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one of the best methods in this category, termed CR—CC(2,3) or CR—EOMCC(2,3),

in which a noniterative correction due to triple excitations is added to the CCSD or

EOMCCSD energy, and its higher-order CR—CC(2,4)/CR—EOMCC(2,4) approach, in

which a noniterative correction due to triple and quadruple excitations is added to

the CCSD/EOMCCSD energy, to open-shell systems. In this thesis the theoretical

details of all of these new methodologies as well as a sample of benchmark examples

that illustrate their performance in studies of ground and excited states of open-shell

molecular systems are discussed. In addition, since there is nothing in the underlying

theoretical framework specific to electronic structure, the CC approaches developed

in this thesis are not restricted to molecular cases and can be applied to other many-

fermion systems, such as atomic nuclei. Representative examples of applications of

the new CC methods developed in this thesis research in the context of quantum

chemistry to studies of nuclear structure are given as well.



ABSTRACT

COUPLED-CLUSTER METHODS FOR OPEN-SHELL MOLECULAR

AND OTHER MANY-FERMION SYSTEMS

By

Jeffrey R. Gour

The description of the electronic structure of radicals and other open—shell molecu-

lar systems represents a significant challenge for current theoretical methodologies.

Since the low-lying electronic states of open-shell species often possess a manifestly

multi-determinantal character, it is difficult to perform calculations for these systems

that are both highly accurate and practical enough to be applied to a wide range of

chemical problems of interest. To overcome these difficulties, we have developed two

new classes of coupled-cluster (CC) methods, which are capable of accounting for the

high-level electron correlation effects that characterize open-shell systems at a rela-

tively low computational cost. The first class of methods, the active-space variants

of the electron-attached (EA) and ionized (IP) equation-of—motion CC (EOMCC)

theories, utilize the idea of applying a linear electron-attaching or ionizing opera-

tor to the correlated, ground-state CC wave function of an N-electron closed-shell

system in order to generate the ground and excited states of the related (N :l: 1)—

electron radical species. Furthermore, these approaches use a physically motivated

set of active orbitals to a priori select the dominant higher-order correlation effects to

be included in the calculation, which significantly reduces the costs of the high-level

approximations needed for obtaining accurate results for open—shell species without

sacrificing accuracy. The second class consists of the size extensive, left-eigenstate

completely-renormalized (CR) CC approaches based on the biorthogonal formulation

of the method of moments of CC equations, in which noniterative corrections due

to higher-order excitations are added to the energies obtained with the standard CC

approximations, such as CCSD (CC with singles and doubles). We have extended

 ‘
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Chapter 1

Introduction

The single-reference coupled—cluster (CC) theory [1—5] is widely regarded as the pre-

eminent ab initio approach for studying chemical systems. The success of the CC

methodology, and its extension to excited states through the equation-of-motion

(EOM) CC formalism [6—10] or its symmetry-adapted-cluster configuration—interaction

(SAC-CI) [11415] and linear response CC [16—20] analogs, lies in its ability to effi-

ciently account for the many-electron correlation effects, the consideration of which

is essential for obtaining an accurate description of a molecular system. As is true

of other single-reference quantum theories based on the idea of expanding the many-

electron wave function in a basis of molecular orbitals, the conventional CC method-

ology builds correlations into the wave function through excitations out of a single

reference determinant. The advantage of the CC theory over other formalisms is that

it uses an exponential excitation operator to describe these correlation effects, and so

it is able to account for additional excitations, not explicitly included in the calcula-

tion, through the product or so—called ‘disconnected’ excitations. For instance, if one

were to include only operators that create singly and doubly excited configurations

out of the reference in the CC calculations, the various products of these components

that result from expanding the exponential in a Taylor series lead to some triple,
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quadruple, pentuple, etc. excitations also being accounted for without increasing

the computer costs. As a result, the CC formalism provides an optimum balance

between high accuracy and relatively low computer effort, making it an ideal the-

ory for studying many molecular systems, and for further electronic structure theory

advances.

Despite the success of approaches based on the CC theory over the years, there

are a number of open issues in the CC methodology, one of which is the adequate

description of open-shell systems. Due to their high reactivity and importance as

chemical intermediates and magnetic systems, open-shell molecular systems, such as

radicals and biradicals, play a significant role in chemistry, and as such a theoret—

ical understanding of such species would be invaluable for many areas of chemical

research. Unfortunately, such systems still represent a major challenge for modern

electronic structure theories, and the CC theory is no exception. The source of the

difficulty stems from the types of many-electron correlation effects that define the

electronic structure of open-shell systems, particularly those where chemical bonds

are stretched or broken. In general, the many-electron correlations can be classified

into two types, dynamical and nondynamical. The former refers to the correlations

that result from the short-range interactions whereby electrons instantaneously avoid

each other, and are mathematically included in the wave function via excitations out

of a reference state. As indicated by the above explanation, the CC theory has few

problems with this type of correlation effects. The nondynamical (sometimes referred

to as static) correlation effects, on the other hand, are long-range effects stemming

from the multi—configurational character of systems having quasidegenerate electronic

states (i.e. states that are close in energy). This means that for states characterized

by large nondynamic correlations, a single Slater determinant is not a good refer-

ence for the many-electron wave function, and so multiple determinants must be

used to create a reference function on top of which dynamical correlations can be
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built. As it turns out, the majority of open-shell systems, particularly when they un-

dergo chemical transformations or when they are electronically excited, display such

a multi-reference character, and so methodologies that are capable of providing an ac-

curate and balanced description of both dynamical and nondynamical many—electron

correlation effects are needed to accurately describe them.

Unfortunately, the basic, low-order CC approaches, including the CCSD (CC with

singles and doubles) approach [21—24], and its excited-state EOMCCSD [7—9], SAC-

CI-SD—R [11—15], and linear response CCSD [19,20] analogs, have difficulty balancing

these types of correlation effects, and thus the accurate description of the low-lying

states of open—shell systems is a major challenge for such approaches. Even the pop-

ular CCSD(T) approach [25], in which a noniterative, quasiperturbative correction

due to triply excited clusters is added to the energy obtained with CCSD, has prob—

lems describing such systems. Though it is known to offer an excellent description

of dynamical correlation effects, which provide a near perfect description of closed-

shell systems near the equilibrium geometry, CCSD(T) fails to properly account for

nondynamical correlation effects. The full CCSDT (CC with singles, doubles, and

triples) [26,27] and EOMCCSDT [28—30] approaches, which were recently extended to

open-shell systems [31], are able to better balance the dynamical and nondynamical

correlation effects, and thus are capable of producing high quality results for many

open-shell situations, but the computational costs of such schemes are extremely

high, restricting their use to small systems with only a few light atoms (a dozen or

so correlated electrons). In contrast, CCSD(T) can nowadays be routinely applied to

systems with up to about 100 correlated electrons and a few hundred basis functions

within a canonical formulation, and one can go to systems with hundreds of corre-

lated electrons and thousands of basis functions when one uses the local correlation

formulation [32—44]. Thus in order to accurately study a wide range of open-shell

problems of interest, alternatives to the standard single-reference CC methods that
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are not much more expensive than CCSD(T) are needed.

One of the main reasons that properly accounting for both dynamical and nondy—

namical correlations within the standard CC truncation hierarchy requires high-level,

and computationally expensive, approximations is the single—reference nature of these

schemes. Indeed single determinants are bad starting points for the description of

manifestly multi-reference states, such as those found in open-shell systems. As a

result, the only way to properly describe such systems within the standard CC trun-

cations is to compensate for the bad start and account for nondynamical correlations

dynamically, i.e. through the inclusion of higher-order excitation effects. Based on

this analysis, an obvious solution is to simply start from a better reference state that

accurately accounts for the nondynamical correlations in the system, leaving only

the remaining dynamical correlations to be described by the exponential excitation

operator. This is the basic idea behind the genuine multi-reference (MR) CC theories

of either the valence-universal [45,46] or state-universal [47] type, for which an expo-

nential excitation operator is applied to a multi-determinantal reference in order to

generate the wave functions for the desired many-electron states. At first glance, this

would seem like the ideal solution for open-shell systems, as it properly balances non-

dynamical (through the multi-determinantal reference state) and dynamical (through

the exponential ansatz) correlations without the use of high-order excitations in the

wave operator that transforms the zero-order reference states into the target wave

functions. Unfortunately, these formalisms are not without their own problems. In

particular, the genuine MRCC approaches of the above two types face issues related

to unphysical [48—50] and singular [48,49,51—54] solutions, intruder states [48,49,52],

and intruder solutions [48,50], all of which can cause convergence problems as well

as other complications in the MRCC calculations and the ensuing analysis of the

results. Furthermore, there are potential difficulties related to the size and choice

of the multi-dimensional reference space for certain types of systems. Indeed, the
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configurations included in the complete multi-dimensional reference space are gener-

ally determined via all possible rearrangements of the occupancies of a selected set of

molecular orbitals composing what is referred to as the active space. Unfortunately,

the size of such a reference space grows factorially with the number of active orbitals

and electrons, and so choosing a proper active space for a given system can be a

difficult task requiring a great deal of expertise. In fact, it is possible that for some

systems, such as those containing transition metal atoms that have a large degree

of quasidegeneracy due to the open f or g shells, the appropriate active space may

result in the MRCC calculation being prohibitively expensive. In addition, the com-

plicated formalism associated with the genuine MRCC theories makes it difficult to

implement highly—efficient, general-purpose computer codes that can be applied to a

wide range of open-shell problems. Recently, there has been a great deal of progress

and renewed interest in overcoming the above issues and further developing both the

valence-universal and state-universal MRCC approaches [48,55—67]. However, despite

these developments, we feel that, due to the complications arising from a genuine MR

formalism, it would be ideal to investigate the possibility of overcoming the difficulties

facing the standard single-reference CC schemes in calculations involving open-shell

systems within the formally simpler single-reference framework.

One methodology that may provide a mechanism by which to address the chal-

lenges posed by open-shell systems within a single-reference formalism is that of the

electron-attached (EA) [68—70] and ionized (IP) [71—77] EOMCC theories, and the

analogous and historically older EA and IP SAC-CI methods [78—84]. The basic

idea behind these methodologies is to construct the ground- and excited-state wave

functions of an (N :l: l)—electron system by applying a linear electron-attaching or

ionizing operator to the correlated CC ground state of an N-electron closed-shell

system. This wave function definition leads to a natural and con'iputational1y con-

venient formalism for studying ground and excited states of open—shell systems, such
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as radicals, that differ from the corresponding closed-shell species by one electron.

Fhrthermore, the use of the closed-shell N—electron reference state in calculations

for the (N :l: 1)-electron systems ensures that the resulting wave functions are auto-

matically orthogonally spin-adapted, and thus EA— and IP-EOMCC approaches do

not suffer from the spin contamination issues that may arise in the traditional open—

shell implementations of the conventional CC or EOMCC approximations that rely

on the unrestricted Hartree—Fock (UHF) or restricted open-shell HF (ROHF) refer-

ence determinants. Unfortunately, as was the case for the regular CC and EOMCC

methodologies, the basic, low-order EA- and IP-EOMCC approaches, which include

the EA-EOMCCSD [68,69] and IP-EOMCCSD [71—74] approximations, and their EA

and IP SAC-CI analogs truncated at 2-particle—1—hole (2p—1h) and 2-hole—1-particle

(2h-1p) excitations [78—84], have significant difficulties with describing the excita-

tion spectra of most radicals [68, 84—89]. One can address these deficiencies through

the inclusion of higher-order components of the electron-attaching or ionizing oper-

ators, such as the 3p—2h or 3h-2p excitations, which gives rise to schemes such as

EA-EOMCCSDT [70], IP-EOMCCSDT [75,76], EA-EOMCCSD(3p—2h) [85—87], IP-

EOMCCSD(3h-2p) [85—87], EA-EOMCCSDTQ [90] and IP-EOMCCSDTQ [90] as

well as their less complete SAC-CI analogs [81—83, 88]. Though these schemes are all

capable of providing high quality results for radical systems, the associate compu-

tational costs are usually prohibitively high, restricting their use to relatively small

systems.

Given how well suited the EA- and IP-EOMCC methodologies, as well as their

multiply-attached and multiply-ionized counterparts (e.g., the doubly electron-attached

(DEA) and doubly ionized (DIP) EOMCC approaches [91-93]) are for studying rad-

icals and other open-shell systems, it has been our goal to develop a new formula-

tion of these schemes that maintains all the good attributes of such methods while

avoiding the high computer costs associated with including higher-than 2p-1h/2h-1p
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effects. An idea for how to develop such a formulation is provided by the so-called

active-space CC [94—108] and EOMCC [28,29,109—111] approaches. In these and

related schemes [112—119], the multi-reference concept of active orbitals is used to

a priori select the dominant triply and other higher-than-doubly excited clusters in

the standard CC/EOMCC calculations. In this way, the computational costs associ-

ated with the high-order CC/EOMCC approximations are greatly reduced, since the

vast majority of the higher-than—double excitations are not included in the calcula-

tions, and the characteristic high accuracy of the high-order CC/EOMCC schemes

is maintained at the same time. Indeed, the lowest-order active-space CC meth-

ods, such as SSMRCCSD(T) (state-selective MRCC with singles doubles and active—

space triples) [97—105] or CCSDt [106—108], and their excited-state EOMCCSDt ana-

log [28, 29, 109], have shown promising results, even for challenging cases involving

bond breaking [95,96,100,101,104—108] or excited states dominated by two-electron

transitions [28, 29,109—111]. Thus, it would seem that combining the active-space

CC methodology with the EA- and IP-EOMCC formalisms is a natural mechanism

for developing an approach capable of performing highly accurate calculations for

radicals at a relatively low computational cost. The development and benchmarking

of such active-space EA- and IP-EOMCC approaches, in which higher-than 2p—1h

and higher-than 2h— 1p components of the electron-attaching and ionizing operators,

respectively, are selected through the use of a suitably defined set of active orbitals,

is one of the primary goals of this dissertation, and is discussed in Chapter 2.

Despite the initial successes and considerable promise of the active-space EA-

and IP-EOMCC formalisms in studies of the excitation spectra of open-shell systems

developed as part of this work, we must remember that no method is bullet-proof.

Indeed, the use of the multi-reference concept of active orbitals means that these

methods are not ‘black-box’; they require some a pmior‘z' analysis by the user of the

nature of the electronic states of interest before performing the calculation. Though
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this difficulty is not nearly as severe in the active-space methods as it is in the genuine

MRCC theories, primarily due to the fact that the computer costs of the active-space

schemes, including the EA- and IP-EOMCC approaches developed in this thesis re-

search, scale polynomially with the size of the active space rather than exponentially,

they are still somewhat more difficult to use than the conventional single-reference

CC methods. Furthermore, the structure of these theories is such that they are

not generally applicable to all types of open-shell systems. Indeed if one wants to

study open-shell systems that are M-electrons away from some closed-shell system,

then a different hierarchy of methods must be used for each value of M. The EA-

EOMCC and IP-EOMCC schemes described in this dissertation are applicable to the

case of M = 1, which includes the majority of radicals and positively or negatively

charged ions of closed—shell atoms and molecules. If one wants to examine systems

that are two electrons away from a closed-shell, including biradicals, schemes such

as the DEA- and DIP-EOMCC methods and their active-space variants [85] must be

implemented and applied, etc. Furthermore, the applicability of approaches based

on adding or removing M electrons from a closed-shell species to open-shell systems

where M > 2 may become questionable since as one moves further away from the

closed-shell system, the electronic similarities between the two decrease. As a result of

these potential complications, alternative, and perhaps even complimentary, methods

for studying open-shell systems would be useful. Indeed, part of the success and pop-

ularity of the CCSD(T) approach is that it is able to produce highly accurate results

for systems primarily described by dynamical correlations with both reasonably low

computational costs and an easy-to—use black—box nature. It is this nature that has

allowed CCSD(T) to be so easily accessible to both experts and non-experts alike.

Given these remarks, the development of a robust formalism that maintains the com-

putational costs and ease-of—use of CCSD(T) while better balancing both dynamical

and nondynamical correlation effects than CCSD(T) would be a good alternative to

 

 



active-space EA- and IP-EOMCC methods for accurate studies of open-shell systems.

An excellent candidate for such a methodology is presented by the completely

renormalized (CR) CC and EOMCC methods [120—140], particularly the recent vari-

ants based on the so-called biorthogonal method of moments of coupled-cluster (MMCC)

equations [133—140]. These approaches represent a new class of CC schemes based

on adding noniterative corrections to the standard CC or EOMCC energies, which

are designed to improve on the performance of CCSD, CCSD(T), and EOMCCSD in

situations involving larger nondynamical correlations while maintaining similar costs

and ease of use. Furthermore, these methods have a natural hierarchy for construct-

ing corrections for truncations besides CCSD and due to higher-than-triple excita-

tions, as well as a natural extension to excited states. One of the most promising

methods of this type is the CR—CC(2,3) approach [133—140], which, in analogy to

CCSD(T), is based on adding a noniterative correction due to triple excitations to

the ground-state CCSD energy. Various applications of this scheme have revealed

that it is capable of producing high quality results in studies of single bond breaking

and biradical structures on singlet potential energy surfaces [133-135,137,141—147],

while offering excellent values for activation barriers in thermochemical kinetics stud-

ies [148,149]. Indeed, for situations where the structure is dominated by dynamical

correlations, CR—CC(2,3) is as accurate as CCSD(T), but, unlike CCSD(T), it main-

tains these high accuracies as one moves onto structures characterized by stronger

nondynamical correlation effects, such as biradicals or the bond-breaking regions of

a potential energy surface. This success for singlet states characterized by large

nondynamic correlation effects begs the question of whether CR—CC(2,3), and its

excited-state CR-EOMCC(2,3) analog, would perform equally well in calculations in-

volving open-shell systems, such as bond breaking and excited states of radicals, and

singlet-triplet gaps in biradicals. In addition the question as to how well higher-level

CR—CC schemes, such as the CR—CC(2,4) approach which corrects the CCSD energy
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for the effects of both triples and quadruples, would perform. To address these ques-

tions, the CR—CC(2,3) scheme was extended to general open-shell systems [138] and

excited states [135,140], and a general purpose CR—CC(2,4) code, applicable to both

closed— and open-shell systems, was implemented as part of this research. The details

of these methodologies as well as the results of selected applications to open-shell

systems, reported in [138—140, 150,151], are presented in Chapter 3.

Up until this point, all of the discussion regarding the CC theory and its applica-

tions to open-shell systems has been in the context of quantum chemistry. However,

there is nothing intrinsic in the CC wave function ansatz, nor in the formulation of

the various CC methods studied in this work, that restricts their use to chemical sys-

tems. Indeed, the underlying physics governing any many-fermion problem, whether

they be chemical, nuclear, or condensed matter to name a few, is fundamentally the

same, and it is only the form of the potential in which the fermions move that varies.

In fact, though the major developments of the methodology have occurred in the

context of quantum chemistry, the CC theory was actually first suggested within the

field of nuclear physics [1,2], and it is our belief that a reintroduction of CC ap-

proaches within nuclear physics would benefit the study of the structure of nuclei.

Indeed, two of the main techniques for studying nuclear structure, namely the Green’s

function Monte Carlo [152] and no—core shell-model [153—156], though successful in

providing highly accurate results, suffer from extremely high computational costs and

so are limited to light nuclei with a dozen or so nucleons at best. In order to study

medium-mass and heavy nuclei, methods that better balance accuracy and computa-

tional cost are needed, and, as discussed above, such a balance is precisely the origin

of the success of the CC theory in quantum chemistry. Furthermore, due to the fact

that the shell structure of nuclei is very similar to that of atoms and thus displays

a large amount of degeneracy, the majority of nuclei are open-shell n‘iany-fermion

systems characterized by large nondynamical correlation effects. As a result, the
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methods developed and studied in this work, which are designed specifically for prop-

erly describing open-shell systems while requiring reasonably low computer costs, are

particularly well-suited for studies of nuclear structure. Thus, as a final component

of this dissertation, selected results of CC studies of the ground— and excited-state

energies of various nuclei [157—171], with a focus on the results obtained by the author

of this thesis [157,161—170], are presented and discussed in Chapter 4.
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Chapter 2

Active-Space Coupled-Cluster

Methods for Open-Shell Systems

In this chapter, the extension of the active-space CC methodology to the EA- and

IP-EOMCC formalisms, which results in new classes of low—cost, highly accurate ab

initio approaches for ground- and excited states of open-shell systems, is discussed.

Section 2.1 provides the theoretical details of these approaches, including an overview

of the original EA— and IP-EOMCC theories and the details of the new active—space

extensions of these methods, as described in [85—87], as well as a description of our

recently developed highly efficient computer implementations of the most basic active-

Space EA- and IP-EOMCC schemes [87]. Section 2.2 provides examples of several

benchmark calculations, taken from {85—89, 140], in order to illustrate the performance

of the active-space EA- and IP-EOMCC approximations developed in this work.
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Figure 2.1: Pictorial illustration of the generation of the CH and OH radicals from

the closed-shell CH+ and OH’ ions, respectively.

2.1 Theory and Computer Implementation

2.1.1 The Electron-Attached and Ionized Equation-of—Motion

Coupled-Cluster Theories

The key idea behind the EA- and IP-EOMCC methodologies is that, rather than

treating the open-shell molecular (N :t 1)-electron system of interest directly, one

instead generates the ground and excited states of it by adding an electron to or

removing an electron from the related N-electron closed—shell system. This idea is

illustrated in Figure 2.1, which gives a schematic representation of generating the CH

and OH radicals from the closed-shell CH+ and OH“ ions, respectively.

This idea can be expressed more rigorously by using the f(:)llowing form for the,

electronic wave function of the nth state of an (N + 1)- or (N - 1)-electron system

(where p = 0 corresponds to the ground state and p > 0 corresponds to the excited
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states):

(Ni1)>_ R(Ni1))I
pp x110.) (2.1)

In this equation, RLNH) and RSV-1) are the electron-attaching and ionizing oper-

ators, respectively, whereas [\IIO) is the correlated ground-state wave function of the

N-electron closed-shell system, which is defined through the exponential ansatz of

the single-reference CC theory,

we = eTl<I>>. (2.2)

In the above equation, |<I>) is a closed—shell N-electron reference determinant (e.g.,

the restricted Hartree Fock (RHF) reference) and T is the cluster operator of the

standard single-reference CC theory,

2

1 '

T = E Tn, Tn = (a) 15311,,Zinaal ...aallain . "ail’ (2.3)

where in the exact case ll/IT = N while in the approximate approaches MT < N. For

instance, in the basic CCSD approach MT 2 2, so the cluster operator T(CCSD) is

given by

T<CCSD> = T1 + T2 = tgaaai + atzjbaaabajai. (2.4)

Throughout this paper we employ the usual notation where z', j, . . . (a, b, . . .) refer to

the spin-orbitals occupied (unoccupied) in the reference determinant |<I>), up (up) are

the creation (annihilation) operators associated with the spin-orbital basis set {|p)},

in
-an entering Eq. (2.3) are the usual cluster amplitudes. Inand the coeffic1ents tall"

addition, whenever possible, we make use of the Einstein summation notation over

repeated upper and lower indices.

The electron-attaching and ionizing operators introduced in Eq. (2.1), HP+1)
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(N-l)
and R], , respectively, are defined as

AIR

N+1

Rig ) = Z Rp,(n+1)p—nh (2'5)

11:0

and

AIR

N—l

Rf! ) = Z Rp,(n+1)h-np (2'6)

=0

where the ((n + 1)1)-nh) component of RLNH) and the ( (n + 1)h—np) component of

RLN—l) are given by

1 2' i
1--- n a a] an . .

and

1 ulna, a
_—— 1 an. . . .R#,(n+1)h_np ”Kn 1M7“ almana ...a am . . . (1,10,, (2.8)

and where MR = N in the exact case and A!R < N in the approximate schemes.

Equation (2.7) reveals that the ((n + l)p—nh)-components of RLNH) can be viewed

as operators which create a particle in an unoccupied spin-orbital and, for n > 0,

simultaneously cause an excitation of n electrons from occupied spin-orbitals into

unoccupied spin-orbitals. Similarly, from Eq. (2.8) we see that the ((n. + l)h-np)-

components of RSV—1) can be viewed as operators which remove one of the electrons

from an occupied spin-orbital and, for n > 0, simultaneously excite n of the remaining

electrons.

By substituting the EA- and IP-EOMCC wave function ansatze, Eqs. (2.1) and

(2.2) in which MR S MT, into the time-independent Schriidinger equation, one ob-

tains the following non-Hermitian eigenvalue problem:

- N N N

(HN,openR;(L i1)lCiq» :w/(L inRit inl‘Pi (2-9)
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fiere

HN,open = (HNeTlepen = e_THN€T ‘_ (HNeTlC,elosed (210)

is the similarity-transformed Hamiltonian of the CC theory in the normal-ordered

form relative to the Fermi vacuum |<I>), the subscripts “open”, “closed”, and C refer

to the open (i.e., having external lines), closed (i.e. having no external lines), and

connected parts of a given operator expression, and the eigenvalues obtained from

solving Eq. (2.9) are the energy differences given by

wLNil) = ELNi1)— EéN), (2.“)

(Nil) .
where Eu IS the total energy of the pth state of the (N :l: 1)-electron system

and ESN) is the ground-state energy of the N-electron reference system. Thus in the

EA- and IP-EOMCC formalisms, the energies of the ground- and excited-state wave

functions of an (N :t 1)-electron system are obtained by diagonalizing the similarity-

transformed Hamiltonian HNppen, calculated using the cluster operator of the related

N-electron closed-shell system, in the subspace of .9?(N+1) spanned by the determi-

nants |<I>a) = aa|<1>) and leaflfii") = aaaal ...aallain . . . (1,1 |<I>) (n = 1,... ,MR)

in the EA-EOMCC case, and in the subspace of if(N"1) spanned by the determi-

nants [(1%) = a,|<I>) and [(szllzfl") = aal...aanain...ai1a,|<1>) (n = 1,...,.MR) in

the IP-EOMCC case. Here, 3241],“) and fifUV—l) are the relevant (N + 1)- and

(N — 1)-electron subspaces of the Fock space, respectively.

There are several advantages to using this hierarchical approach for studying open-

shell systems, in which we construct the (N :l: 1)-electron wave functions by adding

an electron to or removing an electron from the N-electron closed-shell species, over

the more traditional idea of performing calculations directly on the (N :t 1)—electron

system of interest. Since the EA- and IP-EOMCC formalisms start from a closed-shell

reference system, for which the correlation effects are much easier to describe and are
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trivial to capture with the CC theory, these methodologies are able to account for

the high-level correlation effects needed to describe the low-lying states of valence

systems such as radicals in a much more efficient manner. For example, consider an

(N + 1)-electron radical (e.g., the CH radical shown in Figure 2.1). As illustrated

later, if one were to perform the traditional CC calculations, which do not change the

number of electrons, directly for this radical, one would have to include the effects

of triple excitations in the calculation in order to obtain an accurate description of

the corresponding low-lying states. It can be shown, however, that some of the triple

excitations relative to the (N + 1)-electron reference determinant are 3p—2h excita-

tions relative to the N-electron reference IQ), while the remaining triple excitations

correspond to 4p—3h excitations from IQ). It turns out that as long as the N-electron

system is a good closed-shell, then most of the important triples, at least within the

spectroscopic region, are of the 3p-2h type. Since the number of 3p-2h terms is less

than the number of triples (3p-3h terms), the use of the EA-EOMCC formalism al-

lows us to essentially describe the same correlation effects at a reduced computational

effort. Similar statements also apply to the IP-EOMCC methodology.

Another advantage of the EA- and IP-EOMCC approaches is that they are based

on diagonalizing the similarity-transformed Hamiltonian of a closed—shell system,

which commutes with the S2 and S2 operators. Because of this, the resulting eigen-

states are automatically orthogonally spin—adapted, and so by using the EA-EOMCC

and IP-EOMCC formalisms one can avoid the spin-contamination issues that may

plague the standard spin-orbital based open—shell CC/EOMCC implementations that

utilize the ROHF or UHF references (particularly, the latter ones).

When constructing approximate EA-EOMCC and IP-EOMCC schemes, special

attention must be given to the relationship between the truncation in the cluster op—

. . . . . . N

erator T and the truncation in the electron-attaching and ionizing operators R], +1)

and RSV—1), respectively. For the approximate EA-EOMCC and IP-EOMCC meth-
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ods, the connected form of the eigenvalue problem displayed in Eq. (2.9), which

guarantees the size intensivity [20] of the eigenvalues, is only valid when the con-

dition that MR 3 MT is satisfied [10]. Thus, if we wish to retain the size inten-

sivity of the “excitation” energies wLNil), Eq. (2.11), we must ensure that any

truncation scheme applied to the EA-EOMCC and IP-EOMCC theories satisfies

this restriction on MR and NIT. Currently, the most common EA-EOMCC and

IP—EOMCC approximations, as implemented in [68, 70, 75, 90], satisfy this criterion

by setting MR = MT — 1. The most basic examples in this category are the con-

ventional EA-EOMCCSD [68, 69] and’IP-EOMCCSD [71—74] methods (referred to

in this work as EA-EOMCCSD(2p—1h) and IP-EOMCCSD(2h-1p)), where MR = 1

and MT = 2. Other examples include the higher-order EA-EOMCCSDT [70] and

IP-EOMCCSDT [75,76] schemes, for which MR = 2 and MT = 3, and the re-

cently implemented EA- and IP-EOMCCSDTQ approaches [90], for which MR = 3

and MT = 4. As part of this work, we developed implementations of the EA-

EOMCC and IP-EOMCC methodologies that make use of an alternate truncation

scheme utilizing the less limiting condition MR = MT, which still satisfies the more

general condition of Piecuch and Bartlett [10], i.e. MR 3 MT. The recently devel-

oped EA—EOMCCSD(3p—2h) and IP-EOMCCSD(3h—2p) approaches [85—87], in which

MR = MT = 2, belong to this class of approximations.

The advantage of the EA-EOMCCSD(3p—2h) and IP-EOMCCSD(3h-2p) meth—

ods of [85—87] over the EA-EOMCCSDT and IP-EOMCCSDT methods of [70,75, 76]

is that they include the important 319-212 and 3h-2p components in the electron-

attaching and ionizing operators, respectively, without suffering from the expensive

ngng scaling characterizing the ground-state CCSDT calculations required by EA-

EOMCCSDT and IP-EOMCCSDT. Here, no (nu) is the number of spin—orbitals oc-

cupied (unoccupied) in the reference determinant IQ). As it turns out, in most cases

the 3p—2h and 3h—2p effects in RLNH) and R[,N-1), respectively, play a much more
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significant role than the triply excited (T3) components of the cluster operator T,

and it is usually not necessary to include the T3 clusters in T until the 4p-3h and

4h-3p effects become important (see [85—88,172] for further discussion, analysis, and

several numerical examples). Thus, in many situations, particularly those involving

electronic excitations in radicals [85—88], there is a lesser need for using T3 in the

EA-EOMCC/IP-EOMCC calculations at the 3p—2h/3h-2p level of theory. In all these

cases, one can safely rely on our EA-EOMCCSD(3p—2h) and IP-EOMCCSD(3h-2p)

approaches, in which T = T1 +T2, rather than their more expensive EA-EOMCCSDT

and IP-EOMCCSDT counterparts of [70, 75, 76], in which T = T1 + T2 + T3. On the

other hand, even the simplified EA- and IP-EOMCC models with 3p-2h and 3h-2p ex-

citations, such as the EA-EOMCCSD(3p—2h) and IP-EOMCCSD(3h-2p) approaches

of [85—87], have limited use due to the 77.3723 or ngnfi iterative steps involved in the

diagonalization of the similarity-transformed Hamiltonian in the space of IQ“), IQa;-’),

and [Qagfl or. IQi), [Qi;?), and [Q23]? determinants, respectively. This prompts the

need for the development of EA- and IP—EOMCC approaches in which the computer

costs of incorporating the 3p-2h, 3h-2p, and other higher than 2p—1h and 2h-1p ex-

citations are substantially reduced. The key idea is to reduce the computer costs of

EA- and IP-EOMCC methods with higher than 2p—1h and 2h-1p excitations without

sacrificing the accuracy characterizing these higher-level schemes, which is the basis

for the active-space EA- and IP-EOMCC approaches discussed in the next section.

Before moving on, it should be emphasized that, up to some details with respect

to approximations and computer implementation, the above equations also describe

the historically older electron-attached and ionized variants of the SAC—CI approach

of Nakatsuji et a1. [78—83]. As a result of these mathematical similarities, the develop-

ments in this work, including the extension of the active-space CC/EOMCC method-

ologies to electron-attached and ionized states, apply to the SAC-CI approach as well

as the EA~ and IP—EOMCC methods. Furthermore, as will be seen in Section (2.2),
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we make direct use of the SAC-CI scheme in order to study the effects of higher-than

319-217. and higher-than 3h-2p correlation effects in studies of radical systems [88].

2.1.2 The Active-Space EA— and IP-EOMCC Methodologies

The EA-EOMCC and IP-EOMCC theories provide a convenient formalism for study-

ing radicals and other open-shell systems around closed shells, but they are not with-

out their limitations. It has been shown, for example, that in order to get an accurate

description of the excitation spectra [85—88,172] and the ground- and excited-state

potential energy surfaces [86,88] of radical species, one must include higher than 2p—1h

and higher than 2h-1p components in the electron-attaching and ionizing operators

(see, e.g., [82,88] for similar findings within the context of SAC-CI). Unfortunately,

as mentioned in Section 2.1.1, the inclusion of such terms can significantly increase

the computational costs involved, restricting the use of the resulting schemes to rela-

tively small systems. One approach for reducing the costs of including the higher than

2p-1h and higher than 2h-1p effects, without sacrificing the accuracy associated with

such terms, is to use the active-space variants of the EA-EOMCC and IP-EOMCC

methodologies, which were developed as part of this work [85—87], and which are

particularly well suited for calculations of the electronic excitations in radicals.

It is well-known that the radical formation process is generally dominated by a

small subset of orbitals. Indeed a radical can often be obtained, at least at the zero-

order level, by attaching an electron to one of the lowest-energy unoccupied orbitals

or removing an electron from one of the highest—energy occupied orbitals of the re-

lated closed-shell system (see Figure 2.1). The fundamental idea of the active-space

EA- and IP-EOMCC approaches is to use these dominant orbitals (which in anal-

ogy to the genuine multi-reference approaches can be viewed as active orbitals) to

a priori select the most important higher than 2p-1h and higher than 212- 1p compo—

nents of the electron-attaching and ionizing operators that enter into the EA-EOMCC
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and IP-EOMCC formalisms, neglecting the rest in the calculation. In this way, one

considerably reduces to the dimension of the resulting eigenvalue problem while still

maintaining the high accuracy characterizing the higher-level EA- and IP-EOMCC

approximations.

