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ABSTRACT

VARIANCE COMPONENT MODELS IN MAPPING IMPRINTED
GENES: STATISTICAL THEORY AND APPLICATIONS

By

Gengxin Li

Genomic imprinting has been thought to play an important role in seed development
in flowering plants. Seed in a flowering plant normally contains diploid embryo and
triploid endosperm. Empirical studies have shown that some economically impor-
tant endosperm traits are genetically controlled by imprinted genes. However, the
exact number and location of imprinted genes are largely unknown due to the lack
of efficient statistical mapping methods. When an iQTL segregates in experimental
line crosses, combining different line crosses with similar genetic background can im-
prove the accuracy of iQTLs inference. To make full use of the natural information
of sex-specific allelic sharing among sibpairs in line crosses, general statistical vari-
ance components frameworks are proposed to map imprinted quantitative trait loci
(iQTL) for the diploid tissue and the triploid tissue, individually. Considering the
special characteristics of the diploid embryo genome and triploid endosperm genome,
new variance components partition methods with respect to the diploid and triploid
tissues are developed. An extension to multiple QTL analysis is proposed for both
diploid and triploid tissues.

A number of studies have demonstrated that multivariate traits analysis can pro-
vide more significant power and higher resolution for major gene detection in linkage

analysis (Evans 2002). Furthermore, when a QTL has the pleiotropic effect on several



traits, some important biologically interesting hypotheses can be performed success-
fully under the multivariate traits approach. It is well known that several highly
correlated traits appear commonly in endosperm. So the variance components based
univariate trait iQTL model is extended to bivariate traits iQTL model for mapping
the parent-of-origin effect. It may expedite the process of identifying and eventually
cloning genes controlling important endosperm traits.

Except for the wide application of variance components model in flowering plants,
variance components analysis has been a standard means in human genetics. In brief,
the genetic effect is detected by the significance of the likelihood ratio test. However,
true parameters of main interest may be on the boundary of the parameter space
under the null hypothesis, thus the regularity condition for declaring asymptotic chi-
square distribution of the LRT statistics is not satisfied. The threshold calculation
based on current methods often yields conservative hypothesis tests as discussed in
a number of studies, especially in multivariate traits cases. To solve this problem, a
general approximation form of the LRT under the null hypothesis of no linkage is pro-
posed, and the chi-square mixture proportions are shown to depend on the estimated

Fisher information matrix in both univariate and multivariate trait analysis.
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0.1 Introduction

0.1.1 Gene and quantitative trait loci (QTL)

Gregor Mendel first studied certain genetic traits to discover the inheritance of bi-
ological variations in peas. A gene is responsible for inheriting these special traits
from parents. With the exploration of the DNA structure, a gene is normally defined
as a stretch of DNA that acts on the protein or an RNA chain to issue instructions
for a special function. For example, DMPK gene can produce a unique protein, my-
otonic dystrophy protein kinase, to guarantee the normal function of muscle, heart,
and brain cells. There are around 30,000 protein-coding genes in human that work
together to control most functions in human body. An allele is a copy of a gene
that measures the variation of the DNA sequence. Usually, a gene A is made up of
two alleles A and a. Three genetic compositions (AA, Aa, and aa) made up of two
alleles (A and a) are defined as genotypes. In fact, humans share mostly the same
genes with distinct combinations of alleles that make him or her genetically unique.
For instance, the hair color is controlled by same genes in human, but the specific
hair color, such as: red, black, blonde, and so on, is determined by different alleles
combined in the same genes. Besides, genes may affect many important quantitative

traits, for instance, body weight, body height, blood pressure, and so on.

Inheritance of characteristics of quantitative traits is attributed to single gene or
multiple genes interacting with environmental factors. Thus, quantitative trait loci
(QTL) is detectable regions of the genome that are closely linked to genes associated

1



Try

 C




with variations of quantitative traits. The association between quantitative trait
loci and closely linked genes in the same chromosome is termed the genetic linkage.
The recombination fraction measures the degree of this association and is utilized to
create a genetic linkage map. In brief, the recombination is a process through which a
chromosomal crossover happens between two QTL or genes during the meiosis. The
mean number of crossovers is called map distance, such as: one centimorgan (cM) is
equivalent to a recombination fraction of 1%. Because of unobservability of the QTL
genotype, the closely linked neutral molecular markers is used to predict the genotype
of QTL. A genetic marker is a DNA sequence that is the unit component of one
chromosome. Associated with a certain locus, genetic markers are easily identifiable
and highly polymorphic. Their exact locations on a chromosome can be estimated. In
fact, a statistical model is built to connect the QTL genotypes and marker genotypes
through phenotypes to identify and sequence genes.

So far, scientists have identified more than 10,000 mouse genes. Because mice
and humans share around 95 percent identical sequence and possess same organs,
more than 500 mouse models with respect to human diseases including cancer and
diabetes have been developed. Many successfully developed gene techniques in mice
have allowed scientists to investigate the human disease on animal models. More and

more people recognize that the age of genetic medicine begins.
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0.1.2 Genomic imprinting

It is well-known that two alleles of a gene inherited from both parents affect variations
of the DNA sequence jointly. If only one parental derived allele is associated with
the variation of phenotype, and the other allele is unexpressed, this special epigenetic
phenomena (uniparental gene expression) is termed genomic imprinting (Wolf et al.
2008). Under genomic imprinting, the expression of the same allele A from different
heterozygote genotypes Aa and aA depends on the origin of inheritance of this allele.
Then the maternally derived allele A (from Aa) functions differently from that of
paternally derived allele A (inherited from aA). There are two types of imprinted
genes, that is, one gene is maternally imprinted when the paternal copy is expressed
with silent maternal copy, and a gene is paternally imprinted gene if the maternal copy
is expressed with silent paternal copy. Genomic imprinting is first used to describe
the elimination of paternal chromosome for spermatogenesis in sciarid flies. With the
investigation of genomic imprinting, scientists have found that the DNA methylation
and histone modifications are the vital mechanism to result in imprinting (Feil and
Berger 2007). During this mechanism, imprinted genes are expressed differently in
egg and sperm, and the different gene expression is caused by the inheritance of
these epigenetic phenomena. In the healthy genome, even a mutation happens on
one allele of a gene, the other allele can still be transcribed to pay off the loss from
the mutation. But, if the epigenetic event takes place on the same gene, only the
mutated allele is expressed, then people get a disease because of the imprinting effect.
Thus, the epigenetic changes are serious to the disease without changing the genomic

3



sequences physically.

In the past few years, scientists have made a lot of efforts in the understanding
of genomic imprinting. Specifically, the significant phenotypic variations caused by
imprinted genes have been confirmed in areas of the fetal growth and behavior. It
has been increasingly recognized that imprinted genes may influence cancer, obesity,
diabetes and many other disease in human and mammal, and many imprinted genes
are identified to regulate embryonic development in plants. For example, Prader-Willi
Syndrome, a genetic disease, makes patients to be extremely fat. It is caused by the
deletion of 7 genes on the paternal chromosome 15 where the maternal copy is silent.
Besides, other severe genetic diseases caused by the imprinting effect are Embryonal
rhabdomyosarcoma for kidney cancer, Osteosarcoma for bone cancer, and Angelman
syndrome for delayed development, and so on. In maize endosperm, imprinted genes
are thought to control the endoreduplication (Dilkes et al. 2002) procedure through
which larger fruits or seeds are obtained (Grime and Mowforth 1982). The disrupted
gene (IGF2) encoding paternally transmitted insulin-like growth factor II results in
growth deficiency in mice (DeChiara et al. 1991). Currently more than 600 imprinted
genes have been predicted in mouse genome (Luedi et al. 2005). But the accurate

locations and the genetic effect of most imprinted genes remain largely unknown.

0.1.3 Imprinting QTL method

From a quantitative genetic theory point of view, imprinting results in genetic gain
and evolutionarily favorable. Considering a gene A with two alleles A and a, the allele

4



frequency of A is p, and for a is q. Because of genomic imprinting, heterozygotes Aa
and aA are expressed differently, then distinct genotypic values can be defined by the

additional imprinting effect ¢ When i = 0, the model is reduced to the traditional

Genotype Frequency value

AA p2 a
Aa pq d+1
aA jole] d—1
aa q2 -a

Mendelian model. Simple algebra shows that the genetic variance with and without

imprinting is given as

Ugi = 2pqai2 + (2pqd)2 + 2pqi2, Imprinting
arg = 2pqa2 + (2pqd)2, No imprinting

where o; and a are the average effects with respect to imprinting and no-imprinting,
respectively. The additional variance term 2pqi2 due to imprinting is always non-
negative. Thus, imprinting leads to increased genetic variance and is evolutionarily
favorable. This explains why after so many years’ natural selection, genomic imprint-
ing is still preserved.

The imprinted inheritance violates the Mendelian theory and brings challenges in
statistical modelling. The statistical framework in mapping imprinted genes or QTL
was initiated with a fixed effect model in which the genetic effect is treated as a fixed
term. Many studies under this framework were developed to test imprinted QTL

5



with controlled crosses of outbred parents (Knott et al. 1998; de Koning et al. 2000
2002). But, the allelic heterozygosity of two outbred parents may induce confounding
effects for genomic imprinting. The genetic difference based on these methods may
not be explained by the real imprinting effect (Lin et al. 2003). When backcross
and Fy populations with inbred lines were analyzed, the regression-based maximum
likelihood approaches in mapping the imprinted QTL were proposed (Cui 2006; Cui
et al. 2006, 2007). It has been shown that methods focusing on genetic variances are
more powerful to infer QTL effects than the allele substitution method assuming a
fixed effect (Xie et al. 1998). When an iQTL segregates in multiple line crosses, the
detection of iQTL may be improved by combining different line crosses with similar
genetic background. However, no studies based on the variance components method
have been proposed to identify iQTLs with multiple line crosses.

The variance components method is based on the identical-by-decent (IBD) prin-
ciple in which sib pairs have more similar phenotypic trait values when they share
more proportion of alleles IBD. Variance components model in mapping the parent-
of-origin effect in human was first proposed by Hanson et al. (2001). In this approach,
the additive genetic variance is decomposed into two terms, a component due to the
expression of the maternal allele and a component due to that of the paternal allele.
However, the direct application of this variance components method to a fully or par-
tially inbreeding population is infeasible. The structure of inbreeding populations is
more complicated than that of non-inbreeding populations. Constructing a variance

components method based on inbred populations is still a challenging problem.



Endosperm in flowering plants is developed from the process of double fertilization,
and ended up with a triploid tissue. A number of studies have shown that many
endosperm traits are affected by genomic imprinting. Statistical methods based on
the fixed effect model were proposed to map Mendelian QTL controlling endosperm
traits (Wu et al. 2002; Xu et al. 2003; Cui et al. 2005, 2006). However, no studies
are investigated for mapping imprinted QTL in endosperm inbreeding population
due to the difficulty in modeling the inheritance patterns in a triploid organism with
imprinting. In a collaboration with scientists, a data set has been generated for
the purpose of identifying imprinted genes controlling for endosperm development.
This example motivates us to develop efficient methods while considering the unique

genetic structure of a triploid tissue.

0.1.4 Objectives and organization of the dissertation

In this dissertation, I will focus on developing efficient variance components models
for the purpose of identifying imprinted genes in experimental crosses. Major goals

of this dissertation are summarized as follows:

e Propose a general statistical variance components framework by utilizing the
natural information of sex-specific allelic sharing among sib pairs in line crosses,
to map imprinted quantitative trait loci (iQTL) underlying traits in a diploid

mapping population.

e Extend the method to map iQTLs underlying endosperin traits.

7



e Extend the single trait model to multi-trait analysis for mapping iQTL underly-
ing bivariate or highly correlated endosperm traits. New biologically interesting
hypotheses, such as, testing the pleiotropic effect of (1)QTL or testing pleiotropic

effect against close linkage will be designed.

e Conduct a theoretical investigation of the likelihood ratio test (LRT) under the

proposed mapping framework.

The dissertation is organized as follows. Chapter 1 will illustrate the variance
components based statistical mapping framework for diploid inbreeding populations.
The variance components based iQTL mapping approach for the triploid endosperm
will be discussed in Chapter 2. The predominance of the bivariate trait analysis will
be studied in chapter 3. The asymptotic properties of the likelihood ratio test under
the variance components model will be investigated in chapter 4, followed by the final

concluding remarks in chapter 5.



Chapter 1

A statistical variance components
framework for mapping imprinted
quantitative trait loci in

experimental crosses

1.1 Introduction

The genetic architecture of complex phenotypes in agriculture, evolution and biomedicine
are generally complex involving a network of multiple genetic and environmental fac-
tors that interact with one another in complicated ways (Lynch and Walsh 1998).
The development of molecular markers makes it possible to identify genetic loci (i.e.,
quantitative trait loci or QTLs) underlie various traits of interest. Genetic designs

9



with controlled crosses are generally pursued to generate mapping populations aimed
to identify QTLs underlying the variation of phenotypes. Statistical method for QTL
mapping with experimental crosses dates back to the seminal work of Lander and
Botstein (1989). Various extensions have been developed since then (e.g., Zeng 1994;

Kao et al. 1999).

For a diploid organism, the expression products of most functional regions from
each one of a chromosome pair are equal. A broken of this equivalence, that is,
nonequivalent genetic contribution of each parental genome to offspring phenotype,
can result in genomic imprinting, a phenomenon also called parent-of-origin effect
(Pfeifer 2000). Since its discovery, imprinting-like phenomena have been commonly
observed in mammals and seed plants (reviewed by Burt and Trivers 2006). However,
statistical methods for identifying imprinted genes have not been extensively studied

and well developed.

The imprinted inheritance violates the Mendelian theory and brings challenges
in statistical modelling. Currently there are two frameworks in mapping imprinted
genes. One is based on the random effect model with pedigree-based natural popu-
lation such as humans. Hanson et al. (2001) first proposed a variance components
framework by partitioning the additive variance component as two parts, a component
due to maternal gene and a component due to paternal gene. The variance compo-
nent method is developed based on the identical-by-decent (IBD) idea in which the
expression of the gene for a pair of individuals is expected to be similar if they share
alleles IBD. Liu et al. (2007) recently applied the model to map iQTL underlying ca-

10



nine hip dysplasia in a structured canine population. However, the current IBD-based
variance components method for mapping imprinted genes assumes non-inbreeding
population. Their applications are immediately limited with fully or partially in-
breeding population such as the controlled inbreeding design in plants and animals.
With inbred mapping population in humans, Abney et al. (2000) proposed a method
to estimate variance components of quantitative traits. However, the extension of
the method to map imprinted gene is not straightforward. No variance components
method has been proposed to map imprinted genes with inbred population in the

literature.

Another general framework for mapping imprinted genes is based on the fixed-
effect model in which the effects of genetic factors are considered as fixed. A number of
studies were proposed under this framework for mapping imprinted QTL (iQTL) with
controlled crosses of outbred parents (Knott et al. 1998; Koning et al. 2000; Koning
et al. 2002). One potential limitation of these methods is that allelic heterozygosity
at a locus between two outbred parents could cause confounding effects for genomic
imprinting. The genetic differences detected by such a fixed-effect model could be
caused by allelic heterozygosity of the parents rather than the imprinted effect of
iQTL (Lin et al. 2003). A natural alternative for the mapping population is the
inbred lines. Fixed-effect models based on backcross and F9 population were recently
proposed qnder the maximum likelihood framework (Cui 2007; Cui et al. 2006 2007;
Li et al. 2008). When inbred lines are used, Xie et al. (1998) pointed out that
it is more meaningful to inference QTL effect by its variance rather than by the

11



allele substitution effect. The QTL variance is generally calculated conditional on
the cross, and it, as a variable, is different from one cross to another (Xie et al.
1998). In a single line cross the estimated QTL variance can not be simply extended
to a statistical inference space beyond that (Xie et al. 1998). Multiple parental lines
are needed for QTL variance inference. A solution to this is to combine data from
multiple line crosses (Xie et al. 1998). An IBD-based variance component method
was proposed by Xie et al. (1998) with multiple line crosses. Extension of the IBD-
based variance component method with multiple line crosses to iQTL mapping has

not been studied.

Motivated by the limitations of current methods aforementioned and by the press-
ing need for efficient iQTL mapping procedure, in this article, we propose a statistical
variance components framework for iQTL mapping by combining data from multiple
inbred line crosses. The proposed model is robust in iQTL variance inference by ex-
tending the iQTL inference space from single line cross to multiple line crosses. A
parent-specific IBD sharing partition method is proposed by considering the inbreed-
ing structure in line crosses. As discussed in Cui (2007), the phenotype of an offspring
is not only controlled by its own genetic profiles, but also by maternal genotype. The
effect of maternal genotype on the phenotype of her offspring, termed maternal effect,
is one potential source of confounding effect in the inference of genomic imprinting.
The existence of such parental effect may lead to incorrect interpretations of imprint-
ing when they are not properly accounted for in the analysis. Parameters that model
the maternal effect are also included and adjusted when testing imprinting.
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With the developed model, we propose an interval-based method for genomewide
scan and testing of iQTL. Both maximum likelihood (ML) and restricted maximum
likelihood (REML) methods are proposed and compared for parameter estimation
and power analysis. An extension to multiple QTL is also proposed in which the
multiple QTL model provides improved resolution for QTL inference. Extensive sim-
ulations are conducted to compare the performance of the proposed model under
different sampling designs with different combinations of family and offspring size.
Comparisons of the ML and REML methods, single QTL and multiple QTL methods
are discussed. The proposed method provides a general framework in iQTL mapping

with multiple line crosses and has significant implications in real application.

1.2 Statistical Methods

1.2.1 Genetic Design

The dissection of imprinting effects in line crosses depends on appropriate mating
designs where the allele parental origin can be traced and distinguished. Most com-
monly used inbred line crosses are the backcross, Fo and recombinant inbred line
(RIL). Reciprocal backcross design has been proposed in iQTL mapping (Cui 2007;
Cui et al. 2007). Considering parental origin of an allele, we use the subscripts m and
f to refer an allele inherited from the maternal and paternal parents, respectively.
The merit of a backcross design is that two reciprocal heterozygotes in offsprings,

Ama f and am A f» can be distinguished and their mean effects can be estimated and
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tested to assess imprinting (Cui 2007; Cui et al. 2007). While all individuals in an F9
segregation population share the same parental information, theoretically it is impos-
sible to distinguish the phenotypic distribution of Ama f and amA f without extra
information. Considering sex-specific recombination rates, Cui et al. (2006) recently
developed an imprinting model by incorporating this information into an interval
mapping framework. No study has been reported to use RILs for iQTL mapping.
The methods proposed in Cui (2007) and Cui et al. (2007) are fixed-effects QTL
models where the effects of an iQTL are considered as fixed. While only four backcross
families are considered, when extending to multiple backcross families, the inference of
iQTL variance calculation is less efficient. The variance components method, initially
proposed in human linkage analysis (Amos 1994) offers a powerful alternative in
assessing genomic imprinting (Hanson et al. 2001). In this paper, we will extend
the variance components method to inbred line populations by combining different

backcross lines to map iQTL.
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A typical backcross design often starts with the cross between one of the parental
lines and their F'| progeny to create a segregation population. Then large number
of offsprings are collected for QTL mapping. When imprinting effect is considered,
reciprocal backcrosses are needed. A basic design framework is illustrated in Table
2.1 in Cui (2007). The two reciprocal backcrosses are treated as the base mapping
units. Multiple backcross families are sampled based on these crosses. For simplicity,
we sample equal number of families for each backcross category. For example, a
sample of 8 families would require two of each of the four backcrosses. Noted that
the variance components method assesses the degree of allele sharing among siblings.
When it is applied to inbred line crosses, each backcross population is considered as
one family and different families are considered as independent. For fixed total sample
size, one issue is to assess whether we should sample large number of families each
with small offspring size or small number of families each with large offspring size. For
example, to sample 400 individuals, shall we sample 4 backcross families each with
100 offsprings or 100 families each with 4 progenies or other sampling strategies? The

choice of optimal designs is intensively evaluated through simulations.

1.2.2 The mixed-effect variance components model

Suppose there is a putative QTL with two segregating alleles @ and ¢, located in an
interval responsible for the variation of a quantitative trait. The phenotype, y;}., for
individual ¢ measured in backcross family k(= 1,---, K) can be written as a linear
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function of QTL, polygene and environmental effects,
Yik =“+aik+Gik+eik’ k=1,--- K;i1=1,--- M (1.2.1)

where n, is the number of offspring in the kth backcross family; x denotes the overall
mean; a;j is the random additive effect of the major monogenic QTL assuming nor-
mal distribution with mean zero; G;;. is the polygenic effect that reflects the effects
of unlinked genes and is assumed to be normally distributed with mean zero; and
e;r ~ N(O, ag) is the random environmental error uncorrelated to other effects. The

phenotypic variance-covariance for the kth family can be expressed as,
Sy = 03 + ®go2 + 1o} (1.2.2)

where ag and 03 are the additive and polygene variances; I, is a matrix containing

the proportion of marker alleles shared IBD for individuals in the kth backcross family;
® is a matrix of the expected proportion of alleles shared IBD, and I is the identity
matrix. The calculation of the IBD sharing matrix with inbred lines can be found in
Xie et al. (1998) which is based on the Malécot’s coefficient of coancestry (Malécot

1948).

Noted that a backcross offspring with genotype Qmgq f may be obtained by the
QQ x Qq or the Qq x qq cross. When there is a significant maternal effect, the mean
expression for genotype Qmgq £ may be different depending on whether its maternal
parents carrying QQ or Qg genotype. As described in Cui (2007), maternal effect
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is one source of potential confounding factor for genomic imprinting. It should be
appropriately modeled and adjusted when testing imprinting. Here, we model the
cytoplasmic maternal effects as fixed effects, and the overall mean p is replaced by

. which models the maternal effect of the kth distinct backcross family.

To accommodate parent-of-origin effects, the QTL additive effect (a) can be par-
titioned as two terms: (1) a component that reflects the influence of the QTL carried
on the maternally derived chromosome (am); and (2) a component that reflects the
influence of the QTL carried on the paternally derived chromosome (a f). The model

that accommodates the parent-specific effects can be expressed as,
Yik =“k+aikm+aikf+cik+eik’ k=1,---,K;i=1,---,ng
For data vector y in family k&, the above model can be re-expressed as,
yk=Xkﬁ+akm+akf+Gk+ek, k=1,--- K (1.2.3)

where X is an indicator matrix corresponding to the kth backcross family and 3 con-
tains parameters associated with the three maternal effects; ap, ~ N(o0, Hml k"%z)v

agf ~ N(O, nflka?f)’ G ~ N(0, ang), e ~ N(O,Iag), where I ;. and Hflk

m|
are matrices containing the proportion of marker alleles shared IBD that are derived
from the mother and father, respectively; ®4 is a matrix of the expected proportion
of alleles shared IBD, and I is the identity matrix; 0’72n and a% are the variance of

alleles inherited from the maternal and paternal parents, respectively.
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With non-inbreeding mapping population, Hanson et al. (2001) expressed the

phenotypic variance-covariance for the kth family as,
Sk = W0 + Mg p0f + g0 +107 (1.2.4)

However, for an inbred mapping population, this IBD-based variance partition method
can not be directly applied. New method considering the inbreeding structure is

needed.

