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ABSTRACT

VARIANCE COMPONENT MODELS IN MAPPING IMPRINTED

GENES: STATISTICAL THEORY AND APPLICATIONS

By

Gengxin Li

Genomic imprinting has been thought to play an important role in seed development

in flowering plants. Seed in a flowering plant normally contains diploid embryo and

triploid endosperm. Empirical studies have shown that some economically impor-

tant endosperm traits are genetically controlled by imprinted genes. However, the

exact number and location of imprinted genes are largely unknown due to the lack

of efficient statistical mapping methods. When an iQTL segregates in experimental

line crosses, combining different line crosses with similar genetic background can im-

prove the accuracy of iQTLs inference. To make full use of the natural information

of sex—specific allelic sharing among sibpairs in line crosses, general statistical vari-

ance components frameworks are proposed to map imprinted quantitative trait loci

(iQTL) for the diploid tissue and the triploid tissue, individually. Considering the

special characteristics of the diploid embryo genome and triploid endosperm genome,

new variance components partition methods with respect to the diploid and triploid

tissues are developed. An extension to multiple QTL analysis is proposed for both

diploid and triploid tissues.

A number of studies have demonstrated that multivariate traits analysis can pro-

vide more significant power and higher resolution for major gene detection in linkage

analysis (Evans 2002). Furthermore, when a QTL has the pleiotropic effect on several



traits, some important biologically interesting hypotheses can be performed success-

fully under the multivariate traits approach. It is well known that several highly

correlated traits appear commonly in endosperm. So the variance components based

univariate trait iQTL model is extended to bivariate traits iQTL model for mapping

the parent—of-origin effect. It may expedite the process of identifying and eventually

cloning genes controlling important endosperm traits.

Except for the wide application of variance components model in flowering plants,

variance components analysis has been a standard means in human genetics. In brief,

the genetic effect is detected by the significance of the likelihood ratio test. However,

true parameters of main interest may be on the boundary of the parameter space

under the null hypothesis, thus the regularity condition for declaring asymptotic chi-

square distribution of the LRT statistics is not satisfied. The threshold calculation

based on current methods often yields conservative hypothesis tests as discussed in

a number of studies, especially in multivariate traits cases. To solve this problem, a

general approximation form of the LRT under the null hypothesis of no linkage is pro-

posed, and the chi-square mixture proportions are shown to depend on the estimated

Fisher information matrix in both univariate and multivariate trait analysis.
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0.1 Introduction

0.1.1 Gene and quantitative trait loci (QTL)

Gregor Mendel first studied certain genetic traits to discover the inheritance of bi-

ological variations in peas. A gene is responsible for inheriting these special traits

from parents. With the exploration of the DNA structure, a gene is normally defined

as a stretch of DNA that acts on the protein or an RNA chain to issue instructions

for a special function. For example, DMPK gene can produce a unique protein, my-

otonic dystrophy protein kinase, to guarantee the normal function of muscle, heart,

and brain cells. There are around 30,000 protein-coding genes in human that work

together to control most functions in human body. An allele is a copy of a gene

that measures the variation of the DNA sequence. Usually, a gene A is made up of

two alleles A and a. Three genetic compositions (AA, Aa, and aa) made up of two

alleles (A and a) are defined as genotypes. In fact, humans share mostly the same

genes with distinct combinations of alleles that make him or her genetically unique.

For instance, the hair color is controlled by same genes in human, but the specific

hair color, such as: red, black, blonde, and so on, is determined by different alleles

combined in the same genes. Besides, genes may affect many important quantitative

traits, for instance, body weight, body height, blood pressure, and so on.

Inheritance of characteristics of quantitative traits is attributed to single gene or

multiple genes interacting with environmental factors. Thus, quantitative trait loci

(QTL) is detectable regions of the genome that are closely linked to genes associated
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with variations of quantitative traits. The association between quantitative trait

loci and closely linked genes in the same chromosome is termed the genetic linkage.

The recombination fraction measures the degree of this association and is utilized to

create a genetic linkage map. In brief, the recombination is a process through which a

chromosomal crossover happens between two QTL or genes during the meiosis. The

mean number of crossovers is called map distance, such as: one centimorgan (CM) is

equivalent to a recombination fraction of 1%. Because of unobservability of the QTL

genotype, the closely linked neutral molecular markers is used to predict the genotype

of QTL. A genetic marker is a DNA sequence that is the unit component of one

chromosome. Associated with a certain locus, genetic markers are easily identifiable

and highly polymorphic. Their exact locations on a chromosome can be estimated. In

fact, a statistical model is built to connect the QTL genotypes and marker genotypes

through phenotypes to identify and sequence genes.

So far, scientists have identified more than 10,000 mouse genes. Because mice

and humans share around 95 percent identical sequence and possess same organs,

more than 500 mouse models with respect to human diseases including cancer and

diabetes have been developed. Many successfully developed gene techniques in mice

have allowed scientists to investigate the human disease on animal models. More and

more people recognize that the age of genetic medicine begins.
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0.1.2 Genomic imprinting

It is well-known that two alleles of a gene inherited from both parents affect variations

of the DNA sequence jointly. If only one parental derived allele is associated with

the variation of phenotype, and the other allele is unexpressed, this special epigenetic

phenomena (uniparental gene expression) is termed genomic imprinting (Wolf et al.

2008). Under genomic imprinting, the expression of the same allele A from different

heterozygote genotypes Aa and (LA depends on the origin of inheritance of this allele.

Then the maternally derived allele A (from Aa) functions differently from that of

paternally derived allele A (inherited from aA). There are two types of imprinted

genes, that is, one gene is maternally imprinted when the paternal copy is expressed

with silent maternal copy, and a gene is paternally imprinted gene if the maternal copy

is expressed with silent paternal copy. Genomic imprinting is first used to describe

the elimination of paternal chromosome for spermatogenesis in sciarid flies. With the

investigation of genomic imprinting, scientists have found that the DNA methylation

and histone modifications are the vital mechanism to result in imprinting (Feil and

Berger 2007). During this mechanism, imprinted genes are expressed differently in

egg and sperm, and the different gene expression is caused by the inheritance of

these epigenetic phenomena. In the healthy genome, even a mutation happens on

one allele of a gene, the other allele can still be transcribed to pay off the loss from

the mutation. But, if the epigenetic event takes place on the same gene, only the

mutated allele is expressed, then people get a disease because of the imprinting effect.

Thus, the epigenetic changes are serious to the disease without changing the genomic

3



sequences physically.

In the past few years, scientists have made a lot of efforts in the understanding

of genomic imprinting. Specifically, the significant phenotypic variations caused by

imprinted genes have been confirmed in areas of the fetal growth and behavior. It

has been increasingly recognized that imprinted genes may influence cancer, obesity,

diabetes and many other disease in human and mammal, and many imprinted genes

are identified to regulate embryonic development in plants. For example, Prader—Willi

Syndrome, a genetic disease, makes patients to be extremely fat. It is caused by the

deletion of 7 genes on the paternal chromosome 15 where the maternal copy is silent.

Besides, other severe genetic diseases caused by the imprinting effect are Embryonal

rhabdomyosarcoma for kidney cancer, Osteosarcoma for bone cancer, and Angelman

syndrome for delayed development, and so on. In maize endosperm, imprinted genes

are thought to control the endoreduplication (Dilkes et al. 2002) procedure through

which larger fruits or seeds are obtained (Grime and Mowforth 1982). The disrupted

gene (IGF2) encoding paternally transmitted insulin-like growth factor II results in

growth deficiency in mice (DeChiara et al. 1991). Currently more than 600 imprinted

genes have been predicted in mouse genome (Luedi et al. 2005). But the accurate

locations and the genetic effect of most imprinted genes remain largely unknown.

0.1.3 Imprinting QTL method

From a quantitative genetic theory point of View, imprinting results in genetic gain

and evolutionarily favorable. Considering a gene A with two alleles A and a, the allele

4



frequency of A is p, and for a is q. Because of genomic imprinting, heterozygotes Aa

and aA are expressed differently, then distinct genotypic values can be defined by the

additional imprinting effect 2' When 2' = 0, the model is reduced to the traditional

 

Genotype Frequency value
 

AA p2 a

Aa pq d + z'

aA pq d — 2'

aa q2 -a
 

Mendelian model. Simple algebra shows that the genetic variance with and without

imprinting is given as

031. = 2pqoz,i-2 + (2pqd)2 + 2pqi2, Imprinting

2 _ 2 2 . . .
org — 2pqa + (2pqd) , No imprinting

where a,- and a are the average effects with respect to imprinting and no—imprinting,

respectively. The additional variance term 210qu due to imprinting is always non-

negative. Thus, imprinting leads to increased genetic variance and is evolutionarily

favorable. This explains why after so many years’ natural selection, genomic imprint-

ing is still preserved.

The imprinted inheritance violates the Mendelian theory and brings challenges in

statistical modelling. The statistical framework in mapping imprinted genes or QTL

was initiated with a fixed effect model in which the genetic effect is treated as a fixed

term. Many studies under this framework were developed to test imprinted QTL
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with controlled crosses of outbred parents (Knott et a1. 1998; de Koning et al. 2000

2002). But, the allelic heterozygosity of two outbred parents may induce confounding

effects for genomic imprinting. The genetic difference based on these methods may

not be explained by the real imprinting effect (Lin et al. 2003). When backcross

and F2 populations with inbred lines were analyzed, the regression-based maximum

likelihood approaches in mapping the imprinted QTL were proposed (Cui 2006; Cui

et al. 2006, 2007). It has been shown that methods focusing on genetic variances are

more powerful to infer QTL effects than the allele substitution method assuming a

fixed effect (Xie et al. 1998). When an iQTL segregates in multiple line crosses, the

detection of iQTL may be improved by combining different line crosses with similar

genetic background. However, no studies based on the variance components method

have been proposed to identify iQTLs with multiple line crosses.

The variance components method is based on the identical-by-decent (IBD) prin-

ciple in which sib pairs have more similar phenotypic trait values when they share

more proportion of alleles IBD. Variance components model in mapping the parent-

of-origin effect in human was first proposed by Hanson et a1. (2001). In this approach,

the additive genetic variance is decomposed into two terms, a component due to the

expression of the maternal allele and a component due to that of the paternal allele.

However, the direct application of this variance components method to a fully or par-

tially inbreeding population is infeasible. The structure of inbreeding populations is

more complicated than that of non-inbreeding populations. Constructing a variance

components method based on inbred populations is still a challenging problem.



Endosperm in flowering plants is developed from the process of double fertilization,

and ended up with a triploid tissue. A number of studies have shown that many

endosperm traits are affected by genomic imprinting. Statistical methods based on

the fixed effect model were proposed to map Mendelian QTL controlling endosperm

traits (Wu et al. 2002; Xu et al. 2003; Cui et al. 2005, 2006). However, no studies

are investigated for mapping imprinted QTL in endosperm inbreeding population

due to the difliculty in modeling the inheritance patterns in a triploid organism with

imprinting. In a collaboration with scientists, a data set has been generated for

the purpose of identifying imprinted genes controlling for endosperm development.

This example motivates us to develop eflicient methods while considering the unique

genetic structure of a triploid tissue.

0.1.4 Objectives and organization of the dissertation

In this dissertation, I will focus on developing efficient variance components models

for the purpose of identifying imprinted genes in experimental crosses. Major goals

of this dissertation are summarized as follows:

0 Propose a general statistical variance components framework by utilizing the

natural information of sex-specific allelic sharing among sib pairs in line crosses,

to map imprinted quantitative trait loci (iQTL) underlying traits in a diploid

mapping population.

a Extend the method to map iQTLs underlying endosperm traits.
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o Extend the single trait model to multi—trait analysis for mapping iQTL underly-

ing bivariate or highly correlated endosperm traits. New biologically interesting

hypotheses, such as, testing the pleiotropic effect of (i)QTL or testing pleiotropic

effect against close linkage will be designed.

0 Conduct a theoretical investigation of the likelihood ratio test (LRT) under the

proposed mapping framework.

The dissertation is organized as follows. Chapter 1 will illustrate the variance

components based statistical mapping framework for diploid inbreeding populations.

The variance components based iQTL mapping approach for the triploid endosperm

will be discussed in Chapter 2. The predominance of the bivariate trait analysis will

be studied in chapter 3. The asymptotic properties of the likelihood ratio test under

the variance components model will be investigated in chapter 4, followed by the final

concluding remarks in chapter 5.



Chapter 1

A statistical variance components

framework for mapping imprinted

quantitative trait loci in

experimental crosses

1.1 Introduction

The genetic architecture of complex phenotypes in agriculture, evolution and biomedicine

are generally complex involving a network of multiple genetic and environmental fac-

tors that interact with one another in complicated ways (Lynch and Walsh 1998).

The development of molecular markers makes it possible to identify genetic loci (i.e.,

quantitative trait loci or QTLs) underlie various traits of interest. Genetic designs
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with controlled crosses are generally pursued to generate mapping populations aimed

to identify QTLs underlying the variation of phenotypes. Statistical method for QTL

mapping with experimental crosses dates back to the seminal work of Lander and

Botstein (1989). Various extensions have been developed since then (e.g., Zeng 1994;

Kao et al. 1999).

For a diploid organism, the expression products of most functional regions from

each one of a chromosome pair are equal. A broken of this equivalence, that is,

nonequivalent genetic contribution of each parental genome to offspring phenotype,

can result in genomic imprinting, a phenomenon also called parent-of-origin effect

(Pfeifer 2000). Since its discovery, imprinting-like phenomena have been commonly

observed in mammals and seed plants (reviewed by Burt and Trivers 2006). However,

statistical methods for identifying imprinted genes have not been extensively studied

and well developed.

The imprinted inheritance violates the Mendelian theory and brings challenges

in statistical modelling. Currently there are two frameworks in mapping imprinted

genes. One is based on the random effect model with pedigree—based natural popu-

lation such as humans. Hanson et al. (2001) first proposed a variance components

framework by partitioning the additive variance component as two parts, a component

due to maternal gene and a component due to paternal gene. The variance compo-

nent method is developed based on the identical-by-decent (IBD) idea in which the

expression of the gene for a pair of individuals is expected to be similar if they share

alleles IBD. Liu et al. (2007) recently applied the model to map iQTL underlying ca-
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nine hip dysplasia in a structured canine population. However, the current IBD—based

variance components method for mapping imprinted genes assumes non-inbreeding

population. Their applications are immediately limited with fully or partially in-

breeding population such as the controlled inbreeding design in plants and animals.

With inbred mapping population in humans, Abney et al. (2000) proposed a method

to estimate variance components of quantitative traits. However, the extension of

the method to map imprinted gene is not straightforward. No variance components

method has been proposed to map imprinted genes with inbred population in the

literature.

Another general framework for mapping imprinted genes is based on the fixed-

effect model in which the effects of genetic factors are considered as fixed. A number of

studies were proposed under this framework for mapping imprinted QTL (iQTL) with

controlled crosses of outbred parents (Knott et al. 1998; Koning et al. 2000; Koning

et a1. 2002). One potential limitation of these methods is that allelic heterozygosity

at a locus between two outbred parents could cause confounding effects for genomic

imprinting. The genetic differences detected by such a fixed-effect model could be

caused by allelic heterozygosity of the parents rather than the imprinted effect of

iQTL (Lin et al. 2003). A natural alternative for the mapping population is the

inbred lines. Fixed-effect models based on backcross and F2 population were recently

proposed under the maximum likelihood framework (Cui 2007; Cui et al. 2006 2007;

Li et al. 2008). When inbred lines are used, Xie et al. (1998) pointed out that

it is more meaningful to inference QTL effect by its variance rather than by the
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allele substitution effect. The QTL variance is generally calculated conditional on

the cross, and it, as a variable, is different from one cross to another (Xie et al.

1998). In a single line cross the estimated QTL variance can not be simply extended

to a statistical inference space beyond that (Xie et al. 1998). Multiple parental lines

are needed for QTL variance inference. A solution to this is to combine data from

multiple line crosses (Xie et al. 1998). An IBD-based variance component method

was proposed by Xie et al. (1998) with multiple line crosses. Extension of the IBD-

based variance component method with multiple line crosses to iQTL mapping has

not been studied.

Motivated by the limitations of current methods aforementioned and by the press-

ing need for efficient iQTL mapping procedure, in this article, we propose a statistical

variance components framework for iQTL mapping by combining data from multiple

inbred line crosses. The proposed model is robust in iQTL variance inference by ex-

tending the iQTL inference space from single line cross to multiple line crosses. A

parent-specific IBD sharing partition method is proposed by considering the inbreed-

ing structure in line crosses. As discussed in Cui (2007), the phenotype of an offspring

is not only controlled by its own genetic profiles, but also by maternal genotype. The

effect of maternal genotype on the phenotype of her offspring, termed maternal effect,

is one potential source of confounding effect in the inference of genomic imprinting.

The existence of such parental effect may lead to incorrect interpretations of imprint-

ing when they are not properly accounted for in the analysis. Parameters that model

the maternal effect are also included and adjusted when testing imprinting.
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With the developed model, we propose an interval-based method for genomewide

scan and testing of iQTL. Both maximum likelihood (ML) and restricted maximum

likelihood (REML) methods are proposed and compared for parameter estimation

and power analysis. An extension to multiple QTL is also proposed in which the

multiple QTL model provides improved resolution for QTL inference. Extensive sim-

ulations are conducted to compare the performance of the proposed model under

different sampling designs with different combinations of family and offspring size.

Comparisons of the ML and REML methods, single QTL and multiple QTL methods

are discussed. The proposed method provides a general framework in iQTL mapping

with multiple line crosses and has significant implications in real application.

1.2 Statistical Methods

1.2.1 Genetic Design

The dissection of imprinting effects in line crosses depends on appropriate mating

designs where the allele parental origin can be traced and distinguished. Most com-

monly used inbred line crosses are the backcross, F2 and recombinant inbred line

(RIL). Reciprocal backcross design has been proposed in iQTL mapping (Cui 2007;

Cui et al. 2007). Considering parental origin of an allele, we use the subscripts m and

f to refer an allele inherited from the maternal and paternal parents, respectively.

The merit of a backcross design is that two reciprocal heterozygotes in offsprings,

Amaf and amAf’ can be distinguished and their mean effects can be estimated and

13



tested to assess imprinting (Cui 2007; Cui et al. 2007). While all individuals in an F2

segregation population share the same parental information, theoretically it is impos-

sible to distinguish the phenotypic distribution of Amaf and amAf without extra

information. Considering sex-specific recombination rates, Cui et al. (2006) recently

developed an imprinting model by incorporating this information into an interval

mapping framework. No study has been reported to use RILs for iQTL mapping.

The methods proposed in Cui (2007) and Cui et al. (2007) are fixed-effects QTL

models where the effects of an iQTL are considered as fixed. While only four backcross

families are considered, when extending to multiple backcross families, the inference of

iQTL variance calculation is less efficient. The variance components method, initially

proposed in human linkage analysis (Amos 1994) offers a powerful alternative in

assessing genomic imprinting (Hanson et al. 2001). In this paper, we will extend

the variance components method to inbred line populations by combining different

backcross lines to map iQTL.
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A typical backcross design often starts with the cross between one of the parental

lines and their F1 progeny to create a segregation population. Then large number

of offsprings are collected for QTL mapping. When imprinting effect is considered,

reciprocal backcrosses are needed. A basic design framework is illustrated in Table

2.1 in Cui (2007). The two reciprocal backcrosses are treated as the base mapping

units. Multiple backcross families are sampled based on these crosses. For simplicity,

we sample equal number of families for each backcross category. For example, a

sample of 8 families would require two of each of the four backcrosses. Noted that

the variance components method assesses the degree of allele sharing among siblings.

When it is applied to inbred line crosses, each backcross population is considered as

one family and different families are considered as independent. For fixed total sample

size, one issue is to assess whether we should sample large number of families each

with small offspring size or small number of families each with large offspring size. For

example, to sample 400 individuals, shall we sample 4 backcross families each with

100 offsprings or 100 families each with 4 progenies or other sampling strategies? The

choice of optimal designs is intensively evaluated through simulations.

1.2.2 The mixed—effect variance components model

Suppose there is a putative QTL with two segregating alleles Q and q, located in an

interval responsible for the variation of a quantitative trait. The phenotype, yikv for

individual i measured in backcross family k(= 1, - -- , K) can be written as a linear
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function of QTL, polygene and environmental effects,

yik =“+aik+Gik+eik’ k=1,... ,K; i=1,... ’nk (1.21)

where nk is the number of offspring in the kth backcross family; p denotes the overall

mean; aik is the random additive effect of the major monogenic QTL assuming nor-

mal distribution with mean zero; Gik is the polygenic effect that reflects the effects

of unlinked genes and is assumed to be normally distributed with mean zero; and

eik ~ N(0, 0,2,) is the random environmental error uncorrelated to other effects. The

phenotypic variance-covariance for the kth family can be expressed as,

2k = nkag + @903 + 103 (1.2.2)

where 0?; and 03 are the additive and polygene variances; Hk is a matrix containing

the proportion of marker alleles shared IBD for individuals in the kth backcross family;

¢I>g is a matrix of the expected proportion of alleles shared IBD, and I is the identity

matrix. The calculation of the IBD sharing matrix with inbred lines can be found in

Xie et al. (1998) which is based on the Malécot’s coefficient of coancestry (Malécot

1948).

Noted that a backcross offspring with genotype quf may be obtained by the

QQ x Qq or the Qq x qq cross. When there is a significant maternal effect, the mean

expression for genotype quf may be different depending on whether its maternal

parents carrying QQ or Qq genotype. As described in Cui (2007), maternal effect
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is one source of potential confounding factor for genomic imprinting. It should be

appropriately modeled and adjusted when testing imprinting. Here, we model the

cytoplasmic maternal effects as fixed effects, and the overall mean [i is replaced by

“k which models the maternal effect of the kth distinct backcross family.

To accommodate parent-of—origin effects, the QTL additive effect (a) can be par-

titioned as two terms: (1) a component that reflects the influence of the QTL carried

on the maternally derived chromosome (am); and (2) a component that reflects the

influence of the QTL carried on the paternally derived chromosome (of). The model

that accommodates the parent-specific effects can be expressed as,

yik =Hk+aikm+aikf+Gik+eiki k=1,--- ,K; i=1,--- ,nk

For data vector y in family It, the above model can be re—expressed as,

yk=XkB+akm+akf+Gk+ek, k=1,---,K (1.2.3)

where Xk is an indicator matrix corresponding to the kth backcross family and [3 con-

tains parameters associated with the three maternal effects; akm ~ N(0, Hmlk072n)’

akf ~ N(o,rrf'ka}), Gk ~ N(0,<I>gag), ek ~ N(0,Ia§), where nmlk and Hflk

are matrices containing the proportion of marker alleles shared IBD that are derived

from the mother and father, respectively; (P9 is a matrix of the expected proportion

of alleles shared IBD, and I is the identity matrix; 0,271 and a; are the variance of

alleles inherited from the maternal and paternal parents, respectively.

18



With non-inbreeding mapping population, Hanson et al. (2001) expressed the

phenotypic variance-covariance for the kth family as,

2 2 2 2
2k = nmlkam + Hflkaf + {>909 + 106 (1.2.4)

However, for an inbred mapping population, this IBD-based variance partition method

can not be directly applied. New method considering the inbreeding structure is

needed.

