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one of the best methods in this category, termed CR-CC(2,3) or CR-EOMCC(2,3),
in which a noniterative correction due to triple excitations is added to the CCSD or
EOMCCSD energy, and its higher-order CR-CC(2,4)/CR-EOMCC(2,4) approach, in
which a noniterative correction due to triple and quadruple excitations is added to
the CCSD/EOMCCSD energy, to open-shell systems. In this thesis the theoretical
details of all of these new methodologies as well as a sample of benchmark examples
that illustrate their performance in studies of ground and excited states of open-shell
molecular systems are discussed. In addition, since there is nothing in the underlying
theoretical framework specific to electronic structure, the CC approaches developed
in this thesis are not restricted to molecular cases and can be applied to other many-
fermion systems, such as atomic nuclei. Representative examples of applications of
the new CC methods developed in this thesis research in the context of quantum

chemistry to studies of nuclear structure are given as well.



ABSTRACT

COUPLED-CLUSTER METHODS FOR OPEN-SHELL MOLECULAR
AND OTHER MANY-FERMION SYSTEMS

By
Jeffrey R. Gour

The description of the electronic structure of radicals and other open-shell molecu-
lar systems represents a significant challenge for current theoretical methodologies.
Since the low-lying electronic states of open-shell species often possess a manifestly
multi-determinantal character, it is difficult to perform calculations for these systems
that are both highly accurate and practical enough to be applied to a wide range of
chemical problems of interest. To overcome these difficulties, we have developed two
new classes of coupled-cluster (CC) methods, which are capable of accounting for the
high-level electron correlation effects that characterize open-shell systems at a rela-
tively low computational cost. The first class of methods, the active-space variants
of the electron-attached (EA) and ionized (IP) equation-of-motion CC (EOMCC)
theories, utilize the idea of applying a linear electron-attaching or ionizing opera-
tor to the correlated, ground-state CC wave function of an N-electron closed-shell
system in order to generate the ground and excited states of the related (N % 1)-
electron radical species. Furthermore, these approaches use a physically motivated
set of active orbitals to a priori select the dominant higher-order correlation effects to
be included in the calculation, which significantly reduces the costs of the high-level
approximations needed for obtaining accurate results for open-shell species without
sacrificing accuracy. The second class consists of the size extensive, left-eigenstate
completely-renormalized (CR) CC approaches based on the biorthogonal formulation
of the method of moments of CC equations, in which noniterative corrections due
to higher-order excitations are added to the energies obtained with the standard CC

approximations, such as CCSD (CC with singles and doubles). We have extended



Copyright by

JEFFREY RICHARD GOUR
2010

- a—



ACKNOWLEDGMENT

First and foremost, I wish to thank my Ph.D. advisor, Professor Piotr Piecuch for his
teaching and guidance. Thanks to his constant support and his desire to see me be-
come the best that I can be, I not only learned a great deal about electronic structure
theory, but also about how to be a better scientist. His inspiration, expectations, and
patience have been key components in my growth and success as a researcher, and I
am deeply grateful for all he has done for me.

I would also like to thank the rest of my guidance committee, namely Professor
Katharine C. Hunt, Professor Robert Cukier, and Professor James K. McCusker, for
their advice, support, and patience in overseeing my graduate study.

I also owe a great deal of gratitude to Professor Marta Wloch, a former postdoc-
toral research associate in the Piecuch group. When I first joined the group, it was
her that took me under her wing and helped introduce me to various details regarding
the research to be done. Without her I would have been lost in the beginning. Not
only that, but as I grew into my own and became more independent, she turned from
mentor to valuable collaborator. I was able to overcome many difficulties in my re-
search thanks to discussions with her. Without her help, most of this research would
not have been possible. I would also like to thank other members of the Piecuch
group, both past and present, for the help they provided me, including Dr. Karol
Kowalski, Dr. Maricris Lodriguito, Dr. Wei Li, Mr. Jesse Lutz, and Ms. Janelle
Bradley.

Finally, I would like to acknowledge the National Science foundation for providing
me with a Graduate Research Fellowship that supported most of my research. Ad-
ditional support was also provided through several fellowships from Michigan State
University (including some from the Department of Chemistry), and from the US
Department of Energy. I would also like to acknowledge the MSU High Performance

Computing Center for providing resources utilized for much of this research.



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . ... viii
List of Figures . . . . . . . . . . . . . . . ..o xi
1 Introduction . . . . . . . . . . . ..o 1
2 Active-Space Coupled-Cluster Methods for Open-Shell Systems . 12

2.1 Theory and Computer Implementation . . . ... ... ........ 13
2.1.1 The Electron-Attached and Ionized Equation-of-Motion Coupled-

Cluster Theories . . . ... ... ... ... .......... 13

2.1.2 The Active-Space EA- and IP-EOMCC Methodologies . . .. 20

2.1.3 Key Details of the Efficient Computer Implementation of the
Active-Space EA-EOMCCSDt and

IP-EOMCCSDt Approaches . . . . . ... ... .. ...... 25
2.2 Applications . . . . . ... ... 46
2.2.1 Excitation Energies of Diatomic Radicals: CHand SH . ... 46
2.2.2 Potential Energy Curvesof OH . . . . ... ... ... .... 54
2.2.3 Excitation Energies of C9N, CNC, N3, and NCO . ... ... 69
Noniterative Coupled-Cluster Methods for Open-Shell Systems . 74
3.1 Theory . . . . . . . i e e e 75
3.1.1 The Biorthogonal Formulation of the Method of Moments of
Coupled-Cluster Equations . . . . . ... ... ... ...... 75
3.1.2 The CR-CC(2,3)/CR-EOMCC(2,3) and
CR-CC(2,4)/CR-EOMCC(2,4) Approaches . . . . . . ... .. 83

3.1.3 Computer Implementation of the Open-Shell Variants
of the CR-CC(2,3)/CR-EOMCC(2,3) and

CR-CC(2,4)/CR-EOMCC(2,4) Approaches . . . . .. ... .. 94

3.2 Applications . . . . . . ... 101
3.2.1 Bond Breaking in Radical Species: HC-X and HoSi-X . . . . 102
3.2.2 Singlet-Triplet Gaps in Biradicals . . . . ... ... ... ... 109
3.2.3 Excitation Energies of C9N, CNC, N3, and NCO . ... ... 129
Coupled-Cluster Calculations for Nuclei . . . . . . . . . . . .. 135
4.1 Details of Coupled-Cluster Calculations for Nuclei . . . . . . .. ... 135
4.2 Low-lying States of 10 and the Surrounding Valence Systems . . . . 141
4.3 Ground and Excited States of 9°Ni, °6Ni, and ®'Ni . . ... ... .. 155
Summary and Future Perspectives . . . . . . . . . . . . . . .. 166

vi



Appendix A: Factorized Form of the EA-EOMCCSD(3p-2h) and
IP-EOMCCSD(3h-2p) Equations . . . . . . . . . . . ... ... 172

Appendix B: Derivation of the Noniterative Energy Correction Defining
the Biorthogonal MMCC Theory . . . . . . . . . . ... ... 174

References . . . . . . . . . . L s 178

vil



2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

LIST OF TABLES

Explicit algebraic expressions for the one- and two-body matrix ele-

-~ (CCSD)
ments of H N.open *

............................

The various classes of restricted projections that must be considered
when generating the computationally efficient form of the equations
defining the EA-EOMCCSDt and IP-EOMCCSDt eigenvalue prob-
lems. . . .. e

The ground-state energies and the adiabatic excitation energies corre-
sponding to the low-lying excited states of the CH radical, as obtained
with the aug-cc-pVzZ (z=D, T, and Q) basis sets. . ... ... ...

The average time per iteration for the EA-EOMCCSD(3p-2h) and EA-
EOMCCSDt calculations performed for the CH radical with the aug-
cc-pVzZ (z=D, T, and Q) basissets. . . . .. ... ... ... ....