We begin our formal discussion of the active-space EA-EOMCC and IP-EOMCC

methods by dividing the available spin-orbitals into four disjoint groups: core spin-

orbitals (i, j, k, ...), active spin-orbitals occupied in the reference determinant IQ)

(I, J, K, ..), active spin—orbitals unoccupied in the reference IQ) (A, B, C, ...),

and virtual spin-orbitals (a, b, c, ..). We continue to label occupied and unoc-

cupied spin-orbitals by the italic characters 2', j, k, ...and a, b, c, ...respectively,

 

if their active/inactive character is not specified. This orbital classification scheme

RLNH) andcan be used to redefine the electron—attaching and ionizing operators,

BIN—1), respectively, in order to restrict the excitations that are included in the

active-space calculations. For example, in the most basic active-space EA- and IP-

EOMCC approximations, which can be thought of as the active-space variants of

the EA-EOMCCSD(3p—2h) and IP—EOMCCSD(3h-2p) schemes discussed in Section

2.1.1 and which we refer to as EA-EOMCCSDt and IP-EOMCCSDt, we define the

electron-attaching and ionizing operators as

N+1

REL )(CCSDt) = lep + Rp,2p—1h + Tp,3p-2ha (2-12)

and

(N-l)
RH (CCSDt) = Rudh + Rp,2h~1p + Tu,3h-2p' (2.13)

Here the Rp,(n+1)p—nh and Rp,(n+1)h—np terms with n = 0 or 1 are defined as in

Eqs. (2.7) and (2.8) while the “little I” 3p—2h and 3h-2p components are defined by:

_ jk A b

T}L,3p'2h — Z TAbCa a acakaj (2.14)

j>k,A<b<c
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and

Ijk b

Tf‘73h-2p : Z T bCa

I>j>kp<c

acakajal. (2.15)

Using these definitions of R , we solve Eq. (2.9) in the subspace
(N+1) and RI‘N—l)

of %(N+1) spanned by the IQ“), IQ“?), and IQAJI’E) determinants (the EA-EOMCC

case) or in the subspace of .91”(N’1) spanned by the I‘I’i), IQin), and Ing’g) determi-

nants (the IP-EOMCC case). As immediately implied by the above definitions, the

EA- and IP-EOMCCSDt schemes provide significant computational savings relative

to the full inclusion of the 3p—2h. and 3h-2p components in the electron-attaching

and ionizing operators. In particular, the EA-EOMCCSDt approach reduces the

expensive 12,371.15, steps required to diagonalize HNppen in the EA-EOMCCSDT and

EA-EOMCCSD(3p—2h) approximations to the CCSD-like Nungnfi steps, where Nu

(< nu) is the number of active orbitals unoccupied in the reference determinant IQ).

Similarly, the IP-EOMCCSDt method reduces the ngnfi steps required to diagonalize

ENppen in the IP-EOMCCSDT and IP-EOMCCSD(3p-2h) approximations to the

CCSD-like Nongnf, steps, where N0 (< no) is the number of active orbitals occupied

in IQ).

The actual form of the similarity-transformed Hamiltonian, HN,openi that is di-

agonalized in the active-space EA-EOMCC and IP-EOMCC methods depends on the

truncation scheme for the cluster operator T used in the parent approximation. For

instance, if one were to derive the EA-EOMCCSDt and IP-EOMCCSDt methods from

the EA-EOMCCSDT and IP—EOMCCSDT schemes of [70,75,76], than the similarity-

transformed Hamiltonian of the underlying CCSDt approach [95-«98, 101,106—108],

H(CCSDt) _ (CCSDt)
N,open — (HNeT )Cppen, would be used. The cluster operator defining the

CCSDt approximation is given by

T<CCSDt) = T1 + T2 + t3, (2.16)
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with

t3 = Z tiff): aAabaCakaJ-al. (2.17)

I>j>k,A<b<c

This approach reduces the costly 7.37.3 steps characterizing the underlying CCSDT

calculation required by the EA-EOMCCSDT and IP—EOMCCSDT approximations

to the much more manageable NoNungnfi steps of CCSDt. However, since there are

many cases where there is little need for including T3 at the 3p-2h/3h-2p level of

the EA/IP EOMCC theory (as discussed in Section 2.1.1), it is possible to further

reduce these costs by using the simpler and less expensive EA-EOMCCSD(3p—2h,)

and IP-EOMCCSD(3h-2p) schemes as parent approximations for the active-space

work, as is done throughout this thesis. The resulting EA-EOMCCSDt and IP-

EOMCCSDt methods, the efficient implementation of which is discussed in the next

section, diagonalize the similarity-transformed Hamiltonian of the CCSD approach,

— (CCSD) T T —T —T T T
HN,open = (HNe 1+ 2)C,open =6 1 2HNe 1+ 2. (2.18)

As a result, the underlying ground-state calculation for the N-electron system, which

generates the cluster amplitudes used in constructing H(CCSD)N Open , requires only the

inexpensive ngnfi steps associated with the standard CCSD method. Given that

it is generally true that No < no and Nu << nu, the final result is that the EA-

and IP-EOMCCSDt schemes developed in this work have computer costs that are

only a small prefactor times those of the relatively inexpensive CCSD approach. For

example, one can obtain excellent EA-EOMCCSDt results for the ground and excited

states of the CH radical using only the lam, lrry, and 40 valence orbitals of CH+ as

active orbitals (Nu = 3), which is much less than the typical numbers of unoccupied

orbitals that one would have to use in the parent EA-EOMCCSD(3p—2h) calculations

for CH. Similarly, one obtains the excellent IP—EOMCCSDt results for OH using only

the valence orbitals of OH— as active orbitals, which are fewer in number than all

23



occupied orbitals. This reflects on the simple physical picture shown in Figure 2.1

Where the low-lying states of CH and OH are dominated by attaching an electron to

or removing an electron from one of the valence orbitals of the corresponding CH+

and OH‘ closed-shell species while relaxing the remaining electrons through single

(lp-lh) and double (2p—2h) excitations.

The above process of selecting higher than 2p-1h and 2h- 1p excitations via active

orbitals can be used to define higher-order active-space EA- and IP-EOMCC approx-

imations. For instance, in the EA-EOMCCSth and IP-EOMCCSth approaches

we define [85]

N+1

RI) )(CCSth) = Rqu + Rn,2p—1h + Tp,3p—2h + Tu,4p—3h (2.19)

and

(N—ll
Ry, (CCSth) = leh + Rmthp + Tu,3h—2p + Tp,4h-3pi (2.20)

Where Tu,3p-2h and r#,3h_2p have the same mathematical form as in Eqs. (2.14) and

(2.15), and

Jkl A B d
r#,4p_3h = Z TABcda’ a rice alakaJ, (2.21)

J>k>l,A<B<c<d

and

HM B d
rp,4h_3p = 2 chda aca alakaJaI. (2.22)

I>J>k>l,B<c<d

We then diagonalize the similarity-transformed Hamiltonian of either the CCSth

[97—100,103,106] or CCSDt {95—98, 101, 106—108] theory in the subspace of .924”+1)

Spanned by the IQ“), IQGg), IQ“??), and IQAfiCld) determinants (the EA-EOMCC

Case) or in the subspace of %(N—1) spanned by the IQ,), IQiJI’), Ingg), and IQSE?)

determinants (the IP-EOMCC case). One can also extend the active-space ideas

130 the multiply attached and multiply ionized EOMCC schemes (of, e.g., [91——93])

Where we diagonalize the similarity-transformed Hamiltonian of an N-electron, closed
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shell system in the suitably defined (N :l: V)-electron subspaces of the Fock space,

where u 2 2. For example, the active-space DIP-EOMCC approximations, where

1/ = 2, can be obtained by considering the various truncations of the following ionizing

operator [85]:

Jk

RSV—2) [c acakajaz-= %7‘ijajai + (1V2

+ Z TIJCZI acadalakaJaI

I>J>k>l,c<d

+ E 7.1ng acadaeaynalaKaJa1

I>J>K>l>m,C<d<e

+ . . . ,
(2.23)

A similar operator can be constructed for the active-space DEA-EOMCC methods.

All of the resulting approaches offer considerable reduction in the CPU timings and

Ilumbers of r amplitudes that define the corresponding RLNiV) operators, when com—

pared to the corresponding parent methods. At the same time, the active-space EA,

DEA, IP, DIP, etc. EOMCC approaches are systematic in a sense that they naturally

reduce to the parent EA, DEA, IP, DIP, etc. EOMCC schemes when all orbitals in the

molecular orbital basis are active. This natural and straightforward relationship be-

tween the parent CC/EOMCC approach and its active-space variant is characteristic

of all active-space CC/EOMCC methods [28,29,97—101,103—111].

2.1.3 Key Details of the Efficient Computer Implementation

of the Active-Space EA-EOMCCSDt and

IP-EOMCCSDt Approaches

In this section, we discuss our highly efficient implementations of tlie active-space

EA-EOMCCSDt and IP-EOMCCSDt schemes discussed in Section 2.1.2, and the

CorreSponding factorized equations in terms of recursively generated intermediates
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that lead to the vectorized computer codes through the use of fast matrix multipli-

cation routines from the BLAS library. Our EA- and IP-EOMCCSDt codes, which

are interfaced with the RHF/ROHF and integral routines available in the GAMESS

software package [173], can be broken down into three major components. In the

first step, we solve the usual CCSD equations for the ground state of the N-electron

reference system in order to obtain the singly and doubly excited cluster amplitudes,

t3 and t? , respectively. In this work, we usually use the RHF-based CCSD closed-

shell codes described in [174], which are included in GAMESS, since our main fo-

cus is on applications of the EA/IP-EOMCCSDt methods to open-shell species that

are obtained by the attachment of one electron to or removal of one electron from

the N-electron closed-shell species. However, we also have an option of using the

more general CCSD codes for both the closed-shell and open-shell systems using the

ROHF reference, also included in GAMESS [138], in case we want to perform the

EA/IP-EOMCCSDt calculations for cases where the N-electron reference system is

an open-shell itself. In the next step, we use the converged t3 and t3) amplitudes to

construct the one- and two-body matrix elements of the CCSD similarity-transformed

Hamiltonian H<CCSD)
—q “rs

N,open , hp and hpq, respectively, which define the one— and two-body

components of nggpse? within the second quantized formalism,

HICCSD) = figapaq, (2.24)

and

- CCSD - ,

é ) = hggNIapaqasar], (2.25)

reSpectively (N I. . .] is the normal product of the operators between the brackets). The

eXplicit equations defining these matrix elements in terms of the one— and two-electron

molecular integrals of the Hamiltonian, f3 = (pI f Iq) (f is the Fock operator) and

U123 = (quvIrs) — (quvIsr) (v is the electron-electron interaction), respectively, and
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the CCSD cluster amplitudes, which have also been presented in [9, 10,132,140,175I,

can be found in Table 2.1.

In the final step, which is the focus of this section, we use the converged CCSD

cluster amplitudes and the one- and two-body matrix elements of Hfigpi?

struct the EA-EOMCCSDt and IP-EOMCCSDt equations, which are then solved

to con-

using the Hirao-Nakatsuji generalization [176] of the Davidson diagonalization algo-

rithm [177] to non-Hermitian eigenvalue problems of the type represented by Eq.

(2.9). Let us recall that the EA-EOMCCSDt equations are obtained by replacing

HNopen and ROW-1)in Eq. (2.9) by H(CCSD)Nopen , 139- (2-18) and R<N+1)(CCSDt), Eq.

(2.12), and projecting the resulting equation on the IQ“), [Qag), and IQAJZCC) deter-

minants. Similarly, the IP-EOMCCSDt equations are obtained by replacing HN,open

and BIN-1) in Eq. (29) by HIffpiE), Eq. (2.18), and RI,”)(CCSDt), Eq. (2.13),

and projecting the resulting equation on the IQ), [Qijb), and [©kaC) determinants. In

this step, we make use of the explicit, factorized form of the equations defining the

EA—EOMCCSDt and IP-EOMCCSDt eigenvalue problems in terms of the molecular

integrals of the Hamiltonian fp and 2153 ,the CCSD cluster amplitudes t2, and tfzjb’

and the rm?ab’ and TN): amplitudes defining the relevant electron-attaching opera-

tor or the 'r , 7' bJand 7'lb: amplitudes defining the relevant ionizing operator (cf. Eqs.

(2.12)-(2.15)). These equations, along with the formalism by which they are derived,

following [87], will be discussed next. Following this discussion, the details of the

computer implementation of these equations will be described in detail.

In order to derive the EA- and IP-EOMCCSDt equations, we begin with the work-

ing equations defining the parent EA-EOMCCSD(3p—2h) and IP—EOMCCSD(3h-2p)

approximations, which are presented in Appendix A. It is worth noting that these

equations were also presented in an alternative form in [85]. It should be empha-

Sized that the equations found in [85] are mathematically equivalent to the analo-

gous equations found in Appendix A. The differences are the result of the fact that
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Table 2.1: Explicit algebraic expressions for the one— and two-body matrix elements

 

 

 

of 155;? (fig and 523, respectively) taken from [132,140].

Intermediate Expressiona

Br caste"

fig ff +3153? + $12534? + 7.5153.

Fifi [g " Bfntizn

53% v2? - 122%"

hf; egg.“ + eggs;

is vzi+ events"—I‘22intr+vstr

RIF]? 225.1 + 32):]!th — 74th + vfft’e

as: liters—712.2?
'25. usage;—hammeratria

are — vats + eats"

a: camweaved/cage"
+7254: + are — are;

1.2” f5: + dint?

If: 1.1” — events"

1.9;” eerie
 

 

a Summation over repeated upper and lower indices is assumed. f3 2 (pl f Iq) and

2);; = (quvIrs) — (quvIsr) are the one- and two-body matrix elements of the Hamil-

tonian in the normal-ordered form (one— and two-electron integrals), and the t3,

and tzjb are the singly and doubly excited cluster amplitudes defining the ground-

state CCSD wave function of the N-electron reference system. The antisymmetrizer

.9737“ = 1 — (jk), where (jk) is the transposition of indices j and k (see, also Eq.

(2.94)).
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the equations presented in [85] are in a form that is ideal for implementing the full

EA-EOMCCSD(3p—2h) and IP-EOMCCSD(3h-2p) schemes, while the equations pre-

sented in Appendix A are in a form which is a good starting point for deriving

the computationally efficient form for the equations defining the active-space EA-

EOMCCSDt and IP-EOMCCSDt approaches that in the majority of applications use

z'jk

small subsets of the rbckand Tbbc amplitudes defining the 3p-2h and 3h-2p compo—

R(N+1) and R(N+1)
nents of ,respectively.

Generally, the explicit EA-EOMCCSDt and IP—EOMCCSDt equations are ob-

tained by applying the active-space restrictions on the spin-orbital indices defining

the IQ“:) and IQWC) determinants and on the indices defining the corresponding rajjk

and rbekamplitudes, as described in Section 2.1.2, to each term of the parent EA-

EOMCCSD(3p—2h) and IP-EOMCCSD(3h-2p) equations, as presented in Appendix

A. In order to illustrate the inner workings of this procedure, which is based on the

general principles laid down in [97], we derive a few typical terms which enter into

the EA—EOMCCSDt equations. We begin by analyzing the following contribution to

Eq. (A.3) in Appendix A, corresponding to the projection on Wag-i), which we label

asDabell-

DabC(1=) 3th(538’; (2.26)

In the EA-EOMCCSDt approach, we only consider 3p—2h projections of the type

QAi’C , and so we must restrict the indices in Eq. 2.26 as follows:
3k

Abe _ 8f

As one can see, we replaced the generic unoccupied index a. in Eq. (2.26) corre-

sponding to the projection on [Qabc) by the active label A. Since the rAf amplitude

Which enters Eq. (2.27) contains an active unoccupied index (and thus already has the

proper form required by Eq. (2.14)), no further restrictions to the indices defining the
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Dabck(1) term are required. This completes the derivation of the final formula for this

particular contribution to the EA—EOMCCSDt equations. Unfortunately, the major-

ity of the terms which enter the active-space equations are not so easily obtained,

and so it is useful to examine more difficult cases. For example, let us consider the

following contribution to Eq. (A.3) in Appendix A, which we label as Dab2(2):

005;;(2): —%h,,,arb'g;k. (2.28)

If we exploit the same approach as used in the previous example, we obtain the

following expression:

b

0%162%) = —2hmATb7ci(l3k' (2'29)

Again, we replaced the generic unoccupied index a in Eq. (2.28) by the active iii-

dex A defining the IQAbC) determinant. Unlike in the previous case, however, the

7‘ka amplitude that enters the above equation does not necessarily have at least

one active unoccupied index, and so it is not automatically of the form required by

Eq. (2.14). Furthermore, whether or not this amplitude satisfies the active-space

restrictions depends on whether the indices b and c correspond to active unoccupied

or inactive virtual spin-orbitals. As a result, instead of the generic projection IQIEII’CC),

that converts Eq. (2.28) into the less useful Eq. (2.29), we must consider four more

Specialized and distinct classes of the restricted 3p—2h. projections that belong to the

general IQAJ-[Ifl type, given in Table 2.2.

When we apply the 3p-2h projection of type 1 in Table 2.2 to the term given in

Eq. (2.28) (i.e., the projection on the IQABC) deterniinaflnt) we obtain

DAB-35¢): -2h-mATBnC13le' (2'30)

mk l1
Because the 312-211 amplitude r3766 as at least two active unoccupied indices, it
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Table 2.2: The various classes of restricted projections that must be considered

when generating the computationally efficient form of the equations defining the EA-

EOMCCSDt and IP-EOMCCSDt eigenvalue problems.

 

 

 

 

EA-EOMCC IP-EOMCC

Projection Type 1p 2p-1h 3p-2h 1h 2h-1p 312-2}?

1 I‘I’A) WE?) |¢:BC) IQI) |<I>13> I‘I’ubfi)

a .

: :2: :52: :22:
4 I285 >2“;-7> 72,3» I<I>IJK>

J Ijk
 

 

satisfies the active-space requirements of Eq. (2.14) and so no further constraints

on the indices defining this term have to be imposed. Similarly, if we consider the

projection on IQA?§) (projection type 2 in Table 2.2), we obtain

ABC k
D jkC2()= —2h"77nATB7Z:I€ , (2.31)

which also requires no additional restrictions on the spin-orbital indices, since the

3p—2h amplitude TBC: has at least one active unoccupied index, as required by Eq.

(2.14). Furthermore, comparing Eqs. (2.30) and (2.31) reveals that the only difference

between these two terms is in the restriction on the index c, which in Eq. (2.30) is

restricted to active unoccupied spin-orbitals and in Eq. (2.31) to inactive virtual spin-

orbitals. This straightforward relationship between Eqs. (2.30) and (2.31) allows us

to recombine these two contributions into one, somewhat more general term of the

form

BM}:(2)= —gh{,fArB’gek, (2.32)

where the unoccupied index c can be active or inactive. When we consider projection

type 3 from Table 2.2 (the projection on IQAEE», we obtain

AbC _ 1 je k
‘ .

D jk (2) _ 2hmArCTble’
(2.33)
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where we have made use of the antisymmetric properties of the 3p—2h amplitudes

to maintain the ordering of the spin-orbital labels employed in Eq. (2.14) (i.e., the

index restricted to active spin-orbitals is the leftmost of the unoccupied spin-orbital

labels). We have moved the index C in rail: to the leftmost position because it

is more convenient to have a consistent placement of the active spin-orbital labels

when implementing the EA—EOMCCSDt and IP-EOMCCSDt schemes. As with the

previous two cases, no further restrictions on the spin-orbital indices defining this

term are required. Finally, we consider the projection on ICDAIJ’E) (projection type 4

in Table 2.2). The resulting expression for this contribution is

b _ .

DA.7<2>=—2h:5..rb:k, (2.34)

mk
where, unlike in the previous cases, the Tbce amplitude which enters this term does

not automatically have at least one unoccupied index constrained to active unoccupied

spin-orbitals. In order to impose such a condition, we must restrict the summation

over all particle spin-orbitals e in Eq. (2.34) to active spin-orbital labels only since b

and c are virtual (i.e., inactive) indices. The resulting expression is given by

DA77<2> = —%5§A7‘E7§§, (2.35)

where the overtilde denotes the fact that we imposed restrictions on the summations

appearing in DA?g(2) and where once again we have made use of the antisymmetric

nature of the 3p-2h amplitudes to maintain the order of unoccupied indices used in Eq.

(2.14) (active indices precede the generic or inactive ones). Equations (2.32), (2.33),

and (2.35) represent all contributions to the EA-EOMCCSDt working equations which

result from the single term in the EA-EOMCCSD(3p—2h) equations projected on 3])-

2h excited determinants given by Eq. (2.28).

By applying the above procedure to each term which enters the explicit form of
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the equations defining the EA-EOMCCSD(3p—2h) and IP-EOMCCSD(3h-2p) meth-

ods (Eqs. (A.1),(A.2), (A.3),(A.7),(A.8) and (A.9) in Appendix A) and by making

use of the projection types given in Table 2.2, one can derive the explicit form of all

contributions to the EA- and IP-EOMCCSDt equations. After combining all of these

contributions together, we obtain the final form of the fully factorized, computation-

ally efficient EA-EOMCCSDt and IP-EOMCCSDt equations, which are presented

below. We begin with the expressions for the EA-EOMCCSDt scheme. The factor-

ized equations defining the projections of the EA-EOMCCSDt eigenvalue problem on

the 1p determinants |<I>a) are

(CCSD N+1) N+1

(«WK Nopen)R( )0) 12>) = ‘Ia = of, )ra, (2.36)

where

TA = XA + ivSfirfié’} (2.37)

and

I. = x. + 7 2) 222.277}: (2.38)

E<f

with

X0 = 73.37,, + 71m:06m+ $77357”ef. . (2.39)

The EA-EOMCCSDt equations defining the projections on the 2p—1h determinants

I‘Dajl?) are given by

w<N+1)r j(CCSD N+1)

(QabK—N(open)R/(1« ))C |(I)): ”abzab_— Tab ’ (240)

where

j _ j j 8f j?”

97M — XAb + aAb + 2hbm7Aef’ (2°41)

j _ j j ,,
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and

j _ 3'

Tab - Aab’ (2.43)

with

O‘AJb = 25mX3]: iI—‘jemnTABS» (2.44)

X03) : —Q}—ljeab're + It: T8?) _2}—I,in’rabl

+Zlhaé'rjref ‘I’niareb— %Ith;,J, (2.45)

jm
_

ABXaB + Z thEfa, (2.46)

E<f

and

E ‘E

Xab+ Z hbrfirfig}: + EhmEjant:_ ZIIII“SHE‘S; (2.47)

E<f

Finally, the EA-EOMCCSDt equations defining the projections on the selected 3p—2h

determinants FDA-be) have the following computationally efficient form:

HCCSD N+1 I: N+1

where

_ J'k

TABc XABc + IIBcA+ 47BcA’ (2°49)

k k

IAfiC— AAfiC fiCbA’ (250)

and

jk jk

TAbc— AAbc’ (251)

with

. , Pf 9 ft)

7A1»:— lbcTAef’ (-.3_)

5A3c‘_ 2,57;TA —§I"$4,435, (2.53)
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jk

XAbc — 21hkebcTAe + hkAcrbe_ 4h777A bc

km
1 _

‘thCTAb + Qhfi’nTAbc +18hmnrAbc

1 Amj nbc’k J nAlk_ fA

777

+2IAcftjkf+27Abc+25Abc7

AAbCz XAbC 2EBACTEfb’

E<f

and

AAbc__ XAbc 2Z I’AcEfb + ZhAEbc 2’—sz

E<f

l‘jk 7 777

(2.54)

(2.55)

(2.56)

In addition, the above equations for the EA-EOMCCSDt approximation make use of

the following recursively generated intermediates:

1 8 77

1777 = QL’-77{Iiref,

~

7 j 18f J"

IAm: [AA777+2LmnI’Aef’

and

77

1am: 151737 + Z 1’77E7777'E}ay

E<f

where

~ . _ 'e 1__€ . _ '6

[(77977 = Ignore + ghafizre’} + hfiznra’éa

and

[Af—" IAf ‘21’77’7f777’A723a

[3B = aB— 21’777f777'32’éla

and

” E

lag.) : Iaé+ gl’IufiTEglg,

(2.57)

(2.58)

(2.60)

(2.61)

(2.62)

(2.63)



where

fag = 71:17.3 —.;yabhf 7"". (2.64)
bmr08

A similar set of expressions can also be written for the IP-EOMCCSDt scheme. The

final, factorized equations defining the projections of the IP-EOMCCSDt eigenvalue

problem on the U7 determinants |<I>2) are

(CCSD N— 1 '

(<1)I( Nopen’R(N"1’C) |<I>)= T=w£ ’72, (2.65)

where

19f 177777

(:1 2X1 'i'2111’77777"~ ef (2.66)

and

——x +5 2 viilMy}, (2.67)
M>77

with

Xi ___ —}—7:nr777 + hfnre7777_ 1’76.n777T7.7767277. (2.68)

The IP-EOMCCSDt equations defining the projections on the 2p-1h determinants

[Cpl-5’) are given by

(5.5’7Hfiffpi‘filRLN ’)c|<1>)= mi =77)”-1’’5} (2.69)

where

111]): XIb+ 0113+ ghnmrlgén, (2.70)

zig = A” — 57",}, (2.71)

and

2‘}, = A)“, (2.72)
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with

Xzb = —§h7nbrm _I_"i777’m] + 517572.23

+ZI177777Tmn — high“)? + 216%]67,7 (2'73)

Ij __ 1-eTIj777 efrljm

07 b — QIW + Ihbm ef’ (2'74)

A’J—_ xi,J+ 2 7,7;”M333, (2.75)

M>77

and

TMni ij 16f M'u

j+ Z thT (2+ QhMTMbe + ZhbMT 61" (2'76)

M>77

Finally, the IP-EOMCCSDt equations defining the projections on the selected 317-27)

determinants |<I>IIJ’%) have the following computationally efficient form:

(CCSD N—1 k Ik N—l I"k

(237HHNopen’Rf. ’)cI<I>>= «94ch 730,: w}. ’r 3,, (2.77)

where

5177:777—757-(575 (2.78)

I'K A'IK K'I
23C: J +6J (2.79)

and

I'k I'k

T&=A&, am)

with

I k k

’7 gc—— I177777771757én, (2.81)

613': = 37.3,713;" + 2722333*,”:3", (2.82)
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Ijk _1jk 1777 U km k_ hke 1]

X be _ thbrc + hInbrC _ 2IhbcGer] 1hbc'r e

+ 2’13?135+ She:[31:]; + ZIjkthZ ilkIn b('

[C kc 71 k I ’6

UK _ 15K 1 - Mnj

Abc —Xbc_QZhM77 bc’

M>77

and

Ijk_1jk_1 Ik M777 I Mjk_1-Ie Mjk

A —X be 2:: thT _ZlthT be H?’Mc

2M>77

7‘ be.

(2.83)

(2.84)

(2.85)

As was the case with the EA-EOMCCSDt scheme, the IP-EOMCCSDt equations

utilize several additional recursively generated intermediates which are as follows:

6 8f 77777

I ‘20777777' f 7

11f ~1f 1ef 177777
C —Q1’77777'r 60 7

and

if _ ~if 8f M i
16 —IC— 2 anr 2.2,

M>77

where

i7f__ ‘hiildm + ghnfmrmn— I‘lgfnr7g7,

and

Jk ~Jk J k

I 77 = I 77 +%1’767{77T g} 7

K K 77

[J —_1j77 + $02577 e]; 7

and

jk ~jk 1 ef Mjk

I 1" _§IM77T ef’

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)



where

[~37]: : —;L‘77,lfn7'7n — udjkiI/Sf7l7jgn. (2.93)

The antisymmetrizer 527;” = .Q/pq, which enters the above equations is defined as

”m E 5237”" = 1 - (77(1), (2.94)

reSpectively, with (pq) representing a transposition of indices 7) and q.

We now consider the most important details of the efficient computer implemen-

tation of the EA-EOMCCSDt and IP-EOMCCSDt eigenvalue equations, Eqs. (2.36)-

(2.93). Figures 2.2 and 2.3 give the key elements of the algorithms that are used to

compute the projections of the EA- and IP-EOMCCSDt eigenvalue problems on the

selected 3p—2h and 3h-2p determinants, Ex?) and “DIE-fig), respectively, which are the

most expensive and difficult parts of the EA-EOMCCSDt and IP-EOMCCSDt cal-

culations (see Eqs. (2.48)—(2.56) and (2.58)-(2.64) for the EA—EOMCCSDt case and

Eqs. (2.77)—(2.85) and (2.87)-(2.93) for the IP-EOMCCSDt case). The algorithms

for calculating the remaining 1p, 2p-1h, lb, and 2h-1p projections are similar and are

not discussed here.

One of the key features of our algorithm is the fact that the explicit loops that

are used to construct the EA-EOMCCSDt and IP-EOMCCSDt equations projected

on |<I>Ajblf) and IQIIfiI’ Eqs. (2.48) and (2.77), respectively, range over active indices

only, as indicated in Figures 2.2 and 2.3 by the use of bold, uppercase letters for the

looping variables. Within these usually short loops, thanks to the use of the one- and

— (CCSD)
two-body matrix elements of H

"'q ‘rs . J - ‘. ’

N,open 7 hp and hpqa reSPGCtIde, and the rccursn ely

generated intermediates defined above, our code possesses a high degree of vectoriza-

tion, allowing us to exploit highly efficient, fast matrix multiplication routines from

the BLAS library to perform the necessary computations. To avoid confusion with the

summations performed by the explicit loops over active indices, all of the remaining
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summations which are performed by the fast matrix multiplication routines are explic-

itly labeled in Figures 2.2 and 2.3 using the traditional summation symbol 2, rather

than relying on the Einstein summation convention used in the rest of this disserta-

tion. By incorporating the short loops over one or at most two active indices at a time,

we are able to make the full use of the computational benefits offered by the fast matrix

multiplication routines while simultaneously ensuring that any unnecessary overcom-

putation of terms of the EA-EOMCCSD(3p—2h) and IP-EOMCCSD(3h—2p) meth-

ods that vanish in the active space EA-EOMCCSDt and IP-EOMCCSDt schemes is

avoided. As a result, the EA-EOMCCSDt and IP-EOMCCSDt codes described in

this work take full advantage of the low Nungnfi and Nongnfi CPU operation counts

characterizing these approaches. In addition, although our current implementation is

a serial code, the explicit loops over active indices used in our algorithm can easily

be parallelized without altering the encompassed fast matrix multiplications, further

improving the efficiency. Finally, it should be noted that the explicit loops over ac-

tive indices make it possible to avoid storing the Nungng (the EA-EOMCCSDt case)

and Nongnfi (the IP—EOMCCSDt case) objects in memory. As a result, the memory

requirements for the present implementations of the EA— and IP-EOMCCSDt meth-

3
ods are ~ 277077,, words, i.e., similar to the memory requirements of the conventional

CCSD or EOMCCSD approaches. These memory requirements are solely defined by

H(ccso)
the construction of the matrix elements of N,Open (see Table 2.1) and are the same

as the memory requirements characterizing the low-order EA—EOMCCSD(2p—1h) and

IP-EOMCCSD(2h—1p) schemes. The highly efficient computer programs based on the

above algorithms for the EA-EOMCCSDt and IP-EOMCCSDt methods and the cor-

responding EA-EOMCCSD(2p—1h), IP-EOMCCSD(2h-1p), EA-EOMCCSD(3p—2h),

and IP-EOMCCSD(3h—2p) codes were interfaced with the RHF/ROHF and integral

routines available in GAMESS. The EA—EOMCCSD(2p—1h), IP-EOlV’ICCSD(2h—1p),

EA-EOMCCSD(3p—2h), and EA-EOMCCSDt GAMESS options will be released to
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the world within the next few weeks. The release of the IP-EOMCCSD(3h-2p) and

IP-EOMCCSDt options will follow in the not-too—distant future.
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Figure 2.2: The key elements of the algorithm used to compute

((DAJI-IEI(HICCSDIRLN+1))C|<I>), Eq. (2.48), in the efficient implementation of
N,open

the EA-EOMCCSDt method.
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Calculate Ia; for all values of a,b,f, Eq.(2.64)

Calculate 7,7,, for all values of. a, m, j, Eq.(2.60)

SetIIabf_— Iabffor all values of a, b, f

Set Iam-— am for all values of a, m,j

LOOP OVER D

Calculate 115;: IDE —% Z US$763 for all values of b,f, Eq.(2.61)

e,,mn

Calculate 1&2: ”mfnTDae for all values of a, f, Eq. (2. 62)

26,,77’27717

Calculate Iaf=I:Df+12 vaf"I'Dab for all values of a, b, f, Eq. (2.63)

Calculate IDJm-— ID]m+ 217%: vfnnrDjef for all values of m,j, Eq. (2.58)

e ,,f77

Calculate 1am: a777+Z Z vmnrDIfI; for all values of a, 7n,j, Eq.(2.59)

" f(>D)

END OF LOOP oven D

LOOP OVER A

jk

Calculate ’IAbc’ fiAbc’ and XAJcb for all values of b, c,j,k,

Eqs.(2.52)-(2.54)

Set A jk— jk for all values of b c 'k
Abc — XAbc 7 73’

LOOP OVER E

Calculate AAbkC—— AAfllg-é Z 1713CTEfb for all values of b, C ,j,k,

2f()>E

Eq. (2.55) .