1.2.3 Parent-specific allele sharing and covariances between

two inbreeding full-sibs

Before we get the phenotypic variance—covariance of a pair of individuals i and j ,

let us first consider the parent-specific allele sharing status. Within each BC family,

there are two alleles segregating at each locus. Because of inbreeding, the IBD values

between two backcross individuals are different from those calculated from outbred

full-sibs. Consider two sibs i and j in the kth backcross family. Without considering

allelic parental origin, Xie et al. (1998) proposed to calculate the IBD value at a QTL

as,

2ft)? QQ—QQ

7f” :29” = (1.2.5)
2] 2]

lforQQ-qurQq—Qq

with 0733- being the Malécot’s coefficient of coancestry (Malécot 1948). Thus, for an

inbred population, 7r,-j is not the actual IBD value between individuals i and j, rather

19



interpreted as twice the coefficient of coancestry (Xie et al. 1998; Harris 1964). For

individuals with itself,

2 for QQ-QQ

7T"=I+Fz'= (1.2.6)

1 for Qq - Qq

where F;- is the inbreeding coefficient for individual i at the QTL. The elements in (Pg

matrix are just the expected values of n,-j and ”ii which are (15,;j=5/4 and ¢,,- = 3/2

(Xie et al. 1998).
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When allelic parental origin is considered, the IBD sharing matrix can also be

calculated based on the coefficient of coancestry. By definition, the coefficient of

coancestry is defined as the probability that two randomly drawn alleles from indi-

viduals i and j are identical by descent. Fig. 1.1 displays possible alleles shared IBD

for sibs drawn in backcross families. Consider two backcross individuals 1' (with two

alleles A: and A- ) and j (with two alleles A - and A - ). Define 6' - as the coef-
2m 2f Jm J 13

f

ficient of coancestry between individuals 2' and j. By definition, 0U can be calculated

as)

1

923' = Z{Pr(Aim = Ajm) + PrIA’im = Ajf) + PI'(Az'f = Ajm) + PI‘(Aif = Ajf)}

I

: ZIgime + Bimjf + gifjm + gifjf)

where 621]; can be interpreted as the allelic kinship coefficient, i.e., the probability

that a randomly chosen allele from individual i is IBD to a randomly chosen allele

are not distinguishable.from individual j. Note that the two terms 0,; and 6.;-
mjf fjm

However, their sum is unique and therefore the two terms can be combined as one

single term, denoted as aim/jf(= gimjf + 92-fjm)‘ After the manipulation, the

coefficient of coancestry for individuals 2' and j can be expressed as 6;-j = $0 +
7:mjm

Him/jf + 6.,-fjf) whlch IS composed of three components.

Following Xie et al. (1998), the alleles shared IBD between individuals i and j

can be expressed as,
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...=29..=1(9
2] u 2 mm + Qim/jf + aifjf)

Wimjm + Wim/jf + Trifjf (1.2.7)

where 7r- are the alleles shared IBD derived
. _ 1 . . .

zme _ 2‘92me and W2

. =19. .

m Qifif

from the mother and father, respectively; 7r = égim/jf is the alleles shared
im/J'f

IBD due to alleles cross sharing, a special case for inbreeding sibs. Without inbreeding,

71'z-m /jf takes value of zero.

For completely inbreeding population, the inbreeding coefficient F,- is 1 if alleles

inherited from both parents are the same since these alleles can be traced back to the

same grandparent. For example, for an individual with genotype QmQf’ Pr(Qm =

Qf) = 1 since both alleles Qm and Qf are inherited from the same grandparent.

Therefore, for individuals with itself, 7r“: = 1 + F,- would be the same as 7r2-j(i # j)

when i and j carry the same genotypes. The expected proportion of alleles shared

IBD cpl-j can also be calculated.

Thus, the proportion of alleles shared IBD can be partitioned as three components

for inbreeding sibs, rather than two components considering parent-of-origin effects

proposed by Hanson et al. (2001). To further illustrate the idea, we use one backcross

family to demonstrate the derivation. A full list of possible IBD sharing values for

the two reciprocal backcrosses are given in Table 2.1. Considering a backcross family

initiated with the Qq x QQ cross. Randomly selecting two individuals i and j with

23



genotype QmQf and QmQf’ the Malécot’s coefficient of coancestry can be calculated

as»

1

7Tij = 26ij 2 éiprIQim = Qjm) + PIIQim = ij) 'I' PIIQif : Qjm)

+Pr<Q,-f = em}

= %[1+1+1+1]=2

Thus, Wimjm = Wifjf = 0.5 and flim/jf = 1. For sib pairs 2' (with genotype

Qme) and y (with genotype quf)’ Wimjm = 0.5, Wifjf = 0 and Wim/jf = 0.5,

and it,-j = 1 which is the same as given in (1.2.5) without considering parent-of-origin

partition.

Considering the allelic sharing status in a complete inbreeding population, the

relationship between the maternal and paternal alleles is no longer independent if

the two alleles are in identical form. There exists a covariance term (denoted as

072nf) due to alleles cross sharing for two inbreeding full-sibs when calculating the

phenotypic variance. Corresponding to the partition of the IBD—sharing considering

allelic parental origin, the major QTL additive variance component can be partitioned

into three components, i.e., 0%, 072,; and 072”f’ in which ognf can be interpreted as

the covariance due to alleles cross sharing in inbreeding families. Thus, the trait

covariance between two individuals i and j can be expressed as,

2 2 2 2 2

COW/2': 93') = ”imjmam it “off + "im/jfamf + @109 + ’2'er

24



where Iij is an indicator variable taking value 1 if i = j and 0 if i 75 j. The variance-

covariance matrix for a phenotypic vector in the kth backcross family can then be

expressed as,

_ 2 2 2 2 2

where the elements of H IIfl k and Hm/flk can be found in Table 2.1.
mlk’

For non-inbreeding sib pairs with random mating, 7r 2 0 and hence
z'm/J'f

Cov(am, of) = 0. Model (2.2.4) reduces to 2k = Hm|k072n+nf|k0% +<I>gag +103,

the same as the variance components partition model considering parent-of-origin

effects given in Hanson et al. (2001).

1.2.4 Likelihood function and parameter estimation

Assuming multivariate normality, the density function of observing a particular vector

of data y for family It is given by,

I
 

1 _

f(yk;uk, 2k) = xp -§(yk - uk)TZk 1(yk - #1,)

where yk = (y1k, Wynkk)T is a "k x 1 vector of phenotypes for the kth backcross

family and nk is the kth backcross family size. The overall log likelihood function for

K independent backcross families is give by,

K

3 = E: 10glf(yk;rtk,2k)l (1-2-9)

k=1
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Note that the maternal effect “It is the same for families with the same maternal

genotype. Thus, only three maternal effects need to be estimated. Two commonly

used methods can be applied to estimate parameters in a mixed effects model, the

ML method and the REML method. Both methods have been applied in genetic

linkage analysis in a variance components model framework (Amos 1994; Almasy and

Blangero 1998). In general, ML estimators tend to be downwardly biased given that

it does not account for the loss in degrees of freedom resulted from estimation of the

fixed effects (Corbeil and Searle 1976). The REML is based on a linear transformation

of the data such that the fixed effects are eliminated from the model, hence it provides

less biased estimators. Even though standard softwares such as SAS have standard

procedures to estimate parameters for a mixed effects model, the estimation for the

proposed model can not be directly fitted into a standard software. The estimation

procedures for the two methods are detailed here.

1.2.4.1 The ML estimation

The phenotype vector in the kth backcross family follows a multivariate normal dis-

tribution, i.e., yk ~ MVN(Xk5, 2k). Parameters that need to be estimated are

9 = (5.01271, 0%, 0,2,,f, 0%, 03) with B = (up/12443)-

2 2 2
am a o

2_ 2 2 2 2 2 2_ 2_;£2 _ mf
Define a — om+of+0mf+og +06, hm — 02, hf — 02, hmf — 02 ,

fl

2__£ 2__2_2_2_22- . --.
hg — 02, and he — 1 hm hf hm fig. 0 IS the total phenotyp1c variance

and hence hgn and It? can be considered as the heritability of maternal and paternal
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alleles, hgn + h;- + h?"f is the total genetic heritability due to the major QTL, ’13 is

the polygene heritability and h2 = hgn + h? + h?”f + h; is the overall heritability.

The phenotypic variance-covariance between any two individuals i and j in the kth

backcross family can then be re-expressed as:

yik
Var = U2Hij|k

yjk

where

62- 6,--
_ .7

Hall: —

with 62- : nimimhgn + Wififhf + ”im/ifhfnf + ¢iihg21 + hg; dj is defined similarly;

and 5ij = nimjmhgn + Wifjfhf + Wim/jfhfnf + (bl-jhg

If there are "k sibs in each backcross family, Hk = {Hijlk}nkxnk is simply a

"k x nk matrix. Instead of estimating Q = (13, 0,27,, 0%, a?”f’ 03, 03), we can estimate

Q=(B, 02, hgn, h?“ hfn , hg) and solve above equations to get the original variance

estimates. Now the log-likelihood can be expressed as,

K

6(9) = Z loglf(ykl9)l

k=l

(1.2.10)

K

oc-Z{n—klo 02——1—lo|H |——1—( —X B)’H—1( ‘X (3)}k_1 2 8 2 g k 202yk k k We k

Maximizing likelihood (3.2.3) is equivalent to maximize (1.2.10). Here, we take an

iterated estimation procedure to estimate the parameters contained in Q. For given
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values of hgn,h§¢,h3nf,hg, we can get the maximum likelihood estimates (MLE)

of parameters (B, 02) by setting the partial derivative of the log-likelihood function

(1.2.10) to zero, i.e.,

K

[3 = Z(X{H;1Xk)—1(X{Hk‘1yk)

k=1

1 K

5.2 — ——Z (yk -- XkBITHk—IIYk — Xe?)
_ K

Zk=1 "k k=1

It can be seen that 6 and 62 are functions of 127271, 12%, hgnf and fig. Plug the

updated parameter values for B and 02 into likelihood equation (1.2.10), the log-

likelihood function can be simplified as,

K K ”k 2 1 K

as) = }: log[f(yk|Q)] oc — 2: 710g} — 5 Z longkl (1.2.11)

The simplex algorithm can be applied to maximize the function (1.2.11) with

respect to parameters ’17an ’12, hfn and ’13 subject to the the constraints that

oghgn,h},hfnf,hgg1andogh2 g 1.

To guarantee a positive definite covariance matrix when searching for these her-

itability values over the constraint parameter space, a reparameterization technique is

adopted (Xu and Atchley 1995). Taking 62-]- : 112(7r;mjm772n+7rifjf712c+7rim /jf772n f

2 2 2 2
hm hf '2 hmf 2 [lg

.. 2 2 __ __ _ . __‘_, 2_ 2 2

$237g) where 7m — [1217f - h2’7mf — —h2’79 — ’12,» and h — hn1+hf+

h?”f + hg. We now have four new unknowns with the constraints: 0 S h2 S 1,
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The new constraints can be easily satisfied by a reparameterization technique. Let

. - . - 2 2 2 2 2
u, ’Um, 11f, ”mf and 129 be any real numbers. Estlmating h , 7m, 7f’ 7mf and 79

can be done by maximizing the likelihood function ( 1.2.11) via searching through the

real domain space with respect to u, Um, of, ’Umf and 129 with the reparameterization

 

 

 

2 en
h = —,

1 + c“

2 8m
7 = .

m evm + evf + evmf + avg

2 evf
7 = ,

f e’Um + evf + evmf + e1’9

2 evmf
7 = , ,

mf evm + elf + evmf + evg

and

evg

2 _
’79 —
 

evm + evf + evmf + evg

MLEs of [22, 772,1, 7%, 7371f and 73 can be obtained through the estimated values

for 11, um, of, ”mf and 119 according to the invariance property of MLEs. These

estimated MLES are used to update h2, h?,,, 11;, h?”f and fig, and hence o2 and B.

The iteration steps continue until convergence.
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1.2.4.2 The REML Estimation

The REML method was first proposed by Patterson and Thompson (1971). This

method has been broadly applied to estimate variance components in a mixed-effect

model framework. Taking f2: (6, 9) where 9:(0m,0gm?”f,0g,0e). The REML

method starts with maximizing the following likelihood function,

K K
1

_

= Z lOslfo'klell = “2' Z {loglzkl +108(IXIcEk1XkI) +yIcPkyk}
k=1 k=1

(1.2.12)

wherePk=E_1—2_1Xk(Xk2—k1Xk)_1Xk2k1.Wecancombineallfamilydata
k k

together as one N x 1 vector denoted asy where N = Zk=1 nk. All the Xk and the

variance-covariance matrix 2k corresponding to each family can be combined. The

log-likelihood function for the combined data is expressed as,

:1: _ _ 1 I —1 I

3 (GI—1020649)] — -5 {10s IEI +10s(|X 23 XI) +y Py} (1-2-13)

where 2 is a block diagonal matrix with the kth diagonal block 2k corresponding

to the kth family and off-diagonal blocks being zeros; P is also a block diagonal

matrix with block elements given by Pk. The dimension of E is N x N. With this

combination, we develop the following REML estimation procedure.

We apply the Fisher scoring algorithm to estimate the unknowns, which has the

form,

03*(9)

t

We”

9(t+1) ___ 9n) ”(em—1

30



where I(e(t)) is the Fisher information matrix evaluated at Gm which can be ex—

pressed as,

tr(PIIfPIIm) tr(PHfPHf) tr(PHfPIIm/f),

tr(PHm/fPHm) tr(PHm/fPHf) tr(PHm/fPHm/f),

 ( ”(1011mm tr(PHfP) tr(PHm/fP),

tr(PHfP<I>g) tr(PHfP)

tr(PHmH1909) tr(PHm/fP)

 t7'(P<I>gP) tr(PP) )

The first-derivative of the log-likelihood function 8* with respective to each vari-

31



ance components is given by,

 

(95* 1 T

06* 1 T

05* 1
T

502 = ‘§(“‘(P”m/f) ‘ Y PHm/fPY)’
m,

(95* 1 T

509 2

ii- —l(t7‘(PI )— TPP )

00g — 2 N y y

The REML estimator of B is the generalized least squares estimator, i.e.,

B=(XTS’1X)‘1XT2‘:‘1Y

1.2.5 QTL IBD sharing and genomewide linkage scan

The above IBD computation procedure assumes that a putative QTL is located right

on a marker. When a QTL is located within an interval, a more efficient approach

would be to do an interval scan and to test the imprinting property of QTLs at posi-

tions across the entire linkage group. Under the proposed framework, essentially we

need to estimate the proportion of putative QTL alleles shared IBD at every genome

position. Here we propose a method to calculate QTL alleles shared IBD inside an
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interval conditional on the flanking markers. The so called expected conditional IBD

values can be derived at each test position as a function of recombination fraction

between the two flanking markers, and the one between one flanking marker and the

QTL. We use one backcross initiated with the cross QQ x Qq as an example to il-

lustrate the idea. For a putative QTL with two alleles Q and q, four QTL genotype

pairs QQ — QQ, QQ — Qq, Qq - QQ and Qq — Qq can be formed. If the QTL

genotype is observed, the corresponding QTL alleles shared IBD can be calculated

(see Table 2.1). In general, the QTL genotype is unobservable, but its conditional

distribution can be calculated from the two flanking markers. For individuals 2' and

j with flanking marker genotypes g,- and gj, let WUIGiGj be the IBD values calcu-

lated at the QTL position between individual i carrying QTL genotype G,- (=1 or

2 corresponding to QQ or Qq, respectively) and individual j carrying genotype Gj

(similarly 1 or 2), where v = imjm,ifjf or im/jf' For example, WimjmlGiGj is

the proportion of IBD sharing between individual i carrying QTL genotype G;- and

individual j carrying genotype Gj for alleles derived from the mother.

Let ch,l , and 90G I , be the conditional distribution of QTL genotype Gi and

i 92 j 93

Gj for individuals 2' and 3' given on the flanking markers 92' and gj, respectively. This

conditional probabilities can be easily calculated and can be found at standard QTL

mapping literature (see Wu et al. 2007). The probability to observe no] G-G , is just

2 J

1,90, I ,goG I ,. Thus, the expected IBD values between individual i and j at the

2 92 J 93

tested QTL position conditioning on the flanking markers 9,- and gj can be calcu-

. _ _ 2 2 . . .
lated as, 7rv—E(7rv|GiGj)—ZGZ_:1203:1nleingocilgiipajIgj. For the above
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example, the IBD values derived from the maternal and paternal parents can be calcu-

lated as fiimjm=E(7rimijGz'Gj)zo’Swllgiipllgj+ 0.5;01lgicp2lgj + 0.5992lgicpllgj

+ 0.51p2lgi902'gj and irifjszQrz-fjfIGiGj)=O.5<p1|gin1lgj+ 0.5902lgicp2lgj. Simi-

larly, we can calculate the conditional expectation of IBD sharing for other backcross

families.

Since ‘sz-lgt and (pGjlgj are functions of recombinations, the conditional QTL

IBD values vary at different testing positions. Once the estimated IBD matrix is

calculated at every 1 or 2cM on an interval bracketed by two markers throughout the

entire genome, a grid search can be done at all testing positions. The amount of sup-

port for a QTL at a particular map position can be displayed graphically through the

use of likelihood ratio profiles, which plot the likelihood ratio test statistic as a func—

tion of testing positions of putative QTLS (see details in hypothesis testing section).

The peaks of the profile plot that passes certain significant threshold corresponds to

the positions of significant QTLs.

1.2.6 Hypothesis testing

With the estimated parameters using either the ML or REML method, we are inter—

ested in testing the existence of QTLs across the genome and assess their imprinting

mechanism. The first hypothesis is to test the existence of major QTLs, termed

overall QTL test, which can be formulated as,
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H0:0%=0;=03nf=0

(1.2.14)

H1 : at least one parameter is not zero.

Likelihood ratio (LR) test is applied which is computed between the full (there is

a QTL) and the reduced model (there is no QTL) corresponding'to H1 and H0,

respectively. Let D and ff be the estimates of the unknown parameters under H0 and

H1, respectively. The log-likelihood ratio can be calculated as,

LR1 = -2llog Milly) -10g L(0ly)l

When testing the hypothesis, the polygene and the residual variances are nuisance pa-

rameters which are constrained to be nonnegative. The three tested genetic variance

components under the null are lied on the boundaries of their alternative parameter

spaces. Following Self and Liang (1987), when the null is true, LR1 asymptotically

follows a mixture of X2 distribution on 0, - - - ,3 degrees of freedom (df) with the mix-

ture proportion for the xi components being given in Theorem 2.2.1 in Chapter 2.

The theoretical distribution can be used to assess significance in linkage scan. How-

ever, since there are many point tests across the genome, the point-wise significance

value may not guarantee an appropriate genomewide error rate. Another approach

to assess significance is to use nonparametric permutation tests in which the critical

threshold value can be empirically calculated on the basis of repeatedly shufliing the

relationships between marker genotypes and phenotypes (Churchill and Doerge 1994).
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In simulation studies, we also simulate the null distribution and compare it with the

theoretical distribution.

For those detected QTLs, the next step is to assess their imprinting property. An

identified QTL can be imprinted, completely imprinted, partially imprinted or not

imprinted at all. These can be tested through the following sequential tests. The

first imprinting test is to assess whether a QTL shows imprinting effect, which can

be done by formulating the following hypotheses,

(1.2.15)

Rejection of H0 provides evidence of genomic imprinting and the QTL is called iQTL.

Again likelihood ratio test can be applied in which the log-likelihood ratio test statis-

tics asymptotically follows a x2 with one df (Hanson et al. 2001). We denote the

log-likelihood ratio test statistic as LRimp- If the null is rejected, one would be inter-

ested to test if the detected iQTL is completely maternally or paternally imprinted.

The corresponding hypotheses can be formulated as,

H0202n=0,

H1202n#0.

for testing completely maternal imprinting and
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H0:0_2f:0’

H1 : 0} # 0.

for testing completely paternal imprinting. The likelihood ratio test statistics for the

above two tests asymptotically follow a 50:50 mixture of x?) and x? distribution (Self

and Liang 1987). Rejection of complete imprinting indicates partial imprinting.

1.2.7 Multiple QTL model

In reality, more than one QTL may contribute to the phenotypic variation located in

one chromosome region or across the whole genome. The polygenic effect in model

(1.2.3) absorbs the effects of multiple QTLs located on other chromosomes. However,

when there are multiple QTLs located on the same linkage group as the tested QTL,

if their effects are not properly adjusted, the estimation could be biased due to inter-

ference caused by theses QTLs outside of the testing interval (Zeng 1994; Martinez

and Cuirnow 1992; Janson 1994; Zeng 1993). A multiple QTL model that can test the

putative QTL effect while adjusting the effects of interference QTLs deserves more

attention.

Zeng (1993) previously showed that IBD variables share the same property as the

indicator variables in which the shared proportion of alleles IBD for a QTL conditional

on the IBD of one flanking marker is independent of that of a QTL on the other side

of that flanking marker. Thus, conditional on one flanking marker, the interference

of QTLs located on the other side of the marker can be eliminated. By conditional
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on the IBD of the flanking markers, the IBD sharing of a QTL is uncorrelated with

that outside this interval. Xu and Atchley (1995) showed that one marker is enough

to block the interference caused by other QTLs located on the same linkage group.

The authors derived the next-to—flanking markers structure to block additional QTL

effects from both sides of testing region in one chromosome. We derive a multiple

QTL model adopting a similar idea as Xu and Atchley (1995). Assume there are

total S QTLs located on a linkage group. Considering parent—specific allelic effects,

the multiple QTL model can be expressed in general as,

S S

Wk 2 “k4“: Gama: aikfs+Gik+eika k =1.--- ,K; 2': 1. - ~ .71), (1.2.16)

3:1 3:1

In an interval—based linkage scan, only one putative QTL is considered at each

testing position conditioning on the effects of all other QTLs. Assuming there are

total L and R QTLs located on the left and right side of the putative QTL on a

linkage group, model (2.2.6) can be modified as,

L R

311k = AH: aikl+Iaikm+aikfI+Z aikr+Gik+eiki k = 1, ' " 1K; i: 1, ° " Ink

l=1 r=1

(1.2.17)

where aikl and aikr are the lth and rth QTL random effects on the left and right

side of the putative QTL, respectively. When testing the putative QTL effect, we are

only interested in blocking the total effects of QTLS outside of the tested interval.

Therefore, in the modified model, the effects of QTLS outside of the tested interval

are not partitioned. This however does not affect the inference of the tested QTL.
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As shown by Zeng (1993) and Jansen (1994; 1993), one marker is enough to block

the correlation between a locus on its left and a locus on its right. Therefore, only

two additional markers flanking the current interval are needed to block interference

caused by outside QTLs (Xu and Atchley 1995). Let Ml and .Mr denote two flanking

markers for the tested interval, and [I and R denote the two markers next to Ml

and Ml+1 with the marker order L—M1"”1+142. With the modified model given in

(1.2.17), the covariance of phenotypes between individuals i and j in the kth backcross

family can be expressed as,

L

.Cov(yz-k, yjk) =12 Cough-kl, ajkl) + Cov(aZ-km, ajkm) + Cov(az~_kf, ajkf)+

=1

R 2 2
+ Cov(aikm, ajkf) + Z] COf’Iaik'r’ ajki‘) + ibijag + [2'er

7':

1.2.18

L 2 2 2 2 ( )
zzflllkol +7rimjm0m+7Tim/jf0mf+7rifjf0f

l=1

R 2 2 2

7'21

where it” I: and 71'le are the IBD values for QTLs located on the left and right side of

the putative QTL in the kth backcross family, and can be calculated following (1.2.5)

and (1.2.6) if their genotype information is known. Unfortunately, the number and

exact locations of QTLs outside of the testing interval are unknown. Hence will;

and 71-le are not observable. Xu and Atchley (1995) showed that when will; and

erk are unknown, they can be estimated by some composite terms K(910nmk)

and K(61R,7rle), where K(61£,7r£|k) is a function of the recombination fraction
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between the lth QTL and the left marker L as well as a function of 1r£| k’ the IBD value

for a pair of individuals at the left marker L. K(6172, ”RI k) can be similarly defined.