The ground-state energies and the vertical excitation energies corre-
sponding to the low-lying excited states of the SH radical, as obtained
with the aug-cc-pV(z+d)Z basis set for S and the aug-cc-pVzZ basis
set for H wherez=Dand T. . . . ... ... ... ... ........

The average time per iteration for the IP-EOMCCSD(3h-2p) and IP-
EOMCCSDt calculations performed for the SH radical with the aug-
cc-pV(z+d)Z basis set for S and the aug-cc-pVzZ basis set for H where

An analysis of the major full CI configurations for the low-lying IT and
A states of the OH radical for a selected set of internuclear separations

An analysis of the major full CI configurations for the low-lying ¥
states of the OH radical for a selected set of internuclear separations

50



29

2.10

2.11

2.12

3.1

3.2

3.3

3.4

3.5

3.6

A comparison of the total energies obtained with various IP EOMCC
and SAC-CI methods for the low-lying IT and A states of the OH radical
with the corresponding full CI results obtained for several internuclear
separations RO - - « « -« ¢ o i e e e e e e e e e e

A comparison of the total energies obtained with various IP EOMCC
and SAC-CI methods for the low-lying ¥ states of the OH radical
with the corresponding full CI results obtained for several internuclear
separations Ro-H. . . . . . . . . .. ..

Equilibrium geometries (A), adiabatic excitation energies (eV), and
approximate excitation levels relative to the ground states of the cor-

responding reference cations for the low-lying valence excited states of
CoNand CNC. . . . . . .. e

Equilibrium geometries (A), adiabatic excitation energies (eV), and
approximate excitation levels relative to the ground states of the cor-

responding reference anions for the low-lying valence excited states of
N3and NCO. . . ... . . ... . . e

Restricted open-shell CR-CC(2,3), unrestricted CCSD(T) and MRMP2
NPE, STD, and REE relative to MRCI(Q). . ... .. ... ... ..

The adiabatic A 1A; — X 3B splitting in CHs obtained with full CI
and various CC approaches, and the DZP basisset. . ... ... ..

Comparison of the total energies (in hartree) and adiabatic excitation
energies (in eV) for the low-lying states of CHg as obtained with various
CC approaches, using the aug-cc-pCVzZ (z=T, Q, 5) basis sets and
extrapolating to the CBS limit, with various QMC results. . . . . . .

The A 3%} — X 12; gap for the linear, Dy j-symmetric (HFH)™
system as a function of the H-F distance Ry_p. . . . . . .. ... ..

A comparison of the total energies obtained with various electronic
structure methods for the X IZ; state of the linear, D, p-symmetric

(HFH)™ system as a function of the H-F distance Ry_p. . . . . . . .

A comparison of the total energies obtained with various electronic
structure methods for the A 3T state of the linear, D j-symmetric
(HFH)™ system as a function of the H-F distance Ry_p. . . . . . . .

ix

66

67

70

72

107

111

114

118

121

122



3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

Equilibrium bond lengths R (in A) and harmonic frequencies we (in
cm‘l) for the lowest triplet and singlet states of BN, as obtained with
cc-pV5Z basis set, and the adiabatic singlet-triplet splittings T (in
cm~1) as obtained with the cc-pVzZ (z = D, T, Q, and 5) basis sets,
as well as the extrapolated CBS limit values. . . ... ... ... ..

Adiabatic excitation energies (eV) and reduced excitation level (REL)
values of the low-lying valence excited states of CNC and CoN. . . . .

Adiabatic excitation energies (eV) and reduced excitation level (REL)
values of the low-lying valence excited states of N3 and NCO.

A comparison of the binding energies per particle for 1°0 and N
(the PR-EOMCCSD(2h-1p) values), 160 (the CCSD values), and 170

and 17F (the PA-EOMCCSD(2p-1h) values), obtained with the N3LO,
CD-Bonn, and Vig potentials, and eight major oscillator shells. . . . .

A comparison of the energies of the low-lying excited states of %0,
15N, 170 and 17F, relative to the corresponding ground-state ener-
gies obtained with the PR-EOMCCSD(2h-1p) (190 and 1°N) and PA-
EOMCCSD(2h-1p) (170 and 17F) methods, the N3LO, CD-Bonn, and
Argonne V;g potentials, and eight major oscillator shells, with the ex-
perimental data. . .. ... ... .. ... ... ... ...

Energies (in MeV) of 96Nj as functions of the shell-gap shift AG, rel-
ative to the reference energy (®g|H|®g) = —203.800 MeV. . . . . ..

Binding energies (in MeV) of %Ni and 5"Ni relative to the correspond-

ing reference energies (<I>(()A)(j)|H |<I>(()A)(j)), A = 55 and 57, respec-
tively, as functions of the shell gap shift AG (in MeV). . . ... ...

Excitation energies (in MeV) of the low-lying states of 57Ni as functions
of the shell gap shift AG . . . . ... ... ... .. ... ... ..

127

131

132

146

162



2.1

2.2

2.3

24

3.1

3.2

3.3

4.1

LIST OF FIGURES

Images in this dissertation are presented in color

Pictorial illustration of the generation of the CH and OH radicals from
the closed-shell CH* and OH™ ions, respectively. . . .. .......

The key elements of the algorithm used to compute
(@Abcl( 1\? gpi]i) R(N+1 )c|®) in the efficient implementation of the

EA-EOMCCSDt method ........................

The key elements of the algorithm used to compute
(cI>le|(H 1\? S;E)R(N 1)) |®), in the efficient implementation of the

IP- EOMCCSDt method. . . ... . . ... ...

Potential energy curves for the ground and low-lying excited states of

the OH radical. . . . . . . . . . . . . . . . ..

The key elements of the algorithm used to compute 6 R(23) in the
efficient open-shell implementation of CR-CC(2,3)/ CR—EOMCC(2,3).

Restricted open-shell CCSD, restricted open-shell CR-CC(2,3), unre-
stricted CCSD(T), and MRMP?2 errors relative to MRCI(Q) for
HoC-H — 3CHy + H with the cc-pVTZ basis set. . . . . ... ..
Restricted open-shell CCSD, restricted open-shell CR-CC(2,3), unre-
stricted CCSD(T), and MRMP2 errors relative to MRCI(Q) for
H,Si-H — 1SiHy + H with the cc-pVTZ basis set. . . . . . .. ..

Pictorial illustration of the nuclear shell structure. . . .. .. . ...

xi

13

42

44

100

104



4.2

4.3

4.4

The coupled-cluster energies of the ground-state and first-excited 3~
state as functions of the number of oscillator shells N obtained with
the Idaho-A interaction. . . . . . . . . . . . . .. ... ... ... ..

Systematic comparison of IT-CI and CC results for the ground-state
energy of 160 using HF-optimized single-particle bases with ez = 4,
5, 6, and 7. (a) Comparison of IT-CI(4p-4h) (open symbols) with
IT-CI(4p-4h)+MRD (filled symbols). (b) Comparison of CCSD (open
symbols) with CR-CC(2,3) (filled symbols). (c) Comparison of IT-
CI(4p-4h)+MRD (open symbols) with CR-CC(2,3) (filled symbols).

(a) The full CI, CISDTQ, and CR-CC(2,3) energies of %5Ni as functions
of the shell-gap shift AG. (b) Comparison of full CI energies with
the trends expected for the 1p-1h, 4p-4h, and 8p-8h configurations as
functionsof AG. . . . . .. ...

xii

142

153



Chapter 1

Introduction

The single-reference coupled-cluster (CC) theory [1-5] is widely regarded as the pre-
eminent ab initio approach for studying chemical systems. The success of the CC
methodology, and its extension to excited states through the equation-of-motion
(EOM) CC formalism [6-10] or its symmetry-adapted-cluster configuration-interaction
(SAC-CI) [11-15] and linear response CC [16-20] analogs, lies in its ability to effi-
ciently account for the many-electron correlation effects, the consideration of which
is essential for obtaining an accurate description of a molecular system. As is true
of other single-reference quantum theories based on the idea of expanding the many-
electron wave function in a basis of molecular orbitals, the conventional CC method-
ology builds correlations into the wave function through excitations out of a single
reference determinant. The advantage of the CC theory over other formalisms is that
it uses an exponential excitation operator to describe these correlation effects, and so
it is able to account for additional excitations, not explicitly included in the calcula-
tion, through the product or so-called ‘disconnected’ excitations. For instance, if one
were to include only operators that create singly and doubly excited configurations
out of the reference in the CC calculations, the various products of these components

that result from expanding the exponential in a Taylor serics lead to some triple,
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quadruple, pentuple, etc. excitations also being accounted for without increasing
the computer costs. As a result, the CC formalism provides an optimum balance
between high accuracy and relatively low computer effort, making it an ideal the-
ory for studying many molecular systems, and for further electronic structure theory

advances.