Jk JE 7771:

Calculate AAbcz AAbc 22 hAcEfb + ZihArEbc 2thATEbc
f)(>E In

for all values of b, c,j,k, Eq. (2.56)

END OF LOOP OVER E

Set IAbcz AAbkc’ Eq.(2.51)

END OF LOOP OVER A

LOOP OVER A

LOOP OVER D

Calculate TAD]; for all values of c,j,k, Eq. (2. 49)

Calculate IAbD for all values of b,j,k, Eq. (2.50)

END OF LOOP OVER D

A — CCSD

Calculate (‘1’ Jbgl(H1(\/',open) RLN+1))C|<I>) by antisymmetrizing ‘IA‘IbIz, Eq.(2.48)

END OF LOOP OVER A
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Figure 2. 3: The key elements of the algorithm used to compute

((1)1?-k|(H1113553)}?BIN—1))CIQ) Eq. (2.77), in the efficient implementation of

theJI-PEOMCCSDt method.
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Calculate I]: for all values of j,k,77, Eq.(2.93)

Calculate Iiéf for all values of i,c,f, Eq.(2.89)

Set Ijk =Ijk for all values of j,k, 77

Set Icsz II; for all values of 7, c, f

LOOP OVER L

Calculate ILA: = ILk +1 Z v7,{ang;k for all values of 173,77, Eq.(2.90)

m,e,f

Calculate Ijfi=1515+§2 777,7,anefmfor all values of j,77, Eq. (2.91)

m,e,f

Calculate 151;: Ijk- 122%UL717L‘Ifkfor all values of j,k, 77, Eq. (2.92)

Calculate IIéf = IIgf— 18thZ 7)$,,,7‘an for all values of c,f, Eq.(2.87)

Qflmne

Calculate [10 = 115—: X 71317ng for all values of i, c,f, Eq.(2.88)

‘9 n<(L)

END OF LOOP OVER L

LOOP OVER I

Ijk Ijk Ijk .
Calculate 7bc’ [3 bc’ and x bc for all values of 1,17, b,c, Eqs.(2.81)-(2.83)

Set A195: X12119 for all values of j,k,b,c

LOOP OVER M

Calculate AIjK—— AI‘IK— % Z hlVIKn7M1? for all values of j,K,b,c,

77(<M)

Eq.(2.84)

Ijk_ Ijk 1 Ik M77j_1‘I Mjk 1 -1e Mjk
Calculate A — A —g E thT bc ZlthI' bc " QZhMcr be

77(<M) ‘9

for all values of j,k,b,c, Eq.(2.85)

END OF LOOP OVER M

Set 5151‘: Am‘, Eq.(2.80)

END OF LOOP OVER I

LOOP OVER I

LOOP OVER L

Calculate TIE”: for all values of k,b,c, Eq.(2.78)

Calculate It}; for all values of j,b,c, Eq. (2.79)

END OF LOOP OVER L

(CCSD)

N,open

(N-l) . . . 1‘}:
Calculate ((1)1377 |(H R” )CIQ) by ant1symmetr121ng “I {)6 , Eq. (2.77)

END OF LOOP OVER I
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2.2 Applications

To illustrate the accuracy of the EA- and IP-EOMCCSDt methods as well as the per-

formance of the highly efficient computer codes that we developed for these methods

using the algorithms discussed in Section 2.1.3, several benchmark calculations for

small open-shell systems, for which the exact full configuration interaction (C1) or

other reliable theoretical and experimental data are available, are examined. One of

our main goals is to demonstrate the ability of EA- and IP-EOMCCSDt approaches

to provide results of the same accuracy as their parent EA-EOMCCSD(3p—2h) and

IP-EOMCCSD(3h-2p) schemes, while maintaining computational costs on the order

of the much less expensive CCSD approach.

2.2.1 Excitation Energies of Diatomic Radicals: CH and SH

In this section we consider benchmark calculations for the low-lying excited states

of the CH and SH radicals [85,87]. We begin by considering CH, for which we

performed the EA-EOMCCSD(2p—1h), EA-EOMCCSD(3p-2h), and EA-EOMCCSDt

calculations of the adiabatic excitation energies Te corresponding to four low-lying

excited states using the aug—cc—meZ (.7:=D, T, and Q) basis sets [178-180] (see Ta-

bles 2.3 and 2.4). These results are compared with the UHF-based EOMCCSD and

EOMCCSDT calculations reported in [31] and our own complete-active—space self-

consistent field theory (CASSCF) based MRCI(Q) calculations using the internally

contracted MRCI approach with quasidegenerate Davidson corrections [181,182], as

implemented in MOLPRO [183] (see [184] for more information). In all EA-EOMCC

calculations for CH, the RHF determinant for the closed-shell CH+ ion was employed

as a reference, and two separate sets of EA-EOMCCSDt calculations, which differed

in the size of the active space considered, were carried out. In the first. set of the

EA-EOMCCSDt calculations for CH, the active space consisted of the 1771,; and My
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orbitals of CH+, while the second set used a slightly larger active space composed of

the 1771;, 1773,, and 4a orbitals. The relevant experimental data, including adiabatic

excitation energies and the equilibrium bond lengths used in the CC/EOMCC and

MRCI(Q) calculations, were taken from [185-189] (the same values were used in [31]).

The lowest—energy core orbital (which correlates with the 13 orbitals of C) was kept

frozen, and the spherical components of the d and (where present in the basis set) f

functions were used. The C272 symmetry was exploited.

The CH radical is quite challenging for the basic, low-order CC/EOMCC methods

due to the strong multi—reference or doubly excited character of several of the low-

lying excited states (cf., e.g., [132,190,191]). Indeed, an analysis of Table 2.3 reveals

that the basic EA-EOMCCSD(2p—1h) approach has severe difficulty describing the

excited states of CH, producing errors relative to the highly accurate EOMCCSDT

and MRCI(Q) results for these states which range from 1.50 to 3.18 eV and 1.53

to 3.29 eV, respectively. The UHF-based EOMCCSD approach is better, but only

slightly. For the B 22" and C 22+ states, which have a significant doubly excited

character, the errors in the EOMCCSD values of Te relative to the highly accurate

EOMCCSDT data of [31] are 1.14-1.35 and 1.22-1.45 eV, respectively. Furthermore,

the EA-EOMCCSD(2p—1h) method predicts an incorrect ordering of excited states

by placing the B 2E- state higher in energy than the C’ 22+ state. These major

failures of the EA-EOMCCSD(2p—1h) approximation and the EOMCCSD approach

point to the need for including the higher-order 3p-2h effects in the EA-EOMCC

formalism in order to accurately describe the excitation spectrum of CH. Indeed,

the EA-EOMCCSD(3p—2h) method greatly improves the poor EA-EOMCCSD(2p—1h)

and EOMCCSD results, restoring the correct ordering of states and reducing the large

errors relative to EOMCCSDT and MRCI(Q) down to ~ 0.01 —- 0.12 and 0.02 — 0.15

eV, respectively. Unfortunately, this success comes at a high price. For instance,

as shown in Table 2.4, the average time per iteration for the EA-EOMCCSD(3p—2h)
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calculations is, depending on the basis set, anywhere from 56 to 69 times longer than

the iteration time for the corresponding EA-EOMCCSD(2p—1h) calculation. Such

a dramatic increase in the computational costs makes the EA-EOMCCSD(3p-2h)

approach impractical for most realistic applications.

In order to avoid the large computational costs of the EA-EOMCCSD(3p—2h)

method, while accurately including the most important 3p—2h correlation effects, we

consider the active-space EA-EOMCCSDt approximation. Table 2.3 reveals that for

both active spaces considered in this work the EA-EOMCCSDt approach is capable

of reproducing the highly accurate EA-EOMCCSD(3p-2h) results almost perfectly.

In fact, the EA-EOMCCSDt scheme produces excitation energies for these states

and basis sets which differ from the EA-EOMCCSD(3p—2h) values by ~ 0.01 — 0.05

eV, regardless of which of the two active spaces is used. The real success of the

EA-EOMCCSDt approximation, however, is the fact that it produces these high ac-

curacies at a small fraction of the large costs needed by the full EA-EOMCCSD(3p—2}7)

method. As shown in Table 2.4, the computer times required by the EA-EOMCCSDt

approach are on the order of those characterizing the inexpensive EA-EOMCCSD(2p—1h)

and CCSD/EOMCCSD calculations. This is particularly true for the aug-cc-pVQZ

basis set, for which the average time per iteration for the EA-EOMCCSDt calculations

is only around 3 times longer than the EA-EOMCCSD(2p—1h) iteration time. This

is a factor of 20 speed-up relative to the EA-EOMCCSD(3p—2h) scheme. The results

in Tables 2.3 and 2.4 clearly illustrate the ability of the EA—EOMCCSDt method to

balance accuracy and computational cost when studying the excited states of radicals,

producing accuracies equivalent to the very expensive EA-EOMCCSD(3p—2I7) approx-

imation at the relatively low costs characterizing the standard EA-EOMCCSD(2}7~1}7)

and CCSD/EOMCCSD approaches.

We now consider the SH radical (Tables 2.5 and 2.6). In this case, we performed

the IP-EOMCCSD(2h-1p), IP-EOMCCSD(3h-2p), and IP-EOMCCSDt calculations
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Table 2.4: The average time per iteration for the EA-EOMCCSD(3p—2h) and EA-

EOMCCSDt calculations“ performed for the CH radical with the aug—cc-meZ (:7:=D,

T, and Q) basis sets [178—180]. The average times T are reported as T/T2p_1 h: where

T2p_1h is the average time per iteration for the corresponding EA-EOMCCSD(2p—1h.)

calculation. In all correlated calculations the lowest energy core orbital was kept

  

 

frozen.

Method aug-cc-pVDZ aug-cc-pVTZ aug—cc—pVQZ

EA-EOMCCSD(3p—2h) 68.67 61.42 56.42

EA-EOMCCSDtb 7.39 4.18 3.00

EA-EOMCCSDtc 9.44 5.57 3.45

CCSDd 8.56 5.86 4.68

EOMCCSDe 1.72 1.00 1.19
  

3‘ For consistency purposes, the average iteration time is computed using the first 10

iterations of the calculation for the ground state of the CH radical. The excited state

calculations show essentially identical timings.

b The active space consisted of the 1771; and 1773, orbitals of CH+.

C The active space consisted of the 1771-, 1773,, and 40 orbitals of CH+.

d ROHF-based CCSD calculation for the ground state using codes described in [132].

e ROHF-based EOMCCSD calculation for the a 42“ state using codes described

in [132].

 

of the vertical excitation energies corresponding to six low—lying excited states, as

well as the CASSCF-based MRCI(Q) calculations for comparison purposes (see [184]

for further information). The equilibrium geometry for SH used in these calculations

was taken from [192] and the basis sets considered consisted of the aug-cc-pV(:r+d)Z

basis [180,193] for the S atom and the aug-cc-pVxZ basis [178,180] for the H atom

(:7: = D and T). The RHF determinant of the closed—shell SH’ ion was used as a

reference in all IP-EOMCC calculations and the active—space for the IP-EOMCCSDt

calculations consisted of the 2773; and 277;, orbitals of SH‘. The lowest-energy core

orbital (which correlates with the 13 orbital of S) was kept frozen, and the spherical

components of the d and (where present in the basis set) f functions were utilized.

In analogy to CH, the Cg?) symmetry was exploited.

As was the case for the CH radical, the SH system is very difficult to describe with

the standard, low-order CC/EOMCC methods, such as the basic IP-EOMCCSD(2h- 1p)
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Table 2.5: The ground-state energies and the vertical excitation energies correspond-

ing to the low-lying excited states of the SH radical, as obtained with the aug-cc-

pV(:r+d)Z basis set for S [180,193] and the aug-cc-pVxZ basis set for H [178,180],

where :c=D and T. Units are hartree for the ground-state energy and eV for the

excitation energies.a

  

IP-EOM

State CCSD(2h-lp) CCSD(3h-2p) CCSDtb

aug—cc—pV(D+d)Z/aug-cc-pVDZ

X 2H -398.287 215 -398.294 398 -398.294 167 —398.299 262

 

MRCI(Q)C
 

A 223+ 4.002 3.936 3.926 3.962

1 42:- 9.168 5.830 5.824 5.437

1 22— 10.575 6.567 6.561 6.034

1 2A 10713 7.383 7.378 7.001

B 22+ 10.341 8.191 8.210 7.862

1 411 11.738 8.425 8.420 8.079

aug-cc-pV(T+d)Z/aug-cc-pVTZ

X 2n -398.378 344 -398.388 242 -398.387 932 —398.395 274

A 22+ 3.987 3.926 3.912 3.949

1 42- 11.252 5.994 5.986 5.527

1 22:— 10.878 6.766 6.758 6.175

1 2A 12.565 7.405 7.398 6.992

B 22+ 12.197 8.265 8.284 7.863

1 4H 12.028 8.561 8.554 8.103
 
 

3‘ All calculations were performed at the experimental equilibrium geometry, 76 =

1.3409 A, taken from [192]. In all correlated calculations the lowest energy core

orbital was kept frozen.

b The active space consisted of the 277$ and 277], orbitals of SH’.

c The active space consisted of 10 orbitals; see [184] for further information.
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Table 2.6: The average time per iteration for the IP-EOMCCSD(3h-2p) and IP-

EOMCCSDt calculationsa performed for the SH radical with the aug—cc-pV(:7:+d)Z

basis set for S [180,193] and the aug-cc-pVxZ basis set for H [178,180] where n=D

and T. The average times T are reported as T/T2h_1p, where T2h_1p is the average

time per iteration for the corresponding IP-EOMCCSD(2h-1p) calculation. In all

correlated calculations the lowest energy core orbital was kept frozen.

  

 

Method aug—cc—pV(D+d)Z aug-cc-pV(T+d)Z

IP-EOMCCSD(3h-2p) 332 1144

IP—EOMCCSDtb 118 280

CCSDc 44 342

EOMCCSDd 17 71
  

a For consistency purposes, the average iteration time is computed using the first 10

iterations of the calculation for the ground state of the SH radical. The excited state

calculations show essentially identical timings.

b The active space consisted of the 27p; and 2773, orbitals of SH“.

0 ROHF-based CCSD calculation for the ground state using codes described in [132].

d ROHF-based EOMCCSD calculation for the A 22+ state using codes described

in [132].

approach. Table 2.5 reveals that, with the exception of the A 22+ state, the IP-

EOMCCSD(2h-1p) approximation completely fails for the low-lying excited states

studied in this work, producing errors relative to MRCI(Q) of 3.93 — 5.73 eV when

the aug-cc-pV(T+d)Z basis set is employed. This dramatic failure illustrates how

essential the higher-order correlation effects, such as the 3h-2p component of the ion-

) , are when describing the excited states of SH. By explicitlyizing operator RSV—1

including the 377-277 contributions in the IP-EOMCC formalism, we can significantly

improve these poor results. As shown in Table 2.5, the IP-EOMCCSD(3h-2p) method

reduces the huge errors relative to MRCI(Q) produced by the IP-EOMCCSD(2h-1p)

calculations to ~ 0.40 — 0.59 eV. These errors are still larger than one would like, pos-

sibly indicating a need for incorporating 4h—3p effects in the calculation, but clearly

the IP-EOMCCSD(3h-2p) results represent a major improvement over the poor per-

formance of the IP-EOMCCSD(2h-1p) method. Again, as was the case for CH, this

improvement comes with a significant increase in the computational costs compared
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to the IP-EOMCCSD(2h—1p) calculations. As shown in Table 2.6, the average time

per iteration required by the IP-EOMCCSD(3h-2p) calculations with the aug-cc-

pV(T+d)Z basis set is approximately 1100 times longer than that characterizing the

IP-EOMCCSD(2h-1p) calculations.

In order to reduce these high costs of the IP-EOMCCSD(3h-2p) calculations we

turn to the active-space IP-EOMCCSDt method. An analysis of the excitation e11-

ergies in Table 2.5 shows that the IP-EOMCCSDt results are practically identical to

those generated by the full IP-EOMCCSD(3h-2p) method. In fact, the differences

between the excitation energies produced by these two approaches do not exceed

0.02 eV for all states listed in Table 2.5. Most importantly, the IP-EOMCCSDt ap-

proach offers this excellent performance at a fraction of the high costs characterizing

the IP-EOMCCSD(3h—2p) calculations. This is shown in Table 2.6, where one can

see that the average time per iteration required by the IP-EOMCCSDt approach is

about four times smaller than the average time per iteration characterizing the IP—

EOMCCSD(3h-2p) calculation, when the aug-cc—pV(T+d)Z basis set is employed.

The smaller degree of the savings in the computer effort in this case, compared to

the EA-EOMCCSDt calculations for CH, is related to the fact that the ratio of the

number of all occupied orbitals to active occupied orbitals in the SH/SH" system is

not as large as the ratio of the number of all unoccupied orbitals to active unoccupied

orbitals in the CH/CH+ system. The computational savings offered by the active-

space IP-EOMCC schemes would be much more dramatic for larger systems, as well

as for the higher-order active-space approximations, such as the IP-EOMCCSth

method discussed in Section 2.1.2, where both active occupied and unoccupied or-

bitals are considered in selecting the dominant 4h-3p excitations (see Eq. (2.22)). On

the other hand, it is encouraging to observe that a factor of four speed-up compared

to the IP—EOMCCSD(3h—2p) approach offered by the IP-EOMCCSDt calculations

for SH is not achieved at the expense of losing the relatively high accuracy of the
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IP-EOMCCSD(3h—2p) results.

2.2.2 Potential Energy Curves of OH

In this section, we discuss IP-EOMCC and SAC-CI calculations of the potential

energy curves for the low-lying states of the OH radical [86,88], which were performed

using the 6—31G** [180,194,195] basis set and compared to the full CI results that

were obtained with GAMESS (Figure 2.4 and Tables 2.7 — 2.10). The equilibrium

geometry of OH was taken from [192]. In all calculations the lowest core orbital

was kept frozen, the spherical components of the (1 functions were employed, and the

02v symmetry was exploited. The SAC-CI calculations were carried out using the

development version of the Gaussian suite of programs that was made available to

my advisor by Professor Masahiro Ehara.
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Figure 2.4: Potential energy curves for the ground and low—lying excited states of

the OH radical. Energies are in hartree and the O-H distance RO-H is in A. (a) The

full CI results. (b) The IP-EOMCCSD(2h—1p) results. (c) The IP-EOMCCSD(3h-2p)

results. (d) The IP-EOMCCSDt results. (6) The SAC-CI(4h-3p) results (doublet

states only). (f) The SAC-CI(4h-3p){3,1} results (doublet states only).
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As was the case for the CH and SH radicals discussed in Section 2.2.1, many

of the low-lying excited states of OH show a strong contribution from higher-order

excitations or a significant multi-reference character (cf., e.g., [82,196]). As a result,

the OH radical is a challenging system to describe, especially for the low-order IP-

EOMCCSD(2h—1p) approach. In fact, if we look at the leading full CI configurations

shown in Tables 2.7 and 2.8 we see that, with the exception of the X 2H ground

state and the A 22+ excited state, the leading configuration for each state studied,

at all four geometries analyzed in these tables, is at least a 2h— 1p excitation relative to

the ground-state reference configuration of OH". Just as the standard EOMCCSD

approach fails for excited states dominated by doubles, the major contributions of

2h-lp excitations in the excited states of interest should cause a failure of the IP-

EOMCCSD(2h-1p) method, and, in fact, this is exactly what we observe. Tables 2.9

and 2.10 show that except for the X 2H and A 22+ states, the errors in the IP-

EOMCCSD(2h-1p) energies relative to full CI are huge, ranging from N 70 to ~ 450

millihartree. A comparison of Figures 2.4(a) and 2.4(b) reveals that these errors are

not merely a quantitative concern, as this low-order approximation produces a qualita-

tively incorrect representation of the excited states of OH. The IP-EOMCCSD(2h-1p)

scheme shows some limited success only for the X 2II and A 22+ states, producing

errors in the range of 0.6—4.3 millihartree for the O—H distances of 0.77—1.27 A . How-

ever, it is important to notice that even in these two cases the relatively high accuracy

of the IP-EOMCCSD(2h—1p) results rapidly deteriorates as soon as the O—H distances

become larger, with the errors in the IP-EOMCCSD(2h-1p) results for the X 2H and

A 22+ states steadily increasing to 73.5 and 31.6 millihartree, respectively, at the

O—H separation of 3.0 A. As is the case for the other states, this behavior is perfectly

in sync with the nature of the leading configurations in the wave functions defining

the X 2H and A 223+ states. Tables 2.7 and 2.8 show that at internuclear separations

of 0.77 and 0.96966 A, both states are predominantly single-reference states defined
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by a 1h excitation, and as a result, the IP-EOMCCSD(2h-1p) approach describes

them well. As one moves out of the spectroscopic region, however, we see that the

multi—reference character of the X 211 and A 22+ states increases, and 211-119 (and

even 3h-2p) contributions become significant. In fact, for the X 2H state, which of

the two states analyzed here is the one that the IP-EOMCCSD(2h-1p) approach has

more difficulty with, a 2h-1p excitation actually becomes the dominant contribution.

The significant contributions of the 2h—1p excitations and the failure of the IP-

EOMCCSD(2h-1p) approach illustrate the importance of considering the 3h-2p com-

ponents of the ionizing operator RLN—l) in calculations of the excited states of OH.

Indeed, as shown in Tables 2.9 and 2.10, the inclusion of these effects through the

IP-EOMCCSD(3h-2p) approach does offer considerable improvements over the huge

errors produced by IP-EOMCCSD(2h-1p). The IP-EOMCCSD(3h-2p) approach does

a particularly good job of describing the 1 411 state, reducing the 225.443 millihartree

maximum unsigned error (MUE) and 154.788 millihartree non-parallelity error (NPE

value; defined as the difference between the most positive and most negative signed

errors relative to full Cl along a given potential energy curve) down to 2.674 and 2.374

millihartree, respectively. Since this state is strongly dominated by 2h- 1p excitations

and shows relatively small contributions from 3h-2p excitations, as shown in Table

2.7, it is not surprising that it is described so well at the 3h-2p level of theory. Though

it does show somewhat larger contributions from the 3h-2p excitations than the 1 4H

state, the 2 211 state is also described reasonably well by the IP-EOMCCSD(3h-2p)

method, producing the reasonable MUE and NPE values of 7.793 and 6.658 milli-

hartree, respectively. The X 2II and A 22+ states are also well described by the

IP-EOMCCSD(3h-2p) scheme, especially in the spectroscopic region, where the er-

rors relative to full CI are roughly 1.5 millihartree. Unfortunately the growing role of

the 3h-2p excitations as the internuclear separation is increased results in errors that

become as large as 11.777 and 6.272 millihartree, respectively, as the O—H distance
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approaches 3.0 A. The remaining 1 2A, 1 423—, 1 22‘, and B 22+ states pose more

of a challenge to the IP-EOMCCSD(3h—2p) approach. An analysis of Tables 2.7 and

2.8 reveals that the role of the 3h-2p contributions in these states is very large, partic—

ularly at the significantly stretched geometries where several of the electronic states

of OH become dominated by such excitations. This suggests a need for the explicit

inclusion of the 4h—3p component in the ionizing operator RSV—1) in order to obtain

an accurate description, as discussed below. Despite this, the IP-EOMCCSD(3h-2p)

method describes the 1 2A, 1 423—, 1 22‘, and B 223+ states in the region around

the ground-state equilibrium geometry reasonably well, producing errors for these

four states of 4203—12392 millihartree at the equilibrium O—H distance of 0.96966

.4. As we move to larger distances, where the 3h-2p contributions begin to dominate

the 1 2A, 1 42-, 1 22’, and B 22+ states, we see that the errors steadily increase

toward 26164—49731 millihartree. It is worth noting that even though these errors

are relatively large, they represent a significant improvement of the 335.385—450.090

millihartree errors obtained with the IP-EOMCCSD(2h-lp) approach at 3.0 A for

the same four states. We can make similar qualitative observations by comparing

Figures 2.4(a) and 2.4(a). This comparison shows that if we focus our attention on

the spectroscopic (Franck-Condom) region, the IP-EOMCCSD(3h—2p) method does

a reasonable job of faithfully reproducing the full CI curves for all of the states of

OH studied in this work. As we shift our attention to the larger O—H distances, we

notice that while the success of the IP-EOMCCSD(3h—2p) approach continues for the

X 2H, A 22+, 1 4H, and 2 2H states, the results for the remaining states of OH

show increasingly large deviations from the corresponding full CI data. Based on the

above analysis it appears that one needs to incorporate the 4h-3p excitations in the

IP-EOMCC calculations in order to obtain a better description of the bond-breaking

region of the potential energy curves of OH. As discussed below, this is indeed the

case.
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Having analyzed the performance of the IP-EOMCCSD(3h-2p) approach in detail,

we now turn our attention to its active-space IP-EOMCCSDt variant. A comparison

of Figures 2.4(c) and 2.4(d) reveals that, with the exception of the B 22+ state,

the IP-EOMCCSDt potential energy curves are almost a perfect match to the full

IP-EOMCCSD(3h—2p) curves. An analysis of Tables 2.9 and 2.10 confirms this obser-

vation. If we compare the errors in the two approaches, we find that for all states, ex-

cept B 22+, the differences between the IP-EOMCCSDt and IP-EOMCCSD(3h—2p)

results are less than 2.410 millihartree for all geometries considered. Furthermore,

the corresponding NPE values differ by less than 1.570 millihartree for all of these

states (in many cases, less than 0.01 millihartree). Unfortunately, the B 22+ state

is a problem for the IP-EOMCCSDt approach at larger O—H separations, where the

IP-EOMCCSDt and IP-EOMCCSD(3h-2p) results differ by as much as 25.770 mil-

lihartree at the O—H distance of 3.0 A (for the O—H separations in the equilibrium

region, the differences between the IP—EOMCCSDt and IP-EOMCCSD(3h—2p) ener-

gies of the B 22+ state are only 2—3 millihartree). This large discrepancy between

the IP-EOMCCSDt and IP-EOMCCSD(3h—2p) energies of the B 22+ state at larger

O—H separations is easily explainable by analyzing the data presented in Table 2.8.

The second to the last configuration contributing to this state, shown in Table 2.8,

is a 3h-2p excitation in which no electron is removed from the 1713; or 17ry orbitals.

Since the active space used in the IP-EOMCCSDt calculations consisted of only those

two orbitals, the amplitude that represents this particular 3h-2p configuration is not

present in the IP-EOMCCSDt calculation, and since this is a relatively significant

configuration for the proper description of the B 223+ state at larger O—H distances,

the accuracy of the IP-EOMCCSDt results for this state is hurt. One of the advan-

tages of the active-space approaches, however, is that these kinds of problems can be

dealt with by expanding the active space. The only problem with that strategy in the

particular example of the OH radical is that with the core electrons frozen, expand-

64



ing the active space to include the 30 orbital results in the IP-EOMCCSDt method

becoming the full IP-EOMCCSD(3h-2p) approach since no 3h-2p amplitudes are ig-

nored when there is only one inactive orbital. In the end, these results show that with

an appropriate choice of the active space the IP-EOMCCSDt approach is capable of

accurately reproducing the results of the full IP—EOMCCSD(3h-2p) calculations at

the cost of the standard CCSD/EOMCCSD schemes.

We now return to the important issue of improving on the IP-EOMCCSD(3h-

2p) results. As mentioned above, the analysis of the dominant contributions to the

full CI wave functions, along with the IP-EOMCCSD(3h—2p) results, lead one to the

)
conclusion that the inclusion of 4h—3p components of the RSV—1 operator in the IP-

EOMCC calculations is necessary to accurately describe the entire potential energy

curves of OH. In order to test this hypothesis, my advisor and I, in collaboration with

Dr. Yuhki Ohtsuka, Professor Masahiro Ehara, and Professor Hiroshi Nakatsuji, per-

formed SAC—CI(4h-3p) calculations for the low-lying doublet states of OH [88]. As

explained in Section 2.1.1, the IP SAC-CI methodology is equivalent, up to some

implementational differences and unimportant terms, to IP-EOMCC and so can pro-

vide similar insight into the role of 411-31) excitations as the corresponding IP-EOMCC

method.

In order to verify the equivalence of the IP EOMCC and SAC—CI methodologies,

we compare the SAC-CI(3h—2p) results with those obtained with IP-EOMCCSD(3h-

2p). Examination of Tables 2.9 and 2.10 reveals that the two methods do in fact

provide very similar results. This is particularly true in the spectroscopic region,

where the differences between these two methods range from 0.022 — 4.755 milli-

hartree. Past this range, particularly for states that become dominated by 3h-2p

excitations (see Tables 2.7 and 2.8), the differences can become larger, but as these

are the regions and states for which the 3h-2p methods have difficulties, this is not a

major concern.
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With the equivalency of the IP SAC-CI and EOMCC approaches verified, the

results of the SAC-CI(4h-3p) calculations can now be considered as a substitute for

the IP-EOMCCSD(4h-3p) calculations, which we were unable to perform since we

do not have the corresponding IP-EOMCCSD(4h-3p) codes. Comparison of Figures

2.4(a) and 2.4(e) shows that for the doublet states of OH, the SAC-CI(4h-3p) scheme

produces potential energy curves which are virtually identical to those obtained with

full CI. In particular, it is worth noting that SAC-CI(4h-3p) preserves, to a very good

approximation, the asymptotic degeneracy of the X 2II and 1 22" states and the

asymptotic degeneracy of the A 22+, 1 2A, and 2 2II states that were missing from

the results obtained with the lower-order IP EOMCC and SAC-CI methods. The

success of the SAC—CI(4h—3p) approach can be verified quantitatively by examining

Tables 2.9 and 2.10. The errors in the results relative to full CI do not exceed

4.776 millihartree for any of the states or geometries considered, and for several

of the states the MUE values are less than 1.531 millihartree. Furthermore, the

NPE values for all of the states of OH considered in this section range from 0.405 to

2.559 millihartree, illustrating that the SAC-CI(4h—3p) approach provides a uniformly

accurate description of the entire potential energy curves of the OH radical.

Unfortunately the high accuracy obtained with the SAC-CI(4h.-3p) approach comes

at a heavy price. The number of 4h-3p amplitudes that enter the IP EOMCC or

equivalent SAC-CI eigenvalue problem is given by 71371.3, which for any molecular

system of reasonable size is a huge number (compare this to the 7127112, 3h-2p a111-

plitudes that enter the IP-EOMCCSD(3h—2p) eigenvalue problem). As a result, the

computational costs associated with solving the SAC-CI(4h-3p) eigenvalue problem

are very large; the corresponding CPU steps scale as 713713. AS in the case of the

IP-EOMCCSD(3h-2p) calculations, one can overcome this difficulty by considering

the active-space variant of SAC-CI(4h-3p). Indeed, we considered the active-space

SAC-CI(4h—3p){3,1} approach, which uses the definition for the 4h-3p operator given
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by Eq. (2.22), and in which the {3,1} denotes that the active-space consisted of the

three highest occupied molecular orbitals and the lowest unoccupied orbital of OH"

(cf., Figure 2.1). As can be seen from Tables 2.9 and 2.10, the active-space SAC-

CI(4h—3p){3,1} calculations faithfully reproduce the full SAC-CI(4h—3p) results. The

MUE values of the two schemes differ by less than 2.409 millihartree for all states

considered, while the differences in the NPE values do not exceed 1.825 millihartree.

Furthermore, comparing Figures 2.4(e) and 2.4(f) reveals the potential energy curves

generated with the active-space SAC-CI(4h-3p){3,1} approach look essentially the

same as those obtained with the parent SAC-CI(4h.-3p) method in which all 3h-2p

and 4h—3p excitations are considered. This includes the spectroscopic as well as

asymptotic regions of the potential energy curves and all calculated electronic states.

As in all other examples of active-space CC or EOMCC calculations, the SAC-CI(4h-

3p){3,1} approach is capable of producing these high accuracies using a small fraction

of the excitation amplitudes defining, in this case, the Rp,4h-3p component of RSV—1).

The active-space SAC-CI(4h—3p){3,1} calculations for the OH/6—31C(d) system use

less than 30% of all 4h-3p excitations, which is a substantial saving in the computer

effort compared to the full SAC-CI(4h—3p) scheme. For larger numbers of electrons

and basis functions these savings would be even greater.

2.2.3 Excitation Energies of C2N, CNC, N3, and NCO

In this section, we consider benchmark EA- and IP-EOMCC calculations of the adi-

abatic excitation energies of several low-lying states of the C2N, CNC, N3, and NCO

systems reported in [89] (see, also, [140]). The nature of these systems is such that

the cations, namely CNC+ and C2N+, can serve as the relevant closed-shell refer-

ence systems for CNC and CgN, respectively, and hence the EA-EOMCC calculations

were performed for these two molecules. Similarly, the anions, Ng and NCO“, are

the relevant closed-shell reference systems for N3 and NCO, respectively, and so the
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Table 2.11: Equilibrium geometries (A), adiabatic excitation energies (eV), and ap-

proximate excitation levels relative to the ground states of the corresponding reference

cations for the low-lying valence excited states of C2N and CNC.

 

 

 

 

Excitation EA-EOM

Molecule State Level Geometry CCSD(2p—1h) CCSD(3p—2h) CCSDta Expt.b

CNC (RCN)

X 2H9 1p 1.253

A221,, 2p—1h 1.256 7.206 4.105 4.085 3.761

B22; 21H}; 1.259 7.639 4.718 4.704 4.315

C2N (RCCaRCN)

X 211 1p 1.400,1.185

A2A 2p—1h 1315,1207 6.190 3.055 3.028 2.636

B22:— 25171C 1302,1223 7.856 3.677 3.648 2.779

022+ 2p-1h 1311,1214 6.722 3.809 3.788 3.306
 

 

3‘ The active space consisted of the four lowest unoccupied molecular orbitals of CNC+

and CQN+.

b Taken from [202]

C The B 22‘ state of C2N also has small, but non-negligible 3p—2h contributions.

IP—EOMCC methods were applied in these two cases. All calculations utilized the

double zeta basis set of Dunning augmented by one set of polarization functions,

DZP[4s2p1d] [197,198], and the ground-state RHF orbitals of the appropriate closed-

shell reference system, as described above. The core orbitals that correlate with the

18 shells of the C, N, and O atoms were frozen in the correlated calculations. In

this work, only linear geometries were considered, and the optimized bond lengths for

each state were obtained using the analytic gradients of the EA SAC-CI(3p—2h.) or IP

SAC-CI(3h-2p) approach [84,199,200] within the perturbative selection (PS) approx-

imation [201] (in the PS approximation the small higher-order components of the

electron-attaching or ionizing operator that do not significantly perturb a suitably

chosen zero—order wave function are eliminated from the calculation via numerical

thresholds) .