1.2.3 Parent-specific allele sharing and covariances between

two inbreeding full-sibs

Before we get the phenotypic variance-covariance of a pair of individuals ¢ and j,
let us first consider the parent-specific allele sharing status. Within each BC family,
there are two alleles segregating at each locus. Because of inbreeding, the IBD values
between two backcross individuals are different from those calculated from outbred
full-sibs. Consider two sibs ¢ and j in the kth backcross family. Without considering
allelic parental origin, Xie et al. (1998) proposed to calculate the IBD value at a QTL

as,

2 for QQ - QQ
= (1.2.5)

1 for QQ — Qq or Qq — Qq

Wij = 292']'

with oij being the Malécot’s coefficient of coancestry (Malécot 1948). Thus, for an
inbred population, m; j is not the actual IBD value between individuals ¢ and 7, rather
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interpreted as twice the coefficient of coancestry (Xie et al. 1998; Harris 1964). For

individuals with itself,

2 for QQ - QQ
T =1+ Fy = (1.2.6)

1 for Qq — Qq

where F} is the inbreeding coefficient for individual ¢ at the QTL. The elements in &4
matrix are just the expected values of m; j and m;; which are ¢i]-=5/4 and ¢;; = 3/2

(Xie et al. 1998).
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When allelic parental origin is considered, the IBD sharing matrix can also be
calculated based on the coefficient of coancestry. By definition, the coefficient of
coancestry is defined as the probability that two randomly drawn alleles from indi-
viduals 7 and j are identical by descent. Fig. 1.1 displays possible alleles shared IBD
for sibs drawn in backcross families. Consider two backcross individuals ¢ (with two
alleles A; - and A; f) and j (with two alleles Aj and A; f) Define ;; as the coef-

ficient of coancestry between individuals 7 and j. By definition, 6; j can be calculated

as’
1
91'_7' = Z{pr(Aim = A]m) + Pl‘(Aim = A]f) + PI‘(Aif = A]m) + PI‘(Aif = A]f)}
1
= 1Cimim * Oimj 0 pjm *+ %ig5;)

where Oi.j. can be interpreted as the allelic kinship coefficient, i.e., the probability
that a randomly chosen allele from individual 7 is IBD to a randomly chosen allele

from individual j. Note that the two terms 6 and 6; are not distinguishable.

tmJ f fim

However, their sum is unique and therefore the two terms can be combined as one

single term, denoted as 6, After the manipulation, the

m/jf(= eimjf + oifjm)'

coefficient of coancestry for individuals i and j can be expressed as 6; j= 711(9 +

imJm
eim /j f +6; f j f) which is composed of three components.
Following Xie et al. (1998), the alleles shared IBD between individuals ¢ and j

can be expressed as,
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T =20.: = 1(9

ij = Wij = 30imjm i+ 0ipsp)

Wimjm+7rim/jf+7rifjf (1.2.7)
and m; f j f = %Oi f j f are the alleles shared IBD derived

from the mother and father, respectively; L

_1lp
where Timjm = Qezmjm

=1lg .
m/ jf = Qsz /]f is the alleles shared

IBD due to alleles cross sharing, a special case for inbreeding sibs. Without inbreeding,

Tim / jf takes value of zero.

For completely inbreeding population, the inbreeding coefficient F; is 1 if alleles
inherited from both parents are the same since these alleles can be traced back to the
same grandparent. For example, for an individual with genotype Qm@ fr Pr(Qm =
Q f) = 1 since both alleles Qm; and Q f are inherited from the same grandparent.
Therefore, for individuals with itself, m;; = 1 4+ F; would be the same as T (i # 7)
when 7 and j carry the same genotypes. The expected proportion of alleles shared

IBD ¢;; can also be calculated.

Thus, the proportion of alleles shared IBD can be partitioned as three components
for inbreeding sibs, rather than two components considering parent-of-origin effects
proposed by Hanson et al. (2001). To further illustrate the idea, we use one backcross
family to demonstrate the derivation. A full list of possible IBD sharing values for
the two reciprocal backcrosses are given in Table 2.1. Considering a backcross family
initiated with the Qq x QQ cross. Randomly selecting two individuals ¢ and j with
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genotype Qm@ f and Qm@ £ the Malécot’s coefficient of coancestry can be calculated

m)
1
mij =205 = S{Pr(Qim = Qjm) +Pr(Qim = Qjf) + Pr(Qi5 = Qjm)
= %[1+1+1+1]=2
Thus, Tomim = wifjf = 0.5 and Wirn/jf = 1. For sib pairs ¢ (with genotype

Qme) and j (with genotype quf), Timjm = 0-5 ﬂifjf =0 and Wim/jf = 0.5,
and 7; j=1 which is the same as given in (1.2.5) without considering parent-of-origin

partition.

Considering the allelic sharing status in a complete inbreeding population, the
relationship between the maternal and paternal alleles is no longer independent if
the two alleles are in identical form. There exists a covariance term (denoted as
U?n f) due to alleles cross sharing for two inbreeding full-sibs when calculating the
phenotypic variance. Corresponding to the partition of the IBD-sharing considering
allelic parental origin, the major QTL additive variance component can be partitioned
into three components, i.e., a.%, 0,2n and U?n Iz in which a?n f can be interpreted as
the covariance due to alleles cross sharing in inbreeding families. Thus, the trait

covariance between two individuals i and j can be expressed as,

2 2
Cou(y;,y;) = Wimjm"?n g0t ”z’m/jff’rznf + ¢ij"3 +1ijoe
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where Iz'j is an indicator variable taking value 1 if ¢ = j and 0 if ¢ # j. The variance-
covariance matrix for a phenotypic vector in the kth backcross family can then be

expressed as,
2 2 2 2 2
Ek = nmIkU",_ + Hm/flkamf + Hflkaf + q’g(fg + IUC (128)

where the elements of I1 II flk and Hm /flk can be found in Table 2.1.

mlk’

For non-inbreeding sib pairs with random mating, 7 = 0 and hence

im/jf

Cov(am, af) = 0. Model (2.2.4) reduces to ) = Hmlkcr?n-i—nflkcf% +<I>gag +Iag,
the same as the variance components partition model considering parent-of-origin

effects given in Hanson et al. (2001).

1.2.4 Likelihood function and parameter estimation

Assuming multivariate normality, the density function of observing a particular vector

of data y for family k is given by,

1

1 -
FYp g 2g) = Xp [—§(yk - #k)TEk l(yk - 1)
where yi. = (Y1 Un K k)T is a nj x 1 vector of phenotypes for the kth backcross

family and n is the kth backcross family size. The overall log likelihood function for

K independent backcross families is give by,

K
0= log[f(yging )] (1.2.9)
k=1
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Note that the maternal effect yj. is the same for families with the same maternal
genotype. Thus, only three maternal effects need to be estimated. Two commonly
used methods can be applied to estimate parameters in a mixed effects model, the
ML method and the REML method. Both methods have been applied in genetic
linkage analysis in a variance components model framework (Amos 1994; Almasy and
Blangero 1998). In general, ML estimators tend to be downwardly biased given that
it does not account for the loss in degrees of freedom resulted from estimation of the
fixed effects (Corbeil and Searle 1976). The REML is based on a linear transformation
of the data such that the fixed effects are eliminated from the model, hence it provides
less biased estimators. Even though standard softwares such as SAS have standard
procedures to estimate parameters for a mixed effects model, the estimation for the
proposed model can not be directly fitted into a standard software. The estimation

procedures for the two methods are detailed here.

1.2.4.1 The ML estimation

The phenotype vector in the kth backcross family follows a multivariate normal dis-

tribution, i.e., yp ~ MVN(X}B,X;). Parameters that need to be estimated are

Q= (,3,072,1, 0%7 0',,2nf7 Ug, Ug) with 8 = (u1»#2’ﬂ3)-

a,2n a? UQf
2 _ 2 2 2 2 2 12 _ 2 _ _J 2 _ M
Define o —0,,l+af+amf+ag+ae,hm— Ug’h v hmf— 52
o2
2 _ 9 2 _ 2 _p2 32 32 24 the total oh ic vari
hg—;f» and hg =1 — hj, — T g g 0 1s the total phenotypic variance

and hence h?n and h?, can be considered as the heritability of maternal and paternal
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alleles, h72n + h? + hgn f is the total genetic heritability due to the major QTL, hg is
the polygene heritability and h2 = h,2n + h% + h72n f + hg is the overall heritability.
The phenotypic variance-covariance between any two individuals ¢ and j in the kth

backcross family can then be re-expressed as:

Yik

Var = 0’2Hij|k
Yik
where
0; 0,5
. J
Hjik =

tho =m - R .. p2 2 B2 L p2. 5 e

with §; = ”zmzmhm + ﬂ’flfhf + Wim/ifhmf + ¢i;hg + he; (5] is defined similarly;
. . B2 .2 2 .. p2

If there are ny sibs in each backcross family, Hy = {H; | kin kX7 is simply a

nj x nj matrix. Instead of estimating Q = (3, a,zn, a%, 072n I3 ag, ag), we can estimate

Q=(B, 02, h72n, h%, h?n £ hg) and solve above equations to get the original variance

estimates. Now the log-likelihood can be expressed as,

K
¢Q) =Y loglf(ykI9)]

k=1
(1.2.10)
oo 2! ! 1—1
x —k;l{7logo - §]0ngkl - gﬁ(yk — XpB)Y H * (v, — Xi8)}

Maximizing likelihood (3.2.3) is equivalent to maximize (1.2.10). Here, we take an
iterated estimation procedure to estimate the parameters contained in §2. For given
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values of h,zn,h2,h72_n f,hg, we can get the maximum likelihood estimates (MLE)
of parameters (3, 02) by setting the partial derivative of the log-likelihood function

(1.2.10) to zero, i.e.,

K
b=Y (xFutxn)  xFH Yy
k=1

1 K

6% = ——— 3 vk~ Xe AT H Yy, - XiH)
Zk 1"k k=1

It can be seen that 3 and &2 are functions of h12n» h%, hgn f and hg. Plug the
updated parameter values for 8 and o2 into likelihood equation (1.2.10), the log-

likelihood function can be simplified as,

K n

K
k
= Z log[f(y4])] o< - Z —logcr - = Z log|Hy.| (1.2.11)
k=1 k=1

The simplex algorithm can be applied to maximize the function (1.2.11) with

respect to parameters h2 h;, h2 and hg subject to the the constraints that

0 < hZ,, h2, K2 h251andogh2g1.

frmf
To guarantee a positive definite covariance matrix when searching for these her-

itability values over the constraint parameter space, a reparameterization technique is

adopted (Xu and Atchley 1995). Taking ‘5z'j = ,12(ﬂ'imjm%%lﬁrifjf7%+7Tim/jf772nf+

f)
o Mo, My |2 f 2 _ "9 2
¢1J7g) where 777, = h2,'yf 72 Tnf = Vg = v ,and h% = = hp + hf +

h12n f + hg. We now have four new unknowns with the constraints: 0 < h2 <1,
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Vi +7F 95 +7G = Land 7502 175 2 0.

The new constraints can be easily satisfied by a reparameterization technique. Let
u, v dugb | numbers. Estimating h2, v2,, v2, 72 ; and 42
» Um, Vf, U f and vg be any real numbers. Estimating A%, v, 1F Ymg 20d g

can be done by maximizing the likelihood function (1.2.11) via searching through the

real domain space with respect to u, vm, v £ Umf and vg with the reparameterization

u

e
[ ——
1+e¢’

etm

¥o =

etm 4 e f + e'mf +€Y9
vf
e
2

7 ) 1
P eom 4 "f 4 mif 4 eV

e'mf

Ve = ,
mf " evm 4 ' +e'mf 4 ev9

and

evg

2
’y =
9 evm ' f 4 e'mf 4 evg

MLEs of h2, '7,2,1, 7%, 772n f and 7‘3 can be obtained through the estimated values
for u, vm, v fr Umf and vg according to the invariance property of MLEs. These
estimated MLEs are used to update h2, h?n, h I hrzn f and hg, and hence o2 and 3.
The iteration steps continue until convergence.
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1.2.4.2 The REML Estimation

The REML method was first proposed by Patterson and Thompson (1971). This
method has been broadly applied to estimate variance components in a mixed-effect
model framework. Taking Q = (3, 0) where 9=(a,2n,o?,agn f,ag,ag). The REML

method starts with maximizing the following likelihood function,

K K
1 _
£©) = Y loglf(vlO)] = 5 D {log T4l + log(IXTp L Xkl) + ¥4 Py }
(1.2.12)
where Py = 1 - S X, (X[ 51 X;) 71X] 571, We can combine all family data

together as one N x 1 vector denoted as'y where N = Zf:l nj. All the X;. and the
variance-covariance matrix ¥j. corresponding to each family can be combined. The

log-likelihood function for the combined data is expressed as,
* _ 1 Is—1 !
£7(0) = log[f(y|®)] = ~3 log |Z| +log(|X'E™ " X]|) +y Py (1.2.13)

where X is a block diagonal matrix with the kth diagonal block ¥} corresponding
to the kth family and off-diagonal blocks being zeros; P is also a block diagonal
matrix with block elements given by Pp.. The dimension of ¥ is N x N. With this

combination, we develop the following REML estimation procedure.

We apply the Fisher scoring algorithm to estimate the unknowns, which has the

form,
aor* (o)

t
550"

o(t+1) — o(t) y 7(e(t))-1
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where I(e(t) ) is the Fisher information matrix evaluated at 6(t) which can be ex-

pressed as,

tT(PHfPHm) tT(PHfPHf) t7'(PHfPHm/f),

tr(P®gPIlm)  tr(P®gPIly)  tr(P®gPIT, ),

\ tr(PIIm P) tr(PI ¢ P) tr(PI,, /¢ P),

tr(PllmP®g)  tr(PHmP) )
tr(PI;Pdg)  tr(PIP)

tr(PdgPdg)  tr(PdgP)

tr(P®gP) tr(PP) )

The first-derivative of the log-likelihood function ¢* with respective to each vari-
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ance components is given by,

oc* 1 T
5,7 = ~3(tr(PMm) =y PmPy),
oe* 1 T
or* 1 T
902~ 2Pl p) =y Pl PY),

m

oe* 1 T

—5 = —5(tr(P®g) —y* POgPy),
Bag 2

oe*

_1 —yT
507" 5(tr(PIy) —y” PPy)

The REML estimator of 3 is the generalized least squares estimator, i.e.,

=xTe"1x)"1xTe-1y

1.2.5 QTL IBD sharing and genomewide linkage scan

The above IBD computation procedure assumes that a putative QTL is located right
on a marker. When a QTL is located within an interval, a more efficient approach
would be to do an interval scan and to test the imprinting property of QTLs at posi-
tions across the entire linkage group. Under the proposed framework, essentially we
need to estimate the proportion of putative QTL alleles shared IBD at every genome
position. Here we propose a method to calculate QTL alleles shared IBD inside an
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interval conditional on the flanking markers. The so called expected conditional IBD
values can be derived at each test position as a function of recombination fraction
between the two flanking markers, and the one between one flanking marker and the
QTL. We use one backcross initiated with the cross QQ x Qg as an example to il-
lustrate the idea. For a putative QTL with two alleles @ and g, four QTL genotype
pairs QQ — QQ, QQ — Qq, Qg — QQ and Qq — Qq can be formed. If the QTL
genotype is observed, the corresponding QTL alleles shared IBD can be calculated
(see Table 2.1). In general, the QTL genotype is unobservable, but its conditional
distribution can be calculated from the two flanking markers. For individuals i and
j with flanking marker genotypes g; and 95> let "v|G’2~Gj be the IBD values calcu-
lated at the QTL position between individual i carrying QTL genotype G; (=1 or
2 corresponding to QQ or Qg, respectively) and individual j carrying genotype G j
(similarly 1 or 2), where v = imjm,? f j for im/Jj f For example, Tim jmlGiGj is
the proportion of IBD sharing between individual i carrying QTL genotype G; and

individual j carrying genotype G j for alleles derived from the mother.

Let YG,lg; and ¢ 19 be the conditional distribution of QTL genotype G; and
09 395
G j for individuals 7 and j given on the flanking markers g; and 95> respectively. This
conditional probabilities can be easily calculated and can be found at standard QTL
mapping literature (see Wu et al. 2007). The probability to observe T0G;G is just
1)
‘PG-I PG g Thus, the expected IBD values between individual ¢ and j at the
119:7 U 5195

tested QTL position conditioning on the flanking markers g; and g; can be calcu-
P _52 2 abov
lated as, ﬂv—E(ﬂvIGiGj)—EGizl ZGJ:I ﬂleijSpGi,giganlgj. For the above
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example, the IBD values derived from the maternal and paternal parents can be calcu-
lated as irimjm=E(7rimjmlGiGj)=0'5901Igi"ol|gj+ 0.5<p1|gi<p2|gj + 0.5<p2|gicp1|gj
+ 0.5<p2|gicp2|gj and ﬁifjf=E(7rifjf|GiGj)=0.5(p1|gi<p1|gj+ 0.5@2]gi<p2|gj. Simi-
larly, we can calculate the conditional expectation of IBD sharing for other backcross
families.

Since YG;lg; and cpcjl 9 are functions of recombinations, the conditional QTL
IBD values vary at different testing positions. Once the estimated IBD matrix is
calculated at every 1 or 2cM on an interval bracketed by two markers throughout the
entire genome, a grid search can be done at all testing positions. The amount of sup-
port for a QTL at a particular map position can be displayed graphically through the
use of likelihood ratio profiles, which plot the likelihood ratio test statistic as a func-
tion of testing positions of putative QTLs (see details in hypothesis testing section).
The peaks of the profile plot that passes certain significant threshold corresponds to

the positions of significant QTLs.

1.2.6 Hypothesis testing

With the estimated parameters using either the ML or REML method, we are inter-
ested in testing the existence of QTLs across the genome and assess their imprinting
mechanism. The first hypothesis is to test the existence of major QTLs, termed

overall QTL test, which can be formulated as,
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HO:U%”L=°_2f=072nf=O

(1.2.14)

Hj : at least one parameter is not zero.

Likelihood ratio (LR) test is applied which is computed between the full (there is
a QTL) and the reduced model (there is no QTL) corresponding to H; and Hy,
respectively. Let Q and € be the estimates of the unknown parameters under H(y and

Hj, respectively. The log-likelihood ratio can be calculated as,
LR = —2[log L(2y) — log L(Qly)]

When testing the hypothesis, the polygene and the residual variances are nuisance pa-
rameters which are constrained to be nonnegative. The three tested genetic variance
components under the null are lied on the boundaries of their alternative parameter
spaces. Following Self and Liang (1987), when the null is true, LR asymptotically
follows a mixture of x2 distribution on 0, - - - , 3 degrees of freedom (df) with the mix-
ture proportion for the xi components being given in Theorem 2.2.1 in Chapter 2.
The theoretical distribution can be used to assess significance in linkage scan. How-
ever, since there are many point tests across the genome, the point-wise significance
value may not guarantee an appropriate genomewide error rate. Another approach
to assess significance is to use nonparametric permutation tests in which the critical
threshold value can be empirically calculated on the basis of repeatedly shuffling the

relationships between marker genotypes and phenotypes (Churchill and Doerge 1994).
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In simulation studies, we also simulate the null distribution and compare it with the
theoretical distribution.

For those detected QTLs, the next step is to assess their imprinting property. An
identified QTL can be imprinted, completely imprinted, partially imprinted or not
imprinted at all. These can be tested through the following sequential tests. The
first imprinting test is to assess whether a QTL shows imprinting effect, which can

be done by formulating the following hypotheses,

(1.2.15)

Rejection of H provides evidence of genomic imprinting and the QTL is called iQTL.
Again likelihood ratio test can be applied in which the log-likelihood ratio test statis-
tics asymptotically follows a x2 with one df (Hanson et al. 2001). We denote the
log-likelihood ratio test statistic as LRimp- If the null is rejected, one would be inter-

ested to test if the detected iQTL is completely maternally or paternally imprinted.

The corresponding hypotheses can be formulated as,

H0:0'72n=0,

H1:072n;é0.

for testing completely maternal imprinting and
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Hy: a? # 0.
for testing completely paternal imprinting. The likelihood ratio test statistics for the
above two tests asymptotically follow a 50:50 mixture of X% and x% distribution (Self

and Liang 1987). Rejection of complete imprinting indicates partial imprinting.

1.2.7 Multiple QTL model

In reality, more than one QTL may contribute to the phenotypic variation located in
one chromosome region or across the whole genome. The polygenic effect in model
(1.2.3) absorbs the effects of multiple QTLs located on other chromosomes. However,
when there are multiple QTLs located on the same linkage group as the tested QTL,
if their effects are not properly adjusted, the estimation could be biased due to inter-
ference caused by theses QTLs outside of the testing interval (Zeng 1994; Martinez
and Cuirnow 1992; Janson 1994; Zeng 1993). A multiple QTL model that can test the
putative QTL effect while adjusting the effects of interference QTLs deserves more
attention.