Following Xu and Atchley (1995), K(915mm 1;) can be expressed as a function of

7rLI k multiplied by a function of recombination frequency between the lth QTL and

the marker .6, f(dl£), i.e., K(6m,7r£|k) = W£lkf(0w)' Similarly, K(61R,1rle) =

”RIkf(97.7%). When doing an interval scan, the covariance function given in (4.2.6)

between individuals i and j can be re—expressed as,

CovfyikijkIWLIlk’frimjm’frim/J’f’frifjf’lek)

=Z Klglfii "[1le + 7“2.77131710777' + frim/jflkamf + 7Arifjfof

R

+ Z K<6IR’WR|1€)O72' + ‘fijag + Iij

r=1L

=7r 2f“) 02+7r 02 +7r +ir- ~02
“kl:1 15) I Zme 7” im/jfammf zfJf f

,2

R

+ «le Z f(6,.73)0g + (15,303 + I, 0

r=1

__ 2A,,2 . 2 ~__2 2 ..2 ..2
—7r£|kUL+7r2mjm0m+7rim/jf|k0mf+7rlf2f0f+7rR|k0R+¢2J09+Ilja€

Instead of estimating individual variance components 012 and 0,2, now we estimate the

composite term 21L.1f(6119021 ——0L and 21:1“67.70072: 0R. By conditioning

the IBD sharing information for the left and right markers [2 and ’R, the effects of

those interference QTLs are blocked. 0% and 0% absorb the random eflects of all

QTLS that are outside of the testing interval but are on the same linkage group as
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the putative QTL. Estimation of the variance components terms follows the same

procedure as the single QTL analysis with slight modification to consider multiple

variance components.

1 .3 Results

1.3.1 Simulation design

To investigate the performance of the proposed models and estimation methods, we

conduct intensive computer simulations. We start with the single QTL simulation

followed by the multiple QTL analysis. Six evenly spaced markers (M1 — M6) are

simulated. The total length for the simulated linkage group is 100cM. We assume that

all the backcross families share the same linkage map constructed using Haldane map

function. For simplicity, we assume the sample size for all backcross families is the

same (i.e., "k = n). The position of the simulated QTL is assumed to be located at

48cM away from the first marker (M1). The effect of the putative QTL is simulated

by assuming different imprinting mechanisms, i,e., no imprinting, completely imprint-

ing and partial imprinting. Once QTL genotypes are simulated, phenotypes can be

simulated by randomly drawing multivariate normal distribution with the covariance

structure given in (2.2.4) with different parameter combinations.

To evaluate the effect of family and offspring size combination on testing power

and parameter estimation, we simulate data assuming different sample size combina-

tions. We fix the total sample size as 400 and vary the family and offspring size with
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different combinations, i.e., 4x100, 8x50, 20x20 and 100x4. The first number for

each combination indicates the family size. For example, in the combination 20x20,

20 families each containing 20 offspring are simulated. For each sib—pair, the IBD

value at a putative position at every 2cM along the linkage group is calculated as

described in the previous section. For each simulation scenario, 100 simulation repli-

cations are recorded and the ML and the REML methods are used to estimate the

unknown parameters.
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1.3.2 Simulation results

1.3.2.1 Single QTL analysis

The single QTL model assumes one QTL is located at the third interval in the sim-

ulated linkage group, 48cM away from the first marker. Results using both ML and

REML estimation methods are summarized in Table 2.2. n.F denotes the number of

families and nk denotes the number of offspring for each family. Without loss of gen-

erality, we assume equal offspring size for all families in each simulation scenario. The

simulated parameter values are listed under each parameter. The root mean square

errors (RMSEs) are recorded for each parameter estimate to assess the estimation

precision. Overall, the fixed effects (three means) and most variance components can

be better estimated with large number of families. For example, the RMSE of pa-

rameter 111 is reduced from 1.869 (2.45) to 0.321 (0.305) when the number of families

increases from 4 to 100 with the ML (REML) estimation method. The only exception

is the two variance components terms (0,2,1 and 0%) which are better estimated with

the 20x20 combination design. Through the combination of different line crosses,

the parameter inference space is expanded, and as a result, better estimations are

achieved as expected. However, the QTL position is better estimated with the 8x50

and 20x20 designs than the other two among the four simulation scenarios. The

100><4 design gives the worst QTL position estimation with the largest RMSEs for

both estimation methods. Therefore, a balance of family and offspring size is needed.

A moderate family size with moderate offspring size would be necessary in order to

achieve reasonable parameter estimation for both QTL effects and position.
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Table 2.2 also lists the results of power analysis under different scenarios with two

different estimation methods. Power1 denotes the empirical power calculated from the

simulated null distribution corresponding to hypothesis test (2.2.6). We simulate the

null distribution by simulating data assuming no QTL effect (i.e., 072’1=U§‘:07272f:0)'

The LR test statistics is calculated for each simulation run and the 95% cutoff is

2
reported as the threshold value. Power refers to the theoretical power which is cal-

culated assuming the mixture chi-square distribution. Results show that the threshold

calculated from the theoretical distribution is smaller than the one calculated from

the simulation. Thus the testing power based on the theoretical cutoff is greater than

the empirical power. The testing powers under different sampling designs are very

comparable except for the 100X4 design in which the power is dramatically reduced

compared to other designs. No remarkable difference in power for both estimation

methods is observed.

Fig. 1.2 shows the log—likelihood ratio test statistic calculated under the four

sampling designs across the simulated linkage group by using both ML and REML

estimation methods. The plotted LR curve is from averaged LR values out of 100

replications. It is clear that large offspring size always gives large test statistics. As the

family size increases from 4 to 100 and so decreased offspring size, we observe a huge

LR value decrease. Clearly, the 100x4 design is less powerful than the others. The

last column listed in Table 2.2 shows the type I error for testing genomic imprinting,

i.e., H0: 0%, = 0.21:. The simulated data assume no imprinting (0,2,, = 0%=l.5).

The imprinting test is only conducted at the position where the overall QTL test
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o 20 410 4 6'0 80 100

Test position (cM)

Figure 1.2: The LR profile plot. The left and right figures correspond to the LR

profiles generated using the ML and REML method, respectively. The arrow indicates

the true QTL position.

shows significance. The imprinting test statistic LRimp is compared with a chi-square

distribution with 1 df. Overall, the REML estimation method results in smaller type

I error rate than the ML method does. As the number of families increase, the type

I error decreases. The 4x100 design yields the largest type I error.

In comparison of the ML and REML methods, the REML method gives smaller

estimation biases but larger RMSEs than the ML method does. This reflects the

large variability of the REML estimation. In terms of computation speed, the ML

method is faster than the REML method. Even though the QTL position estimation
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is better estimated by using the REML method when family size is small, as family

size increases, the REML method performs worse than the ML method (Table 2.2).

In checking the LR profile plot in Fig. 1.2 and the power analysis in Table 2.2, we do

not observe significant gain in power by using the REML method. The two methods

do no dominate each other and are very comparable in power analysis. With large

sample size and limited computing resources, one might want to try the ML method

first. However, the REML method is suggested when testing imprinting since it has

small type I error.

In a short summary of the results listed in Table 2.2, the 8x50 and 20x20 designs

give better QTL position estimation and testing power. In terms of the type I error

for imprinting test, the 20x20 and 100x4 designs provide reasonable type I error.

Thus, a practical guidance is to choose the 20x20 design, and one should always

avoid designs with extremely large or extremely small family size.
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To evaluate the proposed model under different imprinting mechanisms, we sim-

ulated data assuming different degree of imprinting. Since the results in Table 2.2

indicate that a 20x20 design provides relatively reasonable parameter estimation,

good power and small type I error rate for imprinting test, the evaluation of imprint-

ing analysis is thus focused on this design. The results for 100 simulation replication

are summarized in Table 2.3. Three imprinting models are assumed: complete ma-

ternal imprinting (072,; = 0 and 0%:3), complete paternal imprinting (0,2,; = 3 and

0%=0), and partial maternal imprinting (0,2,, = 1 and 0%=2). Both ML and REML

estimators are reported. Overall, the two estimation methods produce very compa-

rable results with less biased estimations by the REML method as we expected. All

the parameters can be properly estimated with reasonable precision.

Large imprinting power is observed when the variance difference between the two

parent-specific variance components is large. When the difference between the two

parent-specific variance components is reduced, the power to detect imprinting is

largely reduced. For example, when data are simulated assuming complete paternal

imprinting, the power is 0.91(0.86) by using the ML(REML) estimation method.

With partially imprinted data, the imprinting power reduces to 0.24(0.09) by using

the ML(REML) method, even though it can be increased by increasing the offspring

sample size (data not shown).
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In reality, whether a QTL is imprinted or not is an unknown prior. When a

QTL has Mendelian effect and is not imprinted, is there any power loss by analyzing

with the proposed imprinting model? Or when a QTL is actually imprinted, is there

any power loss by analyzing with regular variance components approach? To answer

these two questions, we simulated data under different scenarios and analyzed with

both Mendelian and imprinting models. The first and second column in Table 1.4

refer to the simulation and analysis models, respectively. M refers to the Mendelian

model without variance components partition and I refers to the imprinting model

with allelic-specific partition of the variance components. For comparison purpose,

heritabilities are recorded instead of original variance components estimates. The

polygene and residual variances are fixed as 0.5 (h2 = 0.083) and 2, respectively for

all the simulation scenarios. We first simulated data with one additive genetic effect

without partitioning variance into allelic specific components. This is equivalent to

simulate data assuming the Mendelian model. A single additive variance component

of 3.5 is assumed which corresponds to a heritability of 11?, = 0.583. The second

scenario is to simulate data with three allelic-specific variance components. Simu-

lation models 11 and I2 correspond to a complete maternal imprinting model (i.e.,

h2 = 0 and h; = 0.5) and a partial maternal imprinting model (i.e., 11%,, = 0.083

and h2 = 0.417), respectively. The variance component 072”f is assumed to be 0.5

(hfnf = 0.083) for 11 and IQ. In all the simulations, we use the 20x20 design to make

the comparison. Similar results are expected under the other sampling designs. Since

the true variance components values for the imprinting model is unknown when data
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are simulated assuming Mendelian effect and vice versa, only standard deviations for

these parameter estimates are recorded (listed as italic font in the parentheses).

The simulation results are summarized in Table 1.4. When the simulated model is

Mendelian, QTL position is better estimated with the Mendelian model than with the

imprinting model. No remarkable difference in power is observed for both models. The

estimated parent-specific variances due to maternal and paternal alleles are almost

identical and no imprinting is detected. When data are simulated assuming imprinting

(model 11 and 12), large power is observed when analyzed with the imprinting model.

For example, the power is 86% when analyze the 11 imprinting data by the Mendelian

model. The power is increased to 95% when data are analyzed by the imprinting

model. When imprinting data are analyzed with the Mendelian model, the major

QTL variance is under-estimated and the polygene variance is slightly over-estimated.

No remarkable differences are observed for the estimation of the three fixed mean

effects and the residual variance under all simulation cases. In any case, the imprinting

model performs better or no worse than the Mendelian model. Thus, it is generally

safe to apply the imprinting analysis for data shown any inheritance pattern.

1.3.2.2 Multiple QTL analysis
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To see the relative merit of multiple QTL analysis against single QTL analysis

when multiple QTLs are located on the same linkage group, two QTLs are simulated

with QTL 1 (denoted as Q1) located at the second interval, 28cM away from the first

marker (M1) and QTL 2 (denoted as Q2) located at the fourth interval, 68cM away

from the first marker. Two simulation scenarios are considered. The first scenario

considers two non-imprinted QTLs with equal genetic effects. The second scenario

assume Q1 is imprinted and Q2 is not imprinted. Simulated parameters for the

two QTLs are listed in Table 1.5. Data are simulated assuming the 20x20 design.

Parameters are estimated by the ML and REML approaches with 100 replicates.

Fig. 1.3 shows the LR profile plots for the single and multiple QTL analysis.

The single QTL model indicates three major peaks. The highest peak for the single

QTL analysis is located at the wrong QTL interval where no QTL is assumed. The

so called “ghost image” of QTL can be removed and the positions of the two QTLs

can be precisely mapped on the chromosome by the multiple QTL model. Two clear

peaks indicating the correct QTL positions (arrow signs) are observed by the multiple

QTL analysis. However, we observe a remarkable reduction in LR values by multiple

QTL analysis compared to those by the single QTL analysis. Since the threshold for

multiple QTL analysis is unknown, we can not make the conclusion that multiple

QTL analysis is less powerful than the single QTL analysis. It is possible that we

may gain accuracy in QTL position estimation at the cost of power loss. Similar

phenomenon and issues were also observed and discussed in the literatures (Zeng

1994; Xu and Alchley 1995).

54



20 . . . .

ML ------- Single QTL model

multiple QTL model

 

I d

18  

16

I l

12

I l

I l

10L
R

 

  

0
1
0
-
t
h

l 1

0 20 i 40 60 1 80 100

Test position (cM)

 

Figure 1.3: The LR profile plot for singe QTL and multiple QTL analysis. The

true QTL positions are simulated at 28cM and 68cM (see the arrow sign). The

dotted curve and the solid curve represent the LR profiles by single QTL and multiple

QTL analysis, respectively. The left and right figures correspond to the LR profiles

generated using the ML and REML method, respectively.

The results of the multiple QTL analysis are summarized in Table 1.5. The

fixed mean effects, the polygene and residual variance components can be reasonably

estimated with small RMSES, similar results shown in Table 2.2 for the 20x20 design

and hence are not reported here. Only the genetic factors for the two simulated QTLs

are reported. It can be seen that both ML and REML methods provide reasonable

parameter estimates and are very comparable. Under the first simulation scenario in

which both QTLs are not imprinted, the genetic effects are all slightly over-estimated
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by both methods. This might be due to the interference of the two QTLS in the

same linkage group. The multiple QTL model may not completely block the effects of

QTLs outside of the tested interval. For the second simulation scenario, an interesting

pattern is observed. When one QTL is imprinted (Q1), the maternal and paternal

variance components for the second one (Q2) tend to be estimated with bias in the

direction as the first imprinted QTL, i.e., 0%, tends to be over-estimated and 0%

tends to be under—estimated. As we gain accuracy in QTL position estimation, we

lose precision for the parameter estimation. These effects are expected as described in

Zeng (1994) and Xu and Atchley (1995). More investigations are needed in multiple

QTL analysis in order to maintain a good balance of QTL position and parameter

inference.

1.4 Discussion

Statistical methods assuming fixed effect models for iQTL mapping in controlled

outbred and inbred lines have been proposed (e.g., Koning et al. 2000; Cui 2007; Cui

et al. 2006 2007). Considering the limitation of fixed-effect models, a random model

that astimates the QTL variance by extending single line cross to multiple line crosses

should be more powerful in QTL variance inference (Xie et al. 1998). The IBD-based

variance components method assuming random genetic effect for iQTL mapping has

been developed in human linkage analysis (Hanson et al. 2001). However, no study

has been proposed to map iQTL using variance components method with inbred or

partially inbred line cross. In this article, we have first time presented an IBD-based
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variance components framework to search for the existence and distribution of iQTL

throughout the entire genome in multiple experimental line crosses. The idea of the

method is demonstrated through a backcross design. It can also be extended to

multiple F2 line crosses using the sex-specific recombination information as proposed

by Cui et al. (2006).

The key point of the proposed iQTL variance components analysis is to parti-

tion the additive genetic variance into parent-specific components. We have prOposed

a new parent-specific allelic sharing method which characterizes the relatedness of

parent-specific alleles between pairs of individuals in a backcross pedigree. The calcu-

lation of parent-specific allelic sharing is based on the information of the coefficient of

coancestry. More complicated calculation of the coefficient of coancestry can be found

at Harris (1964). The quantification of the coefficient of the coancestry proposed by

Harris (1964) can also be utilized to calculate the parent—specific IBD sharing in an

inbred human population, and thus for iQTL mapping in inbred human populations.

There have been extensive studies in literature about various methods in the

estimation of variance components in a mixed-effect model framework. The ML and

REML are two commonly applied methods in variance components estimation with

less biased estimation by the REML method. Simulations show that the ML method

yields high precision in parameter estimation but with relatively large bias than the

REML method. Power analysis indicates that the ML method is a little more powerful

than the REML method but with large type I error when testing imprinting. In terms

of computing speed, the ML method is faster than the REML method. Thus, no
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single method dominates the other. In terms of overall QTL test, we suggest to use

the ML method for the genomewide linkage scan and use the REML method for the

imprinting test.

The effect of sampling design is investigated by extensive simulations. Results

indicate that one can always achieve large power with large offspring size when the

total sample size is fixed. The LR value differences under different sampling designs

are shown in Fig. 1.2. However, the combination of small families each with large

offsprings gives poor parameter estimation and large type I error for imprinting test

(Table 2.2). As the number of families increase, we observe less biased parameter

estimates for both fixed and random effects, but with poor QTL position estimation

and small power. This information implies that it is necessary to enlarge the number

of families to improve precision of parameter estimation. Meanwhile, a balance of

family and offspring size is needed to maintain good QTL detection power and position

estimation. Our simulations indicate that for a fixed total sample size (71:400), both

8x50 and 20x20 designs yield comparable results and both designs outperform the

other two designs (Table 2.2). Moreover, the 20x20 design produces relatively small

type I error in imprinting test. With the 20x20 design, results in Table 1.4 indicate

that the imprinting model is better or as good as the regular Mendelian analysis

without considering imprinting. In real data analysis, it should be safe to apply the

proposed imprinting model for data with any imprinting pattern.

In this study, we have extended the single marker-based analysis to an interval-

based mapping for genomewide scan and testing of iQTL effects. Considering the
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interference of QTLS located on the same linkage group, we have extended the single

QTL model to multiple QTL analysis following the derivation of Xu and Atchley

(1995). Simulation results indicate the relative merit of the multiple QTL analysis

with improved QTL position inference, but with possible power loss (Fig. 1.3). This,

however, has been a common issue in multiple QTL modelling (Zeng 1994; Xu and

Atchley 1995). More investigations are needed in deriving efficient and robust multiple

QTL mapping models to improve precision without suffering too much from power

loss.

The theoretical distribution for the likelihood ratio test has been a challenging

problem in QTL mapping. Dupuis and Siegmund (1999) first proposed theoretical

properties for LR test statistics in a genomewide linkage scan for QTLs in an inter-

val mapping frameworh with a fixed—effect model. Currently, most linkage analysis

using the variance components method assume that the LR test statistic follows a

mixture of chi-square distribution (Allison et al. 1999). The mixture distribution is

derived following Self and Liang (1987). With multiple testings and multiple nuisance

parameters in a genomewide scan, the assumptions to get the mixture chi-square dis-

tribution may not be satisfied. Moreover, the multivariate normal assumption for the

phenotypic data required to get the mixture distribution may not even valid. No the-

oretical work has been done to investigate this in a IBD-based variance components

linkage mapping. Our simulations indicate that the theoretical threshold calculated

from the mixture chi-square distribution is smaller than the simulated cutoff. Thus,

the power calculated with the theoretical threshold is slightly inflated. A modified
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mixture chi-quare distribution may be more appropriate. More theoretical investiga-

tions are needed in this regard.
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Chapter 2

A general statistical framework for

dissecting parent-of-origin effects

underlying endosperm traits in

flowering plants

2.1 INTRODUCTION

The life cycle of an angiosperm starts with the process of double fertilization, where

the fertilization of the haploid egg with one sperm cell forms the embryo, and the fu-

sion of the two polar nuclei with another sperm cell develops into endosperm (Chaud-

hury et al. 2001). Thus, endosperm is a tissue unique to angiosperm. The embryo

and endosperm are genetically identical, except that the endosperm is triploid com-
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posed of one set of paternal and two identical sets of maternal chromosomes. In

cereals, the endosperm of a grain is the major storage organ providing nutrition for

early-stage seed development, and more than that, serves as the major source of food

for human beings. The identification of important genes that underlie the variation of

quantitative traits of various interests in endosperm, is thus paramountly important.

Genomic imprinting refers to the situation where the expression of the same genes

is different depending on their parental origin (Pfifer 2000). It has been increasingly

recognized that many endosperm traits are controlled by genomic imprinting. For

example, endoreduplication is a commonly observed phenomenon which shows a ma-

ternally controlled parent-of—origin effect in maize endosperm (Dilkes et al. 2002).

Cells undergo endoreduplication are typically larger than other cells, which conse—

quently results in larger fruits or seeds beneficial to human beings (Grime and Mow-

forth 1982). Other reports of genomic imprinting with paternal imprinting in maize

endosperm include, for instance, the 7' gene in the regulation of anthocyanin (Ker-

micle 1970), the seed storage protein regulatory gene dsrl (Chaudhuri and Messing

1994), the MEA gene affecting seed development (Kinoshita et al. 1999) and some

a-tubulin genes (Lund et al 1995). These studies underscore the value of developing

statistical methods that empower geneticists to identify the distribution and effects

of imprinted genes controlling endosperm traits.

Statistical methods for mapping imprinted genes or imprinted quantitative trait

loci (iQTL) have been extensively studied. Focusing on different genetic designs

and different segregation populations, methods were developed in mapping iQTL
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underlying quantitative traits in controlled experimental crosses (e. g. Cui et al. 2006,

2007; Wolf et al. 2008), in outbred population (e.g., de Koning et al. 2002) and in

human population (e.g., Hanson et al. 2001; Shete et al. 2003). Broadly speaking,

these methods can be categorized into two frameworks: one based on the fixed effect

model where the iQTL effect is considered as fixed (e.g., Cui et al. 2006, 2007; de

Koning et al. 2002), and the other considering iQTL effect as random and estimating

the genetic variances contributed by an iQTL (e.g. Hanson et a1. 2001; Shete et

al. 2003; Li and Cui 2009a). The method proposed by Li and Cui (2009a) extended

the variance components model to experimental crosses and showed relative merits in

mapping iQTLs with inbred lines. However, all these approaches for iQTL mapping

were developed based on diploid populations, whereby chromosomes are paired. Their

applications are immediately limited when the ploidy level of the study population is

more than two for instance, the triploid endosperm.

In this study, we propose to extend our previous work in iQTL mapping with vari-

ance components approach in experimental crosses (Li and Cui 2009a), and consider

the unique genetic make-up of the triploid endosperm genome to map iQTLs un-

derlying triploid endosperm traits. Cytoplasmic maternal effects are also considered

and adjusted when testing for genomic imprinting. Motivated by a real experiment,

we propose a reciprocal backcross design initiated with two inbred lines. Likelihood

ratio test (LRT) is applied to test the significance of the variance components and its

asymptotic distribution is evaluated under irregular conditions.