Table 2.11 provides the results for CNC and C2N, for which the EA-EOMCC

calculations were performed. Examination of the results of the EA-EOMCCSD(2p—
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1h.) calculations clearly demonstrates the inability of this lower-order EA-EOMCC

approximation to accurately describe the low-lying states of these two systems. In-

deed the errors in the EA-EOMCCSD(2p—1h) adiabatic excitation energies relative

to experiment are 3.324 — 5.077 eV. This failure is not surprising when we consider

the approximate excitation level of each state relative to the ground state of the cor—

responding reference cation. Indeed, we see that each of the states considered here

are predominantly of a 2p-1h nature, and as discussed in Section 2.2.2, such states

require that 3p-2h excitations be included in the RLNH) operator of EA-EOMCC in

order to obtain a reasonable description.

The above analysis regarding the need for 3p-2h excitations is indeed correct,

as the EA-EOMCCSD(3p—2h) scheme offers substantial improvements in the results

when compared to the poor description obtained when the electron-attaching RLNH)

operator is truncated at 2p-1h terms. With the exception of the B 223— state of C2N

the errors in the EA-EOMCCSD(3p—2h) results relative to experiment are between

0.3 and 0.5 eV, which is a major improvement over the large errors produced with

EA-EOMCCSD(2p—1h). It is possible that the remaining 0.3 — 0.5 eV errors are a

result of the relatively small basis set used in this preliminary study, a possibility

that will be studied in the future. Unfortunately, the B 22‘ state of C2N still proves

to be problematic, even for the full EA—EOMCCSD(3p—2h) scheme. Though the in-

clusion of 3p-2h terms in the calculation leads to dramatic improvements over the

poor EA-EOMCCSD(2p-1h) error of 5.077 eV, the error in the EA-EOMCCSD(3p—

2h) excitation energy relative to experiment is still about 0.9 eV, which is a significant

deviation. An analysis of the excitation structure of this state reveals that it is charac-

terized by small but non-negligble 3p—2h contributions. As discussed in Section 2.2.2,

the presence of significant 3p—2h excitations in the wave function generally points

to a need for including the 4p-3h contributions in the EA-EOMCC (or equivalent

SAC-CI) scheme in order to obtain accurate results. As a result, it is likely that.
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Table 2.12: Equilibrium geometries (A), adiabatic excitation energies (eV), and ap-

proximate excitation levels relative to the ground states of the corresponding reference

anions for the low-lying valence excited states of N3 and NCO.

 

 

 

 

Excitation IP—EOM

Molecule State Level Geometry CCSD(2h.-1p) CCSD(3h-2p) CCSDta Expt.b

N3 (RNN)

X2Hg 1h 1.188

322,2; 1h 1.185 4.640 4.598 4.729 4.555

NCO (RNC1RCO)

X 2n 111 1230,1193

4223+ 1h 1.191,1.190 2.900 2.864 3.078 2.821

B211 1h 1220,1309 4.199 3.911 3.904 3.937
 

 

‘2 The active space consisted of the two highest unoccupied molecular orbitals of N3‘

and NCO".

b Taken from [202]

the neglect of these effects is the source of the non—negligible discrepancy between

the EA-EOMCCSD(3p—2h) and experimental results. This will be investigated in a

future work.

Though the inclusion of 3p-2h effects in the EA-EOMCC calculation results in

substantial improvements in the accuracy of the excitation energies when compared

to EA-EOMCCSD(2p-1h), these improvements come at a large computational price,

as discussed in the earlier sections. This is certainly a good motivation for exam-

ining if the much less expensive active-space variant of EA-EOMCCSD(3p—2h), i.e.

EA-EOMCCSDt, can provide similar improvements. The results presented in Table

2.11 demonstrate that the active—space EA-EOMCCSDt scheme accurately mimics

its considerably more expensive parent EA-EOMCCSD(3p-2h) approach. Indeed, for

all states of CNC and C2N studied here, the differences between the active-space EA—

EOMCCSDt and full EA-EOMCCSD(3p—2h) excitation energies are less than 0.029

eV, even for the very challenging B 2E” state of C2N, where the difference between

the EA-EOMCCSD(3p—2h) and experimental data is N 0.9 eV.
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Moving on to N3 and NCO, it is clear from Table 2.12 that the low—lying states of

these systems are not quite as complicated as the majority of states considered in this

work. Indeed, Table 2.12 shows that the approximate excitation level of each of the

states considered here relative to the ground state of the corresponding anion is only

1h. As a result of the relatively simple structure of these states, even the basic IP—

EOMCCSD(2h—1p) approach is capable of providing accurate results, producing errors

relative to experiment of 0.085, 0.079, and 0.262 eV for the B 22;] state of N3, and

the A 22+ and B 2H states of NCO, respectively. Despite the high quality of these

results, it is interesting to observe that even in this case the inclusion of 3h—2p effects

in the calculation can provide further improvement. Indeed, the IP-EOMCCSD(3h-

2p) approach reduces the above IP-EOMCCSD(2h-1p) errors for the B 22,] state

of N3, and A 22+ and B 211 states of NCO down to 0.043, 0.043, and 0.026 eV,

respectively. Ultimately, of course, we would like to know if these high accuracies can

be reproduced with the less expensive IP-EOMCCSDt method in which the 3h-2p

excitations are selected via active orbitals. As shown in Table 2.12, the discrepancies

between the IP-EOMCCSDt excitation energies and those of its IP-EOMCCSD(3h-

2p) parent approximation are somewhat larger than the analogous differences between

the EA—EOMCCSDt and EA-EOMCCSD(3p—2h) excitation energies for CNC and

C2N, ranging from ~ 0.1 to ~ 0.2 eV. Although this agreement is still relatively

good, one would prefer to see the IP-EOMCCSDt results to be closer to those of its

parent IP-EOMCCSD(3h—2p) scheme. It is likely that increasing the size of the active

space used in the IP-EOMCCSDt calculations, which in the calculations presented

here was very small, consisting of only the two highest occupied molecular orbitals,

would improve the agreement between IP-EOMCCSDt and IP-EOMCCSD(3h-2p),

and we will explore this issue, along with the issues of the role 4h-3p excitations and

basis sets in the future work.
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Chapter 3

Noniterative Coupled-Cluster

Methods for Open-Shell Systems

In the previous Chapter, the active-space EA— and IP-EOMCC methodologies, as

well as the success of the basic approximations resulting from these methodologies

in describing the low-lying states of radical and other open-shell systems, were dis-

cussed. Although it was shown that these methods can be extremely useful in stud-

ies of the excitation spectra of open-shell systems, producing high-quality results at

low computational costs similar to CCSD or EOMCCSD calculations, as discussed

in the Introduction no method is bullet-proof, and the active-space CC/EOMCC

calculations depend on the choice of active orbitals, i.e., the active-space EA- and

IP-EOMCC methods are not computational black-boxes of the type of conventional

single-reference approaches. So in this chapter we consider an alternative, and perhaps

even complimentary, method for studying open—shell systems, namely the open-shell

extension of the so—called completely renormalized (CR) CC and EOMCC approaches

based on the biorthogonal formulation of the MMCC formalism. Section 3.1 pro-

vides the theoretical details behind these CR—CC/CR—EOMCC schemes, including

the basic elements of the biorthogonal MMCC theory that forms the formal basis
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for these approaches, as described in [133—135, 138-140]. Section 3.2 provides the

results of selected calculations that illustrate the performance of the CR—CC and CR-

EOMCC approaches in studies of ground and excited states of open-shell systems,

taken from [138—140, 150,151].

3. 1 Theory

3.1.1 The Biorthogonal Formulation of the Method of Mo—

ments of Coupled-Cluster Equations

The MMCC approach is based on the idea of adding a noniterative correction to the

ground or excited state energy ELA), computed using some CC/EOMCC approxi-

mation abbreviated here as method A, in order to recover the corresponding exact

(full CI) energy, E“. The CC/EOMCC method A refers to one of the standard

CC/EOMCC approximations truncated at some excitation level mA, such as, for ex-

ample, the basic CCSD approach or its EOMCCSD analog, for which mA = 2 (for

CCSDT/EOMCCSDT, mA would be 3, for CCSDTQ/EOMCCSDTQ, mA would be

4, etc.). If we let TM) (defined by Eq. (2.3) with MT = 771A) represent the cluster

operator characterizing the approximate CC method A, then replacing T with TM) in

Eq. (2.2) gives the ground-state CC wave function |\II(()A)) within this approximation.

Using the EOMCC theory, the corresponding excited-state (u > 0) wave functions

can then be expressed as:

A .

I212) = 6,1510%”) --—= 5,3121“ ’19), (5.1)
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where the excitation operator RLA) which transforms the CC ground state Nam) into

the excited-state wave function lily”) is given by

A "1A

A AR] ) = 12],] + 3,1,3,“ 2 111,0 1 + Z 12),,“ (32)

71:1

with

1 2 7,1...i'n a an

Rflfll = E? Tu,a1...an 0’ 1 ° . ' 0’ ain . . I ail? (3'3)

1 representing the identity operator, and 7215:1137, designating the corresponding exci-

tation amplitudes of EOMCC. One may notice that the structure of the wave function

ansatz given by Eq. (3.1) is very similar to the EA/IP—EOMCC wave function ansatz

of Eq. (2.1), except that instead of an electron-attaching or ionizing operator, RELA)

is a particle-conserving excitation operator. It should also be noted that although

Eq. (3.1) is formally applicable to excited states, one can easily extend it to include

the ground-state (u = 0) case if we adopt a convention in which REA) is the identity

operator. We use this convention throughout this work. The REA) = 1 condition for

the p = 0 RLA) operator is equivalent to defining 700 = 1 and 123212.70” = 0 for n 2 1.

With the CC/EOMCC approximation A defined as above, the noniterative energy

correction recovering the full CI energy from the CC/EOMCC energy, 6);”, which

defines the biorthogonal formulation of the MMCC theory, is given by the following
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compact expression [133—137,139, 140]

A) _ A)

NflaA

= Z (CPL-$1131 AIM-”(TRAMCI’)

n=mA+1

N14,14

n=m +1

A i1<'--<in

a1<~--<an

There are two fundamental contributions to this equation that must be discussed.

The first,

2

1 - ....

M#,n(mA) = (71') 911:},a12_7_lan(m,4) aal ---aa"a.,-n - ' -a,-1, (3.5)

is a particle-hole excitation operator defined through the generalized moments of the

CC/EOMCC equations, 911L15,1,11,,,,(m,4), which correspond to the projections of the

CC/EOMCC equations for method A on the excited determinants that are normally

disregarded in the standard CC/EOMCC calculations. Mathematically, this equates

to the following definition for the moments 9311,1gffia,,(m,4):

‘ - A

513,145,330 = <4>:‘,1,,,,-‘:,"I<H<A>Rf. ))I<I>>, (3.6)

where n > mA, and BM) is the similarity-transformed Hamiltonian of CC method A

given by Eq. (2.10) with T = TM). Since it was established that RéA) = 1, Eq. (3.6)

is general and defines both the ground- and excited-state moments. If one specifically

examines the ground-state case, then Eq. (3.6) reduces to the generalized moments
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of the ground-state CC equations defining method A,

2142“"fo (m1) 2 9112111':.11:.(m.4)= <521"‘2’1IH<A>I<1>>. (3.7)21...'Ln

At this point it should be noted that for a given CC/EOMCC method A, not all of the

moments 9113101110,,(mA) w1th n > mA are non-zero. Indeed, for a g1ven approxuna-

tion, there is generally a value of n above which all moments mffigiiflan (mA) are zero.

This is the source of the upper summation limit N11,A in Eq. (3.4), which is equal to

this value of n for the CC/EOMCC method A. For instance, in the case of CCSD (the

mA = 2 case), only the triply, quadruply, pentuply, and hextuply excited moments,

i.e. moments with n = 3 — 6, are nonzero when the Hamiltonian contains pairwise

interactions only, and thus No,A = 6 (the CCSD equations are solved by zeroing the

singly and doubly excited moments, 2118,42) and 93132032), respectively, hence the

triply excited moments are the first to be nonzero). Similarly, in the EOMCCSD case

with ,u > 0, N11,A = 8.

The second fundamental contribution to the equation for the noniterative energy

correction defining the biorthogonal MMCC approach, Eq. (3.4), are the operators

a]...an

$11.11 and the corresponding deexcitation amplitudes €14 2.1-”in . The 314,71 operators

are the n-body components of the deexcitation operator .2”), which is designed to give

the following parameterization for the exact full CI “bra” wave function:

<qu = «512.. 4‘1”), (3.8)

where

N 2
1 a a . .'

_ _ 1... n, 2 l

314 *7 2 $14,711 $14.71 — (.717) 63,113,, a 1 ""1 "(l-an ' ' ° 04114 (3-9)

n=0 '-

with N designating the number of correlated electrons. As can be seen from Eq.
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(3.4), it is specifically the n—body components 3],," with n > mA that contribute to

the energy corrections 6&4). As a result, it is useful to deconstruct the exact operator

.2], in the following way:

2,, = .25") + 32,)“, (3.10)

where the A part of .2], is given by

A 771A

of; )= 22’1””, (3.11)

71:0

and the remainder corresponding to n-tuply deexcited contributions with n > mA by

N

A

6.21) l = Z 21,), (3.12)

n=mA+1

This helps in designing the approximate schemes based on Eq. (3.4), such as the

CR—CC(2,3) or CR-EOMCC(2,3) approaches discussed in the next section.

It is also important to note that the validity of Eq. (3.4) depends on the normal-

ization of .2“. Indeed, Eq. (3.4) only gives the exact difference between the full CI

and CC/EOMCC energies if the following normalization condition is used:

(mfg/1111291311): 1. (3.13)

Once again, we note that because of the convention in which REA) = 1 this equation

is general, and in the ground-state case, reduces to

(o|$(]A)|<I>) = 1. (3.14)

Inspection of Eq. (3.13) reveals that it is very similar to the biorthonormality
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condition defining the CC/EOMCC bra states (11!M], |, namely,

~ A A A A

<51. ’32). 1) = «PILL >125, ’I9) = 61...). (315)

Here, the CC/EOMCC bra state (\II],\IIA)( | corresponding to the ket state [‘11],A)) defined

by Eq. (3.1) is given by

~ .4
(111],All = (QILLA)e—T( ) (3.16)

(cf. [9, 10]), Where LLA) is a deexcitation operator defined as

A

with

Lffi] = 6,30 1 (3.18)

and

1 2 alman 2'1 in

L11,Aopen —_2 L11,71, [111,71 2 a lll'J'ln-in a -- - a (tan - ° - aal. 1 (3.19)

Examination of the above equations reveals obvious similarities between the standard

EOMCC deexcitation operator LISA) Eq. (3.17) and the A part 2,514) of the operator

.3?” Eq. (3.11), but it is important to stress that these are two different objects.

Indeed, the bra states (ML/(I4) are the left eigenstates of the non-Hermitian similarity-

transformed Hamiltonian HM), which are obtained by solving the left eigenvalue

problem for the CC/EOMCC method A,

a .a a a

6,;10 ((DIHopenlCDillinn) + ((DlLuA)open Hui/3614112211,.inn>

_ (A) 111-1171

_w# ly.,il...in

21 < ‘ ’ ' < in, (11 < ' ° ' < an, (3.20)

80



where 40,814) =E(A)-— E514) is the corresponding vertical excitation energy obtained

with method A (406A)—— 0), in the subspace of the N-e1ectron Hilbert space spanned

by the excited determinants |<I>?1"'-an) with n = 1, . . . ,mA. These left eigenstates are
1...’£n

the bra counterparts of the ket eigenstates RLA)|<I>) of BM) which are obtained by

solving the EOMCC right eigenvalue problem,

—- A A

((1)91 :ll(H(()p€1ani,o)pen)C [(13): WE), )Tzlalinan, (3.21)
11...!

in the space spanned by the excited determinants Wild-~17!) with n=1,. mA, followed
".207:

by the determination of the zero—body amplitude TM) using the equation

A A

#0 =H((I)I(HopenR;(1,(fpenlClCDVw/(A )- (3.22)

On the other hand, the bra state ((IJIEIEA) is only one of two contributions to the

exact state (CHEM, which is obtained by solving the eigenvalue problem

(442,, 13101) = E, (51.23,, (3.23)

which is equivalent to the adjoint form of the Schrbdinger equation, (11!“ [H = E], (\IIM,

for the exact bra wave function (\Ilpl and exact energy E], in the entire N—e1ectron

A)
Hilbert space. As a result, the two operators, LISA) and 3,) , are identical only in

the special case of mA = N, where N is the number of correlated electrons. However,

despite the fact that the two operators are formally different, the observed similarities

between them are useful in formulating approximate CC/EOMCC methods based on

the biorthogonal MMCC theory, which is the subject of the next section.

As a final point, it is worth noting that the formula for the noniterative energy

correctlon 6,8 ) , Eq. (3.4), or1g1nates from a cons1deration of the followmg asynunetrlc
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energy functional [120, 122, 127, 129,130,133, 134]

_ ()II|HR),A)eT(A) (<5)
A[\II] _ .

(WIRLA)€T(A) [(1’)

 (3.24)

The unique feature of this expression is that when 11! is the exact, full CI state \IJM,

then the value of the A[\II] functional is the full CI energy E], (i.e. A[‘Il#] = E14)1

regardless of the choice of RLA) or eT(A) for the CC/EOMCC method A. This is a

consequence of the Hermitian nature of the Hamiltonian, which results in the equation

being unchanged if one applies the Hamiltonian to the bra state (‘I’ul in Eq. (3.24)

rather than to the ket state RLA)eT(A) |<I>). It is the invariance of this expression with

respect to the CC/EOMCC truncation mA that makes it such a good starting point

for the derivation of the noniterative correction 6&4), Eq. (3.4). For a derivation of

the formula for 6,94), Eq. (3.4), see Appendix B.
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3.1.2 The CR-CC(2,3)/CR—EOMCC(2,3) and

CR—CC(2,4)/CR—EOMCC(2,4) Approaches

Equation (3.4) provides one with a well-defined procedure for correcting the CC/EOMCC

energy for the ground or excited state of a given molecular system in order to obtain a

good approximation to the exact energy. By applying a series of systematic approxi-

mations to Eq. (3.4), it is possible to generate a class of practical and highly accurate

CC/EOMCC methods, referred to as the completely renormalized (CR) CC/EOMCC

approaches. This section discusses the systematic approximations that generate the

so-called CR-CC(mA,mB)/CR—EOMCC(mA,m3) schemes, with a particular focus

on the CR—CC(2,3)/CR—EOMCC(2,3) and CR—CC(2,4)/CR-EOMCC(2,4) approxi-

mations utilized in this work.

When attempting to generate practical computational approaches from Eq. (3.4)

the first issue faced is that of the summation over 71 and the upper summation limit

NH,A- With the exception of small molecular systems consisting of only a few cor-

related electrons, it is not feasible to consider all the terms up to N11,A in electronic

structure calculations. Indeed, as discussed in Section 3.1.1, if one starts from the

basic CCSD/EOMCCSD approach, then No,A = 6 and N”,A = 8 for p > 0, which

means that terms involving up to hextuply excited moments of the CCSD equa-

tions and up to octuply excited moments of the EOMCCSD equations would have

to be included. Such high-order moments are computationally too expensive to be

included in calculations for all but the smallest systems. In order to overcome this

difficulty, one can truncate the summation over n in Eq. (3.4) at some value 771.B)

where mA < mB < N11,A- This leads to a systematic hierarchy of approximate CC

methods, referred to as the MMCC(mA, m3)? schemes, for which the total electronic

energy is calculated as [133-137, 139,140]

E,,,(mA,mB) = Eff) + 6))(772A,mB), (3.25)
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where the noniterative correction 6],(mA, m3) is given by:

7713

514(mAamB) = Z (q’lgum 1Wurlzhn'xillfpl

n=mA+l

m8

= z: 2 4:11.12. 44111111117441) 14244)
n=mA+1

i1<.'.<in

a1<---<a,,

Of particular interest to this work are the MMCC(2,3)$ and MMCC(2,4)$ trunca-

tions, which are defined by

E,,(2, 3) = ELCCSD) + 3,,(2, 3), (3.27)

and

E(ccso)
E,(2 4): + 3,,(2, 4), (3.28)

where the noniterative energy corrections to the CCSD (u = 0) or EOMCCSD (11 > 0)

energy are given by

(511(213) = (@353 M)u,3(2)l‘12)

_ ijk

— Z 421,-. 211,....12 ) (329)

i<j<k

a < b < c
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and

522(2, 4) = <¢|$p,3Mp,3(2)l<P> + (Me-YEAMEAQN‘P)

m2 [2

= 2 [abc22,2'jk EUtiabca)

i<j<k

a < b < c

(2de 2'jkl

+ Z 5,u,2jkl mu01mm)
(3.30)

i<j<k<l

a<b<c<d

respectively. It is clear from the above equations that the MMCC(2,3)$ truncation

scheme equates to the addition of a noniterative correction due to triple excitations

to the standard CCSD or EOMCCSD energy. Similarly, the MMCC(2,4)$ approach

equates to the addition of a noniterative correction due to triple and quadruple exci-

tations to the CCSD or EOMCCSD energy.

Unfortunately the above truncation schemes alone do not, by themselves, lead to

practical computational schemes. Indeed, as can be seen in Eqs. (3.29) and (3.30),

in order to obtain the energies Ep(2, 3) and EH(2, 4) defined above, one must be able

to obtain the three— and four-body components of the exact operator 3”. Since one

would need to solve for the full CI bra state (‘I’pl to obtain these components, they

are generally not accessible, and so an alternative, more practical means of obtaining

approximate three— and four-body components of .2” is required. In order to derive

such approximations we will make use of the inherent similarities between $01) and

LLA) discussed in Section 3.1.1. Although it was stressed that 33A) and LM)ar

mathematically different operators, their similarities are big enough to make it pos-

sible to replace 33A) by LELA) in the definition of E” in order to obtain approximate

formulas for the higher-order components of 54, which enter Eqs. (3.29) and (3.30).

In particular, if one is interested in developing a practical approximation based on
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the MMCC(2,3)$ scheme, in which we want to determine the triples correction to

the CCSD or EOMCCSD energy, then the following approximate form for .2”), can be

used:

:4,~...~L<CCSD) + .2023 (3.31)

where

L<CCSD)= (5“,0+ L221 + L122: 522,0 +ZZ,2'20aa + 1122bzj aajabaa (3.32)

are the deexcitation operators defining the left eigenstates of the CCSD similarity-

transformed Hamiltonian (see Eqs. (3.17) — (3.19) with mA = 2). In order to deter-

mine the approximate three—body component of Z”, i.e., .2323, the expression for .5?”

given by Eq. (3.31) can be substituted into Eq. (3.23) written for the mA = 2 case.

The resulting expression is then right—projected on the triply excited determinants

lq’ijk) to obtain

(QILM(CCSD) H(CCSD) IQQJbC>++<¢l$223 H(CCSD)|(I)anC>

= E22<<1>|$22,3l<1>§‘jb§)=E22 (“be (3.33)
22,2jk

By replacing the exact energy Eu by the CCSD/EOMCCSD energy E(CCSD), ap—

proximating the triples-triples block of H(CCSD) by its diagonal, and solving for the

amplitudes defining $223, one obtains the quasiperturbative expression
22,2'cjk’

(CCSD - k

22%,, _—(<1>|L,(,)H(CCSD)|<I>abC)/D:fabc, (3.34)
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Where the Epstein-Nesbet-like denominator ijfle is defined as

Dgfibc
ELCCSD)..

. (@QJbC|H(C
CSD) quajbC)

waCCSD)_ (QajbclH(CCSDl |¢0b2>

C(CSD) b

FEES-E)

CCSD ,.

—<<I>2,-2|H§ 22222 (3.30)

4222312;

Here wLCCSD) represents the EOMCCSD vertical excitation energy,

wLCCSD) (CCSD)= E” (ccsn)

d HESCSD) represents the m-body component of the CCSD similarity-transformed

Hamiltonian. By substituting 331.6%, defined through Eq. (3.34), into the equations

defining the MMCC(2,3)$ approach, Eqs. (3.27) and (3.29), we obtain the formula

for the total electronic energy defining the CR-CC(2,3) (22 = 0) or CR-EOMCC(2,3)

(22 > O) approach, namely,

CR(2,3) _ (CCSD) CR(2,3)

_ (CCSD) be k

_ E), + Z 2:1,,ka 933213.39), (3.37)

i<j<k

a < b < c

with fab-Cjk given by Eq. (3. 34) and the triply excited moments 2m” (2) given by
22,abc

Eq. (3.6) in which mA = 2 (A = CCSD) and n = 3. These moments are calcu-

lated using the T1 and T2 clusters obtained from the CCSD calculations and, in the

excited-state (22 > 0) case, the zero-, one-, and two—body components RM), 1222,12

and Rm? obtained by solving the EOMCCSD eigenvalue problem. It is important

to mention that the above expression for the gzbicjk amplitudes, Eq. (3.34), may
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have to be modified if one of the indices 2', j, k, a, b, c corresponds to an orbital which

is degenerate with some other orbitals. In that case, to make sure that the CR-

CC(2,3)/CR~EOMCC(2,3) energies remain invariant with respect to rotations among

degenerate orbitals, one should replace Eq. (3.34) by a more elaborate expression in

which, instead of using the diagonal matrix elements (<1)??ng(CCSD) Wig?) that enter

ijk

22,abc’ Eq. (3.35), one solves a small system ofthe Epstein-Nesbet-like denominator D

linear equations, similar to Eq. (3.33), where all amplitudes [721%. 1: involving indices

of degenerate spin-orbitals are coupled together through the off-diagonal matrix ele-

de
ments ((1)1mn|H(CCSD) |<I>gjbfl involving the triply excited determinants that carry the

indices of degenerate spin-orbitals [138]. Without taking care of this issue, the CR-

EOMCC(2,3) energy correction 6§R(2’3) is not strictly invariant with respect to the

rotations among degenerate orbitals, although the dependence of the 65R(2’3) correc-

tion employing Eq. (3.34) to determine the (72132-31: amplitudes on the rotations among

degenerate orbitals is minimal. Indeed, as shown in [138], changes in the values of

triples corrections due to the rotations among degenerate orbitals do not exceed 0.1

millihartree when one uses Eq. (3.34) to determine amplitudes Zfibfjk. Thus, the issue

of the lack of invariance of the CR—EOMCC(2,3) correction 6ER(2’3) employing Eq.

(3.34) with respect to the rotations among degenerate orbitals is more of a formal

problem than the practical one as long as one does not calculate energy derivatives for

systems with orbital degeneracies. If the molecule has at most an Abelian symmetry

or if the orbitals employed break the non-Abelian symmetry (for example, due to the

use of symmetry-broken reference determinant or external fields), so that there are

as is.no orbital degeneracies, one can apply Eq. (3.34) to all amplitudes (72%,;

The computational costs of the CR—CC(2,3)/CR—EOMCC(2,3) schemes are char-

acterized by the iterative 7232221, steps of the underlying CCSD/EOMCCSD approach

plus a single noniterative step that scales as 72222.11). These scalings are similar to those

that characterize CCSD(T), and so, like CCSD(T), CR-CC(2,3)/CR-EOMCC(2,3)
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can be applied to systems with up to about 100 correlated electrons and a few hun-

dred basis functions. Furthermore, the overall structure of the CR—CC(2,3)/CR—

EOMCC(2,3) formulas for the energy given by Eqs. (3.34) — (3.37) is the same as

that of CCSD(T). Indeed, the formula for the CCSD(T) energy can be obtained from

Eq. (3.37) by approximating 3823-]: and 9313542) in the following manner: in the

definition of (331-32, Eq. (3.34), we replace the denominator Défgbc, Eq. (3.35), by the

spin-orbital energy difference (6,- +ej+ek—ea—eb—ec), neglect the (L021?(00813))DC

contribution to the (<I>|L),CCSD)H(CCSD)|<I>§‘JI?§) numerator of Eq. (3.34), which is at

least a fourth-order term in many-body perturbation theory (MBPT) if the HF ref-

erence is used, replace LOJ, Log, and HéCCSD) by T1;r , T2" , and VN in the remaining

contributions to (@lLfiCCSDUJmCSD)|<I>§‘JI?,§), where VN is the two-body part of the

Hamiltonian in the normal ordered form relative to the Fermi vacuum and TI and

T; are the adjoints of the T1 and T2 cluster operators determined by solving the

CCSD equations, and replace the triply excited moments 9.116],Sbc(2), Eq. (3.7) with

n = 3 and mA = 2, by the lead term (®?J%|(VNT2)C|<I>). As a result, the CR-CC(2,3)

and CR-EOMCC(2,3) approaches maintain the same “black-box” nature and ease-

of-use that CCSD(T) is known for. There are, however, many advantages of the

CR—CC(2,3)/CR—EOMCC(2,3) methodology over CCSD(T). First of all, as shown in

Section 3.2 and [138—140,150] for the open-shell systems and [133—135,137, 141—149]

for singlet ground states, CR—CC(2,3) eliminates the failures of CCSD(T) in bond

breaking and biradical situations, while being as accurate as CCSD(T) when the

multi-reference character of the calculated state is small. Furthermore, CR-CC(2,3)

has a natural extension to excited states in the CR—EOMCC(2,3) scheme, as described

above, and there is no natural formal extension of CCSD(T) to excited states. The

earlier CR-CCSD(T) approach of [127], which relies on the original MMCC formal-

ism of [127,130] that does not utilize the left eigenstates of the similarity-transformed

Hamiltonian, has an extension to excited states as well [131,132], but unlike CR-
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CC(2,3), the earlier CR—CCSD(T) is not strictly size extensive. The CR-CC(2,3)

approach and its higher-order CR-CC(2,4) analog are both size extensive.

A procedure similar to that used to derive the CR—CC(2,3) and CR—EOMCC(2,3)

equations can be used to develop methods based on the MMCC(2,4)g approximation.

In this case, the approximate form of if“, given by

6%~L(ccsn)
+ 2,3 + 2,24, (3.38)

is substituted into the adjoint form of the Schrodinger equation, Eq.(3.23), and then

right-projected on the triply excited determinants @3323) and quadruply excited de-

terminants @3123?) In the CR—CC(2,4)/CR—EOMCC(2,4) approximation studied in

this work, one then replaces the exact energy Eu in the resulting system of equations

for .5323 and .32“; by the CCSD/EOMCCSD energy ELCCSD) and approximates

the triples-triples and quadruples-quadruples blocks of E(CCSD) by their diagonals,

while ignoring any coupling between triples and quadruples. As a result of these

manipulations, one obtains the same mathematical expressions for prc2jk as in the

CR—CC(2,3)/CR-EOMCC(2,3) case, Eqs. (3.34) and (3.35), and the following for-

mula for gzbfdjkl:

CCSD kleabicjdkl— ((PIL( )H(CCSD) l¢gjbcfi>/D:jabcd’ (339)

where the denominator D322“! is defined as

DgaCd = ELCCSD) _ (@qu:|I-‘{((CCSD)|¢quCd)

CCSD—(<I>“(qucle(i Mllqflbcd)

zjkl ijkl

bd (CCSD b d . ,

—<I><222212222» (3.40)
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By substituting [szcjlw Eqs. (3.34) and (3.35), and ézbfjdkl, Eqs. (3.39) and (3.40),

into the equations defining the MMCC(2,4)$ approach, Eqs. (3.28) and (3.30), we

obtain the formula for the total energy that defines the CR-CC(2,4) /CR-EOMCC(2,4)

approach,

CR@,4)
EERQA) +6

Efixsn)

(CCSD)
abc iJ'k

E” + Z €22,2Jk Emuabc(2 )

i<j<k

a < b < c

acbd 2'ij

+ Z €22,2jkl 9)?“abcd(2)
(3.41)

i<j<k<l

a<b<c<d

Examination of this result reveals that in this formulation of CR—CC(2,4)/CR—EOMCC(2,4),

the total energy can be thought of as being obtained by adding a noniterative cor-

rection due to quadruple excitations, given by

CR@A%Q__ Lbd UH ,

i<j<k<l

a<b<c<d

to the CR—CC(2,3)/CR—EOMCC(2,3) energy. The computer time scalings of the CR-

CC(2,4)/CR-EOMCC(2,4) calculations are characterized by the 723223 iterative steps

of CCSD/EOMCCSD, the noniterative 22322: steps of the triples correction and the

223223 noniterative steps characterizing the correction due to quadruples, Eq. (3.42).

These costs are quite a bit higher than those of the CR—CC(2,3)/CR—EOMCC(2,3)

approach, and so the CR—CC(2,4)/CR—EOMCC(2,4) scheme is much more limited

in its applicability. However, this still represents a rather significant computational

saving over the iterative 223223 steps that define the full CCSDTQ/EOMCCSDTQ
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approach (to which CR—CC(2,4)/CR—EOMCC(2,4) is an approximation).

Let us also comment on neglecting the couplings between triple and quadruple

excitations in deriving Eq. (3.41). A few test calculations have revealed that ne-

glecting this coupling may be detrimental to the accuracy of the CR-CC(2,4)/CR—

EOMCC(2,4) results. Because of this observation, the development of an alternative

formulation of the CR-CC(2,4)/CR-EOMCC(2,4) energy correction may be neces—

sary. In this work, however, we focus on the variant described by Eq. (3.41), which

is sufficiently accurate for the applications discussed in this thesis.

It should be noted that the above equations describe the most complete vari-

ants of the CR—CC(2,3)/CR—EOMCC(2,3) and CR—CC(2,4)/CR—EOMCC(2,4) ap-

proaches, which are often labeled by the additional letter ‘D’ (e.g. CR—CC(2,3),D).

One can certainly contemplate other variants by replacing the exact Epstein-Nesbet—

like denominators D222,” and ngécd, Eqs. (3.35) and (3.40), by various approx-

imate forms. For example, variants C of CR—CC(2,3)/CR-EOMCC(2,3) and CR-

CC(2,4)/CR—EOMCC(2,4) are obtained by neglecting the three-body components of

CCSD) | chm) and

2'J'k

(@fji’fflfléccsmwfjbffi) terms in Eqs. (3.35) and (3.40), while variants B are ob-

—(CCSD)
H3 ,

the similarity-transformed Hamiltonian, i.e., the ( ffflffé

tained by neglecting both the two-body and three-body components of

CCSD) l (babe

which leaves only the ((quCIH) ,jkij ) term in the definition of ngbc and the

(@gi’gfilfilfccsm |<I>filjblffi) term in the definition of Dfigécd. Finally, variant A is ob—

tained by replacing the Epstein-Nesbet-like denominators D222“ and D3226d by the

corresponding Moller-Plesset-like denominators, [wEJCCSm - (ea, + Eb + cc — e,- — ej — ek)]

for triple excitations, and [Luv/(JCCSD) — (Q; + 6b + cc + 6d — e,- — ej —— ék — 61)] for quadruple

excitations.