Zeng (1993) previously showed that IBD variables share the same property as the
indicator variables in which the shared proportion of alleles IBD for a QTL conditional
on the IBD of one flanking marker is independent of that of a QTL on the other side
of that flanking marker. Thus, conditional on one flanking marker, the interference
of QTLs located on the other side of the marker can be eliminated. By conditional
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on the IBD of the flanking markers, the IBD sharing of a QTL is uncorrelated with
that outside this interval. Xu and Atchley (1995) showed that one marker is enough
to block the interference caused by other QTLs located on the same linkage group.
The authors derived the next-to-flanking markers structure to block additional QTL
effects from both sides of testing region in one chromosome. We derive a multiple
QTL model adopting a similar idea as Xu and Atchley (1995). Assume there are
total S QTLs located on a linkage group. Considering parent-specific allelic effects,

the multiple QTL model can be expressed in general as,

S S
Yik = Hk+ ) ikmst D Gk fs+Cikteig, k=1, Kii=1,--,ng (1.2.16)

s=1 s=1
In an interval-based linkage scan, only one putative QTL is considered at each
testing position conditioning on the effects of all other QTLs. Assuming there are
total L and R QTLs located on the left and right side of the putative QTL on a

linkage group, model (2.2.6) can be modified as,

L R
Yik = g+ ik (Qikm ek )+ ) G tCipteg, k=1, K;i=1,-,n

=1 r=1
(1.2.17)
where a;;; and a;,. are the /th and rth QTL random effects on the left and right
side of the putative QTL, respectively. When testing the putative QTL effect, we are
only interested in blocking the total effects of QTLs outside of the tested interval.
Theréfore, in the modified model, the effects of QTLs outside of the tested interval

are not partitioned. This however does not affect the inference of the tested QTL.
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As shown by Zeng (1993) and Jansen (1994; 1993), one marker is enough to block
the correlation between a locus on its left and a locus on its right. Therefore, only
two additional markers flanking the current interval are needed to block interference
caused by outside QTLs (Xu and Atchley 1995). Let M; and My denote two flanking
markers for the tested interval, and £ and R denote the two markers next to M;
and M,  with the marker order £-M;-M, | 1-R. With the modified model given in
(1.2.17), the covariance of phenotypes between individuals 7 and j in the kth backcross

family can be expressed as,

L
Cov(y;, yjk) = E Cov(a;L;, ajkl) + Cov(a;pm» ajkm) + Cov(aikf, ajkf)+
=1
R 2 2
+ Cov(aikm’ajkf) + Z Cm’(aikr’ajkr) +¢jj0g + Ijjoe
r=1
1.2.18
L 2 2 2 2 ( )
= Z 7rl|kol + Timjmom + Wim/j amf + ﬂ-ifjfaf
=1 f
R

2 2 2
+ D T o7 + 65505 + 1o
r=1

where |k and m,.\;. are the IBD values for QTLs located on the left and right side of

|

the putative QTL in the kth backcross family, and can be calculated following (1.2.5)
and (1.2.6) if their genotype information is known. Unfortunately, the number and
exact locations of QTLs outside of the testing interval are unknown. Hence |k
and M|k are not observable. Xu and Atchley (1995) showed that when |k and
Tk are unknown, they can be estimated by some composite terms K (0,7 L] L)

and K(GlR,ﬂR|k), where K(Gw,ﬂclk) is a function of the recombination fraction
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between the [th QTL and the left marker £ as well as a function of L)k the IBD value
for a pair of individuals at the left marker £. K (6,5, TR &) can be similarly defined.
Following Xu and Atchley (1995), K(6;p, L] 1) can be expressed as a function of
Lk multiplied by a function of recombination frequency between the /th QTL and
the marker £, f(6;,), ie., K(Glc,wclk) = 7r£|kf(9w). Similarly, K(BIR,mRIk) =
TRk f(6,r). When doing an interval scan, the covariance function given in (4.2.6)

between individuals 7 and j can be re-expressed as,

CO'U(yik,yjklﬂﬁlk,ﬁ'imjm,frim/jf,’ffz'fjfyﬂ"le)
L 2 2 2 2
= Z K(91£,7r£|k)0‘l +ﬁimj17107n + frim/jflkamf -’rﬁ'ifjfaf

R

+ Z K(HIR,TI'RIk)UT + ¢7,]0_(] + I
r=1

- 2 L 2
wﬁlklzlf 1) al +7r1m]mam+7rzm/]f f+7r1f1faf

R
+ TRk Z I’(9r7z)01g + ¢ij‘7521 + Iijag
r=1

_ 2~ . 2 04 2 . 2 2 2,7 2
=TLIkOL + T jmm + Wim/jflkamf + wzflfof + TRIKCR + ¢2]crg + Iz]Ue

Instead of estimating individual variance components 012 and 072, now we estimate the

composite term zl 1f Gw) {= UL and Z v f( rR)O’, = UR By conditioning
the IBD sharing information for the left and right markers £ and R, the effects of
2

those interference QTLs are blocked. o T and a% absorb the random effects of all

QTLs that are outside of the testing interval but are on the same linkage group as
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the putative QTL. Estimation of the variance components terms follows the same
procedure as the single QTL analysis with slight modification to consider multiple

variance components.

1.3 Results

1.3.1 Simulation design

To investigate the performance of the proposed models and estimation methods, we
conduct intensive computer simulations. We start with the single QTL simulation
followed by the multiple QTL analysis. Six evenly spaced markers (M1 — Mg) are
simulated. The total length for the simulated linkage group is 100cM. We assume that
all the backcross families share the same linkage map constructed using Haldane map
function. For simplicity, we assume the sample size for all backcross families is the
same (i.e., n. = n). The position of the simulated QTL is assumed to be located at
48cM away from the first marker (M7). The effect of the putative QTL is simulated
by assuming different imprinting mechanisms, i,e., no imprinting, completely imprint-
ing and partial imprinting. Once QTL genotypes are simulated, phenotypes can be
simulated by randomly drawing multivariate normal distribution with the covariance
structure given in (2.2.4) with different parameter combinations.

To evaluate the effect of family and offspring size combination on testing power
and parameter estimation, we simulate data assuming different sample size combina-
tions. We fix the total sample size as 400 and vary the family and offspring size with
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different combinations, i.e., 4x100, 8 x50, 20x20 and 100x4. The first number for
each combination indicates the family size. For example, in the combination 20x 20,
20 families each containing 20 offspring are simulated. For each sib-pair, the IBD
value at a putative position at every 2cM along the linkage group is calculated as
described in the previous section. For each simulation scenario, 100 simulation repli-
cations are recorded and the ML and the REML methods are used to estimate the

unknown parameters.
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1.3.2 Simulation results
1.3.2.1 Single QTL analysis

The single QTL model assumes one QTL is located at the third interval in the sim-
ulated linkage group, 48cM away from the first marker. Results using both ML and
REML estimation methods are summarized in Table 2.2. np denotes the number of
families and n;. denotes the number of offspring for each family. Without loss of gen-
erality, we assume equal offspring size for all families in each simulation scenario. The
simulated parameter values are listed under each parameter. The root mean square
errors (RMSEs) are recorded for each parameter estimate to assess the estimation
precision. Overall, the fixed effects (three means) and most variance components can
be better estimated with large number of families. For example, the RMSE of pa-
rameter p is reduced from 1.869 (2.45) to 0.321 (0.305) when the number of families
increases from 4 to 100 with the ML (REML) estimation method. The only exception
is the two variance components terms (‘712n and a}) which are better estimated with
the 20x20 combination design. Through the combination of different line crosses,
the parameter inference space is expanded, and as a result, better estimations are
achieved as expected. However, the QTL position is better estimated with the 8 x50
and 20x20 designs than the other two among the four simulation scenarios. The
100x4 design gives the worst QTL position estimation with the largest RMSEs for
both estimation methods. Therefore, a balance of family and offspring size is needed.
A moderate family size with moderate offspring size would be necessary in order to
achieve reasonable parameter estimation for both QTL effects and position.
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Table 2.2 also lists the results of power analysis under different scenarios with two
different estimation methods. Power! denotes the empirical power calculated from the
simulated null distribution corresponding to hypothesis test (2.2.6). We simulate the
null distribution by simulating data assuming no QTL effect (i.e., a,2n=0?=072n = )-
The LR test statistics is calculated for each simulation run and the 95% cutoff is

2 refers to the theoretical power which is cal-

reported as the threshold value. Power
culated assuming the mixture chi-square distribution. Results show that the threshold
calculated from the theoretical distribution is smaller than the one calculated from
the simulation. Thus the testing power based on the theoretical cutoff is greater than
the empirical power. The testing powers under different sampling designs are very
comparable except for the 100x4 design in which the power is dramatically reduced

compared to other designs. No remarkable difference in power for both estimation

methods is observed.

Fig. 1.2 shows the log-likelihood ratio test statistic calculated under the four
sampling designs across the simulated linkage group by using both ML and REML
estimation methods. The plotted LR curve is from averaged LR values out of 100
replications. It is clear that large offspring size always gives large test statistics. As the
family size increases from 4 to 100 and so decreased offspring size, we observe a huge
LR value decrease. Clearly, the 100x4 design is less powerful than the others. The
last column listed in Table 2.2 shows the type I error for testing genomic imprinting,
ie., Hy: a,zn = 0%. The simulated data assume no imprinting (a,2n = a%=1.5).

The imprinting test is only conducted at the position where the overall QTL test
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0 20 40 * 60 80 100
Test position (cM)

Figure 1.2: The LR profile plot. The left and right figures correspond to the LR

profiles generated using the ML and REML method, respectively. The arrow indicates
the true QTL position.

shows significance. The imprinting test statistic LR,-mp is compared with a chi-square
distribution with 1 df. Overall, the REML estimation method results in smaller type
I error rate than the ML method does. As the number of families increase, the type

I error decreases. The 4x100 design yields the largest type I error.

In comparison of the ML and REML methods, the REML method gives smaller
estimation biases but larger RMSEs than the ML method does. This reflects the
large variability of the REML estimation. In terms of computation speed, the ML
method is faster than the REML method. Even though the QTL position estimation
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is better estimated by using the REML method when family size is small, as family
size increases, the REML method performs worse than the ML method (Table 2.2).
In checking the LR profile plot in Fig. 1.2 and the power analysis in Table 2.2, we do
not observe significant gain in power by using the REML method. The two methods
do no dominate each other and are very comparable in power analysis. With large
sample size and limited computing resources, one might want to try the ML method
first. However, the REML method is suggested when testing imprinting since it has
small type I error.

In a short summary of the results listed in Table 2.2, the 8 x50 and 20x 20 designs
give better QTL position estimation and testing power. In terms of the type I error
for imprinting test, the 20x20 and 100x4 designs provide reasonable type I error.
Thus, a practical guidance is to choose the 20x20 design, and one should always

avoid designs with extremely large or extremely small family size.
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To evaluate the proposed model under different imprinting mechanisms, we sim-
ulated data assuming different degree of imprinting. Since the results in Table 2.2
indicate that a 20x20 design provides relatively reasonable parameter estimation,
good power and small type I error rate for imprinting test, the evaluation of imprint-
ing analysis is thus focused on this design. The results for 100 simulation replication
are summarized in Table 2.3. Three imprinting models are assumed: complete ma-

ternal imprinting (‘71271 = 0 and a?,=3), complete paternal imprinting (0’72n = 3 and

a}=0), and partial maternal imprinting (a,2n =1 and 012,=2). Both ML and REML
estimators are reported. Overall, the two estimation methods produce very compa-
rable results with less biased estimations by the REML method as we expected. All
the parameters can be properly estimated with reasonable precision.

Large imprinting power is observed when the variance difference between the two
parent-specific variance components is large. When the difference between the two
parent-specific variance components is reduced, the power to detect imprinting is
largely reduced. For example, when data are simulated assuming complete paternal
imprinting, the power is 0.91(0.86) by using the ML(REML) estimation method.
With partially imprinted data, the imprinting power reduces to 0.24(0.09) by using

the ML(REML) method, even though it can be increased by increasing the offspring

sample size (data not shown).
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In reality, whether a QTL is imprinted or not is an unknown prior. When a
QTL has Mendelian effect and is not imprinted, is there any power loss by analyzing
with the proposed imprinting model? Or when a QTL is actually imprinted, is there
any power loss by analyzing with regular variance components approach? To answer
these two questions, we simulated data under different scenarios and analyzed with
both Mendelian and imprinting models. The first and second column in Table 1.4
refer to the simulation and analysis models, respectively. M refers to the Mendelian
model without variance components partition and I refers to the imprinting model
with allelic-specific partition of the variance components. For comparison purpose,
heritabilities are recorded instead of original variance components estimates. The
polygene and residual variances are fixed as 0.5 (h2 = 0.083) and 2, respectively for
all the simulation scenarios. We first simulated data with one additive genetic effect
without partitioning variance into allelic specific components. This is equivalent to
simulate data assuming the Mendelian model. A single additive variance component
of 3.5 is assumed which corresponds to a heritability of hg = 0.583. The second
scenario is to simulate data with three allelic-specific variance components. Simu-
lation models Iy and Iy correspond to a complete maternal imprinting model (i.e.,

h2, = 0 and hZ = 0.5) and a partial maternal imprinting model (i.e., hZ, = 0.083
f m

2

and h_2f = 0.417), respectively. The variance component o

f is assumed to be 0.5
(h2 = 0.083) for I{ and I. In all the simulations, we use the 20x20 design to make
mf 1 2

the comparison. Similar results are expected under the other sampling designs. Since

the true variance components values for the imprinting model is unknown when data

o1



are simulated assuming Mendelian effect and vice versa, only standard deviations for
these parameter estimates are recorded (listed as italic font in the parentheses).

The simulation results are summarized in Table 1.4. When the simulated model is
Mendelian, QTL position is better estimated with the Mendelian model than with the
imprinting model. No remarkable difference in power is observed for both models. The
estimated parent-specific variances due to maternal and paternal alleles are almost
identical and no imprinting is detected. When data are simulated assuming imprinting
(model I and Iy), large power is observed when analyzed with the imprinting model.
For example, the power is 86% when analyze the I; imprinting data by the Mendelian
model. The power is increased to 95% when data are analyzed by the imprinting
model. When imprinting data are analyzed with the Mendelian model, the major
QTL variance is under-estimated and the polygene variance is slightly over-estimated.
No remarkable differences are observed for the estimation of the three fixed mean
effects and the residual variance under all simulation cases. In any case, the imprinting
model performs better or no worse than the Mendelian model. Thus, it is generally

safe to apply the imprinting analysis for data shown any inheritance pattern.

1.3.2.2 Multiple QTL analysis
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To see the relative merit of multiple QTL analysis against single QTL analysis
when multiple QTLs are located on the same linkage group, two QTLs are simulated
with QTL 1 (denoted as Q1) located at the second interval, 28cM away from the first
marker (M) and QTL 2 (denoted as Q) located at the fourth interval, 68cM away
from the first marker. Two simulation scenarios are considered. The first scenario
considers two non-imprinted QTLs with equal genetic effects. The second scenario
assume (7 is imprinted and @9 is not imprinted. Simulated parameters for the
two QTLs are listed in Table 1.5. Data are simulated assuming the 20x20 design.

Parameters are estimated by the ML, and REML approaches with 100 replicates.

Fig. 1.3 shows the LR profile plots for the single and multiple QTL analysis.
The single QTL model indicates three major peaks. The highest peak for the single
QTL analysis is located at the wrong QTL interval where no QTL is assumed. The
so called “ghost image” of QTL can be removed and the positions of the two QTLs
can be precisely mapped on the chromosome by the multiple QTL model. Two clear
peaks indicating the correct QTL positions (arrow signs) are observed by the multiple
QTL analysis. However, we observe a remarkable reduction in LR values by multiple
QTL analysis compared to those by the single QTL analysis. Since the threshold for
multiple QTL analysis is unknown, we can not make the conclusion that multiple
QTL analysis is less powerful than the single QTL analysis. It is possible that we
may gain accuracy in QTL position estimation at the cost of power loss. Similar
phenomenon and issues were also observed and discussed in the literatures (Zeng
1994; Xu and Alchley 1995).
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Figure 1.3: The LR profile plot for singe QTL and multiple QTL analysis. The
true QTL positions are simulated at 28¢M and 68cM (see the arrow sign). The
dotted curve and the solid curve represent the LR profiles by single QTL and multiple

QTL analysis, respectively. The left and right figures correspond to the LR profiles
generated using the ML and REML method, respectively.

The results of the multiple QTL analysis are summarized in Table 1.5. The
fixed mean effects, the polygene and residual variance components can be reasonably
estimated with small RMSEs, similar results shown in Table 2.2 for the 20x20 design
and hence are not reported here. Only the genetic factors for the two simulated QTLs
are reported. It can be seen that both ML and REML methods provide reasonable
parameter estimates and are very comparable. Under the first simulation scenario in
which both QTLs are not imprinted, the genetic effects are all slightly over-estimated
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by both methods. This might be due to the interference of the two QTLs in the
same linkage group. The multiple QTL model may not completely block the effects of
QTLs outside of the tested interval. For the second simulation scenario, an interesting
pattern is observed. When one QTL is imprinted (Q1), the maternal and paternal
variance components for the second one (Q9) tend to be estimated with bias in the
direction as the first imprinted QTL, i.e., 072n tends to be over-estimated and a}
tends to be under-estimated. As we gain accuracy in QTL position estimation, we
lose precision for the parameter estimation. These effects are expected as described in
Zeng (1994) and Xu and Atchley (1995). More investigations are needed in multiple

QTL analysis in order to maintain a good balance of QTL position and parameter

inference.

1.4 Discussion

Statistical methods assuming fixed effect models for iQTL mapping in controlled
outbred and inbred lines have been proposed (e.g., Koning et al. 2000; Cui 2007; Cui
et al. 2006 2007). Considering the limitation of fixed-effect models, a random model
that estimates the QTL variance by extending single line cross to multiple line crosses
should be more powerful in QTL variance inference (Xie et al. 1998). The IBD-based
variance components method assuming random genetic effect for iQTL mapping has
been developed in human linkage analysis (Hanson et al. 2001). However, no study
has been proposed to map iQTL using variance components method with inbred or
partially inbred line cross. In this article, we have first time presented an IBD-based
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variance components framework to search for the existence and distribution of iQTL
throughout the entire genome in multiple experimental line crosses. The idea of the
method is demonstrated through a backcross design. It can also be extended to
multiple F9 line crosses using the sex-specific recombination information as proposed

by Cui et al. (2006).

The key point of the proposed iQTL variance components analysis is to parti-
tion the additive genetic variance into parent-specific components. We have proposed
a new parent-specific allelic sharing method which characterizes the relatedness of
parent-specific alleles between pairs of individuals in a backcross pedigree. The calcu-
lation of parent-specific allelic sharing is based on the information of the coefficient of
coancestry. More complicated calculation of the coefficient of coancestry can be found
at Harris (1964). The quantification of the coefficient of the coancestry proposed by
Harris (1964) can also be utilized to calculate the parent-specific IBD sharing in an

inbred human population, and thus for iQTL mapping in inbred human populations.

There have been extensive studies in literature about various methods in the
estimation of variance components in a mixed-effect model framework. The ML and
REML are two commonly applied methods in variance components estimation with
less biased estimation by the REML method. Simulations show that the ML method
yields high precision in parameter estimation but with relatively large bias than the
REML method. Power analysis indicates that the ML method is a little more powerful
than the REML method but with large type I error when testing imprinting. In terms
of computing speed, the ML method is faster than the REML method. Thus, no
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single method dominates the other. In terms of overall QTL test, we suggest to use
the ML method for the genomewide linkage scan and use the REML method for the

imprinting test.

The effect of sampling design is investigated by extensive simulations. Results
indicate that one can always achieve large power with large offspring size when the
total sample size is fixed. The LR value differences under different sampling designs
are shown in Fig. 1.2. However, the combination of small families each with large
offsprings gives poor parameter estimation and large type I error for imprinting test
(Table 2.2). As the number of families increase, we observe less biased parameter
estimates for both fixed and random effects, but with poor QTL position estimation
and small power. This information implies that it is necessary to enlarge the number
of families to improve precision of parameter estimation. Meanwhile, a balance of
family and offspring size is needed to maintain good QTL detection power and position
estimation. Our simulations indicate that for a fixed total sample size (n=400), both
8x50 and 20x20 designs yield comparable results and both designs outperform the
other two designs (Table 2.2). Moreover, the 20x20 design produces relatively small
type I error in imprinting test. With the 20x20 design, results in Table 1.4 indicate
that the imprinting model is better or as good as the regular Mendelian analysis
without considering imprinting. In real data analysis, it should be safe to apply the

proposed imprinting model for data with any imprinting pattern.

In this study, we have extended the single marker-based analysis to an interval-
based mapping for genomewide scan and testing of iQTL effects. Considering the
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interference of QTLs located on the same linkage group, we have extended the single
QTL model to multiple QTL analysis following the derivation of Xu and Atchley
(1995). Simulation results indicate the relative merit of the multiple QTL analysis
with improved QTL position inference, but with possible power loss (Fig. 1.3). This,
however, has been a common issue in multiple QTL modelling (Zeng 1994; Xu and
Atchley 1995). More investigations are needed in deriving efficient and robust multiple
QTL mapping models to improve precision without suffering too much from power
loss.

The theoretical distribution for the likelihood ratio test has been a challenging
problem in QTL mapping. Dupuis and Siegmund (1999) first proposed theoretical
properties for LR test statistics in a genomewide linkage scan for QTLs in an inter-
val mapping frameworh with a fixed-effect model. Currently, most linkage analysis
using the variance components method assume that the LR test statistic follows a
mixture of chi-square distribution (Allison et al. 1999). The mixture distribution is
derived following Self and Liang (1987). With multiple testings and multiple nuisance
parameters in a genomewide scan, the assumptions to get the mixture chi-square dis-
tribution may not be satisfied. Moreover, the multivariate normal assumption for the
phenotypic data required to get the mixture distribution may not even valid. No the-
oretical work has been done to investigate this in a IBD-based variance components
linkage mapping. Our simulations indicate that the theoretical threshold calculated
from the mixture chi-square distribution is smaller than the simulated cutoff. Thus,

the power calculated with the theoretical threshold is slightly inflated. A modified
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mixture chi-quare distribution may be more appropriate. More theoretical investiga-

tions are needed in this regard.
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Chapter 2

A general statistical framework for
dissecting parent-of-origin effects
underlying endosperm traits in

flowering plants

2.1 INTRODUCTION

The life cycle of an angiosperm starts with the process of double fertilization, where
the fertilization of the haploid egg with one sperm cell forms the embryo, and the fu-
sion of the two polar nuclei with another sperm cell develops into endosperm (Chaud-
hury et al. 2001). Thus, endosperm is a tissue unique to angiosperm. The embryo
and endosperm are genetically identical, except that the endosperm is triploid com-
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posed of one set of paternal and two identical sets of maternal chromosomes. In
cereals, the endosperm of a grain is the major storage organ providing nutrition for
early-stage seed development, and more than that, serves as the major source of food
for human beings. The identification of important genes that underlie the variation of

quantitative traits of various interests in endosperm, is thus paramountly important.

Genomic imprinting refers to the situation where the expression of the same genes
is different depending on their parental origin (Pfifer 2000). It has been increasingly
recognized that many endosperm traits are controlled by genomic imprinting. For
example, endoreduplication is a commonly observed phenomenon which shows a ma-
ternally controlled parent-of-origin effect in maize endosperm (Dilkes et al. 2002).
Cells undergo endoreduplication are typically larger than other cells, which conse-
quently results in larger fruits or seeds beneficial to human beings (Grime and Mow-
forth 1982). Other reports of genomic imprinting with paternal imprinting in maize
endosperm include, for instance, the r gene in the regulation of anthocyanin (Ker-
micle 1970), the seed storage protein regulatory gene dsrl (Chaudhuri and Messing
1994), the MEA gene affecting seed development (Kinoshita et al. 1999) and some
a-tubulin genes (Lund et al 1995). These studies underscore the value of developing
statistical methods that empower geneticists to identify the distribution and effects

of imprinted genes controlling endosperm traits.

Statistical methods for mapping imprinted genes or imprinted quantitative trait
loci (iIQTL) have been extensively studied. Focusing on different genetic designs
and different segregation populations, methods were developed in mapping iQTL
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underlying quantitative traits in controlled experimental crosses (e.g. Cui et al. 2006,
2007; Wolf et al. 2008), in outbred population (e.g., de Koning et al. 2002) and in
human population (e.g., Hanson et al. 2001; Shete et al. 2003). Broadly speaking,
these methods can be categorized into two frameworks: one based on the fixed effect
model where the iQTL effect is considered as fixed (e.g., Cui et al. 2006, 2007; de
Koning e.t al. 2002), and the other considering iQTL effect as random and estimating
the genetic variances contributed by an iQTL (e.g. Hanson et al. 2001; Shete et
al. 2003; Li and Cui 2009a). The method proposed by Li and Cui (2009a) extended
the variance components model to experimental crosses and showed relative merits in
mapping iQTLs with inbred lines. However, all these approaches for iQTL mapping
were developed based on diploid populations, whereby chromosomes are paired. Their
applications are immediately limited when the ploidy level of the study population is

more than two for instance, the triploid endosperm.

