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ABSTRACT

UPPER PALEOZOIC STRATIGRAPHIC HISTORY AND PROVENANCE OF THE
FAREWELL TERRANE, SW ALASKA

By
Matthew A. Malkowski

The Farewell terrane, in southwest Alaska, is predominantly located in the
western Alaska Range, but crops out as far north as the Kuskokwim Mountains and
represents one of the largest exotic terranes in the North American Cordillera. Exposed
both north and south of the Denali fault, the Farewell terrane contains three somewhat
distinct stratigraphic successions: 1) Neoproterozoic—Devonian carbonate rocks of the
Nixon Fork subterrane, 2) Cambrian—Devonian carbonate and siliciclastic strata of the
Dillinger subterrane, and 3) Devonian—Jurassic(?) siliciclastic strata of the Mystic
subterrane. This investigation aims to constrain the upper Paleozoic tectonic evolution of
the Farewell terrane through sedimentologic interpretations and measured stratigraphy as
well as by utilizing combined provenance techniques of sandstone modal compositions
and U-Pb detrital zircon geochronology.

Measured stratigraphy and sedimentologic analyses of upper Paleozoic
(Mississippian—Permian) siliciclastic strata from the Mystic subterrane suggest a
submarine basin-floor turbidite fan depositional environment. Modal composition trends
reveal pervasive occurrences of lithic volcanic and sedimentary grains reflecting
contributions from a magmatic arc to a recycled orogen source. U-Pb detrital zircon age
peaks from the newly defined Mystic Pass formation reveals four trends in age spectra:
20001800 Ma, 465-405 Ma, 365-315 Ma, and 305-290 Ma. These trends correlate

with both Siberian and North American magmatic source areas.
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CHAPTER 1: INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

Nearly the entire western margin of North America, from Mexico to the North
Slope of Alaska, represents a collisional zone comprised of fault-bounded geologic
fragments with distinct geologic histories. These fragments are most commonly referred
to as tectonostratigraphic terranes (Coney et al., 1980; Jones et al., 1982; Howell et al.,
1985; Plafker and Berg, 1994; Dickinson, 2004). Although this margin has been heavily
studied, the timing and nature in which each of these terranes has accreted as well as their
tectonic evolution prior to accretion remains a subject of debate. Furthermore, the
Mesozoic and Cenozoic accretionary history of southern Alaska has received a
considerable amount of recent study (e.g. Trop and Ridgway, 2007; Perry et al., 2009;
Hampton et al., 2010), however the Paleozoic is poorly constrained.

Southern Alaska is one of the more understudied portions of the Cordilleran
accretionary margin as bedrock exposures are in remote areas and it is home to the
highest topography in North America. Thus, several fundamental questions remain
regarding the tectonic evolution of this region. And while it is widely accepted that many
of the terranes that make up southern Alaska were in proximity to western North America
by the mid-Mesozoic (Plafker and Berg, 1994; Dickinson, 2004; Trop and Ridgway,
2007), little is known about the pre-Mesozoic accretionary history of this margin. Such is
the case for the Farewell terrane in south-central Alaska (Figure 1.1), which consists of
Neoproterozoic to Jurassic-age rocks including a thick (~3-4 km) succession of upper

Paleozoic siliciclastic strata. These strata have been interpreted to include foreland
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Figure 1.1. Generalized geologic map showing the regional area of interest and the distribution of exposed
portions of the Farewell terrane. The majority of Farewell exposures are in the Alaska Range south of the
Denali fault, but crop out as far North as the Kuskokwim Mountains north of the Iditarod fault. Note the
small box in the western Talkeetna quad. shows the field area in Figure 1.5. Modified from Bradley et al.,
2003.



basin deposits associated with the Late Paleozoic Browns Fork orogen (Bradley et al.,
2003). The precise timing, nature, and location of this event, however, remain unknown.

The primary objective of this study is to provide a first-order stratigraphic and
provenance constraint for Paleozoic siliciclastic strata of the Farewell terrane.
Specifically, this investigation focuses on the provenance, and sedimentology and
stratigraphy of the upper Paleozoic (Mississippian—Pennsylvanian) Mystic Pass formation
(note that the “Mystic Pass formation” is an informal and unofficial reference).
Sedimentologic and stratigraphic analyses are utilized to constrain a depositional
environment for these strata, whereas provenance analyses were conducted to determine
source areas. The results of this investigation offer initial constraint on the upper
Paleozoic tectonic evolution of southern Alaska and bear on pre-accretionary

paleogeographies of the Farewell terrane.

1.2 GEOLOGIC BACKGROUND

The Farewell terrane, in southwest Alaska, is predominantly located in the
western Alaska Range, but crops out as far north as the Kuskokwim Mountains, south of
the Kaltag fault (Figure 1.1). It is commonly described as containing a three-part
stratigraphy (Figure 1.2) that consists of: 1) latest Neoproterozoic through lower
Paleozoic (Devonian) shallow-marine, mainly carbonate strata of the Nixon Fork
subterrane, 2) lower Paleozoic (Cambrian-Devonian) interbedded submarine fan turbidite
deposits and carbonate units of the Dillinger subterrane, and 3) upper Paleozoic
(Devonian—Permian) to lower Mesozoic (Jurassic) siliciclastic strata of the Mystic

subterrane. Alternatively, Decker et al., 1994 described the Nixon Fork and Dillinger
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subterranes as being lateral facies variations and referred to them together as the White
Mountains sequence, and the Mystic subterrane is described as the Mystic

sequence. Although these two nomenclatures are not mutually exclusive, the remainder
of this paper will follow the subterrane nomenclature described by the former. This
investigation focuses on the mid to upper Paleozoic siliciclastic strata exposed in the
Mystic subterrane (Figure 1.1 and 1.2).

The Mystic subterrane contains a range of lithologies, but most notably includes
two siliciclastic units whose stratigraphic relationship has not been confirmed. The first
is a >1500-m-thick Permian-aged succession of sandstone, conglomerate, and fossil-leaf
bearing siltstone collectively referred to as the Mt. Dall conglomerate, which outcrops as
a broad syncline in the Mt. Dall region. The second is a structurally imbricated
succession of Mississippian—Pennsylvanian siliciclastic strata (herein unofficially
referred to as the Mystic Pass formation), and is the most extensive unit mapped within
the Mystic subterrane. These strata are described as a thick, structurally deformed flysch-
like sequence containing thick lenses of pebble- to cobble-conglomerate with clasts of
limestone and black cherty argillite (Reed and Nelson, 1980). Given their chronologic
and lithologic associations, it is likely that these units are closely related and may
represent temporal variations of the same (foreland?) basin (Bradley et al., 2003).
However, the structural disparities between the broadly folded Mt. Dall conglomerate and
the isoclinally folded Mystic Pass formation complicate the nature of their relationship.
The focus of this study is on the upper Paleozoic siliciclastic strata of the Mystic Pass
formation. While these strata have received some previous work in the form of regional

mapping, general lithologic descriptions, and isolated geochronology (Reed and Nelson,



1980; Jones et al., 1983; Bradley et al., 2007) this is the first investigation aimed at
integrating the sedimentology, stratigraphy, and provenance of the Mystic Pass
formation.

These upper Paleozoic siliciclastic strata of the Mystic subterrane are most
widespread in the western Alaska Range (Talkeetna quadrangle) south of the Denali Fault
(Figure 1.3), but potentially correlative rocks are also sporadically mapped in other
regions of southwest and central Alaska. These exposures include the Farewell-Sheep
Creek region (eastern McGrath quadrangle), White Mountains (western McGrath
quadrangle), and four additional mapped exposures in the Lime Hills quadrangle (Figure
1.1). Although these units are all mapped as potentially belonging to the Mystic
subterrane, stratigraphic differences are noted in the White Mountains region and the

western Lime Hills quadrangle (Figure 1.3).

1.3 PREVIOUS WORK

With the exception of several regional mapping projects and isolated studies
(Reed and Nelson, 1980; Bundtzen et al., 1997; Bradley et al., 2003 and 2007; Sunderlin
2008), very little previous work has been carried out which focuses on the stratigraphic
history and provenance of the Farewell terrane. Based on findings from previous studies,
three models have been proposed to explain the stratigraphic history and/or tectonic
evolution of the Farewell terrane and its relationship with the North American Cordillera.
As reference for the following models, refer to Figure 1.4 for a paleographic
reconstruction of where primary tectonic elements were located during the mid Paleozoic

(Early Carboniferous).
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for locations of documented stratigraphy.




"(TOOT) 2591008 W01 PAYIPOW "BLIQIS-FS ‘BUIYY) (INOS-H IS ‘BIUSWY (NNOS-AVS BUIY) YUON-HON ‘BHuame’]
-V ‘elueIsyyezey-7vy ‘eIpul-ANI ‘BIN[eg-TVE BIBNSNY-SNV BIQRIV-VYV BINIRUY-INV BIOLV-YJV "dUBLII) [[SMIL] YIIM PIIBIDOSSE SIUIAD
91070918 Jaddn 10J 5FR1S U1 $13S SIY] "SIUSW|I 110193} Jolew Jo uonngLusip ay) Futmoys uonannsuosal srydessoaioared snoiajiuoqie ) Aeq “p'y aandiy

«:e.:uzﬁe:&u:c:uu;.ﬁmﬁz._ \\
Juod SMo.4p) AUOZ UOLdNPYNS

(20uUd42[2.4 UOTIDDO] 40f)
AUI[INO [BISEOD WIAPOJA]

urdiew uoweropuaunuo) ()

SSewipue|-0d[ed

NVIDO
SAHLIL




The Farewell terrane represents a displaced fragment of the Paleozoic
continental margin of North America (Jones et al., 1982; Decker et al., 1994).
This suggests that upper Paleozoic siliciclastic strata present within the
Farewell terrane would be a result of exhumation and deposition that occurred
in proximity to the North American margin. Decker et al. (1994) highlight the
evidence for this hypothesis as regional correlations in unconformity ages and
stratigraphic sequences between the Farewell terrane and northern Alaska and

the Canadian Arctic.

The Farewell terrane represents a displaced fragment of the Siberian
continental margin. Evidence for Siberian affinities was first proposed by
Mamay and Reed (1984) where they highlighted the presence of Permian-
aged plant fossils (Zamiopteris) from the conglomerate of Mt. Dall, which are
characteristic of Siberia (Angaraland) and not known to exist in North
America. However, Sunderlin (2008) conducted further investigations on
plant fossils from the conglomerate of Mt. Dall and concluded an overall
mixed Siberian and Laurentian floral affinity. Paleontological studies by
Blodgett et al. (2002) argue that several of the accreted Alaska terranes,
including the Farewell terrane of southwest Alaska, the Arctic Alaska terrane
of northern Alaska, the York terrane of northwest Alaska, the Livengood
terrane of east-central Alaska, and Alexander terrane of southeast Alaska are
rifted fragments of the Siberian platform. This work also suggests that these

Alaskan terranes, as well as Baltica and Siberia, were all in close proximity



from Cambrian to Devonian time due to similar faunal affinities. Aside from
the Siberian-aspect flora in the Mt. Dall conglomerate, there is little to no data
available to test the hypothesis of a link between the Farewell terrane and

Siberia during the upper Paleozoic (Mississippian—Permian).

3. The lower Paleozoic portion (Nixon Fork and Dillinger subterranes) of the
Farewell represents a displaced fragment of a larger continental body (i.e., the
Arctic Alaska—Chukotka Microplate) (Miller et al., 2006; Amato et al., 2009),
and the upper Paleozoic portion (Mystic subterrane) are a result of
exhumation and deposition that occurred proximal to Siberia. Dumoulin et al.
(2002) demonstrate the occurrence of stratigraphic and faunal similarities
between the lower Paleozoic carbonate units of the Farewell terrane and age-
equivalent carbonate strata in the Brooks Range of northern Alaska, which
diminish after Middle Devonian time. These findings suggest that during the
early Paleozoic (Cambrian—-Devonian) the Farewell terrane was in close
proximity to Arctic Alaska and was likely part of a larger crustal platform
fragment. Furthermore, Bradley et al. (2003) propose a previously
unrecognized late Paleozoic orogeny (the Browns Fork Orogeny) associated
with the Farewell terrane as part of a larger plate convergence zone from the

Urals to an unspecified offshore region of the North American Cordillera.

In addition to the studies mentioned above, Bradley et al. (2007) conducted U-Pb

detrital zircon geochronologic analyses on three samples from the Mystic subterrane, and



suggests that these data are consistent with the Farewell-Siberia connection suggested by

previous studies (e.g., Blodgett et al., 2002; Dumoulin et al., 2002).