Despite the success of approaches based on the CC theory over the years, there
are a number of open issues in the CC methodology, one of which is the adequate
description of open-shell systems. Due to their high reactivity and importance as
chemical intermediates and magnetic systems, open-shell molecular systems, such as
radicals and biradicals, play a significant role in chemistry, and as such a theoret-
ical understanding of such species would be invaluable for many areas of chemical
research. Unfortunately, such systems still represent a major challenge for modern
electronic structure theories, and the CC theory is no exception. The source of the
difficulty stems from the types of many-electron correlation effects that define the
electronic structure of open-shell systems, particularly those where chemical bonds
are stretched or broken. In general, the many-electron correlations can be classified
into two types, dynamical and nondynamical. The former refers to the correlations
that result from the short-range interactions whereby electrons instantaneously avoid
each other, and are mathematically included in the wave function via excitations out
of a reference state. As indicated by the above explanation, the CC theory has few
problems with this type of correlation effects. The nondynamical (sometimes referred
to as static) correlation effects, on the other hand, are long-range effects stemming
from the multi-configurational character of systems having quasidegenerate electronic
states (i.e. states that are close in energy). This means that for states characterized
by large nondynamic correlations, a single Slater determinant is not a good refer-
ence for the many-electron wave function, and so multiple determinants must be

used to create a reference function on top of which dynamical correlations can be
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built. As it turns out, the majority of open-shell systems, particularly when they un-
dergo chemical transformations or when they are electronically excited, display such
a multi-reference character, and so methodologies that are capable of providing an ac-
curate and balanced description of both dynamical and nondynamical many-electron

correlation effects are needed to accurately describe them.

Unfortunately, the basic, low-order CC approaches, including the CCSD (CC with
singles and doubles) approach [21-24], and its excited-state EOMCCSD [7-9], SAC-
CI-SD-R [11-15], and linear response CCSD [19,20] analogs, have difficulty balancing
these types of correlation effects, and thus the accurate description of the low-lying
states of open-shell systems is a major challenge for such approaches. Even the pop-
ular CCSD(T) approach [25], in which a noniterative, quasiperturbative correction
due to triply excited clusters is added to the energy obtained with CCSD, has prob-
lems describing such systems. Though it is known to offer an excellent description
of dynamical correlation effects, which provide a near perfect description of closed-
shell systems near the equilibrium geometry, CCSD(T) fails to properly account for
nondynamical correlation effects. The full CCSDT (CC with singles, doubles, and
triples) [26,27] and EOMCCSDT [28-30] approaches, which were recently extended to
open-shell systems [31], are able to better balance the dynamical and nondynamical
correlation effects, and thus are capable of producing high quality results for many
open-shell situations, but the computational costs of such schemes are extremely
high, restricting their use to small systems with only a few light atoms (a dozen or
so correlated electrons). In contrast, CCSD(T) can nowadays be routinely applied to
systems with up to about 100 correlated electrons and a few hundred basis functions
within a canonical formulation, and one can go to systems with hundreds of corre-
lated electrons and thousands of basis functions when one uses the local correlation
formulation [32-44]. Thus in order to accurately study a wide range of open-shell

problems of interest, alternatives to the standard single-reference CC methods that
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are not much more expensive than CCSD(T) are needed.

One of the main reasons that properly accounting for both dynamical and nondy-
namical correlations within the standard CC truncation hierarchy requires high-level,
and computationally expensive, approximations is the single-reference nature of these
schemes. Indeed single determinants are bad starting points for the description of
manifestly multi-reference states, such as those found in open-shell systems. As a
result, the only way to properly describe such systems within the standard CC trun-
cations is to compensate for the bad start and account for nondynamical correlations
dynamically, i.e. through the inclusion of higher-order excitation effects. Based on
this analysis, an obvious solution is to simply start from a better reference state that
accurately accounts for the nondynamical correlations in the system, leaving only
the remaining dynamical correlations to be described by the exponential excitation
operator. This is the basic idea behind the genuine multi-reference (MR) CC theories
of either the valence-universal [45,46] or state-universal [47] type, for which an expo-
nential excitation operator is applied to a multi-determinantal reference in order to
generate the wave functions for the desired many-electron states. At first glance, this
would seem like the ideal solution for open-shell systems, as it properly balances non-
dynamical (through the multi-determinantal reference state) and dynamical (through
the exponential ansatz) correlations without the use of high-order excitations in the
wave operator that transforms the zero-order reference states into the target wave
functions. Unfortunately, these formalisms are not without their own problems. In
particular, the genuine MRCC approaches of the above two types face issues related
to unphysical [48-50] and singular [48,49,51-54] solutions, intruder states [48,49,52],
and intruder solutions [48,50], all of which can cause convergence problems as well
as other complications in the MRCC calculations and the ensuing analysis of the
results. Furthermore, there are potential difficulties related to the size and choice

of the multi-dimensional reference space for certain types of systems. Indeed, the
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configurations included in the complete multi-dimensional reference space are gener-
ally determined via all possible rearrangements of the occupancies of a selected set of
molecular orbitals composing what is referred to as the active space. Unfortunately,
the size of such a reference space grows factorially with the number of active orbitals
and electrons, and so choosing a proper active space for a given system can be a
difficult task requiring a great deal of expertise. In fact, it is possible that for some
systems, such as those containing transition metal atoms that have a large degree
of quasidegeneracy due to the open f or g shells, the appropriate active space may
result in the MRCC calculation being prohibitively expensive. In addition, the com-
plicated formalism associated with the genuine MRCC theories makes it difficult to
implement highly-efficient, general-purpose computer codes that can be applied to a
wide range of open-shell problems. Recently, there has been a great deal of progress
and renewed interest in overcoming the above issues and further developing both the
valence-universal and state-universal MRCC approaches [48,55-67]. However, despite
these developments, we feel that, due to the complications arising from a genuine MR
formalism, it would be ideal to investigate the possibility of overcoming the difficulties
facing the standard single-reference CC schemes in calculations involving open-shell

systems within the formally simpler single-reference framework.

One methodology that may provide a mechanism by which to address the chal-
lenges posed by open-shell systems within a single-reference formalism is that of the
electron-attached (EA) [68-70] and ionized (IP) [71-77] EOMCC theories, and the
analogous and historically older EA and IP SAC-CI methods [78-84]. The basic
idea behind these methodologies is to construct the ground- and excited-state wave
functions of an (N =+ 1)-electron system by applying a linear electron-attaching or
ionizing operator to the correlated CC ground state of an N-electron closed-shell
system. This wave function definition leads to a natural and computationally con-

venient formalism for studying ground and excited states of open-shell systems, such
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as radicals, that differ from the corresponding closed-shell species by one electron.
Furthermore, the use of the closed-shell N-electron reference state in calculations
for the (IV £ 1)-electron systems ensures that the resulting wave functions are auto-
matically orthogonally spin-adapted, and thus EA- and IP-EOMCC approaches do
not suffer from the spin contamination issues that may arise in the traditional open-
shell implementations of the conventional CC or EOMCC approximations that rely
on the unrestricted Hartree-Fock (UHF) or restricted open-shell HF (ROHF) refer-
ence determinants. Unfortunately, as was the case for the regular CC and EOMCC
methodologies, the basic, low-order EA- and IP-EOMCC approaches, which include
the EA-EOMCCSD [68,69] and IP-EOMCCSD [71-74] approximations, and their EA
and IP SAC-CI analogs truncated at 2-particle-1-hole (2p-1h) and 2-hole-1-particle
(2h-1p) excitations [78-84], have significant difficulties with describing the excita-
tion spectra of most radicals [68,84-89]. One can address these deficiencies through
the inclusion of higher-order components of the electron-attaching or ionizing oper-
ators, such as the 3p-2h or 3h-2p excitations, which gives rise to schemes such as
EA-EOMCCSDT ([70], IP-EOMCCSDT (75, 76], EA-EOMCCSD(3p-2h) [85-87], IP-
EOMCCSD(3h-2p) [85-87], EA-EOMCCSDTQ [90] and IP-EOMCCSDTQ [90] as
well as their less complete SAC-CI analogs [81-83,88]. Though these schemes are all
capable of providing high quality results for radical systems, the associate compu-
tational costs are usually prohibitively high, restricting their use to relatively small

systems.