The article is organized as follows. Section 2 will illustrate the basic genetic design
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and the statistical mapping framework. We propose a new approach for calculating

the parental specific allelic sharing among inbreeding triploid sibs. Statistical hy-

pothesis testings are proposed to assess iQTL effects. The limiting distribution of

the LRT under the proposed mapping framework is studied. Multiple QTL model is

also proposed to separate closely linked QTLs. Section 3 and 4 will be devoted to

simulations and real application followed by a general discussion in section 5.

2.2 STATISTICAL METHOD

2.2.1 The genetic design

Using experimental crosses for QTL mapping has been the traditional means in tar-

geting genetic regions harboring potential genes responsible for quantitative trait

variations. Toward the goal of mapping iQTL underlying endosperm traits in line

crosses, we propose a reciprocal backcross design. A similar design was proposed by

Li and Cui (2009a) for diploid mapping populations. In brief, two inbred parents with

genotypes AA and 00 are crossed to produce an F1 p0pulation (Aa). F1 individuals

are then backcrossed with one of the parents to generate backcross populations. We

can use both parents as the maternal strain to cross with an F1 individual to generate

two backcross segregation populations. Or we can use F1 individuals as the maternal

strains to cross with both parents to produce another two sets of segregation popu-

lations. The so called reciprocal backcross design generates four different segregation

populations with each one being considered as one family. Large number of backcross
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families can be obtained by simply replicating each one of the above crosses.

To distinguish the allelic parental origin, we use subscript letter f and m to denote

an allele inherited from the father and mother, respectively. A list of possible offspring

genotypes considering the unique genetic make-ups in the triploid endosperm genome

is detailed in the second column in Table 2.1. Clearly, the endosperm genome carries

one extra maternal copy due to the unique double fertilization step in flowering plants.

When a dosage effect is considered, we do expect different expression values triggered

by endosperm and embryo genes.
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2.2.2 The model

In QTL mapping, different line crosses can be combined together to increase the pa-

rameter inference space via a variance components method (Xie et al. 1998). VG

method has been shown to be powerful in assessing genomic imprinting in human

linkage analysis (Hanson et al. 2001). Recently, Li and Cui (2009a) extended the

VC model to experimental crosses and proposed an iQTL mapping framework via

combining different line crosses for iQTL detection. We extend our previous work

to triploid endosperm tissue considering the unique genetic components in the en-

dosperm genome.

Suppose total K families are collected which are composed of the four distinct

backcross families. Assume nk individuals are sampled in the kth family. The phe-

notypic variation of a quantitative trait in family It (denoted as yk) can be explained

by the genotype-specific cytoplasmic maternal effect (denoted as pk), additive QTL

effect (denoted as 0k), polygene effect (denoted as gk), and random residual effect

(denoted as ck). To incorporate the parent-of—origin effect, the additive QTL effect

(0k) can be further partitioned into two separate effects, an effect due to the expres—

sion of the maternal allele (denoted as akm) and an effect due to the expression of

the paternal allele (denoted as akf)‘ The model can thus be expressed as

yki =(‘k+2akmi+akfi+9ki+ekiv k=1,-°- ,K; i: l,-~ ,nk (2.2.1)

where akmi’ akfi’ gki and 3162' are random effects with normal distribution, i.e.,
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akmi ~ N(0,0T2n), akfi ~ N(010)2€)19kz’ ~ N(0,03), eki ~ N(0,0g); gki and ck,-

are uncorrelated to akmi and akfii the coefficient 2 for akmi adjusts for the effects of

two identical maternal copies; ”It models the maternal genotype-specific effect. With

four distinct segregation populations, we have only three distinct maternal genotypes,

AA, Aa and 00. Thus the parameter ”k can be collapsed into three distinct values

denoted as 111, 112 and 113 corresponding to maternal genotypes AA, Aa and 00,

respectively. Let B = (111,112,113), then model (3.2.1) can be rewritten in a vector

form as

ykszB+20km+akf+gk+ek, k=1,...,K (22.2)

where Xk is an ”k X 3 matrix with one column of ones and two columns of zeros.

2.2.3 Parent-specific allele sharing and the covariance be-

tween two inbreeding sibs

One of the major tasks in IBD—based iQTL mapping with variance components model

is to calculating the IBD sharing probabilities and the phenotypic covariances between

sibs. Such a method has been developed in human population (Hanson et al. 2001),

which however, can not be applied to a complete inbreeding population in experi-

mental crosses, because the allelic sharing relationship among sibpairs does not follow

the pattern as the one derived from a natural non-inbreeding population. Instead,

the IBD sharing probability can be calculated based on the Malécot’s coefficient of

coancestry (1948) for an inbreeding population. Li and Cui (2009a) recently explored

different allelic sharing patterns among sibpairs in a reciprocal backcross design with
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a diploid tissue. We extend the method to the triploid endosperm genome and derive

the covariances among sibpairs in a triploid tissue.
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Consider two individuals i and j randomly selected from one backcross family with

phenotype y,- and yj. Figure 2.1 shows all possible allelic sharing patterns between

individuals 2' and j. The solid line indicates IBD sharing for alleles derived from

the same parent and the dotted line indicates IBD cross-sharing for alleles derived

from different parents. The allelic cross-sharing is unique to inbreeding populations,

whereby this cross-sharing probability reduces to zero for non-inbreeding populations.

Here we propose to calculate the IBD sharing between individuals i and j (denoted

as 772-3) for a triploid genome as

39,-]: if i aé j

7r;-j = (2.2.3)

§(5+3F,-) 111:]-

where 62-j is the Malécot’s coefficient of coancestry and F2- is the inbreeding coeffi-

cient (Harris 1964; Cockerham 1983; Lynch and Walsh 1998). By definition, 6U is

calculated as the probability of two randomly selected alleles from individuals i and

3' being identical by descent. The calculation of 7l'ij is different from the usual IBD

sharing calculation in non-inbreeding populations. It is rather interpreted as triple

the Malécot’s coefficient of coancestry (Xie et al. 1998). For easy notation, we still

adopt the term “IBD sharing probability” for 7l'z'j in the rest of the presentation.

The calculation of the inbreeding coefficient follows the procedure given in Lynch and

Walsh (1998).

To illustrate the idea, consider two backcross individuals i (with genotype AmAmAf)

and j (with genotype BmBme). The coefficient of coancestry 61-]- between these
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two individuals can be expressed as,

1

911‘ = giPrfAm1 E Bm1) + Pr(Am1 E Bm2) + P11047712 E Bm1)

+PI‘(Am2 E 3mg) + PI‘(Am1 E Bf) + Pr(Am2 E Bf) + PI'(Af E B1711)

+Pr(Af E 87712) + PI'(Af E Bf)}

= 3(409 + 20,-
1me mif + 29mm + 91m)

where the notation E refers to identical by decent; the subscript numbers 1 and 2

indicate two maternally inherited alleles; 01-1 is defined as the allelic kinship coef-

ficient (Lynch and Walsh 1998). Noted that the two terms 6,- and 62-
mif fjm are

indistinguishable, but their sum denoted as 0- ~ = 6- - + 9- - is unique.
zm/Jf 2m]f 1’me

Thus, we have 01']. = 113(46imjm + zgim/jf + difjf). Following equation (2.2.3), we

have

4 1 . .

7r--=3l9 im/jf-I—ggifjf=7rimjm+7rim/jf+7rifjf forHéJi] ij = 39 26
2'me + g

It can be seen that the IBD sharing between any two individuals can be decomposed

as three separate components, one due to the IBD sharing for alleles derived from

the maternal parent (Wimjm = g0,- ), one due to the cross-sharing for alleles
mjm

derived from different parents (7r , and one due to the IBD sharing
_ 2

im/jf _ 30im/jf)

for alleles derived from the paternal parent ( ). An exhaustive list of

”1191 = $91191

all possible IBD sharing probabilities for the four backcross families is given in Table

2.1.
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Dropping the family index k, the covariance between any two individuals i and j

can be expressed as,

COVIinE/jlflimjmaVim/jfi'n'ifjf) = C0V(2ami+afi+gi+eii

+¢ijog + Iijag

where mejm = 211'(7rimjm) and ”gm/j}! = 2(7rim/jf) are the IBD sharing and

cross-sharing probabilities by considering one single maternal allele; 07271]. measures

the variation of trait distribution due to alleles cross-sharing; ¢ij is the expected

alleles shared IBD; Iij is an indicator variable taking value 1 if i = j and 0 if i 75 j.

For a natural population without inbreeding, there is no allele cross-sharing for an

individual with itself, hence 7rz- = 0. For a diploid non-inbreeding population,
m/1f

the trait covariance can be simplified as the one given in Shete et al. (2003). In

matrix form, the phenotypic variance-covariance for individuals in the kth backcross

family can then be expressed as

__ 2 2 2 2 2

where the elements of II Hfl k and Hm/flk can be found in Table 2.1.
m|ki
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2.2.4 QTL IBD sharing and genome-wide linkage scan

The above described IBD sharing probability is calculated at a known marker position.

Unless markers are dense enough, we have to search across the genome for potential

(i)QTL positions and their effects. In general, the QTL position can be viewed as

a fixed parameter by searching for a putative QTL at every 1 or 2 cM on a map

interval bracketed by two markers throughout the entire linkage map. Thus, we

need to estimate the QTL IBD sharing at every scan position. Since the conditional

probability of an endosperm QTL given upon two flanking markers is the same as the

one derived from a diploid genome (Cui and Wu 2005), the same procedure termed as

the expected conditional IBD sharing described in Li and Cui (2009a) can be applied

to calculate the QTL IBD sharing probability at every scan position.

Assuming multivariate normality of the trait distribution for data in each family

and assuming independence between families, the joint log-likelihood function when

K backcross families are sampled can be formulated as

K

e = 2104101311020] (225)

k=1

where f is the multivariate normal density. Parameters to be estimated include

5 = ( it u ) and Q = (02 02 02 02 02) Two commonly used methods in
#11 27 3 "1" f1 7717f, g: e .

linkage analysis, the maximum likelihood (ML) method and the restricted maximum

likelihood (REML) method, may be applied to estimate parameters. It is commonly

recognized that the REML method gives less biased estimation compared to the ML
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method (Corbeil and Searle 1976). Here we adopted the REML method with the

Fisher scoring algorithm to obtain the REML estimates of the parameters (see Li

and Cui 2009a for details of the algorithm).

The conditional QTL IBD-sharing values vary at different testing positions. The

amount of support for a QTL at a particular map position can be displayed graphically

through the use of likelihood ratio profiles, which reflect the variation of the testing

position of putative QTLs. The significant QTLs are detected by the peaks of the

profile plot that pass certain significant threshold (see section 2.5 for more details).

2.2.5 Hypothesis testing

In iQTL mapping, we are interested in testing whether there is any significant genetic

effect at a test position and would like to further quantify the imprinting effect if any.

The hypothesis for testing the existence of a QTL can be expressed as

2
H01072n=03=0mf=0

(2.2.6)

H1 : at least one parameter is not zero

The LRT is applied for this purpose. Define f1 and D to be the estimates of the

unknown parameters under H0 and H1, respectively. The LRT statistic can be

calculated as

LR = —2[log L(f~2|y) — log L(f1|y)] (2.2.7)
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Let 0 = (111 112 p3 61 02 63 04 65)T = (111 [12 213 0,2,; 0% Ugnf 03 03)T E Q

R3 x [0, 00) x [0, 00) x [0, 00) x (0, 00) x (0, 00) be the parameters to be estimated. Noted

that the polygene variance is bounded away from zero if we assume there are more

than one QTL in the genome. Let the true parameters under the null hypothesis be

90 = (#10 #20 1430 0an 0330 0,2,,f0 030 030)T = (#10 #420 #30 0 0 0 030 030)T E

(20 = 1R3 x {0} x {0} x {0} x (0,00) x (0,00). The three tested genetic variance

components under the null hypothesis lie on the boundaries of the parameter space 9.

Thus, the standard conditions for obtaining the asymptotic X2 distribution of the LRT

are not satisfied (Self and Liang 1987). Following the results from Chernoff (1954),

Shapiro (1985) and Self & Liang (1987), the following theorem shows that the LR

statistic follows a mixture chi-square distribution, whereby the mixture proportions

depend on the estimated Fisher information matrix.

Theorem 2.2.1. Let COO and C9 be closed convex cones with vertex at 00 to ap-

proximate 90 and 9, respectively. Let Y be a random variable with a multivariate

normal distribution with mean 90, and variance-covariance matrix I—1(90). Under

the assumptions given in the Appendix, the LR statistic in (3.2.10) is asymptoti-

cally distributed as a mixture chi-square distribution with the form W3X§ : ngg :

011x? : “0X32 where (03 = 1%[27r — cos—1pm — cos—1p13 — cos—1p23], c122 =

1%[377—cos_1p12l3—cos_1p13l2 —cos_1p23|1], (.01 = 1%(003—1'012 +cos_1p13+

cos—1p23), and 010 = %— 2117?[37r—cos—1p1213—cos_1p13|2—cos_1p.23l1];pub is the

correlation between the variance terms a and 0 calculated from the Fisher information

(pub—panbc)

<1—p301/2<1—pgc)1/2'

 matrix, and pablcz
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Note that the symbol 7r in the above theorem is the irrational number (a mathe—

matical constant) not the IBD sharing probability. The proof of the theorem is given

in Appendix.

Remark: When the random parameter estimators are uncorrelated or the corre-

lation is extremely small, i.e., the Fisher information matrix is close to diagonal, the

2
mixture proportions for the X1: components are reduced to the binomial form with

(2)2’3, which is consistent with the results (Case 9) given in Self and Liang (1987).

Once a QTL is identified at a genomic position, we can further assess its imprinting

property. To evaluate whether a QTL shows imprinting effect, the hypotheses can be

formulated as

H0 0}=072n (228)

H1 02 75 0,2,,

Again, the likelihood ratio test can be applied which asymptotically follows a x2

distribution with 1 degree of freedom since the tested parameter under the null is

nonnegative and does not lie on the boundary of the parameter space. Rejecting

H0 indicates genomic imprinting, and the QTL can be called an iQTL. We denote

this imprinting test as LRq-mp. If the null is rejected, one would be interested in

testing Whether the detected iQTL is completely maternally or paternally imprinted

with the corresponding null hypothesis expressed as H0 : 072,, = 0 and H0 : a; = 0,

respectively. The LRT statistic for the two tests asymptotically follows a mixture X2

distribution with the form 1X2 : 1X2. Rejection of complete imprinting indicates
2 0 9 1

partial imprinting.

77



Maternal effects can be tested by formulating hypothesis: H0 : #1 = #2 = u3.

Note that these three parameters do not represent the true maternal effects as they

are confounded with the main genetic effects. But a test of pairwise differences can

be applied to detect the significance of any maternal contribution.

2.2.6 Multiple iQTL model

In practice, there may be several QTLs to reflect the phenotypic variation in the whole

genome. When testing QTL effects at one chromosome, the effects from QTLS located

at other chromosomes are absorbed by the polygenic effect (9) In some case, two

or more QTLs may located at the same chromosome, which are termed background

QTLs in comparison to the tested one. When this happens, it is essential to adjust

for the background QTLs’ effects. Otherwise, it may lead to biased estimation for the

putative QTL caused by the interference of QTLS close to the tested interval (Zeng

1994).

In the previous work of Li and Cui (2009a), the authors proposed a multiple iQTL

model following the idea of next-to-fianking markers proposed by Xu and Atchley

(1995). We adopted a similar strategy in the current study. Briefly, assume there are

S (i)QTLs in one chromosome, the multiple iQTL model considering parent-specific

allele effect can be expressed as

S S

yki =Mc+ Zzakflti8+ Zakfis+9ki+ekiv k=1v" vK; i=1v“ an];

3:1 3:1

where each (i)QTL effect is partitioned as two separate terms to reflect the contribu-
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tion of the maternal and paternal alleles. In reality, the exact number and location

of the QTLs in a chromosome is generally unknown before the genome-wide search.

This problem can be eased by applying the next-to—flanking markers idea proposed

by Xu and Atchley (1995).

Denote a test interval with two flanking markers as Ml—Mr. The markers next

to these two markers are denoted as ML on the left of Ml, and MR on the right

of Mr (L = l — 1 and R = r + 1). Conditional on the two markers, ML and MR,

we expect the effects of QTLs located outside of the tested interval can be absorbed

by the IBD values calculated from the two next-to—flanking markers (Xu and Atchley

1995). Thus, the calculation of (i)QTL covariance conditional on these two markers

will avoid the requirement for the position of QTLs outside of the tested interval.

The phenotypic covariance between two individuals i and j can be expressed as

COW/kt ykjlflle’frimjm’ firm/if iifijrle)

2

=21K()QlL’Wle0l2 +7rimjmam+7rim/Jflk072nf+7rzfjf0f

1R

r=1

2
:WLIkUL +7rimjm0m +7rim/jflk0mf +7Iifif of +7rleoR + ibijag + Iij

where rrle is the IBD sharing value at marker L, and 0% is a composite variance

component which reflects the variation of (i)QTL effects on the left side of the tested

interval (see Li and Cui 2009a for details). «RI 1; and 0%: are defined similarly. The
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calculation of rrle and rrle reflect the triploid structure of the endosperm genome.

Testing (i)QTL effects can then be focused on a tested interval while adjusting for

the background QTLs’ effects located in other place.

2.3 SIMULATION

2.3.1 Single iQTL simulation

Six evenly spaced markers are simulated with a total length of 100cM. For simplicity,

we assume equal family size (i.e., "k = n). A putative iQTL is simulated at 48cM

away from the first marker. The effect of the putative iQTL is simulated by assum-

ing different imprinting modes (i.e., no imprinting, completely imprinting and partial

imprinting). Phenotypes are simulated by randomly drawing multivariate normal dis-

tribution with the covariance structure given in model (2.4) with different parameter

combinations.
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For experimental crosses, the number of families and the offspring size can be

easily controlled. We simulate data assuming different family and offspring size com-

binations to evaluate the effect of family and offspring size on testing power and

parameter estimation. For a fixed total sample size of 400, we vary the family and

offspring size with different combinations, i.e., 4x100, 8x50, 20x20 and 100x4. The

first number for each combination indicates the family size and the second number

indicates the offspring size. Without loss of generality, we assume equal offspring

size for all families in each simulation. Results with 100 Monte Carlo repetitions are

recorded for each simulation.

Table 2.2 tabulates the results assuming no imprinting (i.e., 0,2,, = 0%). The

simulated parameter values are listed underneath each parameter. The REML esti-

mates as well as the root mean squared errors (RMSEs) (given in the parenthesis)

are recorded for each simulation. nF denotes the number of families and "k denotes

the number of offsprings in each family. Overall, the 20 x 20 combination produces

the smallest RMSE and bias for QTL position estimation, high QTL detection power

and reasonable type I error rate among the four designs. The 100 x 4 design gives

the most accurate estimates for the maternal effects, but with small power to detect

QTL effect. The 4 x 100 design gives very biased parameter estimates for the main

maternal and paternal variance terms. The 20x 20 design also produces the most

reasonable imprinting type I error. Thus, a balance of the family and offspring size is

necessary in achieving optimal power and estimation precision for the QTL position

and genetic effects. In reality, one should always try to avoid designs with extremely
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large or small family size.

Since the 20 x 20 design outperforms the others, we focus this design and con-

duct additional simulations under different imprinting mechanisms. The results are

summarized in Table 2.3. Four imprinting action modes are assumed: complete pa—

ternal imprinting (Ufa = 1.5 and o%=0), complete maternal imprinting (0,2,, = 0

and o%=1.5), partial maternal imprinting (0,2,, = 0.5 and o%=1) and partial paternal

imprinting (0%, = 1 and U%=O'5)' Overall, all parameters can be properly estimated

with reasonable precision under different scenarios. The complete maternal imprint-

ing has the lowest overall QTL testing power (62%) compared to others. Since the

majority of the total variance comes from the maternal alleles (two copies), this result

is expected. Also noted that the imprinting power is low in the four cases. Since the

size of the real data analyzed in section 4 is close to 400, we focus our simulation

with a total size of 400. As the total sample size increases, we do observe increased

imprinting power (data not shown).

The imprinting power is listed in the last column of Table 2.3, which varies a lot

under different imprinting cases. Note the imprinting power is calculated only when

a simulated QTL is significant. Simulations are not counted when calculating the

imprinting power when no QTLs are detected. Thus, we expect low imprinting power

under the current simulation design given that the overall QTL detection power is

less than 90%. The observed low imprinting power might be due to small sample size.

When sample size is increased, we do observe increased imprinting power (data not

shown). For more explanations, see the Discussion section.
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In summary, the results show that both the 4x100 and the 100X4 designs yield

lower QTL detection power and higher RMSE (root mean squared error) for QTL

position estimation than the other two designs do. The 20x20 design slightly beats

the 8x50 design with smaller imprinting type I error and higher QTL detection

power. These results indicate that it is necessary to maintain a balance between

the family size and the offspring size, in order to achieve optimal power and good

effects estimation precision. For a given budget with a fixed total sample size, one

should always try to avoid extreme designs with large (or small) number of families,

each with small (or large) number of offsprings. Focusing on the 20 x 20 design,

additional simulation shows that the performance of the imprinting model depends

on the underlying degree of imprinting. High imprinting power is observed when an

iQTL is maternally imprinting compared to the case when an iQTL is paternally

imprinting.

2.3.2 Multiple iQTL simulation

When multiple (i)QTLs occur in one chromosome, especially when they show linkage

effects, the inference of a tested QTL will be biased if other QTLs’ effects are not

corrected. In the simulation, the same setup as described in single iQTL simulation is

adopted, except that two putative iQTLs are simulated, one located at 28cM and the

other one located at 72cM. Data are simulated assuming two iQTLs located at the two

genomic positions and are subject to both single iQTL and multiple iQTL analysis.

Figure 2.2 plots the LR profiles averaged out of 100 replications for both analyses.
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The dotted and solid curves represent the LR profiles calculated from the single and

multiple iQTL models, respectively. Results indicate that the single iQTL analysis

produces three clear LR peaks. The highest peak corresponds to the wrong QTL

position, which is often termed as “ghost” QTL (Zeng 1994). On the contrary, the

multiple iQTL model can correctly target the two QTL positions with high precision

as indicated by two distinct LR peaks.

 

 

 

1° ' ' ' I ------- 'SingleI QTL model
9 - ----- multiple QTL model ‘

8 L ... . . ..... -

7 _
-
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-

es s- ‘
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0
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Figure 2.2: The LR profile plot for the single iQTL and multiple iQTL analyses. The true

iQTL positions are simulated at 28cM and 72cM (see the arrow signs). The dotted and

the solid curves represent the LR profiles by the single iQTL and multiple iQTL analyses,

respectively.

In summary, the results indicate a clear benefit of analysis by fitting a multiple

iQTL model than fitting a single iQTL model. While the single iQTl analysis detect

one “ghost” QTL located between the two simulated QTLs, the multiple iQTL anal-
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ysis can clearly separate the two QTLs with high precision. Note that the multiple

iQTL analysis normally generates low LR values than the single iQTL analysis does.

The distribution of the LR value under the multiple iQTL analysis is not clear, and

permutation should be used to assess significance of any (i)QTLs in multiple iQTL

analysis (Xu and Atchley 1995).