Finally, there are also relationships between the CR-CC(2,3)/CR—EOMCC(2,3)

and CR-CC(2,4)/CR-EOMCC(2,4) approaches and other noniterative CC/EOMCC

methods. For instance, the CR—EOMCC(2,4),A method is equivalent to the EOM-
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CC(2)PT(2) of [203, 204] when the canonical Hartree-Fock orbitals are used. A simi-

lar equivalency exists between the CR—EOMCC(2,3),A approach and the triples cor-

rection of EOM-CC(2)PT(2). The ground-state CR—CC(2,3),A and CR—CC(2,4),A

sChemes are equivalent to the CCSD(2)T and CCSD(2)TQ methods of [205] when

the canonical Hartree-Fock orbitals are used, and the analogous relationships exist

between the CR—CC(2,3),B and CR—CC(2,4),B schemes and the CCSD(2) approach

of [206-209]. For example, the CR-CC(2,3),B approach is equivalent, up to small

details, to the triples correction of CCSD(2). As mentioned earlier, there is also a

straightforward relationship between CR—CC(2,3) and CCSD(T).
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3.1.3 Computer Implementation of the Open-Shell Variants

of the CR—CC(2,3)/CR—EOMCC(2,3) and

CR—CC(2,4)/CR—EOMCC(2,4) Approaches

Unlike the active-space EA/IP-EOMCC methods discussed in Chapter 2, which are

built from the ground up specifically for open-shell valence systems, there is noth-

ing about the CR—CC(2,3)/CR-EOMCC(2,3) or CR—CC(2,4)/CR—EOMCC(2,4) ap-

proaches that specifically depends on the open- or closed-shell nature of the molec-

ular system of interest other than the choice of the reference determinant |<I>). In-

deed, the first computer implementation of the CR—CC(2,3)/CR—EOMCC(2,3) ap-

proach, developed by Professors Marta Wloch and Piotr Piecuch [133] and available

in GAMESS, was written specifically for closed-shell references. As discussed in the

Introduction, the early applications of this approach to singlet states of molecular

systems [133—135,137, 141—149] revealed its ability to provide highly accurate results

at a reasonable low computer cost. In particular, CR—CC(2,3) proved to be very

effective in calculations of the singlet states of biradical systems and single bond

breaking on singlet potential energy surfaces, which are characterized by a significant

multi-reference character. Though restricted to open-shell singlet states, these results

offered the first glimpse of the potential applicability of the CR-CC(2,3) approach to

general open-shell molecular systems.

As the overarching goal of this dissertation is the development of practical methods

for studying open-shell systems, the original closed-shell CR—CC(2,3) work of [133]

was followed up by the development of the general—purpose open-shell computer imple-

mentation of the CR—CC(2,3) and CR—EOMCC(2,3) approaches that are applicable to

singlet as well as non-singlet states [138,140]. Furthermore, in order to study the per-

formance of higher-order CR—CC approximations based on the biorthogonal MMCC

theory of [133,134], the CR-CC(2,4)/CR—EOMCC(2,4) method was implemented by
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the author of this dissertation as well (with the help of routines for quadruply excited

moments provided by Dr. Maricris Lodriguito, reviewed in [210]), using a general for-

mulation applicable to both singlet and high-spin non-singlet reference determinants.

The resulting computer codes. are highly efficient, fully vectorized codes which make

use of recursively generated intermediates and fast matrix multiplication routines.

The programs are general in the sense that they can work with any type of high-

spin reference determinant, though currently they are used with the RHF and ROHF

references generated by GAMESS. These codes utilize the standard spin-orbital ba-

sis of 02 and fl spin-orbitals in performing calculations, and the most recent version

of the open-shell ground-state CR—CC(2,3) program, which is specifically designed

for non-relativistic molecules, is written in a spin-integrated form which avoids ex-

plicit calculations of terms that go to zero because of spin symmetry, making it as

fast as possible [138]. This version of the CR—CC(2,3) code is available as part of the

GAMESS package. Currently, the open-shell CR-EOMCC(2,3) and CR—CC(2,4)/CR-

EOMCC(2,4) codes are stand-alone pilot programs that are only loosely interfaced

with the integral transformation and RHF/ROHF routines of GAMESS, but work

is under way to develop more efficient, spin-integrated implementations that will be

fully included in GAMESS and thus available to the public. As already mentioned,

the CR—CC(2,4)/CR—EOMCC(2,4) computer codes developed as part of this research

benefitted from the thesis project of Dr. Maricris Lodriguito, who provided the au-

thor of this thesis with the routines for calculating the quadruply excited moments

93222226619) [210,211].

As an illustration of the algorithmic details that are associated with the above

method and code development efforts, we present the key details of the computer im-

plementation of the CR-CC(2,3)/CR—EOMCC(2,3) method. The CR-CC(2,3)/CR-

EOMCC(2,3) computer codes implemented as part of this work consist of four main

parts. In the first part, as was the case in the EA-EOMCC and IP-EOMCC codes
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discussed in Section 2.1.3, we solve the usual CCSD equations for the ground state in

order to obtain the singly and doubly excited cluster amplitudes, t2, and t3), respec—

tively. In the next step, again in analogy to the EA—EOMCC and IP-EOMCC codes,

we use these amplitudes to construct the one— and two—body matrix elements of the

CCSD similarity-transformed Hamiltonian, 72;], and 72%, respectively. As a reminder,

the explicit equations for these matrix elements in terms of the one— and two-electron

integrals, fg and 22%, respectively, and the cluster amplitudes t2, and t3) can be found

in Table 2.1. In the third step, we construct and solve the EOMCCSD equations.

In executing this step, we must distinguish between two situations. If our interest is

in the noniterative corrections 65R(2’3) for the ground ()2 = 0) and excited (u > 0)

states, we must construct and solve both the right and left EOMCCSD equations, Eq.

(3.21), augmented by Eq. (3.22), and Eq. (3.20), respectively, in which A = CCSD

and mA = 2. The right eigenstates RLCCSDMCD) needed to construct the EOMCCSD

:3”:me With 2” > 0, EQ- (3.6) in which 222A = 2 and 22 = 3, whereas

the left eigenstates LEJCCSD) |<I>) are needed to construct the deexcitation amplitudes

Eq. (3.34). If our interest is in the ground-state correction 6gR(2’3) only, we

moments rm

~ bc

€72,222,

must solve the CCSD left eigenvalue problem obtained by setting 22 = 0, A = CCSD,

and mA = 2 in Eq. (3.20). The right EOMCCSD eigenvalue problem for the excited-

state ([2 > 0) case is solved using the Hirao—Nakatsuji generalization [176] of the

Davidson diagonalization algorithm [177] to non-Hermitian eigenvalue problems and

is generally solved for first. Once the excitation energy wLCCSD) is known (in the

ground-state case, wéCCSD) = 0), it is substituted into the left (EOM)CCSD eigen-

value problem, Eq. (3.20), which converts it into a system of linear equations for the

If” and [$132j amplitudes, which we can solve with the same DIIS solver [212—214] that

we normally use to solve the ground-state CC equations. As the focus of this work

is the CR—CC(2,3)/CR—EOMCC(2,3) approach, we will not go into further details of

the above steps in this dissertation and rather focus on the final step, which is the
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CR(23)
determination of the 6M triples correction.

CR(2,3)
From Eq. (3.37), we know that in order to calculate 6,, we must first express

gabc
the deexcitation amplitudes jk and the triply excited moments 931jkNab(2) in terms

of the molecular integrals fp and 211,3 ,CCSD cluster amplitudes t3 and tij , right

EOMCCSD excitation amplitudes 2*”0, aand 2‘27ab(when a > 0 only), and left

EOMCCSD deexcitation amplitudes lgandMlzsz (pa = 0 and a > 0). To that end

gabc
we begin by reexpressing the fin amplitudes as follows.

I) ijk

Eabc12,2'jk_‘NS,iCjk/Du,abc' (3.43)

Here the denominator DIE/Sim is still defined by Eq. (3.35) and the numerator is given

by (cf. Eq. (3.34))

C(CSD -Nfigpjk = <®[L( )H(CCSD) [(Eajbc>

= 332313333. (3.44)

abck is defined aswhere the partially antisymmetric quantity I‘12 2']

be _ k1 vbc ‘ b b
r3kwe mail/9 [32321,, + 223,,23 +2133223— 323,333.73 (3.45)

(we dropped the symbol a representing the electronic state of interest from I“ 2‘ and

labij for clarity reasons). Inspection of Eq. (3.35) reveals that the determination

of the DLjabc denominators requires the calculation of the diagonal matrix elements

<¢ajbc H(mCCSD)

using the following expressions:

  

(1)3391?) with m = 1, 2, and 3. These three quantities can be computed

<33; H<CCSD>
ijk

  

@3123) 2 J3 _ 23 _ 23.3

+233, + 23.3 + 23.3, (3.46)
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abc ‘ (CCSD) abc _ ‘ai ‘b2 “02'

((1)232: H2 ¢2jk> - "10.2 — hbz‘ — hcz'

-aj -bj -cj

’haj ‘ hbj ‘ hcj

‘ak ’blc ‘ck

_hak — hbk — hck

‘ij ‘ik -J'k

- b - ’b.
+th + 233 + 2,3, (3.47)

and

abc “ (CCSD) abc _ *2'aJ' ‘2'ak ‘jak

< 2J'k H3 ijk> — _ha2'j ‘ haik “ hajk
  

-2'bj 122: 22222

—hb2'j — hbz‘k " hbjk

-2'cj ‘2'ck 'jCk

—hc2'j - hcik — hcjk

+1133]; + 72"“ + We
a2'c bz'c

+7213: + W“ + ijc
aJ'c bJ'c

+2333 + 2.333 + 2333, (3.43)

where the one— and two-body matrix elements 12% and 1.2;?) are defined in Table 2.1

and the specialized three—body matrix elements entering Eq. (3.48) are defined as

5332 = - 2 2232153213 (3.49)
m

and

fi?§fi$$ am
6

For the triply excited moments 9.1132],0(2) that multiply the amplitudes £21)ka to

R(2,3) (
produce the correction 65 cf. Eq. (3.37)), we can write

(2) =dabciijk (2). (3.51)
ijk

{m u,abcp,abc
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where the partially antisymmetric Tijk 2 quantities are defined by
mabc

"k
k

k

$35542) = :i/jklbhzifl‘ég— $717M;Z71?" 2177wtab +Iczzetjc)

7Mebtéf—Im515:".53)] (3.52)

(again, we dropped the symbol )3 from 7'),0,rua and r for the sake of clarity).
(tab

The intermediates that enter the above expression for ‘35“?ab6(2) are defined as

3% = 2’1337‘2 - Sin3'? + zihircmab"m hincbra , (3-53)

'k k k k k k

155 = Iftfig+ 2}}:szre}— hfmram +321] (5367,,gl++53:re), (3.54)

k k 'k-

13,—:th —t{.ah,¢, (3.55)

and

13:431535 (3.56)

while the antisymmetrizers that enter several of the above equations are given by

dpqr E 427”" = 1 — (pa) - (pr) - ((1?) + (W) + (pm), (3-57)

flip/qr s W‘1’“ = 1 — (pq) — (pr), (3.58)

and

Win 5 37”" = 1-(pq), (3.59)

with (pq) and (pqr) representing the cyclic permutations of two and three indices,

respectively. As in the earlier equations, the one— and two-body matrix elements of

E(ccsp) hq and hrs
pq, respectively, that enter Eqs. (3.52) — (3.56) can be found in Ta-

ble 2.1. If the object of the calculationIS the ground-state ([1: 0) correction 6CR(23),

we modify Eqs. (3.52) — (3.56) by replacing TO by 1 while zeroing all amplitudes r},
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SUM = 0.0

LOOP OVER i<j<k

Fabck
Calculate for all values of a, b, c using Eq. (3.45)

Calculate N35231: by antisymmetrizing I‘m-6%, as in Eq. (3.44)

Calculate ngbcfl) for all values of a, b, c using Eq. (3.52)

Calculate 9313;6(2) by antisymmetrizing Ti] (2), as in Eq. (3.51)
u,abc

LOOP OVER a<b<C

Calculate Dijkbc, Eqs. (3.35) and (3.46)—(3.48)

Calculate fab?jk’ Eq. (3.43)

_ ijk
SUM SUM + Zabcm: *mp,abc(2)

END OF LOOP OVER a<b<c

END OF LOOP OVER i<j<k

55119.3) = SUM

Figure 3.1: The key elements of the algorithm used to compute (SERQ’B) in the

efficient open-Shell implementation of CR-CC(2,3)/CR-EOMCC(2,3).

ij
and Tab.

The CR-CC(2,3)/CR-EOMCC(2,3) computer programs developed in this work

use the above expressions, Eqs. (3.43) — (3.59) and Eq. (3.37), to compute the

CR(2,3)
noniterative corrections 6), . The key elements of the corresponding computer

algorithm are presented in Figure 3.1. As one can see, we use external loops over the

occupied indices 2' < j < k to compute the entire set of Nabck and 931” (2) values
Mi]

for a given combination of the indices 2' < j < k and for all values of a, b, and c. This

)1,abc

abc
is accomplished by first calculating the partially antisymmetric quantities F“ I.jk and

Tijk
M ab6(2) with the help of fast matrix multiplication routines, which are subsequently

antisymmetrized with respect to a, b, and c to produce the final result. In this way, we

avoid explicit, and long, loops over a, b, and c in determining N‘2”;k and 9111,12,“.(2),
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which greatly speeds up the calculations. Once N“bl;k and 9.71jfkabc2( ) are determined

for a given set of z' < j < k values and all a, b, and c, we enter the loops over

a. < b < c in which the denominator Dij is computed to complete the evaluation
)1,abc

of the desired 13‘“)ka amplitude. At this point the MM1Jk and 9712] (2) values for a
)1,abc

Specific combination of z' < j < k and a < b < c in the loops over these indices are

cm
multiplied to obtain a contribution to 6)) 2’3) . The reason we use this algorithm is

that it allows us to maximize the benefits of using fast matrix multiplication routines

3
while eliminating the need to store the long (ab?jk and 971” (2 ) vectors of the 71371,,

)u,abc

type in memory or on disk. AS a result, the memory and disk requirements are quite

similar to those of the underlying CCSD or EOMCCSD calculations (for memory

~ 71071.,3, times a small prefactor).

3.2 Applications

The CR-CC(2,3)/CR—EOMCC(2,3) approach has been used in calculations for a va-

riety of molecular problems involving closed- and open-shell Species, both as part of

this work and outside of it, including (but not limited to) determination of the singlet-

triplet gaps in biradical systems [138,139,151], studies of the stereoelectronic effects

on geometries, Singlet, and triplet state energies of copper-dioxygen and dicopper-

dioxygen complexes (which function as models for copper containing metalloenzymcs)

[142—144], calculations for the barrier heights of reactions [148,149], studies of the

potential surfaces for bond breaking reactions [133—135,137,138,145—147,150], stud-

ies of reaction mechanisms involving biradical transition states [133,134,141], and

examination of low-lying excited states of closed-Shell molecules [135,136] and radi-

cals [89,140]. To illustrate the performance of the CR-CC(2,3) and CR—EOMCC(2,3)

schemes in studies of open-shell systems, only a few representative examples will be

discussed here. Section 3.2.1 examines Single bond-breaking reactions, specifically the
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dissociation of HgC-X and HQSI-X into 3H2O + X and 3H281 + X, respectively, where

X = H, Cl, CH3 and SiH3. In Section 3.2.2, the results of calculations for the singlet-

triplet gaps of several biradicals, specifically CH2, (HFH)—, and EN, will be discussed.

Finally, Section 3.2.3 reexamines the triatomic molecules C2N, CNC, N3, and NCO

discussed in Section 2.2.3 in order to examine the performance of CR—EOMCC(2,3) in

studies of the excitation spectra of radicals, as well as to see how it performs relative

to the active-space EA/IP-EOMCC methods of the previous chapter.

3.2.1 Bond Breaking in Radical Species: HzC-X and Hgsi-X

The first test case for the open—shell CR—CC(2,3) approach examined here is a set of

single bond breaking reactions in radical systems. Specifically, in collaboration with

Dr. Yingbin Ge and Professor Mark Gordon at Iowa State University, the potential

energy surfaces describing the representative bond-breaking reactions of HgC—X -——+

H2O + X and H2Si—X -—> H2Si + X (X = H, Cl, CH3 and SiH3), were studied

using CR—CC(2,3) [150]. One of the interesting features of these radical reactions is

that they are of importance in high temperature chemical vapor deposition (CVD)

processes, such as the silicon carbide CVD process [215,216]. In order to evaluate the

performance of the ROHF-based CR-CC(2,3) method, either the full CI method or

the internally contracted MRCI(Q) [181,182] scheme (depending on the size of the

basis) was used to provide benchmark potential energy surfaces. Furthermore, the

results were compared with those obtained with the UHF-based CCSD(T) approach,

which is often used in high accuracy studies of radical species, and the multi-reference

second-order perturbation theory (MRMP2) [217, 218].

Calculations of the potential surfaces for all eight of the reactions described above

were performed. To save space, two of these reactions, namely HgC—H -———+ 3CH2 +

H and H2Si—H —-1 1Sng + H, will be described in detail and the remaining ones

will only be summarized. Five different basis sets were utilized in the calculations,
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namely, MINI [219], 6-31G [194,195], 6-31g(d) [195], cc—pVDZ [178,220] and cc-

pVTZ [178,220]. F1111 CI is used as the benchmark for calculations utilizing the MINI

basis set, while the remaining calculations use MRCI(Q) to provide the reference

results. All five basis sets were used for each reaction, except for the CHg—Cl and

Sng—Cl reactions, for which the MINI basis set was replaced by a mixed basis set,

abbreviated as MIX, in which MINI is used for C, Si, and Cl and 6—311G is used for

H, and for the H2C(Si)—C(Si)H3 reactions, for which the 6-31G(d), cc-pVDZ, and cc-

pVTZ basis sets could not be applied due to the excessive computational cost of the

MRCI(Q) calculations. The potential energy surfaces were constructed by sampling

the breaking bond distances from slightly shorter than the equilibrium bond length

(Re) to roughly 3R3 in 0.2 A increments. In order to ensure that the two fragments

on the product side of each reaction have negligible interaction, so that the bond

can be considered to be ‘broken’, if the last two structures at 312.; had an energy

difference of more than 0.16 millihartree (0.1 kcal/mol), then more structures with

longer bond lengths would be computed until the energy difference was below the

0.16 millihartree threshold. For all eight reactions with the MINI (or MIX as the

case may be) basis set, as well as for the H2C(Si)—H reaction with the 6—31G and 6-

31G(d) basis sets, full CI was used to optimize the structures on the one-dimensional

bond-breaking reaction surface. In all other calculations, the full-valence CASSCF

was used for the structure optimizations. Finally, it should be noted that the frozen

core approximation was used in all calculations, and the full valence CASSCF was

used as the zero-order wave function for all MRCI and MRMP2 calculations.

Figure 3.2 shows the CCSD, CR—CC(2,3), CCSD(T), and MRMP2 error curves

relative to MRCI(Q) for the HgC—H ——-> 3CH2 + H reaction as computed with the

cc-pVTZ basis set. Inspection of these error curves reveals that the CR—CC(2,3)

results are either as accurate as or more accurate than CCSD(T) for all geometries

considered. Indeed we can observe that the error in CCSD(T) begins to increase
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Figure 3.2: Restricted open-shell CCSD, restricted open-shell CR—CC(2,3), unre-

stricted CCSD(T), and MRMP2 errors relative to MRCI(Q) for

HgC—H ——> 3CH2 + H with the cc-pVTZ basis set.

around 1.5 A while a similar increase does not occur for CR—CC(2,3) until about

2.5 A, indicating that CR—CC(2,3) remains accurate at longer bond distances than

CCSD(T). Interestingly, both CR—CC(2,3) and CCSD(T) produce smaller errors than

MRMP2 for all geometries studied.

A similar picture arises for the Hgsi—H ——> 1Sng + H potential energy curve,

which is shown for the cc-pVTZ basis set in Figure 3.3. In this case, CR-CC(2,3)

is more accurate than CCSD(T) for all points examined, though for the very short

distances and very long distances the discrepancy between the two is relatively small.

Once again, a bump in the error curve of CCSD(T) is observed, with the rise in the

error beginning at roughly 2 A. As was the case for HgC—H, a similar rise in the error

of the CR-CC(2,3) result does not occur until about 2.6 A, once again indicating that

CR—CC(2,3) remains accurate at longer bond distances than CCSD(T). Furthermore,

the bump in the CR—CC(2,3) error curve at about 2.6 A is considerably smaller
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Figure 3.3: Restricted open-shell CCSD, restricted open-shell CR-CC(2,3), unre-

stricted CCSD(T), and MRMP2 errors relative to MRCI(Q) for

HQSI—‘H —-> 1Sng + H with the cc-pVTZ basis set.

than that of CCSD(T), leading to a smoother and overall consistently more accurate

potential energy surface. Once again, both methods are significantly more accurate

than MRMP2 at all geometries considered.

Rather than analyzing all of the remaining potential energy surfaces generated

in a similar fashion, the rest of this discussion will focus on summarizing the result

through the use of three fundamental quantities that serve as valuable indicators of the

accuracy of the potential energy surfaces, namely the nonparallelity error (NPE), the

standard deviation error (STD), and the reaction energy error (REE). As described

earlier in this thesis, NPE is defined as the difference between the most positive and

the most negative signed errors along the surface, and thus is a measure of how closely

the shape of the potential energy surface matches that of the benchmark surface. As

the name implies, REE measures the error in the reaction energy and is defined as

the difference between the error at the longest bond distance (i.e. the ‘broken bond’
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distance) and the error at the equilibrium geometry. Finally, STD is defined as

 

2

1 N N

STD: N Z[Err(R,-)]2— ZlErr(R,-)| , (3.60)

1221 i=1

where N is the number of geometries, and Err(R,,-) is the error at the bond length R4.

Table 3.1 gives the NPE, STD, and REE values for all eight potential energy surfaces

determined in this study.

Analysis of Table 3.1 reveals that for all reactions other than HgC—Cl, the CR-

CC(2,3) NPE values for the various basis set calculations are less than (in many cases,

much less than), or in a few cases virtually identical to, the corresponding CCSD(T)

value. Similarly, the average CR-CC(2,3) NPE as computed with 6-31G (the largest

basis set that all reactions were computed with) is 0.4 millihartree less than that of

CCSD(T), while the average CR—CC(2,3) NPE for the cc-pVTZ basis (the largest

basis set considered) is 0.3 millihartree less than CCSD(T). Thus it would seem

that, at least in terms of NPE, the ROHF-based CR—CC(2,3) scheme is capable of

outperforming the frequently used UHF-based CCSD(T) approach in these reactions.

Interestingly, the situation is a little different when CR—CC(2,3) and MRMP2 are

compared, as neither is clearly superior with regards to NPE. Indeed, for half of the

reactions, namely HgC—H, H2Si—H, HgSi—Cl, and H2Si—CH3, the CR-CC(2,3) NPE

values are smaller than the corresponding MRMP2 values, while for the remaining

reactions it is the other way around. Looking at the average NPE values, we see that

for 6-31G, the CR—CC(2,3) average NPE is higher than that of MRMP2 by roughly

0.5 millihartree, whereas for cc-pVTZ the CR-CC(2,3) value is actually lower by 0.4

millihartree.

Moving on, Table 3.1 reveals that the STD patterns observed are quite similar to

those observed for the NPE values. Indeed, it turns out that with the exception of
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Table 3.1: Restricted open-shell CR—CC(2,3), unrestricted CCSD(T) and MRMP2

NPE, STD, and REE values relative to MRCI(Q). Units are millihartree.a

 

 

 

 

NPE STD REE

CR- MR- CR— MR— CR— MR-

Basis CC(2,3) CCSD(T) MP2 CC(2,3) CCSD(T) MP2 CC(2,3) CCSD(T) MP2

H2C—H

MINI 0.366 1.093 N.A. 0.146 0.431 N.A. -0.313 0.851 N.A.

6—31G 1.725 2.081 1.883 0.565 0.766 0.627 0.104 -0.035 -1.507

6—31G(d) 3.279 3.339 3.447 1.072 1.160 1.226 0.152 -0.052 -3.114

cc—pVDZ 3.621 3.699 4.807 1.162 1.286 1.832 0.170 -0.040 -4.529

cc—pVTZ 4.256 4.223 5.613 1.365 1.455 2.181 0.181 -0.062 -5.276

HgC-Cl

MIX 2.022 1.965 0.436 0.624 0.754 0.125 -0.840 -1.118 -0.114

6—31G 3.772 2.674 0.832 1.175 0.957 0.293 0.111 -0.421 0.123

6—31G(d) 6.787 6.146 2.694 1.919 1.956 0.777 0.583 0.248 -1.519

cc-pVDZ 7.112 6.705 2.875 2.029 2.072 0.855 0.643 0.423 -1.653

cc-pVTZ 8.367 7.794 4.646 2.398 2.327 1.410 0.582 1.165 -2.879

H2C—CH3

MINI 0.301 2.543 N.A. 0.197 0.849 N.A. —0.326 0.300 N.A.

6—31G 3.126 4.023 1.176 0.981 1.401 0.401 0.160 -0.039 —O.753

HQC—SiH3

MINI 0.412 1.814 N.A. 0.127 0.666 N.A. 0.064 0.017 N.A.

6—31G 2.681 3.142 1.553 0.821 1.069 0.539 -0.136 -0.236 -1.272

HQSi-H

MINI 0.237 0.443 N.A. 0.063 0.142 N.A. 0.049 0.063 N.A.

6-31G 0.526 0.801 0.697 0.151 0.277 0.228 0.041 0.035 -0.059

6—31G(d) 1.061 1.450 2.271 0.239 0.366 0.767 0.300 0.509 0.585

cc-pVDZ 0.923 1.100 3.128 0.212 0.315 0.847 0.245 0.236 -0.822

cc-pVTZ 1.132 2.092 3.310 0.295 0.547 0.873 0.584 0.577 -0.842

HQSi-Cl

MIX 0.744 1.377 0.478 0.225 0.406 0.163 -0.114 -0.342 0.294

6—31G 0.682 2.094 1.917 0.175 0.592 0.565 0.463 0.346 -1.870

6-31G(d) 1.917 3.616 3.302 0.583 0.842 1.308 0.054 0.474 2.034

cc—pVDZ 1.833 3.661 4.170 0.543 0.814 1.688 0.068 0.499 2.823

cc-pVTZ 2.705 3.600 4.472 0.801 0.764 1.604 —1.013 0.221 2.006

HQSi—CH3

MINI 0.392 0.696 N.A. 0.127 0.235 N.A. -0.040 -0.110 N.A.

6—31G 0.434 0.765 1.288 0.114 0.226 0.321 -0.054 -0.031 -0.740

H2Si-SiH3

MINI 0.485 1.991 N.A. 0.158 0.571 N.A. -0.046 0.000 N.A.

6—31G 1.510 2.048 0.797 0.357 0.545 0.184 -0.077 -0.115 0.103

Unsigned Average

6—31G 1.807 2.204 1.268 0.542 0.729 0.395 0.143 0.157 0.803

cc-pVTZ 4.115 4.427 4.510 1.215 1.273 1.517 0.590 0.506 2.751
 

 

a Full CI is the benchmark method with the MINI basis set.
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the CR—CC(2,3) MINI surface for HgC—CHg, the STD values are roughly 20—30% of

the corresponding NPE values. As result, much of the previous NPE discussion also

applies in the STD case. However, in the REE case, such patterns are not observed,

and a more detailed analysis is useful. Upon inspection of Table 3.1, it becomes clear

that both CR-CC(2,3) and CCSD(T) significantly outperform MRMP2 in terms of

REE. Indeed, in some cases the MRMP2 REE values exceed those of CR—CC(2,3) and

CCSD(T) by as much as 5 millihartree. This is further illustrated by the average REE

values, for which the MRMP2 result exceeds those of CR—CC(2,3) and CCSD(T) by

roughly 0.7 and 2.2 millihartree for the 6-31G and cc-pVTZ basis sets, respectively.

A more direct comparison of just CR-CC(2,3) and CCSD(T) reveals that these two

methods perform very similarly to each other with respect to average REE values. In

fact, the average CR—CC(2,3) REE value is less than that of CCSD(T) by only 0.01

millihartree for the 6-31G basis set, while it is greater than that of CCSD(T) by only

0.09 millihartree with the cc-pVTZ basis.

Based on these results, it is clear that the ROHF-based CR—CC(2,3) approach is a

promising alternative for performing high accuracy calculations of single-bond break-

ing processes in radicals. Indeed, these results indicate that for HgC—X and HQSI-X

reactions, CR-CC(2,3) outperforms the popular UHF-based CCSD(T) and MRMP2

approaches, which are traditionally considered the recommended options for high ac-

curacy, low-cost calculations of bond breaking in radicals. In particular, we see that

CR—CC(2,3) produces NPE values that are notably smaller than those of CCSD(T)

and which are comparable to those of MRMP2, while producing REE values that

are comparable to the small values produced by CCSD(T) and significantly smaller

than those of MRMP2. Thus, the CR—CC(2,3) approach provides a more balanced

description of the radical potential energy surfaces than CCSD(T) or MRMP2 in

spite of the use of the ROHF reference, which does not dissociate as well as the UHF

reference used in the CCSD(T) calculations, and in spite of being a single-reference
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black-box approach, which is much easier to use than MRMP2. Furthermore, the

ROHF-based CR—CC(2,3) approach is able to provide such accurate results while

avoiding the pitfalls associated with unrestricted or multi—reference formalisms, such

as errors in relative energies resulting from spin contamination of UHF in the former

case or the intruder state problem and the need for carefully selecting active orbitals

in the latter.

3.2.2 Singlet-Triplet Gaps in Biradicals

The description of the singlet-triplet gaps in biradical systems represents a significant

challenge for many electronic structure methods. The difficulty stems from the fact

that the singlet and the triplet states, which result from the parallel or antiparallel

coupling of the two unpaired electrons forming the radical centers, are often primarily

characterized by consistently different correlation effects, particularly when the radical

centers are separated by some distance. Indeed, the non-degenerate, high-spin triplet

state is dominated by dynamical correlations, while the singlet state often shows

a strong contribution from nondynamical correlations, and thus has a more multi-

reference nature. As a result, the accurate description of the gap between these states

requires an electronic structure method capable of accurately balancing both types of

correlations. It has generally been thought that the genuine multi-reference methods

of the MRCI or MRCC type are needed to produce accurate results under such

conditions, but, as it turns out, the single-reference CR—CC(2,3) scheme employing

the RHF reference for the singlet state and ROHF reference for the triplet state is also

capable of accurately describing such systems, being very competitive with genuine

multi-reference methods. To illustrate this, we consider several systems which are

characterized by varying degrees of a biradical nature.

We begin with methylene, which is well known for being the subject of controver-

sies between theory and experiment (cf., e.g., [221—226], and references therein). As
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a first test, we performed calculations of the adiabatic singlet-triplet gap using the

same DZP-type basis sets and geometries that were used in the well-known bench-

mark calculations of Bauschlicher and Taylor [227]. The results are presented in Table

3.2, along with the exact full CI results of Bauschlicher and Taylor. As can clearly

be seen, the most complete CR—CC(2,3),D approach provides the best description of

the singlet-triplet gap out of all the triples-type CC methods considered, producing

an error relative to full CI of only 0.21 kcal/mol. This is a notable improvement

over the 0.32, 0.44, and 0.41 kcal/mol errors obtained with CCSD(T), CR—CCSD(T),

and CCSD(2)T (=CR—CC(2,3),A), respectively. Furthermore, only the more com-

plete variants C and D of CR—CC(2,3) are capable of providing a singlet-triplet gap

that is more accurate than that of CCSD(T). Variants A and B, which are equivalent

to the CCSD(2)T methods of [205—209] are not as effective. It also important to

note that the high accuracy of the CR-CC(2,3),D singlet-triplet gap value is not the

result of a fortuitous cancellation of errors. Looking at the total energies for the sin-

glet and triplet states, we see that the CR—CC(2,3) values are in excellent agreement

with those of full CI. Indeed, the errors in the singlet and triplet energies are only

0.333 and -0.001 millihartree, respectively, which represent substantial improvements

over the CCSD(T), CR—CCSD(T), and CCSD(2)T triplet—state errors of 0.367, 0.516,

and 0.469 millihartree and singlet-state errors of 0.873, 1.213, and 1.125 millihartree,

respectively.

In order to further explore methylene, we performed a sequence of calculations

using the aug—cc-pCVrZ (93=T, Q, and 5) basis sets [178,179,228] and compared

the results with the Quantum Monte Carlo (QMC) [229—231] calculations of Umrigar

[232]. Two different variants of QMC were used in Umrigar’s calculations, namely

variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC). The trial functions

for both variants consisted of Jastrow-Slater multi-determinant CAS wave functions

which were optimized using the linear optimization method [233—235]. Three different
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Table 3.2: The adiabatic A 1A1

various CC approaches, and the DZP basis set.8L

— X 331 splitting in CH2 obtained with full CI and

  

 

 

E(X 331) E(A 1A1) E(A 1A1) — E(X 381)

Method (hartree) (hartree) (kcal/mol)

Full CIa 39.046 260 -39.027 183 11.97

CCSD -39.044 111 -39.023 639 12.85

CCSD(T) -39.045 893 -39.026 310 12.29

CR—CCSD(T -39.045 744 -39.025 970 12.41

CR-CC(2,3), -39045 791 -39.026 058 12.38

CR—CC(2,3,B) -39.045 743 -39.025 960 12.41

CR-CC(2,3,) -39.046 267 -39.026 864 12.18

CR—CC(2,3),D -39.046 261 -39.026 850 12.18
 
 

3‘ The basis sets, geometries, and full CI energies were taken from [227]. As in [227], in

all correlated calculations, the lowest occupied orbital was kept frozen and Cartesian

components of the carbon d orbital were employed.

b Equivalent to the CCSD(2)T approach of [205].