1.4 RESEARCH QUESTIONS

The purpose of this project is to provide the first detailed understanding of upper
Paleozoic stratigraphy and provenance of the Mystic Pass formation from the Farewell
terrane. This is needed to explain the timing, source, and nature of exhumation and
sedimentation of thick successions of upper Paleozoic siliciclastic strata of the Mystic
subterrane and thus constrain the upper Paleozoic tectonic history of the Farewell terrane.
In doing so, this investigation aims to provide a first-order test of the following

models/hypotheses:

1. Upper Paleozoic siliciclastic strata of the Mystic subterrane represent
exhumation and sedimentation associated with tectonic interaction between
the Farewell terrane (Nixon Fork and Dillinger subterranes) and the North
American margin. This model is similar to that proposed by Jones et al.
(1982), in that it would suggest the Farewell was in close proximity to North
America during the upper Paleozoic. Modal compositions for this hypothesis
would likely show a component of continental block detritus, but could also
include magmatic arc and recycled orogen signatures as these elements are
common along the edges of continents; however detrital grain ages would
ideally match magmatic source ages from the North American margin and

Laurentian craton.
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2. Late Paleozoic siliciclastic strata of the Mystic subterrane represent
exhumation and sedimentation associated with tectonic interactions involving
an extension of the Uralian orogeny (as proposed by Bradley et al., 2003), the
Siberian craton, or Baltica. This hypothesis would also help to explain the
presence of Siberian-aspect fossils within these strata. This model could
result in a range of modal compositions, which could include both cratonal

sources and arc-derived detritus that has resulted from orogenesis.

3. Late Paleozoic siliciclastic strata of the Mystic subterrane represent
exhumation and sedimentation associated with inter-oceanic tectonic
development which could include arc-continent, arc-arc, or continent-
continent interactions with the Farewell terrane and another regional terrane
(i.e. the Alexander terrane) or island arc system. Provenance data supporting
this model could include arc-related modal compositions and detrital zircon
ages which match magmatic ages from other age-constrained Paleozoic
terranes. Although this idea has not been clearly proposed in previous
literature, it is feasible given that there are several other Paleozoic terranes
(Arctic Alaska, Alexander, and York) described as being regionally proximal
to the Farewell terrane (Blodgett et al., 2002; Dumoulin et al., 2002; Colpron

and Nelson, 2009).
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Most importantly, this investigation contributes new chronologic, stratigraphic,
and provenance data from the Farewell terrane, which provides constraint on the upper

Paleozoic tectonic development of this region.

1.5 GENERAL METHODS

The Mystic subterrane is the ideal study location for addressing the research
questions and hypotheses outlined above in that it contains abundant exposures of mid- to
upper- Paleozoic siliciclastic sediments in southern Alaska. The fieldwork portion of this
study consisted of geologic mapping, measuring stratigraphic sections, and sample
collection of sandstone for petrographic and geochronologic analyses from the Mystic
Pass formation at Mystic Pass in the western Talkeetna quadrangle in south-central
Alaska (Figure 1.5). Documenting the sedimentology and stratigraphy of these areas
provides a basis for evaluating depositional environments, basin setting, and tectonic
history of the Mystic subterrane. This study presents measured stratigraphic section and
sedimentary facies and architectural analyses to assess up-section (temporal) progressions
in sedimentation and interpreting depositional process for constraining a depositional
model for the Mystic Pass formation. This is discussed in Chapter 2.

A provenance analysis is used to determine the detrital source for strata of the
Mystic Pass formation thus providing insight into what was being exhumed in proximity
to the Farewell terrane during the upper Paleozoic. Sandstone modal compositions will
provide a first-order constraint to the nature of the source rocks in the provenance terrane
from which sandy detritus was derived (Dickinson et al., 1983). More specifically, this

approach can help narrow down whether the Farewell terrane was in proximity to an
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island arc or a continental margin, for example, during the late Paleozoic development of
these strata. Thirty-one thin sections were analyzed from sandstone samples of the
Mystic Pass formation at Mystic Pass. These data provide a bulk composition of
sandstone associated with the Mystic Pass formation and offer insight into what was
being exhumed proximal to the Farewell terrane during deposition of the Mystic Pass
formation.

This investigation also utilizes U-Pb detrital zircon geochronology to provide the
crystallization ages of individual zircon grains within the siliciclastic units of study.
These data allow for detailed comparison between the ages of detrital grains and the ages
of known magmatic regions, which can then be evaluated as potential source areas. This
technique also puts age-constraint on the Mystic Pass formation as a maximum
depositional age can be inferred from the youngest grains in each sample (Dickinson and
Gehrels, 2009). Three sandstone samples were collected for U-Pb detrital zircon analysis
from Mystic Pass formation near Mystic Pass in the western Talkeetna quadrangle of

south-central Alaska.

1.6 SUMMARY

The following chapters discuss the stratigraphic history and provenance from the
upper Paleozoic Mystic Pass formation of the Farewell terrane. Chapter 2 includes a
stratigraphic overview of the Mystic subterrane as well as new sedimentologic and
stratigraphic analyses of measured stratigraphy from the Mystic Pass formation. Chapter
3 focuses on the provenance of these strata and presents new data on modal compositions

and U-Pb detrital zircon geochronology of the Mystic Pass formation. Together, these
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data sets represent the first comprehensive analysis of sedimentology, stratigraphy, and
provenance from the Mystic subterrane and provide first-order constraint on the tectonic

evolution of Farewell terrane. Conclusions from this work are presented in Chapter 4.
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CHAPTER 2: SEDIMENTOLOGY, STRATIGRAPHY, AND DEPOSITIONAL

SETTING OF THE MYSTIC PASS FORMATION

2.1 INTRODUCTION

The North American Cordillera is one of the most extensively studied mountain
belts in the world with much of this focus being on regions of contiguous U.S. and
western Canada. However, southern Alaska is perhaps one of the more understudied
portions of the Cordilleran accretionary margin as bedrock exposures are in remote areas
and it is home to the highest topography in North America. Thus, several fundamental
questions remain regarding the tectonic evolution of this region including the
stratigraphic history and structural evolution of Triassic and older tectonostratigraphic
terranes in southwest Alaska.

One of the more regionally extensive and least understood terranes in this region
is the Farewell terrane (Figure 2.1). The Farewell consists of three subterranes: 1) the
Nixon Fork subterrane consisting of latest Neoproterozoic through lower Paleozoic
(Devonian) shallow-water, mainly carbonate strata, 2) the Dillinger subterrane, which
consists of lower Paleozoic (Cambrian—-Devonian) deep-water siliciclastic and carbonate
units, and 3) the Mystic subterrane which contains upper Paleozoic (Devonian—Permian)
to lower Mesozoic primarily siliciclastic strata (Figure 2.2). While previous studies have
documented general lithologic descriptions and biostratigraphic age constraint, much of
the basic sedimentology, stratigraphy, and structure remain unknown. An understanding

of these fundamental aspects is an essential component for resolving the tectonic
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evolution of the Farewell terrane, and the Paleozoic accretionary history of the
northernmost portion of the North American Cordillera.

This study focuses on the stratigraphy of the Mystic subterrane and provides new
sedimentologic and stratigraphic analyses of the upper Paleozoic (Mississippian—
Permian) Mystic Pass formation from the Mystic Pass region of the western Alaska
Range (Figure 2.1). A general stratigraphic overview of the Mystic subterrane indicates a
combination of both marine and non-marine clastic deposition throughout much of the
upper Paleozoic (Figure 2.3). Furthermore, measured stratigraphic section along with
sedimentary facies and architecture analyses suggest that laterally extensive interbedded
sandstone and mudstone of the Mystic Pass formation are likely part of turbiditic
submarine fan depositional system and may record foreland basin deposition associated

with upper Paleozoic orogenesis (Bradley et al., 2003).

2.2 STRATIGRAPHIC OVERVIEW OF THE MYSTIC SUBTERRANE

Upper Paleozoic siliciclastic strata of the Mystic subterrane are most abundant in
the western Alaska Range (Talkeetna quadrangle) south of the Denali Fault, but
potentially correlative rocks are also sporadically mapped in other regions of southwest
and central Alaska (Figure 2.1). In addition to the western Talkeetna quadrangle, primary
exposures include the Farewell-Sheep Creek region (eastern McGrath quadrangle), the
White Mountains region (western McGrath quadrangle), and four additional mapped
exposures in the Lime Hills quadrangle (Figure 2.2). Although these units are all mapped
as potentially correlating with the Mystic subterrane, stratigraphic differences are noted

in the White Mountains region and the western Lime Hills
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quadrangle where Mississippian—Pennsylvanian siliciclastics are sparsely documented
(Figure 2.3). The study area for this investigation concentrates primarily in the western
Talkteetna quadrangle which contains the most extensive exposure of Mystic subterrane
strata.

In the western Talkeetna Quadrangle the Mystic subterrane is locally underlain by
carbonate and siliciclastic strata of the Dillinger subterrane (Figure 2.4). Decker et al.
(1994) suggest a Middle Devonian angular unconformity as the contact between the
Mystic and Dillinger subterranes; however conformable relationships have also been
reported (Blodgett and Gilbert, 1983 and Patton and others, 1984). The base of the
Mystic subterrane strata is thought to be either a late Early Devonian (Emsian) limestone
(Gilbert and Bundtzen, 1984; Blodgett and Gilbert, 1992; Blodgett et al., 2002) or a thin
(~10 m) nonmarine redbed sequence consisting of sandstone & conglomerate with plant
and coalified wood debris (Reed and Nelson, 1980). Basal units are overlain by a 125 —
250 m thick succession of sandstone, siltstone, and shale containing late Middle and early
Late Devonian fauna. Upsection, is a reefoid limestone estimated at 60 to 90 meters
thick, overlain by the so-called “blackball chert” containing radiolarians of Late
Devonian age (Fammennian). Pillow basalts are interbedded within some of these
Paleozoic strata and are of an unknown age, but inferred to be middle or late Paleozoic
age (Reed and Nelson, 1980).

Overlying the Devonian strata of the Mystic subterrane are two key siliciclastic
units, which are also the most relevant to this study. The first (and lower) is the Mystic
Pass formation which is a 1 to 2 km thick (structural thickness) succession of

Carboniferous interbedded sandstone and mudstone. Biostratigraphic age constraint
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from Reed and Nelson, 1980.
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for this unit consists of late Mississippian echinoderms and middle Pennsylvanian
echinoderms and foraminifers, (identified by A.K. Armstrong in Reed and Nelson, 1980).
This structurally imbricated Mississippian—Pennsylvanian siliciclastic unit is the most
extensive unit mapped within the Mystic subterrane. These strata are described as a
thick, structurally deformed flysch-like sequence containing thick lenses of pebble- to
cobble-conglomerate with clasts of limestone and black cherty argillite (Jones et al.,
1982).

The second siliciclastic unit associated with the Mystic subterrane is a >1500-m-
thick Permian-aged succession of sandstone, conglomerate, and fossil-leaf bearing
siltstone referred to as the Mt. Dall conglomerate, which outcrops as a broad syncline. A
Permian age for these strata is based on the presence of plant fossils (Zamiopteris) and
brachiopods (Mamay and Reed, 1984; Sunderlin, 2008) as well as conglomerate clasts
containing Pennsylvanian to Early Permian conodonts (Bradley et al., 2003). The Mt.
Dall conglomerate is not a primary focus of this investigation, however previous work
(Bradley et al., 2003; Sunderlin 2008) on these strata provide useful insight to the overall
stratigraphic trends of the Mystic subterrane. Given the chronologic and lithologic
relationships of the Mystic Pass formation and Mt. Dall conglomerate, it is possible that
these units are closely related and represent temporal (and possibly spatial) variations of
the same (foreland?) basin. It should be noted that with the exception of work by
Sunderlin (2008) on the Mt. Dall conglomerate, there are no previously published
measured stratigraphic sections which address up-section patterns in depositional

processes associated with Farewell terrane strata. The following text focuses on new
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sedimentologic and stratigraphic data from within the Mystic Pass formation as well as

depositional and tectonic models interpreted from this work and previous studies.

2.3 MYSTIC PASS FORMATION:

The Mystic Pass formation throughout the Alaska Range is extensively deformed
and isoclinally folded in some locations, making this a difficult area to assess in a
stratigraphic context. However, outcrops near Mystic Pass proper (study area) (Figure
2.5) are tilted (dipping SE), and stratigraphically continuous at ~100 m scale. The
following documents a portion of the sedimentologic and stratigraphic characteristics of
the Mystic Pass formation based on measured stratigraphic section (Figure 2.6) exposed
at Mystic Pass proper. In addition to the descriptions documented in the context of a
measured section, we also note some general sedimentological characteristics and several
sedimentary features observed in the more structurally complicated exposures of the

Mystic Pass formation.

