 2PM = ilj, lwl, |e|)P(wj|€z')

j=1 i=0

Use EM algorithm to estimate the parameters 6 = (p(ajlm, l), p(wle)) that max-

imize p(WIE):

o E—step: compute the expected value of the log-likelihood with respect to the

distribution of the alignments a]-

Q = E[logp(W|E,0(0‘d))]

kal lekln

= Z Z Zp(aj = ilwkjieki’ lwklv leklv6(01d))

k=1 j=1 i=0

x log [p(aj = illwklv lekllp(wkjleki)l

where for each instance is,

 

old) Maj = 73Hka lekl)P(wkjleki)

) = lekl (B.5)

ZPUIJ' = illwkl, lekl)P(wkj|ek-i)

i=0 '

Maj = ilwkjvekiv kal» |8k|,9(
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o M-step: find the new parameters

0(new) = arg maxQ

and we have

- i

Z p(aj = nutter. Iwkl. lekla9(0d))

kilWIc|=mJekl=l
 

 

10(0' = z'ImJ) = (36)J 2 1

kzlwk|=m,|ek|=l

n IWkl lekl

ZZ :Maj = 2'Im = lwli = |6k|)5(w»ww)5(€,eki)

k=1j=1 i=0

w e = 8.7

p‘ ' ) n lwkl lekl ( )

ZZ: Z 217(03' = 2'Im = lle = lek|)5(w,ij)5(6»€kz‘)

w k=1j=1 i=0

where 6(w,wkj) and 6(e, eki) are shown in Equations B.3 and B4.

B.3 Parameter Estimation for Model-2s

The Model-2s is

IWI lel

P(W|e) = H ZPst = ilj,e,W)P(wj|€i)

j=1i=0

Use EM algorithm to estimate the parameters 0 = (p(wle)) that maximize

P(W|E)=

o E—step: compute the expected value of the log-likelihood with respect to the

distribution of the alignments a]-

Q = E [10g p(WlE, 9W0]

n lwkl lekl

= Z Z 210% = Zl'wkjfikiflwl ’)10g[Ps(aj = ZIJvekawk)P(wkjleki)]

k=1j=li=0

where for each instance,

_ Ps(aj = iljaekawklmwkjleki)

lekl

Zpsfilj = ilLGaWr—lPW’mIGt-r)

i=0

01(1))
 

p(aj =2|1Ukj, ekis 6(
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o M-step: find the new parameters

0("ew)—— arg maxQ

and we have

n lwkl lekl

2: Z 277(03' = ilwkjmm,9(01d))6(w,wkj)6(e,eki)

k=1 j=1 i=0

IWkl lekln

2:Z Z 217(03' = ilwkj’ eki: 9(01d))6(w, wkj)6(ev eki)

w k=1j=1 i=0

p(wle) =
 (3.9)

where 6(w,wkj) and 6(e,ek,-) are shown in Equations B.3 and 8.4.

BA . Parameter Estimation for Model-2t

The Model-2t is

 

IWI lel

P(=W|e) H Ema° -‘ilj,e,W)P(w]'|€z‘)

j=—1i=0

where

0 d(e,-,wj) > 0

. _ - - _ expla'd(€i,wj'll
pt(aj - ZI],6,W) — d(e,-,wj S 0

Zexvla ' dfei, wjll

Use EM algorithm to estimate the parameters 6 = (p(wle),a) that maximize

P(W|E)=

o E—step: compute the expected value of the log-likelihood with respect to the

distribution of the alignments a]-

Q = E[logp(W|E,6(01d))]

n kal lekl

= 223me-=imitated”)logiptta- =2'Ij,e;..wnp<wt,let.>]

k=lj=li=0
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where for each instance,

old) Maj = iljaekiwklmwkjleki)

) = lekl

:29th = iljaek,wklp(wkjleki)

 
p(aj = ilwkj, eki, 6(

eXPla ' d(ekia wkj)lP(wkjleki)
 

 

 

= 3.10

lekl ( )

ZeXPla ' d(€ki, wkj)lP(wkj|€ki)

i=0

0 M-step: find the new parameters

60m”) = arg maxQ

0

The new p(wle) is given by

n lwkl lekl

ZZZPW = ilwkj, emu 9(01d))5(w,wkj)5(6, eki)

k=1 j=1 i=0
w e = 8.11

p( ' l n IWkl lekl ( ’

ZZ2 2pm.- : film]... at... 6(0’d>>6(w. wkj)5(€, er.)

w k=1 j=1 i=0

where 6(w,wkj) and 6(e,ek,') are shown in Equations B.3 and B4.

The new a is given by

expla ' d(€kw wk )1 .
2 J = P(%‘ = lekjflkrflwd’)

Z eXPla ' d(6ki» wkjll

i

2

 

ex -d e -, -

a-— arg11111123: 2: pla ( kl wk])] — p(aj = ilwkj,8ki,0(01d))

ZeXpla d((ekivwkjll

l

(B.12)

The Levenberg-Marquardt (LM) algorithm [63,67] is used to find the MSE

estimate of a.
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B.5 Parameter Estimation for Model-2ts

The Model-2ts is

IWI lel

p(WIG) = H Zptsmj = iljievw)p(wjlei)

j=1 i=0

where

53(8kz‘, wkj) expla ' d(€i’ lel

Dammit«w.»
I

 

pt3(aj = ilj,e,W) =

Use EM algorithm to estimate the parameters 0 = (p(wle),a) that maximize

p(WlE)=

o E—step: compute the expected value of the log-likelihood with respect to the

distribution of the alignments a]-

Q = E[logp(WIE.9<°’d>>]

n lwkllekl

= Z 2 21407 = ilwkjaeki,9(01d))1030”st = iljvekawklflwkjlekill

k=1j=1 i=0

where for each instance,

 

 

.___ , , ,_ ,.

P(aj=i|wkj»eki,0(°ld)) = lefltsmj ll],ek’w“)p(“k-chkz)

:20ij = ilieawklflwkjlew)

i=0

_ Smeki’ wkj) expla ' d(ekiv wkjllPUUkjlekil

_ lekl

ZSR(ek,-, wkj) eXPla ' (“emu ijllPijleki)

i=0

(3.13)

o M-step: find the new parameters

6(new) = arg max Q
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The new p(wle) is given by

n lwkl lekl

 

ZZ 274% = ilwrcjv em, 9(Old’)5(wawm5(e,ekr)

_ k=1j=1 i=0

p(wle) _ n kalle/cl (314)

Z 2 2pm,- =ilwkreki,0(01d))5(w,wkj)6(e,eki)

w k=1j=1i=0

where 6(w,wkj) and 6(e, em) are shown in Equations B.3 and B4.

The new a is given by

330%» wkj) expla ' d(€kz‘, wkjll

Z 53(8ki, wkj) expla ' d(ekia wkjll

‘l

 

= Maj =ilwkjaekiv6(01d))

 
Z: SR(€ki,ij)eXP[a'd(8ki,witj)l _

j k ZSR(ekiawkj)eXPla'd(€ki,wkj)l

1

a = arg min 2

a i

2

p(aj = ilwkj,ek,~,0(°ld)) (13.15)

The Levenberg-Marquardt (LM) algorithm [63,67] is used. to find the MSE

estimate of a.
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