Given how well suited the EA- and IP-EOMCC methodologies, as well as their
multiply-attached and multiply-ionized counterparts (e.g., the doubly electron-attached
(DEA) and doubly ionized (DIP) EOMCC approaches [91-93]) are for studying rad-
icals and other open-shell systems, it has been our goal to develop a new formula-
tion of these schemes that maintains all the good attributes of such methods while

avoiding the high computer costs associated with including higher-than 2p-1h/2h-1p
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effects. An idea for how to develop such a formulation is provided by the so-called
active-space CC [94-108] and EOMCC [28,29,109-111] approaches. In these and
related schemes [112-119], the multi-reference concept of active orbitals is used to
a priori select the dominant triply and other higher-than-doubly excited clusters in
the standard CC/EOMCC calculations. In this way, the computational costs associ-
ated with the high-order CC/EOMCC approximations are greatly reduced, since the
vast majority of the higher-than-double excitations are not included in the calcula-
tions, and the characteristic high accuracy of the high-order CC/EOMCC schemes
is maintained at the same time. Indeed, the lowest-order active-space CC meth-
ods, such as SSMRCCSD(T) (state-selective MRCC with singles doubles and active-
space triples) [97-105] or CCSDt [106-108], and their excited-state EOMCCSDt ana-
log (28,29, 109], have shown promising results, even for challenging cases involving
bond breaking [95, 96,100,101, 104-108] or excited states dominated by two-electron
transitions [28,29,109-111]. Thus, it would seem that combining the active-space
CC methodology with the EA- and IP-EOMCC formalisms is a natural mechanism
for developing an approach capable of performing highly accurate calculations for
radicals at a relatively low computational cost. The development and benchmarking
of such active-space EA- and IP-EOMCC approaches, in which higher-than 2p-1h
and higher-than 2h-1p components of the electron-attaching and ionizing operators,
respectively, are selected through the use of a suitably defined set of active orbitals,

is one of the primary goals of this dissertation, and is discussed in Chapter 2.

Despite the initial successes and considerable promise of the active-space EA-
and IP-EOMCC formalisms in studies of the excitation spectra of open-shell systems
developed as part of this work, we must remember that no method is bullet-proof.
Indeed, the use of the multi-reference concept of active orbitals means that these
methods are not ‘black-box’; they require some a priori analysis by the user of the

nature of the electronic states of interest before performing the calculation. Though
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this difficulty is not nearly as severe in the active-space methods as it is in the genuine
MRCC theories, primarily due to the fact that the computer costs of the active-space
schemes, including the EA- and IP-EOMCC approaches developed in this thesis re-
search, scale polynomially with the size of the active space rather than exponentially,
they are still somewhat more difficult to use than the conventional single-reference
CC methods. Furthermore, the structure of these theories is such that they are
not generally applicable to all types of open-shell systems. Indeed if one wants to
study open-shell systems that are M-electrons away from some closed-shell system,
then a different hierarchy of methods must be used for each value of M. The EA-
EOMCC and IP-EOMCC schemes described in this dissertation are applicable to the
case of M = 1, which includes the majority of radicals and positively or negatively
charged ions of closed-shell atoms and molecules. If one wants to examine systems
that are two electrons away from a closed-shell, including biradicals, schemes such
as the DEA- and DIP-EOMCC methods and their active-space variants [85] must be
implemented and applied, etc. Furthermore, the applicability of approaches based
on adding or removing M electrons from a closed-shell species to open-shell systems
where M > 2 may become questionable since as one moves further away from the
closed-shell system, the electronic similarities between the two decrease. As a result of
these potential complications, alternative, and perhaps even complimentary, methods
for studying open-shell systems would be useful. Indeed, part of the success and pop-
ularity of the CCSD(T) approach is that it is able to produce highly accurate results
for systems primarily described by dynamical correlations with both reasonably low
computational costs and an easy-to-use black-box nature. It is this nature that has
allowed CCSD(T) to be so easily accessible to both experts and non-experts alike.
Given these remarks, the development of a robust formalisin that maintains the com-
putational costs and ease-of-use of CCSD(T) while better balancing both dynamical

and nondynamical correlation effects than CCSD(T) would be a good alternative to




active-space EA- and IP-EOMCC methods for accurate studies of open-shell systems.

An excellent candidate for such a methodology is presented by the completely
renormalized (CR) CC and EOMCC methods [120-140], particularly the recent vari-
ants based on the so-called biorthogonal method of moments of coupled-cluster (MMCC)
equations [133-140]. These approaches represent a new class of CC schemes based
on adding noniterative corrections to the standard CC or EOMCC energies, which
are designed to improve on the performance of CCSD, CCSD(T), and EOMCCSD in
situations involving larger nondynamical correlations while maintaining similar costs
and ease of use. Furthermore, these methods have a natural hierarchy for construct-
ing corrections for truncations besides CCSD and due to higher-than-triple excita-
tions, as well as a natural extension to excited states. One of the most promising
methods of this type is the CR-CC(2,3) approach [133-140], which, in analogy to
CCSD(T), is based on adding a noniterative correction due to triple excitations to
the ground-state CCSD energy. Various applications of this scheme have revealed
that it is capable of producing high quality results in studies of single bond breaking
and biradical structures on singlet potential energy surfaces [133-135,137,141-147],
while offering excellent values for activation barriers in thermochemical kinetics stud-
ies [148,149]. Indeed, for situations where the structure is dominated by dynamical
correlations, CR-CC(2,3) is as accurate as CCSD(T), but, unlike CCSD(T), it main-
tains these high accuracies as one moves onto structures characterized by stronger
nondynamical correlation effects, such as biradicals or the bond-breaking regions of
a potential energy surface. This success for singlet states characterized by large
nondynamic correlation effects begs the question of whether CR-CC(2,3), and its
excited-state CR-EOMCC(2,3) analog, would perform equally well in calculations in-
volving open-shell systems, such as bond breaking and excited states of radicals, and
singlet-triplet gaps in biradicals. In addition the question as to how well higher-level

CR-CC schemes, such as the CR-CC(2,4) approach which corrects the CCSD energy
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for the effects of both triples and quadruples, would perform. To address these ques-
tions, the CR-CC(2,3) scheme was extended to general open-shell systems [138] and
excited states [135,140], and a general purpose CR-CC(2,4) code, applicable to both
closed- and open-shell systems, was implemented as part of this research. The details
of these methodologies as well as the results of selected applications to open-shell

systems, reported in [138-140,150, 151], are presented in Chapter 3.