Regional Sedimentologic and Stratigraphic Trends

The Mystic Pass formation is prevalent and well-exposed throughout this study’s
field area in the western Alaska Range (Figure 2.5). Regions west-northwest of Mystic
Pass (Figure 2.7A) and south of the Denali fault include mostly strata of the Mystic Pass
formation as well as finer-grained units of Paleozoic(?) phyllite (map unit Pzp of Reed
and Nelson, 1980). Views to the southeast (Figure 2.7B) show potentially younger units

including Triassic(?) pillow basalts and what may be the Mt. Dall conglomerate.
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,_ Mystic Pass fm. (Carboniferous) XSyncline %Thin section samples

Figure 2.5. Geologic map showing the field area (Mystic Pass) in the western Alaska Range. This study is
focused on the most prevalent map unit shown here, the Mystic Pass formation. Most thin section samples
were collected where the white box is located with additional samples from detrital zircon and measured
section localities. Circled asterisks show the general locations of where detrital zircon samples were
collected along with their abbreviated sample name. Modified from Reed and Nelson, 1980.
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Overall, strata consist largely of interbedded mudstone and fine- to coarse-grained
sandstone with minor gravel- to pebble-conglomerate units (Figures 2.8, 2.9, and 2.10).
Individual beds are laterally extensive (>100 m), exhibit tabular geometries, and are
0.02-3.0 m thick (Figures 2.9C and 2.10). Mudstone units display faint laminations,
occasional flame structures, and are commonly bioturbated (Figures 2.8C and 2.10).
Sandstone facies are characterized primarily by plane beds, ripple cross-stratification, and
massive beds (Figure 2.8A). Graded beds are also common, but the nature of grading
often is unconfirmed without additional up-indicators (Figure 2.8C). Flute casts are
rarely present while mudstone rip-up clasts are common at the base of beds (Figures 2.8B
and 2.9B). Both matrix- and clast-supported conglomerate occur sporadically throughout
these strata (Figure 2.9A and 2.9D). Individual clasts are rounded to sub-rounded, range
from 1-10 cm in diameter, and are dominated by red, black, and green chert, minor

limestone, and rare sandstone (Figure 2.9D).

2.4 FACIES ASSOCIATIONS

The sedimentology of upper Paleozoic siliciclastic strata at Mystic Pass is
documented in a measured section shown in Figure 2.6. Overall, strata coarsen upward
with increased occurrences of medium- to coarse-grained sandstone and conglomerate in
the upper parts of the section. Facies classifications are based on the identification of
seven separate sedimentary structures and facies (Table 2.1). Together, these facies led
to the identification of two facies associations, which are attributed to medial and distal

portions of an unconfined submarine fan environment. The sedimentologic descriptions

32



Figure 2.8. Outcrop photos of the Mystic Pass formation I. A) sandstone bed exhibiting both faint
horizontal laminations (Sh) and massive bedding (Sm); B) mudstone rip-up clasts (arrows) and

convolute bedding within a coarse sandstone bed and ; C) a fining upward (normally graded) sandstone
bed deposited over a mudstone unit, which contains trace fossils (worm burrows). A U.S. quarter for scale
in each photo.
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Figure 2.9. Outcrop photos of the Mystic Pass formation II. A) clast- to matrix-supported conglomerate
(U.S. quarter for scale); B) flute casts at the base of a fine-grained sandstone bed (knife for scale); C)
tabular bedding geometries of blocky, massive sandstone beds (Sm) and thin mudstone (Fm) beds (rock
hammer for scale); D) mostly matrix-supported gravel- to pebble-conglomerate of mostly sedimentary
(ch-chert, ss-sandstone, and Is-limestone) clasts.
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and interpretations of facies associations and depositional systems are summarized in

Table 2.2 and discussed in detail below.

Facies Association 1
Description

The lower ~90 meters of the measured section consists predominantly of
interbedded fine-grained sandstone and mudstone with isolated occurrences of medium-
to coarse-grained sandstone units. Bed thicknesses range from 2—15 cm, but typically
average 4-7 cm and consistently exhibit tabular geometries (Figure 2.9). Individual beds
are laterally extensive (>100 m) and commonly exhibit non-erosive basal contacts.
Mudstone deposits are mostly massive (Fm) to finely laminated (F1), and rarely display
horizontal stratification (Sh) or ripple stratification (Sr) (Figure 2.9). Bioturbation and
burrow structures are common in the thicker, more massive mudstone beds. Sandstone
units are mostly massive (Sm) to horizontally stratified (Sh) (Figure 2.8). Normally
graded beds occasionally occur in which grain sizes range from fine- to medium-grained

sandstone (Figure 2.8 and 2.10).

Interpretation

Sandstone and mudstone deposits of Facies Association | are interpreted to
represent outer/distal portions of a submarine turbidite fan depositional environment.
Thin, rhythmically interbedded sandstone and mudstone are due to deposition of
sediment in turbidity currents and record reoccurring debris flow events. Laterally

extensive, tabular bedding geometries are interpreted to result from debris flows being
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unconfined. Massive (Fm) mudstone units resulted from fallout of fine-grained material
after the waning stages of a turbidity current as well as suspension settling of pelagic
sediment during quiescent intervals (equivalent to Te of Bouma, 1962 and T7 and T8 of
Stowe and Shanmugam, 1980). Finely laminated mudstone (FI) deposits are associated
with the waning stages of turbidity currents where weak traction is still present.
Sandstone units of Facies Association 1 are interpreted to represent deposition by low-
density turbidity currents. Fine- to medium-grained massive sandstone (Sm) beds are
interpreted to reflect sediment fallout from suspension during the initial stages of debris
flow deposition in which coarser-grained material is absent (equivalent to Td facies of
Bouma, 1962). Horizontally-laminated (Sh) beds are interpreted as transport and
deposition by traction within turbidity currents (Bouma, 1962). The occasional presence
of normally graded fine- to medium-grained sandstone is interpreted as fallout from
suspension settling of progressively finer-grained material as turbidity currents lose their
velocity. In summary, Facies Association 1 is represented by subaqueous debris flows
demonstrating mostly processes of traction and suspension setting during and in between
low-density turbidity currents (Lowe, 1982) in which Bouma facies Td-e are most

prevalent (Bouma, 1962).

Facies Association 2
Description

The second facies association is represented by the upper (~35 meters) portion of
the section and continues with a succession of interbedded sandstone, mudstone, and

minor conglomerate. Bed thicknesses are more variable and generally thicker (6 to 10
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cm) on average than the lower portion but range from 2 cm to 15 cm and exhibit tabular
geometries. Individual beds are laterally extensive (>100m) and exhibit non-erosive basal
contacts. Mudstone deposits are mostly massive (Fm) however fine laminations (FI)
occur more frequently than in the lower part of the section. Bioturbation and burrow
structures were not observed in this part of the section. Sandstone deposits are massive
(Sm), horizontally stratified (Sh), and occasionally ripple cross-stratified (Sr) (Figures 2.8
and 2.10). Normally graded sandstone beds occur more frequently as this part of the
section contains more abundant fine- to coarse-grained sandstone. Conglomeratic units
are mostly matrix-supported with gravel- to pebble-sized clasts and gravel-rich deposits
commonly exhibit normal grading (Gmg). Coarser, pebble-rich conglomerate units are

mostly massive showing very weak to no grading (Gmm) (Figure 2.9).

Interpretation

Mudstone, sandstone, and minor conglomerate deposits of Facies Association 2
are interpreted to represent more proximal/medial portions of a submarine turbidite fan
deposit. Similar to FA1, rhythmically interbedded mudstone, sandstone, and occasional
conglomerate are the result of deposition in turbidity currents and record individual
debris flow events. Tabular geometries of laterally extensive beds suggest that turbidity
flows were largely unconfined. Finely-laminated mudstone (FI) deposits are associated
with the waning stages of turbidity currents whereas more massive mudstone (Fm) units
are a result of suspension settling and deposition of pelagic sediment during quiescent
intervals (equivalent to Te facies Bouma, 1962 and T7 and T8 of Stowe and Shanmugam,

1980). Massive sandstone beds are interpreted to reflect sediment fallout from
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suspension during the initial stages of debris flow deposition from low density turbidity
currents. Horizontally-stratified sandstone (Sh) units (plane beds) result from deposition
by traction under low flow strength conditions within an upper flow regime (equivalent to
Td facies of Bouma, 1962) whereas ripple cross-stratified beds (Sr) are interpreted to be
the result of traction in lower flow conditions (equivalent to Tc facies of Bouma, 1962)
(Simons and Richardson, 1961; Blatt et al., 1980). Both massive (Gmm) and normally
graded (Gmg) Gravel- to pebble-conglomerate beds reflect high density turbidity currents
(Lowe, 1982). Normally graded conglomerate (Gmg) and massive conglomerate (Gmm)
are interpreted as chaotic high-density debris flow deposits in pseudoplastic/viscous flow
conditions (Miall, 1978). The presence of slightly thicker and coarser sandstone beds in
addition to the presence of gravel- to pebble-sized conglomerate are the best indication
that these deposits are likely more proximal to the source than those of Facies

Association 1.

2.5 DEPOSITIONAL SETTING

Measured stratigraphy of the Mystic Pass formation is interpreted to represent the
medial to distal portions of a base-of-slope, submarine fan environment (Figure 2.11).
Sheet-like turbidite sandstones interbedded with structureless hemipelagic mudstones are
charactistic of basin-floor fan deposits (e.g. Mutti, 1977; Ricci Lucchi, 1975; Walker et
al., 1978; Posamentier and Allen, 1993). This includes deposition by a combination of
low- to high-density sediment gravity flows associated with a submarine fan

environment. The occurrence of both laminated mudstone, and horizontally-stratified

4]



Nonmarine fluvial !
(braided stream)

Continental Shelf :
Deep-marine : (fluvial-deltaic)
(basin-floor turbidite fan)

s 5

Sea level
~ = orate

B ,
Feeder canyon

: FA 1 FA 2
(distal fan) (medial fan)
_:]‘ Sm

_%J

~l'm

Figure 2.11 Depositional setting for the Mystic Pass formation. A) Depositional environment schematic
demonstrating the potential relationship between the Mystic Pass formation and the Mt. Dall
conglomerate. B) Submarine turbidite fan model which highlights the facies associations assigned to
measured stratigraphy from the Mystic Pass formation. In this model, both the medial and distal fan facies
contain unconfined flows corresponding to the relatively thin, laterally extensive, and tabular beds of the
Mystic Pass formation.
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sandstone together with massive sandstone and minor ripple-cross-stratified sandstone
suggests sediment distribution was influenced by both laminar and turbulent flow.
Tabular beds marked by sharp non-erosive basal contacts support unconfined flow in the
lower portions of sediment gravity flows. Massive mudstone and siltstone were likely
associated with the waning stages of individual flow events (e.g., Ghibaudo, 1992).
Convolute bedding is the result of post-depositional reorganization through dewatering
and likely occurred in strata associated with high suspended sediment load during
original deposition.

Measured stratigraphy from the Mystic Pass formation shows a general
coarsening upward progression in which sandstone to mudstone ratios increase as
sandstone beds are generally thicker and coarser, as does the presence of conglomerate.
This could suggest an overall progradational package where younger and more
proximal/medial parts of submarine fan systems successively prograded over older, more

distal, finer-grained submarine fan deposits.

2.6 DISCUSSION

A medial to distal fan depositional setting interpreted for the Mystic Pass
formation is consistent with previous depositional environments interpreted for the Mt.
Dall conglomerate (Sunderlin, 2008) as well as regional basin-scale interpretation to
explain upper Paleozoic siliciclastic deposition of the Mystic subterrane (Bradley et al.,
2003). Sunderlin (2008) also suggests that strata of Mt. Dall conglomerate were
deposited in a fluvial, braided stream succession on the coastal margin of a developing

foreland basin. Biostratigraphic age constraint on upper Paleozoic siliciclastic strata of

43



the Mystic subterrane assigns a Mississippian to Early Permian age for the Mystic Pass
formation and a Permian age to the Mt. Dall conglomerate, and when considered
together, the stratigraphy of these two units could reflect a coarsening upward
progression of submarine turbidite deposits to shallow-marine or non-marine fluvial
deposits. Based on these chronologic and stratigraphic relationships, it seems feasible to
suggest that the depositional environments of both units represent temporal and or spatial
progressions within the same basin.

Bradley et al. (2003) proposed that the Mt. Dall conglomerate represents a clastic
wedge associated with foreland basin development during the Browns Fork orogeny.
This interpretation is based on the presence of this fluvial clastic wedge (foreland) and
coeval metamorphic ages from Farewell rocks in the Kuskokwim Mountains (hinterland)
(Figure 1). Following the interpretation of Bradley et al. (2003), the Mystic Pass
formation likely reflects deep marine deposition during earlier phases of foreland basin
development association with the Browns Fork orogeny. This hypothesis could be tested
by documenting the relationship (stratigraphic or structural) between the Mystic Pass
formation and the Mt. Dall conglomerate as well as by obtaining additional age constraint
on each unit.

Age equivalent (Mississippian—Permian) siliciclastic strata of the Mystic
subterrane are sporadically documented throughout the Farewell terrane (Figures 2.1-
2.3). Beyond lithologic similarities and sparse age correlations, it remains unknown as to
whether or not these strata are related or if they are structurally bounded representing
clastic wedges associated with independent orogenic events. Additional work is needed

to determine the spatial relationship between various exposures of upper Paleozoic units
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of the Farewell terrane, which bears significance on the overall tectonic evolution of this
region.

It is important to note that a link between the Mt. Dall conglomerate and the
Mystic Pass formation requires the assumption that they are stratigraphically continuous.
Thus, future work should document the nature of the contact between these two units and
determine their broader spatial and temporal extent as well as distinguish between how
much of the exposed Mystic Pass formation is displaying structural thickness rather than
stratigraphic thickness. Futhermore, an upper Paleozoic depositional and tectonic
interpretation of the Farewell terrane could be greatly improved by documented the
stratigraphic (or structural) relationship between units above and below the Mystic Pass

formation.