In this study, we propose to extend our previous work in iQTL mapping with vari-
ance components approach in experimental crosses (Li and Cui 2009a), and consider
the unique genetic make-up of the triploid endosperm genome to map iQTLs un-
derlying triploid endosperm traits. Cytoplasmic maternal effects are also considered
and adjusted when testing for genomic imprinting. Motivated by a real experiment,
we propose a reciprocal backcross design initiated with two inbred lines. Likelihood
ratio test (LRT) is applied to test the significance of the variance components and its

asymptotic distribution is evaluated under irregular conditions.

The article is organized as follows. Section 2 will illustrate the basic genetic design
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and the statistical mapping framework. We propose a new approach for calculating
the parental specific allelic sharing among inbreeding triploid sibs. Statistical hy-
pothesis testings are proposed to assess iQTL effects. The limiting distribution of
the LRT under the proposed mapping framework is studied. Multiple QTL model is
also proposed to separate closely linked QTLs. Section 3 and 4 will be devoted to

simulations and real application followed by a general discussion in section 5.

2.2 STATISTICAL METHOD

2.2.1 The genetic design

Using experimental crosses for QTL mapping has been the traditional means in tar-
geting genetic regions harboring potential genes responsible for quantitative trait
variations. Toward the goal of mapping iQTL underlying endosperm traits in line
crosses, we propose a reciprocal backcross design. A similar design was proposed by
Li and Cui (2009a) for diploid mapping populations. In brief, two inbred parents with
genotypes AA and aa are crossed to produce an F{ population (Aa). F; individuals
are then backcrossed with one of the parents to generate backcross populations. We
can use both parents as the maternal strain to cross with an F; individual to generate
two backcross segregation populations. Or we can use F; individuals as the maternal
strains to cross with both parents to produce another two sets of segregation popu-
lations. The so called reciprocal backcross design generates four different segregation
populations with each one being considered as one family. Large number of backcross
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families can be obtained by simply replicating each one of the above crosses.

To distinguish the allelic parental origin, we use subscript letter f and m to denote
an allele inherited from the father and mother, respectively. A list of possible offspring
genotypes considering the unique genetic make-ups in the triploid endosperm genome
is detailed in the second column in Table 2.1. Clearly, the endosperm genome carries
one extra maternal copy due to the unique double fertilization step in flowering plants.
When a dosage effect is considered, we do expect different expression values triggered

by endosperm and embryo genes.
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2.2.2 The model

In QTL mapping, different line crosses can be combined together to increase the pa-
rameter inference space via a variance components method (Xie et al. 1998). VC
method has been shown to be powerful in assessing genomic imprinting in human
linkage analysis (Hanson et al. 2001). Recently, Li and Cui (2009a) extended the
VC model to experimental crosses and proposed an iQTL mapping framework via
combining different line crosses for iQTL detection. We extend our previous work
to triploid endosperm tissue considering the unique genetic components in the en-

dosperm genome.

Suppose total K families are collected which are composed of the four distinct
backcross families. Assume nj individuals are sampled in the kth family. The phe-
notypic variation of a quantitative trait in family k (denoted as y;.) can be explained
by the genotype-specific cytoplasmic maternal effect (denoted as ), additive QTL
effect (denoted as aj), polygene effect (denoted as g;.), and random residual effect
(denoted as e). To incorporate the parent-of-origin effect, the additive QTL effect
(a) can be further partitioned into two separate effects, an effect due to the expres-
sion of the maternal allele (denoted as aj.,,,) and an effect due to the expression of

the paternal allele (denoted as ay, f)' The model can thus be expressed as

Yki =uk+2ak7ni+akfi+gki+eki, k=1,--- ,K;i1=1,--- M (2.2.1)

where ay,.., aj fir 9ki and e;; are random effects with normal distribution, i.e.,
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apmi ~ N(O, 012,1), agfi ~ N(0, a?), gr; ~ N(0, 0’3), er; ~ N(O, og); g); and ey
are uncorrelated to ag,,; and a; fis the coefficient 2 for a;,,; adjusts for the effects of
two identical maternal copies; pj. models the maternal genotype-specific effect. With
four distinct segregation populations, we have only three distinct maternal genotypes,
AA, Aa and aa. Thus the parameter pj. can be collapsed into three distinct values
denoted as uy, uo and pg corresponding to maternal genotypes AA, Aa and aa,
respectively. Let 8 = (p1, 49, 1£3), then model (3.2.1) can be rewritten in a vector
form as

yk=Xkﬁ+2akm+akf+gk+ek, k=1,--- K (2.2.2)

where X k is an nj x 3 matrix with one column of ones and two columns of zeros.

2.2.3 Parent-specific allele sharing and the covariance be-
tween two inbreeding sibs

One of the major tasks in IBD-based iQTL mapping with variance components model
is to calculating the IBD sharing probabilities and the phenotypic covariances between
sibs. Such a method has been developed in human population (Hanson et al. 2001),
which however, can not be applied to a complete inbreeding population in experi-
mental crosses, because the allelic sharing relationship among sibpairs does not follow
the pattern as the one derived from a natural non-inbreeding population. Instead,
the IBD sharing probability can be calculated based on the Malécot’s coefficient of
coancestry (1948) for an inbreeding population. Li and Cui (2009a) recently explored
different allelic sharing patterns among sibpairs in a reciprocal backcross design with
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a diploid tissue. We extend the method to the triploid endosperm genome and derive

the covariances among sibpairs in a triploid tissue.
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Consider two individuals 7 and j randomly selected from one backcross family with
phenotype y; and Y- Figure 2.1 shows all possible allelic sharing patterns between
individuals ¢ and j. The solid line indicates IBD sharing for alleles derived from
the same parent and the dotted line indicates IBD cross-sharing for alleles derived
from different parents. The allelic cross-sharing is unique to inbreeding populations,
whereby this cross-sharing probability reduces to zero for non-inbreeding populations.
Here we propose to calculate the IBD sharing between individuals ¢ and j (denoted

as ”ij) for a triploid genome as

392-]- ifi#j
Tij = (2.2.3)

$(5+3F) ifi=j
where oij is the Malécot’s coefficient of coancestry and Fj is the inbreeding coeffi-
cient (Harris 1964; Cockerham 1983; Lynch and Walsh 1998). By definition, eij is
calculated as the probability of two randomly selected alleles from individuals 7 and
j being identical by descent. The calculation of Tij is different from the usual IBD
sharing calculation in non-inbreeding populations. It is rather interpreted as triple
the Malécot’s coefficient of coancestry (Xie et al. 1998). For easy notation, we still
adopt the term “IBD sharing probability” for Tij in the rest of the presentation.
The calculation of the inbreeding coefficient follows the procedure given in Lynch and

Walsh (1998).

To illustrate the idea, consider two backcross individuals i (with genotvpe Am Am A f)
and j (with genotype By BmB f) The coefficient of coancestry gij between these
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two individuals can be expressed as,

1
0;; = §{Pr(Am1 = Bp,1) + Pr(Ap,1 = Byo) + Pr(4,,0 = Bipt)
+Pr(A0 = By9) + Pr(4,,1 = Bf) + Pr(A9 = Bf) + Pr(Af = B;,1)

+Pr(Af = Bm.Q) + Pr(Af = Bf)}

= L

5 +26;

imjm + 20imj + 20igjm +Oigjp)

where the notation = refers to identical by decent; the subscript numbers 1 and 2
indicate two maternally inherited alleles; 6; ]. is defined as the allelic kinship coef-

ficient (Lynch and Walsh 1998). Noted that the two terms Oirmi f and 6, fim are

indistinguishable, but their sum denoted as 6, (=6; ) is unique.

m/jf mjf + Bifjm

Thus, we have 6;; = 113(49im jm 26 ). Following equation (2.2.3), we

im/ig T i

have

4 2 1 o
mij = 305 = ggimjm + §9im/jf + §0z~fjf = Timim +7rim/jf + Tisig fori #j

It can be seen that the IBD sharing between any two individuals can be decomposed
as three separate components, one due to the IBD sharing for alleles derived from
the maternal parent (Wimjm = %eimjm)’ one due to the cross-sharing for alleles

derived from different parents (7 , and one due to the IBD sharing

2
im/if = 3%im/j;)

for alleles derived from the paternal parent ( ). An exhaustive list of

igig = gy

all possible IBD sharing probabilities for the four backcross families is given in Table

2.1.
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Dropping the family index k, the covariance between any two individuals 7 and j

can be expressed as,

COV(yi,yjlﬂimjm,wim/jf,ﬂifjf) = Cov(2ap; +af; +9; +ej,
2amj +af;+9;5+e))
= 4n! . o2 / 2 . g2
= Wi+ 2 15 Om + i f
+¢ij03 + Iijag

! _ 1
where 7. . =7

!
and =’
tmJm

(”imjm) im /jf = %(wim /jf) are the IBD sharing and
cross-sharing probabilities by considering one single maternal allele; arzn f measures
the variation of trait distribution due to alleles cross-sharing; ¢’ij is the expected
alleles shared IBD; Iij is an indicator variable taking value 1 if ¢ = j and 0 if i # j.
For a natural population without inbreeding, there is no allele cross-sharing for an

individual with itself, hence 7, = 0. For a diploid non-inbreeding population,

m/J f
the trait covariance can be simplified as the one given in Shete et al. (2003). In

matrix form, the phenotypic variance-covariance for individuals in the kth backcross

family can then be expressed as
_ 2 2 2 2 2
Ek = Hmlkam + nm/flkomf + I'Iflkaf + ‘I)g[kag + Iae (224)

where the elements of Hm| g I flk and I, /f|k can be found in Table 2.1.
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2.2.4 QTL IBD sharing and genome-wide linkage scan

The above described IBD sharing probability is calculated at a known marker position.
Unless markers are dense enough, we have to search across the genome for potential
(1)QTL positions and their effects. In general, the QTL position can be viewed as
a fixed parameter by searching for a putative QTL at every 1 or 2 ¢cM on a map
interval bracketed by two markers throughout the entire linkage map. Thus, we
need to estimate the QTL IBD sharing at every scan position. Since the conditional
probability of an endosperm QTL given upon two flanking markers is the same as the
one derived from a diploid genome (Cui and Wu 2005), the same procedure termed as
the expected conditional IBD sharing described in Li and Cui (2009a) can be applied

to calculate the QTL IBD sharing probability at every scan position.

Assuming multivariate normality of the trait distribution for data in each family
and assuming independence between families, the joint log-likelihood function when

K backcross families are sampled can be formulated as

K

£=3 log[f(yg; ny, )] (2.2.5)
k=1

where f is the multivariate normal density. Parameters to be estimated include
B = (p1,p9, ug) and Q = (a?n,a%,a?nf,og,ag). Two commonly used methods in
linkage analysis, the maximum likelihood (ML) method and the restricted maximum
likelihood (REML) method, may be applied to estimate parameters. It is commonly

recognized that the REML method gives less biased estimation compared to the ML
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method (Corbeil and Searle 1976). Here we adopted the REML method with the
Fisher scoring algorithm to obtain the REML estimates of the parameters (see Li

and Cui 2009a for details of the algorithm).

The conditional QTL IBD-sharing values vary at different testing positions. The
amount of support for a QTL at a particular map position can be displayed graphically
through the use of likelihood ratio profiles, which reflect the variation of the testing
position of putative QTLs. The significant QTLs are detected by the peaks of the

profile plot that pass certain significant threshold (see section 2.5 for more details).

2.2.5 Hypothesis testing

In iQTL mapping, we are interested in testing whether there is any significant genetic
effect at a test position and would like to further quantify the imprinting effect if any.

The hypothesis for testing the existence of a QTL can be expressed as

Ho:a?n=a?=031f=0

(2.2.6)

H : at least one parameter is not zero

The LRT is applied for this purpose. Define Q and Q to be the estimates of the
unknown parameters under Hy and Hjp, respectively. The LRT statistic can be

calculated as

LR = —2[log L(Q]y) — log L(Qy)] (2.2.7)
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Let @ = (u) pg p3 61 6o 03 64 OS)T = (1 pg p3 a,zn a% arznf ag ag)T EN=
R3x [0, 00) %[0, 00) %[0, 00) % (0, 00) X (0, 00) be the parameters to be estimated. Noted
that the polygene variance is bounded away from zero if we assume there are more
than one QTL in the genome. Let the true parameters under the null hypothesis be
80 = (110 K20 K30 9y 030 a2, fo 080 920)T = (110 #20 130 000 0% o2)T €
Q = R3 x {0} x {0} x {0} x (0,00) x (0,00). The three tested genetic variance
components under the null hypothesis lie on the boundaries of the parameter space 2.
Thus, the standard conditions for obtaining the asymptotic x2 distribution of the LRT
are not satisfied (Self and Liang 1987). Following the results from Chernoff (1954),
Shapiro (1985) and Self & Liang (1987), the following theorem shows that the LR

statistic follows a mixture chi-square distribution, whereby the mixture proportions

depend on the estimated Fisher information matrix.

Theorem 2.2.1. Let CQO and Cqy be closed convez cones with vertex at 6 to ap-
prozimate Q) and Q, respectively. Let Y be a random variable with a multivariate
normal distribution with mean 0y, and variance-covariance matriz I _1(00). Under
the assumptions given in the Appendiz, the LR statistic in (3.2.10) is asymptoti-

cally distributed as a mizture chi-square distribution with the form w3x§ : w2x% :

wlx% : woxg, where wg = 211?[27r - cos_1p12 - cos_1p13 - cos_1p23], wy =
Z%[Sn - cos—lpl2l3 - cos—1p13[2 —cos_1p23|1], wy = :{l;(cos_lplg +cos_1p13 +

cos"1p23), and wgy = %—ZIE[37r—cos_1p12|3—cos_1p13|2—cos_1p23]1]; Pyb ts the
correlation between the variance terms a and b calculated from the Fisher information

(Pgh—PacPp.)
(=) /2 (1= )12

matriz, and Pablc=
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Note that the symbol 7 in the above theorem is the irrational number (a mathe-
matical constant) not the IBD sharing probability. The proof of the theorem is given

in Appendix.

Remark: When the random parameter estimators are uncorrelated or the corre-
lation is extremely small, i.e., the Fisher information matrix is close to diagonal, the
mixture proportions for the x% components are reduced to the binomial form with

(%)2—3, which is consistent with the results (Case 9) given in Self and Liang (1987).

Once a QTL is identified at a genomic position, we can further assess its imprinting
property. To evaluate whether a QTL shows imprinting effect, the hypotheses can be

formulated as

Hy : U?- = 072n
(2.2.8)
Hy - 0’% # a,zn

Again, the likelihood ratio test can be applied which asymptotically follows a x2

distribution with 1 degree of freedom since the tested parameter under the null is
nonnegative and does not lie on the boundary of the parameter space. Rejecting
Hjy indicates genomic imprinting, and the QTL can be called an iQTL. We denote
this imprinting test as LRq-mp. If the null is rejected, one would be interested in
testing whether the detected iQTL is completely maternally or paternally imprinted
with the corresponding null hypothesis expressed as H) : 07271 =0 and Hy : 0; =0,

respectively. The LRT statistic for the two tests asymptotically follows a mixture x2

distribution with the form % X% : %x% Rejection of complete imprinting indicates

partial imprinting.
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Maternal effects can be tested by formulating hypothesis: Hpy : p; = po = pu3.
Note that these three parameters do not represent the true maternal effects as they
are confounded with the main genetic effects. But a test of pairwise differences can

be applied to detect the significance of any maternal contribution.

2.2.6 Multiple iQTL model

In practice, there may be several QTLs to reflect the phenotypic variation in the whole
genome. When testing QTL effects at one chromosome, the effects from QTLs located
at other chromosomes are absorbed by the polygenic effect (g). In some case, two
or more QTLs may located at the same chromosome, which are termed background
QTLs in comparison to the tested one. When this happens, it is essential to adjust
for the background QTLs’ effects. Otherwise, it may lead to biased estimation for the
putative QTL caused by the interference of QTLs close to the tested interval (Zeng
1994).

In the previous work of Li and Cui (2009a), the authors proposed a multiple iQTL
model following the idea of next-to-flanking markers proposed by Xu and Atchley
(1995). We adopted a similar strategy in the current study. Briefly, assume there are
S (1)QTLs in one chromosome, the multiple iQTL model considering parent-specific

allele effect can be expressed as

S S

Yki = BE+ D 20kmis T O Ok fis T ki tep k=1 K; =1 ng
s=1 s=1

where each (1)QTL effect is partitioned as two separate terms to reflect the contribu-
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tion of the maternal and paternal alleles. In reality, the exact number and location
of the QTLs in a chromosome is generally unknown before the genome-wide search.
This problem can be eased by applying the next-to-flanking markers idea proposed

by Xu and Atchley (1995).

Denote a test interval with two flanking markers as M;—M . The markers next
to these two markers are denoted as M| on the left of M;, and Mp on the right
of My (L=1-1and R =r+1). Conditional on the two markers, M and Mp,
we expect the effects of QTLs located outside of the tested interval can be absorbed
by the IBD values calculated from the two next-to—ﬂa.nking markers (Xu and Atchley
1995). Thus, the calculation of (i)QTL covariance conditional on these two markers
will avoid the requirement for the position of QTLs outside of the tested interval.

The phenotypic covariance between two individuals ¢ and j can be expressed as

Cov(yki’ykth[k’frimjm’ﬁ’im/jf’ﬁ'ifjf’”RM)

L
_ 2 -~ 2 . 2 £ g2
= z K(olL’"LIk)Ul t Timjmm 71'im/.7'f|kamf * TipifOf
=1
+ > KO R mRpp)or + ¢ijog + Lijoe

r=1

2, - 2 - 2 - 2 2 2 2
=TLIkOL, + Fimimom + Wim/jflkamf + ﬂififaf + TRIKOR + ¢ij”g + Iijae

where T Llk is the IBD sharing value at marker L, and 0% is a composite variance
component which reflects the variation of (i)QTL effects on the left side of the tested

interval (see Li and Cui 2009a for details). = Rlk and a% are defined similarly. The
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calculation of 7 L|k and 7 R|k reflect the triploid structure of the endosperm genome.
Testing (i)QTL effects can then be focused on a tested interval while adjusting for

the background QTLs’ effects located in other place.

2.3 SIMULATION

2.3.1 Single iQTL simulation

Six evenly spaced markers are simulated with a total length of 100cM. For simplicity,
we assume equal family size (i.e., nj = n). A putative iQTL is simulated at 48cM
away from the first marker. The effect of the putative iQTL is simulated by assum-
ing different imprinting modes (i.e., no imprinting, completely imprinting and partial
imprinting). Phenotypes are simulated by randomly drawing multivariate normal dis-
tribution with the covariance structure given in model (2.4) with different parameter

combinations.
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For experimental crosses, the number of families and the offspring size can be
easily controlled. We simulate data assuming different family and offspring size com-
binations to evaluate the effect of family and offspring size on testing power and
parameter estimation. For a fixed total sample size of 400, we vary the family and
offspring size with different combinations, i.e., 4x100, 8 x50, 20x20 and 100x4. The
first number for each combination indicates the family size and the second number
indicates the offspring size. Without loss of generality, we assume equal offspring
size for all families in each simulation. Results with 100 Monte Carlo repetitions are

recorded for each simulation.

Table 2.2 tabulates the results assuming no imprinting (i.e., 072,1 = a?). The
simulated parameter values are listed underneath each parameter. The REML esti-
mates as well as the root mean squared errors (RMSEs) (given in the parenthesis)
are recorded for each simulation. n denotes the number of families and nj, denotes
the number of offsprings in each family. Overall, the 20 x 20 combination produces
the smallest RMSE and bias for QTL position estimation, high QTL detection power
and reasonable type I error rate among the four designs. The 100 x 4 design gives
the most accurate estimates for the maternal effects, but with small power to detect
QTL effect. The 4 x 100 design gives very biased parameter estimates for the main
maternal and paternal variance terms. The 20x 20 design also produces the most
reasonable imprinting type I error. Thus, a balance of the family and offspring size is
necessary in achieving optimal power and estimation precision for the QTL position
and genetic effects. In reality, one should always try to avoid designs with extremely
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large or small family size.

Since the 20 x 20 design outperforms the others, we focus this design and con-
duct additional simulations under different imprinting mechanisms. The results are
summarized in Table 2.3. Four imprinting action modes are assumed: complete pa-

ternal imprinting (U,Zn = 1.5 and a?zO), complete maternal imprinting (a,2n =0

and o%=1.5), partial maternal imprinting (a,2n = 0.5 and a.%:l) and partial paternal

imprinting (a?n =1 and U?- =0.5). Overall, all parameters can be properly estimated
with reasonable precision under different scenarios. The complete maternal imprint-
ing has the lowest overall QTL testing power (62%) compared to others. Since the
majority of the total variance comes from the maternal alleles (two copies), this result
is expected. Also noted that the imprinting power is low in the four cases. Since the
size of the real data analyzed in section 4 is close to 400, we focus our simulation
with a total size of 400. As the total sample size increases, we do observe increased
imprinting power (data not shown).

The imprinting power is listed in the last column of Table 2.3, which varies a lot
under different imprinting cases. Note the imprinting power is calculated only when
a simulated QTL is significant. Simulations are not counted when calculating the
imprinting power when no QTLs are detected. Thus, we expect low imprinting power
under the current simulation design given that the overall QTL detection power is
less than 90%. The observed low imprinting power might be due to small sample size.

When sample size is increased, we do observe increased imprinting power (data not

shown). For more explanations, see the Discussion section.
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In summary, the results show that both the 4x100 and the 100x4 designs yield
lower QTL detection power and higher RMSE (root mean squared error) for QTL
position estimation than the other two designs do. The 20x20 design slightly beats
the 8x50 design with smaller imprinting type I error and higher QTL detection
power. These results indicate that it is necessary to maintain a balance between
the family size and the offspring size, in order to achieve optimal power and good
effects estimation precision. For a given budget with a fixed total sample size, one
should always try to avoid extreme designs with large (or small) number of families,
each with small (or large) number of offsprings. Focusing on the 20 x 20 design,
additional simulation shows that the performance of the imprinting model depends
on the underlying degree of imprinting. High imprinting power is observed when an
iQTL is maternally imprinting compared to the case when an iQTL is paternally

imprinting.