C Equivalent to the triples part of the (2) correction of the CCSD(2) method of

[206—209]

active spaces were used to generate CAS trial functions, specifically the (2,2), (4,4)

and (6,6) active spaces (recall that (n,m) denotes an active space of n electrons

and m orbitals). Rather than restricting ourselves to the ground X 331 and first

excited A 1A1 states, as was done in the DZP calculations discussed above, we follow

the calculations of Umrigar and also compute the higher-energy B 181 and C 1A1

states. It should be noted that since the X 331 and A 1A1 states are the lowest-

energy states of their respective symmetries, they can be computed using the ground-

state CR—CC(2,3) formalism, which is how both the DZP and this set of calculations

were performed. The B 131 and C 1A1 states were calculated using the excited-

state CR—EOMCC(2,3) approach of Section 3.1.2, with the A 1A1 state acting as the

correlated ground state for the EOMCC ansatz (see Eq. (3.1)). The C 1A1 state is

particularly important here, since this is a strongly multi-reference state of the same

symmetry as the A 1A1 state. In both the CC and QMC calculations, the geometries

for each state were taken from [236], where they were generated using the full CI
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calculations with the [5s3p/2s] triple zeta basis set of Dunning [237] augmented with

two sets of polarization functions (TZ2P). Finally, since QMC is derived using the

first quantization formalism, and so does not utilize the concept of a basis set, a

proper comparison between QMC and CC requires the determination of the complete

basis set (CBS) limit for the CC results. This can be done through extrapolation

from the aug—cc-pCVxZ data. In order to verify the stability of the CBS results,

two different extrapolation schemes were utilized in this work. In the first scheme,

the CBS total energy of the X 381 state was determined by first extrapolating the

correlation energy using the formula

AE(:1:) = AE00 + Ans—3, (3.01)

with :1: = 3,4,5. Here a: is the cardinal number of the aug-cc-pCVrZ basis set,

AE(:I:) is the correlation energy obtained with the aug—cc-pCVrZ basis, and AEOO

is the correlation energy in the CBS limit. The resulting extrapolated correlation

energy was then added to the aug—cc-pCV5Z reference energy, which, due to the fast

(exponential) convergence of the RHF/ROHF energy with respect to the basis set,

is equivalent to the CBS reference energy to an extremely high (0.1 millihartree)

accuracy. The CBS total energies of the remaining states were subsequently obtained

by adding the aug-cc-pCV5Z excitation energy to the extrapolated total energy of

the X 381 state. This approach was designed based on the assumption that with

aug-cc-pCV5Z the excitation energies were essentially converged with respect to the

basis set. The validity of this assumption will be discussed below. In the second

extrapolation scheme, the CBS total energy of each state was extrapolated using the

formula

E(x) = E00 + Bea—(H) + Ce‘(‘”—1)2, (3.62)

with a: = 3, 4, 5. Here a: is again the cardinal number of the aug-cc—pCVrZ basis set,
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E(2:) is the total energy of the state as computed with the aug—cc—pCVrZ basis, and

E00 is the total energy of the state in the CBS limit. Throughout the rest of this

discussion, we will refer to the results obtained using the first extrapolation scheme as

CBS-A and those obtained using the second as CBS-B. It should also be noted that

since the CR—CC(2,3)/CR—EOMCC(2,3) programs are part of the GAMESS package,

as mentioned in Section 3.1.3, and since the integral codes in GAMESS are currently

restricted to g-functions, the h—functions of the aug-cc-pCV5Z basis set were omitted

in these calculations. Furthermore, all electrons were correlated and the spherical

components of the d, f, and g orbitals were employed in all CC calculations.

Table 3.3 shows the results of the methylene CC and QMC calculations. We

begin by analyzing the stability of the CBS extrapolations. As mentioned above, the

CBS-A extrapolation scheme was based on an assumption that although the total

CC/EOMCC energies are not converged to the CBS limit with the aug—cc-pCV5Z

basis, the excitation energies are. An analysis of Table 3.3 reveals that for this

system this is indeed a valid assumption, as the EOMCCSD and CR—EOMCC(2,3)

excitation energies do not significantly change when moving from the aug-cc-pCVQZ

to aug-cc-pCV5Z basis sets, with the largest change of 0.02 eV occurring for the C 1A1

state. Moving on to a direct comparison of the two types of CBS CR—CC(2,3)/CR—

EOMCC(2,3) total energies for each state, we see that the two extrapolation schemes

produce results that are in reasonably good agreement. Indeed, the discrepancies

between the two sets of results do not exceed 2.8 millihartree. The situation for the

CCSD/EOMCCSD total energies is similar. The agreement between the two different

CBS schemes for the adiabatic excitation energies is even better. For the A 1A1 and

B 1B1 excitation energies, the two CBS CR—EOMCC(2,3) values differ by 0.001 eV or

less, while in the case of the C 1A1 state, the discrepancy in the excitation energies

is 0.013 eV. Again, similar observations apply to the EOMCCSD approach. We

can conclude that the CBS CCSD/EOMCCSD and CR—CC(2,3)/CR-EOMCC(2,3)
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values are accurate to the level of approximately 2 millihartree in total energies, and

approximately 0.01 eV in excitation energies.

We now turn our attention to the comparison of the CC results with those of

QMC. Beginning with the basic CCSD/EOMCCSD calculations, we see that the

results for the A 1A1 — X 3B1 and B 131 — X 3B1 gaps are in reasonably good

agreement with the various QMC results. Furthermore, accounting for the effects of

triples through CR-CC(2,3)/CR—EOMCC(2,3) does not Significantly alter the values

for these gaps, changing the excitation energies for the A 1A1 and B 1B1 states in the

CBS limit by only about 0.03—0.04 eV. The situation is quite a bit different for the

C 1A1 — X 381 excitation energy. For this gap, the EOMCCSD excitation energies

differ from those generated by CR—EOMCC(2,3) and the various QMC approaches by

roughly 1.4 — 1.5 eV, thus indicating that this is the most challenging state considered

here, which is characterized by a Significant multi-reference or two-electron excitation

nature. Looking at the total energies of each state, we see that for the X 3B1,

A 1A1, and B 1B1 states, which correspond to the states for which the EOMCCSD

excitation energies were reasonable, CCSD/EOMCCSD produces errors relative to

CR—CC(2,3)/CR-EOMCC(2,3) on the order of 3.5 to 6.1 millihartree, i.e. errors

which are relatively small. The EOMCCSD calculation for the C 1A1 state, however,

generates a huge 58 millihartree error relative to CR—EOMCC(2,3), illustrating the

much larger role of triply excited clusters in the description of this multi-reference

state.

Moving on, it can be seen from Table 3.3 that the CR—CC(2,3)/CR-EOMCC(2,3)

results for the adiabatic excitation energies are in very good agreement with the var-

ious QMC results. Indeed, depending on the size of the CAS for the trial function,

the discrepancies between the DMC and CR-CC(2,3)/CR-EOMCC(2,3) excitation

energies range from 0018—0024, 0047—0059, and 0.033—0.122 eV for the A 1A1,

B 131, and C 1A1 states, respectively. Interestingly, the agreement of the CR-
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CC(2,3)/CR—EOMCC(2,3) excitation energies with the corresponding VMC data is

even better, with the discrepancy ranges reducing to 0.000—0.023, 0003—0053, and

0.013—0.096 eV for the A 1A1, B 1B1, and C 1A1 states, respectively. It is worth

noting, however, that the improvements in the excitation energy when going from

DMC to VMC are not dramatic, and so we can conclude that the two QMC variants

produce comparable results in this regard. The total energies, however, paint a some-

what different picture. The discrepancies between the VMC and DMC results are

on the order of 10 millihartree, which is a rather substantial disagreement. Looking

at the CR-CC(2,3)/CR-EOMCC(2,3) total energies, it is clear that they agree much

more strongly with the DMC results than with the VMC results. If we focus on the

largest CAS(6,6) QMC calculations, then the CBS-A CR—CC(2,3)/CR-EOMCC(2,3)

energies differ from the DMC results by 2.2—6.3 millihartree while the CBS-B energies

differ by only 06—39 millihartree, which represents an excellent level of agreement.

The discrepancy with the VMC energies, on the other hand, is an order of magni-

tude worse, ranging from 13.4 to 16.4 millihartree for the CBS-A results and 10.6

to 14.0 millihartree for the CBS-B values. Given the agreement between the inde-

pendent CR-CC(2,3)/CR—EOMCC(2,3) and DMC results, it is safe to conclude that

the VMC results are the ones in larger error, producing total energies that are too

high. However, given the fact that the increase in the VMC energies relative to the

CR—CC(2,3)/CR-EOMCC(2,3) and DMC approaches is nearly constant for all four

states, the resulting adiabatic excitation energies are still highly accurate and in very

good agreement with those of the latter two methods.

In summary, we see that by using the aug—cc-pCVTZ series of basis sets to extrap-

olate the CBS limit of the CR-CC(2,3)/CR—EOMCC(2,3) energies for the low-lying

states of methylene, the results are on the level of highly accurate, yet computa-

tionally expensive, QMC calculations, which implicitly produce CBS results. This

is a very encouraging result that illustrates the large potential of CR-CC(2,3)/CR-
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EOMCC(2,3) in describing the low-lying states of biradical Species.

The methylene system, though a challenging case, is a relatively weak biradical.

In order to investigate the performance of the CR—CC(2,3) scheme in describing the

Singlet-triplet gaps in systems characterized by a larger degree of biradical charac-

ter, we consider the (HFH)‘ Species. This DOOfi-Symmetric linear molecule, which

consists of two unpaired Spins, represented by the hydrogen atoms, separated by a

polarizable, diamagnetic bridge, namely F‘, is not only a strong biradical, but also

a simple, yet informative, model for many magnetic systems. The singlet-triplet gap

in such magnetic systems is particularly important as it provides information about

the magnetic exchange coupling constant. In the case of (HFH)—, this corresponds

to the gap between the ground X 123" and the first-excited A 32.: states. To test

the performance of CR—CC(2,3) as a function of the degree of biradical character,

calculations for the A 32;] — X 123‘ gap of the Dooh-symmetric linear (HFH)_

system were performed for various values of the H-F distance RH—F [138, 139]. All

calculations were performed using the 6—31G(d,p) basis set [194,195], employing the

Spherical components of the d orbitals, and the lowest-energy molecular orbital cor-

relating to the 18 orbital of F was kept frozen. To gauge the performance of the

RHF/ROHF—based CR—CC(2,3) calculations, performed using the codes discussed in

Section 3.1.3, the results are compared with full CI data obtained with GAMESS [173]

and MOLPRO [183], and with the UHF-based CCSD and CCSD(T) results obtained

with Gaussian 98 [238].

The (HFH)' system is a strong biradical, particularly for larger H-F distances.

This can be seen quantitatively in Table 3.4, which gives the absolute value of the ratio

of the full CI coefficients at the doubly excited (HOMO)2 ——> (LUMO)2 determinant

(c2) and the RHF ground-state determiant (co) for the ground X 12; state. As is

the case for the H2 molecule, the symmetries of the HOMO and LUMO in (HFH)_

are 09 and an, respectively, and the ratio c2 /cO is equivalent to the full CI value of the
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T2 cluster amplitude corresponding to the (HOMO)2 —> (LUMO)2 double excitation.

The magnitude of this T2 amplitude is an indicator of the biradical character of the

system, with values around zero representing essentially no biradical character and

values around 1 representing a virtually pure biradical. From Table 3.4 we see that

even for small values of RH—F, the (HFH)- system Shows a large degree of biradical

character. Furthermore, as the H-F distance is increased the degree of biradical

nature steadily increases until the molecule becomes an essentially pure biradical at

the largest distances. As a result of this strong biradical character, we expect the

A 32:; - X 12; gap to be relatively small, and thus very sensitive to the electron

correlation treatment, even for the relatively small values of RH—F, and steadily

approach zero as the H-F distance is increased. As can be seen in Table 3.4, this

behavior is displayed by the exact full CI results.

Analyzing the performance of the various CC approximations based on adding a

noniterative correction due to triples to the CCSD energy, we see from Table 3.4 that

the only method to provide a uniformly accurate description of the Singlet-triplet gap

across all values of RH—F is CR-CC(2,3) (with the complete variant D of CR—CC(2,3)

offering the best results). Indeed, if we focus specifically on the CCSD(T) scheme,

it is clear that it has severe difficulties in uniformly describing the (HFH)— system

regardless of which type of reference determinant iS utitlized. With the RHF/ROHF

reference, CCSD(T) does provide reasonably accurate results for the singlet—triplet

gap at RH—F = 1.5 and 1.625 A, generating errors relative to full CI of approximately

60 cm‘l. However, this accuracy quickly breaks down as the H-F distance, and thus

the biradical character, increases. The RHF/ROHF-based CCSD(T) approach does

not produce the correct dependence of the gap on RH—Fa with the energy actually

increasing after RH—F = 2.25 A rather than systematically approaching zero as the

H-F distance is increased. The resulting errors relative to full C1 are Significant,

growing from 268 cm-1 at RH_F : 1.75 A to 8900 6111—1 at RH_F : 4.00 A. This
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behavior is easily understandable if we analyze the behavior of CCSD(T) with re-

spect to each state (see Tables 3.5 and 3.6). Table 3.6 reveals that CCSD(T) provides

accurate results for the A 323,”: state, producing errors relative to full CI of less than

0.7 millihartree for all geometries considered. This excellent performance makes sense

Since theA 32,1," state is a nondegenerate high-Spin triplet state and so it is character-

ized primarily by dynamical correlations, which CCSD(T) describes well. However,

as Shown in Table 3.5, the Situation is considerably different for the X 12; state.

Because this state is characterized by strong nondynamical correlation effects, which

CCSD(T) has difficulty describing, the results are not nearly so accurate. Indeed,

though CCSD(T) performs well for small H-F distances where the biradical character

of the state is not as large, producing errors relative to full CI that are less than 0.8

millihartree, the performance of CCSD(T) quickly breaks down as RH-F increases,

with the errors relative to full CI growing from 2 millihartree at RH—F = 1.875

A to 40 millihartree at RH—F = 4.000 A. Thus, we see that the problems in the

RHF/ROHF based CCSD(T) description of the singlet-triplet gap stem from the un-

balanced treatment of the two states, where the triplet is described very well but

the description of the singlet is problematic. Switching to an unrestricted UHF ref-

erence for the CCSD(T) calculations improves the Situation, but the description of

the Singlet-triplet gap is still problematic. Though the gap approaches zero as the

H-F distance is increased when the UHF-based CCSD(T) approach is used, it decays

too fast as well as a result of the considerable mixing of Singlet and triplet contribu-

tions in the Spin-contaminated CCSD(T)/UHF calculation. Furthermore, the results

for shorter H-F distances, for which the restricted CCSD(T) calculations were quite

1 errors in thesuccessful, are considerably worse now. Indeed, the 57 and 58 cm“

restricted CCSD(T) results relative to full CI for RH—F = 1.5 and 1.625 A increase

to 1107 and 1232 cm‘l, respectively, when the UHF-based CCSD(T) approach is

employed.
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Moving on to variants A and B of CR—CC(2,3), which, as discussed in Section

3.1.2, are equivalent, up to small details, to the CCSD(2)T approach of [205] and the

triples part of the CCSD(2) method of [206—209], respectively, it is clear that they

too have some difficulties describing this system, although they are not nearly as big

as in the CCSD(T) case. The singlet-triplet gaps generated by the CR—CC(2,3),A

and CR-CC(2,3),B methods decrease too fast, and, as a result, end up passing zero

and becoming negative. Thus, for the larger geometries both approaches predict

the wrong ordering of states. Eventually, a turnover occurs and the gap begins to

increase again back towards zero, but this does not happen until the value of the gap

reaches -230 and -718 cm—1 for the A and B variants, respectively. Furthermore, the

discrepancies in the Singlet-triplet gap energies relative to full CI remain substantial

for all values of the H-F distance besides RH—F = 4.0 A, with errors ranging from

247—822 cm"1 in the CR—CC(2,3),A case and 651—1164 cm—1 in the CR-CC(2,3),B

case .

The full variant D of CR—CC(2,3), which, from now on, will simply be referred to

as CR—CC(2,3), does not suffer from such difficulties in describing the A 32,] —X 12;

gap. Indeed, we see clearly from Table 3.4 that CR—CC(2,3) reproduces the systematic

decay of the energy gap accurately. Though it does overshoot zero slightly at RH_F =

4.0 A, it is only by the very small value of 33 cm‘l. Quantitatively, the errors in

the CR—CC(2,3) results relative to full CI never exceed the relatively small value of

174 cm—1 regardless of the value of the H-F distance. Looking at Tables 3.5 and 3.6,

it iS clear that this excellent description in the singlet-triplet gap is not a result of

a fortuitous cancellation of errors. In fact, CR~CC(2,3) provides a highly accurate

description of the total energies of both the A 323;“ and X 12; states, with errors

relative to full CI ranging from 0.143 to 0.219 millihartree for the former, and from

0.060 to 0.967 millihartree in the latter. Thus, we see that of the various approximate

triples methods that have similar computational costs and ease of use, only CR-
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CC(2,3) (Specifically the complete variant D of it) is capable of properly balancing

the dynamical and nondynamical correlation effects in a way necessary to accurately

describe the Singlet-triplet gap in (HFH)— as a function of the H—F distance.

As a final example in this section, we consider the BN molecule. This is an

extremely challenging biradical system that is seemingly characterized by a large

contribution from connected quadruply excited clusters (i.e T4 clusters). Indeed, a

calculation [239] of the Singlet-triplet separation using the full CCSDT approach with

the cc-pVQZ basis set [178,220] generated a value that was significantly larger than

experiment. Given the challenging nature of this biradical and the large T4 effects,

the CR—CC(2,3) approach, which only accounts for the effects of up to T3 clusters,

is not expected to accurately describe the Singlet-triplet gap in this system, and so a

higher-order method such as CR-CC(2,4), which accounts for the combined effect of

T3 and T4 clusters, is likely to be necessary to produce high quality results.

In order to study the role of T4 clusters in the description of the adiabatic singlet-

triplet gap of BN, Te, as well as to examine the performance of the CR-CC(2,4)

approach in an application involving a biradical system, CR—CC and reduced multi-

reference (RMR) CC calculations for Tg were performed in collaboration with Dr.

Xiangzhu Li and Professor Josef Paldus. The RMR CCSD approach [240] is based on

solving the so—called externally corrected CCSD equations, which include all terms

of the standard CCSD equations plus correction terms involving the most important

(i.e. primary) T3 and T4 clusters [241,242]. In the RMR CCSD scheme, the T3 and

T4 amplitudes that enter the T3 plus T4 corrected CCSD equations are obtained from

the cluster analysis of a modest-size MRCISD wave function. AS a result of this

procedure, the T3 and T4 clusters that are accounted for in this scheme primarily

describe nondynamical correlations. In order to provide a more balanced description

of the correlation effects, a standard noniterative perturbative correction due to the

remaining triply excited clusters can be added to the RMR CCSD energy to account
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for those T3 components that describe the missing dynamical correlation effects (this

correction has the same form as that of the standard CCSD(T) approach, except that

one uses it only for the dynamical T3 contributions, i.e. those T3 contributions that

are not captured by MRCISD). This gives rise to the RMR CCSD(T) scheme [243].

In this study, all calculations were performed using the cc-szrZ (:1: = D, T, Q, 5)

basis sets. AS was the case for the methylene study discussed above, the h-functions

were omitted from the cc-pV5Z basis set due to the restriction of the integral routines

of GAMESS to g-functions. These results were then used to extrapolate the CBS value

of the Singlet-triplet gap, Te(CBS), using the following formula (cf. Eq. (3.62)):

Te(r) : Te(CBS) + Be—(H) + Ce-<I-1>2(e : 2, 3, 4, 5), (3.63)

where Te(:r) is the value of the Singlet—triplet gap as computed with the cc-pVTZ

basis set. In addition to the adiabatic singlet-triplet gap Te, the equilibrium bond

lengths Re and harmonic vibrational frequencies we, as obtained with the cc-pV5Z

basis, were computed as well. Due to the pilot nature of the CR-CC(2,4) code that

we have developed, as mentioned in Section 3.1.3, only variant A of CR-CC(2,4) was

used to perform the calculations. As discussed in Section 3.1.2, CR—CC(2,4),A is

equivalent to the CCSD(2) approach of [205] when the canonical RHF orbitals are

used. AS a further consequence of the pilot implementation, the cc—pV5Z CR—CC(2,4)

calculations could not be performed, and thus Eq. (3.63) was used to extrapolate

this value from the cc-erZ, :r = D, T, and Q, data. For the RMR CC calculations,

two different model (or reference) Spaces were considered for the underlying MRCI

calculations, which lead to what will be referred to here as the A- and B-type RMR

CC calculations. The a 12+ state, which is the more multi-reference, and thus more

difficult, state to calculate, is described by a model space spanned by four symmetry-

adapted determinants in the A-type and B-type RMR CC calculations. The ground
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X 311 state uses a single reference determinant in the A-type RMR CC calculations

while a two determinant model space is used in the B-type RMR CC calculations.

Table 3.7 gives the results of the various calculations. We begin by considering

the results for Re and we. Both types of RMR CCSD calculations produce a bond

length that is too short and a harmonic frequency that is too large relative to the

experimental values for the X 311 state. On the other hand, the CCSD(T) aproach,

which neglects T4 completely and primarily describes only the dynamical T3 effects,

produces Re and we values that are in very good agreement with experiment. Fur-

thermore, the results of the CR—CC(2,3) and RMR CCSD(T),B calculations do not

Significantly differ from those of CCSD(T) in this case (recall that for the triplet state,

RMR CCSD(T),A uses a single reference and thus is identical to CCSD(T)). These

data suggest that the X 311 state is primarly characterized by dynamical correlation

effects with little contribution from connected quadruples, which makes sense given

the single-reference nature of this state. The a 12+ state, on the other hand, has a

strongly multi-reference nature, and thus the emerging picture is quite a bit different.

CCSD(T) produces Re and we values that are somewhat too short and too large,

respectively, relative to experiment. The CR—CC(2,3) approach, which has already

been shown to better balance the dynamical and nondynamical correlation effects,

performs better but still has difficulty, producing a bond length that is Slightly too

long and an oscillator frequency that is somewhat too small. This indicates that

accounting for both the dynamical and nondynamical triples is not enough to accu-

rately describe the spectroscopic properties of the a 12+ state, and the T4 effects

must also be included. This is supported by the RMR CCSD(T) results, which Show

good agreement with experiment for both the bond length and harmonic frequency.

Moving on to the a 12+ —X 311 gap, Te, we see that the standard CCSD approach

dramatically fails, producing errors relative to experiment of more 4000 cm‘l. Using

the RMR CCSD scheme, which incorporates the primary T3 and T4 correlation effects
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Table 3.7: Equilibrium bond lengths Re (in A) and harmonic frequencies we (in

cm‘l) for the lowest triplet and Singlet states of BN, as obtained with cc-pV5Z basis

set, and the adiabatic singlet-triplet splittings Te (in cm”1) as obtained with the

cc-pVxZ (a: = D, T, Q, and 5) basis sets, as well as the extrapolated CBS limit

values.

 

 

 

 

 

X311 (212 Te

Method Re we Re we x=D x=T x=Q x=5 CBS

CCSD 1.317 1586 1.272 1705 4196 43914459 4471 448846

RMR CCSD,Aa 1.317 1586 1.273 1727 125913571450 1490 151241

RMR CCSD,Bb 1.321 1559 1.273 1727 167717561827 1863 187843

CCSD(T) 1.329 1510 1.269 1739 34 -92 —94 -87 :8843

CCSDTC 1.330 1512 1.277 1702 — — 844 — —

CR—CC(2,3) 1.329 1518 1.281 1686 404 666 817 919 946419

CR—CC(2,4),Ad — — — — 253 289 323 (337) (345)

RMRCCSD(T),A31.329 1510 1.277 1691 361 264 267 269 27141

RMRCCSD(T),Bb1.330 1501 1.277 1691 548 422 408 406 40441

Experiment 1.329e 1519.2f 1.275% 1705.4g 15—182f

1496e 1.274h 1700.9f 153In
 

 

a A-Type RMR CC calculations were based on the (2,2) active space, which leads to

a four-dimensional model space for the singlet and a one-dimensional model Space for

the triplet [244].

b B-Type RMR CC calculations utilized a four-dimensional model Space for the singlet

and a two-dimensional model space for the triplet [244].

C From [239] using the cc-pVQZ basis set.

d Due to the pilot nature of the CR—CC(2,4),A code used in this work, gradient

calculations were not possible. As a result, the CR—CC(2,3) optimized geometries were

employed. The cc-pV5Z and CBS values for the singlet-triplet gap are extrapolated

values obtained using Eq. (3.63).

e 70 and wo values from [245].

f From [246].

3 From [247].

h From [248].
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captured by MRCISD, does significantly improve the results, reducing the error in

the calculated gap by a factor of more than two. Unfortunately, the error relative

to experiment is still sizable, pointing to the importance of dynamical connected

triples in the description of the singlet-triplet gap of BN missing in the RMR CCSD

calculations. CCSD(T), on the other hand, produces negative values for Te, meaning

that it gives the wrong ordering of states. This results from CCSD(T) accurately

treating the Single-reference triplet state, while overshooting the energy of the multi-

reference singlet state. The CR-CC(2,3) method produces the proper ordering of

states as well an error reduction compared to RMR CCSD. In fact, for the cc-pVDZ

basis set, the results look promising and are in reasonable agreement with the CR—

CC(2,4) and RMR CCSD(T) results. Unfortunately, the error in the calculated gap

increases as the Size of the basis set increases, and so both the larger basis set and

CBS CR-CC(2,3) values Show sizable errors relative to experiment. It is important

to note, however, that for the cc-pVQZ basis set, the CR—CC(2,3) value of Te is in

excellent agreement with the full CCSDT value of [239], differing by less than 30

cm—l. This suggests that CR—CC(2,3) is accurately and properly describing the T3

effects, and is unable to provide a reasonable description of the gap due to missing

quadruply excited clusters.

The above data all suggests that both a properly balanced description of dynamical

and nondynamical triples as well as the inclusion of connected quadruply excited

clusters is necessary to accurately describe the singlet-triplet gap of BN. Table 3.7

reveals that this is indeed the case, as both the CR—CC(2,4) and RMR CCSD(T)

approaches produce Significantly better values for Te, which are in good, although

not perfect, agreement with the available experimental data, which are not well-

established either, due to the smallness of the a 12+ — X 3H gap. Additionally it

is encouraging to see that these two completely different methods of including the

effects of T3 and T4 clusters in the CC calculations are in very good agreement with
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each other.

3.2.3 Excitation Energies of C2N, CNC, N3, and NCO

As a final example of the performance of the left-eigenstate CR—CC/CR—EOMCC

schemes in studies of open-Shell systems, we once again examine the low-lying states of

C2N, CNC, N3, and NCO, which were studied using the active—Space EA-EOMCCSDt

and IP-EOMCCSDt approaches in Section 2.2.3. Not only do these representative

radical systems provide an interesting and informative test case for the open-shell

CR-EOMCC(2,3) implementation, but they also allow us to directly compare the

performance of both of the new approaches for studying open-shell systems developed

in this research. To that end, the computational details, including basis set and

equilibrium geometries used, are the same as those defining the calculations of Section

2.2.3 and will not be repeated here.

Table 3.8 shows the results of the calculations for ONC and C2N. The EA-EOMCC

results discussed in detail in Section 2.2.3 are also included to facilitate comparisons

with the CR—EOMCC(2,3) data. One of the first things apparent from these results is

that the basic EOMCCSD approach performs reasonably well for the A 2131, state of

CNC and the A 2A state of C2N, producing results that are in reasonable agreement

with both experiment and the high quality EA-EOMCCSD(3p—2h) results. Indeed,

the difference between the EOMCCSD and EA—EOMCCSD(3p—2h) results are only

0.186 and 0.136 eV for the A 2Au state of CNC and the A 2A state of C3N, respec-

tively. Furthermore, it is clear that including the effects of triples has little impact

on these states, as all four variants of CR—EOMCC(2,3) provide Similar values for the

excitation energies that do not differ substantially from those of EOMCCSD. This is

not too surprising given the relatively simple structure of these two states. Indeed,

the so—called reduced excitation level (REL) values are 1.099 and 1.090 for the A 2A.”

state of CNC and the A 2A state of CQN, respectively. The REL diagnostic, intro-
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duced in [132], is a quantitative measure of the nature of an excited state relative to

the corresponding ground state, with values close to 1.0 indicating the state is dom-

inated by single excitations and values close to 2.0 indicate domination by double

excitations. It is well known that EOMCCSD performs well for states dominated by

single excitations, and so it is not surprising to see the reasonable performance of this

scheme for these two states.

The situation is different for the remaining states of CNC and C2N, however.

Indeed, the REL values characterizing the B 22; state of CNC, and the B 22“ and

C 22+ states of C2N are 1.979, 1.856, and 1.897, respectively, indicating that all of

these states are dominated by two—electron transistions. Not surprisingly, given this

observation, EOMCCSD fails to accurately describe the excitation energies, producing

errors of 2.7 — 3.0 eV relative to experiment. When variant A of CR—EOMCC(2,3),

which, as mentioned in Section 3.1.2, is equivalent to the EOM-CC(2)PT(2) scheme

of [203, 204] when the canonical RHF orbitals are employed, is used to calculate the

excitation energies for the above three states, the errors are reduced but are still

substantial. Indeed, the discrepancies with experiment are 1.117, 1.239, and 1.435 eV

for the B 22,”: state of CNC, and the B 223— and C 22+ states of C2N, respectively.

Variant B, which, as a reminder, replaces the orbital energies of the Meller-Plesset-

like denominators of CR—EOMCC(2,3),A with the one-body diagonal elements of the

similarity—transformed Hamiltonian (the latter essentially corresponding to ‘dressed’

orbital energies), Shows essentially equivalent performance.

In contrast to variants A and B, the full variant D of CR—EOMCC(2,3) pro-

duces accurate results for the B 22,“: state of CNC, and the B 22‘ and C 22+

states of C2N. Indeed, the errors relative to experiment for the B 22.: state of

CNC, and the B 22" and C 253"" states of C2N are 0.284, 0.331, and 0.518 eV,

respectively, which is a substantial improvement over the results of variants A and

B (not to mention, EOMCCSD). Furthermore, the CR-EOMCC(2,3),D excitation
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energies agree very well with the high-level EA-EOMCCSD(3p—2h) results. Indeed,

for the B 22,]: state of CNC and the C 22+ state of C2N, the discrepancies be—

tween the CR—EOMCC(2,3),D and EA-EOMCCSD(3p-2h) data are only 0.119 and

0.015 eV, respectively. For the B 2)3“ state, which poses some difliculty for the EA-

EOMCCSD(3p—2h) scheme and likely requires 4p—3h excitations to properly describe

it, the discrepancy between CR-EOMCC(2,3),D and EA—EOMCCSD(3p—2h) is some-

what larger, with CR-EOMCC(2,3),D improving the result by 0.567 eV, which is a

remarkable improvement considering the black-box nature of the CR—EOMCC(2,3)

theory.

Turning to the low-lying states of N3 and NCO, Table 3.9 reveals that all three

states included in it are dominated by Single excitations. Thus, not surprisingly, the

basic EOMCCSD approach provides accurate results for all of these states, with errors

relative to experiment ranging from 0.110 to 0.207 eV. As observed earlier for the

states of CNC and C2N dominated by Singles, all four variants of CR—EOMCC(2,3)

provide essentially equivalent results, with differences among the results of less than

0.05 eV, and with small changes in excitation energies when going from EOMCCSD

to CR—EOMCC(2,3). Finally, it should be noted that the CR-EOMCC(2,3) results

are in good agreement with those of the high-level IP-EOMCCSD(3h-2p) calculations,

with discrepancies of approximately 0.1 - 0.4 eV between the CR—EOMCC(2,3) and

IP—EOMCCSD(3h-2p) data.

Thus, it is clear that the excited-state CR—EOMCC(2,3) approach performs very

well for the low-lying states of open-Shell systems, with the capability to produce

results of similar quality as that provided by the high-level EA-EOMCCSD(3p—2h)

and IP-EOMCCSD(3h-2p) approaches discussed in Chapter 2. More specifically,

for states dominated by single-excitations, all variants of CR-EOMCC(2,3) perform

equally well, and offer only minor improvements over the already satisfactory EOM-

CCSD results. For the more challenging states dominated by double excitations, only
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the more complete variants C and D are able to successfully describe the excitation

energies, providing results of the same quality as those of EA-EOMCCSD(3p—2h) and

IP—EOMCCSD(3h—2p). From these results it is clear that the full CR—EOMCC(2,3)

scheme, which has costs on the order of the popular ground-state CCSD(T) scheme,

is capable of providing high-quality results for both the simple singly excited and

more complicated doubly excited low-lying states of open-shell systems, and thus is

a promising approach for studying the excitation spectra of radicals.
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Chapter 4

Coupled-Cluster Calculations for

 

Nuclei

In this chapter, the application of various CC approaches, in particular those detailed

in Chapters 2 and 3, to the study of nuclear structure is discussed. In Section 4.1,

a description of the main elements associated with performing CC calculations for

nuclei, particularly those related to how nuclear CC calculations differ from molec-

ular CC calculations, are presented. The rest of the chapter presents and discusses

the results of some representative nuclear CC calculations performed as part of this

research.

4.1 Details of Coupled-Cluster Calculations for Nu-

clei

Despite the many differences between nuclei and molecules, it turns out that the un-

derlying physics describing the motion of the nucleons and electrons, all of which are

Spin 1/2 fermions, within the nuclear and molecular potentials, respectively, is essen-

tially identical. Indeed, the time-independent, many—particle Schrbdinger equations
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for these two types of physical systems only differ in the form of the potential. Since

the formulation of various CC methods in quantum chemistry makes virtually no

assumptions about the form of the potential (the major exception will be discussed

in detail below), they can be applied to calculations of nuclear structure, at least

for Hamiltonians with pairwise nucleon-nucleon interactions, without any theoretical

reformulation. For example, the explicit equations defining the EA-EOMCCSDt, IP-

EOMCCSDt, and CR-CC(2,3)/CR—EOMCC(2,3) approaches, presented in Sections

2.1.3 and 3.1.3, utilize the integrals 71123 = (pq|v]rs) — (pq|v|sr), but, besides the re-

quirement that integrals are real and not complex, make no assumptions regarding

the functional form of 72 nor the values of 7153. Thus, the CC methods developed in

quantum chemistry require no substantial theoretical reformulation in order to be ap-

plied to nuclear physics (though some changes in the details of the implementation of

the methods may be necessary). The fundamental difference between running nuclear

CC calculations and molecular CC calculations is the form of the operator 7), and thus

the resulting values of the matrix elements v73, defining the second-quantized form of

the Hamiltonian, that enter the equations defining the CC approximation of choice.