2.4 A CASE STUDY

We apply our method to a real data set which have two endosperm traits of interests:

mean ploidy level (denoted as Mploidy) and percentage of endoreduplicated nuclei

(denoted as Endo). The two traits describe the level of endoreduplication in maize

endosperm, which is thought to be genetically controlled by imprinted genes (Dilkes

et al. 2002). Four backcross segregation populations, initiated with two inbred lines,

Sg18 and M017, were sampled. The four populations were obtained from a reciprocal

backcross design as illustrated in Table 2.1. The data show large degree of variation

for endoreduplication among the four backcross populations, and ten linkage groups

were constructed from the observed marker data (Coelho et al. 2007). For more

details about the data, readers are referred to Coelho et a1. (2007). The two traits

were analyzed with our multiple iQTL model aimed to identify iQTLs across the ten

linkage groups.
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Figures 2.3 plots the LR profiles across the ten linkage groups for the two traits.

The solid and dotted curves represent LR profiles for traits Endo and Mploidy, re-

spectively. To adjust for the genome-wide error rate across the entire linkage group,

permutation tests are applied in which the critical threshold value is empirically calcu-

lated on the basis of repeatedly shuffling the relationships between marker genotypes

and phenotypes (Churchill and Doerge 1994). The corresponding genome-wide signif-

icance thresholds (at 5% level) for the two traits are denoted by the horizontal solid

(for Endo) and dotted (for Mploidy) lines. The 5% level chromosome-wide thresholds

are denoted by the dashed (for Endo) and dash-dotted (for Mploidy) lines. QTLs

that are significance at the chromosome-wide level are called suggestive QTLs. It can

be seen that two QTLs (on G7 and G9) associated with Mploidy and one QTL (on

G6) associated with Endo are detected at the 5% genome-wide significance level (de-

noted by “*” in Table 3.3). Two suggestive QTLs (on G2 and G10) associated with

Endo and one suggestive QTL (on G6) associated with Mploidy are also indetified.

The detailed QTL location and effect estimates as well as the test results for im-

printing are tabulated in Table 3.3. For the trait Mploidy, the identified three QTLs

are all imprinted (pimp < 0.05) and all show completely maternal imprinting, i.e.,

the maternal copies do not express. They are thus termed iQTLs. The cytoplasmic

maternal effect does not show any evidence of significance for all the three iQTLs

(pM > 0.05). For the trait Endo, only the QTL detected on G6 shows imprinting

effect (Pimp < 0.05) and it shows completely paternal imprinting (pif < 0.05). The

other two QTLS does not show evidence of imprinting (pimp > 0.05). For this trait,
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significant maternal effects are detected (pM < 0.01).

In our study, one maternally controlled iQTL was detected for trait Endo, which is

consistent with the result given by Dilkes et al. (2002). l\r’leanwhile, according to the

genetic conflict theory proposed by Haig and Westoby (1991), in which maternally

derived alleles tend to trigger a negative effect on the increase of endosperm growth,

whereas paternally derived alleles tend to play an opposite effect to increase seed

size. The identified iQTLs shwoing maternal imprinting for trait Mploidy can be

well explained by the genetic conflict theory. Both empirical evidence and theoretical

hypothesis support the current finding.
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In the case study, we also fit a Mendelian model to the data to see if the imprinting

model and the Mendelian model produce any different results. The Mendelian model

for family It assumes the form

yk=Xk5+ak+gk+ek, k=1,--—,K (2.4.1)

where ak is a random vector for the main genetic effect without partitioning it into

allelic specific effects. See model (2) in the main paper for an explanation of other

parameters.

Figures 2.4 and 2.5 plot the results for the two traits Mean Ploidy Level (Mploidy)

and Percentage of Endoreduplication (Endo), respectively. Figure 2.4 indicates that

the imprinting and the Mendelian models agree with two QTLs detected, one on G7

and one on G9. Both QTLs are significant at the genome-wide significant level by

fitting the imprinting model. But the Mendelian model only detects the one on G7 at

the genome-wide level. Each model detects one QTL at the chromosome-wide level on

G6. But the two QTLs do not overlap. Further experimental investigation is needed

to confirm which model is more robust for this QTL.

The results for fitting the Endo trait is summarized in Figure 2.5. The imprinting

model detects three QTLs, on G2, G6 and G10. The one on G6 is significant at the

genome-wide level. The other two are only significant at the chromosome-wide level.

In contrast, the Mendelian model only detects one QTL on G6 which overlaps with

the one identified by the imprinting model. In fact, the two models produce quite

similar LR values at QTLs on G2 and G10. Due to high threshold for the Mendelian
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model, it fails to detect the two QTLs.
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2.5 DISCUSSION

The role of genomic imprinting in endosperm development has been commonly rec-

ognized (Dilkes et al. 2002; Kinkshita et al 1999; Chaudhuri and Messing 1994).

But little is known about the exact location and effect size of imprinted genes in

endosperm. As endosperm in cereal provides the most nutrition for human being, it

is important to identify imprinted genes that govern seed development, particularly

endosperm development. In this article, we develop a variance components linkage

analysis method with an experimental cross design, aimed to identify iQTLs for en-

dosperm development. Our method is motivated by real applications and is evaluated

through Monte Carlo simulations.

The proposed method is based on a particular genetic design (reciprocal backcross

design) with inbreeding populations. We treat iQTL effects as random, different from

a fixed—effect iQTL model (e.g., Cui 2007). Variance components linkage analysis with

partial inbreeding human population was previously proposed (see Abney et a1. 2000).

However, extending the VC model to a completely inbreeding population is challeng-

ing. In our previous work, we proposed a VC—based iQTL mapping framework for an

inbreeding diploid mapping population (Li and Cui 2009a). Extending the previous

work, we propose a novel IBD partitioning approach to calculate allelic sharing in an

inbreeding endosperm population. Extension to mapping multiple iQTLs is provided.

Simulations indicate good performance of the multiple iQTL analysis compared to a

single iQTL model. Meanwhile, to obtain a good balance of iQTL position and effect

estimation and detection power, we have to avoid extreme sample designs. For a fixed
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total sample size, extremely large or small families should always be avoided.

In an application to two endosperm traits, we identified three iQTLs for trait

Mploidy. All show paternal expression. We also identified one iQTL for trait Endo,

which shows a maternal expression. According to the parental conflict theory pro—

posed by Haig and Westoby (1991), maternally derived alleles trigger a negative effect

on endosperm cell growth and inhibit endosperm development because the extra ma-

ternal copy could slower nuclear division in endosperm. On the contrary, paternally

derived alleles tend to increase seed size. Thus, the three iQTL identified for Mploidy

can be explained by the genetic conflict theory. The occurrence of parental conflict

theory explains parent-of-origin effects as an ubiquitous mechanism for the control of

early seed development (Grossniklaus et al. 2001; Kinoshita et al. 1999).

In a VC-based linkage analysis, likelihood ratio test (LRT) has been commonly

applied in assessing QTL significance. The LRT statistic asymptotically follows a

2 distribution and many investigators often apply the result (Case 9) inmixture x

Self and Liang (1987) with binomial mixture coefficients. In a recent investigation,

we found that the LRT in a regular VC-based linkage analysis without considering

imprinting follows a mixture x2 distribution with mixture proportions depending on

the estimated Fisher information matrix (Li and Cui 2009b). The modified calcula-

tion of mixture proportion does give more reasonable type I error rate than the one

with binomial coefficients. When imprinting is considered, we show that the limiting

distribution of the LRT also follows a mixture X2 distribution, and we adopt the

new criterion for power evaluation. Simulations show that the new criterion gives
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type I error more closer to the nominal level than the one using binomial coefficients,

and produces power as good as the later one (data not shown). We recommend

investigators to adopt the new criterion in their analysis.

Increasing evidences have suggested that for correlated traits, multivariate ap-

proaches can increase the power and precision to identify genetic effects in genetic

linkage analyses (e.g., Boomsma and Dolan 1998; Amos et al. 2001; Evans 2002).

Also, the joint analysis of multivariate traits can provide a platform for testing a num-

ber of biologically interesting hypotheses, such as testing pleiotropic effects of QTL,

testing pleiotropic vs close linkage. Moreover, if the putative QTL has pleiotropic

effects on several traits, the joint analysis may perform better than mapping each

trait separately (Jiang and Zeng 1995). Multivariate traits appear frequently in ge-

netic mapping studies. For example, the two endosperm traits evaluate in this study

are highly correlated (Colho et al. 2006). We expect joint analysis may provide high

mapping resolution and power for iQTL detection. This will be explored in our future

investigation. A computer code written in R is available upon request.

APPENDIX

In standard human linkage analysis with variance components model, many authors

declare that the likelihood ratio statistic follows a mixture X2 distribution with bino-

mial coefficient for each mixture component (e.g., Amos and Andrade 2001; Hanson

et al. 2001; Shete et al. 2003). Following Chernoff (1954), Shapiro (1985) and Self &

Liang (1987), in the following we show that the mixture proportion actually depends
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on the estimated Fisher information matrix.

For a random variable Y with density function f(y; 0), following Chernoff (1954)

and Self & Liang (1987), assume that:

( 1) When any true parameter (60) is on the boundary, the neighborhood centered

at 90, i.e., (00 -— 6, 00 + 6), is closed, and the intersection between this closure and Q

is also a closed set.

(2) The first three derivatives of 2,- logf(3],; 0) with respect to 0 on the intersec-

. . . ‘ 63 logf
tion of neighborhoods of 90 and Q almost surely exist. Moreover, I _ . k I < K(y)

z .7

for all 9 on the intersection, and E9 [K(31)] < 00.

(3) The information matrix 1(0) is positive definite on neighborhoods of 90.

Assuming the above assumptions, the consistency and weak convergence of the

estimators can be proven (see Chernoff 1954, Self & Liang 1987, Shapiro 1985). Here

we cite the main results from Chernoff (1954), Shapiro (1985) and Self & Liang (1987)

to show the asymptotic distribution of the LRT in our case.

Defining two closed polyhedral convex cones C90 and C91 to approximate 90

and 521 at 90. The parameter space under the null hypothesis is approximated as

C90 = {0 : 0 6 R3 x {0} x {0} x {0} x (0,00) x (0, 00)}, against C91 = {0 : 0 E

R3 x [0, 00) x [0, 00) x [0,00) x (0,00) x (0, 00)} under the alternative. Following

Chernoff (1954, Theorem 1), the asymptotic distribution of the LRT in (3.2.10) is

equivalent to the following quadratic approximation

LR* = inf (Y — 0)’1(60)(Y — 0) — inf (Y — 9)’I(00)(Y — 0) (2.5.1)

96090 OECQI
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where Y ~ N(60, I’1(60)).

Subtracting 00 from Y and 0, the expression in (2.5.1) is given by

LR*= inf (Y—6)’I(00)(Y—0)— inf (Y—0)’I(00)(Y—0) (2.5.2)

06090 ——90 06091—90

and Y N N(0, I_1(60)) under the linear transformation.

Let 01 = (091 — 00) n (090 — 00)C = {a : 61 > 0,92 > 0,93 > 0}, which is a

closed polyhedral convex cone with 3 dimensions. By the Pythagoras theorem, the

statistic in (2.5.2) can be expressed as

LR* = inf (Y — 0)’I(00)(Y — 6) (2.5.3)

9601

Let f(C'l-) represent the set of all faces of C1, and let C'it0 = {7 E R3 : 7’0 5

0, V 0 6 Cf} be a polar cone which is also a polyhedral convex cone such that

(Clio)0 = CI. Following Shapiro (1985), we can select a face 1/ E f(Ci) correspond-

ing to a polar face V0 E .7:(C10) such that the linear spaces generated by V and

V0 are orthogonal to each other. For one face V (or V0), a projection Ty (or TVO)

(a symmetric idempotent matrix giving projection onto the space generated by V (or

V0» can be found and TV = I—T1,0 since they are orthogonal. Then TVY (or TVOY)

is a projection of Y onto Cit (or C10). For a given Y, let g(Y) be the minimizer

to achieve the infimum in (2.5.3), such that LR* = (Y — g(Y))’I(90)(Y — g(Y)).

Define ill/[Y = {Y E R3 : g(Y) E V}) so that g(Y) E u if and only if TVY E Cit
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and TVOY 6 C10. By Shapiro (1985), g(Y): TVY 6 Cf, V Y E ¢V|Y‘

Note that the set w Y is composed of 23 disjoint sets in R3. All these disjoint

VI

sets can be classified into four categories as

1). $21le = {Y;Y1 > 0, Y2 > 0, Y3 > 0,g(Y) e u}

2). = {Y;Y1 > 01/2 > 0, Y3 g 0,g(Y) e 0}; $le = {Y;Y1 > mg l
/
\2

wulY

0, Y3 > 0,g(Y) e u}; 03'}, = {Y;Y1 g 0, Y2 > 0,Y3 > 0,g(Y) e u}

|
/
\

3). 0)le = {Y;Y1 S 0,Y2 S 0,Y3 > 0,9(Y) E V}; ”(1)le = {Y;Y1 > 0,Y2

0,Y3 g 0,g(Y) e u}; wZIY = {Y;Y1 g 0,Y2 > 0,Y3 g 0,g(Y) e u}

4). 0133'}, = {Y;Y1 g 0, Y2 g 0,Y3 g 0,g(Y) e u}

Define C* = {0* : 0* = Al/QP’ON 0 E C1} to be also a polyhedral closed

convex cone. Then 2.5.3 can be further expressed as

LR* = inf Hz — 9*“? (2.5.4)

0*EC*

where z=A1/2P’Y (PAPT = I(90)) has a multivariate normal distribution with

mean 0 and identify covariance matrix.

Let C*0 be a polar cone of C* and (CW0)0 = C*. Two faces V* and V*0 can be

defined with respect to .7:(C*) and f(C*0). The relevant orthogonal projections Tusk

*0
and Tu*0 corresponding to 11* and 1/ can be found. Suppose h(z) is the minimizer
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to achieve the infimum in (2.5.4). Following Shapiro (1985), we can have h(z)=

Tuzkz E (1*, V z E wuaklz. The set l/Junklz is defined similarly as wl/IY’ and it satisfies

the conditions of Lemma 3.1 (Shapiro 1985). Then we have

LR* = ”24102)“? = ||z—TV*z||2 = z’(I—TV*)z = z’TV*0z v z e bum, (2.5.5)

Thus the distribution of LR* in 2.5.3 can be expressed as

3

Pr(LR* > c2) =Pr((Y -— g(Y))’1(00)(Y - g(Y)) > c2, Y e E) 0i”)

23 , 2:1

= 2:221 Pr(Y E lbI/IY) (2.5.6)

Pr((Y — g<Y>>’I(0o)<Y — g(Y)) > cZIY e wily)

23

:2; Pr(Y e w£|Y)Pr(lel/*Oz > c2|z e alt/4'2)

where conditional on 2 E wifllz’ z'TV*0z is a chi-square distribution. By Bayes’ the-

orem, the distribution of LR* follows a mixture chi-square distribution with mixing

. 3 .

proportions Pr(Y E wf/IY) (i=1,...,23) and 212:1Pr(Y E wi/IY) = 1.

The calculation of the mixture proportions follows Plackett (1954). Specifically,

when Y E wblY’ LR* ~ X3: and the corresponding mixture proportion w3 =Pr(Y G

1 2
wll/IY) =ZIIEl27r — cos—1pm — cos—1p13 — cos- p23]. For category (2), LR* ~ X2

for Y E “’th i = 2,3,4 with the corresponding mixture probability calculated

. 1 _ _ _

by w2 = 231:2 Pr(Y E wbllefiB” — cos 1p1213 - cos 1p13|2 - cos 1p23l1].
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Correspondingly, LR* ~ x? for Y E wblY’ i = 5, 6, 7 with the corresponding mixture

probability calculated as wl = 2;:5 Pr(Y E ¢b|Yl=2 — w3 in category (3). For

the last category, LR* ~ X3 for Y E 212le with the mixture probability wO =

Pr(Y E wle)=% — w2.
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Chapter 3

Bivariate quantitative trait linkage

analysis in mapping imprinted

quantitative trait loci underlying

endosperm traits in flowering plant

3.1 Introduction

The availability of multiple phenotypic traits allows researchers to associate genetic

effects with the joint information of multivariate traits. Comparing with a univariate

phenotypic trait, multivariate traits can provide more information in explaining the

variation resulted from few particular genes or QTL, especially when correlations of

these traits are observed to measure the related levels of multivariate phenotypes. By
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accurately modeling the relative correlations of different phenotypes, the multivariate

traits analysis significantly improves the power to detect QTL, and the degree of

accuracy of position estimation for true QTL (Williams et al. 1999; Almasy et al.

1997)

Initiated by the double fertilization, a unique reproductive process in angiosperm

plants, endosperm is developed from the fuse of the two polar nuclei and a sperm

cell, ended up with a triploid tissue with two identical chromosomes inherited from

maternal and one chromosome from paternal parent. Surrounding the embryo, the

endosperm supplies main nutrition to the embryo (Brink and Cooper 1947). In ce-

real, it serves as the major source of food for human being. But the function of

the endosperm is far more complicated and is beyond simple nutrient delivery to the

embryo. Meanwhile, it is frequent to observe multivariate endosperm traits in maize,

for instance, two highly correlated maize endosperm traits were collected: endoredu-

plication and mean ploidy (Cintia et al. 2006). To reveal the association of genetic

effects with the variation of correlated endosperm traits, the multivariate traits anal-

ysis provides an essential channel to extract the maximum information to identify

important genes or QTL.

In terms of the association of gene expression with variations of the phenotype,

genomic imprinting is defined as the epigenetic phenomena that cause uniparental

gene expression (Wolf et al. 2008). Under genomic imprinting, the expression of the

same allele A from different heterozygote genotypes Aa and aA depends on the origin

of inheritance of this allele. Then the maternally derived allele A (from Aa) functions
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differently from that of paternally derived allele A (inherited from aA). A number

of studies have illustrated that many endosperm traits are controlled by genomic im-

printing. In maize, several paternal imprinting genes have been identified: the r gene

in the regulation of anthocyanin (Kermicle 1970), the seed storage protein regulatory

gene dsrl (Chaudhuri and Messing 1994), the MEA gene in seed development (Ki-

noshita et al. 1999) and some a-tubulin genes (Lund et al 1995). In the contrary

direction, endoreduplication expresses a maternally controlled parent-of-origin effect

(Dilkes et al. 2002). Endoreduplication, commonly occurring in angiosperms, is cru-

cial for the endosperm development. By amplifying the genome to result in larger

cells, endoreduplicaiton plays a critical role in process about the terminal differenti-

ation and specialized function of given tissues. However, to our best knowledge, no

study has been conducted to map iQTL with multivariate traits underlying potential

imprinting process. It is the purpose of this study to develop an efficient multivariate

iQTL mapping procedure incorporating the nature of the imprinting characteristic.

One important merit of the multivariate traits analysis is to make a number of

biologically interesting hypotheses tests, such as testing pleiotropic effects of (i)QTL,

testing pleiotropic against close linkage. These tests can not be accomplished under

a univariate trait analysis. Generally, one phenotype is affected by one gene, but in a

few cases, the same gene may govern several phenotypes simultaneously. This unique

phenomenon is termed as pleiotropy. In real experiments, this special event may be

confused with close linkage, another exceptional phenomenon during which variations

of several phenotypic traits are influenced by multiple closely linked genes. Although
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several genes are located closely in close linkage event, each gene only controls one

trait. The discrepancy between pleiotropy and close linkage is simply distinguished

by the number of traits one gene could control. It is practically important in distin-

guishing these two phenomena.

In maize, some vital genes displaying pleiotropic effects are revealed. For example,

maize zfl regulatory genes in genetic backgrounds have pleiotripic effects on structure

traits in branching and inflorescence (Bomblies and Doebley 2006); the tbl gene with

the intergenic sequences illustrates the pleiotropic effects on maize morphology (Clark

et al. 2006); the early phase change (epc) gene has effects on maize development in

several aspects (Vega et al. 2002); a maize gene GLOSSYl (GL1) expresses its effects

on trichome size and cutin structure during epidermis development (Sturaro et al.

2005); encoding with a transcription factor, a maize gene Glossy15 (Gl15) functioning

like APETALA2 gene controls the development of ovule and identity of floral organ

(Moose and Sisco 1996). It is known that endoreduplication and mean ploidy are two

highly correlated endosperm traits in maize (Cintia et al. 2006). The identification

of genes with pleiotropic effect based on these two phenotypic traits is practically

important.

Variance components model is a powerful tool in multi—trait linkage analysis for an

outbred or human population (Almasy et al. 1997; Williams et al. 1999). Due to the

special inbreeding structure and unique genetic make-up of the endosperm genome,

the current multi-trait linkage analysis methods can not be applied directly to en-

dosperm phenotypes. In an extension to our previously proposed variance components
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model in mapping iQTL underlying endosperm trait, in this work we will propose a

bivariate iQTL mapping method to track down iQTL with possible pleiotropic effect,

and to further distinguish potential close linkage signals.

3.2 Statistical method

3.2.1 The model

We will follow the same genetic design as illustrated in Chapter 2. Let ylk =

(y11,...,y1nk)T be a vector of the Ist phenotypic trait value in the kth family, and

y2k = (3,21, ..., y2nk )T be the 2nd phenotype within the same family. We assume

multivariate normality for the joint distribution of ylk and yzk. In the kth family,

nk individuals are randomly selected for each quantitative trait. The total K families

are collected through four distinct reciprocal backcross populations. In bivariate trait

analysis, the genotype-specific cytoplasmic maternal effect (BI, )62), additive genetic

effect at the QTL (a1 19’ azk), polygenic additive effect (91k, 92k)’ and random en-

vironmental effect (e1 19’ 62k) are considered. The parent-of-origin effect is further

partitioned into effects due to the expression of the maternal allele with respect to

each phenotypic trait (denoted as almk’ a2mk)’ and due to the expression of the pa-

ternal allele (denoted as al I:f’ ). Hence, the genetic model underlying bivariate

endosperm traits is represented in a vector form:
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(y1kw2k) = szilfiz) +2(a1mk’02mk) + (alfkfi2fk) + (91k’92k) + (€1ka62k)

(3.2.1)

where k = 1, - -- ,K. According to the reciprocal backcross design, three mater-

nal genotypes AA, Aa and aa are observed, thus ,31 and ,32 denote mean pa-

rameters of two phenotypic traits with respect to three maternal genotypes, i.e.,

:31 = 011,122,113), fig = (114,115,116). The design matrix X; is an "k x 3 ma-

trix with one column of ones and two columns of zeros. The random effects cor-

responding to the lst trait are almk’ and e1 16’ and each of these ran-

alfk’ 91k

dom components 1S distrlbuted as normal dlstribution i.e., almk ~ N(O,Hmlkom1),

a1 ~ N(0 II 02) 91 ~ N(0 <I>ko2 ) and e1 ~ N(0 Ike?) where 0.2

fk ’ flk f1’ k ’ 91 k ’ 61’ ml

and 0%1 are the additive genetic variances at the QTL for maternal and paternal

sides respectively; Hmlk and Hflk are IBD sharing matrices that are derived from

the similarities of maternal and paternal alleles among siblings, respectively; 031

and 031 are the additive polygenic variance and the residual environmental vari-

ance, respectively; (Pk is the expected proportion of alleles shared IBD; and 1k is

the identity matrix. Correspondingly, a2mk’ and 62k are random effects
a2fl€ ’ 92k

with normal distribution for the 2nd phenotypic trait i.e., 02ml: ~ N(0, Hml kognz),

N 2 N 2 N 2
a2fk N(O’Hf|kaf2)’g2k N(0,<I>kog2)andegk N(0,Ikoe2).