Up until this point, all of the discussion regarding the CC theory and its applica-
tions to open-shell systems has been in the context of quantum chemistry. However,
there is nothing intrinsic in the CC wave function ansatz, nor in the formulation of
the various CC methods studied in this work, that restricts their use to chemical sys-
tems. Indeed, the underlying physics governing any many-fermion problem, whether
they be chemical, nuclear, or condensed matter to name a few, is fundamentally the
same, and it is only the form of the potential in which the fermions move that varies.
In fact, though the major developments of the methodology have occurred in the
context of quantum chemistry, the CC theory was actually first suggested within the
field of nuclear physics [1,2], and it is our belief that a reintroduction of CC ap-
proaches within nuclear physics would benefit the study of the structure of nuclei.
Indeed, two of the main techniques for studying nuclear structure, namely the Green's
function Monte Carlo [152] and no-core shell-model [153-156], though successful in
providing highly accurate results, suffer from extremely high computational costs and
so are limited to light nuclei with a dozen or so nucleons at best. In order to study
medium-mass and heavy nuclei, methods that better balance accuracy and computa-
tional cost are needed, and, as discussed above, such a balance is precisely the origin
of the success of the CC theory in quantum chemistry. Furthermore, due to the fact
that the shell structure of nuclei is very similar to that of atoms and thus displays
a large amount of degeneracy, the majority of nuclei are open-shell many-fermion

systems characterized by large nondynamical correlation effects. As a result, the

10



methods developed and studied in this work, which are designed specifically for prop-
erly describing open-shell systems while requiring reasonably low computer costs, are
particularly well-suited for studies of nuclear structure. Thus, as a final component
of this dissertation, selected results of CC studies of the ground- and excited-state
energies of various nuclei [157-171], with a focus on the results obtained by the author

of this thesis [157,161-170], are presented and discussed in Chapter 4.
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Chapter 2

Active-Space Coupled-Cluster
Methods for Open-Shell Systems

In this chapter, the extension of the active-space CC methodology to the EA- and
IP-EOMCC formalisms, which results in new classes of low-cost, highly accurate ab
initio approaches for ground- and excited states of open-shell systems, is discussed.
Section 2.1 provides the theoretical details of these approaches, including an overview
of the original EA- and IP-EOMCC theories and the details of the new active-space
extensions of these methods, as described in [85-87], as well as a description of our
recently developed highly efficient computer implementations of the most basic active-
space EA- and IP-EOMCC schemes [87]. Section 2.2 provides examples of several
benchmark calculations, taken from [85-89,140], in order to illustrate the performance

of the active-space EA- and IP-EOMCC approximations developed in this work.

12



Active

: Space .
S0 S0
o i— 40} ido——
S S Im i Iftx--o-o(§/(3'reating
Creating:-—-""" In,: :In, @ @ OH

CH ieoe-3 i i3c—e—e;

—o—0— o 20 —0—0—

——0— /o lo ——e—

Figure 2.1: Pictorial illustration of the generation of the CH and OH radicals from
the closed-shell CH' and OH™ ions, respectively.

2.1 Theory and Computer Implementation

2.1.1 The Electron-Attached and Ionized Equation-of-Motion

Coupled-Cluster Theories

The key idea behind the EA- and IP-EOMCC methodologies is that, rather than
treating the open-shell molecular (VN £ 1)-electron system of interest directly, one
instead generates the ground and excited states of it by adding an electron to or
removing an electron from the related N-electron closed-shell system. This idea is
illustrated in Figure 2.1, which gives a schematic representation of generating the CH

and OH radicals from the closed-shell CH* and OH™ ions, respectively.

This idea can be expressed more rigorously by using the following form for the
electronic wave function of the uth state of an (VN + 1)- or (N — 1)-electron system

(where pu = 0 corresponds to the ground state and p > 0 corresponds to the excited
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states):

VDY = RIVED g, (2.1)

In this equation, RLNH) and RLN“I)

are the electron-attaching and ionizing oper-
ators, respectively, whereas |¥g) is the correlated ground-state wave function of the
N-electron closed-shell system, which is defined through the exponential ansatz of

the single-reference CC theory,
%) = eT|®). (2:2)

In the above equation, |®) is a closed-shell N-electron reference determinant (e.g.,
the restricted Hartree Fock (RHF) reference) and T is the cluster operator of the

standard single-reference CC theory,

M IN\2 .
11...1n y
T = Z Tn, Tn= (—75) tall._,anaal ..a%May .. -y, (2.3)
n=1 )

where in the exact case M = N while in the approximate approaches My < N. For
instance, in the basic CCSD approach Mt = 2, so the cluster operator T(CCSD) 5
given by

7(CCSD) _ T+ T = tzaaai + %{tfl]l;aaabajai. (2.4)

Throughout this paper we employ the usual notation where i, 7,... (a,b,...) refer to
the spin-orbitals occupied (unoccupied) in the reference determinant |®), aP (ap) are
the creation (annihilation) operators associated with the spin-orbital basis set {|p)},
and the coefficients tf,ll'_'_'zln entering Eq. (2.3) are the Ausual cluster amplitudes. In
addition, whenever possible, we make use of the Einstein summation notation over
repeated upper and lower indices.

The electron-attaching and ionizing operators introduced in Eq. (2.1), RLNH)
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and RLN_I), respectively, are defined as

Mp
(N+1)
Rl‘ = E th,(n+l)p-nh (2.5)
n=0
and
Mp
N-1
Rfi )= Z Rp,(n+1)h—np (2.6)
n=0
where the ((n + 1)p-nh) component of RLN‘H) and the ((n 4+ 1)h-np) component of
R,(,N—I) are given by
R _ 1 r Zl.'ln aaaal aana, a; (2 7)
/ly(n‘*'l)p"llh - n!(n + 1)! a(ll...an “ee in--- zl .
and
1 ii]...1
Ru,(n+l)h-np = m" all...lf.naal c.a%ma ai, a;, (2.8)

and where Mp = N in the exact case and Mp < N in the approximate schemes.
Equation (2.7) reveals that the ((n + 1)p-nh)-components of RLNH) can be viewed
as operators which create a particle in an unoccupied spin-orbital and, for n > 0,
simultaneously cause an excitation of n electrons from occupied spin-orbitals into
unoccupied spin-orbitals. Similarly, from Eq. (2.8) we see that the ((n + 1)h-np)-
components of RLN—I) can be viewed as operators which remove one of the electrons

from an occupied spin-orbital and, for n > 0, simultaneously excite n of the remaining

electrons.

By substituting the EA- and IP-EOMCC wave function ansatze, Eqs. (2.1) and
(2.2) in which Mp < Mp, into the time-independent Schrédinger equation, one ob-

tains the following non-Hermitian eigenvalue problem:

— N+l N N
(HN,openR;(t * ))C"(I’) =W;(t il)sz :H)ltb)- (2-9)
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Here

I:IN,open = (HNeT)C,open = e_THNeT - (HNeT)C,closed (2.10)

is the similarity-transformed Hamiltonian of the CC theory in the normal-ordered
form relative to the Fermi vacuum |®), the subscripts “open”, “closed”, and C refer
to the open (i.e., having external lines), closed (i.e. having no external lines), and
connected parts of a given operator expression, and the eigenvalues obtained from

solving Eq. (2.9) are the energy differences given by

WNED _ p(NED _ g, (2.11)
where El(‘Nil) is the total energy of the uth state of the (N £ 1)-electron system

and E((]N) is the ground-state energy of the N-electron reference system. Thus in the
EA- and IP-EOMCC formalisms, the energies of the ground- and excited-state wave
functions of an (N £ 1)-electron system are obtained by diagonalizing the similarity-
transformed Hamiltonian H N,open, calculated using the cluster operator of the related
N-electron closed-shell system, in the subspace of % (N+1) spanned by the determi-
aal...a )
nants |®%) = a%|®) and |P ill...inn> = a%% ...a%a;,...a;|®) (n = 1,..., Mp)
in the EA-EOMCC case, and in the subspace of J# (N-1) spanned by the determi-
ai...a .
nants |®;) = q;|®) and Iq)iill...inn) = a%l...a"a;, ...q;,0|®) (n=1,...,Mp) in

the IP-EOMCC case. Here, s#(N+1) and s#(N-1) gre the relevant (N + 1)- and

(N — 1)-electron subspaces of the Fock space, respectively.