Having stated all of the above, there are some complications in using the nucleon-

nucleon potentials in CC calculations that may need out attention. We discuss them

DOW.

Since it is the electrostatic force that governs the interaction between electrons,

as well as their motion in the field of the nuclei, Coulomb’s law defines the potential

in nonrelativistic molecular calculations. The interactions between nucleons, on the

other hand, are described primarily by the strong force, with small contribution from

the Coulomb force through the mutual repulsion of protons. Unfortunately, there is

no Coulomb’s law analog known for the strong force, and as a result generating the

Hamiltonian for nuclear calculations is not as Simple or straightforward as in quantum

chemistry. Because of this, a great deal of research has gone toward the development
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of realistic nucleon—nucleon interactions, and, as a result, there are a variety of poten-

tials to choose from, such as the well-known Argonne V18 [249] and CD-Bonn [250]

potentials or the more recent interactions generated within the framework of chiral

effective field theory [251,252], such as Idaho-A or N3LO [253,254] to name a few.

Because of this choice of interactions, the nuclear CC calculations performed as part

of this work, and discussed in this dissertation, were based on several different inter-

actions, both semi-empirical and ab initio, in order to gauge how the performance of

the CC methods varies with regard to the choice of potential.

Besides the lack of an exact analytical expression for the nucleon—nucleon interac-

tion, there is yet another complication that arises with this potential. Whereas elec-

trons are point particles, and so the resulting interaction between them is two-body

at most, nucleons have an underlying structure in terms of quarks. AS a result, the

interactions between nucleons are effective and not fundamental, and as such can be

characterized by three—body and higher many-body components (to find an analogy in

chemistry, the description of intermolecular forces that originate from the underlying

electron-electron, electron-nucleus, and nucleus-nucleus interactions is characterized

by a similar situation). This issue is important when attempting to apply the CC

methods developed in quantum chemistry to nuclear structure theory because, al-

though the quantum chemistry CC formulations make virtually no assumptions on

the form of the potential, they do in fact assume that it is at most two-body in na-

ture. There is nothing intrinsic in the CC theory that requires this assumption, and

indeed a formulation of the basic CCSD approach based on three-body Hamiltonians

has recently been derived and implemented [171]. However, the resulting calculations

are considerably more expensive than those based on a two—body Hamiltonian. 13hr-

thermore, if one wants to explore more advanced methods, such as those described

in this dissertation that have already been derived and implemented for two-body

Hamiltonians, they would have to be rederived and re—implemented, with the result-
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Figure 4.1: Pictorial illustration of the nuclear shell structure.

ing equations being considerably more complicated than their two—body Hamiltonian

counterparts, before they could be used to study nuclei. Of course, it is possible to

avoid these issues by simply restricting the calculations to two—body Hamiltonians

only, which allows for a direct application of the quantum chemistry CC formulations

to nuclear calculations, which is the route chosen for this research. In fact, two of the

goals of this work are to explore the effect of neglecting three-body components of the

Hamiltonian as well as the possibility of generating an accurate description of these

effects within an effective two-body interaction. The latter makes a lot of sense since,

as Shown in [171], once the Hamiltonian is written in the normal-ordered form, as is

usually done in CC considerations any way, the “true” three-body interactions play

a negligible role. The main role of the three-body interactions is to modify the two-

body interactions through the effective density-dependent terms that originate from

the normal-ordered form of the Hamiltonian in a natural way, providing additional

justification for focusing on effective pairwise potentials.

138

 

 



A final element of performing nuclear CC calculations that Should be discussed

before considering some examples is that of the basis set. The structure of the nuclear

Hamiltonian written in internal coordinates is, in part, reminiscent of a harmonic os-

cillator potential and, as such, single-particle, three-dimensional harmonic oscillator

functions are generally used as the basic one-nucleon basis functions. A key param-

eter for defining such a basis is the energy gap between adjacent oscillator energy

levels, hw, which is generally chosen such that it minimizes the ground-state energy

of interest. These functions can be used directly in the CC or other correlated cal-

culations, or a mean-field calculation, such as Hartree—Fock, can be performed first

to optimize the nuclear orbitals represented as linear combinations of harmonic oscil-

lator basis functions. As is the case for atoms and molecules, these nuclear orbitals

form a shell structure when arranged according to energy. The first four Shells within

this structure are illustrated in Figure 4.1. AS can be seen, the shell structure is

closer to that of atoms than of molecules. However, unlike atoms, the magnitude of

Spin-orbit splitting is very large, and so even for light nuclei it must be accounted for.

Thus the energy level splittings on the right-hand Side of Figure 4.1 are the ones that

should be used in calculations. Both protons and neutrons each have an identical

energy level diagram, and so the number of basis functions associated with a given

energy level is 2 =1: (23' + 1), where j is the total angular momentum for the spin-orbit

coupled function. Generally, when building a basis set for use in a CC or other type

of correlated calculation, basis functions are added entire shells at a time, and so the

number of major Shells is used to indicate the Size of the basis. Unfortunately, due

to the hard core of the nucleon-nucleon potential, the convergence of quantum calcu-

lations with respect to the number of major shells is very Slow if the bare interaction

is used, and so extremely large basis sets are needed to produce accurate results in

such calculations. In order to improve the convergence with the size of the basis set,

and thus reduce the corresponding computational cost, the Hamiltonian is generally
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renormalized in order to soften the potential. Several of the calculations performed in

this and related work [157—167] made use of the no—core G—matrix procedure described

in [255,256], whereas our most recent calculations for 160 [169,170] made use of the

renormalized two—body interaction that accounts, to some extent, for three-body in-

teractions, called VUCOM [257—260]. The effective semi-empirical Hamiltonians, such

as those used in our CC calculations for heavy nuclei [167,168], are generally soft and

need no renormalization.

Last, but not least, we must remember that unlike atoms or molecules, that consist

of electrons moving in a fairly rigid framework of nuclei creating an external potential,

nuclei are self-bound systems, which introduces a new layer of complexity absent in

electronic structure calculations. The exact nuclear wave function factorizes into the

intrinsic part and the center-of-mass part, but this is no longer true for approximate

methods, such as those based on CC theory. This issue becomes particularly dramatic

for light nuclei where one can easily produce center-of-mass contaminated results,

although our recent study shows that the issue does not automatically disappear

when heavier nuclei are examined [170]. The issue of center-of-mass contamination

is not discussed here and we refer the reader to the literature, including some of our

recent work [169,170]. Needless to say, we will mention our ways of addressing the

issue, as appropriate, in the next sections, without going into details.

It is virtually impossible to describe all of our nuclear CC applications to date

{157—171]. Thus, in the following section we focus on a few representative examples

only.
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4.2 Low-lying States of 16O and the Surrounding

Valence Systems

One of this project’s first applications of CC approaches to nuclear physics was the

calculation of the ground and first excited J = 3‘ states of 160 [157,161—164]. Two

different Hamiltonians, both derived from chiral effective field theory, were used in

these calculations, namely Idaho-A and N3LO [253,254]. The former includes up to

chiral-order three diagrams, while the latter includes up to chiral-order four diagrams

as well as charge-symmetry and charge-independence breaking terms. Additionally,

the proton-proton Coulomb repulsion is included in the N3LO interaction [253,254].

In order to soften the potential, the Idaho-A and N3LO Hamiltonians were renor-

malized using the no-core G-matrix approach [255,256]. Each of the resulting renor-

malized effective two-body Hamiltonians was subsequently corrected by adding the

BHCM term to it, where HCM is the center-of-mass Hamiltonian and B is the La-

grange multiplier that are optimized to minimize that center-of-mass contaminations.

Finally, once the final form of the renormalized, center-of-mass-corrected Hamiltonian

was generated, we determined the relevant one— and two—body matrix elements, f3

and egg, in the basis set consisting of the standard harmonic oscillator single—particle

functions (i.e. no mean-field optimization of orbitals was performed). We refer the

reader to [160—164] for the details of the procedure used to define the final form of

the Hamiltonian from the Idaho-A and N3LO interactions that was used in the CC

calculations 160.

The CC methods used in the calculations for 160 reported in [157, 161—164] i11-

cluded the basic CCSD/EOMCCSD approach, for which basis sets with up to 8 major

oscillator shells (480 single-particle functions) were used for the ground state and with

up to 7 major shells (336 single-particle functions) for the 3“ state, and the completely

renormalized CR-CCSD(T)/CR-EOMCCSD(T) scheme [120, 122, 123, 126—128, 131,
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Figure 4.2: The CC energies of the ground-state (g.S.) and first-excited 3" state of

160 as functions of the number of major oscillator shells N obtained with the Idaho—A

interaction.

132], for which basis sets with up to 7 oscillator shells were used for both states.

The latter scheme is essentially an older variant of CR—CC(2,3)/CR-EOMCC(2,3)

discussed in Chapter 3 based on the original formulation of the MMCC theory

[120—123, 126—129] (as opposed to the biorthogonal formulation CR—CC(2,3)/CR-

EOMCC(2,3) is based on). For the calculations with 7 and 8 major oscillator Shells,

fiw was set at 11 MeV, to minimize the CCSD energy. It should be noted, however,

that the results were virtually independent of the value of 71w, when the larger basis

sets were employed, which is a typical behavior Since the dependence of the results

on the basis set parameter hw disappears in the CBS limit.

Figure 4.2 shows the CCSD/EOMCCSD and CR—CCSD(T)/CR—EOMCCSD(T)

energies as functions of the number of major oscillator shells, N, for both the ground

and excited 3‘ states. The symbols correspond to the actual CC energies, while the
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lines were generated by fitting the energies to the following formula:

E(N) : E00 + tad—W), (4.1)

where the extrapolated infinite basis set (quantum chemists’ CBS) energy, E00, as

well as the parameters a and b are determined by the fit. It is clear from Figure 4.2

that this is an excellent fit to the calculated energies, and as such the extrapolated

CC energies Should be an accurate representation of the infinite basis set results.

For the ground-state case, the CCSD scheme generates an extrapolated binding

energy of -7.46 MeV/nucleon with the Idaho-A interaction, whereas the extrapolated

CR—CCSD(T) binding energy is -7.53 MeV/nucleon. It is immediately clear that the

inclusion of the effects of triply excited clusters has very little effect on the result,

changing the binding energy by only 0.9 ‘70. It is also clear from Figure 4.2 that

the discrepancy between the two results is consistently small for all basis sets for

which both calculations were performed. This small effect due to connected triply

excited clusters would suggest that all of the important correlation effects are already

included at the CCSD and CCSD(T) levels, and that the inclusion of higher-order

clusters would have little impact on the resulting binding energies. This is not too

surprising Since 16O is a strongly closed-shell nucleus, or “doubly magic” system

as it is called in nuclear physics, and so the role of T3 and higher—order clusters

cannot be significant. Before comparing the above CCSD and CR—CCSD(T) results

to experiment, however, we must remember that, as mentioned above, the Idaho-A

interaction used in these calculations does not include the effects of Coulomb repulsion

of the protons. The effect of Coulomb repulsion is known to add approximately

0.7 MeV/nucleon to the binding energy, and so adding this value to the converged

CR—CCSD(T) binding energy obtained with Idaho—A gives an approximate final CR-

CC'SD(T) binding energy of -6.8 MeV/nucleon. As Shown in [164], this value is in
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excellent agreement with the extrapolated N3LO CR—CCSD(T) binding energy of —

7.0 MeV/nucleon (the N3LO interaction includes the Coulomb repulsion). Comparing

these results with the experimental value of -8.0 MeV/nucleon, we see that the CC

calculations underbind 16O by about 1.0 MeV/nucleon. This result immediately begs

the question of where this discrepancy comes from. Indeed, as illustrated by Figure

4.2, the above results appear to be fully converged with the basis set. Furthermore,

based on the above discussion, it is safe to conclude that the CR—CCSD(T) method

has saturated the particle correlations describing this system. Thus, it would appear,

at least at first glance, that our CC calculations for 16O not missing any fundamental

physics, and should reproduce the experimental result with much better accuracy.

However, we must not forget that the Hamiltonians used in our calculations included

only up to two-body interactions, and all three-body and higher interactions and

their effect on pairwise interactions were neglected. Thus, we conclude that the three-

body interactions in the Hamiltonian neglected in our calculations should provide an

additional 1.0 MeV/nucleon in the binding for the 1GO nucleus. We will return to

this interesting aspect of our calculations in a later part of this section.

Turning to the 3" state, the basic EOMCCSD approach provides an extrapo-

lated excitation energy of 11.3 MeV with Idaho-A, while the extrapolated Idaho-

A CR—EOMCCSD(T) excitation energy is ~ 12.0 MeV. N3LO produces essentially

equivalent results. This 3“ state is thought to be dominated by single (i.e. lp-lh)

excitations [261] (specifically, a single excitation from the 1191/2 orbital to the 1d5/2

orbital; see Figure 4.1). As discussed in Chapter 3, it is the experience of quantum

chemistry that even the basic EOMCCSD approach is capable of providing an accu-

rate description of states with such a structure, and the incorporation of T3 effects has

little impact on the overall result if the Hamiltonian contains two-body interactions

Only (as would be the case in quantum chemistry). It is clear from Figure 4.2 that the

inclusion of triply excited clusters through CR—EOMCCSD(T) causes only a slight
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change in the excitation energy of the 3“ state, in agreement with quantum-chemist

intuition. The experience of quantum chemistry is telling us then that it is safe to

conclude that CR-EOMCCSD(T) provides an essentially exact solution (from the

point-of—view of many-body correlation effects) for the 3' state of 160. The creates

a real puzzle, since our converged EOMCCSD and CR—EOMCCSD(T) results for the

excitation energy of the 3’ state significantly differ from the experimental excitation

energy of 6.12 MeV. Once again, we believe that the discrepancy between CC and

experiment is due to missing three-body forces in the Hamiltonian.

In order to expand the above study to include open-Shell nuclei, a number of CC

calculations were performed for the valence systems surrounding 16O, namely 150,

15N, 170, and 17F [165]. Given that these systems are all one-nucleon away from 160,

which is a closed—shell system, they are excellent candidates for EA—type and IP-type

EOMCC calculations. Of course, the names ‘electron-attached’ and ‘ionized’ make

no sense in the context of nuclear physics, so we will describe the nuclear analogs

of the EA- and IP-EOMCC methods as the particle-attached (PA) and particle-

removed (PR) EOMCC schemes. Thus, we performed the basic PA-EOMCCSD(2p—

1h) calculations for 17O and 17F and the PR—EOMCCSD(2h-1p) calculations for 15O

and 15N. We used the chiral N3LO interaction from the above 160 study as well the

phenomenological Argonne V18 and CD-Bonn potential mentioned in Section 4.1. For

150 and 15N, the ground and first—excited (3/2); states were computed, while for

17O and 17F, the ground, (3/2)'1+ and (1/2);L states were calculated. As in the 1"O

case, a basis of harmonic oscillator states was utilized. Although the calculations

reported in [165] include basis sets with various numbers of oscillator Shells, in this

discussion we focus on the largest N = 8 basis set only. Furthermore, because there

is almost no dependence of the results on the value of 71w when the large N = 8 basis

set is employed, we focus on the results with fiw = 11 MeV for N3LO and CD-Bonn,

and fiw = 10 MeV for Argonne V18. The discussion of the results for other hw values
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Table 4.1: A comparison of the binding energies per particle for 15O and 15N (the

PR—EOMCCSD(2h—1p) values), 160 (the CCSD values), and 17o and 17F (the PA-

EOMCCSD(2p—1h.) values), obtained with the N3LO [253,254], CD-Bonn [250], and

V18 [249] potentials, and eight major oscillator shells, with the experimental data

taken from [262]. All entries are in MeV. For the CD-Bonn and N3LO interactions,

we used hw = 11 MeV. For V13, we used hw = 10 MeV.

 

 

 

 

Interaction

Nucleus N3LO CD-Bonn V18 Expt

150 6.643 7.584 5.246 7.464

15N 6.824 7.751 5.414 7.699

160 7.406 8.327 5.897 7.976

170 7.150 8.032 5.617 7.751

”P 6.987 7.879 5.462 7.542
 

 

and basis sets with N S 7 can be found in [165].

Table 4.1 gives PA-EOMCCSD(2p—1h) and PR-EOMCCSD(2h-2p) results for the

binding energies per particle for 150, 15N, 170 and 17F. Focusing on the results

obtained with the N3LO interaction, we see that the PA—EOMCCSD(2p-1h) and PR-

EOMCCSD(2h—1p) energies differ from the experimental values by roughly 0.5 to

0.8 MeV/nucleon. One potential source for this discrepancy could be that the most

basic PA-EOMCCSD(2p—1h) and PR-EOMCCSD(2h—1p) schemes do not include all

of the relevant correlation effects necessary to describe the ground states of these

nuclei. In particular, they lack the 3p—2h/3h-2p components of the particle-attaching

and particle-removing operators, which, as discussed in Chapter 2, are in some cases

essential for obtaining accurate results for the low-lying states of open-shell systems.

However, it is known that the ground states of all four of these valence nuclei are

dominated by 11) (170, 17F) or 171 (150, 15N) transitions relative to the ground-

state of 160. As illustrated in Section 2.2.3 for molecular applications, the basic PA-

EOMCCSD(2p—1h) and PR—EOMCCSD(2h-1p) schemes perform quite well for states

dominated by 1p or 1h transitions, and improvements resulting from using the higher-

order PA-EOMCCSD(3p—2h) and PR-EOMCCSD(3h-2p) approaches was minimal
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in those situations. Thus, it is safe to conclude that the higher-order components

of the cluster, particle-attaching, and particle-removing operators play a relatively

small role in the structure of the ground states of 15O, 15N, 170 and 17F, and so

PA-EOMCCSD(2p—1h) and PR-EOMCCSD(2h-1p) accurately describe the relevant

many—body correlations. AS a result of this analysis, we once again conclude that the

discrepancy with experiment is likely due to the inadequate treatment of the nucleon-

nucleon interaction resulting from neglecting three-body forces. In fact, the 0.5 to 0.8

MeV/nucleon differences between the PA-EOMCCSD(2p—1h)/PR—EOMCCSD(2h-1p)

results and experiment for the valence nuclei are in good agreement with the 0.6 or 1.0

MeV/nucleon differences between the 8-Shell N3LO CCSD (Table 4.1) or infinite-basis

set CR-CCSD(T) binding energies, respectively, and experiment, observed earlier.

This relatively consistent discrepancy with experiment across all five nuclei around

160 indicates that the role of three-body forces is approximately the same in each

(3888.

Turning to a comparison of the results obtained with different potentials, Table 4.1

Shows that the binding energies obtained with the N3LO and CD-Bonn interactions,

both of which are based on a nonlocal model for the interaction defined in momentum

space, are in reasonable agreement with each other, although the binding is greater

with the CD-Bonn potential. On the other hand, the results obtained with the

Argonne V18 potential, which is based on a local parameterization in coordinate space,

Shows a much larger deviation, underbinding the nuclei by approximately 1.4 to 1.5

MeV/nucleon relative to N3LO. Since the above arguments regarding the convergence

of the CC calculations and the potential role three-body interactions apply to a lesser

or larger extent, to any interaction, our calculations strongly suggest that the role of

three-body forces depends on what interaction model is used, and so every potential

needs its own unique three-body interaction. This is an important finding, since

it has been a tendency of the nuclear physics community for quite some time to
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add some form of three-body interaction to some form of two—body interaction in the

Hamiltonian without realizing the possible inconsistency in such an ad hoc treatment.

Before moving on to an analysis of the CC results for the low-lying excited states of

the 15O, 15N, 17O and 17F nuclei, it is useful at this point to return to the discussion

of the potential role of three-body interactions in the case of the lowest excited state

of 160 of the 3‘ symmetry. AS mentioned above, a zero-order description of this

state is that of a 1p—1h excitation from the 1191/2 orbital to the 1d5/2 orbital. The

approximate energy associated with such an excitation, relative to the ground state

of 160, can easily be estimated using the formulas

A67; = 677(1d5/2) — 64(1p1/2)

: [BE(160) — BE(17F)] + [813(160) — BE(15N)] (4.2)

and

A61! = 611(1d5/2) ‘ €u(1P1/2)

: [BE(16O) — BE(17O)] + [88(160) — BE(15O)] (4.3)

for the proton (77) and neutron (V) excitations, respectively, where BE represents the

relevant total binding energy for the labeled nucleus. Using the results presented in

Table 4.1, Eqs. (4.2) and (4.3) can be used to calculate both CC and experimental

values for A67;- and Ac”, which give a zeroth—order estimate for the excitation energy

of the 3‘ state of 160. The resulting zeroth—order CC values are A67]- : 15.846 MeV

and A6,, = 15.789 MeV, whereas the corresponding experimentally derived values

are A6” = 11.526 MeV and A6), = 11.521 MeV. Thus, regardless of whether a

proton or a neutron is excited from the 1191/2 orbital to the 1d5/2 orbital, there is

a discrepancy between the zeroth-order CC and experimental estimates of the 3‘

excitation energy of about 4.3 MeV, which is a large fraction of the missing 6 MeV
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Table 4.2: A comparison of the energies of the low-lying excited states of 15O, 15N , 170

and 17F, relative to the corresponding ground-state energies (the (1 /2)1‘ states of 15O

and 15N and the (5/2)'1’" states of 17O and 17F) obtained with the PR-EOMCCSD(2h-

1p) (150 and 15N) and PA-EOMCCSD(2p—1h) (170 and 17F) methods, the N3LO

[253,254], CD—Bonn [250], and Argonne V18 [249] potentials, and eight major oscillator

shells, with the experimental data taken from [263]. All entries are in MeV. For the

CD-Bonn and N3LO interactions, we used flw = 11 MeV. For V18, we used 71w = 10

MeV.

  

Interaction

Excited state N3LO CD-Bonn V18 Expt

150(3/2); 6.264 7.351 4.452 6.176

15N(3/2)‘ 6.318 7.443 4.499 6.323

170(3/2)’r 5.675 6.406 3.946 5.084

170(1/2)’r 3.025 0.311 -0390 0.870

1’ 5.891 6.677 4.163 5.000

1 0.428 0.805 0.062 0.495

 

 

 
 

in the CR—EOMCCSD(T) excitation energy for this state. Based on this analysis, it

appears that the discrepancy between the CC and experimental results for the 3‘

state is primarily due to a relatively poor reproduction of the shell structure of 160,

in particular, an incorrect energy gap between the 1p and 231d Shells (see Figure

4.1), which is known to be affected by three-nucleon forces. This is a strong evidence

that it is the lack of three-body forces in the Hamiltonian, and not any intrinsic

deficiencies in our CC/EOMCC calculations for 160, that is largely responsible for

the ~ 6 MeV discrepancy between the converged EOMCCSD or CR—EOMCCSD(T)

and experimental excitation energies for the 3‘ state of 160.

Moving on to the excited states of the 150, 15N, 17O and 17F systems, Table

4.2 reveals that the N3LO PA-EOMCCSD(2p—1h.) and PR—EOMCCSD(2h-1p) results

for the lowest (3/2)1‘ states of 150 and 15N and the (U2)? state of 17F are in

good agreement with the experimental values, differing by less than 0.1 MeV. The

description for the remaining states is not as good, but it is still reasonable, with the

errors relative to experiment increasing to 0.6 to 0.9 MeV. It is important to note
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that the (3/2)? states of 17O and 17F are known to be resonances, which cannot

be treated properly by the CC codes utilized in this work Since they are designed

for the bound states only. This fact is likely one of the main contributions to the

discrepancy between the CC and experimental results for these particular states.

Finally, it is worth noting that once again there are Significant differences between the

results obtained with different potentials. Indeed, the CD—Bonn interaction produces

excitation energies that are notably higher than the experimental values in most

cases, while Argonne V18 consistently underestimated the excitation energies in the

150, 15N, 17O and 17F systems. Of the potentials used in our calculation, it appears

that N3LO provides the best overall results.

Based on the above analysis, it seems that the three-body contributions to the

nucleon—nucleon interaction may have a significant effect on calculated nuclear prop—

erties. However, as already mentioned above, the explicit inclusion of three-body

interactions in the nuclear Hamiltonian is not the best way to proceed, as it in-

creases the computational costS of the many-body nuclear structure calculations, and

requires the rederivation of the equations defining various correlated methodologies

that are typically formulated for pairwise potentials. This certainly applies to all

quantum-chemistry-inspired CC theories discussed in this thesis. Furthermore, as

Shown in [171], where the CCSD calculations for the two- and three-body interac-

tions were presented, the main contribution of the three-body force is in the density-

dependent zero—, one-, and two-body terms that result from using the normal—ordered

form of the Hamiltonian. The “true” three-body terms of the normal-ordered Hamil-

tonian can safely be neglected with minimum impact on the accuracy of the CC

results. In other words, the most important three-body interactions can be expressed

in the form of effective two—body matrix elements. This is an important finding as it

points to the possibility of incorporating the effects of three-body forces within an ef-

fective two-body Hamiltonian, allowing for a straightforward application of quantum
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chemistry inspired CC methods such as the ones utilized above. An example of a mod-

ern interaction that attempts to effectively account for three-body and higher many-

body interactions within a two-body Hamiltonian is the VUCOM potential [257—260].

This is a pure two—body interaction derived from Argonne V18 through a clever uni-

tary transformation to account for short-range central and tensor correlations, which

is adjusted to reproduce the experimental binding energies of three— and four—particle

nuclei.

In order to gauge whether VUCOM offers any improvements over the standard two-

body interactions considered above when used in CC calculations of nuclei, as well as

to further test the performance of the CC theory in studies of nuclear structure, we

performed extensive CR—CC(2,3) calculations for the ground state of 16O using the

VUCOM potential [169]. In addition, importance-truncated configuration interaction

(IT-CI) [264] calculations were performed in order to further examine the strengths

and weaknesses of both the CC methodology and the IT-CI formalism through di-

rect comparisons [169]. The IT-CI approach is based on the idea of truncating the

CI model Space in which the Hamiltonian is diagonalized through the use of an im-

portance measure for the individual configurations derived from perturbation theory

followed by the numerical extrapolation to the limit corresponding to all configura—

tions of a given CI scheme. For instance, the IT—CI(4p—4h) method, which is the

IT-CI scheme used in our study [169], is an approximation to CISDTQ (CI with sin-

gles, doubles, triples, and quadruples), in which configurations with an importance

measure less than a given threshold are neglected from the calculation. This reduces

the large computational costs of CISDTQ without sacrificing accuracy. We then re—

peat the IT—CI(4p—4h) calculations with increasingly smaller thresholds for selecting

configurations and extrapolate the results to the zero—threshold limit (which is equiv-

alent to full CISDTQ). For the calculations summarized in this dissertation, all taken

from [169], a Hartree-Fock basis was used. This decision iS based 011 comparisons
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of the IT—CI and CC results with both the the harmonic oscillator and Hartree-Fock

(HF) bases, which Show that, unlike the CC results which are almost insensitive to the

choice of the basis set type, the IT-CI results for the harmonic oscillator basis become

poor for larger hw values (for the complete details of this analysis see [169]). Basis

sets consisting of 5, 6, 7, and 8 major oscillator shells, which can also be identified by

the quantum numbers emax = 4, 5, 6, and 7, respectively, were utilized.

Figure 4.3 displays the results of the CCSD, CR—CC(2,3), and IT—CI calcula-

tions for the binding energy of 160 using VUCOM~ In addition to considering basic

IT-CI(4p-4h) results, calculations were also performed in which a multi-reference

Davidson correction [265—269] was added to the IT-CI(4p—4h) energies (which will be

referred to as IT-CI(4p-4h)+MRD). This correction is meant to estimate the effect of

higher—than-4p—4h configurations as well as to approximately restore Size extensivity

(unlike CC, truncated CI methods, including IT-CI, are not size extensive). As can

be seen from panel (a) of Figure 4.3, the effect of the Davidson correction is fairly

small regardless of the size of the basis set or the value of the basis set parameter hw,

maintaining a value of ~ 1 MeV. This implies that with the HF basis, the contribu—

tions of higher-than-4p—4h configurations to the ground-state wave function are small.

Panel (b) Shows a comparison of the CCSD and CR—CC(2,3) results. It is clear from

these results that the effect of connected triply excited clusters is quite significant,

particularly for larger values of 71w. Quantitatively, the shift in energy when moving

from CCSD to CR-CC(2,3) can be as large as 6 MeV, indicating that the inclusion of

T3 effects is important for obtaining an accurate description of the binding energies of

16O with the VUCOM interaction. Turning to a direct comparison of the CR—CC(2,3)

and IT-CI(4p-4h) results, Figure 4.3 (c) reveals that the agreement between the two

methodologies is remarkable. Indeed, for all but the largest basis set, the two plots are

virtually on top of each other. Though the agreement is slightly worse for the largest.

6mm; = 7 basis, it is still very good, with discrepancies between CR—CC(2,3) and IT-
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Figure 4.3: Systematic comparison of IT-CI and CC results for the ground-state en-

ergy of 160 using HF-optimized single-particle bases with 6mm: = 4, 5, 6, and 7. (a)

Comparison of IT-CI(4p—4h) (open symbols) with IT-CI(4p—4h)+MRD (filled sym-

bols). (b) Comparison of CCSD (open symbols) with CR—CC(2,3) (filled symbols).

(c) Comparison of IT-CI(4p—4h)+MRD (open symbols) with CR-CC(2,3) (filled sym-

bols).
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CI(4p-4h)+MRD on the order of 1-2 MeV only. This is an important finding, which

demonstrates that the relatively inexpensive CC theory with singles, doubles, and

noniterative triples, represented here by CR-CC(2,3), is as accurate as the consider-

ably more expensive CISDTQ-like IT-CI(4p—4h)+MRD calculations. We do not have

to worry about the Davidson extensivity corrections Since the CCSD, CR—CC(2,3),

and most of the other CC approximations are automatically size extensive and, as

mentioned earlier, the CC results are almost insensitive to the choice of the basis set

type (harmonic oscillator or HF) due to the presence of the 8T1 component in the

CC wave function that makes CC calculations approximately invariant with respect

to orbital rotations (Thouless’ theorem). As demonstrated in [169], the IT-CI results

for the harmonic oscillator basis are considerably worse than their HF counterparts

shown in Figure 4.3, which is another strong argument in favor of using CC methods

in nuclear applications (in addition to the computer costs which are lower in the CC

case compared to CI aimed at similar accuracies). We refer the reader to [169] for

further analysis.

AS a final element of the 16O/VUQQM study, we extrapolate the CR—CC(2,3) re—

sults to the infinite basis set limit in order to compare the resulting binding energies

with experiment. Unfortunately, there are a couple of issues that complicate such an

extrapolation. First, the VUCOM interaction has a harder core than in an interac-

tion transformed by the G-matrix approach used in our earlier work [164], and as a

result a basis set including up to 8 shells is still relatively far from convergence. In

addition, the HF and, in consequence, correlation energies do not change. uniformly

when increasing the size of the basis set through the addition of the next major os-

cillator shell. As a consequence of these issues and due to the limited amount of

data obtained in our study, we could only conclude that the extrapolated infinite

basis set CR—CC(2,3) energies fall within the range of -131 to -141 MeV. Compar-

ing this range of values with the experimental binding energy of -127.6 MeV reveals
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that using the VUCOM interaction in the CC calculations does improve the results

over the purely two-body N3LO interaction [164]. Indeed, the error in the binding

energy per nucleon for the very roughly extrapolated CR—CC(2,3) results is 0.21 to

0.84 MeV/nucleon (-0.5 MeV/nucleon on average), which represents an improvement

over the ~ 1.0 MeV/nucleon error obtained in the N3LO CR—CCSD(T) calculations

for the 160 ground state [164] or ~ 2 MeV/nucleon error obtained with Argonne V13

and CCSD [165] (see Table 4.1). The latter observation is important Since VUCOM is

based on transforming Argonne V13. Given that the CR-CCSD(T) and CR-CC(2,3)

approaches should yield Similar accuracies for small or medium Size closed-shell sys-

tems, we can conclude that the observed improvement is the result of the improved

interaction. These results are certainly promising, though further calculation to help

improve the extrapolation would be useful. The remaining potential errors in the

CR—CC(2,3) VUCOM binding energy is likely the result of contamination from the

center-of-mass motion. Indeed, unlike in quantum chemistry, where thanks to the

Born-Oppenheimer approximation there is a rigid nuclear framework in which the

electrons move, the self-bound nucleus has translational degrees of freedom, and in

truncated CC or C1 calculations there may be Spurious contributions induced by a

coupling between the translational and intrinsic degrees of freedom. Such contami-

nation can introduce errors into the CC results for the intrinsic energy of the nuclear

state of interest. For a more detailed analysis of the center-of—mass problem in CC

calculations of nuclei, see [169,170].

4.3 Ground and Excited States of 55Ni, 56Ni, and

57Ni

In order to analyze the performance of the CC theory in studies of heavy nuclei, we

performed CR—CC(2,3)/CR—EOMCC(2,3) and CR-CC(2,4)/CR—EOMCC(2,4) calcu-
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lations for the ground and low-lying excited states of 56Ni [167]. Besides being an

example of a heavier nucleus for which all non-CC high—level methodologies, such as

the Green’s function Monte Carlo [152] and no-core Shell-model [153—156] approaches,

are prohibitively expensive, it is also an example of what can be described as a ‘semi-

closed shell’ nucleus. Indeed, the lowest-energy configuration for the ground state of

56Ni completely fills all energy levels up to and including the 1f7/2 level (see Fig-

ure 4.1). Although there is a notable energy gap between this level and the lowest

unoccupied 2193/2 level, the 1f7/2 — 2113/2 gap in 56Ni is not as large as what would

be found in a perfectly closed-Shell system and not as small as what would be found

in a typical quasidegenerate open-shell system. This means that the degree of non—

dynamical correlations in 56Ni is larger than in a typical closed-shell system in spite

of the completely filled highest occupied 1f7/2 subshell. As a result, this is a very

interesting test case for the CR—CC approaches discussed in this work, which have

been shown to perform well for molecular systems with significant nondynamical cor-

relations, and smaller HOMO-LUMO gaps. In order to extend these considerations

and further explore the performance of the CR—CC(2,3) and CR-CC(2,4) schemes

in studies of nuclei characterized by varying degrees of nondynamical character, we

performed calculations in which the value of the 1f7/2 — 2193/2 energy gap was varied

through the Shifting of the energies of the 2113/2, 1f5/2, and 2191/2 levels relative to

the 1f7/2 level by an amount AG. Both negative values of AG, for which the gap

is reduced and thus the degree of nondynamical correlation is increased, and positive

values, for which the gap is increased and the nucleus becomes more closed-shell, were

considered [167]. AG = 0 is the original gap in a realistic description of 56Ni.