In addition, when bivariate phenotypic traits are involved in the model, the

covariances of two phenotypes are expressed in terms of each random effect, i.e.,
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Cov(a1mk,a2mk) =Hm|k0m12 together With COV(a1fk’a2fk):Hflka12 are the

covariances of the additive genetic effects at QTL; the covariance of the polygenic

effects is Cov(glk,ggk)=<1>k0912; the covariance of the environmental effects is

COV(elk’62k)=IkO€12'

3.2.2 Parent-specific allele sharing & genomewide linkage scan

The variance components model is built upon the basis of IBD sharing at the QTL.

In triploid inbreeding population, a unique decomposition of parent-specific allele

sharing pattern is illustrated in Figure 2.1. In the kth backcross family, the pheno-

typic variance-covariance corresponding to the lst phenotype is denoted as: 21k =

Hmlkognl + Hm/flkarznfl + Hflkafl + lekogl + 1621, where nm/flk is the

IBD sharing matrix that the shared alleles are derived from different parents. Sim-

ilarly, the phenotypic variance—covariance for the 2nd phenotype is given as 22k =

I'Imlkogn2 +Hm/flkar2nf2 +Hflkofi2 + (lid/€032 +1032. The covariance of twophe—

notypic traits is expressed as 212k = Hm|k0m12 + nm/flkamflg + Hflkaf12 +

<I>Ql ICU-912 + 10612. Therefore, the phenotypic variance—covariance of two phenotypic

traits within the kth backcross family is expressed in a matrix form:

2 2:
2k: 1k 121‘ (3.2.2)

>312k 22k

Where

_ 2 2 2 2 2

' 21k 7 nmlkaml + Hm/flkamfi + “10071 + ‘I’glkagl + 1061
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° 312k = Hm|k0m12 + Hm/flkamflg + 1'If|lc"f12 + ‘I’glk0912 + I”€12

__ 2 2 2 2 2
0 22k — HmlkUmQ + Hm/flkame + HflkafZ + ¢glkag2 + 1062

The calculation of the IBD sharing probability is based on the marker positions.

Unless each marker interval is dense, the QTL may be anywhere in the interval

bracketed by two flanking markers. To acquire the accurate position of QTL, we

need to search the putative QTL at every 1 or 2 cM throughout the entire genome

(see Chapter 2 for more details).

3.2.3 Likelihood function and parameter estimation

In the kth family, two phenotype vectors are expressed as 311 k = (y11,...,y1nk)T

_ T _ T -
and y2k — (3)21, ...,ygnk) . Let yk—(y11,...,y1nk, y21,...,y2nk) . Assuming the

multivariate normality of yk and different families are independent, the overall log

likelihood function is given by:

K

e: 2 1040mm. 21.)] (3.2.3)

k=1

where B is a mean vector of both phenotypes in terms of ,61 (denoted as the mean

vector of the Ist phenotype) and ,82 (as the mean vector for the 2nd phenotype)

i.e., 16(6x1) 2 (g; ). With respect to three maternal genotypes, BI and 32 include

three different mean values for each trait. The random parameters in 2k are of main

interest and defined as O = (0727,,1 , 0m12’ 072,12, 0%, 0f1 2, 03,2, 012,”f1 , omf12, 072"].2,

031, 0912, 032, 031, 0612, 032). To estimate these parameters, two commonly used
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approaches are applied, the maximum likelihood (ML) method and the restricted

maximum likelihood (REML) method.

3.2.3.1 The ML estimation

Defined the parameters as Q = (3,6) where fi=(u1, #2, #3, 114, [15, 116) and

__ 2 2 2 2 2 2 2 2 2
9—(Um1, Um12,0m2,0f1, 01:12, af2’ omfl, Umf12’ Umfz’ 091, 0912, 092, 061,

0e12, 032). The log-likelihood function to be maximized is in the form:

N
I
H

K

4*(0) = 2140mm: —

K

2 {108 IEkl + (yk - Xkfi)'2k(yk — Xkfi)}

k=1 k=l

(324)

where yk=(y1k,y2k)T is the phenotypic vector for both phenotypes; 2k is the

variance-covariance matrix of yk with dimension 271k x 2nk, and the elements of

this matrix are explained in section 3.2.3; the mean effect of the kth backcross family

“kulnk
is denoted as Xk6 = , and Xk is a design matrix.

#kplnk

We applied the Fisher scoring algorithm to estimate the parameters given in Q,

aria)

ae

 9ft“) = e“) +1(e(tl)—1 left)
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Define

H(1)k= Hmlk 0 matrix 0 with dimension n x n ,., k = 1, ..., K

mkl 0 0 k k

 

 

 

 

 

(2) 0 0 . . . . _

Hm|k= ( Hmlk) matr1x 0 With d1mensron "k x nk, k —— 1, ..., K (3.2.5)

H
(3) __ 0 mlk . . . . _

nmlk — Hmlk 0 ) matrix 0 With dimensmn ”k x nk, k — 1, ...,K

E!

Replacing the matrix Hmlk in the above equation (3.2.5) by Hflk’ Hmflk’ (bk, '

and [k individually, we will obtain matrices ijllc’ Hffg‘lk’ <I>(SS) and 11:3) ,==s 1,2 ,,3

k=1,...,K.

The first-derivative of the log-likelihood function 5* with respective to each vari- ;,

ance component is given by

82* K

1 —1 (1 ) T —1 (1)g .
60, = —5 20112 HmIk) — (yk- XkB) 2 nmlk2,; (yk — 29.4)).

ml k=1

66* K

1 . —1 (2) T 1 (2) .
802 = ‘5 207(2), Hmlkk”) (yk— XkB) 2k Hmlkzk lfyk -Xk5)).

m2 k=1

68* K
1 - —1 (3) T —1 (3)2 .

: —— 2 H X 2k H _ X 730mm 2 [CZ—:16“ k mlk) (yk— k5) "1|ka 1(yk km)

813* K

_ 1 1 (1) T 1 (1 ) -
502 “‘5 Z(t(2k Hflk)_ (3’19—XkB) 2k Hf|k2k1(yk—Xkfi))1

f [:21
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66* 1 K

..___ ‘—1 (2) T _1(2) _ .

60% — 2garmk ank)— (yI— XIB) 2k HfIkzIT 1(yI. Xkfi»,

66* 1 K . . . . -

3,, = ‘5 Z<tr(2;111(f3II)-(yk — XkB)TEl:1H§?|’lczl:l(yk — XIB»,

f12 k=1

66* 1K . - - .

602 “2‘21”(531519milk)-<yxc-XI~B>T2;1H§I}I12; (Vic‘Xkfilla I

mfl k=1

66* K . - . I

302 “$23337?InfijIn-(n-XWTE111531153171 (yk—szi». I

mfg k=1

66* 1 K .

—-- (WE—111” )-(yk—Xk3)T271II() 21(yI— XIB»

00mf12 2; k flls. h flk k

66* K
1 1 () - T 1 ()‘—1

6,31 “5,2113% ‘17. )‘(yk‘XkBl 2,, 9,, SI (yI-XIB».

66* 1 K

* 1 () T 1 () 1

3032_—§k§1(tr(2k (bk )‘(yk’xkfil 2k (bk 2 (VIC—XII”),

66* 1 K
___ 1 () 1 ()1—1 _

66912 2121("(214 (pk ) (yk Xkfi) ‘1’}, 2;, (yk X150,

66* 1 K . ._

802 =-§Z(t (>3 1( ))-(yk XIB)TZ 11,: )Zk1(yk—Xkfi)),

61 k=1

66* 1 K 1 ) I () _

a 2 "5211735319 1;. l-(yk_Xl.5) 2,, 1,, BI (yr-erl),

082 k=1

66* K

1 1 ( ) T ( )1—1 ,

00612——2]§1(tr(2k 1k l—(yk_XkBl 2h [I XI (YL—Xkdl)

 

 

 



Taking the expectation of the negative 2nd derivative of log—likelihood function

with respect to O“), we obtain the Fisher information matrix (I(O(t))).

Taking the lst derivative of log-likelihood function with respect to B, the maxi-

mum likelihood estimation of B is written as,

‘ K T ‘ 1 1 ‘ 1
3 = 2094 13; XI)— XI I: YI.

k=1

3.2.3.2 The REML Estimation

Comparing with the performance of maximum likelihood estimators (MLE), the

REML approach reduces the biases of the parameters. The log-likelihood function to

be maximized is given by

:1: _ _ 1 I —1 I

6 (e) —10ng<er>1 - —§ {Ioglzl +108(|X 2 XI) +y Py (3.2.6)

where y is the phenotypic vector for both phenotypes with dimension N x 1 (N = 2 *

25:1 nk); Z3 is the variance-covariance matrix of y with dimension N xN and is com-

posed of Elk (k=1,...,K); P is a matrix denoted as P = 2—1—2—1X(X’2—1X)—1X’

2‘1. X is an design matrix with dimension N x 6 and consists of all Xk (k=1,...,K).

The vector y can be decomposed into three vectors with respect to three maternal

genotypes (i.e., y = (y1,y2,y3)T). The overall log-likelihood function is re-expressed

33,
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‘
3
l
e

=2108UMrl9

3

--21 {loglErl +log(|X1’~Er—1Xrl)+ Yr’PrYr}

(3.2.7)

For r=1, the vector yl is distributed as multivariate normal

112111:1'1k 21 l
121: Ell - .'

 

1141

22:17": I

l i

l1+12

211:3:-112+1"k E11+1
For r=2, y2 ~ N ’22 =

(‘15 l1+l2 :11 +1

71 1 2

k:l1+1 k

And Y3 N N #61 ll+l2+l3

K

Zk=11+12+1nk 23=(El1+12+1 )
, HEK

22.113:—l1+l2+1 nk

where ll +12 + 13 = K. Note that 21, 22, and 5.33 are also block diagonal matrices

individually, Pr (r=1,2,3) is defined as Pr = 2:1— EITIXT(X,’.EITIXT)-1X,’.2,Tl.

With this combination, we develop the following REML estimation procedure using

the Fisher scoring algorithm.
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Define

l1 11

“bib (Hfgl1~ 3) matrix 0 with dimension 2 nk X Z ”k

k=1 k 1

2 0 “+12 ll+l2

anll': (0 nm|r) matrix 0 with dimension 2 "k x Z "k

k=ll+l k=l1+1

0 II l1+l2+l3 ll +l2+l3

II(3) mlr . . . .
mlr (II - 0 ) matrix 0 With dimension 2 "k x "k

"1|" k=l1+l2+1 k=11+12+1

(3.2.8)

Replacing the matrix Hmlr in the above equation (3.2.8) by IIfl?” Hmflr’ (Dr,

and Ir individually, we obtain matrices 11(fI), ninj’lr’q)

11 +12 + l3=K).

<I>(S ) and 11(5) (s,r=1, 2, 3;

The 1st derivative of the log-likelihood function 6* (3.2.7) with respective to each

variance component is given by

 

 

 

 

M 1 3 T A (1) A
80%” = TEE“((tl’Pr110 ‘3’7‘ PerITPrYr),

8” 1 3 I2) III2)
= —— t (Pnm — P

66* 3

_ _1 3) _ T - (3) A,50mm _ 2 :szlItr P 11 Ir) ,. PTIImITPIyT),

06* 3

1 11(1) yAT 11(1)
= —— 1 P11 ,Pn P00% 272(7(r fl?“) r flT rYr)
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3

= —';‘ Z (TUTTI—1328“) — yszH;2I:PTyT)i

 

 

 

 

00%? r=1

06* 3 . . .

Tofu = ‘312' 2:1(tT(PrH§c3IZ.) “ YTPrH(f3I,2,PrYr)i

r:

a” 1 3 II1I) Hl(

mai.f.=’2§(m1l1‘mflp"”’

06* —— 1 3 t Prim TP 11(2) P
aegan‘figm ’" mflr)_ l‘ " mflr T1”

013* — 13 t PII(3) TPHH P
66 "22M T mflr) ’" 7' mfl Tyr)’

 

 

 

 

 

 

66* 3

= ‘1 2(tr(157.<1>1(.1))— YTPr‘I’( )Prle
802 2

91 r=1

06* 3

= —1 Z(tT(Prq)(2))"—yTPr¢1-q)2()P'ryT),

802 2
92 r=1

(96* 3

1 A (3) )
_‘ —- (tT(Pr(P ) Prq) Pry'r)

66* 3
1 A 1

002 = -5 :(tr(PrII(. ))— yTPrI(1)P yr)

1‘31 r=1

06* 3

= _1 Z(tr(R7A17(-2))— yTP7Lima”),

802 2
‘32 r=1

(96* 3

1 A ( ) yT (3)
00612 _ —§ 20431,. )—P,~1,.P,~y,)
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The Fisher information matrix (Z(G(t))) in the REML procedure is obtained by

taking the expectation of the negative 2nd derivative of log-likelihood function with

respect to each variance component.

The REML estimator of ('3 is the generalized least squares estimator, that is,

[3 = (XT2_1X)_1XTfl—1Y

3.2.4 Hypothesis testing

In the bivariate traits analysis, the existence of quantitative trait loci (QTL) is tested

by the following hypothesis

.2_2_2_2_2_2_2_2_2 _
Ho‘aml—amQ—0m12—Uf1_0f2—0f12_0mf1_Ome—Umflg—O

H1 : H0 is not true

(3.2.9)

The significance of the above test is assessed through the likelihood ratio test (LRT).

Let fl and 62 be estimates of the unknown parameters with respect to H0 and H1,

respectively, then the likelihood ratio statistic is evaluated by,

LR = —2[log L(§~2|y) — log L(§ly)] (3.2.10)

which, under the null hypothesis, is distributed with a mixture chi-square distribu-

. . (6) 2(6) 2 1(6) 24(6) 2 3(6) 23(6)+1(6) 2
tion wrth the form -2%'X93—2%TX7I Sag—XGZEEg—XS: 5563—)(4zLa—7265—‘LX3:

(6) 2L? 2. (‘3’) 2
L3;X2- 2 X1“ 2. X0-
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Once a QTL is identified at a genomic position, its imprinting property for each

phenotypic trait is assessed by the following two imprinting hypotheses formulated

by,

H0 : 0&1 = 0,2”1

(3.2.11)

H1 0% # 072,11

and

H0 0&2 = 072,12

H1 : 0’25 75 072,12

Again, the likelihood ratio test is applied and the test statistic (denoted as LRimp)

follows a chi-square distribution with 1 degree of freedom. If the null is rejected at

the tested QTL position, imprinting effect is claimed. We further assess whether the

imprinted genetic effect is completely derived from the maternal allele or from the

paternal allele. Two hypotheses are formulated for this purpose to assess completely

maternally imprinting by

H0:0,2nt=0 t=1,2

(3.2.12)

H1 :azntgo t=1, 2

and to assess completely paternally imprinting by

H22=0 t=12
00ft ,

H: 2 0 t=1,2
10ftT
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The likelihood ratio test statistic (LRcimp) corresponding to the above tests follows

a mixture chi-square distribution with %X% : %X8-

If the test in (3.2.9) is rejected, we can further test if the QTL controls the lst

trait by testing

.2 _ 2 _ 2 _

Ho'aml—Ufl—Um'fro (3213)

H1 : H0 is not true

or the 2nd trait by testing

2 _.2 _ 2 _
H0.am2—af2—0mf2—

 

H1 : H0 is not true

The likelihood ratio statistic corresponding to the above tests is denoted as LRplei

and follows a mixture chi—square distribution under the null with the form 21—17?[27r —

cos-1pm—cos-1p13—cos-1p23jxg: 31; [37r—cos—1p12l3—cos—1p13l2—cos_1p23l 1])(3:

1
21%(c03_1p12 +cos—1p13 +003- p23)x% [% — 3%(37r —cos_1p12l3 —cos_1p13I2 -

cos—1p23l1)]xg where the correlation between the variance terms a and b is calcu-

(flab—Pacpbc)

I1—p3a1/2I1-ngP/2

 lated from the Fisher information matrix, and pubic: (see

Chapter 2 for details).

Rejecting the null for the above two tests indicates pleiotropic effect (i.e., one gene

has effect on two traits). But if two genes are closely linked at the detected QTL

(i.e., close linkage), we still get the same testing result. To further distinguish close

linkage against pleiotropic effect, we develop the following two tests
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H0 : pm12 = pf12 = pmf12 :1
(3.2.14)

H1 : H0 is not true

for testing pleiotropic effect and

Hotpm12=pf =p =0
12 "If12

(3.2.15)

H1 : H0 is not true

for testing close linkage. The null hypothesis in test (3.2.14) indicates that the additive

effects for the two traits are perfectly correlated and they are possibly controlled by a

single gene. On the contrary, the null hypothesis in test (3.2.15) indicates two closely

linkage genes at one QTL location. The likelihood ratio test is denoted by LRp for

test (3.2.14) and LRC for test (3.2.14). The null distribution of LRp has a mixture

chi-square distribution (since 1 is a boundary point for correlation p) with the form

4%[27r — cos—1pm — cos—1,013 — cos—1p23]xg: 117—J3” — cos—1p12l3 — cos—1p13l2 —

COS—lpggllngi 1%(cos—lp12+cos_1p13+cos_1p23)x%z [%—211;(37r—c03_1p12|3—

COS—IP13I2 — COS—IP23|1)JXI2)-

The null distribution of LRC follows a classical chi-square distribution with 3

degrees of freedom, i.e., LRC ~ X3-

We can also test the maternal main effect on each trait by
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H0 2111 = #2 = #3

(3.2.16)

H1 : H0 is not true

for the 1st trait, and

H0=M4=ll5=ll6

H1 : H0 is not true

for the 2nd trait.

3.3 Simulation

3.3. 1 Simulation design

A simulation study was conducted to evaluate the performance of the proposed

method. Five equally-spaced markers (M1 — M5) are simulated for one linkage

group assuming a backcross design. This linkage group covers a length of 40cM with

lOcM for each marker interval. Haldane map function is used to convert map distance

to recombination rate. Assume one QTL is at 22cM away from the first marker, and

has effects on two phenotypic traits. Phenotypic values of both traits are generated

from a multivariate normal distribution with variance-covariance given in (3.2.2) in

terms of different parameter settings. Backcross families are simulated following the

structure of the real data described in Chapter 2 (i.e., 4 families with 100 sibs within

each family). In each simulation scenario, the IBD value of any two siblings is evalu-

ated at every 2cM along the linkage group. The REML method is adopted to estimate
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unknown parameters of interests, and 100 simulation replicates are recorded.

3.3.2 Results

The simulated results without imprinting effect (i.e., 0,2,,1 = 0% and 0,2712 2 0&2) are

tabulated in Table 3.1. Estimations of the QTL position, observed statistical power

and type I errors are compared between bivariate traits analysis (T1+T2) and each

univariate trait analysis (T1 and T2). Overall, the bivariate traits analysis gives more

precise QTL position estimate, larger statistical power and reasonable type I error

rate. The results indicate that the joint mapping incorporating bivariate phenotypic

information can capture information of QTLs with small or moderate effects that

could be easily missed by univariate trait analysis. In addition, the bivariate trait

analysis provides less biased parameter estimates for additive QTL variance terms

2
derived from maternal and paternal parents. For example, variance term for Uml is

estimated as 0.428(SMSE=0.11) for the joint analysis, while it is 0.25 (SMSE=O.44)

for the single trait analysis.
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Table 3.1 also shows that the results for trait 1 is better than trait 2, due to high

heritability (H2 = 0.20) for T1 than that (H2 = 0.05) for T2. When the heritability

for both traits are increased, we observe better performance (data not shown). The

type I error for the bivariate traits analysis and single trait with T2 is reasonably

controlled. The type I error for T1 is a little inflated. But the joint analysis gives

much larger power than that for both single trait analysis.

To demonstrate the imprinting property of an iQTL in the bivariate traits anal-

ysis, additional simulations under different imprinting mechanisms are conducted

and the results are listed in Table 3.2. We design four imprinting modes such as:

2 __1 a; :0

)1 ( 1 2 )), complete ma-

. . , ”ml—

complete paternal imprinting (( 2
0m222

Uf2—

2 _ 2 =1

”ml—0 ) I0f1ternal imprinting (( 2 2 )), partial maternal imprinting

0m :0 U =

2 2 f2

0,2711 =0,25 af1=0.75

( , ( )), and partial paternal imprinting
2

07,12 =O.5 0f2=1.5

6,2,, =0.75 012, =0.25

1 i ( 1 )). With respect to the imprinting test
2 2

0 =1.5 0 =0.5m2 f2

(3.2.11), the largest imprinting power is achieved by complete maternal (paternal)

imprinting for both phenotypic traits (T1 and T2). No significant difference in power

(Power) under different imprinting mechanisms is observed for the joint analysis. The

low power for the imprinting test for single trait T2 is due to its low heritability.
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3.4 Real Data Analysis

Empirical study shows that imprinted genes affect variations of maize endosperm

traits (Dilkes et al. 2002). Two endosperm traits, mean ploidy level (denoted as

ploidy) and percentage of endoreduplicated nuclei (denoted as endo), are studied.

Four backcross segregation populations are generated from two inbred line (Sg18 and

M017). The details of this genomic data were explained by Coelho et al (2007),

and the imprinting effect analyzed with the univariate trait analysis was reported in

Chapter 2. To examine the pleiotropic effect of the imprinted genes, we conducted a

joint analysis.

LR profiles across ten linkage groups in bivariate traits analysis (endo+ploidy) and

univariate trait analysis (endo and ploidy) are plotted in figure 3.1. The genome—wide

significance threshold (horizontal dotted line, at 5% level) is determined by permu-

tations based on repeatedly shuffling the relationship between marker genotypes and

phenotypes (Churchill and Doerge 1994). Six QTL are detected at the 5% genome-

wide significance level on G2, G4, G6, G9 and G10. In contrast with previous QTL

detected in the univariate trait analysis (see Chapter 2), more QTL are detected in

the bivariate joint analysis.
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Table 3.3 lists the QTL location, variance components estimation, and test out-

comes for imprinting and pleiotropic effects. In the bivariate analysis, the identified

QTL on G6 is imprinted for T2 (1’2me < 0.05) but not for T1 pimpl > 0.05). Fur-

ther test shows that this QTL shows completely paternal imprinting on T2. From the

parameter estimation, it is clear that correlations of genetic variance for two pheno-

typic traits are strong, and further tests to detect pleiotropic effects vs close linkage

are meaningful in the bivariate traits analysis. Results show that two iQTLs on G4

and G6 indicate strong pleiotropic effects (pplez' > 0.05, pco—in < 0.05).

In our study, multivariate approaches for genetic linkage analysis increase the

power and precision to identify genetic effect, especially when a QTL has pleiotropic

effect on several traits. In accordance with the finding about the strong correlation

between endoreduplication and mean ploidy in maize endosperm (Cintia et al. 2006),

the pleiotropic effects of iQTLs on two endosperm traits are detected in our analysis.

As shown in the simulation study, the joint analysis provides larger power and res-

olution for iQTL detection compared to the single trait analysis, which explains the

additional QTLs detected by the joint analysis.