There are several advantages to using this hierarchical approach for studying open-
shell systems, in which we construct the (N + 1)-electron wave functions by adding
an electron to or removing an electron from the N-electron closed-shell species, over
the more traditional idea of performing calculations directly on the (N £ 1)-electron
system of interest. Since the EA- and IP-EOMCC formalisms start from a closed-shell

reference system, for which the correlation effects are much easicr to describe and are
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trivial to capture with the CC theory, these methodologies are able to account for
the high-level correlation effects needed to describe the low-lying states of valence
systems such as radicals in a much more efficient manner. For example, consider an
(N + 1)-electron radical (e.g., the CH radical shown in Figure 2.1). As illustrated
later, if one were to perform the traditional CC calculations, which do not change the
number of electrons, directly for this radical, one would have to include the effects
of triple excitations in the calculation in order to obtain an accurate description of
the corresponding low-lying states. It can be shown, however, that some of the triple
excitations relative to the (N + 1)-electron reference determinant are 3p-2h excita-
tions relative to the N-electron reference |®), while the remaining triple excitations
correspond to 4p-3h excitations from |®). It turns out that as long as the N-electron
system is a good closed-shell, then most of the important triples, at least within the
spectroscopic region, are of the 3p-2h type. Since the number of 3p-2h terms is less
than the number of triples (3p-3h terms), the use of the EA-EOMCC formalism al-
lows us to essentially describe the same correlation effects at a reduced computational

effort. Similar statements also apply to the IP-EOMCC methodology.

Another advantage of the EA- and IP-EOMCC approaches is that they are based
on diagonalizing the similarity-transformed Hamiltonian of a closed-shell system,
which commutes with the S2 and S, operators. Because of this, the resulting eigen-
states are automatically orthogonally spin-adapted, and so by using the EA-EOMCC
and IP-EOMCC formalisms one can avoid the spin-contamination issues that may
plague the standard spin-orbital based open-shell CC/EOMCC implementations that

utilize the ROHF or UHF references (particularly, the latter ones).

When constructing approximate EA-EOMCC and IP-EOMCC schemes, special
attention must be given to the relationship between the truncation in the cluster op-

erator T and the truncation in the electron-attaching and ionizing operators RLN +1)

and RLN—I), respectively. For the approximate EA-EOMCC and IP-EOMCC meth-
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ods, the connected form of the eigenvalue problem displayed in Eq. (2.9), which
guarantees the size intensivity [20] of the eigenvalues, is only valid when the con-
dition that Mp < Mr is satisfied [10]. Thus, if we wish to retain the size inten-
sivity of the “excitation” energies w,(,Nil) , Eq. (2.11), we must ensure that any
truncation scheme applied to the EA-EOMCC and IP-EOMCC theories satisfies
this restriction on Mpr and Mp. Currently, the most common EA-EOMCC and
IP-EOMCC approximations, as implemented in [68, 70, 75,90], satisfy this criterion
by setting Mp = Mp — 1. The most basic examples in this category are the con-
ventional EA-EOMCCSD [68, 69] andrIP-EOMCCSD [71-74] methods (referred to
in this work as EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p)), where Mp =1
and Mp = 2. Other examples include the higher-order EA-EOMCCSDT (70] and
IP-EOMCCSDT (75, 76] schemes, for which Mp = 2 and My = 3, and the re-
cently implemented EA- and IP-EOMCCSDTQ approaches [90], for which Mp = 3
and My = 4. As part of this work, we developed implementations of the EA-
EOMCC and IP-EOMCC methodologies that make use of an alternate truncation
scheme utilizing the less limiting condition M = My, which still satisfies the more
general condition of Piecuch and Bartlett [10], i.e. Mp < Mp. The recently devel-
oped EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) approaches [85-87], in which

Mp = Mt = 2, belong to this class of approximations.

The advantage of the EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) meth-
ods of [85-87] over the EA-EOMCCSDT and IP-EOMCCSDT methods of (70,75, 76]
is that they include the important 3p-2h and 3h-2p components in the electron-
attaching and ionizing operators, respectively, without suffering from the expensive
ngnz scaling characterizing the ground-state CCSDT calculations required by EA-
EOMCCSDT and IP-EOMCCSDT. Here, no (ny) is the number of spin-orbitals oc-
cupied (unoccupied) in the reference determinant |®). As it turns out, in most cases

the 3p-2h and 3h-2p effects in RLNH) and RLN_I), respectively, play a much more
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significant role than the triply excited (T73) components of the cluster operator T,
and it is usually not necessary to include the T3 clusters in T until the 4p-3h and
4h-3p effects become important (see [85-88,172] for further discussion, analysis, and
several numerical examples). Thus, in many situations, particularly those involving
electronic excitations in radicals [85-88], there is a lesser need for using T3 in the
EA-EOMCC/IP-EOMCC calculations at the 3p-2h/3h-2p level of theory. In all these
cases, one can safely rely on our EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p)
approaches, in which T' = T} +T», rather than their more expensive EA-EOMCCSDT
and IP-EOMCCSDT counterparts of [70,75,76], in which T =Ty + T3 + T3. On the
other hand, even the simplified EA- and IP-EOMCC models with 3p-2h and 3h-2p ex-
citations, such as the EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) approaches
of [85-87], have limited use due to the n2n3 or n3nd iterative steps involved in the
diagonalization of the similarity-transformed Hamiltonian in the space of |®%), |<I>“;-’ )s
and |<I>a;-’,€) or |®;), |®i;’)>’ and |(I>l;’fc) determinants, respectively. This prompts the
need for the development of EA- and IP-EOMCC approaches in which the computer
costs of incorporating the 3p-2h, 3h-2p, and other higher than 2p-1h and 2h-1p ex-
citations are substantially reduced. The key idea is to reduce the computer costs of
EA- and IP-EOMCC methods with higher than 2p-1h and 2h-1p excitations without
sacrificing the accuracy characterizing these higher-level schemes, which is the basis

for the active-space EA- and IP-EOMCC approaches discussed in the next section.

Before moving on, it should be emphasized that, up to some details with respect
to approximations and computer implementation, the above equations also describe
the historically older electron-attached and ionized variants of the SAC-CI approach
of Nakatsuji et al. [78-83]. As a result of these mathematical similarities, the develop-
ments in this work, including the extension of the active-space CC/EOMCC method-
ologies to electron-attached and ionized states, apply to the SAC-CI approach as well

as the EA- and IP-EOMCC methods. Furthermore, as will be seen in Section (2.2),
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we make direct use of the SAC-CI scheme in order to study the effects of higher-than

3p-2h and higher-than 3h-2p correlation effects in studies of radical systems [88].

2.1.2 The Active-Space EA- and IP-EOMCC Methodologies

The EA-EOMCC and IP-EOMCC theories provide a convenient formalism for study-
ing radicals and other open-shell systems around closed shells, but they are not with-
out their limitations. It has been shown, for example, that in order to get an accurate
description of the excitation spectra [85-88,172] and the ground- and excited-state
potential energy surfaces [86,88] of radical species, one must include higher than 2p-1h
and higher than 2h-1p components in the electron-attaching and ionizing operators
(see, e.g., [82,88] for similar findings within the context of SAC-CI). Unfortunately,
as mentioned in Section 2.1.1, the inclusion of such terms can significantly increase
the computational costs involved, restricting the use of the resulting schemes to rela-
tively small systems. One approach for reducing the costs of including the higher than
2p-1h and higher than 2h-1p effects, without sacrificing the accuracy associated with
such terms, is to use the active-space variants of the EA-EOMCC and IP-EOMCC
methodologies, which were developed as part of this work [85-87], and which are
particularly well suited for calculations of the electronic excitations in radicals.

It is well-known that the radical formation process is generally dominated by a
small subset of orbitals. Indeed a radical can often be obtained, at least at the zero-
order level, by attaching an electron to one of the lowest-energy unoccupied orbitals
or removing an electron from one of the highest-energy occupied orbitals of the re-
lated closed-shell system (see Figure 2.1). The fundamental idea of the active-space
EA- and IP-EOMCC approaches is to use these dominant orbitals (which in anal-
ogy to the genuine multi-reference approaches can be viewed as active orbitals) to
a priori select the most important higher than 2p-1h and higher than 2h-1p compo-

nents of the electron-attaching and ionizing operators that enter into the EA-EOMCC
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and IP-EOMCC formalisms, neglecting the rest in the calculation. In this way, one
considerably reduces to the dimension of the resulting eigenvalue problem while still
maintaining the high accuracy characterizing the higher-level EA- and IP-EOMCC

approximations.