2.3.2 Multiple iQTL simulation

When multiple (1)) QTLs occur in one chromosome, especially when they show linkage
effects, the inference of a tested QTL will be biased if other QTLs’ effects are not
corrected. In the simulation, the same setup as described in single iQTL simulation is
adopted, except that two putative iQTLs are simulated, one located at 28cM and the
other one located at 72cM. Data are simulated assuming two iQTLs located at the two
genomic positions and are subject to both single iQTL and multiple iQTL analysis.
Figure 2.2 plots the LR profiles averaged out of 100 replications for both analyses.
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The dotted and solid curves represent the LR profiles calculated from the single and
multiple iQTL models, respectively. Results indicate that the single iQTL analysis
produces three clear LR peaks. The highest peak corresponds to the wrong QTL
position, which is often termed as “ghost” QTL (Zeng 1994). On the contrary, the
multiple iQTL model can correctly target the two QTL positions with high precision

as indicated by two distinct LR peaks.

10 ' l ' S ISinglel QTL model
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Figure 2.2: The LR profile plot for the single iQTL and multiple iQTL analyses. The true
iQTL positions are simulated at 28cM and 72cM (see the arrow signs). The dotted and
the solid curves represent the LR profiles by the single iQTL and multiple iQTL analyses,
respectively.

In summary, the results indicate a clear benefit of analysis by fitting a multiple
iQTL model than fitting a single iQTL model. While the single iQTI analysis detect
one “ghost” QTL located between the two simulated QTLs, the multiple iQTL anal-
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ysis can clearly separate the two QTLs with high precision. Note that the multiple
iQTL analysis normally generates low LR values than the single iQTL analysis does.
The distribution of the LR value under the multiple iQTL analysis is not clear, and
permutation should be used to assess significance of any (1) QTLs in multiple iQTL

analysis (Xu and Atchley 1995).

2.4 A CASE STUDY

We apply our method to a real data set which have two endosperm traits of interests:
mean ploidy level (denoted as Mploidy) and percentage of endoreduplicated nuclei
(denoted as Endo). The two traits describe the level of endoreduplication in maize
endosperm, which is thought to be genetically controlled by imprinted genes (Dilkes
et al. 2002). Four backcross segregation populations, initiated with two inbred lines,
Sg18 and Mol7, were sampled. The four populations were obtained from a reciprocal
backcross design as illustrated in Table 2.1. The data show large degree of variation
for endoreduplication among the four backcross populations, and ten linkage groups
were constructed from the observed marker data (Coelho et al. 2007). For more
details about the data, readers are referred to Coelho et al. (2007). The two traits
were analyzed with our multiple iQTL model aimed to identify iQTLs across the ten

linkage groups.
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Figures 2.3 plots the LR profiles across the ten linkage groups for the two traits.
The solid and dotted curves represent LR profiles for traits Endo and Mploidy, re-
spectively. To adjust for the genome-wide error rate across the entire linkage group,
permutation tests are applied in which the critical threshold value is empirically calcu-
lated on the basis of repeatedly shuffling the relationships between marker genotypes
and phenotypes (Churchill and Doerge 1994). The corresponding genome-wide signif-
icance thresholds (at 5% level) for the two traits are denoted by the horizontal solid
(for Endo) and dotted (for Mploidy) lines. The 5% level chromosome-wide thresholds
are denoted by the dashed (for Endo) and dash-dotted (for Mploidy) lines. QTLs
that are significance at the chromosome-wide level are called suggestive QTLs. It can
be seen that two QTLs (on G7 and G9) associated with Mploidy and one QTL (on
G6) associated with Endo are detected at the 5% genome-wide significance level (de-
noted by “#” in Table 3.3). Two suggestive QTLs (on G2 and G10) associated with
Endo and one suggestive QTL (on G6) associated with Mploidy are also indetified.
The detailed QTL location and effect estimates as well as the test results for im-
printing are tabulated in Table 3.3. For the trait Mploidy, the identified three QTLs
are all imprinted (Pz'mp < 0.05) and all show completely maternal imprinting, i.e.,
the maternal copies do not express. They are thus termed iQTLs. The cytoplasmic
maternal effect does not show any evidence of significance for all the three iQTLs
(ppg > 0.05). For the trait Endo, only the QTL detected on G6 shows imprinting
effect (pimp < 0.05) and it shows completely paternal imprinting (p; f< 0.05). The

other two QTLs does not show evidence of imprinting (pimp > 0.05). For this trait,
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significant maternal effects are detected (pps < 0.01).

In our study, one maternally controlled iQTL was detected for trait Endo, which is
consistent with the result given by Dilkes et al. (2002). Meanwhile, according to the
genetic conflict theory proposed by Haig and Westoby (1991), in which maternally
derived alleles tend to trigger a negative effect on the increase of endosperm growth,
whereas paternally derived alleles tend to play an opposite effect to increase seed
size. The identified iQTLs shwoing maternal imprinting for trait Mploidy can be
well explained by the genetic conflict theory. Both empirical evidence and theoretical

hypothesis support the current finding.
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In the case study, we also fit a Mendelian model to the data to see if the imprinting
model and the Mendelian model produce any different results. The Mendelian model

for family k assumes the form

yk=Xkﬂ+ak+gk+ek, k=1,--- K (24.1)

where a, is a random vector for the main genetic effect without partitioning it into
allelic specific effects. See model (2) in the main paper for an explanation of other
parameters.

Figures 2.4 and 2.5 plot the results for the two traits Mean Ploidy Level (Mploidy)
and Percentage of Endoreduplication (Endo), respectively. Figure 2.4 indicates that
the imprinting and the Mendelian models agree with two QTLs detected, one on G7
and one on G9. Both QTLs are significant at the genome-wide significant level by
fitting the imprinting model. But the Mendelian model only detects the one on G7 at
the genome-wide level. Each model detects one QTL at the chromosome-wide level on
G6. But the two QTLs do not overlap. Further experimental investigation is needed
to confirm which model is more robust for this QTL.

The results for fitting the Endo trait is summarized in Figure 2.5. The imprinting
model detects three QTLs, on G2, G6 and G10. The one on G6 is significant at the
genome-wide level. The other two are only significant at the chromosome-wide level.
In contrast, the Mendelian model only detects one QTL on G6 which overlaps with
the one identified by the imprinting model. In fact, the two models produce quite
similar LR values at QTLs on G2 and G10. Due to high threshold for the Mendelian
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model, it fails to detect the two QTLs.
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2.5 DISCUSSION

The role of genomic imprinting in endosperm development has been commonly rec-
ognized (Dilkes et al. 2002; Kinkshita et al 1999; Chaudhuri and Messing 1994).
But little is known about the exact location and effect size of imprinted genes in
endosperm. As endosperm in cereal provides the most nutrition for human being, it
is important to identify imprinted genes that govern seed development, particularly
endosperm development. In this article, we develop a variance components linkage
analysis method with an experimental cross design, aimed to identify iQTLs for en-
dosperm development. Our method is motivated by real applications and is evaluated

through Monte Carlo simulations.

The proposed method is based on a particular genetic design (reciprocal backcross
design) with inbreeding populations. We treat iQTL effects as random, different from
a fixed-effect iQTL model (e.g., Cui 2007). Variance components linkage analysis with
partial inbreeding human population was previously proposed (see Abney et al. 2000).
However, extending the VC model to a completely inbreeding population is challeng-
ing. In our previous work, we proposed a VC-based iQTL mapping framework for an
inbreeding diploid mapping population (Li and Cui 2009a). Extending the previous
work, we propose a novel IBD partitioning approach to calculate allelic sharing in an
inbreeding endosperm population. Extension to mapping multiple iQTLs is provided.
Simulations indicate good performance of the multiple iQTL analysis compared to a
single iQTL model. Meanwhile, to obtain a good balance of iQTL position and effect
estimation and detection power, we have to avoid extreme sample designs. For a fixed
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total sample size, extremely large or small families should always be avoided.

In an application to two endosperm traits, we identified three iQTLs for trait
Mploidy. All show paternal expression. We also identified one iQTL for trait Endo,
which shows a maternal expression. According to the parental conflict theory pro-
posed by Haig and Westoby (1991), maternally derived alleles trigger a negative effect
on endosperm cell growth and inhibit endosperm development because the extra ma-
ternal copy could slower nuclear division in endosperm. On the contrary, paternally
derived alleles tend to increase seed size. Thus, the three iQTL identified for Mploidy
can be explained by the genetic conflict theory. The occurrence of parental conflict
theory explains parent-of-origin effects as an ubiquitous mechanism for the control of

early seed development (Grossniklaus et al. 2001; Kinoshita et al. 1999).

In a VC-based linkage analysis, likelihood ratio test (LRT) has been commonly
applied in assessing QTL significance. The LRT statistic asymptotically follows a
mixture x2 distribution and many investigators often apply the result (Case 9) in
Self and Liang (1987) with binomial mixture coefficients. In a recent investigation,
we found that the LRT in a regular VC-based linkage analysis without considering
imprinting follows a mixture x2 distribution with mixture proportions depending on
the estimated Fisher information matrix (Li and Cui 2009b). The modified calcula-
tion of mixture proportion does give more reasonable type I error rate than the one
with binomial coefficients. When imprinting is considered, we show that the limiting
distribution of the LRT also follows a mixture x2 distribution, and we adopt the
new criterion for power evaluation. Simulations show that the new criterion gives
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type I error more closer to the nominal level than the one using binomial coefficients,
and produces power as good as the later one (data not shown). We recommend
investigators to adopt the new criterion in their analysis.

Increasing evidences have suggested that for correlated traits, multivariate ap-
proaches can increase the power and precision to identify genetic effects in genetic
linkage analyses (e.g., Boomsma and Dolan 1998; Amos et al. 2001; Evans 2002).
Also, the joint analysis of multivariate traits can provide a platform for testing a num-
ber of biologically interesting hypotheses, such as testing pleiotropic effects of QTL,
testing pleiotropic vs close linkage. Moreover, if the putative QTL has pleiotropic
effects on several traits, the joint analysis may perform better than mapping each
trait separately (Jiang and Zeng 1995). Multivariate traits appear frequently in ge-
netic mapping studies. For example, the two endosperm traits evaluate in this study
are highly correlated (Colho et al. 2006). We expect joint analysis may provide high
mapping resolution and power for iQTL detection. This will be explored in our future

investigation. A computer code written in R is available upon request.

APPENDIX

In standard human linkage analysis with variance components rhodel, many authors
declare that the likelihood ratio statistic follows a mixture x2 distribution with bino-
mial coefficient for each mixture component (e.g., Amos and Andrade 2001; Hanson
et al. 2001; Shete et al. 2003). Following Chernoff (1954), Shapiro (1985) and Self &
Liang (1987), in the following we show that the mixture proportion actually depends

98




on the estimated Fisher information matrix.

For a random variable Y with density function f(y;®), following Chernoff (1954)
and Self & Liang (1987), assume that:

(1) When any true parameter () is on the boundary, the neighborhood centered
at 6, i.e., (6g — 9,0 + ), is closed, and the intersection between this closure and
is also a closed set.

(2) The first three derivatives of 3_; log f(y;; @) with respect to 8 on the intersec-
tion of neighborhoods of fj and 2 almost surely exist. Moreover, |33 y ;Oi f | < K(y)
for all 6 on the intersection, and Ey[K(y)] < oco.

(3) The information matrix Z(@) is positive definite on neighborhoods of 6.

Assuming the above assumptions, the consistency and weak convergence of the
estimators can be proven (see Chernoff 1954, Self & Liang 1987, Shapiro 1985). Here
we cite the main results from Chernoff (1954), Shapiro (1985) and Self & Liang (1987)
to show the asymptotic distribution of the LRT in our case.

Defining two closed polyhedral convex cones CQO and CQI to approximate £
and €27 at 6. The parameter space under the null hypothesis is approximated as
CQO = {8:6 € R3 x {0} x {0} x {0} x (0,00) x (0,00)}, against CQI ={6:0¢
R3 x [0,00) x [0,00) x [0,00) x (0,00) x (0,00)} under the alternative. Following
Chernoff (1954, Theorem 1), the asymptotic distribution of the LRT in (3.2.10) is

equivalent to the following quadratic approximation

LR* = inf (Y -0)I1(6p)(Y -8)— inf (Y —60)I(8y)(Y —0) (25.1)
GECQO OECQI
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where Y ~ N(8g, I~1(6p)).

Subtracting 6 from Y and 0, the expression in (2.5.1) is given by

LR* = inf (Y—O)'I(OO)(Y—-O)— inf (Y—O)'I(OO)(Y—O) (2.5.2)
OGCQO—-OO GGCQI —90
and Y ~ N(0, I _1(00)) under the linear transformation.
Let C* = (Cq, — 80) N (Cyy — 00)° = {8 : 61 > 0,63 > 0,03 > 0}, which is a
closed polyhedral convex cone with 3 dimensions. By the Pythagoras theorem, the

statistic in (2.5.2) can be expressed as

LR* = inf (Y —0)'1(6p)(Y - 0) (2.5.3)

e
Let }'(Ci) represent the set of all faces of CI, and let ¢10 = {r e R3 : 76 <
0, VO e Ci} be a polar cone which is also a polyhedral convex cone such that
(Cm)0 =ct. Following Shapiro (1985), we can select a face v € F (CI) correspond-
ing to a polar face N e F (CIO) such that the linear spaces generated by v and

0

are orthogonal to each other. For one face v (or uO), a projection Ty (or TUO)
(a symmetric idempotent matrix giving projection onto the space generated by v (or
uo)) can be found and Ty = I —Ty; since they are orthogonal. Then TyY" (or Tuo Y)
is a projection of Y onto ct (or CIO). For a given Y, let g(Y') be the minimizer
to achieve the infimum in (2.5.3), such that LR* = (Y — g(Y))'I(6p)(Y - g(Y)).
Define ¢V|Y ={Y € R3 . 9(Y') € v}) so that g(Y') € v if and only if T)Y € ct
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and T,oY € C10. By Shapiro (1985), g(Y)=TyY e C}, VY ¢ e
Note that the set ’*[’ulY is composed of 23 disjoint sets in R3. All these disjoint

sets can be classified into four categories as

1). w},ly ={Y;¥] >0,Yy>0,Y5 > 0,g(Y) € v}

FAN

2). z/)?/ly ={Y;Y] >0,Yy > 0,Y3 < 0,9(Y) € v}; wgly ={Y;Y] > 0,Yy

0,Y3>0,9(Y) € v}; wﬁIY ={Y;Y; <0,Y5>0,¥3 >0,9(Y) € v}

3). ¢§|Y = {Y;Y]; <0,Y5 <0,Y3 > 0,9(Y) € v}; wSIY ={Y;Y] >0,Yy <

0,Y3<0,9(Y) € v} leY ={Y;Y] <0,Y,>0,Y3<0,9(Y) € v}

1) why = (YiN1 0% <0,Y3<0,9(Y) € v)

Define C* = {0* : 6* = A1/2P’0,V 0 ¢ Ci} to be also a polyhedral closed

convex cone. Then 2.5.3 can be further expressed as

LR* = , in é iz - 0*||2 (2.5.4)
€

where z=Al/2P'y (PAPT = I(6p)) has a multivariate normal distribution with
mean 0 and identify covariance matrix.

Let C*0 be a polar cone of C* and (C*0)0 = C*. Two faces v* and v*V can be
defined with respect to F(C*) and F(C *0). The relevant orthogonal projections T«

*0

and Ty*O corresponding to v* and v*Y can be found. Suppose h(z) is the minimizer
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to achieve the infimum in (2.5.4). Following Shapiro (1985), we can have h(z)=

T xz€ C*Vze wy*lz. The set is defined similarly as ’j’u[Y’ and it satisfies

v¥|z

the conditions of Lemma 3.1 (Shapiro 1985). Then we have

LR* = ||z—h(2)|% = ||z—Tu*z||2 =2/(I-T )z = z’TV*Oz VZz€ Yy x, (255)

Thus the distribution of LR* in 2.5.3 can be expressed as
23
Pr(LR* > ¢?) =Pr((Y — g(Y))'I(8)(Y - g(Y)) >, Y € 'U1 y)
1=

23

=Y Priy ev'y)
> ¥ 259)

Pr((Y = g(¥))/I(8p)(Y —g(¥)) > IY € u},y)

23
= Z Pr(Y € 1,/1:/|Y)Pr(z'TV*0z > c2|z € 1'/)11/*|z)
i=1

where conditional on z € wf/*lz’ z'TV*Oz is a chi-square distribution. By Bayes’ the-
orem, the distribution of LR* follows a mixture chi-square distribution with mixing

. 3 .
proportions Pr(Y € 1/;12/|Y) (i=1,...,23) and 21221 Pr(Y € w:jlY) =1.

The calculation of the mixture proportions follows Plackett (1954). Specifically,
whenY € w11/|Y’ LR* ~ x%, and the corresponding mixture proportion w3 =Pr(Y €
pl ) = 1 (27 — cos 1p1g — cos™1pyg3 — cos™! ]. For category (2), LR* ~ 2

oY) =ar P12 p13 — cos™ " pagl. ategory (2), X5
for Y € wlizlY’ i = 2,3,4 with the corresponding mixture probability calculated

by wo = Z§=2 Pr(Y € w}/ly):al%[&r - cos—1p1213 - cos—1p13|2 - cos_1p23|1].
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Correspondingly, LR* ~ x% forY € ¢f/|Y’ 1 = 5,6,7 with the corresponding mixture
probability calculated as wy = Z;=5 Pr(Y € tl)f/ly):% — w3 in category (3). For
the last category, LR* ~ X% for Y € dzgly with the mixture probability wy =

Pr(Y € wgly)=% — wo.
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Chapter 3

Bivariate quantitative trait linkage
analysis in mapping imprinted
quantitative trait loci underlying

endosperm traits in flowering plant

3.1 Introduction

The availability of multiple phenotypic traits allows researchers to associate genetic
effects with the joint information of multivariate traits. Comparing with a univariate
phenotypic trait, multivariate traits can provide more information in explaining the
variation resulted from few particular genes or QTL, especially when correlations of
these traits are observed to measure the related levels of multivariate phenotypes. By
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accurately modeling the relative correlations of different phenotypes, the multivariate
traits analysis significantly improves the power to detect QTL, and the degree of
accuracy of position estimation for true QTL (Williams et al. 1999; Almasy et al.

1997).

Initiated by the double fertilization, a unique reproductive process in angiosperm
plants, endosperm is developed from the fuse of the two polar nuclei and a sperm
cell, ended up with a triploid tissue with two identical chromosomes inherited from
maternal and one chromosome from paternal parent. Surrounding the embryo, the
endosperm supplies main nutrition to the embryo (Brink and Cooper 1947). In ce-
real, it serves as the major source of food for human being. But the function of
the endosperm is far more complicated and is beyond simple nutrient delivery to the
embryo. Meanwhile, it is frequent to observe multivariate endosperm traits in maize,
for instance, two highly correlated maize endosperm traits were collected: endoredu-
plication and mean ploidy (Cintia et al. 2006). To reveal the association of genetic
effects with the variation of correlated endosperm traits, the multivariate traits anal-
ysis provides an essential channel to extract the maximum information to identify

important genes or QTL.

In terms of the association of gene expression with variations of the phenotype,
genomic imprinting is defined as the epigenetic phenomena that cause uniparental
gene ekpression (Wolf et al. 2008). Under genomic imprinting, the expression of the
same allele A from different heterozygote genotypes Aa and aA depends on the origin
of inheritance of this allele. Then the maternally derived allele A (from Aa) functions
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differently from that of paternally derived allele A (inherited from aA). A number
of studies have illustrated that many endosperm traits are controlled by genomic im-
printing. In maize, several paternal imprinting genes have been identified: the r gene
in the regulation of anthocyanin (Kermicle 1970), the seed storage protein regulatory
gene dsrl (Chaudhuri and Messing 1994), the MEA gene in seed development (Ki-
noshita et al. 1999) and some a-tubulin genes (Lund et al 1995). In the contrary
direction, endoreduplication expresses a maternally controlled parent-of-origin effect
(Dilkes et al. 2002). Endoreduplication, commonly occurring in angiosperms, is cru-
cial for the endosperm development. By amplifying the genome to result in larger
cells, endoreduplicaiton plays a critical role in process about the terminal differenti-
ation and specialized function of given tissues. However, to our best knowledge, no
study has been conducted to map iQTL with multivariate traits underlying potential
imprinting process. It is the purpose of this study to develop an efficient multivariate

iQTL mapping procedure incorporating the nature of the imprinting characteristic.

One important merit of the multivariate traits analysis is to make a number of
biologically interesting hypotheses tests, such as testing pleiotropic effects of (i)QTL,
testing pleiotropic against close linkage. These tests can not be accomplished under
a univariate trait analysis. Generally, one phenotype is affected by one gene, but in a
few cases, the same gene may govern several phenotypes simultaneously. This unique
phenomenon is termed as pleiotropy. In real experiments, this special event may be
confused with close linkage, another exceptional phenomenon during which variations
of several phenotypic traits are influenced by multiple closely linked genes. Although
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several genes are located closely in close linkage event, each gene only controls one
trait. The discrepancy between pleiotropy and close linkage is simply distinguished
by the number of traits one gene could control. It is practically important in distin-

guishing these two phenomena.

In maize, some vital genes displaying pleiotropic effects are revealed. For example,
maize zfl regulatory genes in genetic backgrounds have pleiotripic effects on structure
traits in branching and inflorescence (Bomblies and Doebley 2006); the tbl gene with
the intergenic sequences illustrates the pleiotropic effects on maize morphology (Clark
et al. 2006); the early phase change (epc) gene has effects on maize development in
several aspects (Vega et al. 2002); a maize gene GLOSSY1 (GL1) expresses its effects
on trichome size and cutin structure during epidermis development (Sturaro et al.
2005); encoding with a transcription factor, a maize gene Glossy15 (G115) functioning
like APETALAZ2 gene controls the development of ovule and identity of floral organ
(Moose and Sisco 1996). It is known that endoreduplication and mean ploidy are two
highly correlated endosperm traits in maize (Cintia et al. 2006). The identification
of genes with pleiotropic effect based on these two phenotypic traits is practically

important.

Variance components model is a powerful tool in multi-trait linkage analysis for an
outbred or human population (Almasy et al. 1997; Williams et al. 1999). Due to the
special inbreeding structure and unique genetic make-up of the endosperm genome,
the current multi-trait linkage analysis methods can not be applied directly to en-

dosperm phenotypes. In an extension to our previously proposed variance components
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model in mapping iQTL underlying endosperm trait, in this work we will propose a
bivariate iQTL mapping method to track down iQTL with possible pleiotropic effect,

and to further distinguish potential close linkage signals.