2.7 CONCLUSIONS

New sedimentologic and stratigraphic data including sedimentary facies from
upper Paleozoic siliciclastic strata of the Mystic Pass formation suggest a submarine
turbidite fan depositional environment. Modest temporal changes documented in
measured stratigraphy likely reflect progradation and/or aggradation of a distal turbidite
fan to that of a more proximal, medial fan depositional environment.

If stratigraphic relationships are assumed with the Mt. Dall conglomerate, the
Mystic Pass formation can be interpreted to represent deep marine siliciclastic deposition
during early foreland basin development of the Browns Fork orogeny (Bradley et al.,
2003), and thus continues to coarsen up-section into the non-marine fluvial facies of the

Mt. Dall conglomerate. Alternatively, if significant crustal/structural boundaries occur
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between these two units, the Mystic Pass formation represents an independent siliciclastic
wedge with unique tectonic affinities. Additional field studies are needed to document the
relationship between the Mystic Pass formation and the Mt. Dall conglomerate as well as

age equivalent siliciclastic strata exposed throughout the Farewell terrane.
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CHAPTER 3: PROVENANCE OF THE MYSTIC PASS FORMATION

3.1 INTRODUCTION

The addition of allochthonous material to a continental margin is one of the
fundamental processes in the tectonic development of an orogenic belt. In many
Cenezoic and even Mesozoic mountain belts the plate configuration driving orogenesis
can often be directly observed along a continental margin. However, in the case of many
Paleozoic orogenic belts (e.g. Appalachians, Urals), often the best remaining record of
tectonic processes is preserved in the siliciclastic stratigraphy of sedimentary basins (e.g.
Queenston and Catskill clastic wedges of the Appalachian orogen). Exhumation
associated with accretionary events may be long-lived (>50 Myr) and result in thick
successions of synorogenic clastic strata (>3 km) that record the provenance and
depositional history of accretion through time. Recent advances in the application of U-
Pb detrital zircon geochronology coupled with classic approaches in framework modal
compositions provide a sensitive tool for understanding detrital contributions during
accretionary events (e.g. Gehrels et al., 1995; DeGraaff-Surpless et al., 2003; Weislogal
et al., 2006; Leier et al., 2007, Hampton et al., 2007; 2010). Comparing relative detrital
contributions with known sources allows for a first order constraint on the provenance of
a sedimentary basin.

An unresolved problem in the evolution of the North American Cordillera is the
pre-Mesozoic accretionary history of tectonostratigraphic terranes along the continental
margin of the northern Cordillera. One of the more regionally extensive and least

understood of these terranes is the Farewell terrane in southwest and west-central Alaska
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(Figure 3.1) which consists of: 1) latest Neoproterozoic through lower Paleozoic
(Devonian) shallow-marine, mainly carbonate strata of the Nixon Fork subterrane, 2)
lower Paleozoic (Cambrian—-Devonian) interbedded submarine fan turbidite deposits and
carbonate units of the Dillinger subterrane, and 3) upper Paleozoic (Devonian—Permian)
to lower Mesozoic (Jurassic) siliciclastic strata of the Mystic subterrane. A key debate
surrounding the tectonic evolution of the Farewell terrane is its origin and Paleozoic
displacement history. A range of models have been proposed for the tectonic origin and
paleogeographic evolution that include (1) the Farewell terrane represents a displaced
fragment of the Paleozoic continental margin of North America (Jones et al., 1982;
Decker et al., 1994), (2) the presence of Paleozoic flora and fauna of Siberian affinity
indicate that the Farewell terrane represents a displaced (rifted) fragment of the Siberian
platform (Blodgett et al., 2002), and (3) faunal and stratigraphic evidence suggests that
the early Paleozoic development of the Farewell terrane may be linked with the Arctic
Alaska—Chukotka microplate as they both contain a mix of Siberian and Laurentian
fossils (Dumoulin et al., 2002).

This study focuses on the provenance of the upper Paleozoic siliciclastic strata
from the Mystic subterrane to provide a first-order constraint on the upper Paleozoic
displacement history of the Farewell terrane. New data from the Mystic Pass formation is
provided by U-Pb detrital zircon geochronology as well as sandstone modal compositions
from exposures in the Mystic Pass region of the western Alaska Range (Figure 3.1).
These data allow for a comparison between the ages of detrital grains within the Mystic
Pass formation and the ages of known magmatic bodies, which can then be evaluated as

potential source areas.
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Figure 3.1. Generalized geologic map showing the regional area of interest and the distribution of exposed
portions of the Farewell terrane. The majority of Farewell exposures are in the Alaska Range south of the
Denali fault, but crop out as far North as the Kuskokwim Mountains north of the Iditarod fault. Note the
small box in the western Talkeetna quad. shows the field area in Figure 3.2. Modified from Bradley et al.,

2003.
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3.2 PREVIOUS WORK

To date, the majority of provenance studies associated with the Farewell terrane
consist of general lithologic and compositional descriptions and detrital zircon
geochronology. Bradley et al. (2007) published analyses of six detrital zircon samples
from the Farewell terrane. Three of these samples were from Neoproterozoic strata of the
Nixon Fork subterrane, and other three samples were collected from rocks mapped as
being Paleozoic and belonging to Mystic subterrane strata.

Detrital zircon populations from the Nixon Fork samples were dominated by
grains between ca. 1900-2100 Ma with subordinate peaks at ca. 900 Ma and ca. 1300
Ma. Age distributions of detrital zircons from the three younger samples thought to
belong to the Mystic subterrane were more widespread. These samples were concluded
to contain depositional ages of Triassic (interbedded ashfall tuff age), Carboniferous(?),
and Silurian(?). Results from this study are cited as supporting evidence for a
Neoproterozoic link between the Farewell terrane and Siberia and are said to strengthen
the suggestion (Dumoulin et al., 2002) of a lower Paleozoic link with the Arctic Alaska

terrane (Bradley et al., 2007).

3.3 SANDSTONE PETROGRAPHY
Methodology

Standard petrographic thin sections were made from 31 medium-grained
sandstone samples that were collected sporadically throughout the Mystic Pass formation
(Figure 3.2). The thin sections were stained for potassium and calcium feldspar and

point-counted using a modified Gazzi-Dickinson method (Dickinson, 1970; Ingersoll et
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Figure 3.2. Geologic map showing the field area (Mystic Pass) in the western Alaska Range. This study is
focused on the most prevalent map unit shown here, the Mystic Pass formation. Most thin section samples
were collected where the white box is located with additional samples from detrital zircon and measured
section localities. Circled asterisks show the general locations of where detrital zircon samples were
collected along with their abbreviated sample name. Modified from Reed and Nelson, 1980.
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al., 1984). Modal compositions were determined by indentifying 400 grains from each
thin section. The petrographic counting parameters are shown in Table 3.1 and the raw
point-count data are included in Appendix B. Recalculated data are available in Table

3.2 and are based on procedures outlined by Ingersoll et al. (1984) and Dickinson (1985).

Descriptions

Petrographic analyses of sandstone from the Mystic Pass formation reveal
pervasive amounts of lithic volcanic grains with additional significant contributions of
lithic sedimentary grains, and chert (Figure 3.3). Mono- and polycrystalline quartz and
feldspars are typically present in all samples, however only in minor amounts.  Very few
lithic metamorphic grains were observed, most of which are meta-chert. Lithic
sedimentary grains consist mostly of fine-grained, argillaceous siliciclastics with
secondary contributions from volcaniclastic grains, which commonly appear as
monocrystalline quartz within a volcanic matrix. Low-grade metamorphism is apparent
in some samples, however grain boundaries are identifiable. Figure 3.4 demonstrates the
relative abundances of the average thin section sample from the Mystic Pass formation.

Modal compositions from the Mystic Pass formation are characterized
predominantly by lithic grains and minor amounts of quartz and feldspar (Q-17%, F-2%,
L-81%) (Figure 3.5A). The total quartz composition consists of monocrystalline quartz
(Qm), polycrystalline quartz (Qp), and chert (C) with chert being the most common

constituent. Feldspars are rare and consist mostly of plagioclase grains (P) with minor
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Table 3.1. Summary of parameters for sandstone point counts.

Note that the parameters shown above refer only to those grains
identified. For example, mudstone and volcaniclastics were the

only observed lithic sedimentary grains.

- Quartz (Q) = Qm + Qp + chert
-Monocrystalline quartz (Qm)
-Polycrystalline quartz (Qp)
-Chert (C)

- Feldspar (F)=P+K
-Plagioclase feldspar (P)
-Potassium feldspar (K)

- Lithic fragments (L) =Ls + Lm + Lv
-Lithic sedimentary (Ls)
-Mudstone (Lsm)
-Volcaniclastic (Lsvc)
-Lithic metamorphic (Lm)

-Lithic volcanic (Lv)

Lt=Lv+Ls+Lm+ Qp + chert
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Table 3.2. Recalculated modal point-count percentage data for sandstone samples of the Mystic Pass
formation. All sample numbers beginning with “MYN” were collected northwest of the Mystic Pass valley,
those beginning with MYS were collected with the measured section, and the last three samples shown
above represent modal compositions of detrital zircon samples. See Figure 3.2 for sample locations.

Q-F-L % Qm-F-Lt % Qm-P-K % Lv-Lm-Ls %
Sample No Q F L Qm F Lt Qm P K Lv. Lm Ls
MYN 080709-01 4 1 94 0 1 98 25 25 SO 9% 0 4
MYN 080709-02 13 4 82 1 4 95 23 55 23 92 1 7
MYN 080709-03 12 6 82 1 6 93 18 46 36 9% 0 4
MYN 080709-04 12 4 85 2 4 95 32 45 23 97 0 3
MYN 080709-05 9 6 85 2 6 92 28 38 34 94 0 6
MYN 080709-07 18 S 78 3 5 93 38 41 21 94 0 6
MYN 080709-08 10 4 86 3 4 94 42 23 35 92 0 8
MYN 080709-09 32 S5 63 5 S 91 47 18 34 9% 0 10
MYN 080709-10 20 2 79 3 2 96 63 38 0 77 0 23
MYN 080709-11 28 1 72 6 1 94 88 4 8 8 0 IS
MYN 080709-12 26 1 73 4 1 95 75 25 0 84 3 13
MYN 080709-13 25 1 75 S 1 95 82 14 5 80 -0 20
MYN 080709-15 14 1 85 2 1 97 64 7 29 73 1 26
MYN 080709-16 22 1 77 3 1 96 73 20 7 75 0 25
MYN 080709-17 24 0 76 3 0 97 92 8 O 72 0 28
MYN 080709-18 23 | 76 2 1 97 75 17 8 71 0 29
MYN 080709-19 31 1 68 5 1 94 83 4 13 77 0 23
MYN 080709-20 29 2 69 6 2 92 71 23 6 81 0o 19
MYN 080709-21 18 4 79 6 4 90 60 30 10 81 0 19
MYN 080709-22 17 2 8l 2 2 97 57 36 17 71 0 29
MYN 080709-23 18 3 79 6 3 91 69 14 17 77 0 23
MYN 080709-24 13 | 86 4 1 96 82 18 0 7 0 22
MYN 080709-25 11 3 87 3 3 95 50 25 25 82 0 18
MYN 080709-26 17 3 80 8 3 9 73 17 10 7 0 22
MYN 080709-28 15 1 84 S 1 94 78 9 13 75 0 25
MYS 080709-04 4 1 96 3 1 97 83 8 8 83 0 17
MYS 080709-07 12 1 88 3 1 96 81 19 0 75 0 25
MYS 080709-08 6 1 93 1 1 98 SO0 S0 O 75 0 25
01 DZ 11 2 88 6 2 92 77 6 16 77 0 23
03 DZ 10 1 89 5 1 94 79 13 8 65 0 35
05 DZ 19 3 78 7 3 90 69 26 5 78 0 22
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Figure 3.3. Sandstone petrography of the Mystic Pass formation. Photomicrographs are shown in both
plain-polarized light (PPL) on the left and cross-polarized light (XPL) on the right. The scale bar is in the
lower-left corner of cach photo. (A) A characteristic sample showing the presence of lithic volcanic (Lv)
and lithic sedimentary (Ls) grains, monocyrstalline quartz (Qm), chert (C), and plagioclase (P), which are
common in nearly all thin sections from the Mystic Pass formation. (B) Another sample demonstrating
the abundance of lithic volcanic grains with subordinate lithic sedimentary grains. (C) A more sedimentary
lithic rich sample exemplifying the fine-grained nature of lithic sedimentary grains and volcanic lithic
grains; lithic volcanic grains,monocyrstalline quartz, chert, and plagioclase are also seen in this sample.
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(1.3) K

[ Lv - lithic volcanic M Qp - polycrystalline quartz
[ Ls - lithic sedimentary B P - plagioclase feldspar

@ C - chert M K - potassium feldspar

M Qm - monocrystalline quartz M Lm - lithic metamorphic

Figure 3.4. Average modal composition of all sandstone samples from the Mystic Pass formation.
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Figure 3.5. Sandstone modal compositions II. Relative abundances of framework grains from the Mystic
Pass formation. See Table 2.1 for a summary of parameters and abbreviation symbols. Black diamonds
denote sample locations. N - number of samples. Provenance fields are from Dickinson et al., 1983,
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occurrences of potassium feldspar (K) (Qm-62%, P-23%, K-15%) (Figure 3.6A). Lithic
grain populations are largely volcanic-derived (Lv) and also contain abundant portions of

sedimentary grains (Ls) (Lv-81%, Lm-0%, Ls-19%) (Figure 3.6B).