We begin our formal discussion of the active-space EA-EOMCC and IP-EOMCC
methods by dividing the available spin-orbitals into four disjoint groups: core spin-
orbitals (i, j, k, ...), active spin-orbitals occupied in the reference determinant |$)
(I, J, K, ...), active spin-orbitals unoccupied in the reference |®) (A, B, C, ...),
and virtual spin-orbitals (a, b, c, ...). We continue to label occupied and unoc-
cupied spin-orbitals by the italic characters i, j, k, ...and a, b, ¢, ...respectively,
if their active/inactive character is not specified. This orbital classification scheme

)

can be used to redefine the electron-attaching and ionizing operators, RLNH and

R,(,N—l) , respectively, in order to restrict the excitations that are included in the
active-space calculations. For example, in the most basic active-space EA- and IP-
EOMCC approximations, which can be thought of as the active-space variants of
the EA-EOMCCSD(3p—2h) and IP-EOMCCSD(3h-2p) schemes discussed in Section
2.1.1 and which we refer to as EA-EOMCCSDt and IP-EOMCCSDt, we define the

electron-attaching and ionizing operators as

N+1
RO(CCSDL) = Rypip + Rugp1h + Tuspah (2.12)
and
(N-1)
R# (CCSDt) = Rp,lh + R;t,?h—lp + T 3h-2p- (2.13)

Here the Ry, (41)p-nh @0d R, (n41)h—np terms with n = 0 or 1 are defined as in
Eqgs. (2.7) and (2.8) while the “little r” 3p-2h and 3h-2p components are defined by:

— Jk A b , )
Tu3p-2h = Z TAbe @ 0 a‘aga; (2.14)

ji>k,A<b<c
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and

Lik b
Ty 3h-2p = Z r l])ca aarajay. (2.15)
I>j>kb<e
Using these definitions of R,(LNH) and RLN_I), we solve Eq. (2.9) in the subspace

of #(N+1) gpanned by the |$%), |<I>“2), and IQA]bﬁ) determinants (the EA-EOMCC
case) or in the subspace of #(NV=1) spanned by the |®;), |, Jb), and |fI>I;?j;) determi-
nants (the IP-EOMCC case). As immediately implied by the above definitions, the
EA- and IP-EOMCCSDt schemes provide significant computational savings relative
to the full inclusion of the 3p-2h and 3h-2p components in the electron-attaching
and ionizing operators. In particular, the EA-EOMCCSDt approach reduces the
expensive n2nd steps required to diagonalize H N,open in the EA-EOMCCSDT and
EA-EOMCCSD(3p-2h) approximations to the CCSD-like Nungnﬁ steps, where N,
(< ny) is the number of active orbitals unoccupied in the reference determinant |®).
Similarly, the IP-EOMCCSDt method reduces the ngnﬁ steps required to diagonalize
H Nopen in the IP-EOMCCSDT and IP-EOMCCSD(3p-2h) approximations to the
CCSD-like Nongnﬁ steps, where N, (< n,) is the number of active orbitals occupied

in |P).

The actual form of the similarity-transformed Hamiltonian, H N,open, that is di-
agonalized in the active-space EA-EOMCC and IP-EOMCC methods depends on the
truncation scheme for the cluster operator T used in the parent approximation. For
instance, if one were to derive the EA-EOMCCSDt and IP-EOMCCSDt methods from
the EA-EOMCCSDT and IP-EOMCCSDT schemes of [70,75,76], than the similarity-

transformed Hamiltonian of the underlying CCSDt approach [95-98, 101, 106-108],

f7(CCSDt) _ eT(CCSDt)

Nopen = (Hyn )C,open» Would be used. The cluster operator defining the

CCSDt approximation is given by

T(CCSDY) — Ty + T, + 1, (2.16)
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with

tg = Z tkfc aAabacakajaI. (2.17)
I>j>k,A<b<c

This approach reduces the costly ngng steps characterizing the underlying CCSDT
calculation required by the EA-EOMCCSDT and IP-EOMCCSDT approximations
to the much more manageable N, Nyn2n4 steps of CCSDt. However, since there are
many cases where there is little need for including T3 at the 3p-2h/3h-2p level of
the EA/IP EOMCC theory (as discussed in Section 2.1.1), it is possible to further
reduce these costs by using the simpler and less expensive EA-EOMCCSD(3p-2h)
and IP-EOMCCSD(3h-2p) schemes as parent approximations for the active-space
work, as is done throughout this thesis. The resulting EA-EOMCCSDt and IP-
EOMCCSDt methods, the efficient implementation of which is discussed in the next
section, diagonalize the similarity-transformed Hamiltonian of the CCSD approach,

7(CCsD)

Nopen — (HN6T1+T2)C,open =e™ 1 _T2HN6T1+T2- (2.18)

As a result, the underlying ground-state calculation for the N-electron system, which

generates the cluster amplitudes used in constructing H (CCSD)

N open ® requires only the

inexpensive n2nd steps associated with the standard CCSD method. Given that
it is generally true that N, < no, and N, < ny, the final result is that the EA-
and IP-EOMCCSDt schemes developed in this work have computer costs that are
only a small prefactor times those of the relatively inexpensive CCSD approach. For
example, one can obtain excellent EA-EOMCCSDt results for the ground and excited
states of the CH radical using only the 17z, 17y, and 40 valence orbitals of CH?' as
active orbitals (N = 3), which is much less than the typical numbers of unoccupied
orbitals that one would have to use in the parent EA-EOMCCSD(3p-2h) calculations
for CH. Similarly, one obtains the excellent IP-EOMCCSDt results for OH using only

the valence orbitals of OH™ as active orbitals, which are fewer in number than all
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occupied orbitals. This reflects on the simple physical picture shown in Figure 2.1
where the low-lying states of CH and OH are dominated by attaching an electron to
oT removing an electron from one of the valence orbitals of the corresponding CH*
and OH™ closed-shell species while relaxing the remaining electrons through single

( 1p-1h) and double (2p-2h) excitations.

The above process of selecting higher than 2p-1h and 2h-1p excitations via active
orbitals can be used to define higher-order active-space EA- and IP-EOMCC approx-
irmations. For instance, in the EA-EOMCCSDtq and IP-EOMCCSDtq approaches
we define [85]

N+1
RM*(CCSDta) = Ryytp + Ryuop1h + Tuspah + Tuap-sh (2.19)
and
(N-1)
R, (CCSDtq) = Ry 1 + Ry oh-1p + Tp3h-2p + Tu,dh-3p> (2:20)

~here 1, 35, 9, and 1, 359, have the same mathematical form as in Eqs. (2.14) and

(22.15), and
Jkl A B c.d
Ty dp-3h = Z TABed @ @ a‘aajaray, (2.21)
J>k>l,A<B<c<d
and
Wkl B c d
Ty 4h-3p = Z T'Beg @ a‘a’ajagajay. (2.22)
I>J>k>!,B<c<d

“We then diagonalize the similarity-transformed Hamiltonian of either the CCSDtq
[©97-100,103, 106] or CCSDt [95-98,101,106-108] theory in the subspace of H(N+1)
Sp>anned by the |$2), |<I>a§), |<I>‘§l;€°), and |¢A?kcld) determinants (the EA-EOMCC
<ase) or in the subspace of #(N~1) spanned by the |®;), |<I>i;~’), |<I>I;?i), and |<I>II},‘;‘11)
determinants (the IP-EOMCC case). One can also extend the active-space ideas
to  the multiply attached and multiply ionized EOMCC schemes (cf., e.g., [91-93))