The 56Ni calculations in this study utilized the semi-empirical GXPF1A effec-

tive Hamiltonian [270], which is derived from a microscopic calculation based 011 the

renormalized G—Matrix theory with the Bonn-C interaction [255], and then param-

eterized to fit experimental data for the low-lying states in nuclei from A = 47 to
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Figure 4.4: (a) The full CI, CISDTQ, and CR—CC(2,3) energies of 56Ni as functions

of the shell-gap shift AG. (b) Comparison of full CI energies with the trends expected

for the lp-lh, 4p—4h, and 8p-8h configurations as functions of AG.

A = 66 [270—272] (A is the mass number). In order to accurately gauge the accuracy

of the CR—CC(2,3)/CR—EOMCC(2,3) and CR—CC(2,4)/CR—EOMCC(2,4) schemes in

describing the correlations within this system, we wanted to perform full CI calcula-

tions as well as a sequence of truncated CI calculations for benchmarking purposes.

Since 56N1 is too large for no—core full CI calculations, the full CI and all CC and

other CI calculations were performed within a valence model space consisting of only

the pf Shell (the highest shell depicted in Figure 4.1), with the nucleons occupying

the lower shells being accounted for in an effective manner through the GXPFlA

effective Hamiltonian.
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Figure 4.4 depicts the results of our CR—CC(2,3)/CR—EOMCC(2,3) calculations

and their comparison with the CISDTQ and full CI data. Focusing 011 the results for

the ground 0+ state, panel (a) shows that the CR-CC(2,3) energies agree very well

with those of full CI for positive values of AG. This is confirmed quantitatively in Ta—

ble 4.3, which shows that for this AG region, the difference between CR-CC(2,3) and

full CI ranges from 0.07 to 0.09 MeV. This excellent agreement is not surprising given

the predominantly closed-shell nature of the nucleus for AC < 0. Indeed, as seen in

Table 4.3, the value of So = ](<I>0|\IIS\’”‘CI)|, which measures the overlap of the refer-

|\Ilguu‘CI), is over 0.9 theence determinant |<I>0) with the exact, full CI wave function

AG > 0 region. This indicates that the wave function is dominated by the reference

configuration, and, as such, is mostly single reference in nature. For the physical

value of the gap (i.e., AG = 0), the SO value drops to 0.825, indicating a somewhat

stronger multi-reference character, and thus a more open-Shell nature. However, even

in this case, CR—CC(2,3) performs very well, producing an error relative to full CI of

0.22 MeV which is almost nothing on the scale of binding energies of heavier nuclei. It

is when AG becomes negative that CR—CC(2,3) begins to have more trouble, as can

be clearly seen from Figure 4.4. Quantitatively, one finds discrepancies between CR-

CC(2,3) and full CI of 1.43 and 5.84 MeV for AC = -1 and —2 MeV, respectively.

This is certainly a result of the much more strongly open-shell or quasidegenerate

nature of the nucleus for this AG region. Indeed, SO = 0.332 and 0.022 for AC = —1

and —2 MeV, respectively. Such small overlaps between the reference determinant

and the exact wave function indicate that the ground state is characterized very strong

nondynamical correlations, similar to those found in metallic-like systems, that even

CR—CC(2,3) has difficulty with.

Interestingly, even in the strongly correlated multi-reference AG < 0 region, where

CR-CC(2,3) has difficulty reproducing the full CI results, the CR-CC(2,3) energies

are in excellent agreement with those of the much more expensive CISDTQ approach.
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Indeed, the two differ by less than 0.34 MeV for all values of AG. This is a very en-

couraging result given that the most expensive computational steps of CR—CC(2,3)

scale as 713733 in the iterative CCSD part and 7137121, in the noniterative triples correc-

tion part (see Section 3.1.2), whereas CISDTQ is characterized by iterative steps that

scale as 723713. AS in the case of 160, the CR—CC(2,3) approach offers substantial sav-

ings in the computer effort compared to CI with minimal loss in accuracy. This would

not be surprising if 56Ni was a closed-Shell system. What is surprising and certainly

very promising here is the fact that the inexpensive CR—CC(2,3) approach accurately

describes all correlations among nucleons up to quadruple excitation independent of

the 1f7/2 — 2p3/2 gap, i.e., independent of the degree of quasidegenerate character

of our 56Ni model system and independent of the strength of the correlations. The

fact that the agreement between CR—CC(2,3) and CISDTQ holds in a metallic-like

region where the reference determinant |<I>0) contributes only a few percent of the

wave function is unheard of, demonstrating the great utility of CR—CC(2,3). It is

also interesting to observe that quadruple excitations are largely dominated by dis—

connected %T22 contributions. This is verified by the CR-CC(2,4) results which only

differ from the CR-CC(2,3) binding energies in Table 4.3 by 0.001-0.102 MeV. Such

small changes when moving from CR-CC(2,3) to CR—CC(2,4) indicates that there is

very little contribution from the connected quadruply excited clusters T4.

Turning to the excited 2+ and 4+ states of our 56Ni model, Figure 4.4 and Table

4.3 reveal that the trends displayed by the results for the ground state apply to the

excited states as well, with CR-EOMCC(2,3) mimicking full CI for AC = 0, 1 and 2

MeV, but diverging from the full CI results for AC = -—2 and —1 MeV. Furthermore,

as was true for the ground state, the CR-EOMCC(2,3) results are practically identical

to those of CISDTQ, and the role of T4 and Ru,4, as indicated by the CR—EOMCC(2,4)

energies, is small regardless of the AG value. One interesting observation, however,

is that the REL values for these two states are less than 1.33 independent of AG,
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Table 4.3: Energies (in MeV) of 56Ni as functions of the shell—gap Shift AG (also in

MeV), relative to the reference energy (<I>O|H [(D0) = —203.800 MeV. SO is defined as

|<<I>0|1P5““'CI>I.
 

 

 

 

 

 

AG -2 —1 0 1 2

State SO 0.022 0.332 0.825 0.917 0.949

0+ CCSD 3.218 -2.048 -1.509 -1202 -1002

CR—CC(2,3) -4355 3.437 -1.686 -1.298 -1.060

CR-CC(2,4) -4253 -2415 -1.679 -1295 -1059

CISD -2.148 -1.652 -1327 -1104 3.943

CISDT -2.706 -1.946 -1.488 -1199 -1004

CISDTQ -4013 -2.548 -1.758 -1334 -1079

Full CI -10.198 3.868 -1909 -1370 -1.091

2+ CCSD -2440 3.065 1.595 2.983 4.241

CR—CC(2,3) -2.695 3.218 1.496 2.915 4.192

CR—CC(2,4) —2.700 3.222 1.493 2.913 4.190

CISD 0.864 2.000 3.093 4.162 5.215

CISDT -1227 0.359 1.771 3.066 4.283

CISDTQ —2.426 3.335 1.378 2.833 4.137

Full CI -9.728 3.054 0.689 2.594 4.027

REL 1.309 1.178 1.114 1.080 1.060

4* CCSD -1373 0.910 2.551 3.942 5.211

CR—CC(2,3) -1.667 0.720 2.420 3.848 5.141

CR-CC(2,4) -1.626 0.736 2.428 3.852 5.144

CISD 1.554 2.743 3.884 4.994 6.082

CISDT 3.271 1.301 2.713 4.017 5.248

CISDTQ -1.465 0.606 2.308 3.769 5.087

Full CI 3.700 -1974 1.778 3.581 4.999

REL 1.333 1.215 1.152 1.115 1.090
 

 

 
 

which indicates that regardless of the quasidegenerate nature, the excited states are

dominated by single excitations relative to the ground state. AS discussed in Section

3.2.3, the CR—EOMCC(2,3) approach describes such states accurately. Thus, it is

likely that the excitation process that generates the 2+ and 4+ excited states of

56Ni is described correctly regardless of the choice of AG, and that the discrepancies

between CR—EOMCC(2,3) and full CI in the negative AG region are due to the

propagation of errors from the ground-state calculations.

Given the above analysis, the remaining issue is the physical nature of the source
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of the discrepancy between CR—CC(2,3)/CR—EOMCC(2,3) and full CI in the negative

AG region. Panel (b) of Figure 4.4 gives some insights into this issue. In this figure,

the full CI results for the three states of 56Ni, as a function of AG, are plotted and

compared to the trends expected for the 1p—1h (single), 4p—4h (quadruple), and 8p—8h

(octuple) configurations. By comparing the slopes of the full CI curves against the

slopes of the mp-mh lines, it is clear that as AG approaches zero from the positive Side,

the role of 4p—4h configurations increases, but there is little contribution from higher-

than 4p—4h configurations. This explains why CR—CC(2,3)/CR—EOMCC(2,3) and

CISDTQ perform so well in this region. They both capture all nucleon correlations

up to 4p-4h excitation almost perfectly. However, as the gap is decreased further, it

is clear that 8p—8h configurations begin to dominate the wave function. Now since

the CR—CC methods used in this study neglect the effect of Tn clusters with n > 4,

they are incapable of describing the entire set of 8p-8h excitations. The exponential

nature of CC means that some 8p—8h correlations are accounted for via disconnected

product terms, such as 21-4T24. However, because of the noniterative nature of the CR-

CC schemes used here, some important 8p-8h disconnected product terms involving

T3, such as %T§T2 are more or less neglected, and so only product terms involving T1

and T2 are included in CR—CC(2,3). Clearly, given our results, these are not enough

to describe the 813-871 correlations dominating the low-lying states of 56Ni when AG

is negative and the 1f7/2 — 2193/2 gap becomes small.

AS a further extension of the 56Ni study, we performed PA—EOMCCSD(3p—2h.)

and PR-EOMCCSD(3h-2p) calculations for the ground g— state of 55Ni and the

ground 37 and excited g. and %_ states of 57Ni, using 56Ni as the “closed-shell”

reference system. As this was a continuation of the above 56Ni study, these calcu-

lations were again performed within the pf model Space, using the same GXPF1A

effective Hamiltonian as that used in the 56Ni calculations. It Should only be noted

that the two-body matrix elements of the GXPFlA interaction have a smooth mass
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Table 4.4: Binding energies (in MeV) of 55Ni and 57Ni relative to the corresponding

 

 

 

 

reference energies (@gA’(j)IH |<I>[)A’ (j )), A = 55 and 57, respectively, as functions of

the shell gap shift AG (in MeV). (SA’U) is defined as |(<I>(()A) (j)]‘115‘“f]l’CI(]))|

AG -2 -1 0 1 2

55N1

PR-EOMCC(2h-1p) 3.649 3.459 -1.884 -1542 -1313

PR-EOMCC(3h-2p) 3.844 3.567 —1.951 -1.587 —1.344

CI(2p—2h) 3.505 3.013 -1.672 -1427 -1244

CI(3p—3h) 3.295 3.449 -1922 -1.580 -1344

CI(4p-4h) -4457 3.967 3.150 -1.693 -1.406

CI(6p—6h) 3.397 3.519 3.262 —1.723 -1417

Full-CI 3.091 3.920 3.279 —1.725 -1417

3353(3) 0.0362 0.4023 0.8015 0.8919 0.9287

57Ni

PA-EOMCC(2p—1h) -3.868 -2.671 -2.080 -1.721 -1.476

PA-EOMCC(3p—2h) -4.295 -2.871 -2.186 -1.783 -1.516

CI(2p-2h) 3.692 3.192 -1.840 -1.584 -l.389

CI(3p—3h) 3.622 3.717 3.146 -1.772 -1513

CI(4p-4h.) -4.697 3.217 3.370 -1.884 -1.575

CI(6p-6h) 3.534 3.768 3.493 -1.918 -1.588

Full-CI 3.391 -4.151 3.511 -1921 -1.588

6552(3) 0.0335 0.4062 0.7802 0.8774 0.9182
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dependence that scales as (42/A)1/3, and so we had to scale them to the mass number

of the nucleus of interest (i.e. A = 55 or A = 57). As was done in the 56Ni study,

the 1f7/2 — 2p3/2 shell gap is varied by an amount AG in order to study the perfor-

mance of the PA-' and PR—EOMCC methods for differing degrees of nondynamical

correlation effects.

Table 4.4 gives the results for the binding energies of 55Ni and 57Ni. AS was the

case for the ground state of 56Ni, it is clear that the PA-EOMCCSD(3p—2h) and PR-

EOMCCSD(3h-2p) schemes perform very well in the positive AG region, producing

discrepancies relative to full CI for both states of about 0.07 MeV for AC = 2 MeV

and 0.14 MeV for AC = 1 MeV. This result is not unexpected as the ground states

of both 55Ni and 57Ni Show a predominantly single-reference nature, with an overlap

between the CI reference determinant and the full CI wave function, SSA) (j), of about

0.9 (please note that the Cl calculations treat the nuclei of interest, 55Ni or 57Ni,

directly rather than attempting to build them out of 56Ni through particle attachment

or particle removal as is the case in PA/PR-EOMCC). The more interesting question

is how the PA- and PR-EOMCC schemes perform when the multi-reference character

of a nucleus increases. For the physical energy gap corresponding to AC = 0 MeV,

for which $355)(g) z 0.80 and 3559(3) .4. 0.78, the PA-EOMCCSD(3p-2h) and PR-

EOMCCSD(3h-2p) approaches still produce accurate results for the ground states of

55Ni and 57’Ni, differing from full C1 by only 0.33 MeV in both cases. However, Similar

to what was observed for 56Ni, the agreement begins to break down for negative AG

values. Indeed, for AG 2 —1 MeV, for which the CI reference determinant makes

up less than half of the full CI wave function, the CC and full CI energies differ

by 1.35 MeV and 1.28 MeV for 55Ni and 57Ni, respectively. For AG = -—2 MeV,

where the CI reference |<I>(()A’ (j )) is virtually orthogonal to the corresponding full CI

wave function, there is a breakdown in accuracy, with the PA-EOMCCSD(3p-2h) and

PR—EOMCCSD(3h-2p) errors of 5.10 and 5.24 MeV respectively.
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Despite the difficulties the 57Ni and 55Ni model systems pose to the PA- and

PR—EOMCC methods when AG < 0 MeV, we once again see that there is a nice

correlation between the CC and CISDTQ (labelled by the equivalent CI(4p—4h) des-

ignation in Table 4.4) results regardless of the value of AG. Indeed, although CISDTQ

is slightly more accurate than PA-EOMCCSD(3p—2h) and PR—EOMCCSD(3h-2p) in

describing the ground states of 57Ni and 55Ni, there is a reasonable agreement be-

tween these CI and CC results, with discrepancies that are only about 0.06 MeV for

the largest AG = 2 MeV gap, and ~ 0.4 — 0.6 MeV for the smallest AC = —2 MeV

energy gap. Furthermore, the PA—EOMCCSD(3p—2h) and PR-EOMCCSD(3h-2p) re-

sults are consistently more accurate than those of CISDT. This result is encouraging

because these PA— and PR-EOMCC schemes with up to 3p-2h and 3h-2p excita-

tions are characterized by iterative steps that scale as 713,713 and 71377.3, respectively,

which are both considerably less expensive than the the 713713 and 713713 steps that

characterize CISDT and CISDTQ. Furthermore, if one were to consider the active-

Space variants of the PA- and PR-EOMCC schemes discussed above, the associated

computer costs would be even lower (see Section 2.1.2).

Looking at the excited (5/2)‘ and (1/2)‘ states of 57Ni, Table 4.5 reveals that

the observed accuracy patterns are Similar to those seen for the ground-state calcu-

lations, with the accuracy of the PA-EOMCCSD(3p—2h) approach declining as the

energy gap is decreased. Furthermore, there is again a good agreement between the

PA-EOMCCSD(3p—2h) and CISDTQ results. In fact, the agreement observed for the

excitation energies of the (5/2)‘ and (1/2)‘ states of 57Ni is superior to what was

observed for the binding energies, with the PA-EOMCCSD(3p—2h) and CISDTQ ex-

citation energies differing by less than 0.1 MeV for all values of AG. Again, this is

an excellent result given the large savings in computational effort provided by the

PA-EOMCCSD(3p—2h) approach when compared to CISDTQ.
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Table 4.5: Excitation energies (in MeV) of the low-lying states of 57Ni as functions

of the shell gap shift AG (in MeV). SéA’Q) is defined as [($84) (j)|\115]j["CI(]))|

 

 

AG -2 -1 0 1 2

(5/2)‘

PA-EOMCC(2p-1h) 0.658 0.819 0.895 0.937 0.961

PA-EOMCC(3p-2h) 0.625 0.771 0.856 0.908 0.939

 

 

CI(2p—2h) 0.812 0.856 0.897 0.927 0.948

CI(3p—3h) 0.781 0.827 0.878 0.917 0.944

01(4345) 0.692 0.776 0.852 0.904 0.937

CI(6p—6h) 0.360 0.658 0.832 0.900 0.936

Full CI 3.118 0.402 0.825 0.900 0.936

8359(3) 0.0193 0.2640 0.7443 0.8596 0.9077

(1/2)‘

PA-EOMCC(2p—1h) 1.259 1.494 1.639 1.739 1.813

PA-EOMCC(3p—2h) 0.669 1.071 1.366 1.562 1.694

CI(2p-2h) 1.279 1.451 1.592 1.699 1.781

CI(3p-3h) 1.009 1.218 1.426 1.588 1.706

CI(4p-4h) 0.763 1.021 1.312 1.530 1.676

CI(6p—6h) 0.395 0.739 1.211 1.499 1.665

Full CI 0.050 0.434 1.184 1.496 1.665

3359(3) 0.0293 0.2561 0.6577 0.8049 0.8701
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Chapter 5

Summary and Riture Perspectives

In this dissertation, two new ab initio methodologies designed Specifically to address

the challenges posed by open—Shell many-fermion systems within a single-reference

formalism have been developed and tested. The active-space EA- and IP-EOMCC

theories (and their PA- and PR—EOMCC extensions to non-electronic systems) are

based on the idea of building an open-Shell system, such as a radical, through the

direct addition or removal of a particle to or from the related closed-Shell Species.

Additionally, these new schemes are characterized by the use of active orbitals to

(1 1772073 select the dominant higher-than 2p-1h and higher-than 2h-1p components

of the electron-attaching and ionizing operators, respectively, which greatly reduces

the computational cost of higher-level EA- and IP—EOMCC approximations without

sacrificing any of the associated accuracy. The performance of these schemes was il-

lustrated through benchmark calculations for adiabatic or vertical excitation energies

of the low-lying states of CH, SH, C2N, CNC, N3, and NCO. All of these molecular

examples revealed that the most basic active-space EA- and IP-EOMCC approaches,

the EA-EOMCCSDt and IP-EOMCCSDt methods which include up to 3p-2h and

3h—2p components in the electron-attaching and ionizing operators, respectively, were

able to provide a highly accurate description of the electronic excitation spectra while
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requiring computational costs that are only a small prefactor times those characteriz-

ing the basic and widely applicable CCSD method. Additionally, calculations for the

potential energy curves of the low-lying states of the OH radical revealed that while

the IP-EOMCCSDt approach performs well in the spectroscopic Franck-Condon re-  
gion, the inclusion of the higher-order 4h-3p effects is needed in order to accurately

break chemical bonds in excited states. It was then demonstrated that the active-

Space SAC-CI(4h-3p) scheme, which includes the dominant 3h-2p and 471-319 effects

selected via a small subset of active orbitals and which is essentially equivalent to the

active-Space IP-EOMCC method with up to 471-319 “excitations” produces essentially

 

identical accuracies as its substantially more expensive parent approach while requir-

ing a significantly less computational effort, while enabling us to obtain a perfect

description of the entire ground- and excited-state potential energy surfaces of OH,

including the Franck-Condon and asymptotic regions. Similar statements apply to

the active-Space EA-EOMCC and EA SAC-CI schemes.

The second methodology discussed in this dissertation was the CR—CC/CR—EOMCC

formalism based on the biorthogonal MMCC theory. In particular, the CR—CC(2,3)/CR-

EOMCC(2,3) and CR—CC(2,4)/CR—EOMCC(2,4) approaches, in which noniterative

corrections due to triply or triply and quadruply excited clusters are added to the en-

ergies obtained with the basic CCSD/EOMCCSD scheme, were extended to general  
open-shell references of the high-Spin ROHF type, implemented, and tested. In order

to gauge the performance of CR—CC(2,3) in a variety of scenarios involving open-shell

molecular systems, calculations for single-bond breaking reactions in radicals and for

singlet-triplet gaps in biradical systems were performed. These calculations revealed

that CR-CC(2,3) is able to provide highly accurate results for these types of prob-

lems, producing values that are as good as or, particularly for states or geometries

characterized by a large degree of nondynamical correlation, superior to those of both

the restricted and unrestricted CCSD(T) methods that are often referred to as the
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‘gold standard’ of quantum chemistry (a somewhat problematic classification in view

of our findings). Furthermore, the CR—CC(2,3) approach produces these excellent

results while maintaining the relatively low computational costs and the ease-of—use

that have made CCSD(T) so popular. Through calculations for the unusually small

Singlet-triplet gap in the BN molecule, which is an extreme case characterized by

strong T4 effects, it was shown that the CR-CC(2,4) approach is capable of accu-

rately describing the effects of quadruply excited clusters without requiring the high

computational costs characterizing the full CCSDTQ method. Finally, calculations

for the low-lying excited states of radicals revealed that the extension of CR—CC(2,3)

to excited states, CR-EOMCC(2,3), offers same balance of high accuracy and low

computational cost demonstrated for the ground-state CR-CC(2,3) scheme when the

excitation Spectra of radicals and other open-shell species are examined.

Although a great deal of progress was made in regards to the development and

implementation of the above quantum chemistry methodologies, there remains a

large amount of future development work to be done. Indeed, in the case of the

active-Space EA- and IP-EOMCC schemes, higher-order approximations, such as the

EA—EOMCCSth and IP-EOMCCSth schemes, which include up to triples in the

cluster operator defining the closed-Shell reference system, and up to 4p-3h or 4h—3p

components in the electron-attaching and ionizing operators, respectively, should be

implemented. This is especially important given the conclusion that 4p-3h and 471-317

effects are important in accurately describing bond—breaking processes, particularly

in the excited states of radicals. Furthermore, the development and computer im-

plementation of the active-space DEA- and DIP-EOMCC schemes, which build the

wave function for an open-shell system by adding two particles to, or removing two

particles from the related closed Shell, would be a valuable development as it would

make it possible to study biradicals within this formalism. In terms of the CR—CC

schemes, further development of the CR—CC(2,4) approach with regards to the cou-
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pling between triples and quadruples, which was neglected in the CR-CC(2,4) scheme

described in this dissertation but may be important for obtaining accurate results for

some systems, is needed. Additionally the development of higher-order CR—CC ap-

proximations, such as the CR-CC(3,4) method, which corrects the CCSDT energy

for the effect of connected quadruply excited clusters, would be useful. Clearly it

would be great to develop the analogous CR-EOMCC(3,4) Scheme that corrects the

EOMCCSDT results for excited states for the quadruple excitations.

In addition to the above work, an important development that would be use-

ful with respect to the active-space CC/EOMCC and CR-CC/CR—EOMCC method-

ologies discussed in this thesis is the extension of these approaches to very large

systems through an appropriate local correlation approximation. Indeed, there has

already been significant progress in this area as local variants of the CR—CC(2,3)

scheme and its CCSD and CCSD(T) counterparts, based on the so—called “cluster-

in-molecule” [38, 39] framework, have already been developed [40—44]. This is an

important development as it extends the applicability of these types of CC methods

to much larger systems that generally are the regime of inexpensive, low-order ap—

proximations or semi-empirical schemes by replacing the W6 — W7 scalings of the

CPU time with the system Size ./V by a linear scaling.

As a final component of this dissertation, the CC methods developed in this work,

as well as other quantum chemistry inspired CC approaches, have been used in cal-

culations of the structure of nuclei. The basis of this work is that the fundamental

many-body physics underlying the structures of both molecular and nuclear systems

is the same, with essentially only the form of the interaction changing, and thus the

CC approaches developed in quantum chemistry can also work within the context

of nuclear physics. The methodologies developed in this dissertation are of partic-

ular value in nuclear structure theory as, thanks to the atom—like shell structure of

nuclei characterized by a large amount of degeneracy, the majority of nuclei are in
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fact open-shell systems. Indeed, in a study of 55Ni, 56Ni, and 57N1, the Size of the

energr gap between the highest occupied and lowest unoccupied levels was varied

in order to test the performance of the CC methods as a function of the degree

of the open-shell character of the nucleus of interest. This study revealed that re-

gardless of the degree of open-Shell character and strength of the correlation effects,

the CR-CC(2,3)/CR—EOMCC(2,3) (56Ni), PA-EOMCCSD(3p-2h) (57Nl), and PR-

EOMCCSD(3h-2p) (55Ni) methods were capable of producing results of essentially

the same quality as those of the much more expensive CISDTQ scheme. In a sep-

arate set of calculations involving 160 and the surrounding valence systems, it was

found that the three-body components of the nucleon-nucleon interaction, which are

not present in the Coulomb interaction between electrons, plays a Significant role,

and cannot be ignored if one wants to obtain results in agreement with experiment.

However, it was also demonstrated that it is possible to reasonably accurately include

the effects of three-body forces through an effective two-body interaction. Finally, as

was the case for 56Ni, the CR-CC(2,3) results for 16O are in excellent agreement with

those of CI schemes including up to quadruple excitations without the need to worry

about orbital optimization or Size extensivity. Some potential further developments

that can be pursued as part of this work include the further refinement and testing of

two—body Hamiltonians that effectively account for three-body forces and the exten-

sion of genuine MRCC methods to nuclear calculations as midshell nuclei and some

excited states in closed- and open-shell nuclei may require such a treatment in order

to be properly described. Finally, there is still an open issue of how to deal with

contaminations from the translational degrees of freedom in the CC calculations for

nuclei. Indeed such a problem does not exist in quantum chemistry as, in the Born-

Oppenheimer approximation, the nuclei create a fixed framework within which the

electrons move. Although some investigation of the degree to which such contamina-

tion is an issue in CC and CI calculations has already been performed [170], further
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study as well as the development of ways to overcome this issue in CC calculations is

needed.
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Appendix A

Factorized Form'of the

EA-EOMCCSD(3p—2h) and

IP-EOMCCSD(3h—2p) Equations

In this appendix, we present the fully factorized form of the equations defining the

EA-EOMCCSD(3p—2h) and IP-EOMCCSD(3h—2p) eigenvalue problems, exploited in

this study, in terms of the one- and two-electron molecular integrals, f3 = (pl f lq)

(f is the Fock operator) and 12,23 = (pqlvlrs) — (pqlvlsr), respectively, defining the

Hamiltonian, T1 and T2 cluster amplitudes defining the underlying N-electron ground-

state CCSD problem, and the RAM» Ru,2p_1h, and R431”)! and Ru.1h’ Rfl’2h_1p, and

Rfl,3h_2p amplitudes defining the electron attaching and electron removing operators,

RLNH) and RSV—1), respectively. The EA-EOMCCSD(3p—2h) equations can be given

the following form:

(CCSD N+1 — ‘ '

((DGKHN,open)R/(1 ))Clq)) = hf'lTe + hfnralbl + 2""fllref

N 1

+4v$ftrafgfL— w], + )T9’ (A'l)
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CCSD N+1) -' ‘ '

<<I>“’-’|(H1(vOpen)R( mm» = flabl—lhzimhzrei,

m 6f 1 mj

-2hmrab + Zhabref_ hmareb_ IElmirrb

1_6 6f .7771 mn

+2hmTabem+ thmraef _thnrabe

_ (N+1) j

_ wH Tab’

(CCSD N+1)

<<I>,ng<HNopen)R‘ )0) I<I>>

k k k k
= 7546”7%] [— thcerae‘i' haeTbe— ih‘znarbzl_ %hlnlcrab

e 3’6 1‘4? 1',.6f 3k
+lh’a +§hcTabe+2hmrabcm +8hbcr06farebc

k k

_Zhg{:byf + 3h’77nn7‘Marble” ‘tharbcek——hmcragbk

‘QIamtmmlbmtgbk EliIbftjf + iIactbf]

_ w(N+1)

— wl‘ Tmmv
(A.3)

where, in addition to one— and two-body matrix elements of the similarity-transformed

. . (CCSD)
Hamiltonian HN0pen

been defined1n Table 2.1 we define the following intermediates:

_ 1 6 n

[m — 27177277764,

1am: (figure + Qhabzrejf + h772n7'ae + 207757437},

[bfz Bb£Te_ .flbchggq’rrbel— ernfylrbzlcn.

The IP-EOMCCSD(3h-2p) equations used in this work are:

(CCSD N— -' -, '

(<1) i|(HNopen)R(1))Clq)> : "h‘inrm'i'hfnrzgl

z'e 77m 1 6 277177 (N_ 1) i

—1h77mr +21vnlcn7‘ ef =00}; 7"
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of the CCSD approach, 77% and 77%, respectively, which have



(CCSD N—
_ . .

((1%.JKHN,open)R( 1))Clq)> = fl2j[_ 1h:nbm — (13777171?

+§hgrib + zh1wzn7773"—hw,,7""j + 116753)

1‘6 zjm+ 1ef ijm

+2h7nr be 4727177777??? + Zrhbm ef ]

(N—l) iJ'

C(CSD) N—

<<I>52717NopenRL 15071»

= djk‘jbclfihjkbTi7n+hiijk
m —1hi,ce7‘jk *%h§§7‘i‘g

ka_ k Tijm Tijk 16f7.z'jk

_th7‘ be $‘hm + Qhe'l‘b + Shbctr ef

_ k k
+3hmn7‘izén—71Ihfiinrjmn— thcrm] ——hm6J05?

+i1j7'ftzn- $12,,b2+§1"ft{,§ +1kcfjftf]

_ w(N—1) ijk

_ w“ T bc’

where

1 8

[e = _§v77m7'n}na

Izbf = ElfCrm + thilnrnén _ hglrim_ lvgifnrigzcn,

1J5: *hjknrm —J?ijhf,fn1jm+%tanijk.

The antisymmetrizer .Qim = mm, which enter Eqs. (A2), (A.3), (A.6), (A.8), (A9),

and (A.12), is defined as

fl’I7)q=~‘2fl)q= 1‘0”!)

respectively, with (pq) representing a transposition of two indices.
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Appendix B

Derivation of the Noniterative

Energy Correction Defining the

Biorthogonal MMCC Theory

In this appendix, we present the derivation of the formula for the noniterative

energy correction 6’94) that when added to the CC/EOMCC energy ELA) generates

the full CI energy Eu within the biorthogonal MMCC formalism [134]. We begin the

derivation by replacing the generic function W in Eq. (3.24) with the exact full CI

wave function \Ilu, which gives rise to the following expression for the full CI energy

EH:

_ (mHRfflleTW |<1>)
E _ . (13.1)

" WHIRLA’eT‘AHq»

 

Recall that TM) and RELA) are the cluster and linear excitation operators that define

the wave function in the truncated CC/EOMCC method A. We replace the exact bra

state (\I/M in Eq. (8.1) by the ansatz given by Eq. (3.8) and use the fact that TM)

and RLA) commute. We obtain,

‘(A) (A)

E77: ((143,, H R" |<I>>, (13.2)

<<I>I27RLAN<I>>
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where HM) is the similarity-transformed Hamiltonian of CC method A defined by Eq.

(2.10). By imposing the normalization condition given in Eq. (3.13), the denominator

in Eq. (B2) goes to one, leaving the following expression for the full CI energy of

state ,u:

E” = (chm, E(AlRLA) |<I>). (13.3)

At this point, we insert the resolution of the identity in the N-e1ectron Hilbert space,

where

and

P + Q”) + 62(3) = 1, (8.4)

P = I‘I’X‘PL (B-5)

mA a a a a

”—1 i1 < ° ' ° < in

a1<-~<an

N

R _ a1...a . a1...a

Q“ — Z Z I‘I’z-l....-n"><‘1’z-1...i,,"l» (B7)

n=mA+1

7'1<---<7'n

al<"'<an

in between .2), and HM), and use the decomposition of ff” into 2,314) (3.11) and

6375A) (3-12) defined by Eq. (3.10), while utilizing the property that (@lffiQO) :

0. This gives

E, = (@lzfiARP + Q<A>)H<A>RLA)|<I>) + (cplégfiA)Q<R>H</‘)RLA)|¢). (8.8)
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Since the EOMCCSD eigenvalue problem, Eqs. (3.21) and (3.22) can be written as

(P+ QAUHU‘W)‘.AI<I>>= Hf.A>12,1“),I<I>> (8.9)

we can simplify Eq. (8.8) to

E), = ELA)(<1>|.ZEA)R,SA)|<1>) + (<1>|6$,§A)Q(R)H(A)R£,A)I<1>). (B.10)

Substituting the normalization condition given by Eq. (3.13) and the explicit form

of Q(R) given by Eq. (B.7) into Eq. (B.10) yields

A) 71 — A

E,,=Ef,A +2 2 (<I>|6.Z( @311”? )(eflluifflHMML )|<1>).

n=m +1 , .

A zl<"'<2n

a1<---<an

(8.11)

We know that the (<P|6$))A) @3112?) term that enters Eq. (8.11) simply repre-

sents the amplitudes defining the .2“ deexcitation operator, fizz-"110"", with n >

771,). Furthermore, comparison of Eq. (8.11) with Eq. (3.6) reveals the pres—

ence of the generalized moments of the CC/EOMCC equations mflg'linanmA) =

(4)311”:1an(A)R(A)|<I>) By taking advantage of these observations, along with the

fact that the moments are zero for n > NH,A: Eq. (B.11) can be rewritten as

N
MA

.71 Z

6);“)—=E,, — Ef,Al: E: 2 7:1472171931,}(llman(7n,4) (8.12)

71:771A+1 , < <,

21 ... 2"

(11 < - ~ - < an

which completes the derivation.
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