Interpretation

Comparing these data with the provenance fields of Dickinson et al. (1983), the
composition of sandstone within the Mystic Pass formation is most similar to sandstone
derived from an “arc-related” (undissected to transitional) “recycled orogen” (Figure 3.5).
When comparing total quartz (Q), feldspars (F) and lithic fragments (L), the majority of
the samples plot within the undissected magmatic arc provenance field (Figure 3.5A).
However, a comparison between monocrystalline quartz (Qm), feldspars (F), and total
lithic grains (Lt) shows that all samples plot within the recycled orogen provenance field
(Figure 3.5B). In addition to the interpretations provided by these two provenance fields,
the overall abundance of lithic volcanic grains (Lv) (Figure 3.4) suggests that the
deposition system associated with the Mystic Pass formation was provided with
significant proportions of arc-derived detritus, which likely indicates nearby exhumation

of a magmatic arc.

3.4 U-Pb DETRITAL ZIRCON ANALYSIS
Three sandstone samples were collected from exposures of upper Paleozoic strata
of the Mystic subterrane for U-Pb detrital zircon analysis. All samples were collected

from the Mystic Pass formation near Mystic Pass proper in the western Talkeetna

61



£J Lv

Lm Ls
N =31

Figure 3.6. Sandstone modal compositions [I. Relative abundances of framework grains from the Mystic
Pass formation. See Table 2.1 for a summary of parameters and abbreviation symbols. Black diamonds
denote sample locations. N - number of samples.
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quadrangle in southwest Alaska (Figure 3.2). Brief descriptions of the sampled strata and

specific locations are presented below.

Sample Location and Lithologic Summary
MYS 080209 - 01 (62° 38.495 N, 152°29.788 W) — This sample was collected
from a massive fine- to medium-grained sandstone bed approximately 1.25 m thick just

south of the Mystic Pass valley (Figure 3.2).

MYS 080309 — 03 (62° 38.216 N, 152° 29.777 W) — This was collected south of
the Mystic Pass valley (Figure 3.2) from a small outcrop of interbedded fine-grained

sandstone and mudstone.

MYN 080709 — 05 (62° 39.573 N, 152° 31.560 W) — This fine- to medium-
grained sandstone sample was collected north of Mystic Pass valley (Figure 3.2) and

taken from a massive, tabular sandstone bed approximately 20 cm thick.

Methodology

Zircon crystals were extracted by traditional methods of crushing and grinding,
followed by separation with a Wilfley table, heavy liquids, and a Frantz magnetic
separator. Samples were processed such that all zircons were retained in the final heavy
mineral fraction. A large split of these grains (generally 1000-2000) was incorporated
into a 1”” epoxy mount together with fragments of a Sri Lanka standard zircon. The

mounts were sanded down to a depth of ~20 microns, polished, imaged, and cleaned prior
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to isotopic analysis.

U-Pb geochronology of zircons was conducted by laser ablation multicollector
inductively coupled plasma mass spectrometry (LA-MC-ICPMS) at the Arizona
LaserChron Center (Gehrels et al., 2006, 2008). The analyses involve ablation of zircon
with a New Wave UP193HE Excimer laser (operating at a wavelength of 193 nm) using
a spot diameter of 30 microns. The ablated material is carried in helium into the plasma
source of a Nu HR ICPMS, which is equipped with a flight tube of sufficient width that
U, Th, and Pb isotopes are measured simultaneously. All measurements are made in
static mode, using Faraday detectors with 3el1 ohm resistors for 238y, 232Th, 208pp, 206py,
and a discrete dynode ion counter for 2*Pb. Ion yields are ~0.8 mv per ppm. Each
analysis consists of one 12-second integration on peaks with the laser off (for
backgrounds), 15 one-second integrations with the laser firing, and a 30 second delay to
purge the previous sample and prepare for the next analysis. The ablation pit is ~15
microns in depth.

For each analysis, the errors in determining ***Pb/***U and 2°°Pb/***Pb result in a
measurement error of ~1-2% (at 2-sigma level) in the °Pb/*®U age. The errors in
measurement of *°Pb/*”’Pb and **Pb/**Pb also result in ~1-2% (at 2-sigma level)
uncertainty in age for grains that are >1.0 Ga, but are substantially larger for younger
grains due to low intensity of the 2’Pb signal. For most analyses, the cross-over in
precision of 2%°Pb/**U and 2°Pb/**’Pb ages occurs at ~1.0 Ga.

Common Pb correction is accomplished by using the measured ***Pb and
assuming an initial Pb composition from Stacey and Kramers (1975) (with uncertainties

of 1.0 for 2°Pb/2**Pb and 0.3 for 2’Pb/2**Pb). Our measurement of 2**Pb is unaffected by
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the presence of ***Hg because backgrounds are measured on peaks (thereby subtracting
any background 2**Hg and **Pb), and because very little Hg is present in the argon gas
(background **Hg = ~300 CPS).

Inter-element fractionation of Pb/U is generally ~5%, whereas apparent
fractionation of Pb isotopes is generally <0.2%. In-run analysis of fragments of a large
zircon crystal (generally every fifth measurement) with known age of 563.5 + 3.2 Ma (2-
sigma error) is used to correct for this fractionation. The uncertainty resulting from the
calibration correction is generally 1-2% (2-sigma) for both 2°°Pb/**’Pb and 206pp238y
ages.

Concentrations of U and Th are calibrated relative to our Sri Lanka zircon, which
contains ~518 ppm of U and 68 ppm Th.

The analytical data are reported in Appendix C. Uncertainties shown in these
tables are at the 1-sigma level, and include only measurement errors. Analyses that are
>30% discordant (by comparison of 2%Pb/**®U and *®Pb/*°’Pb ages) or >5% reverse
discordant are not considered further.

The resulting interpreted ages are shown on relative age-probability diagrams
(from Ludwig, 2008). These diagrams show each age and its uncertainty (for
measurement error only) as a normal distribution, and sum all ages from a sample into a
single curve. Composite age probability plots are made from an in-house Excel program
(available from www.geo.arizona.edu/alc) that normalizes each curve according to the
number of constituent analyses, such that each curve contains the same area, and then

stacks the probability curves.

65



U-Pb Age Distribution and Maximum Depositional Ages

Detrital zircon age data from the Mystic Pass formation consist of a total of 277
concordant to slightly discordant (Figure 3.7) Precambrian—Paleozoic age zircons with
minor occurrences of Mesozoic age grains from one sample (Figure 3.8 and 3.9).
Phanerozoic age grains (178 total) are most abundant (64%) and Precambrian age grains
(99 total) are also common but with lesser abundance (36%). Of those Phanerozoic age
grains, three reported Mesozoic ages (< 251 Ma) with the remaining 175 Phanerozoic
grains being Paleozoic (540-251 Ma). The majority of Paleozoic age grains have ages
that fall between 500 and 260 Ma with primary peak ranges of 465—405, 365-315, and
305-290 Ma. Most of the Precambrian age grains fall between 2.1 and 1.6 Ga with a
primary peak range between 1.95 and 1.8 Ga. Age comparisons are based primarily on
the geologic time scale of Gradstein et al. (2004).

For presenting the maximum depositional age (MDA) of each sample, three
alternative measures are provided as outlined by Dickinson and Gehrels (2009). These
include the youngest single grain, the youngest graphical age peak of a cluster of three or
more grains, and a calculated weighted mean age (WMA) of the youngest cluster of three
or more grains. Final interpretations of each sample’s MDA will be based on the
youngest graphical age peak of a cluster of three or more grains.

MYS 080209-01 Sample MYS 080209-01 is represented by 85 detrital zircon
ages of which, 44% are Precambrian and 56% are Phanerozoic. The majority of
Precambrian grains are present between ca. 2100—1700 Ma with a peak occurrence at
1879 Ma. All Phanerozoic age grains are Paleozoic with peaks occuring at 335, 351,

363, and 438 Ma. This sample’s youngest detrital grain age is 324 + 2 Ma and the
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Figure 3.7. U-Pb condordia diagrams of single detrital zircon grains from three samples of sandstone from
the Mystic Pass formation. Enlargements below each concordia curve show data for grains between 200
and 600 Ma. All data points are shown with 2-sigma error ellipses. Sample number and number of grains
analyzed (N) are shown in boxes in the upper lefi corner of each plot.
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calculated weighted mean age is 347.0 = 1.9 Ma. The youngest age peak occurs at ca.
325 Ma.

MYS 080309-03 Sample MYS 080309-03 is represented by 103 detrital zircon
grain ages with only 14% being Precambrian and 86% are Phanerozoic. Only 14 of 103
grains analyzed from this sample are Precambrian, which result in subtle peaks at 1865
and 2001 Ma. 86 of the 89 Phanerozoic age grains are Paleozoic while the remaining
three youngest detrital grain ages (235 + 4, 248 + 3, and 250 + 4 Ma) are Mesozoic.
Paleozoic age grains account for 84% of the analyses from this sample with the most
prominent age peaks occurring at 275, 298, 424, and 473. The calculated weighted mean
age is 265.0 £ 2.3 Ma. The youngest age peak occurs at 249 Ma.

MYS 080709-05 Sample MYS 080709-05 is represented by 89 detrital zircon
ages of which, 54% are Precambrian and 46% are Phanerozoic. The majority of
Precambrian grains are present between ca. 2100—1800 Ma and display age peaks at 1895
and 1876 Ma. All Phanerozoic age grains are Paleozoic with peaks occuring at 338, 356,
389, and 453 Ma. This sample’s youngest detrital grain age is 307 + 7 Ma and the
calculated weighted mean age is 333.1 + 2.5 Ma with the youngest age peak occurring at
314 Ma.

Biostratigraphic age constraint for the Mystic Pass formation (map unit Pzus-
Reed and Nelson, 1980) includes Late Mississippian echinoderms and Middle
Pennsylvanian echinoderms and foraminifers (Reed and Nelson, 1980) collected from the
western Talkeetna quadrangle. Maximum deposition ages are based on the youngest
cluster of three or more overlapping and concordant analyses for samples MYS 080209-

01 and MYS 080709-05 suggest Late Mississippian (~325 Ma) and Early Pennsylvanian
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(~314 Ma) maximum deposition ages, respectively and are thus consistent with pre-
existing biostratigraphic age constraints. Given that the three youngest grains from
sample MYS 080309-03 do not all overlap, they can be considered to be exhibiting lead
loss. Thus the youngest cluster for this sample suggests a slightly younger maximum
depositional age of Middle Permian (~265 Ma), which is only slightly younger than
previous age constraint. However, if these ages are accurate, sample MYS 080309-03
would reflect a Triassic maximum depositional age suggesting that the upper portions of
the Mystic Pass formation is younger than previously reported. Also, it should be noted
that detrital trends observed from this study are relatively similar to those seen in
previous analyses (Bradley et al., 2007) of detrital zircons from the Mystic subterrane
(Figure 3.10). In summary, maximum depositional ages provided by the youngest cluster
of three or more analyses for the Mystic Pass Formation range from Late Mississippian
(~325) to Middle Permian (~265) and are consistent to moderately younger than pre-
existing biostratigraphic age constraints. Figure 3.11 shows a comprehensive histogram

of all detrital zircon analyses from Mystic subterrane strata.

Provenance of Detrital Zircons

Correlating the U-Pb ages of detrital zircons from the Mystic Pass formation with
U-PDb ages of potential magmatic source areas serves as a valuable method for
constraining the provenance of these strata. Relatively low uranium-thorium ratios of
zircons (<10) from all three samples suggests that they reflect timing of magmatism and
initial crystallization rather than thermal resetting from regional metamorphism

(Figure3.12). Detrital contributions of recycled zircon grains from Precambrian—
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Figure 3.10. Detrital zircon age spectra from previous work on Mystic subterrane strata. Both samples
were collected from map unit “Pzus” (Reed and Nelson, 1980) in the western Talkeetna quadrangle. The
total, combined number of grains analyzed is 73. Data from Bradliey et al. (2007).
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Figure 3.11. Summary of all detrital zircon ages from Mystic subterrane strata. Total number of grains
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Paleozoic sedimentary and metasedimentary sources likely make up a significant
percentage of zircon grains. The following text outlines noteworthy magmatic source
regions which may have contributed detritus to strata of the Mystic Pass formation.
Previous studies aimed at understanding the paleogeographic affinities of the
Farewell terrane have suggested an Arctic origin (i.e., Decker et al., 1994; Blodgett et
al., 2002; Dumoulin et al., 2002; Bradley et al., 2003, 2007; Colpron and Nelson, 2009).
Thus an examination of potential source areas can likely be limited to Arctic-related
sources and would ideally involve a comprehensive analysis of all known magmatic
source areas in the northern hemisphere. However, given that there is no consensus on
the displacement history of the Farewell terrane, and that there is a limited number of
samples such an approach is exceptionally cumbersome and beyond the scope of this
study. Nevertheless, the following provide a general summary of potential source areas
and/or tectonic events responsible for providing detritus to the Mystic Pass formation
which are either currently proximal to the Farewell terrane (i.e., Arctic Alaska and
Yukon-Tanana terrane) or have been previously proposed to contain affinities with the
Farewell terrane (i.e. Siberia - Uralian orogeny, Baltica - Caledonian orogeny, and other

Cordilleran terranes — Alexander terrane).