3.2 Statistical method

3.2.1 The model

We will follow the same genetic design as illustrated in Chapter 2. Let y; k=
(yll, ""ylnk )T be a vector of the 1st phenotypic trait value in the kth family, and
Yo, = (y21, - y2nk )T be the 2nd phenotype within the same family. We assume
multivariate normality for the joint distribution of y; K and yo Iz In the kth family,
n, individuals are randomly selected for each quantitative trait. The total K families
are collected through four distinct reciprocal backcross populations. In bivariate trait
analysis, the genotype-specific cytoplasmic maternal effect (31, B9), additive genetic
effect at the QTL (ag g 92 k), polygenic additive effect (g; K’ ng), and random en-
vironmental effect (e; K €2 k) are considered. The parent-of-origin effect is further
partitioned into effects due to the expression of the maternal allele with respect to
each phenotypic trait (denoted as a1 %2 k)’ and due to the expression of the pa-
ternal allele (denoted as a; kf’ ag,. f). Hence, the genetic model underlying bivariate

endosperm traits is represented in a vector form:
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(W1yo42p) = X (B, Bo) +2(ar, 02 )+ (@1 g0 )+ (91,002, ) + (o1 e2))

(3.2.1)
where k = 1,--- | K. According to the reciprocal backcross design, three mater-
nal genotypes AA, Aa and aa are observed, thus 37 and B9 denote mean pa-

rameters of two phenotypic traits with respect to three maternal genotypes, i.e.,

B1 = (u1,u9,13), By = (ug,ps5,u6). The design matrix X,’: is an ng x 3 ma-
trix with one column of ones and two columns of zeros. The random effects cor-

responding to the 1st trait are almk’ and e K’ and each of these ran-

RV’
dom components is distributed as normal distribution i.e., ay k™ N(0,IT,, koM )s

N 2 N P N P 2
alfk N(0, Hflkafl), 91, N(0, @kogl) and €1y N(O,Ikael), where o7

and a%l are the additive genetic variances at the QTL for maternal and paternal
sides respectively; Hml  and II £k are IBD sharing matrices that are derived from

the similarities of maternal and paternal alleles among siblings, respectively; Ugl

2

€] are the additive polygenic variance and the residual environmental vari-

and o,
ance, respectively; ¥, is the expected proportion of alleles shared IBD; and Ij is

the identity matrix. Correspondingly, a2k and ey L are random effects

az fk’ 92}

with normal distribution for the 2nd phenotypic trait i.e., a k™ N(0, H‘m| komz),
2 2 2

a2fk ~ N(0, Hf|kaf2)’ 92;. ~ N(0,<I>k092) and e, ~ N(0, Ika(?).

In addition, when bivariate phenotypic traits are involved in the model, the

covariances of two phenotypes are expressed in terms of each random effect, i.e.,
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Cov(almk’a2mk) =Hm|k0m12 together with Cov(alfk,ank)=Hf|kaf12 are the
covariances of the additive genetic effects at QTL; the covariance of the polygenic

effects is Cov(g; 92 k)=<I> ko919 the covariance of the environmental effects is

Cov(elk ’62k)=Ik‘7€12'

3.2.2 Parent-specific allele sharing & genomewide linkage scan

The variance components model is built upon the basis of IBD sharing at the QTL.
In triploid inbreeding population, a unique decomposition of parent-specific allele
sharing pattern is illustrated in Figure 2.1. In the kth backcross family, the pheno-
typic variance-covariance corresponding to the 1st phenotype is denoted as: 1) =
Hmlkagnl + Hm/f|k072nf1 + Hflka}l + (I)g|k031 + Iagl, where nm/f]k is the
IBD sharing matrix that the shared alleles are derived from different parents. Sim-
ilarly, the phenotypic variance-covariance for the 2nd phenotype is given as Xo) =
Hm|k072n2 +Hm/f|k0'r2nf2 +nf|k0%2 + <I>g|k032 +Ia§2. The covariance of two phe-
notypic traits is expressed as ¥19) = Hmlkaml2 + Hm/f|k‘7mf12 + Hf|k0f12 +
P 9|k%912 + 10612. Therefore, the phenotypic variance-covariance of two phenotypic
traits within the kth backcross family is expressed in a matrix form:

T =
z =] T T2k (32.2)

Y12k Zok

Where

— 2 2 2 2 2
[ ] Elk = Hmlkaml +I'Im/f|kamf1 +Hf|k0'f1 + @gIkO’gl +10'el
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° 2121{ = Hmlk0m12 + Hm/flkamfIQ + HflkafIQ + ¢g|k0912 + 10312
— 2 2 2 2 2

The calculation of the IBD sharing probability is based on the marker positions.
Unless each marker interval is dense, the QTL may be anywhere in the interval
bracketed by two flanking markers. To acquire the accurate position of QTL, we
need to search the putative QTL at every 1 or 2 ¢cM throughout the entire genome

(see Chapter 2 for more details).

3.2.3 Likelihood function and parameter estimation

In the kth family, two phenotype vectors are expressed as ¥y, E = (yll""’ylnk)T
— T _ T mi
and Y, = (yzl,...,yznk) . Let yk_(yll"“’ylnk’ y21,...,y2nk) . Assuming the

multivariate normality of y;. and different families are independent, the overall log

likelihood function is given by:

K
0= log[f(yg: B, Zg)] (3.2.3)
k=1

where 3 is a mean vector of both phenotypes in terms of 3] (denoted as the mean
vector of the 1st phenotype) and B9 (as the mean vector for the 2nd phenotype)
ie., ﬂ(ﬁxl) = (Z; ) With respect to three maternal genotypes, 31 and B9 include
three different mean values for each trait. The random parameters in X. are of main
interest and defined as © = (07271(1 » Omy9, a?n2, 0}1 , af12, 012‘2’ 072n,f1’ Umf12’ 072"1-2,
agl, 7919 032, agl, Te19s 032). To estimate these parameters, two commonly used
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approaches are applied, the maximum likelihood (ML) method and the restricted

maximum likelihood (REML) method.

3.2.3.1 The ML estimation

Defined the parameters as Q = (83,0) where B=(uy, po, 13, k4, ps5, pg) and

(2 2 2 2 2 2 2 2 2
e—(omly 0m12) 0m21 Ufl’ 0'f12, Ufzv UmfI) Umf12, Umf2) 091’ 0912a ngv Uela

Teqg; 032). The log-likelihood function to be maximized is in the form:

K K
1 /
Q) = loglf (vl = —5 > {log Tkl + vk — XgB) gy — XiB) }
k=1 k=1
(3.2.4)
where y.=(y; k,ka)T is the phenotypic vector for both phenotypes; ¥ is the

variance-covariance matrix of y; with dimension 2nj x 2n, and the elements of
this matrix are explained in section 3.2.3; the mean effect of the kth backcross family

P ng

is denoted as X8 = , and X, is a design matrix.

Fijolng
We applied the Fisher scoring algorithm to estimate the parameters given in €2,

oe*(8)
90

ot+1) — g(t) L 7o) -1 1e(t)
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Define

n(ll)k ( m|lc 0) matrix 0 with dimension ng x ng., k=1,.... K

Hle)k (8 Hgllk) matrix 0 with dimension nj. x ng, k=1,.., K  (3.2.5)

a® . ° Ok

mlk Hmlk 0 ) matrix 0 with dimension ng. x ng, k=1,...,K

Replacing the matrix Hm]k in the above equation (3.2.5) by Hflk’ Hmf|k’ o,

(

s) (s) (s) _
mf|k’ <I>k and Ik , s=1,2,3,

and Ij individually, we will obtain matrices Hﬁ‘slac’ In
k=1,...,K.

The first-derivative of the log-likelihood function ¢* with respective to each vari-

ance component is given by

oe*
902 =‘lz(t" _111( |)k)"(yk b )b It I)k ok = XiB)),
9m k=1
or 1 & -14(2) nTs—117(2) $-1 5
60%12= Ekzzzl(tr(z; I ) = Ok = Xph) S T lkzk (vg — Xih)),
ar* LK
—-15(3) T¢—14(3) 5
r—— §kz=:1(tr(2 o)~ Ok ~ X8 T |k>: Yyk - XiB),
ar* s
T -
60'? - §k§1(tr(2k11'[§,|;€)—(yk Xkﬁ) D ll'IfIiEk (Y& — XkP))
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or*

2
30g2

oe*

80912

oe*

€1
or*

3032

or*

1 & 1) XehTE10) 51 - x
2}2@ (2 Hf|k)—(yk 5) fIE=k (YL kﬁ))

_Ekgl(tr( k flk)_(yk_ kﬁ) k flk k (k_ kﬁ)),
-3 e ) - wp - AT, £ g - X)),
18, 1 (2) Te-1p(2) a1 :

=5 2 G ) = vk = XB)T B B v — X)),
1 & & —1(3) —11(3) 1

~5 2 r(E ) — vk = XB) B B g - X)),
1 & 14(1) Te—151)¢ 2

—5 2 (S o) — (vg = Xph) £ 2 /S (y Yyg — XiB)),

& 12 (g
S trEe ) - vy - X HTE 10 Yy - X1B),

K
2 Y led) - vy - XA TE P vy - X)),

= r(5-1,2) ) Ti1,(2)5 :
S G L) - v - Xk DTS LTS vy - xp08),

1S, n1/(3) 3Ts—1;3)g-1 3
—§Z(tr(2k Ik ) — (Y — Xi.B) Zk Ik “:k (Y — XiB)s
k=1
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Taking the expectation of the negative 2nd derivative of log-likelihood function
with respect to G(t), we obtain the Fisher information matrix (I(e(t)))
Taking the 1st derivative of log-likelihood function with respect to 3, the maxi-

mum likelihood estimation of 8 is written as,

~

K
B=YS xIerxnIxIe
k=1

3.2.3.2 The REML Estimation

Comparing with the performance of maximum likelihood estimators (MLE), the
REML approach reduces the biases of the parameters. The log-likelihood function to

be maximized is given by
* 1 rv—1 ’
£(6) = loglf(y10)] = -5 {log|=| + log(IX'=71x)) +¥'Py}  (326)

where y is the phenotypic vector for both phenotypes with dimension N x 1 (N = 2«
sz=l ny); L is the variance-covariance matrix of y with dimension N x N and is com-
posed of &y, (k=1,...,K); P is a matrix denoted as P = »-1 —Z—IX(X’E'IX)'IX'
»-1 Xisan design matrix with dimension N x 6 and consists of all X;. (k=1,...,K).

The vector y can be decomposed into three vectors with respect to three maternal
genotypes (i.e., y = (y1,¥2, y3)T). The overall log-likelihood function is re-expressed

as,
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MI'—'

3
£*(©) = > log[f(yr|®)] =

3
e {108 [l +10g(1X)Br 71 Xr ) + yr' Pryr }
r=1 r=1

(3.2.7)

For r=1, the vector y; is distributed as multivariate normal

ml_y
z:Icl 1% | . = %1
pql -l Zy

Zk 1™

l1+lg

E ng Ly 41
For r=2,y9 ~ N k= l1+1 B 1t
hi+lp Zl +o

Ek ll+l nk

sz—l +lo+1 "k )
And y3 ~N L T2 5y = | ittt
b6 ll+12+l3 ):K

2g= =l +lo+1 "k

where [] + g + 13 = K. Note that ¥, X9, and X3 are also block diagonal matrices
individually, Py (r=1,2,3) is defined as Pr = &7 1 -2 1x, (X' 57 1x,)~1x/n 1.
With this combination, we develop the following REML estimation procedure using

the Fisher scoring algorithm.
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Define

1) .0 2! e
Sn[)r ( 73[’” 0) matrix 0 with dimension Z ng X z ny
k=1 k=1
0 0o 0 ll+l2 ll+12
HSnl)r (0 Hmlr) matrix 0 with dimension Z ny X z ny.

k=l;+1 k=l1+1
0 I l1+lp+l3 L +lo+lg

(3) m|r - 1
Hm|r = ( Hmlf 0 ) matrix 0 with dimension Z ng X Z ng
k=l +l9+1 k=l1+ly+1
(3.2.8)
Replacing the matrix Hmlr in the above equation (3.2.8) by anT’ Hmflr’ b,

and Ir individually, we obtain matrices I'I-(fbi), ngrsz)ﬂ @S‘s) and 17(_3) (s,r=1, 2, 3;
L+l + l3=K).
The 1st derivative of the log-likelihood function ¢* (3.2.7) with respective to each

variance component is given by

;T;;-l- - —% é(tr(ﬁ'rﬂgl)r -7 Prﬂfril)rﬁ’ryr),
ai; - %é(tru’ 1))~ yF ) Bryr),
aj:z*lg Z(t" H(3) ) - ¥F B Prye),
i Z(“ (B =y T Bl By,

f1
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—-— Z(t’l‘ Prn TPT .(fl)PTyT)

oe* 1o, o (3) T 5 (%)
30f12 = —Eg(tr(PrH fIr )= Yr flTPr)’r)

ar* -
—5— =3 Z(tr Prl_[( .)ﬂ ) — YIPTHS)H,-PT)'T)’

8omf1 =1
or* 13
——="3 >t (PTH( )I ) —yL (2 )| Pryr),
7nf2 r=1
o 1S ) %)
=-= Z(tr( H( ) - Pryr),
aamf12 2r=1 fir i
or*

1S (1)
5 =—§Z (tr(Prdy )) T Prd, " Pryr),
6091 r=1

or* 3

1 2 >
92 r=1
oe* 3
1 5 5(3) 5
5g =-3 Z (tr( Pr <I>( )) szr®£ )PrYr)v
12 r=1
oe* 3

= —5 S (Bt -y T Bt Py,

o 1S - (2) (2)
= D (Bt )~y P Py,
(?2

ae*

3
1 1 (3) 7
—_— E t P ] 1 I P ")y
00612 27‘ 1 7 r rr ry1)
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The Fisher information matrix (I(e(t))) in the REML procedure is obtained by
taking the expectation of the negative 2nd derivative of log-likelihood function with

respect to each variance component.

The REML estimator of 3 is the generalized least squares estimator, that is,

B=xTe 1x)"1xTy-ly

3.2.4 Hypothesis testing

In the bivariate traits analysis, the existence of quantitative trait loci (QTL) is tested

by the following hypothesis

Hy: 072n1 = 072n2 = 012n12 = a%l

2 _ 2 _ 2 _.2 _ 2 _
~h T The T mfy T mfy = Tmfry = °

Hy: Hjis not true
(3.2.9)

The significance of the above test is assessed through the likelihood ratio test (LRT).
Let Q and ) be estimates of the unknown parameters with respect to Hy and Hy,

respectively, then the likelihood ratio statistic is evaluated by,
LR = —2[log L(Qy) — log L(Q]y)] (3.2.10)

which, under the null hypothesis, is distributed with a mixture chi-square distribu-
L (8) 2.(5) 5 £(8) 24(6) 2 (%) 22(6)+1(6) 2.
t;on with the form 5 XQ:_QJG_X'?: 538—)(6:53&—)(5: 5?8—)(4:*1—3—7265—4—)(3.
(8) o ng) 2. (_%)) 2
36X X g8 X0
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Once a QTL is identified at a genomic position, its imprinting property for each

phenotypic trait is assessed by the following two imprinting hypotheses formulated

by,
' Hy: 0%1 = 072”1
q (3.2.11)
\ H :a%l 7 0’2”1
and )
Hy : 0?2 = 0;2,12

\ Hy: 0%2 # 072n2

Again, the likelihood ratio test is applied and the test statistic (denoted as LRimp)
follows a chi-square distribution with 1 degree of freedom. If the null is rejected at
the tested QTL position, imprinting effect is claimed. We further assess whether the
imprinted genetic effect is completely derived from the maternal allele or from the
paternal allele. Two hypotheses are formulated for this purpose to assess completely
maternally imprinting by

H():o;?nt=0 t=1, 2
(3.2.12)

Hy:oh, #0  t=1,2
and to assess completely paternally imprinting by
Hy: 02 =0 t=1, 2
ft

Hy : 02 =

120



The likelihood ratio test statistic (LRcimp) corresponding to the above tests follows

a mixture chi-square distribution with % x% : % x%.

If the test in (3.2.9) is rejected, we can further test if the QTL controls the 1st

trait by testing

9 _ 9 _ 2 _
Ho:omy =0f) = oy =0 (3.2.13)

Hy: Hyis not true

or the 2nd trait by testing

L2 2 2 —
H0.0m2—0f2 -amf2 =0
Hy: Hyis not true
The likelihood ratio statistic corresponding to the above tests is denoted as LRplei

and follows a mixture chi-square distribution under the null with the form 211;[271' -

cos™pya—cos™ L p13—cos ™ ppaliG: gz Bm—cos ™ pyp 3 —cos ™ pygpp—cos™ ooy G

Zl?(cos_lplg +cos_1p13 +cos_1p23)x%: [% - #(3# - cos_1p12|3 - cos_1p1312 -

cos™1 p23ll)]X% where the correlation between the variance terms a and b is calcu-

(Pab—,oacpbc)
(1—p¢21c)1/2(1-p§6)1/2

lated from the Fisher information matrix, and Pablc= (see
Chapter 2 for details).

Rejecting the null for the above two tests indicates pleiotropic effect (i.e., one gene
has effect on two traits). But if two genes are closely linked at the detected QTL

(i.e., close linkage), we still get the same testing result. To further distinguish close

linkage against pleiotropic effect, we develop the following two tests
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(3.2.14)
Hy: Hg is not true
for testing pleiotropic effect and
Hy:pmyg =pf, =p =0
12~ Fmfio
(3.2.15)

Hy: Hgis not true

for testing close linkage. The null hypothesis in test (3.2.14) indicates that the additive
effects for the two traits are perfectly correlated and they are possibly controlled by a
single gene. On the contrary, the null hypothesis in test (3.2.15) indicates two closely
linkage genes at one QTL location. The likelihood ratio test is denoted by LRp for
test (3.2.14) and LR for test (3.2.14). The null distribution of LRp has a mixture

chi-square distribution (since 1 is a boundary point for correlation p) with the form

211;[211' - cos_1p12 - cos_1p13 - cos‘1p23]x§: 1%[3% - cos_1p12|3 - cos_1p13|2 -
cos_1p23|1]x%: Zlﬁ(cos_lpu+cos_1p13+cos_1p23)x%: [%—211?(37r—cos_1p12|3—

cos™Lpy315 = cos ™ oo IxG-
The null distribution of LR¢ follows a classical chi-square distribution with 3
degrees of freedom, i.e., LR ~ x%.

We can also test the maternal main effect on each trait by
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Hy:py=po=p3
(3.2.16)

Hy: Hpis not true
for the 1st trait, and

Hy:pg = ps = pg

Hy: Hj is not true

for the 2nd trait.

3.3 Simulation

3.3.1 Simulation design

A simulation study was conducted to evaluate the performance of the proposed
method. Five equally-spaced markers (M] — Mp) are simulated for one linkage
group assuming a backcross design. This linkage group covers a length of 40cM with
10cM for each marker interval. Haldane map function is used to convert map distance
to recombination rate. Assume one QTL is at 22cM away from the first marker, and
has effects on two phenotypic traits. Phenotypic values of both traits are generated
from a multivariate normal distribution with variance-covariance given in (3.2.2) in
terms of different parameter settings. Backcross families are simulated following the
structure of the real data described in Chapter 2 (i.e., 4 families with 100 sibs within
each family). In each simulation scenario, the IBD value of any two siblings is evalu-
ated at every 2cM along the linkage group. The REML method is adopted to estimate
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unknown parameters of interests, and 100 simulation replicates are recorded.

3.3.2 Results

The simulated results without imprinting effect (i.e., agnl = 0?1 and 072n2 = 0%2) are
tabulated in Table 3.1. Estimations of the QTL position, observed statistical power
and type I errors are compared between bivariate traits analysis (T1+T2) and each
univariate trait analysis (T1 and T2). Overall, the bivariate traits analysis gives more
precise QTL position estimate, larger statistical power and reaso_nable type I error
rate. The results indicate that the joint mapping incorporating bivariate phenotypic
information can capture information of QTLs with small or moderate effects that
could be easily missed by univariate trait analysis. In addition, the bivariate trait
analysis provides less biased parameter estimates for additive QTL variance terms
derived from maternal and paternal parents. For example, variance term for a?nl is

estimated as 0.428(SMSE=0.11) for the joint analysis, while it is 0.25 (SMSE=0.44)

for the single trait analysis.
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Table 3.1 also shows that the results for trait 1 is better than trait 2, due to high
heritability (H 2= 0.20) for T1 than that (H 2= 0.05) for T2. When the heritability
for both traits are increased, we observe better performance (data not shown). The
type I error for the bivariate traits analysis and single trait with T2 is reasonably
controlled. The type I error for T1 is a little inflated. But the joint analysis gives
much larger power than that for both single trait analysis.

To demonstrate the imprinting property of an iQTL in the bivariate traits anal-
ysis, additional simulations under different imprinting mechanisms are conducted

and the results are listed in Table 3.2. We design four imprinting modes such as:

oty =1 =0
complete paternal imprinting (( ), ( 9 )), complete ma-
am2=2 o f2=

2 _ 2 =1
™=, h

ternal imprinting (( )), partial maternal imprinting

a,znz =0 o o=

2 _

0727L2=O.5), ( 0’f2=1.

2 _ 2 025
(Um1—0.75 (af1 0

)), and partial paternal imprinting

)). With respect to the imprinting test

0By =15" o} =05

(3.2.11), the largest imprinting power is achieved by complete maternal (paternal)
imprinting for both phenotypic traits (T1 and T2). No significant difference in power
(Power) under different imprinting mechanisms is observed for the joint analysis. The

low power for the imprinting test for single trait T2 is due to its low heritability.
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3.4 Real Data Analysis

Empirical study shows that imprinted genes affect variations of maize endosperm
traits (Dilkes et al. 2002). Two endosperm traits, mean ploidy level (denoted as
ploidy) and percentage of endoreduplicated nuclei (denoted as endo), are studied.
Four backcross segregation populations are generated from two inbred line (Sg18 and
Mo17). The details of this genomic data were explained by Coelho et al (2007),
and the imprinting effect analyzed with the univariate trait analysis was reported in
Chapter 2. To examine the pleiotropic effect of the imprinted genes, we conducted a
joint analysis.

LR profiles across ten linkage groups in bivariate traits analysis (endo+ploidy) and
univariate trait analysis (endo and ploidy) are plotted in figure 3.1. The genome-wide
significance threshold (horizontal dotted line, at 5% level) is determined by permu-
tations based on repeatedly shuffling the relationship between marker genotypes and
phenotypes (Churchill and Doerge 1994). Six QTL are detected at the 5% genome-
wide significance level on G2, G4, G6, G9 and G10. In contrast with previous QTL
detected in the univariate trait analysis (see Chapter 2), more QTL are detected in

the bivariate joint analysis.
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Table 3.3 lists the QTL location, variance components estimation, and test out-
comes for imprinting and pleiotropic effects. In the bivariate analysis, the identified
QTL on G6 is imprinted for T2 (pz'mp2 < 0.05) but not for T1 Pimpy > 0.05). Fur-
ther test shows that this QTL shows completely paternal imprinting on T2. From the
parameter estimation, it is clear that correlations of genetic variance for two pheno-
typic traits are strong, and further tests to detect pleiotropic effects vs close linkage
are meaningful in the bivariate traits analysis. Results show that two iQTLs on G4
and G6 indicate strong pleiotropic effects (pplez' > 0.05, peo_in < 0.05).

In our study, multivariate approaches for genetic linkage analysis increase the
power and precision to identify genetic effect, especially when a QTL has pleiotropic
effect on several traits. In accordance with the finding about the strong correlation
between endoreduplication and mean ploidy in maize endosperm (Cintia et al. 2006),
the pleiotropic effects of iQTLs on two endosperm traits are detected in our analysis.
As shown in the simulation study, the joint analysis provides larger power and res-
olution for iQTL detection compared to the single trait analysis, which explains the

additional QTLs detected by the joint analysis.

