
 



 

 

“f’” LlBRARY

O l 0 Michigan State

’ University    

This is to certify that the

thesis entitled

NEUROQUEST: A COMPREHENSIVE TOOL FOR LARGE-

SCALE NEURAL DATA ANALYSIS

presented by

Kl YONG KWON

has been accepted towards fulfillment

of the requirements for the

MS. degree in ELECTRICAL ENGINEERING
  

 

WSWSignature

”I-

Date

MSU is an Affirmative Action/Equal Opportunity Employer

_
_
.
.
.

-
.
.
_
—

.
_
.

.
_
.
_
_

.
_
.
—
.
—
o
—
.
-
o
—
o
—
o
-
-
-
o
-
o
-
.
-
.
—
-
—
a
—
-
-
-

.
—



PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

 

 

 

 

 

 

 

 

    
 

5/08 ICIProj/Achres/CIRCIDateDueJndd



NEUROQUEST: A COMPREHENSIVE TOOL FOR LARGE-SCALE NEURAL

DATA ANALYSIS

By

Ki Yong Kwon

A THESIS

Submitted to

Michigan State University

In partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Electrical Engineering

2010



ABSTRACT

NEUROQUEST: A COMPREHENSIVE TOOL FOR LARGE SCALE NEURAL

DATA ANALYSIS

By

Ki Yong Kwon

Processing the massive amounts of neural data to extract biologically relevant

information from the activity of large ensembles of neurons in noisy recordings is

a major challenge. Efficient and practical software development is indispensable

to deal with these challenges, and many scientific findings will rest on the ability

to overcome these challenges.

We developed a comprehensive MATLAB-based software package -

entitled NeuroQuest - that bundles a number of advanced neural signal

processing algorithms together in a user-friendly environment.

In this thesis, we also proposed novel spike detection and feature

extraction algorithms that are fully integrated in NeuroQuest. These methods

capture a number of useful features in a sparse representation domain of the

neural signals. These sparse "footprints" permit efficient and reliable identification

of neural spike events, even in the presence of interfering signals. Results

demonstrate the efficiency and reliability of these methods compared to other

similar methods and software packages, and versatility to a wide range of

experimental conditions.
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CHAPTER 1

Introduction

Recording and analyzing neurophysiological signals provide a window to

understand how the brain interprets the physical world. This thesis presents

NeuroQuest, a new software package for analyzing neurophysiological data, as

well as novel spike detection and feature extraction methods implemented in the

software. NeuroQuest is designed to assist researchers to translate recorded

neural activity into quantitative measurements by combining a number of

advanced neural signal processing algorithms in a unified Graphical User

Interface (GUI). NeuroQuest is equipped to play an import role in processing the

massive amounts of neural data to extract biologically relevant information about

brain function. The algorithms are designed to improve the quality of the analysis.

This chapter provides introduction of the study of neurophysiological signals,

motivation for this work, the contributions, and an overview of the following

chapters.

1.1 Study of Neurophysiological signals

Electrophysiology is the study of the electrical properties of biological cells and

tissues. It involves measurements of voltage or current on a wide variety of



scales from single ion channel proteins to whole organs. In neuroscience, the

study includes measurements of the electrical activity of neurons [1]. Recording

action potentials - or spikes - emitted by neurons to signal each other is key to

understanding the complex relationship between physical features of the world

and the brain’s interpretation of those features [2]. Neural data in the form of

spikes from a single neuron or from p0pulations of neurons have been

extensively used in various studies, for e.g., to measure connectivity between

different brain areas, to examine the dynamics of neuronal response and its

relationship to external stimuli, to design Brain-machine Interface (BMI) systems,

to clinically diagnose and treat brain disorders such as Parkinson’s disease (PD)

and certain types of epilepsy, and many other research areas. Despite the

significance of extracellular recordings, there are many technical challenges in

recording and processing the data [3-6]. For example, extracellular recordings

require a surgery to implant the recording electrodes which causes a risk of

complications and permanent tissue damages. Neurons can be easily injured,

and perturbation of their immediate environment can affect their firing patterns

[2]. In addition, recordings are typically contaminated by artifacts and other noise

components. Therefore, the data must go through multiple steps of processing

before any statistical analysis or information extraction can be done [7]. Despite

the risk of the surgical procedure and the commonly observed instability in the

recordings, studies of extracellular recordings seem indispensable to many basic

and translational neuroscience researches [2].