Precambrian source areas

Precambrian age grains account for approximately 36% of detrital zircons
analyzed from the Mystic Pass formation in this study. The majority of these
Precambrian grains (~66%) are between 2.1 and 1.7 Ga with all three samples containing

only one major Precambrian age peak, which occurs between ca 1.95 and 1.8 Ga.
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Therefore, a comparison between Precambrian trends in detrital zircons of the Mystic
Pass Formation with potential magmatic source areas is focused on Paleoproterozoic
magmatism between 2.0 and 1.8 Ga. It is important to note that zircons of this age are
prevalent in several parts of the world including East Asia, South America, Laurentia,
Australia, Africa, and Siberia (Condie, 2002; Condie et al., 2009; Safonova et al., 2010).
This globally widespread presence of Paleoproterozoic granites between ca. 2.0-1.8 Ga
has been suggested to reflect supercontinent assembly of Columbia (Rogers and Santosh,
2002), Nena (Rogers, 1996), or Nuna (Hoffman, 1997). A comprehensive analysis of all
Paleoproterozoic source areas is beyond the scope of this study as only Arctic origins are
proposed for the Farewell terrane. Thus the following comparison is limited mostly to
those trends observed with regards to the Larentian craton (North America) and the

Siberian craton (Northeast Russia) (Figure 3.13).

Northeast Russia (Siberian craton): The Siberian craton is located between the Ural
Mountains and the Verhkoyansk fold and thrust belt (Figure 3.13) and serves as an
important source for Paleoproterozoic zircons in northeast Russia. However broader
Precambrian sources could also include the Baltic Shield (also referred to as the East
European Craton — EEC), located west of the Urals (Figure 3.13). Detrital zircons from 5
modern major drainage basins in Russia which tap both the Siberian and Baltic cratons
demonstrate a peak age occurrence, among others, between 2.0-1.8 Ga (Safonova et al.,
2010). Furthermore, a study by Prokopiev et al. (2008) on detrital zircons from
Pennsylvanian—Jurassic siliciclastic strata of the Verkhoyansk clastic wedge of Siberia

reveals persistent contributions from Paleoproterozoic zircons between ca. 2.0-1.8 Ga,
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derived from the Siberian craton, indicating the availability of Siberian-derived detrital
zircons in northeast Russia during the upper Paleozoic (Pennsylvanian-Permian). This
study also reports a compilation of magmatic source areas from regions within and
adjacent to the Siberian craton in which ~21 % of the zircon ages were within the 2.0-1.8

Ga age range.

North America (Laurentian craton): Paleoproterozoic zircons between 2.0 and 1.8 Ga
are prevalent in Laurentian igneous rocks and peak at approximately 1.9 Ga (Condie et
al., 2009). Laurentian events contributing to the production of these zircons include the
Wopmay, Penokean, Yavapai, Torngat, Cape Smith and Tans-Hudson orogens. This
trend is even more commonly observed in detrital zircons from North American rocks,
which peaks at ca. 1850 Ma (Condie et al., 2009). This is a characteristic trend observed
in detrital zircons from miogeoclinal strata of British Columbia and Alaska (Gehrels et
al., 1995) as well as in detrital zircons from Paleozoic strata of the Alexander terrane and

east central Alaska (Gehrels et al., 1996; 1999).

Phanerozoic source areas

Phanerozoic age grains make up the majority (64%) of detrital zircons from the
Mystic Pass Formation and reflect three primary Paleozoic age peaks which comprise
approximate ranges of 465—405 Ma (Middle Ordovician-Early Devonian), 365-315 Ma
(Late Devonian—Early Pennsylvanian), and 305-290 Ma (Late Pennsylvanian—Early
Permian). The following comparison of Paleozoic detrital trends with magmatic source

areas includes much of the Arctic region as all previous studies of the Farewell terrane
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have suggested an Arctic paleogeography for the Farewell terrane (e.g. Blodgett et al.,
2002; Dumoulin et al., 2002; Bradley et al., 2003, 2007; Sunderlin, 2008, Colpron et al.,

2009). Potential Phanerozoic sources are summarized in Figure 3.14.

Yukon-Tanana Terrane (YTT): The Yukon-Tanana terrane is a northwest-southeast
trending crustal fragment of pericratonic affinity that extends from the Alaska Range in
east-central Alaska into the northern Canadian Cordillera in British Columbia. In general,
its geology is described as a metamorphosed continental margin fragment, which was
host to Upper Paleozoic (Devonian—Permian) magmatic arcs and back arcs (Nelson et al.,
2006). Most of the magmatism associated with YTT is divided into a series of six cycles
or time intervals, which mark major magmatic/tectonic events/cycles (Colpron et al.,
2006; Piercey et al., 2006; aand Nelson et al., 2006). Although magmatism is continuous
from 390-253 Ma., peak intervals occur between 390-365, 365-357, 357-342, 342-314,
314-296, and 269-253 (see Nelson et al., 2006 for a summary of each cycle). Thus the
YTT is a viable source option for Devonian—Permian age grains.

Other notable Paleozoic plutonic rocks in the northern Cordillera are those which
are outboard of the Intermontane belt and include latest Neoproterozoic—Paleozoic
sources associated with the so-called Wrangellia composite terrane (WCT). The
Alexander terrane contains Permian—Triassic and Ordovician—Silurian plutonic suites
with age ranges of ca. 280-220 Ma and ca. 480-410 Ma, respectively (Gehrels and
Saleeby, 1987; Gehrels, 1990). Skolai arc in south and southeast Alaska and plutons on
the Alexander terrane in southeast Alaska. Igneous age ranges for Skolai arc magmatism

are between 285-320 Ma with a majority of ages around 310 Ma (Nokleberg et al., 1986;
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Aleinikoff et al., 1988; Gardner et al., 1988; Beard and Barker, 1989; Plafker et al.,

1989).

Northern Canada and the Ellesmerian Orogeny: The Ellesmerian orogeny is proposed
as a Middle Devonian to Early Mississipian event involving deformation of the
Franklinian mobile belt of the northern and central Canadian Arctic Islands and northern
Greenland (Trettin, 1991a). Evidence for tectonism and magmatism during this time is
has been widely reported in circum-Arctic regions and is often attributed to the
Ellesmerian orogeny. However, Rippington and Scott (2009) contend that there is still
minimal concrete evidence to support the hypothesis of a Late Devonian to Early
Carboniferous Orogen. Nevertheless, Devonian magmatism is recorded in the Cape
Woods Pluton of the Arctic Islands with a cooling age of ca. 390 Ma, as well as in other
smaller granitic bodies with an age of ca. 367 Ma (Trettin, 1991b). Early to Middle
Ordovician granites are also reported along northern Ellesmere Island, which are
suggested to be associated with the M’Clintock Orogeny (Trettin et al., 1987, and Trettin,
1991¢c). The Romanzof orogeny is an Early to Middle Devonian associated with
deformation and widespread Late Devonian (375-362 Ma) granitic plutonism in

northeast Alaska and northwest Canada (Lane, 2007).

Caledonian — Appalachian Orogeny: Traditionally, regions assigned to the Caledonian
orogeny included early Paleozoic areas of the British Isles and Scandanavia, but the
“Caledonides™ have also been extended to encompass all regions associated with

orogenesis during the closure of the lapetus Ocean which includes the Ordovician and

81



Silurian continental margins of Laurentia, Baltica, and Avalonia (McKerrow et al., 2000).
The entire Caledonian orogeny covers a ~200 My (Cambrian—Devonian) time span,
which includes numerous orogenic phases consisting initially of arc—arc or arc—continent
collision followed by mostly continent—continent collisional events (Shelveian, Scandian,
and Acadian) (McKerrow et al., 2000). The Ordovician Caledonian orogeny, which
occurred between ca. 470460 Ma, is referred to as the Grampian Phase (British Isles) or
Taconian Phase (New England) (McKerrow et al., 2000). Late Caledodian granites
associated with the Scandian phase record a span of magmatism from 435 to 380 Ma,
which peaks at ~410 Ma (Atherton and Ghani, 2002).

Additional Scandian-phase granites associated with the East Greenland
Caledonides cluster at ca. 430-420 Ma (Andersen et al., 1998; Kalsbeek et al., 1998) as
well as Ar-Ar metamorphic cooling ages spanning 438-370 Ma (Dallmeyer et al., 1994;
Dallmeyer & Strachan, 1994). Late Ordovician—Early Devonian (450410 Ma)
Caledonian deformation, metamorphism and magmatism is also preserved on Svalbard
where several U-Pb zircon ages have been obtained (Johansson et al., 2005). Ordovician
magmatism is present in central Norway where granite ages range from 477 to 430 Ma
and may represent earlier, Taconic-phase, events of the Caledonian orogen (Yoshinobu,

2002).

Arctic Alaska — Chukotka: Paleozoic plutons are present in northern Alaska along the
Seward Peninsula and the Brooks Range. Miller et al. (2006) highlight evidence to
suggest a larger, unified Arctic Alaska-Chukotka continental fragment. One of these

points is the presence of a common suite of Devonian plutons in the Yukon, the Brooks
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Range, Seward Peninsula and Chukotka, which together, range in age from 390 to 340
Ma (Kos’ko et al., 1993; Moore et al., 1994; Toro et al., 2002; Miller et al., 2006). More
recent geochronologic work on metavolcanic rocks from the Seward Peninsula confirms
this trend with ages of 391 Ma (Till et al., 2006), and age ranges between 403 and 378
Ma (Amato et al., 2009). It should also be noted that detrital zircon trends from strata
affiliated with the Arctic Alaska—Chukotka microplate commonly display Neoproterozoic
age peaks.

Russia—-Siberia (Urals and Taimyr Peninsula): The central and southern Urals of
Russia contain abundant exposures of Paleozoic plutons which record one of the few
remaining intact Pangean orogens, the Uralian orogeny (Brown et al., 2006). In recent
years, there has been extensive geochronologic work aimed at constraining the timing of
magmatic activity associated with Paleozoic Uralian orogenesis (Fershtater et al., 2007,
2009). Magmatism has been subdivided into the 6 major phases: 460420, 415-395,
365-355, 345-330, 320-290, 290-250 (Fershtater et al., 2007). Age-equivalent (Permo-
Carboniferous) granites and metamorphic rocks are also present along the Taimyr
Peninsula in northern Russia and represent a continuation/extension of Uralian orogenesis

(Zonenshain & Natapov 1989; Otto & Bailey 1995; Vernikovsky, 1996).

3.5 DISCUSSION

Provenance trends from the Mystic Pass formation suggest diverse contributions
of arc related and recycled orogen sources. Sandstone modal compositions from the
Mystic Pass formation are dominated by lithic volcanic and sedimentary grains with

subordinate occurrences of quartz suggesting nearby exhumation of an arc-related
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recycled orogen source during deposition of these strata. These trends could support the
hypothesis of a Late Paleozoic orogenic event (Browns Fork orogeny) proposed by
Bradley et al. (2003) that included significant contributions from recycle orogen and
magmatic arc sources. However, because there is no consensus on the displacement
history of the Farewell terrane, and given its current location directly adjacent to
continent scale strike-slip faults (e.g. Denali fault and Iditarod-Nixon Fork Fault), it is
important to consider both local and regional magmatic arc source areas. The following
text offers a general overview of local and regional arc and recycled orogen source areas
that may have contributed detritus to the Mystic Pass formation.

Potential arc-related source areas, which are currently proximal to the Farewell
terrane, include the Innoko, Ruby, and Yukon Tanana terranes. Patton et al. (1994)
describes the Innoko terrane as consisting of two distinct assemblages: an oceanic
assemblage of radiolarian chert with minor carbonates, basalt, and gabbro; and a volcanic
arc-like assemblage of volcaniclastic rocks, cherty tuff, volcanic greywacke, argillite and
diabase and gabbro intrusive rocks. These rocks are suggested to range in age from Late
Devonian(?) to Early Cretaceous(?) (Patton et al., 1994), however there is insufficient age
constraint to determine if the appropriate rocks of the Innoko terrane correlate with those
of the Farewell. Additional arc and recycled orogen sources north of the Farewell terrane
could also include Paleozoic units of the Ruby terrane. Those portions of the Yukon-
Tanana terrane exposed in east-central Alaska consist primarily of greenschist to
amphibolite grade metasedimentary and meta-igneous rocks of Proterozoic to Paleozoic
protolith age (Dusel-Bacon et al., 2006). Thus the YTT remains a viable source for

provided arc-derived detritus to siliciclastic rocks of the Mystic Pass Formation.