3.5 Discussion

A number of studies have shown that for correlated traits, multivariate approaches
for genetic linkage analysis can increase the power and precision to identify genetic
effects (Evans 2002), especially when a QTL has the pleiotropic effect on several
traits (Jiang and Zeng 1995). Considering the importance of imprinted genes in

131




endosperm development and the relative merit of multi-trait analysis, we developed
a bivariate variance components model based on a reciprocal backcross design to
identify imprinted QTLs while incorporating the special genetic make-up of triploid
inbreeding population. Both simulation and real data analysis show the efficiency of

the approach.

In simulation studies, we compared the outcomes of bivariate traits analysis with
those of univariate trait analyses. The bivariate trait analysis can greatly improve
the performance in QTL position estimation, testing power, and type I error rate.
Simulation study also shows that when a trait has low heritability (i.e., T2), the joint
analysis can also identify the gene by borrowing information from other traits with
high heritability (i.e., T1) given that they are correlated. Our results are consistent
with other multivariate traits studies (e.g., Jiang and Zeng 1995; Almasy et al. 1997;

Williams et al. 1999).

We applied our joint model to a real data set with two highly correlated endosperm
traits, i.e., endoreduplication and mean ploidy. Six QTLs are detected on G1, G2,
G4, G6, G8, G10 across the genome. One maternally imprinted QTL on G6 for T2
and three paternally imprinted QTLs on G4, G6, G8 for T1 are also identified. The
results of the imprinting tests are consistent with that of univariate trait analysis
and can be explained by the genetic conflict theory proposed by Haig and Westoby
(1991). Comparing with univariate trait analysis, additional QTLs are mapped in
the bivariate joint analysis. These additional QTLs are those showing small genetic
effect in the single trait analysis. This demonstrates the power of the joint analysis
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for correlated traits.

Another advantage of the joint analysis is the test of pleiotropic effect and close
linkage. We proposed a set of hypothesis tests to detect the existence of QTLs
and genomic imprinting in bivariate traits analysis, and moreover, to distinguish
the pleiotropic and close linkage effect. For the real data, one iQTL on G6 displays
a strong pleiotropic effect, which controls both the endoreduplication trait and the
mean ploidy trait (Table 3.3). Our method provides a testable framework in iQTL

mapping with multivariate traits.
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Chapter 4

Assessing statistical significance in
genetic linkage analysis with the

variance components model

4.1 Introduction

Variance components (VC) model is a powerful tool for quantitative trait loci (QTL)
mapping in human linkage analysis. In a VC analysis, genetic effects are often par-
titioned as additive, dominance and polygene effects whereby each one is treated as
random. Thus, we are interested in testing whether the variance of a genetic effect is
significantly deviated from zero. Likelihood ratio test (LRT) is often applied for the
the testing purpose. Due to irregular conditions (i.e., parameter boundary problem),
the asymptotic distribution of the LRT does not follow a regular chi-square distribu-
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tion, rather a mixture x2 distribution, where the mixture proportions are calculated

with standard binomial coefficients, a special case in Self and Liang (1987).

A number of studies have showed the asymptotic distribution of LRT under irreg-
ular conditions, see for example, Self and Liang (1987), Chernoff (1954) and Shapiro
(1988). Chernoff (1954) showed that the limiting distribution of the LRT has a mix-
ture chi-square distribution when parameters of interest are on one side of a hyper-
plane, or in the first quadrant within a R2 space. Self and Liang (1987) extended the
Chernoff’s comment to boundary cases. In linkage analysis with variance components
model, the result displayed in case 9 in Self and Liang (1987) has been commonly
applied for a threshold determination (e.g., Amos 1994; Hanson et al. 2001). This re-
sult is based on the assumption of a diagonal variance-covariance matrix of unknown
parameters. In reality, this assumption could be easily violated. This consequently

leads to conservative hypothesis tests (e.g., Allison et al. 1999).

For a bivariate linkage analysis, Amos et al. (2001) proposed an approach to
approximate the null distribution of the LRT (see section 4.2 for more details). But,
their derivation assumes a diagonal Fisher information matrix. Moreover, they assume
that the genetic correlation between two traits is either positively correlated (p = 1)
or negatively correlated (p = —1). This is unrealistic in reality. Corresponding to the
VC model, Morris et al. (2009) define the constrained likelihood ratio test (CLRT)
with respect to this model. They try to apply Geyer’s regularity (1994) to show
the asymptotic distribution of the constrained CLRT, but can not make sure that the
global M-maximizer is definitely attained. Because of this limitation, a new simulation
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method is developed. However, it is quite difficult to express the predominance of
this method comparing with others.

In this chapter we rigorously show that the LRT statistic in testing variance com-
ponents in linkage analysis follows a mixture chi-square distribution and the mixture
proportions depend on the estimated Fisher information matrix. The rest of this
chapter is organized as follows. Section 4.2 introduce three classical VC models with
both univariate and multivariate trait analysis. The main result is illustrated in
section 4.3. Section 4.4 shows the performance of the new approximation by a few

simulation examples.

4.2 Motivating models

4.2.1 Model 1

Assume K families are collected and the phenotype for the kth family is denoted by
Yy with nj. offsprings. Under the variance components model mapping framework,

the genetic effect is partitioned into several components expressed as
Yp =u+ag +dp +gr +eg (4.2.1)

where p is the overall mean; a; ~ N(0, Ug) and dj. ~ N(0, 0(21) are the additive
and dominant effect of a genetic variant; g;. ~ N(0, Ug) is the polygenic effect (i.e.,
the effect of QTLs not located on the same chromosome as the tested one); and

er. ~ N(0, ag) is the residual term. When a testing QTL is not on a marker position,
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the variance-covariance of the phenotype for a pair of sibpairs y;.; and y;. j in the kth

family can be expressed as

0% +0%+ 0%+ 03 if i =j
cov(Yps Ukj|mi 0i5) =
bz’j(o,ﬂij)og +¢j5(0, 35, <p2~j)af-l + ¢Z~ja§ ifi#j
where Tij is the proportion of marker alleles shared identical by descent (IBD) be-
tween two sibs; ©ij is the probability of sharing two alleles IBD between any pair
of sibs; ¢ij is the kinship coefficient; @ is the recombination fraction between a
trait locus and a marker. When a trait locus is not at the marker, bij(e, ”ij) =
3 +(1-20)2(m;; - 4) and ¢;(8, 75, 015) = 462(1-0)%+ (1-20)2m; + (1 - 20) 4y
(Amos et al. 2001).
In matrix notation, the phenotypic variance-covariance matrix among individuals

in family k£ can be expressed as
Ek = Hkag + Aka(zi + (bka_g + Ikag

where IT; is the matrix of marker alleles shared IBD for the pedigree, and Ay is the
matrix of the proportion of marker alleles shared two alleles IBD in the pedigree, ®.
is a matrix of the expected proportion of alleles shared IBD, and I}, is an identity
matrix.

The quantitative trait loci is tested by the genetic linkage test defined as
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H0:0'3=05=0

(4.2.2)

H : at least one parameter is not zero.

Define 6] = p1, 0 = 02,83 = 05,04 = 0f and 65 = 0. Let 8 = (91 6 6304 65)T
€ 2 =R x[0,00) x [0,00) x (0,00) x (0,00) be the true parameter space. Un-
der the null, the parameter space is reduced to 6y = (610 o9 630 O40 950)T =
(kg 00 030 ogo)T € Qp=R x {0} x {0} x (0,00) x (0,00). Thus two parameters
under the null are on the boundary of the true parameter space (€2). In current
applications, the LRT statistic for the above test has been commonly claimed to be
a mixture chi-square distribution with the form %x% : %X% : 21{ X%, a special case

discussed in Self and Liang (1987). We will give a new approximation and illustrate

by simulation that this approximation produces conservative results.

4.2.2 Model II

When a QTL has a pleiotropic effect on several traits or several QTLs are closed
linked, multivariate approaches for the genetic linkage analysis are more powerful
than a single trait linkage analysis (Jiang and Zeng, 1995; Evans, 2002). Considering
a bivariate trait analysis assuming only additive effect, the VC model for family k

can be expressed as

(k) ko) = (11, 12) + (ag) agy) + (ks ko) + (ehpr€hg)s k=100 K (4.2.3)
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where Yk, is the tth (¢t = 1,2) phenotypic vector for the kth family; p; (t=1,2)
is the overall mean for the ¢th phenotypic trait, (akl’ak2) is the random additive
effect of a major gene for two phenotypic traits, respectively; gj. ’ and e, , are the
random polygene and residual effects. All random terms are assumed to be normally

distributed with 0 means. The phenotypic variance-covariance matrix for family & is

given as
2 2 2
yk Oa gq g Og Oe J¢
Cov 11 = 1 12 ST, + 91 12 ® @) + 1 12 oI,
2 2 2
Yko ga12 Y%ag 9912 %92 ge12 %eg

where ® is the kronecker product; %aj9: 9919 and Oeqq are the covariances between
the additive, polygene and the residual effects for the two traits, respectively. All the
others are defined similarly as in Scenario 1.

The hypothesis test to detect major gene under a bivariate model is formulated

Ho : o) = 0ty = oayy =0 (4.2.4)
leagl >Ooro§2>0

Under the alternative, when either one of the variance terms is zero, the covariance

term is restricted to zero.

4.2.3 Model III

Now consider the above bivariate trait model, but assuming both additive and dom-

inant effect. The variance component model will be changed to
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(ykl,ka) = (u1,u2)+(ak1,ak2)+(dk1,dk2)+(9k1,gk2)+(ekl,ek2), k=1,--- K
(4.2.5)

where (dkl’dk2) is the random dominant effect of major gene at the quantitative
trait locus for two phenotypic traits. The variance-covariance matrix between two

sibs is changed to

2 2
y o oa o o4
coo| L =| " TR gm4| A 2| ga,
Uy) \oarz G %y, 74,
2 2
o o o Oe
w0 N2 ge 4| T 21,
2 2
7912 992 9e12 %ey

The hypothesis to test major gene under this genetic model will be

col —g2 — —02 =42 — —
(4.2.6)
leorgl>00ra§2>00ra(211>00r032>0

Similarly, under the alternative, when either one of the variance terms (additive or

dominant) is zero, the corresponding covariance term is restricted to zero.
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4.3 Main results

For a random sample X7, Xo, ..., Xp, of size n with a common density function f(z, ),
let 8 = (61,09, ..., 9m)T € Q2 be the parameter vector, and 8 be the true population

n
parameter vector. Let £(8) = 3 logf(z;,8) be the log-likelihood function.
=1

1=

Assumption 1. Following Chernoff (1954), the following assumptions are assumed:

o I for every @ € G where G is a closure neighborhood centered at (), the first

three derivatives of £(0) with respect to @ exist for almost all .

2
o II. for every 8 € G, I(%(Q | and la ZOI are bounded by a finite integrable
i 19Y

3
function K(x), and | 3 d 0 kl < K(x) where E[K(x)] < oo.
190

o [II. The information matriz M (Mz’j =—%E(6<}(0, 6(’(? )) is nonsingular for 6
i 9%

€ G, and | M| < 0.

Proposition 1. Under Assumption 1, there is a vector ég in Q, such that ég — 6

R _1
in probability, and (8 — 6y) = Op(n~ 2).

Proof: In terms of the arguments of Lehmann and Casella (1998), it is possible to
search a sequence of points ¢ in the closed set G about 6 to locally maximize £(8).
Following Lemma 1 in Chernoff (1954), the y/n-consistency of 8¢ can be proved.

Denote a local maximum estimator by ég. Since the regularity conditions of
Chernoff (1954) on the parameter set only derive the asymptotic distribution based
on a global maximum estimator (Geyer 1994; Shapiro 2000), additional conditions
are required to achieve the asymptotic equivalence of local estimators.
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Assumption 2. Considering more conditions as follows:
o IV. ég and O¢ are \/n-consistent optimizers.
e V. the parameter set Q2 is a nearly conver set at 6.
e VI. Condition vi in Theorem 3.2 (Shapiro, 2000).
P _1
Proposition 2. If the above two assumptions (1 and 2) are satisfied, O¢ - Oc=op(n 2).

Proof: See the proof of Theorem 3.2 in Shapiro (2000). In brief, two key steps are
involved. First, the parameter set is nearly convex at 6y. Comparing with convexity,
near convexity is a loose condition. In particular, near convexity can be achieved
by some smooth constraints in real application. When the fitted function is mono-
tonically nondecreasing and twice continuously differentiable on a given interval, the
parameter set is nearly convex at 6y under the Mangasarian-Fromovitz constraints.
Next, Lipschitz continuous function Fp,(@¢) and Fn(6c) are defined as minus % time
log-likelihood function in terms of @¢ and 6c, respectively. When Fp,(6¢) and Fp(6c)
satisfy conditions 3.8 and 3.9 of Theorem 3.2 in Shapiro (2000), the asymptotic equiv-
alence of ég and ég is achieved by the property of the near convexity (condition A in

Shapiro 2000).

It is well known that a cone contains several desirable properties that may simplify
the optimization problem. According to the arguments of Chernoff (1954) and Self
and Liang (1987), a cone is defined as
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Definition 1. The set Q C R™ is approzimated by a cone Cq at 8y, if

inf |ls—t|| = o(||t—8gll) forallt € Q; inf|s—t| =o(||ls—8gll) for all s € C
seCq tel

Note that the cone Cy, is positively homogeneous if s € Cq, c(s —6) + 8 € Cq
when ¢>0. Moreover, Cy — 6y with vertex at the origin is acquired by translating
the cone C(y with vertex at 6. Thus, (2 can be approximated by a closed convex

cone CQ with vertex at 00.

Proposition 3. When 8 = 0, F is the distribution of the MLE ég based on one
observation Y with the population distribution N(@,M -1 ) where @ € Cy — 6. If all
previous conditions hold, n?(ég — 0p) weakly converges to F, a multivariate normal

distribution with mean zero and covariance matriz M~ 1.
Proof: see the proof of Theorem 2 in Self and Liang (1987).

Assumption 3. VII. Let C’QO and CQI be two closed conver cones with verter at
6 to approzimate Qg and Q1. Then Cg 0~ 6 with verter at origin is also a closed

convez cone by translating CQO at .

Theorem 4.3.1. If above Assumptions 1-3 hold and when 8=0(, the large sample
distribution of the likelihood ratio (LR) is the same as that of the test 8 € CQO
against 6 € CQI based on one observation Y generated from population distribution
N@O,M -1 ). Moreover, the LR is distributed as a mizture chi-square distributions
with the form:
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l(q)

= 1 2 2
Pr(LR > c?) ZZIPrYez/; J—lY) r(x 7,(TV*O)N)
where Pr(Y € 1[)2 ) is the mizing proportion corresponding to the chi-square

l(q)
components with Z Pr(Y € 1112 |
1=1

) =1, and T(TV*0)=rank(Ty*0).

Proof: Two arguments need to be proved. First, the LR can be approximated as
the difference of two quadratic forms with respect to €y and Q1 (see Theorem 1 in
Chernoff 1954). Follow the \/n-consistency of the optimizer and the property of the
approximating cone, the large sample distribution of the LR is the same as that of
testing @ € CQO against @ € C'Ql. Next, we prove that LR asymptotically follows a
mixture chi-square distribution.

Following Chernoff (1954, Theorem 1), the asymptotic distribution of the LR is

equivalent to the following quadratic approximation

LR= inf (Y-6)/M(Y -6)— inf (Y —6)M(Y -6) (4.3.1)
GGCQO OGCQI

Where Y ~ N(8, M —1). Subtracting 6 from Y and 6, we get an equivalent form

of 4.3.1

LR= inf (Y-0/MY-0— inf (Y-0/MY-0) (432
960@0—00 960@1—90

with Y ~ N(0, M _1) and M is the Fisher information matrix.
VvV o_ _ _ 1 _ B ,
Let CV = (Cq . Oo)ﬂ(CQO 6y)—, where (CQO 0p)— is the orthogonal
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complement of (C’Q0 — 6). Following the Pythagoras theorem, the statistic LR (in

4.3.2) can be expressed as

LR= inf (Y -0)M(Y -6) (4.3.3)
6eCV
It can be seen that CV is also a closed polyhedral convex cone with g (g <m)
dimension because CV is the intersection of convex cones. Thus a polar cone cVo
is defined as ¢V = {r € R%;4/6 <0, Vo€ C'V}, and (C«VO)O = CV by the basic
property of the polar cone.
Let ]F(CV) represent the set of all faces of CV. Following Shapiro (1985), we can

select a face vV € F(CV) corresponding to a polar face w0 e ]F(C'VO) such that the

vO0 \Y%

linear spaces generated by vV and vV are orthogonal to each other. For one face v
(or uVO), we can find a projection T v (or T VVO) (a symmetric idempotent matrix
giving projection onto the space generated by vV (or VVO)) and Tl/V =I'TVVO since
they are orthogonal. Then TVVY (or Tyon) is a projection of a random vector
Y onto CV (or C’VO). For a given Y, let g(Y)=(gl(Y),g2(Y),...,gq(Y))T be the
minimizer to achieve the infimum in (4.3.3). Define wule ={Y eR?:g9(Y) eV}
so that g(Y') € vV if and only if T Y € ¢V and TVVOY e cV0. By Shapiro(1985),
wyvly can also be defined by the inequalities as szVV'Y ={Y eRI:¢ TVVY <

016 € CVO,fITV\/OY S O,f I= CV} Thus’ g(Y): TVVY € va f()r a" Y € wUV|Y

Consequently, the likelihood ratio statistic in (4.3.3) is expressed as:

LR=(Y —g(Y)) M(Y —g(Y)) foralY € bV y (4.3.4)
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Note that the set ¢UV|Y is composed of several almost disjoint sets d)zi/V]Y’i =
1,...,1(q). The total number of these disjoint subsets ({(q)) are counted by the general
form of binomial theorem, i.e., I(g) = 2979, ¢ is the number of parameters in CV and
0 is the number of covariance terms in CV. Moreover, All these subsets are classified
into ¢ — 0+ 1 categories. To display these subsets, we start from the simple case that
no covariance term is in vaIY (o = 0). The subsets of d)y\/ly are given as the

following table 4.1.
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When a covariance term occurs in C'V, we use one simple case to describe the
relation among the parameters. For example: cV = {6;61 > 0,69 > 0,63 € R},
where 6 is a variance term for trait one, 65 is the variance term for trait 2, 63 is the
covariance between the two traits. Because of the definition of covariance, 63 occurs
only when 61 > 0 and 69 > 0, so 63 is represented by 631(67 > 0,65 > 0). In the
corresponding way, the estimator of 63 is denoted as Y3I(Y; > 0,Yy > 0), and Y7 and
Y, are estimators of variances for two traits. In accordance with this constrain, the
set ¥, |y is denoted as ¥, |y = {Y;Y; eRjie qV\oV,YjI(Yj_Q >0,Y;_1 >
0)eR,jeov,g(Y)e VV}, where set ¢V is defined as ¢V = {1,2,...,q} and oV is
denoted as a subset of ¢V, and is shown as oV = {3,6,...,q} = {3kv, KV =1,2, .., g}
Considering the property of covariance term, the partition of 1/JV\/|Y is not related
to the covariance term. Thus the whole subsets under this constrained condition are

shown as the table 4.2.
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The general form of the whole number of subsets is I(q) = 2979, and these subsets

lq) .
consist of ¢ — 0 + 1 groups. Consequently, 1/1VV|Y= U wll/vly.
i=1

Considering a linear transformation on Y and @, a new closed convex cone C* is
defined as C*={6V; E%D/G, 6 € C1}, where DED' = M, and a new random vector
Z (Z=FE %D' Y) is distributed with multivariate normal distribution with mean zero
and an identity covariance. In terms of this random vector Z the likelihood ratio LR

(in 4.3.3) is evaluated equivalently as:

LR= inf |Z-6*|? (4.3.5)
6*cC*

In the same way, C* is a closed convex cone and C *0 is denoted as the polar cone
of C* with (C*0)0 = C*. So there is a face v* € F(C*) (or v*0 € F(C*0) ) such
that a symmetric idempotent matrix T (or TV*O) giving projection onto the space
generated by v* (or V*O) is defined. The linear transformation of Y to Z guarantees
that there also exists a minimizer denoted by d(Z)=(d;(Z),d;(Z), ...,dq(Z))Tfor
(4.3.5), in which d(Z) =T, Z ¢ C*VZc 1'/)1/*|Z’ where d’u*lZ can be defined by

a linear transformation from .
wl/-l-lY

Note that the set 1,/)V*| Z is also a polyhedral convex cone by its definition and
satisfies the conditions of Lemma 3.1 (Shapiro 1985), and TV*O is an symmetric
idempotent matrix corresponding to face U*O, then the likelihood ratio statistic (4.3.5)
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1s written:

LR=|Z-d(Z)|? = |Z2-T 2| = Z'(I-T +)Z = z’:ru*oz, forall Z € Y, x 7
(4.3.6)

It is clear that the minimum value of LR obtained for Y € wu Ly (in 4.3.4) is

equivalent to the infimum value of LR obtained for Z € d)u*l 7 (in 4.3.6).

Note that the set ¥, |z is also made up of several almost disjoint sets, i.e.,

Uq) |

wu*| z= iglzﬁ:j*lz. Condition on Z € ¢f/*| z LR follows a chi-square distribution
with ra.nk(TV*O)=rank (I-T,+) degrees of freedom. By Bayes’ theorem, the distribu-
tion of LR (in 4.3.6) is derived to be a mixture chi-square distribution.

To control the significance of hypothesis test in a level, The probability that LR
rejects the null hypothesis under the null condition is evaluated. Given a positive
number ¢2 > 0 and a random vector Y, the expression of this probability is written

as:

Pr(LR > ¢®) =Pr((Y - g(Y))M(Y - g(Y)) > A Y €9 Ly

l(q) (4.3.7)

=Pr((Y - g(¥)M(Y - g¥)) > Y e v Ly
i=1

Applying the Distributive law of sets and the union rule for these almost disjoint sets,

the representation of (4.3.7) is changed to be:
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I(q) .
Pr(LR> %) =Pr(U{(Y - g")MY - g(¥)) > A Y €4 | 1))
1=1
lq)
=D PrY —g( MY () > A Y €vy )
- (4.3.8)
I(q)
_g PT Y € 'l,b _LlY)
Pr((Y —g(Y))M(Y —g(Y)) > Y eyt | )

_LIY

According to the resemblance between the result in (4.3.4) and comment in (4.3.6),

the representation of the probability is changed to be:

Ug)

Pr(LR> ¢ )—ZPrYsz’_Ll )PrZT 0Z>P|Z eyt v*|Z)
i=1
l(q)

=Y Pr(Y ey’
i=1

(4.3.9)

2 2
_LIY) (XT(TV*O) > c“)

where Pr(Y € zl)i 'LI ) is the mixing proportion corresponding to the chi-square

ig)
components with z Pr(Y € yt

= _LIY) = 1, and r(TV*0)=rank(Tu*0). This com-

pletes the proof.