W here we diagonalize the similarity-transformed Hamiltonian of an N-electron, closed
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shell system in the suitably defined (N % v)-electron subspaces of the Fock space,
where v > 2. For example, the active-space DIP-EOMCC approximations, where
v = 2, can be obtained by considering the various truncations of the following ionizing

operator [85]:

(N 2 _ 21”(1](1, +ar ik g aka;ja;

+ Z IJH acadalakaJaI
I>J>k>lc<d

+ Z IJ(Iﬂm aCada ‘amajaKajaoy
I>J>K>I>m,C<d<e
oo, (2.23)

A\ similar operator can be constructed for the active-space DEA-EOMCC methods.
A\l of the resulting approaches offer considerable reduction in the CPU timings and
(Nzv)

xaumbers of r amplitudes that define the corresponding R, operators, when com-
>ared to the corresponding parent methods. At the same time, the active-space EA,
IDEA, IP, DIP, etc. EOMCC approaches are systematic in a sense that they naturally
x educe to the parent EA, DEA, IP, DIP, etc. EOMCC schemes when all orbitals in the
xxolecular orbital basis are active. This natural and straightforward relationship be-

tween the parent CC/EOMCC approach and its active-space variant is characteristic

Of all active-space CC/EOMCC methods [28,29,97-101,103-111].

=2.1.3 Key Details of the Efficient Computer Implementation
of the Active-Space EA-EOMCCSDt and
IP-EOMCCSDt Approaches

Ina this section, we discuss our highly efficient implementations of the active-space

FE_A —-EOMCCSDt and IP-EOMCCSDt schemes discussed in Section 2.1.2, and the

Corresponding factorized equations in terms of recursively generated intermediates
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that lead to the vectorized computer codes through the use of fast matrix multipli-
cation routines from the BLAS library. Our EA- and IP-EOMCCSDt codes, which
are interfaced with the RHF/ROHF and integral routines available in the GAMESS
software package [173], can be broken down into three major components. In the
first step, we solve the usual CCSD equations for the ground state of the N-electron
reference system in order to obtain the singly and doubly excited cluster amplitudes,
tf, and tij , respectively. In this work, we usually use the RHF-based CCSD closed-
shell codes described in [174], which are included in GAMESS, since our main fo-
cus is on applications of the EA/IP-EOMCCSDt methods to open-shell species that
are obtained by the attachment of one electron to or removal of one electron from
the N-electron closed-shell species. However, we also have an option of using the
more general CCSD codes for both the closed-shell and open-shell systems using the
ROHEF reference, also included in GAMESS [138], in case we want to perform the
EA/IP-EOMCCSDt calculations for cases where the N-electron reference system is
an open-shell itself. In the next step, we use the converged tfz and tZ) amplitudes to

construct the one- and two-body matrix elements of the CCSD similarity-transformed

Hamiltonian ﬁfggpi?, ’_lg and l—z;',z, respectively, which define the one- and two-body
- (CCSD)

components of within the second quantized formalism,

N,open

a{CSP) — Regpa,, (2.24)

and

ﬁéCCSD) = l—z;ZN[apaqasar], (2.25)

respectively (/N[...] is the normal product of the operators between the brackets). The
explicit equations defining these matrix elements in terms of the one- and two-electron
molecular integrals of the Hamiltonian, f7 = (p|f|g) (f is the Fock operator) and

Upg = (pglv|rs) — (pqlv|sr) (v is the electron-electron interaction), respectively, and
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the CCSD cluster amplitudes, which have also been presented in [9,10,132,140,175],
can be found in Table 2.1.

In the final step, which is the focus of this section, we use the converged CCSD

+(CCSD)
N,open

struct the EA-EOMCCSDt and IP-EOMCCSDt equations, which are then solved

cluster amplitudes and the one- and two-body matrix elements of to con-
using the Hirao-Nakatsuji generalization [176] of the Davidson diagonalization algo-
rithm [177] to non-Hermitian eigenvalue problems of the type represented by Eq.
(2.9). Let us recall that the EA-EOMCCSDt equations are obtained by replacing

AN opon 80d RS TV in Eq. (2.9) by A\CooD)

CoS2) Eq. (2.18), and R TV (COSDY), Eq.

(2.12), and projecting the resulting equation on the |$%), |<I>a§?), and |<I>A]I-’fc') deter-
minants. Similarly, the IP-EOMCCSDt equations are obtained by replacing H N,open
(N-1) - (CCSD)

and Ry, in Eq. (2.9) by H

N,open °’ Eq. (2.18), and RLN—I)(CCSDt), Eq. (2.13),

and projecting the resulting equation on the |®;), |®; Jb), and IQI;?,CC) determinants. In
this step, we make use of the explicit, factorized form of the equations defining the
EA-EOMCCSDt and IP-EOMCCSDt eigenvalue problems in terms of the molecular
integrals of the Hamiltonian fg and v,r,;;, the CCSD cluster amplitudes tfl and tz),
and the rq, 7 a{;, and r AJI: amplitudes defining the relevant electron-attaching opera-
tor or the r?, ri{, and rlzf amplitudes defining the relevant ionizing operator (cf. Egs.
(2.12)-(2.15)). These equations, along with the formalism by which they are derived,
following [87], will be discussed next. Following this discussion, the details of the

computer implementation of these equations will be described in detail.

In order to derive the EA- and IP-EOMCCSDt equations, we begin with the work-
ing equations defining the parent EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3A-2p)
approximations, which are presented in Appendix A. It is worth noting that these
equations were also presented in an alternative form in [85]. It should be empha-

sized that the equations found in [85] are mathematically equivalent to the analo-

gous equations found in Appendix A. The differences are the result of the fact that
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Table 2.1: Explicit algebraic expressions for the one- and two-body matrix elements

of I?I(\fgpig) (hj and RS, respectively) taken from [132,140).

Intermediate Expression®

A o + it

R 4 olntm + Joehald + heed

R 15 — Ryt

hes Vg = Upeitd

’_Lgl vlkja + vfj‘-lt’g

i o+ Bt — Bty o

R oft 4+ Juff ekl — Rletk + ofel

Mo 13— ofmtla’ = Bt

i o+ gt = Bis '+ T~ i+
bmtgf731 - vg%ltz;;n + ?h';lc"lt:ll;)n

R -
et + I eé — Yol el

Itlxb S (Iz) + Ugfnt:;n

I(Iz) Itlzb - %Uﬂz’ntg(lin

Ly oy + vt

® Summation over repeated upper and lower indices is assumed. f; = (p|flg) and
Upg = (pqlv|rs) — (pql|v|sr) are the one- and two-body matrix elements of the Hamil-
tonian in the normal-ordered form (one- and two-electron integrals), and the t}
and t:ljb are the singly and doubly excited cluster amplitudes defining the ground-
state CCSD wave function of the N-electron reference system. The antisymmetrizer
7% = 1 — (jk), where (jk) is the transposition of indices j and k (sce, also Eq.
(2.94)).
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the equations presented in [85] are in a form that is ideal for implementing the full
EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) schemes, while the equations pre-
sented in Appendix A are in a form which is a good starting point for deriving
the computationally efficient form for the equations defining the active-space EA-
EOMCCSDt and IP-EOMCCSDt approaches that in the majority of applications use

small subsets of the r b abe and r” k

(V+1) g V4D

amplitudes defining the 3p-2h and 3h-2p compo-

nents of Ry , Tespectively.

Generally, the explicit EA-EOMCCSDt and IP-EOMCCSDt equations are ob-
tained by applying the active-space restrictions on the spin-orbital indices defining
the |<I>“ k) and |9, ; k> determinants and on the indices defining the corresponding r 7k
and r° bc amphtudes, as described in Section 2.1.2, to each term of the parent EA-
EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) equations, as presented in Appendix
A. In order to illustrate the inner workings of this procedure, which is based on the
general principles laid down in [97], we derive a few typical terms which enter into
the EA-EOMCCSDt equations. We begin by analyzing the following contribution to
Eq. (A.3) in Appendix A, corresponding to the projection on |<I>a?fc), which we label<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>