84



It is also important to consider contributions from arc and recycled orogen source
areas that are outboard of the Farewell terrane in southern Alaska. The most notable
being the Wrangellia composite terrane (WCT), which includes the Alexander terrane
and the Skolai arc of the Wrangellia terrane. However, aside from these, many of the
magmatic sources of the WCT including those that are proximal to the Farewell terrane
postdate deposition of the Mystic Pass Formation.

Given that there is a range of paleogeographic models proposed for the Farewell
terrane throughout the Paleozoic, one should ideally consider arc and recycled orogen
sources beyond those which are currently proximal to the Farewell terrane. The following
discusses Paleoproterozoic—Paleozoic detrital zircon trends from the Mystic Pass
Formation to assess magmatic source areas from various arctic regions including
magmatism affiliated with North America and Siberia.

U-Pb detrital zircon age peaks from the upper Paleozoic Mystic Pass Formation of
the Farewell terrane in south-central Alaska display trends for 4 age ranges: ca. 2000
1800 Ma (Paleoproterozoic), 465-405 Ma (Middle Ordovician-Early Devonian), 365-
315 Ma (Late Devonian—Early Pennsylvanian), and 305-290 Ma (Late Pennsylvanian—
Early Permian. Comparing these trends with Arctic magmatism allows us to evaluate
potential detrital source areas for upper Paleozoic strata of the Mystic Pass Formation.
Based on geochronologic constraint and availability of data, this study examines
magmatic provinces associated with the Siberian and Laurentian cratons, the Yukon-
Tanana terrane, northern Canada and the Ellesmerian orogeny, the Caledonian orogeny,
the Arctic Alaska — Chukotka microplate (including the Seward Peninsula), and Uralian

orogeny (both in the Urals and Taimyr Peninsula) (Figure 3.13).
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Trend 1: ~2.0-1.8 Ga (Paleoproterozoic): Secondary Paleoproterozoic age peaks
occurring between 2.0 and 1.8 Ga are present in all three detrital zircon samples from the
Mystic Pass Formation. Both the Siberian and Laurentian cratons contain abundant
igneous zircons of this age (Prokopiev et al., 2008; Condie et al., 2009; Safonova et al.,
2010). Furthermore, this trend is commonly observed in detrital zircons from
miogeoclinal strata in British Columbia and Alaska (Gehrels et al., 1995; 1996; 1999), in
detrital zircons from the Verkhoyansk foreland basin of NE Russia (Figure 3.13) (Miller
et al., 2006; Prokopiev et al., 2008) as well as in modern catchments of Russia (Safonova
et al., 2010). This correlation could imply that the Mystic Pass Formation received
detritus derived directly from a Siberian or Laurentian craton source, which might
suggest that the Farewell terrane was in proximity to Siberia or North America during the
upper Paleozoic. Alternatively, zircons of this age have been recycled and were derived
from sedimentary or metasedimentary rocks which would suggest interactions between

the Farewell well and something either along or outboard of a craton margin.

Trend 2: ~465—405 Ma (Middle Ordovician—Early Devonian): Middle Ordovician—
Early Devonian age peaks are present in all three samples from the Mystic Pass
Formation. This trend is observed in other detrital zircon studies in the North American
Cordillera and Arctic region (e.g. Gehrels et al., 1996; 1999; Miller et al., 2006; Amato et
al., 2009). Possible sources for these grains include magmatism associated with the

Caledonian orogeny and/or the Uralian orogeny. Silurian-Ordovician plutons are also
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cited in association with Descon Formation of the Alexander terrane (Gehrels and

Saleeby, 1987; Gehrels, 1990).

Trend 3: ~365-315 Ma (Late Devonian—Early Pennsylvanian): Potential source areas
for Late Devonian to Early Pennsylvanian detritus are prevalent within Arctic magmatic
provinces. Plutonism associated with Uralian orogenesis, the Arctic Alaska — Chukotka
microplate, and the Yukon — Tanana terrane all correlate with Farewell terrane detrital
zircon peaks within this trend. Furthermore it has been postulated that Arctic Alaska and
Chukotka were part of the same microcontinent during the Cambrian-Devonian
(Dumoulin et al., 2002; Miller et al., 2002, 2006), and that the Farewell terrane was either
proximal to or even part of the Arctic Alaska—Chukotka microplate (Dumoulin et al.,
2002). Late Devonian granites associated with the Romanzof orogeny could also be
considered as a source, but overall these age-ranges are far less compatible than those

mentioned above.

Trend 4: ~305-290 Ma (Late Pennsylvanian—Early Permian): A late Pennsylvanian—
early Permian age peak is observed in one sample (MYS 080309-03). The Skolai arc of
southern and southeastern Alaska and the Urals in Russia (Figure 3.13) contain
documented igneous rocks of this age. Magmatism during this time is also documented
in the Yukon-Tanana terrane, however few instances occur and this trend appears to line
up with a significant decline in magmatism associated with YTT.

Needs a closing sentence here...
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3.6 CONCLUSIONS:

Sandstone modal compositions from the Mystic Pass formation are dominated by
lithic grains of mostly volcanic origin with secondary contributions of sedimentary grains
and chert. Minor occurrences of mono and poly crystalline quartz and feldspars were
observed (Qm-4%, F-2%, Lt-94%). These compositional trends suggest sandstone
derivation from an arc-related (undissected to transitional) to recycled orogen source.
Lithologically and chronologically feasible provenance regions currently proximal to the
Farewell terrane include the Innoko and Ruby terranes to the north as well as the Yukon
Tanana terrane, Skolai Arc, and Alexander terrane to the south.

U-Pb detrital zircon geochronology from the Mystic Pass formation contains age
peaks at ca. 2000—1800 Ma (Paleoproterozoic), 465—405 Ma (Middle Ordovician—Early
Devonian), 365-315 Ma (Late Devonian—Early Pennsylvanian), and 305-290 Ma (Late
Pennsylvanian—Early Permian. North America (Laurentia) and northeast Russia (Siberia)
both contain potential source areas with both magmatic and detrital age ranges between
2.0 and 1.8 Ga. Given the non-uniqueness of this trend, detrital zircons of this age are
not sufficient for distinguishing between North American or Siberian provenance
contributions for the Mystic Pass formation. The Arctic region contains compatible
magmatic sources for all three Phanerozoic detrital zircon trends observed in Paleozoic
strata of the Farewell terrane. A Middle Ordovician to Early Devonian detrital trend
correlates well with magmatism associated with both Caledonian and Uralian orogenies
as well as the Alexander terrane. Late Devonian to early Pennsylvanian detrital grains
could be derived from plutons of the Arctic Alaska — Chukotka microplate, the Yukon-

Tanana terrane, or the Urals. Finally, Late Pennsylvanian—Early Permian detrital zircons
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may be limited to a Uralian orogenic source or the Skolai arc of southern Alaska as there
is a paucity of other known Pennsylvanian—Permian magmatic ages from the Arctic
region. Detrital zircon trends from upper Paleozoic stratigraphy of the Farewell terrane
correlate with a range of Precambrian—Phanerozoic Arctic source areas indicating that the
Farewell terrane was likely within or very near to the Uralian Seaway during the
Paleozoic (Figure 3.15). Based on the lack of Neoproterozoic age zircons and “Baltic
hump” (2.0-1.0 Ga) detrital signatures, much of the stratigraphy of the Mystic subterrane
may have resulted from exhumation and deposition associated with orogenesis along the

western margin of the Uralian Seaway.
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CHAPTER 4: CONCLUSIONS

1. Upper Paleozoic (Mississippian—Permian) siliciclastic strata of the Mystic Pass
Formation consist of interbedded mudstone and fine- to coarse-grained sandstone with
occurrences of gravel- to pebble-conglomerate. Beds are laterally extensive (>100 m),
exhibit tabular geometries, and range in thickness from 0.02-3.0 m. Mudstone units are
mostly massive but occasionally exhibit faint horizontal laminations. Sandstone deposits
are characterized by massive- to horizontally stratified beds, but occasionally display
ripple cross stratification. Matrix- and clast-supported Conglomerate beds are commonly
graded with clast compositions consisting mostly of red, black, and green chert, and

subordinate occurrences of limestone and sandstone.

2. Sedimentary facies interpreted from measured stratigraphy of the Mystic Pass
formation suggest a turbidite fan depositional environment. Following the interpretations
of previous work and assuming stratigraphic continuity with the Mt. Dall conglomerate
this interpretation suggests that the Mystic Pass formation may represent early stage
foreland basin development associated with upper Paleozoic orogenesis. Alternatively
these two siliciclastic units may be part of tectonically unrelated basins, and have simply
been structurally juxtaposed into proximity with each other. Further work is needed to
document the stratigraphic (or structural) relationship between units above (Mt. Dall

conglomerate?) and below (Dillinger subterrane?) the Mystic Pass formation.
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3. Sandstone modal compositions of the Mystic Pass formation are dominated by lithic-
volcanic and lithic-sedimentary grains with minor contributions from quartz and feldspars
(Q-17%, F-2%, L-81%). When compared with total lithics, monocrystalline quartz and
feldspars account for a small percentage of grains (Qm-4%, F-2%, Lt-94%). These data
suggest contributions of detritus derived from a magmatic arc to recycled orogen source

during deposition of the Mystic Pass formation.

4. U-Pb detrital zircon geochronology from 277 grains of the upper Paleozoic Mystic
Pass formation consists mostly of Phanerozoic age grains (64%) with the remaining 36%
being Precambrian in age. Four age peak trends occur at: ca. 2000-1800 Ma
(Paleoproterozoic), 465—405 Ma (Middle Ordovician—-Early Devonian), 365-315 Ma
(Late Devonian—-Early Pennsylvanian), and 305-290 Ma (Late Pennsylvanian—Early
Permian. Also, Detrital zircons from samples of the Mystic Pass formation support

existing Mississippian—Permian biostratigraphic ages for these strata.

5. Sandstone modal compositions from the Mystic Pass Formation of the Farewell
terrane suggest the involvement of an arc to recycled orogen source during the upper
Paleozoic. A comparison of detrital zircon trends with regional Arctic magmatic source
areas reveals a range of possible provenance scenarios. A Pennsylvanian—-Permian detrital
age peak correlates with magmatism involving Uralian orogenesis in northern Siberia and
the Skolai arc of the Wrangellia terrane in southern Alaska. Devonian—-Missippian
detrital peaks correlate with magmatic sources associated with the Yukon-Tanana terrane

and Devonian plutons of the Arctic Alaska-Chukotka microplate. Ordovician—Silurian
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zircons may be derived from magmatism related to the Caledonian orogeny or from
plutons associated with the Descon Formation of the Alexander terrane. Age peaks
between ca. 2.0-1.8 Ga are present in all three detrital zircon samples from the Mystic
Pass formation and correlate well with igneous and detrital trends of this age from both
the Siberian and Laurentian cratons. Possible tectonic scenarios for upper Paleozoic
orogenesis involving the Farewell terrane include arc-continent or continent-continent
collision, which could involve elements of both Laurentian and Siberian affinities or

inter-oceanic island arcs within the western Uralian Seaway during the Late Paleozoic.
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APPENDIX A:

Measured stratigraphic section of the Mystic Pass formation
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SECTION: MYSTIC PASS (0-10 m)

10 LITHOLOGY NOTES

Sample: MY(S) 080709 - 01 TS @ 9m
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3

6
Rhythmic, tabular beds
5. Finc-grained w/ interbedded sandstone
2-15 cm thick
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Figure Al. Measured stratigraphic sections of the Mystic Pass formation.
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Figure Al continued

SECTION: MYSTIC PASS (10-20 m)
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171
16
151
14
13
12
] Rhythmic, tabular beds
] Fine-grained w/ interbedded sandstone
114 2-15 cm thick
10 m

cl s;l vf fmc v;c ér?chl;
M S G

104




Figure A1 continued

SECTION: MYSTIC PASS (20-30 m)

30 LITHOLOGY NOTES
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Rhythmic, tabular beds
Fine-grained w/ interbedded sandstone
2-15 cm thick
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Sample: MY(S) 080709 - 02 TS (@ 21m
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Figure A1 continued

SECTION: MYSTIC PASS (30-40 m)

" LITHOLOGY NOTES
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| 2-10 cm thick
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Figure Al continued

SECTION: MYSTIC PASS (40-50 m)

50 LITHOLOGY NOTES
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Rhythmic, tabular beds
45: Fine-grained w/ interbedded sandstone

41

=1

_

40

M

2-15 c¢m thick

Sample: MY(S) 080709 - 03 TS (@ 40.5 m

S

Ml fme \'f-gr;;('hl‘)
|

G

107




Figure A1 continued

SECTION: MYSTIC PASS (50-60 m)
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Figure A1 continued

SECTION: MYSTIC PASS (60-70 m)

70

LITHOLOGY

NOTES
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Sample: MY(S) 080709 - 04 TS @ 69 m
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Fine-grained w/ interbedded sandstone
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Figure A1 continued

SECTION: MYSTIC PASS (70-80 m)

80 LITHOLOGY NOTES
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Figure Al continued

SECTION: MYSTIC PASS (80-90 m)

% LITHOLOGY NOTES
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Figure A1 continued

SECTION: MYSTIC PASS (90-100 m)

LITHOLOGY
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Figure Al continued

SECTION: MYSTIC PASS (100-110 m)

LITHOLOGY NOTES
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Figure A1 continued

SECTION: MYSTIC PASS (110-120 m)
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Figure A1 continued

SECTION: MYSTIC PASS (120-320 m)

120 LITHOLOGY NOTES
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Figure Al continued

SECTION: MYSTIC PASS (320-326 m)

LITHOLOGY NOTES
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APPENDIX B:

Raw point-count data
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Table B1. Raw point-count data from sandstones of the Mystic Pass formation.