Following Theorem 4.3.1, we now evaluate the distribution of the LR statistic for

the three models in linkage analysis we mentioned in Section 4.2.

Model I: The parameters of this model are given as 8 = {f1,09,03,04,05} =
{1, aa,a d,ag, } and the approximating cone under the null hypothesis is defined

152




as CQO={0;91 € R,0p = 0,63 = 0,04 > 0,05 > 0} against CQ1={9;91 ER,0p >
0,63 > 0,64 > 0,05 > 0} under the alternative. The number of parameters to be
tested for ¢ is 2 and for o is 0, that is, there is no covariance term in model I. Thus
wvle consists of 24 7°=22=4 almost disjoint sets with g—o+1=2-0+1=3
categories:
(i) zbivly ={Y;Y; >0,Yy > 0,9(y) € vV}
(ii) wﬁvly ={Y;Y] > 0,Yy < 0,g(y) € vV},
3 — [y V1.
wVVIY = {Y,Yl < 07Y2 > ng(y) Ev }1
(i) ¥y = (YY1 < 0.Y2 <0,9(y) € v}
In the same way, ¢V*| z can be divided into four almost disjoint subsets by linear
. ; 1
transformation. When Y € ¢VV|Y’
N(0,I), and the corresponding mixture proportion is estimated by Pr(Y € wile)'

LR = Z,TVOZ = Z% + Z% ~ x% where Z ~

AsY isin the 2nd category (i.e,, Y € wf/VlY’ i=2,3), LR ~ x% with the correspond-

. . . ) 3

ing mixing proportion calculated by Pr(Y € 1/)VV|Y)+PT(Y € wuv IY) For the last
o2 4 . . 4

category, LR ~ x{j for Y € wuVIY’ and the mixing proportion is Pr(Y € wuvly).

The calculation of the mixing proportion follows Plackett(1954) or Kendall(1941).

—cos=lpiy 3 .
Specifically, Pr(Y € yyy) = 12, 3 Pr(Y € vyy) = 1, and
1=

-1
4 _cos”p . . " .
Pr(Y € ¢VV|Y) = __27r_12’ and pj9 is the correlation between estimator of addi-

tive gene effect and that of dominance effect. Finally, the distribution is approximated

as

_ -1
Pr(LR > ¢%) = Z’_c‘gr_f’l_?P(X% > ¢?) + %P(x% > ) (4.3.10)
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Model II: For model II (in (4.2.3)), only the random additive effect of QTL
(ak1 , ak2) for each trait is considered. The parameters of additive major gene effect
are denoted as: agl , 032, %aj9 where %aj9 is the covariance term between two traits.
Similarly, two covariance terms are denoted for polygene effect and random residual

effect. All parameters in this model are defined as: @ = {0,60,63,04,05, 65, 67,

6g, 69, 01, 911}={#1,#2,031, 032, 0(2112, agl, 032, 0312, agl, 032, 0312}, The

parameter approximating cone under the null hypothesis is defined as CQO={0; 0, €
R,09 € R,03 = 0,64 = 0,05 = 0,65 > 0,607 > 0,05 € R,0g > 0,015 > 0,0;1 € R}
Similarly, the cone under the alternative hypothesis is denoted as C, 1:{0,01 €
R,09 € R,03 > 0,04 > 0,05 € R,0g > 0,07 > 0,605 € R,0g > 0,0;9 > 0,011 € R}.
Corresponding to the hypothesis test, the number of tested parameters q is 3 and o
is 1, then the set ¢VV|Y has 23~1 = 4 almost disjoint subsets and all these subsets
are classified into 3-1+1=3 groups.

(i) inIY ={Y;Y; >0,Yy>0,Y3 € R, g(y) € vV}

(i) ¢3V|Y ={Y;Y1 >0, <0,9(y) € v},

v o ={Y;Y1 0¥y > 0,g(y) € vV

vily
(iii) w;}vly ={Y;Y; <0,Y,<0,9(y) € v}.

The estimator of covariance term is only observed in ¢11/V|Y’ and it will van-

23-1
ish automatically when Y7 < 0 or Y9 < 0. Moreover, = Ul , and
s atically 1 < 5 < oreove wuV|Y igl VY

23-1
. : * o : o N ot e _ %)
wt/*IZ in terms of @* is defined in a similar way, that is, ’*/’u*|Z = igl wu*lZ'

When Y € z,/JVV'Y, the LR is shown in the form:

154




4
2 2 2 12 i i . 1
21+ Z5+ Z3 ~ x5 with mixing prop : Pr(Y € wuV|Y)
Z% ~ X% with mixing prop : Pr(Y € 1,[)2\/ Y)
LR = { vV|
72 ~ x2 with mixing prop : Pr(Y € 1113 )
2 1 WY
o2 . e . 4
k0 X4 with mixing prop : Pr(Y € wuvly)
AsY € wlllvly, LR ~ x%, and the corresponding mixture proportion is calculated
as Pr(Y € d}iVIY) = Pr(Y] > 0,Y9 > 0,Y3 € R) = Pr(Y] > 0,Yy > 0) =

-1
T—coS . . ; .
——7——127r P12 When Y is in the 2nd category (i.e., Y € w:/VIY i=2,3), LR ~ X%

. .. - 3 i 1 4 2
with mixing probability Zz'=2 Pr(Y € wuVIY) =g ForY € ¢UV|Y’ LR ~ x§,
-1
.. el s 4 _cos” p
the relevant mixing probability is evaluated by Pr(Y € ¢VV|Y) = TlZ These
three mixing proportions is the same as those in model 1. Hence, the probability of

LR under model II is in the form:

-1
T —CcoS ~p 1
Pr(LR > c2) = —12P(x§ > 62) + —P(x% > c2) (4.3.11)

27 2

Model III: In model III, random dominant effects (d;, 1 dk2) are considered. The

parameters under this model is denoted as: 8={61, 09,603,804, 05,05, 07,6g,09,610,611,
_ 2 2 2 2 2 2 2 2 2 2 2 2

012’013’014}—{1‘17#2’0a1’0a2’aal27Udlv0d2’0d12’Uglvag2’0912vaelv062’0612}'
The approximating cone under the null hypothesis is CQO={0: 61 €R,0p eR, 03 =
0,04 = 0,65 = 0,65 = 0,07 = 0,08 = 0,09 > 0,910 > 0,011 € R,019 >
0,613 > 0,614 € R}, and the cone under the alternative hypothesis is denoted as

C91={0,91 € R,92 € R,03 > 0,94 > 0,95 (S R,96 > 0,97 > 0,98 € R.Hg >
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0,619 > 0,611 € R,019 > 0,613 > 0,614 € R}. The number of testing parameters
in model III for q is 6 and for o0 is 2. Then the set wuVIY can be partitioned into
26=2 — 16 almost disjoint subsets that comprise 6-2+1=>5 categories.
on@wy={Yﬂ1>Q@>ﬁj§eky;>Q%>0JgemmweuW;
mwaqy={Yﬁq>0J§50J@>0J%>0J36RgW)ewq.
lﬁwy={Yﬂ15&@>03&>Q%>0J§€Rﬁwevw;
¢§”Y={Yﬂq>0J§>033eRJg>omgngmeuVL
¢§”Y={Yﬁq>0J§>0J3ekgqgoyg>mﬂweuvh
(mwgqy={Yﬁq50&@50&2>0J%>0J%6Rg@)ewq;
¢5qy={Yﬂq>OJ§>0&§€RJ@§OJ§§QMweth
wgqy={Yﬂq50&@>03ggmyg>mmweuvh
dﬁqy={Yﬂﬁ§0J§>0JQ>OJg$QﬂweuVL

w}/{’,ly ={Y;Y] >0,Y,<0,Y4<0,Y5 > 0,9(y) € vV}

w}/{,ly ={Y;¥] >0,¥,<0,Yy >0,Y5 <0,9(y) € vV};

(WLdy = {YiY1 <02 <0.Y, < 0,5 > 0,9(y) € vV);

vy =Y <0.Y3<0,Y; > 0,5 <0,9(y) € V);

Yy = 110> 0%, 20,Y5 <0,9() € vV},

vy = (Y311 > 0.2 S0.Y5 S0,Y5 <0,9(y) € vV);

(v)l/jlljf\s/ly ={Y;Y1<0,Y5<0,Y4<0,Y5<0,9(y) € uv};
26-2 96-2
> = t < ing = ,-7' ag R
The set l//Vle = igl wuVIY’ accordingly, z/}u*IZ igl d”*lz. Based on these

almost disjoint subsets, the limiting distribution of LR with the mixing proportion is

in the form:
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0,010 > 0,611 € R,012 > 0,613 > 0,014 € R}. The number of testing parameters
in model III for ¢ is 6 and for o is 2. Then the set wuVIY can be partitioned into

262 = 16 almost disjoint subsets that comprise 6-2+1=5 categories.

(i) '/’iv|y ={Y;Y]>0,Y,>0,Y3€R, Yy >0,Y5 >0,Y5 € R, g(y) € vV};
(2yy = (YY1 > 0¥ €0.¥; > 0% >0, € Rog(y) € ¥},
Wy = ViV <05 > 0¥ > 0.Y5 > 0% € Rugly) € "),
d}ﬁVIY ={Y;¥] >0,Yy>0,Y3€R,Y; >0,Y5 <0,9(y) € vV},
'/’SVW ={Y;¥] >0,Y,>0,Y3€ R, Yy <0,Y5>0,9(y) € vV};
(iii)wng ={Y;Y1<0,Y2<0,Y;>0,Y5 >0,Y5 € R, g(y) € v"};
¢Zvly ={Y;Y; >0,Y,>0,Y3€R Yy <0,Y5<0,9(y) € vV}
wng ={Y;¥; <0,Y2>0,Y4 <0,Y; > 0,9(y) € vV};
’/’2V|Y ={Y;Y1 <0,y >0,Y;>0,Y5 <0,9(y) € vW};
wzlz(\)/w ={Y;Y] >0, <0,Y4 <0,Y5 > 0,9(y) e vV}
Wy = {¥iM>0% 0% >0 <09 €2V
(i")'ﬁ,l,?qy ={Y;¥1 <0,¥,<0,Y; <0,Y5 > 0,9(y) € vV};
wil\gfw ={Y;¥1<0,Y,<0,Y>0,Y5<0,9(y) € v"};
’l’,l,‘\l/ly ={Y;¥] <0,Y5>0,Y; <0,Y5 <0,9(y) € vV};
d’i?qy ={Y;¥];>0,Y,<0,Y4<0,Y5<0,9(y) € v¥};
(V)w,ig/w ={Y;¥] <0,Y5<0,Y4 <0,Y5 <0,9(3) € vV}
26-2 96-2
The set ¢1/V|Y = i-—L:Jl wlz/V[Y’ accordingly, z'/}U*IZ = igl 1,[’:/*]2. Based on these

almost disjoint subsets, the limiting distribution of LR with the mixing proportion is

in the form:




LR = {

2 2 2 2 2
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22+ 23+ 23+ 23 ~ x3
72+ 22+ 2%+ 22 ~ X3
Z3+ 22+ 2% ~ X3
Z3+ 22+ 7% ~ X3
Z%+Z§~x%
Z3+ 23 ~x3
z2+ 22 ~ x4
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Therefore, the probability of LR under model III is in the form:

Pr(LR > c2) =Pr(Y € in|Y)P(X% > c2)

5
3 Pr(Y € uly )P > )
i=2
7 : 2. 2
1
+ z%Pr(Y € ‘/’u\’iY)P(Xii > %) (4.3.12)
1=
11 : 2. 2
+ Z Pr(Y e lllf/vly)P(XQ > c%)
i=8
15 .
+ 3 Pr(Y € vy )POG > )
=12

All mixing proportions can be calculated based on previous results (Kudo p.415

1963, Shapiro p.141 1985):

(1) the mixing proportion corresponding to chi-square random variable with 4 df is

5_ Pr(Y e d)i , and this probability can be estimated as:
1=2 I/V|Y

5
Z Pr(Y € 'f’fwi) = > Pr(Ya < 0,Y,>0,Y; >0,
1=2 a=1,24,5
a#b,a#c,a#d,a#e
Y;>0,Ye €R)

= Y Pr(Ya<0,Y,>0,Ye>0Y;>0)
a=1,245
a#b,a#c,a#d

1 _
=8_7r(87r - Z cos lpab]c)
a>b;a#c,b#c
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Pab—PacPpe

Vi

where p,, ble is calculated from the equation, p ablc = (a,b,c=1,...4

and 4=q-o0).

(2) With respect to the chi-square random variable with 3 df, the mixing propor-
tion is given as 2;7:6 Pr(Y € wzi/V|Y)’ the calculation of this probability is

evaluated as:

7
Z Pr(Y € wzl/VIY) =Pr(Y] <0,Y5 <0,Y; >0,Y5 >0,Y5 € R)

+ Pr(Y1 >0,Y9>0,Y3 € R, Yy <0,Y5 <0)
=Pr(Y]1 <0,Y3<0,Y4 >0,Y5 > 0)

+ Pr(Y1 >0,Y9 >0,Y4 <0,Y5 <0)
=L2[cos—1p12(7r - cos"1p45112)

4n

+ cos—1p45(7r - cos—1p12l45)]

note that Ped)ab is estimated from

_ PacPpctPadPbd—PacPbdPed —PadPbcP
Pab 7

1-p
- cd )
Pedlab™ T~ 53 2 2 2 2 _2 o2 2 2

P~ Pic p2a5+2p P2 o il P AR A
1-

Ped 1_pcd

Z ~8 Pr(Y € y* VIY) is the mixing probability for the chi-square component

with 2 df. This mixing proportion is evaluated as:
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11

S Pr(y e wf/VIY) = Y Pr(Ya<0,Y,>0,Y:<0,Y;>0)
1=8 a=1,2;c=4,5
1 _ —
=—47r—2[cos lp14(7r — cos 1p25|14)

+ cos—1p15(7r - cos-1p24|15)

1

+ cos™ T poy(m — cos_1p15|24)

+ cos“1p25(7r - cos—1p14125)]

where p cd|ab is defined in the same way.

(4) Following the comment provided by Shapiro (1985), the mixing proportions
are assigned equally on the even and odd places. Thus the mixing probability

2}212 Pr(Y € ‘/’f/V|Y) for chi-square component with 1 df is calculated as:

15
Y Pr(y e wf/VIY) = Y Pr(Ya>0,Y,<0,Ye<0,Yy;<0)
i=12 a=1,2,4,5
1 ;
- _ 1
=2 Z Pr(Y e d’vVlY)
i=2
1 -1
=g 2 cosT pgpe—4m)
a>ba#c,b#c

where there is a resemblance about calculation of p ablc between 211212 Pr(Y €
i 5 1l
wuVIY) and }°°_o Pr(Y € wVVIY)'
(5) An approximated estimation of mixing proportion Pr(Y € 1/)'1/\/ IY) correspond-
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ing to the chi-square component with 6 df is derived according to the above

comment. This mixing probability is evaluated as:

11
1
Pr (Y€¢1V|Y)+Pr(Ye¢1VIY == ZPr (Y € ¢ VIY)

t\D

Suppose two mixing proportions Pr(Y € in|Y) for chi-square component

with 6 df and Pr(Y € zbl ) for chi-square component with 0 df equally share

VIY

the probablhty 5 - 2116 Pr(Y € 1/)’ ). Therefore, the mixing proportion

V|Y
Pr(Y € wuvly) is approximated as:

Lo B

11
1

Pr(Y eyl Ny) = —52 Yew’vly)
2=

1 —_ -
—8—7r2—[cos 1p12(7r—cos 1p45|12)

LR R

+ cos_1p45(7r - cos_1p12|45)
-1 o1

+ cos™ “p14(m — cos p25114)
-1 o1

+ cos™ " p15(m — cos p24l15)

-1

+ cos™ " poy(m — cos—1p15|24)

+ cos_1p25(7r - cos_1p14125)]
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4.4 Simulation

We designed simulations to evaluate the limiting distribution of the LRT. The results
of the new approximation are compared with those from Self and Liang (1987) and
Amos (2001).

We simulated 40 nuclear families each with 5 sibs. Phenotype data are gener-
ated assuming there is no main genetic effect at all under the null. For the uni-
variate trait analysis (Model I), data are simulated with the variance of polygene

2 2_

effect defined as ag=2, environmental error set as 0£=2.5, and 1000 replicates are

recorded. For the bivariate model, data are simulated based on the parameters of
2 2

oG, O
polygene effect and random residual effect given by: ( 2‘(] 1 g212 )=( 128 128), and
o o '
5 o 912 92
(761 %612y (2.5 22)
2. g2 2225
€12 “€2

The performance of the approach is illustrated at several critical values in Table
4.3. It is clear that the type I error rates with the new method are much closer to the
corresponding nominal level than those of the other methods. A quantile plot of the
results are shown in Figure 4.3. The current approximation method shows the best

approximation for the three models.

4.5 Conclusion

The new threshold determination method provides better approximation to the dis-
tribution of the LRT under the three models evaluated. These three models represent
the most widely applied models in genetic linkage analysis. We expect the new method
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Table 4.3: Comparisons of the performance of different approximation methods based
on 1000 simulation replicates under different models.

Model Method critical value

a=0.1 a=0.05 a=0.01 a=0.005

Model I SF 0.063 0.032 0.005 0.002
New 0.093 0.051 0.008 0.005
Model I Amos 0.182 0.104 0.027 0.014
New 0.097 0.059 0.016 0.005

Model III  Amos 0.0839 0.0462 0.0158 0.0036
New 0.0912 0.0523 0.0158 0.0049

(SF indicates the approximation is done with the result in Self and Liang (1987), i.e.,

LR ~ %X% : %x% : %[X%Q New refers to the approximation by the current method;

Amos refers to the approximation given in Amos (2001), i.e., LR ~ %X% : %x% : % x(z)

for Model II, and LR ~ 116)(% : '1‘_16)(421 : l%x% : -146)(% : I%X% : 116)(3 for Model III.)

can reduce false positives in determining a linkage signal, hence reduce the cost of un-
necessary investigations in a lab condition due to false results. This work represents
the most comprehensive evaluation of the LRT in linkage analysis with the variance

components model.
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Model I: Univariate Model with additive and dominance effect
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Figure 4.1: The quantile plot of the empirical p-values for Model I. For the legend:
Self & Liang refers to SF; Proposed refers to the current method. See Table 4.3 for
more explanation of the legend.
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Model II: Bivariate Model with additive effect
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Figure 4.2: The quantile plot of the empirical p-values for Model II. For the legend:
Self & Liang refers to SF; Proposed refers to the current method. See Table 4.3 for
more explanation of the legend.
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Model lli: Bivariate Model with additive and dominance effect
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Figure 4.3: The quantile plot of the empirical p-values for Model III. For the legend:
Self & Liang refers to SF; Proposed refers to the current method. See Table 4.3 for
more explanation of the legend.

166



Chapter 5

Concluding remarks

Genomic imprinting, a unique phenomenon in multicellular organisms, is carried out
in a regulated way that generally confers advantages during an organism'’s life cycle.
Its role in controlling embryonic development and growth is not only restricted in
humans and animals, but also in flowering plants. The information about how genes
controlling or affecting this process is crucial for unravelling the genetic basis of
many quantitative traits, which can not be explained by the traditional Mendelian
inheritance theory. The identification of imprinted genes has been one of the most
important and difficult tasks for genomic imprinting study. While many scientists
are trying to experimentally unravel the molecular mechanism of genomic imprinting,
identifying imprinting genes with statistical QTL mapping techniques is still in its
infancy and therefore is in much demanding. With the abundant molecular marker
information, it is now possible to detect potential imprinted genes underlying the
quantitative variation of an imprinting trait. We, for the first time, developed a
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series of statistical models and algorithms for detecting and characterizing specific
iQTLs that are responsible for genomic imprinting under various problem settings.
The developed models can make a systematic scan of iQTLs across the entire genome

with a well-covered genetic linkage map.

Focusing on flowering plants, in this dissertation, I developed a series of statistical
methods based on the variance components model in linkage analysis. Specifically, in
chapter 2, I developed an efficient mapping approach focusing on a diploid mapping
population (e.g., embryo in plants). We focused our genetic design on a reciprocal
backcross design with experimental crosses. Different line crosses were combined to
infer the random allelic effects under the variance components model. We partitioned
the additive genetic effect into different components based on the nature of the allelic-
sharing mechanism in experimental crosses. In chapter 3, we extended the idea to
a triploid endosperm mapping population. The unique triploid structure in an en-
dosperm tissue was considered. The utility of the method was demonstrated with
a real data set. Important iQTLs were identified to control the endosperm develop-
ment. Genomic imprinting can be explained by the genetic conflict theory proposed
by Haig and Westoby (1991). Our real data analysis results are in consistent with
and supported by this theory. In both chapters, we extended the single iQTL model
to consider multiple iQTLs (i.e., multiple iQTL model). The multiple iQTL model
can efficiently handle the problem due to the interfering of linked iQTLs on the same
linkage group. Moreover, it also shows increased mapping precision as shown in the
simulations studies.
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When strong genetic correlations among multivariate traits occur in the QTL
mapping, the multivariate analysis can largely improve the statistical power and ac-
curate position of the genetic effect (Boomsma and Dolan 1998; Jiang and Zeng, 1995;
Amos et al. 2001; Evans 2002). This motivates us to develop a multivariate iQTL
mapping model, which is studied in chapter 3. Extensive simulation studies show
the relative merit of multivariate analysis, especially when traits are correlated. In
a multivariate linkage analysis, we also gain additional benefit by statistically quan-
tifying pleiotropic vs close linkage effect. The real data analysis indicates that two
QTLs express strong pleiotropic effect to control the two endosperm traits used in

this study.

In a variance components-based linkage analysis, the likelihood ratio test has been
the standard means in assessing the statistical significance of a linkage signal. How-
ever, due to irregular conditions (e.g., the restriction of the variance component terms
under the hypothesis), the regular asymptotic chi-square distribution theory does not
apply directly. In chapter 4, we conducted a statistical investigation of the LRT, and
found that the currently applied cutoff determination method is inappropriate. This
finding is in consistent with an empirical study (Allison et al., 1999). We evaluated
the limiting distribution of the LRT under three model settings which are the mostly
used models in a linkage analysis. Simulation study shows the superiority of the new

approximation method over the currently applied ones.

Other statistical issues such as deriving the optimization algorithms for parameter
estimation, and proof of the theorems have been given. Coupling with the emergence
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of abundant marker information, large collection of well-phenotyped samples and
high-throughput genotyping, our models provide a quantitative testable framework
to assess genome-wide significance of imprinted genes. The developed models also pro-
vide a testable platform for scientists who can design their experiment accordingly
and significant discoveries would be expected in the future. This dissertation con-
tributes to the statistical methodology development in QTL mapping, to the general
statistical theory in variance components model, and to the general genetic mapping

community by providing statistically sound approaches and tested programs.
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