3.5 Discussion

A number of studies have shown that for correlated traits, multivariate approaches

for genetic linkage analysis can increase the power and precision to identify genetic

effects (Evans 2002), especially when a QTL has the pleiotropic effect on several

traits (Jiang and Zeng 1995). Considering the importance of imprinted genes in
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endosperm development and the relative merit of multi-trait analysis, we developed

a bivariate variance components model based on a reciprocal backcross design to

identify imprinted QTLs while incorporating the special genetic make-up of triploid

inbreeding population. Both simulation and real data analysis show the efficiency of

the approach.

In simulation studies, we compared the outcomes of bivariate traits analysis with

those of univariate trait analyses. The bivariate trait analysis can greatly improve

the performance in QTL position estimation, testing power, and type I error rate.

Simulation study also shows that when a trait has low heritability (i.e., T2), the joint

analysis can also identify the gene by borrowing information from other traits with

high heritability (i.e., T1) given that they are correlated. Our results are consistent

with other multivariate traits studies (e.g., Jiang and Zeng 1995; Almasy et al. 1997;

Williams et a1. 1999).

We applied our joint model to a real data set with two highly correlated endosperm

traits, i.e., endoreduplication and mean ploidy. Six QTLs are detected on G1, G2,

G4, G6, G8, G10 across the genome. One maternally imprinted QTL on G6 for T2

and three paternally imprinted QTLs on G4, G6, G8 for T1 are also identified. The

results of the imprinting tests are consistent with that of univariate trait analysis

and can be explained by the genetic conflict theory proposed by Haig and Westoby

(1991). Comparing with univariate trait analysis, additional QTLS are mapped in

the bivariate joint analysis. These additional QTLs are those showing small genetic

effect in the single trait analysis. This demonstrates the power of the joint analysis
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for correlated traits.

Another advantage of the joint analysis is the test of pleiotropic effect and close

linkage. We proposed a set of hypothesis tests to detect the existence of QTLs

and genomic imprinting in bivariate traits analysis, and moreover, to distinguish

the pleiotropic and close linkage effect. For the real data, one iQTL on G6 displays

a strong pleiotropic effect, which controls both the endoreduplication trait and the

mean ploidy trait (Table 3.3). Our method provides a testable framework in iQTL

mapping with multivariate traits.
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Chapter 4

Assessing statistical significance in

 
genetic linkage analysis with the '

variance components model

4. 1 Introduction

Variance components (VC) model is a powerful tool for quantitative trait loci (QTL)

mapping in human linkage analysis. In a VC analysis, genetic effects are often par-

titioned as additive, dominance and polygene effects whereby each one is treated as

random. Thus, we are interested in testing whether the variance of a genetic effect is

significantly deviated from zero. Likelihood ratio test (LRT) is often applied for the

the testing purpose. Due to irregular conditions (i.e., parameter boundary problem),

the asymptotic distribution of the LRT does not follow a regular chi—square distribu-
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tion, rather a mixture X2 distribution, where the mixture proportions are calculated

with standard binomial coefficients, a special case in Self and Liang (1987).

A number of studies have showed the asymptotic distribution of LRT under irreg-

ular conditions, see for example, Self and Liang (1987), Chernoff (1954) and Shapiro

(1988). Chernoff (1954) showed that the limiting distribution of the LRT has a mix-

ture chi-square distribution when parameters of interest are on one side of a hyper-

plane, or in the first quadrant within a R2 space. Self and Liang (1987) extended the

Chernoff’s comment to boundary cases. In linkage analysis with variance components

model, the result displayed in case 9 in Self and Liang (1987) has been commonly

applied for a threshold determination (e.g., Amos 1994; Hanson et al. 2001). This re-

sult is based on the assumption of a diagonal variance-covariance matrix of unknown

parameters. In reality, this assumption could be easily violated. This consequently

leads to conservative hypothesis tests (e.g., Allison et al. 1999).

For a bivariate linkage analysis, Amos et a1. (2001) proposed an approach to

approximate the null distribution of the LRT (see section 4.2 for more details). But,

their derivation assumes a diagonal Fisher information matrix. Moreover, they assume

that the genetic correlation between two traits is either positively correlated (p = 1)

or negatively correlated (p = —1). This is unrealistic in reality. Corresponding to the

VC model, Morris et al. (2009) define the constrained likelihood ratio test (CLRT)

with respect to this model. They try to apply Geyer’s regularity (1994) to show

the asymptotic distribution of the constrained CLRT, but can not make sure that the

global M-maximizer is definitely attained. Because of this limitation, a new simulation
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method is developed. However, it is quite difficult to express the predominance of

this method comparing with others.

In this chapter we rigorously show that the LRT statistic in testing variance com-

ponents in linkage analysis follows a mixture chi-square distribution and the mixture

proportions depend on the estimated Fisher information matrix. The rest of this

chapter is organized as follows. Section 4.2 introduce three classical VC models with

both uniVariate and multivariate trait analysis. The main result is illustrated in

section 4.3. Section 4.4 shows the performance of the new approximation by a few

simulation examples.

4.2 Motivating models

4.2.1 Model I

Assume K families are collected and the phenotype for the kth family is denoted by

yk with ”k offsprings. Under the variance components model mapping framework,

the genetic effect is partitioned into several components expressed as

yk =u+ak+dk+gk+ek (4.2.1)

where u is the overall mean; ak ~ N(0,ag) and dk ~ N(0,o(21) are the additive

and dominant effect of a genetic variant; 9}; N N(0, 03) is the polygenic effect (i.e.,

the effect of QTLs not located on the same chromosome as the tested one); and

ck ~ N(0, 0g) is the residual term. When a testing QTL is not on a marker position,
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the variance-covariance of the phenotype for a pair of sibpairs ykz’ and ykj in the kth

family can be expressed as

2 2 2 2

COV(9ki.ykj|Wij,¢ij) =

lay-(6, W22, + c,j(6, 6,], «)),-flag + 6,363 if 2' #1

where Ti]- is the proportion of marker alleles shared identical by descent (IBD) be-

tween two sibs; Ipij is the probability of sharing two alleles IBD between any pair

of sibs; Tij is the kinship coefficient; 0 is the recombination fraction between a

trait locus and a marker. When a trait locus is not at the marker, bijwmwij) =

%+ (1 — 26)2(7rz-j — %) and cij(6l, 7133-, (pij) = 402(1— 0)2 + (1 — 29)27rij + (1 — 260402,]-

(Amos et al. 2001).

In matrix notation, the phenotypic variance—covariance matrix among individuals

in family I: can be expressed as

2k = Hkag + ARCS + Qkag + Ikag

where Hk is the matrix of marker alleles shared IBD for the pedigree, and Ak is the

matrix of the proportion of marker alleles shared two alleles IBD in the pedigree, (Pk

is a matrix of the expected proportion of alleles shared IBD, and Ik is an identity

matrix.

The quantitative trait loci is tested by the genetic linkage test defined as
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H0 : 0‘21 = 0621 = 0

(4.2.2)

H1 : at least one parameter is not zero.

Define 61: 11, 62 = 6,2,, 63 = 631,64 = 03 and 65 = 63. Let 0 = (9192 03 94 65)T

E Q = R x [0,00) x [0,00) x (0,00) X (0,00) be the true parameter space. Un-

der the null, the parameter space is reduced to 60 = (010 620 930 940 650)T =

(#0 0 0 030 020)T E QO=IR x {0} x {0} x (0,00) x (0,00). Thus two parameters

under the null are on the boundary of the true parameter space (9). In current

applications, the LRT statistic for the above test has been commonly claimed to be

3 : 312x? : 2112(3) a special casea mixture chi-square distribution with the form ziX

discussed in Self and Liang (1987). We will give a new approximation and illustrate

by simulation that this approximation produces conservative results.

4.2.2 Model II

When a QTL has a pleiotropic effect on several traits or several QTLS are closed

linked, multivariate approaches for the genetic linkage analysis are more powerful

than a single trait linkage analysis (Jiang and Zeng, 1995; Evans, 2002). Considering

a bivariate trait analysis assuming only additive effect, the VC model for family It

can be expressed as

(ykl’ka) = (#1442) + (at-1,611,947 (gklagk2)+ (€111,612), k =1..~-- ,1\' (4-2-3)
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where ykt is the tth (t = 1,2) phenotypic vector for the kth family; ,ut (t=1,2)

is the overall mean for the tth phenotypic trait, (ak1,ak2) is the random additive

effect of a major gene for two phenotypic traits, respectively; 91:t and ekt are the

random polygene and residual effects. All random terms are assumed to be normally

distributed with 0 means. The phenotypic variance-covariance matrix for family It is

given as

2 2 2
yk (7a 0a 0' 0'9 08 06

CO?) 1 = 1 12 ®Ilk+ 91 12 ®<I>k+ 1 12 @116

2 2 2

ykz ”912 0112 0912 092 ”612 ”62

where I8) is the kronecker product; 0am, 0912, and 0612 are the covariances between

the additive, polygene and the residual effects for the two traits, respectively. All the

others are defined similarly as in Scenario 1.

The hypothesis test to detect major gene under a bivariate model is formulated

H0 : ”(21.1 = 032 = 0012 =0

(4.2.4)

H1 :031 >00rag2 >0

Under the alternative, when either one of the variance terms is zero, the covariance

term is restricted to zero.

4.2.3 Model III

Now consider the above bivariate trait model, but assuming both additive and dom-

inant effect. The variance component model will be changed to
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(ykl’yk2) = (#1,/12)+(ak1,ak2)+(dk1,dk2)+(gk1,gk2)+(€k1,€k2), k =1? ' ° ' 1K

(4.2.5)

where (dk1,dk2) is the random dominant effect of major gene at the quantitative

trait locus for two phenotypic traits. The variance-covariance matrix between two

sibs is changed to

2 2
y 0 0a 0 0d

CO’U kl = a1 12 ®Hk+ d1 *2 ®Ak

2 2

ykg ”“12 092 0d12 0612

2 2
0' 0'9 0'8 06

91 I2 ®Tk + 1 l2 ®Ik

2 2

”912 092 0612 062

The hypothesis to test major gene under this genetic model will be

.2 _ 2 _ _ 2 _ 2 _ _
H0.aa1—0a2—0a12—0d1—0d2—0d12—0

(4.2.6)

2
2 >00r051>00r0d2>0[112031 >00rc1ra2

Similarly, under the alternative, when either one of the variance terms (additive or

dominant) is zero, the corresponding covariance term is restricted to zero.
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4.3 Main results

For a random sample X1, X2, ..., Xn of size n with a common density function f(;r, 0),

let 0 = (01,02, ..., 6m)T E Q be the parameter vector, and 00 be the true population

77.

parameter vector. Let 6(0) = 2 logf (3,, 0) be the log-likelihood function.

i=1

Assumption 1. Following C'hernofir (1954), the following assumptions are assumed:

o I. for every 0 E G where G is a closure neighborhood centered at 60, the first

three derivatives of 6(9) with respect to 0 exist for almost all 2:.

2

0 II. for every 0 E G, |86(6 I and lgyéégll are bounded by a finite integrable

i z j

3

function K(:z:), and! 3 30 kl < K(:r:) where E[K(:I:)] < oo.

2 j m

0 III. The information matrix M (Mij =—-,1—,E(66(0. 66(0 )) is nonsingular for 0

3 .7

E G, and “M” < 00.

Proposition 1. Under Assumption 1, there is a vector ég in Q, such that 6; ——) 00

A _ l

in probability, and (Hg — 00) = Op(n 2).

Proof: In terms of the arguments of Lehmann and Casella (1998), it is possible to

search a sequence of points ég in the closed set G about 00 to locally maximize 6(0).

Following Lemma 1 in Chernoff (1954), the \fii-consistency of 0} can be proved.

Denote a local maximum estimator by 0}. Since the regularity conditions of

Chernoff ( 1954) on the parameter set only derive the asymptotic distribution based

on a global maximum estimator (Geyer 1994; Shapiro 2000), additional conditions

are required to achieve the asymptotic equivalence of local estimators.
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Assumption 2. Considering more conditions as follows:

0 IV. ég and 6g are fi-consistent Optimizers.

a V. the parameter set 9 is a nearly convex set at 90.

0 VI. Condition vi in Theorem 3.2 (Shapiro, 2000).

. - _ 1

Proposition 2. If the above two assumptions (1 and 2) are satisfied, 0g - 0g =op(n 2).

Proof: See the proof of Theorem 3.2 in Shapiro (2000). In brief, two key steps are

involved. First, the parameter set is nearly convex at 00. Comparing with convexity,

near convexity is a loose condition. In particular, near convexity can be achieved

by some smooth constraints in real application. When the fitted function is mono-

tonically nondecreasing and twice continuously differentiable on a given interval, the

parameter set is nearly convex at 00 under the Mangasarian-Fromovitz constraints.

Next, Lipschitz continuous function Fn(6g) and Fn(ég) are defined as minus yli time

log-likelihood function in terms of ég and 0}, respectively. When Fn(é§) and Fn(0~§)

satisfy conditions 3.8 and 3.9 of Theorem 3.2 in Shapiro (2000), the asymptotic equiv-

alence of 0} and 0} is achieved by the property of the near convexity (condition A in

Shapiro 2000).

It is well known that a cone contains several desirable properties that may simplify

the optimization problem. According to the arguments of Chernoff ( 1954) and Self

and Liang ( 1987), a cone is defined as
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Definition 1. The set Q C Rm is approximated by a cone C9 at 00, if

inf Hs—tll = o(||t—00||) for all t E Q; inf ||s—tl| = o(||s—00H) for all s 6 C9

.9ng tea

Note that the cone 09 is positively homogeneous if s 6 C9, C(s — 90) + 00 6 C9

when CZO. Moreover, CQ — 00 with vertex at the origin is acquired by translating

the cone C9 with vertex at 00. Thus, 0 can be approximated by a closed convex

cone C9 with vertex at 00.

Proposition 3. When 0 = 0, F is the distribution of the MLE ég based on one

observation Y with the population distribution N(0,ll-«I—1) where 0 6 C9 — 00. If all

previous conditions hold, n2(ég — 00) weakly converges to F, a multivariate normal

distribution with mean zero and covariance matrix M_1.

Proof: see the proof of Theorem 2 in Self and Liang (1987).

Assumption 3. VII. Let C90 and C91 be two closed convex cones with vertex at

00 to approximate (20 and 91. Then C90 — 00 with vertex at origin is also a closed

convex cone by translating C90 at 90.

Theorem 4.3.1. If above Assumptions 1-3 hold and when 0:00, the large sample

distribution of the likelihood ratio (LR) is the same as that of the test 0 6 C90

against 0 E CQI based on one observation Y generated from population distribution

N(0,M—1). Moreover, the LR is distributed as a mixture chi-square distributions

with the form:
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1(9)

2 i 2 2
P LR = E P Y l P

T( > C ) i=1 T( E TV-LIY) T(X7.(TV*O) > C l

where Pr(Y E wi ) is the mixing proportion corresponding to the chi-square

u-LIY

. l(c1) 2.

components with i§1Pr(Y E TuilY) = 1, and 7(TV*0)=ranlt(Tl/*0).

Proof: Two arguments need to be proved. First, the LR can be approximated as

the difference of two quadratic forms with respect to 00 and 91 (see Theorem 1 in

Chernoff 1954). Follow the fi-consistency of the optimizer and the property of the

approximating cone, the large sample distribution of the LR is the same as that of

testing 9 6 C90 against 0 6 C91. Next, we prove that LR asymptotically follows a

mixture chi-square distribution.

Following Chernoff (1954, Theorem 1), the asymptotic distribution of the LR is

equivalent to the following quadratic approximation

LR = inf (Y — 0)’M(Y — o) — inf (Y — 0)’M(Y — 0) (4.3.1)

06090 96091

Where Y ~ N(0, M_1). Subtracting 00 from Y and 0, we get an equivalent form

of 4.3.1

LR = inf (Y — 6)’M(Y — 0) — inf (Y — 0)’M(Y -— 0) (4.3.2)

QECQO—BO 96091—90

with Y ~ N(0, .M—l) and [VI is the Fisher information matrix.

Let CV 2 (C91 — 00)fl(CQO — 00)‘L, where (CQO — 00)‘L is the orthogonal
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complement of (Cg0 — 00). Following the Pythagoras theorem, the statistic LR (in

4.3.2) can be expressed as

LR = inf (Y — 6)’M(Y — a) (4.3.3)

060V

It can be seen that CV is also a closed polyhedral convex cone with q (q S m)

dimension because CV is the intersection of convex cones. Thus a polar cone CV0

is defined as CV0 = {7 6 anig S 0, V 0 6 CV}, and (CV0)0 = CV by the basic

property of the polar cone.

Let lF(CV) represent the set of all faces of CV. Following Shapiro (1985), we can

select a face UV 6 lF(CV) corresponding to a polar face VV0 6 IF(CVO) such that the

V0 V
linear spaces generated by UV and I/ are orthogonal to each other. For one face 12

(or VVO), we can find a projection Tl/V (or TVVO) (a symmetric idempotent matrix

giving projection onto the space generated by UV (or l/VO)) and TVV =I-TVVO since

they are orthogonal. Then TVVY (or Tuon) is a projection of a random vector

Y onto CV (or CV0). For a given Y, let g(Y)=(g1(Y),gQ(Y),...,gq(Y))T be the

minimizer to achieve the infimum in (4.3.3). Define TVVIY = {Y 6 Big : g(Y) 6 UV}

so that g(Y) 6 UV if and only if TVVY 6 CV and TVVOY E CV0. By Shapiro(1985),

TVV|Y can also be defined by the inequalities as $12le = {Y E 33‘] : e’TVVY S

0,e E CV0,f’TVV0Y S 0,f 6 CV}. Thus, g(Y): TVVY 6 CV, for all Y 6 Tule'

Consequently, the likelihood ratio statistic in (4.3.3) is expressed as:

LR = (Y — g(Y)), M (Y — g(Y)) for all Y e 1/21/VIY (4.3.4)
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Note that the set 1611le is composed of several almost disjoint sets Trile’i =

1, ..., l (q) The total number of these disjoint subsets (l(q)) are counted by the general

form of binomial theorem, i.e., l (q) = 2q—0, q is the number of parameters in CV and

o is the number of covariance terms in CV. Moreover, All these subsets are classified

into q — o + 1 categories. To display these subsets, we start from the simple case that

no covariance term is in 7,111/le (o = 0). The subsets of TVVIY are given as the

following table 4.1.
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When a covariance term occurs in CV, we use one simple case to describe the

relation among the parameters. For example: CV = {0;01 > 0,02 > 0,63 6 R},

where 01 is a variance term for trait one, 02 is the variance term for trait 2, 63 is the

covariance between the two traits. Because of the definition of covariance, 63 occurs

only when 91 > O and 62 > 0, so 03 is represented by 631(61 > 0,62 > 0). In the

corresponding way, the estimator of 03 is denoted as Y3I(Y1 > 0, Y2 > 0), and Y1 and

Y2 are estimators of variances for two traits. In accordance with this constrain, the

set $12le is denoted as wl/VIY = {Y;Yz- E R,z' E qV\0V,YjI(YJ-_2 > O,Yj_1 >

0) E R,j E 0V,g(Y) E VV}, where set qV is defined as qv = {1,2,...,q} and 0V is

denoted as a subset of qV, and is shown as oV = {3, 6, ..., q} = {3kv, kv = 1, 2, ..., §}.

Considering the property of covariance term, the partition of 1,12”le is not related

to the covariance term. Thus the whole subsets under this constrained condition are

shown as the table 4.2.
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The general form of the whole number of subsets is l( q) = 2q—0, and these subsets

l((1) .

consist of q — 0 + 1 groups. Consequently, wVV|Y= U wf/VDW

i=1

Considering a linear transformation on Y and 0, a new closed convex cone C* is

defined as C*={0V; E%D’0, 0 E C‘L}, where DED’ = M, and a new random vector

Z (Z=E2 D,Y) is distributed with multivariate normal distribution with mean zero

and an identity covariance. In terms of this random vector Z the likelihood ratio LR

(in 4.3.3) is evaluated equivalently as:

LR = mf uz — 0*”? (4.3.5)

6*eC*

In the same way, 0* is a closed convex cone and C*0 is denoted as the polar cone

of 0* with (CW)O = 0*. So there is a face u* E lF(C*) (or u*0 E lF(C*0) ) such

that a symmetric idempotent matrix TV* (or TV*0) giving projection onto the space

0)generated by 11* (or 11* is defined. The linear transformation of Y to Z guarantees

that there also exists a minimizer denoted by d(Z)=(d1(Z),d1(Z), ...,dq(Z))Tfor

(4.3.5), in which d(Z) = TV*Z E C*, V Z E 1/JV*|Z, where ¢V*|Z can be defined by

a linear transformation from .

wl/‘LIY

Note that the set wuaclZ is also a polyhedral convex cone by its definition and

satisfies the conditions of Lemma 3.1 (Shapiro 1985), and TV*0 is an symmetric

idempotent matrix corresponding to face V*0, then the likelihood ratio statistic (4.3.5)
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is written:

LR = ||Z-d(Z)||2 = uz—crywn2 = Z’(I—TV*)Z = Z’TV*OZ, for all z e 212,,“ 2

(4.3.6)

It is clear that the minimum value of LR obtained for Y E wu-LIY (in 4.3.4) is

equivalent to the infimum value of LR obtained for Z E ¢V*lZ (in 4.3.6).

Note that the set 111“ch is also made up of several almost disjoint sets, i.e.,

l(q) . .

tbyakl z = 2.911%)“le Condition on Z E will,” Z’ LR follows a chi-square distribution

with rank(TV*0)=rank (I-TV*) degrees of freedom. By Bayes’ theorem, the distribu-

tion of LR (in 4.3.6) is derived to be a mixture chi-square distribution.

To control the significance of hypothesis test in a level, The probability that LR

rejects the null hypothesis under the null condition is evaluated. Given a positive

number 02 > 0 and a random vector Y, the expression of this probability is written

Pr(LR > c2) =Pr((Y — g(Y))’M(Y — g(Y)) > c2,Y e “(G/HY)

l(q) (4.3.7)

=Pr((Y — g(Y))’M(Y — g(Y)) > c2,Y e U ¢iilY)

i=1

Applying the Distributive law of sets and the union rule for these almost disjoint sets,

the representation of (4.3.7) is changed to be:
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l(q) .

Pr(LR > c2) =Pr( U {(Y —— g(Y))’M(Y — g(Y)) > c2,Y 6 will)!”

i=1

l(q) .

= 2MW —— g(Y))’M(Y — g(Y)) > c2, Y e willy)

i=1 (4.3.8)

1(9) .

zizzl Pr(Y E wV-LlY)

Pr((Y — g(Y>)’M(Y — g(Y)) > c2lY e willy)

According to the resemblance between the result in (4.3.4) and comment in (4.3.6),

the representation of the probability is changed to be:

l(cz) . .

Pr(LR > c2) = :1 Pr(Y e ¢Zily)Pr(Z’Tl/*OZ > c2|Z e 4134' Z)

2:

(4.3.9)
I

= {3 Pr(Y e 42' )Pr(x2 > c2)
i=1 u-LIY “Tl/>1: )

where Pr(Y E W J'IY) is the mixing proportion corresponding to the chi-square

V

1(q) .
. 2 _ _ . ‘ _

components wrth i=2 1Pr(Y E (bl/HY) — 1, and r(TV*0)—rank(TV*0). This corn

pletes the proof.

Following Theorem 4.3.1, we now evaluate the distribution of the LR statistic for

the three models in linkage analysis we mentioned in Section 4.2.