Raw point-count data table

Sample Qm Qp P K C Lv Lm Ls Total
MYN 080709-01 2 2 2 4 13 362 1 14 400
MYN 080709-02 5 4 12 5 45 304 2 23 400
MYN 080709-03 5 3 13 10 41 316 0 12 400
MYN 080709-04 7 1 10 5 39 327 0 11 400
MYN 080709-05 9 3 12 11 25 319 0 21 400
MYN 080709-07 11 3 12 6 56 292 0 20 400
MYN 080709-08 11 3 6 9 26 318 0 27 400
MYN 080709-09 18 2 7 13 109 226 0 25 400
MYN 080709-10 10 3 6 0 67 241 0 73 400
MYN 080709-11 22 4 1 2 85 243 0 43 400
MYN 080709-12 15 0 5 0 88 245 10 37 400
MYN 080709-13 18 2 3 1 78 237 1 60 400
MYN 080709-15 9 1 1 4 46 247 3 89 400
MYN 080709-16 11 2 3 1 74 231 0 78 400
MYN 080709-17 11 0 1 0 85 219 0 84 400
MYN 080709-18 9 0 2 1 83 218 0 87 400
MYN 080709-19 19 1 1 3 105 208 0 63 400
MYN 080709-20 22 2 7 2 92 223 0 52 400
MYN 080709-21 24 0 12 4 46 253 0 61 400
MYN 080709-22 8 0 5 1 61 230 0 95 400
MYN 080709-23 24 2 5 6 46 244 0 73 400
MYN 080709-24 14 1 3 0 38 268 0 76 400
MYN 080709-25 10 0 5 5 33 286 0 61 400
MYN 080709-26 30 4 7 4 34 249 0 72 400
MYN 080709-28 18 2 2 3 38 253 0 84 400
MYS 080709-04 10 1 1 1 5 316 0 66 400
MYS 080709-07 13 0 3 0 33 265 0 86 400
MYS 080709-08 4 0 4 0 19 280 0 93 400
01 DZ 24 1 2 5 18 269 0 81 400
03 DZ 19 2 3 2 19 231 0 124 400
05DZ 27 S 10 2 43 245 0 68 400
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APPENDIX C:

Analytical results of U-Pb detrital zircon isotope ratios and age data

Appendix 3.2 Measured isotopic ratios and age data reported for detrital zircon samples from the Mystic
Pass Formation. All uncertainties are reported at the 1 sigma level, and include only measurement errors.
Systematic errors would increase the uncertainty of clusters of ages by 1-2%. U concentration and U/Th
are calibrated relative to our Sri Lanka zircon and are accurate to ~20%. Common Pb correction is from
204Pb, with composition interpreted from Stacey and Kramers (1975) and uncertainties of 1.0 for
206Pb/204Pb, 0.3 for 207Pb/204Pb, and 2.0 for 208Pb/204Pb. U/Pb and 206Pb/207Pb fractionation is
calibrated relative to fragments of a large Sri Lanka zircon of 563.5 + 3.2 Ma (2-sigma). U decay constants
and composition as follows: 238U = 9.8485 x 10-10, 235U = 1.55125 x 10-10, 238U/235U = 137.88
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APPENDIX D:

Mystic subterrane at Sheep Creek, eastern McGrath quadrangle
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EXPLANATION

Additional field work was conducted in the eastern McGrath quadrangle in the
western Alaska Range (Figure D1). Field work in this area was focused on map unit PDs
(Permian—Devonian siliciclastics) of Bundtzen et al. (1997) which may be correlative
with upper Paleozoic siliciclastic rocks (i.e., Mystic Pass formation and Mt. Dall
conglomerate) in the western McGrath quadrangle. Bundtzen et al. (1997) assigns PDs
as belonging to the Sheep Creek Formation and correlates the Mt. Dall conglomerate of
the western Talkeetna quadrangle with a limestone-chert conglomerate identified as being
the stratigraphic top of the PDs map unit in the eastern McGrath quadrangle. The
following is a brief summary of the work done in the Sheep Creek area of the eastern
McGrath quadrangle which includes one detrital zircon sample and approximately 160 m
of measured stratigraphic section from the Sheep Creek Formation. Measured

stratigraphy is not discussed, but is reported in Appendix F (Figure F1).

DETRITAL ZIRCON GEOCHRONOLOGY

Sample 09PH160A was collected from a lens of matrix-supported pebble
conglomerate on St. Johns Hill (Figure D2) north of the Denali Fault and mapped as
belonging to unit PDs (Bundzten et al., 1997). Clasts are angular and consist mostly of
dark gray chert 2 to 5 cm in diameter with minor occurrences of limestone clasts. The
matrix is fine-grained and dominated by quartz veins. GPS coordinates were not taken
during sample collection. Geochronologic analyses were conducted at the Arizona

LaserChron Center (see Chapter 3 for explanation of methods). Analytical data are
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reported in Table EI.

Detrital age spectra (Figure D3) from this sample include a total of 75 grains of
which 20% are Phanerozoic and 80% are Precambrian. One Phanerozoic detrital age
peak is present at ca. 440 Ma while several Precambrian age peaks occur at ca. 682, 1175,
1425, 1652, and 1816 Ma. The three youngest grains occur at 430, 434, and 435 Ma with
a calculated weighted mean age (WMA) of 435.6 +4.1 Ma. The youngest age peak

occurs at ca. 440 Ma.

Like other Mystic subterrane detrital zircon trends, this sample contains a
Phanerozoic age peak between ca. 465405 Ma and a Precambrian age peak between ca.
2.0 and 1.8 Ga. However, this sample is different from other Mystic subterrane samples
in that its youngest peak is substantially older (approx. 440 Ma) and therefore does not
contain detrital trends at ca. 300 and 350 Ma. Furthermore, sample 09PH160A contains a
significant portion (~27%) of zircons between 1.8 and 1.0 Ga, which are sparsely seen
(<7%) in other Mystic subterrane samples. Disparities in detrital trends could suggest
that: 1) this sample was collected from Mystic subterrane strata older than any other
Mystic subterrane samples or 2) rocks from which this sample was collected are not
actually part of the Mystic subterrane and may belong to older portions of the Farewell

terrane (i.e., the Dillinger subterrane) or to a different terrane altogether.
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Jd White
Mountains
Region

Eastern
McGrath
Quadrangle

Northern
Lime Hills

Western
Talkeetna |-
Quadrangle

FAREWELL TERRANE

- Dillinger subterrane

Mystic subterrane
(Devonian - Jurassic)

(Cambrian - Devonian)

Nixon Fork subterrane
(Neoprot. - Devonian)

Quaternary alluvium

Igneous rocks
(Cretaceous - Tertiary)

OTHER ROCKS

Kahiltna Assem. or Kuskokwim Group
(Jurassic - Cretaceous)

Yukon-Tanana terrane
(Neoproterozoic(?) - Mississippian)

Figure D1. Generalized geologic map showing the regional area of interest and the distribution of exposed
portions of the Farewell terrane. The majority of Farewell exposures are in the Alaska Range south of the
Denali fault, but crop out as far North as the Kuskokwim Mountains north of the Iditarod fault. Note the
small box in the eastern McGrath quad. shows the field area in Figure D2. Modified from Bradley et al.,

2003.
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Figure D2. Geologic map showing the field area (Sheep Creek) in the eastern McGrath quad. Field work

in this area was primarily focused on map unit PDs, which may be correlative with the Mystic Pass

formation. In addition to work done for this study (see text), samples were collected for thin section and
detrital zircon analyses from the Terra Cotta Mtn Sandstone (white box) for future studies. Modified from

Bundtzen et al. (1997).
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Figure D3. Detrital zircon age spectra from Mystic subterrane strata (map unit PDs) in the eastern
McGrath quadrangle. A) Age distributions for all 75 grains analyzed. B) Age distributions for Phanerozoic
aged grains only. See text for sample details and location.
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APPENDIX E:

Analytical results of U-Pb detrital zircon data (Sheep Creek Fm.)

Appendix E. Measured isotopic ratios and age data reported for detrital zircon samples from the Sheep
Creek Formation. All uncertainties are reported at the 1 sigma level, and include only measurement errors.
Systematic errors would increase the uncertainty of clusters of ages by 1-2%. U concentration and U/Th
are calibrated relative to our Sri Lanka zircon and are accurate to ~20%. Common Pb correction is from
204Pb, with composition interpreted from Stacey and Kramers (1975) and uncertainties of 1.0 for
206Pb/204Pb, 0.3 for 207Pb/204Pb, and 2.0 for 208Pb/204Pb. U/Pb and 206Pb/207Pb fractionation is
calibrated relative to fragments of a large Sri Lanka zircon of 563.5 + 3.2 Ma (2-sigma). U decay constants
and composition as follows: 238U = 9.8485 x 10-10, 235U = 1.55125 x 10-10, 238U/235U = 137.88
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APPENDIX F:

Measured stratigraphic section of the Sheep Creek Fm.
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SECTION: FAREWELL - SHEEP CREEK (0-10 m)

LITHOLOGY NOTES

10

i

Rhythmic, tabular beds
Fine-grained w/ interbedded sandstone
2-15 cm thick

J 3

Om clsivf fmce vlcg'rpbhb
| |

M S G

Figure F1. Measured stratigraphic sections of the Sheep Creek Formation.
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (10-20 m)
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Fine-grained w/ interbedded sandstone
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (20-30 m)

30 LITHOLOGY NOTES

ﬁ
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Bedded/banded chert
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (30-40 m)

LITHOLOGY

NOTES
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (40-50 m)

LITHOLOGY NOTES

_5
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Rhythmic, tabular beds
471 Fine-grained w/ interbedded sandstone
2-15 cm thick
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (50-60 m)

LITHOLOGY

NOTES
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Sample: FSC 081409 - 04A @ 60 m
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (60-70 m)

70 LITHOLOGY NOTES
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (70-80 m)

LITHOLOGY NOTES

80

79-
Rhythmic, tabular beds

78%
Fine-grained w/ interbedded sandstone

771 2-7 cm thick

o

siltstone is slightly siliceous

——
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Bedded/banded chert - same as below
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (80-90 m)

% LITHOLOGY NOTES
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Rhythmic, tabular beds
Fine-grained w/ interbedded sandstone
85 2-7 cm thick
‘ siltstone is slightly siliceous
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (90-100 m)

LITHOLOGY NOTES

971
961
Rhythmic, tabular beds
Fine-grained w/ interbedded sandstone
951 2-7 cm thick
siltstone is slightly siliceous
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SECTION: FAREWELL - SHEEP CREEK (100-110 m)

110 LITHOLOGY NOTES
F__:'“ volcanic - tuff
[, slightly siliceous
=y Sample: FSC 081409 - 05 @ 109 m
109 45—
P X
Bedded/banded chert
Beds 5-20 cm thick
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4 Rhythmic, tabular beds
1 Fine-grained w/ interbedded sandstone
‘ 2-7 cm thick
104 siltstone is slightly siliceous
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (110-120 m)

120 LITHOLOGY NOTES
119

Massive siliceous and tuffaceous mudstone
118 with no bedding observed

Rhythmic, tabular beds
Fine-grained w/ interbedded sandstone
2-7 cm thick

1131
siltstone is slightly siliceous

112

S G

152




Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (120-130 m)

130 LITHOLOGY NOTES
1291
128 volcanic - tuff, slightly siliceous
Sample: FSC 081409 - 03 @ 128 m
127
Rhythmic, tabular beds
Fine-grained w/ interbedded sandstone
2-7 cm thick
126
' . siltstone is slightly siliceous
125
124
123
Massive siliceous and tuffaccous mudstone
with no bedding observed
122
121
120 m
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (130-140 m)

140 LITHOLOGY NOTES
139+
138 volcanic - tuff, slightly siliceous
Sample: FSC 081409 - 03 @ 128 m
1374
] Rhythmic, tabular beds
1 ] Fine-grained w/ interbedded sandstone
2-7 cm thick
136" p————
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L ]
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (140-150 m)

LITHOLOGY NOTES

150
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Figure F1 continued

SECTION: FAREWELL - SHEEP CREEK (150-160 m)

160 LITHOLOGY NOTES
Strata continue up-section for unknown distance
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