Model I: The parameters of this model are given as 9 = {01,62,03,64,65} =

{(4, 03, 05, 03, 03}, and the approximating cone under the null hypothesis is defined

152

 

 



as CQO={0;91 E Reg = 0,03 = 0,64 > 0,65 > 0} against CQI={0;01 E IR,02 >

0,03 > 0,64 > 0,05 > 0} under the alternative. The number of parameters to be

tested for q is 2 and for 0 is 0, that is, there is no covariance term in model I. Thus

1/2VV|Y consists of 2q—0:22=4 almost disjoint sets with q - 0 + 1 = 2 — 0 + 1 = 3

categories:

(1)4»;le = {Y;Y1 > 0.3/2 > My) 6 VV};

(ii) $13le = {Y;Y1 > 0,Y2 < 0,g(y) 6 VV},

«(3le = {Y;Y1 s 0.1/2 > 0,g(y) e W};

(iii) 243le = WM 3 0.1/2 3 0,g(y) e W}-

In the same way, fill/kl Z can be divided into four almost disjoint subsets by linear

transformation. When Y E $1VVIY’ LR = Z’TVOZ -_—- 212+ 23 ~ x3 where Z ~

N(0, I), and the corresponding mixture proportion is estimated by Pr(Y E dill/WY).

As Y is in the 2nd category (i.e., Y E wiWY’ i=2,3), LR ~ x? with the correspond-

. . . . 2 3
ing mix1ng proportion calculated by Pr(Y E z/JVV IY)+P7‘(Y E wz/V IY). For the last

~ 2 4 . . . . 4
category, LR X0 for Y E ¢VVIY, and the mixmg proportion is Pr(Y E wl/VIY).

The calculation of the mixing proportion follows Plackett(1954) or Kendall(1941).

—1 3 .
. 7T—COS

SpeCifically, Pr(Y e film/l = 27: 912, i: Pr(Y e wile) = 73,, and

1
.=2

4 __ cos" p . . ‘ . .
Pr(Y E wl/VIY) — __27r—12’ and p12 is the correlation between estimator of addi-

 

tive gene effect and that of dominance effect. Finally, the distribution is approximated

as

—1
— 1

Pr(LR > c2) = " CO2: p12P<x3 > 02) + 5190,? > c2) (4.3.10) 
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Model II: For model II (in (42.3)), only the random additive effect of QTL

(ak1,ak2) for each trait is considered. The parameters of additive major gene effect

are denoted as: 031,032, 0012 where 0a12 is the covariance term between two traits.

Similarly, two covariance terms are denoted for polygene effect and random residual

effect. All parameters in this model are defined as: 0 = {01,02,03,04,05, 06, 07,

68’ 69’ 610’ 611}={H1a#2:0(211, 0'32, 03,12, 031i 032v 0312, 0231’ 032, 0312}: The

parameter approximating cone under the null hypothesis is defined as CQO={0; 01 E

R02 E R03 = 0,04 = 0,05 = 0,06 > 0,07 > 0,08 E R09 > 0,010 > 0,011 E IR}.

Similarly, the cone under the alternative hypothesis is denoted as CQI={0,01 E

R02 E R03 > 0,04 > 0,05 E R06 > 0,07 2 0,08 E R09 2 0,010 2 0,011 E R}.

Corresponding to the hypothesis test, the number of tested parameters q is 3 and o

is 1, then the set ’l/JVVIY has 23—1 = 4 almost disjoint subsets and all these subsets

are classified into 3-1+1=3 groups.

(i) 415),}, ={Y;Y1> 0,Y2 > 0,Y3 e 1149(3)) 6 VV};

(ii) 143V”, = {Y; Y1 > 0,Y2 g 0,g(y) 6 VV},

«(3 ={Y;Y1s 0.1/2 > My) 6 VV};
u-LlY

(iii) wjvly = {Y;Y1 s we 3 0,g(y) e W}-

The estimator of covariance term is only observed in “ff/V)? and it will van-

.‘ . . . ‘ 7 . ‘ r ,y _ ,‘2'

ish automatically when Y1 S 0 or Y2 S 0. MorcoVer, ul/VIY — i9 u’i/V

23“1 .

«pl/*Iz in terms of 0* is defined in a similar way, that is, z/JV*|Z = 'Ul dill/*lz.

2:

When Y E wVVIY’ the LR is shown in the form:
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r

212 + 2% + 2% ~ X3, with mixing prop : Pr(Y E wile)

22 2 'th ' ' - P- Y 21 ~ X1 Wi. mixmg prop. 7( E i/JVVIY)

LR = <

.Z2 2 'th ' ' - P Y 32 ~ X1 w1 mixmg prop . r( E wl/VIY)

0 ~ X2 with mixing prop : Pr(Y E 1194 )
k 0 11le

As Y E wlv lY’ LR ~ X3, and the corresponding mixture proportion is calculated

as Pr(Y e wlvly) = Pr(Yl > 0,Y2 > 0,Y3 6 IR) = Pr(Yl > 0,Y2 > 0) =

7r—cos‘1
 

p12 . . . ‘2' ._ ~ 2
7r . When Y is in the 2nd category (i.e., Y E 701/le i-2,3), LR x1

 

with mixing probability 2:3:2 Pr(Y E (pf/Vly) = %. For Y E wfivly, LR ~ X8:

1

the relevant mixing probability is evaluated by Pr(Y E t/JfiVIY) = gas—27,212. These

three mixing proportions is the same as those in model I. Hence, the probability of

LR under model II is in the form:

—1
— 1

Pr(LR > c2) = 7r 00; p12P(x§ > c2) + 5P“? > 02) (4.3.11)

7r

 

 Model III: In model III, random dominant effects (dk1 , dk2) are considered. The

parameters under this model is denoted as: 0={01, 02, 03, 04, 05, 06, 07, 08, 09, 010, 011,

2 2 2 2 2 2 2 2 2 2 2 2
612:613i614}={#’13#2i0a130a2300127adli0d230d12i0913092909121061906290612}-

The approximating cone under the null hypothesis is CQO={0; 01 E R, 02 E R, 03 =

0,04 = 0,05 = 0,06 = 0,07 = 0,08 = 0,09 > 0,010 > 0,011 E R,012 >

0,013 > 0,014 E IR}, and the cone under the alternative hypothesis is denoted as

091-:{0’91 E R,92 E R,03 > 0,04 > 0,05 E R,06 > 0,07 > 0,08 E R,99 >
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0,010 > 0,011 E R012 > 0,013 > 0,014 E R}. The number of testing parameters

in model III for q is 6 and for 0 is 2. Then the set (bl/VI}, can be partitioned into

26—2 = 16 almost disjoint subsets that comprise 6—2+1=5 categories.

(i) 4211/le ={Y;Y1> 0,Y2 > 0, Y3 e R,Y4 > 0,Y5 > 0, Y6 e 1R,g(y) e W};

(ii)wl2/VIY -_- {Y;Y1 > 03/2 3 0,Y4 > 0, Y5 > 0,Y6 e R,g(y) 6 VV},

423V”, ={Y;Y1§ 0,Y2 > 0,Y4 > 0,Y5 > O,Y6 e 1R,g(y) e W};

43V“, ={Y;Y1> 0,Y2 > 0,Y3 e IR,Y4 > 0,Y5 g 0,g(y) 6 UV},

$3le ={Y;Y1> 0,Y2 > 0,Y3 6 114,141 g 0,Y5 > 0,g(y) 6 VV};

(iiiwgle = {Y;Y1 s 0.3/2 3 0,Y4 > 0,Y5 > 0.Y5 E H.901) 6 VV};

 

4;;le = {Y;Y1 > 0,Y2 > 0,Y3 e 1R,Y4 g 0,Y5 g 0,g(y) e W};

41ng = {Y;Y1 S 0,Y2 > 0,Y4 S 0.3/5 > 0,9(31) 6 VVl;

43le = {Y;Y1 3 0,Y2 > 0.1/4 > (mg g 0,g(y) 6 VV};

112%,, ={Y;Y1> 0.1/2 s an s 0.1/5 > 0,g(y) 6 VV};

wit”, = {Y;Y1 > 0.3/2 S 0,Y4 > 0,3’5 S 0,9(31) 6 VV};

(all/1,341, = {Y;Y1 g 0,Y2 g 0,Y4 > 0, Y5 s 0,g(y) 6 VV};

wit/W = {Y;Y1 S 0,Y2 > 0,Y4 S 0,Y5 S 090/) 6 VV};

7.1);le ={Y;Y1> 0.1/2 S 0,Y4 S 0,Y5 S 0,9(31) 5 UV};

(vwfily = {Y;Y1 s ma s on s mg g 0,g(y) e W};

26—2 26—2

‘ : i 3 ' : (if ‘ ‘ , , ,g ,The set wI/VIY 1'91 wz/VIY’ iccordingly, ibuaklz z'L—Jl 1.1/*IZ. Based on these

almost disjoint subsets, the limiting distribution of LR with the mixing proportion is

in the form:
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0,010 > 0,011 E R012 > 0,013 > 0,014 E R}. The number of testing parameters

in model III for q is 6 and for 0 is 2. Then the set 1011le can be partitioned into

26"2 = 16 almost disjoint subsets that comprise 6—2+1=5 categories.

(i) 2411/le ={Y;Y1> O,Y2 > 0,Y3 e R,Y4 > 0,Y5 > O,Y6 e R,g(y) e W};

fimfiwy=flYflj>Qfi§mfl4>mfi>0JEEme€uW5

(@WY={YJ1gaw>oyg>am>cageammveg

11):le ={Y;Y1> 0,Y2 > 0,Y3 e R,Y4 > 0, Y5 g 0,g(y) e W},

1(3le ={Y;Y1> 0,Y2 > 0,Y3 6 13,331 g 0, Y5 > 0,g(y) 6 VV};

(111)103le = {Y;Y1 g 0, Y2 g 0,Y4 > 0,Y5 > 0,Y6 e R,g(y) e W};

fZVIY ={Y;Y1> 0,Y2 > 0,Y3 e 1R,Y4 g 0,Y5 g 0,g(y) 6 VV};

143V”, = {Y;Y1 g 0,Y2 > O,Y4 g 0,Y5 > 0,g(y) e W};

103le ={Y;Y1£ Oil/2 > Oil/4 > 03’s S Q90!) 6 VV};

1”;le ={Y;Y1> 0,Y2 g 0,Y4 g O,Y5 > 0,g(y) 6 UV};

(411/1 ={Y;Y1> O,Y2 g 0, Y4 > 0,Y5 g 0,g(y) e W};

(iv)1/)l];2 = {Y;Y1 g 0, Y2 g 0,Y4 g 0,Y5 > 0,g(y) 6 UV};

1&3 = {Y;Y1 s 0.1/2 s we; > 0.1/5 3 0,g(y) e W};

wifi/IY = {Y;Y1 S (LI/2 > 0,Y4 S 0,Y5 S 0,g(y) 6 UV};

4,33,}, ={Y;Y1> 03/2 s (in s mg 3 My) 6 VV};

(WK/D, = {Y;Y1 S 0.3/2 S 0,Y4 S 0,Y5 S 0,901) 6 UV};

25—2 26-2

. = 2' 2 - a, ___ /,i , . ,.,
The set $11le i—L—Jl wVV|Y’ lCCOI'dlIloly, ¢V>k|z i-L—Jl LW‘IZ' Based on these

almost disjoint. subsets, the limiting distribution of LR with the mixing proportion is

in the form:
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 K

2 2 2 2 2 2 2

Zf+Z§+Z§+Z§~X§1

Z§+ZE+Z§+Z§~XZ

Zf+Z§+Z§+Zg~X§

Z?+Z§+Z§+Z§~X?1

Z3+Z§+Z§~X§

Zf+Z§+Z§~X§

z§+z§~xg

4+4~4

Zf+Z§~x§

2M

2 2
ZINXI

2

157

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

with mixing prop :

”'1

    

 



Therefore, the probability of LR under model III is in the form:

Pr(LR > c2) =Pr(Y e 25,},ng > c2)

5

+ Z Pr(Y e wVIY)P(X4 > c2)

2':2

7

2:6

11

+ Z Pr(Y E 1,!)12V|Y)P(X2 > C?)

2':8

15

+ ZPTHYEIZ)VVIY)PP(x¥>c2)

2:12

All mixing proportions can be calculated based on previous results (Kudo p.415

1963, Shapiro p.141 1985):

(1) the mixing proportion corresponding to chi-square random variable with 4 df is

:25_2 Pr(Y E WVVIY)’ and this probability can be estimated as:

5

Zpro’ewVIY): Z Pr(Ya<O,Yb>0,Yc>0,

2:2 a=1,2,4,5

a#b,a;éc,a7£d,a#e

Yd > 0,Ye 6 R)

= Z Pr(Ya < 0,Yb > 0,Yc > 0,Yd > 0)

a=1,2,4,5

a¢ha¢ga#d

1 __

:8_7r(87r — 2 cos lpablc)

a>b;a#c,b;éc
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‘Q‘PacP2
where pablc is calculated from the equation, pab|c= (,a b, c=1,.

and 4=q—o).

(2) With respect to the chi-square random variable with 3 df, the mixing propor-

tion is given as 227:6 Pr(Y E wszY), the calculation of this probability is

evaluated as:

Z Pr(Y e inIY) =Pr(Y1 < 0,Y2 < O,Y4 > O,Y5 > 0, Y6 6 IR)

+P7‘(Y1 > 0,Y2 > 0,Y3 E R,Y4 < 0,Y5 < 0)

=Pr(Y1 < 0,Y2 < 0,Y4 > 0,Y5 > 0)

+P7‘(Y1 > 0,Y2 > 0,Y4 < 0,Y5 < 0)

1 _ _

=Z7T—2[cos 1p12(7r—cos 1345112)

+ cos—1p45(7r — cos—1p12I45)]

note that ,0ch ab is estimated from

_PacP +P P ‘PacP P —P ,P P

pab 2

P d| b: H)“ -C a

l-pgd-pgc-pgg+2pgcpgdpgd 1—p2 -p2 -p2 +2222 p2 p2

\ 1—pcd \ 1_pcd

3022-11—8 Pr(Y E WVVIY) is the mixing probability for the chi-square component

 

 

  

with 2 df. This mixing proportion is evaluated as:
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11

Z Pr(Y e wijIY) = Z Pr(Ya < 0,Yb > O,Yc < O,Yd > 0)

i=8 a=1,2;c=4,5

1 _ _

zmkos 1p14(7r—cos 1p25ll4)

+ cos—1p15(7r — COS—1024I15)

1
+ cos_ p24(7r — cos—1p15l24)

+ cos—1p25(7r — cos—1p14l25)]

where pcdl ab is defined in the same way.

(4) Following the comment provided by Shapiro (1985), the mixing proportions

are assigned equally on the even and odd places. Thus the mixing probability

2:21:12 Pr(Y E wri/VIY) for chi-square component with 1 df is calculated as:

15

Z Pr(Y e (pf/WY) = Pr(Ya > O,Yb < 0,Yc < 0,Yd < 0)

2:12 a=1,2,4,5

5

—l — Pr(Y 6 (pi )
—2 . l/VIY

2:2

1 _
=8—7r( 2 cos lpablc — 47r)

a>b;a7éc,b7éc

where there is a resemblance about calculation of pab] c between 21.1212 Pr(Y E

2 5 12'
wVVIY) and 22-22 Pr(Y E wVVIY).

(5) An approximated estimation of mixing proportion Pr(Y E $31le) correspond-
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ing to the chi-square component with 6 (if is derived according to the above

comment. This mixing probability is evaluated as:

11

Pr(Y62/21VIY)+P7~(Y€¢1VIY) =5— ZPr(YeinIY)

2':6

Suppose two mixing proportions Pr(Y E Q/JiVIY) for chi-square component

with 6 (if and Pr(Y E iblv IY) for chi-square component with 0 df equally share

the probability 2— 2201—6 Pr(Y E 202u'VlY) Therefore, the mixing proportion

Pr(Y E inIY) is approximated as:

111

‘ZP(YE‘szlY)
i=6

r
h
l
l
l
H

[
\
D
IPT(YET/)1VVIY)=

1

—- ———2-[cos 1
i012(7r — COS1045(12)

a
s
h
-
a

+ cos—1p45(7r — cos—1p12l45)

+ cos—1p14(7r — COS—102314)

+ cos—1p15(7r — cos—1p24I15)

-1
+ cos p24(7r — cos—1p15l24)

+ cos—1p25(7r — cos—1p14I25)]
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4.4 Simulation

We designed simulations to evaluate the limiting distribution of the LRT. The results

of the new approximation are compared with those from Self and Liang (1987) and

Amos (2001).

We simulated 40 nuclear families each with 5 sibs. Phenotype data are gener-

ated assuming there is no main genetic effect at all under the null. For the uni—

variate trait analysis (Model I), data are simulated with the variance of polygene

2 2
effect defined as 09:2, environmental error set as 0e =25, and 1000 replicates are

recorded. For the bivariate model, data are simulated based on the parameters of

2 2
0 a

polygene effect and random residual effect given by: ( 291 9212)=(128 128), and

0912 ”92

2 2

”612 ”62

The performance of the approach is illustrated at several critical values in Table

4.3. It is clear that the type I error rates with the new method are much closer to the

corresponding nominal level than those of the other methods. A quantile plot of the

results are shown in Figure 4.3. The current approximation method shows the best

approximation for the three models.

4.5 Conclusion

The new threshold determination method provides better approximation to the dis-

tribution of the LRT under the three models evaluated. These three models represent

the most widely applied models in genetic linkage analysis. we expect the new method
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Table 4.3: Comparisons of the performance of different approximation methods based

on 1000 simulation replicates under different models.

 

Model Method critical value
 

0:01 0:005 (120.01 a=0.005
 

 

Model I SF 0.063 0.032 0.005 0.002

New 0.093 0.051 0.008 0.005

Model II Amos 0.182 0.104 0.027 0.014

New 0.097 0.059 0.016 0.005

Model III Amos 0.0839 0.0462 0.0158 0.0036

New 0.0912 0.0523 0.0158 0.0049

 

(SF indicates the approximation is done with the result in Self and Liang (1987), i.e.,

LR ~ 4X2 : %X% : 3x8; New refers to the approximation by the current method;

Amos refers to the approximation given in Amos (2001), i.e., LR ~ 4X3 : %X% : 21: x3

for Model II, and LR ~ 112ng : 416,3, : 1%ng ; 14mg : fix? : 1169‘?) for Model 111.)

can reduce false positives in determining a linkage signal, hence reduce the cost of un-

necessary investigations in a lab condition due to false results. This work represents

the most comprehensive evaluation of the LRT in linkage analysis with the variance

components model.
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Model I: Univariate Model with additive and dominance effect
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Figure 4.1: The quantile plot of the empirical p—values for Model I. For the legend:

Self & Liang refers to SF; Proposed refers to the current method. See Table 4.3 for

more explanation of the legend.
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Model II: Bivariate Model with additive effect
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Figure 4.2: The quantile plot of the empirical p—values for Model II. For the legend:

Self & Liang refers to SF; Proposed refers to the current method. See Table 4.3 for

more explanation of the legend.
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Model Ill: Bivariate Model with additive and dominance effect
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Figure 4.3: The quantile plot of the empirical p-values for Model III. For the legend:

Self & Liang refers to SF; Proposed refers to the current method. See Table 4.3 for

more explanation of the legend.
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Chapter 5

Concluding remarks

Genomic imprinting, a unique phenomenon in multicellular organisms, is carried out

in a regulated way that generally confers advantages during an organism’s life cycle.

Its role in controlling embryonic development and growth is not only restricted in

humans and animals, but also in flowering plants. The information about how genes

controlling or affecting this process is crucial for unravelling the genetic basis of

many quantitative traits, which can not be explained by the traditional Mendelian

inheritance theory. The identification of imprinted genes has been one of the most

important and difficult tasks for genomic imprinting study. While many scientists

are trying to experimentally unravel the molecular mechanism of genomic imprinting,

identifying imprinting genes with statistical QTL mapping techniques is still in its

infancy and therefore is in much demanding. W'ith the abundant molecular marker

information, it is now possible to detect potential imprinted genes underlying the

quantitative variation of an imprinting trait. We, for the first time, developed a
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series of statistical models and algorithms for detecting and characterizing specific

iQTLs that are responsible for genomic imprinting under various problem settings.

The developed models can make a systematic scan of iQTLs across the entire genome

with a well-covered genetic linkage map.

Focusing on flowering plants, in this dissertation, I developed a series of statistical

methods based on the variance components model in linkage analysis. Specifically, in

chapter 2, I developed an efficient mapping approach focusing on a diploid mapping

population (e.g., embryo in plants). We focused our genetic design on a reciprocal

backcross design with experimental crosses. Different line crosses were combined to

infer the random allelic effects under the variance components model. We partitioned

the additive genetic effect into different components based on the nature of the allelic-

sharing mechanism in experimental crosses. In chapter 3, we extended the idea to

a triploid endosperm mapping population. The unique triploid structure in an en-

dosperm tissue was considered. The utility of the method was demonstrated with

a real data set. Important iQTLs were identified to control the endosperm develop-

ment. Genomic imprinting can be explained by the genetic conflict theory proposed

by Haig and Westoby (1991). Our real data analysis results are in consistent with

and supported by this theory. In both chapters, we extended the single iQTL model

to consider multiple iQTLs (i.e., multiple iQTL model). The multiple iQTL model

can efficiently handle the problem due to the interfering of linked iQTLs on the same

linkage group. Moreover, it also shows increased mapping precision as shown in the

simulations studies.

168

"1.

 



When strong genetic correlations among multivariate traits occur in the QTL

mapping, the multivariate analysis can largely improve the statistical power and ac-

curate position of the genetic effect (Boomsma and Dolan 1998; Jiang and Zeng, 1995;

Amos et al. 2001; Evans 2002). This motivates us to develop a multivariate iQTL

mapping model, which is studied in chapter 3. Extensive simulation studies show

the relative merit of multivariate analysis, especially when traits are correlated. In

a multivariate linkage analysis, we also gain additional benefit by statistically quan-

tifying pleiotropic vs close linkage effect. The real data analysis indicates that two

QTLs express strong pleiotropic effect to control the two endosperm traits used in

this study.

In a variance components-based linkage analysis, the likelihood ratio test has been

the standard means in assessing the statistical significance of a linkage signal. How-

ever, due to irregular conditions (e. g., the restriction of the variance component terms

under the hypothesis), the regular asymptotic chi-square distribution theory does not

apply directly. In chapter 4, we conducted a statistical investigation of the LRT, and

found that the currently applied cutoff determination method is inappropriate. This

finding is in consistent with an empirical study (Allison et al., 1999). We evaluated

the limiting distribution of the LRT under three model settings which are the mostly

used models in a linkage analysis. Simulation study shows the superiority of the new

approximation method over the currently applied ones.

Other statistical issues such as deriving the optimization algorithms for parameter

estimation, and proof of the theorems have been given. Coupling with the emergence
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of abundant marker information, large collection of well-phenotyped samples and

high-throughput genotyping, our models provide a quantitative testable framework

to assess genome—wide significance of imprinted genes. The developed models also pro-

vide a testable platform for scientists who can design their experiment accordingly

and significant discoveries would be expected in the future. This dissertation con-

tributes to the statistical methodology development in QTL mapping, to the general

statistical theory in variance components model, and to the general genetic mapping

community by providing statistically sound approaches and tested programs.
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