1.2 Existing software packages and their limitations

Many techniques and algorithms have been developed to analyze extracellular

recordings, and they can be categorized into two groups: spike sorting software

and spike train analysis software as shown in TABLE 1-1.

Spike sorting software is designed to extract spike trains from the

extracellular recordings, and it consists of signal processing tools, such as

filtering, spike detection, and spike sorting. Spike sorting is the most

computationally intense process in neurophysiological signal processing, and

despite significant improvements, spike sorting remains an imperfect process [7].

These packages only extract spike trains and provide very basic spike train

analysis tools. MClust and KlustaKwik are example tools that require detected

spikes as input data [8],[9].

The second category of software is designed to evaluate the statistical

characteristics of spike train data. The input data to these software packages is

spike train data that a user must obtain from extracellular recordings using other

spike sorting software.

TABLE 1-1. EXISTING SOFTWARE PACKAGES

 

Category Spike Sorting Spike Train Analysis

 

MClust, KlustaKwik, Chronux, MatOFF, Spike Train Analysis

Software NeuroMAX, OSort, Wave_clus, Toolkit, FIND, etc

etc     



Very few academic software tools exist to date that integrate all the

needed processing steps in one comprehensive package. As a result, every lab

relies on custom built analysis tools in one form or another. This is coupled with a

significant lack of community-wide standardized set of tools that enables

replicating experimental data analysis across labs to facilitate objective

comparison between scientific findings.

Automated processing is necessary to process large scale datasets, but it

is inevitable to select some parameters manually in some situations such as low

Signal-to-Noise ratios (SNR). Manual selection of large number of parameter is

performed empirically, and this makes manual processing tedious and

inconsistent.

1.3 Thesis Contributions

NeuroQuest is a MATLAB graphic user interface (GUI) software package

developed in this thesis that contains a number of signal processing and analysis

tools exclusively designed for extracellular neural recordings. NeuroQuest is

distinguished from other software packages in several aspects:

First, the package includes algorithms for spike detection and sorting, as

well as spike train analysis. This creates a unified processing environment that

makes a sequence of processes and analyses more efficient and time saving.



Second, spike detection and sorting algorithms implemented in

NeuroQuest outperform those in other software packages such as KlustaKwik,

WAVE_CLUS, and OSort [8],[10],[11]. Robust spike detection and sorting are

crucial because virtually all-subsequent neural data analysis depends on the

outcome of these two steps. These two steps may vary in the way they are

implemented depending on the type of electrode array used and brain area of

recordings, and NeuroQuest offers multiple spike detection and sorting methods

designed for different situations.

Third, the Graphical User Interface (GUI) of NeuroQuest reduces the

complexity of selecting the large number of parameters needed during the

analysis. This significantly reduces learning time for users. NeuroQuest also

provides a variety of graphical tools to help the user manually set the parameters

of choice by instantaneously illustrating the effect of parameter changes on the

analysis results.

Fourth, individual modules are designed as independent GUIs. This

design scheme allows a developer to integrate easily their own processing

modules into NeuroQuest.

Finally, NeuroQuest provides advanced spike train analysis tools that

enable identifying the functional and effective connectivity between

simultaneously recorded cells. This is fundamentally important when studying

cortical plasticity at the population level that may accompany learning and



memory formation - an important design consideration for neural decoding

algorithms in adaptive BMls.

1.4 Organization

The remainder of this thesis is organized as follows. In Chapter 2 the structure

and the organization of NeuroQuest are presented. It further discusses the

contribution of NeuroQuest to overcome the limitations of other software

packages and summary of each process module of NeuroQuest. Finally in

chapter 3, spike detection and spike sorting methods implemented in

NeuroQuest are presented. This unique spike detection method utilizes sparse

representation of the signal for better neural yields and more robust detection in

low SNR cases.



CHAPTER 2

Background

This chapter presents a brief summary of neurophysiological signal processing.

In section 2.1 different types of neurophysiological signal and their characteristics,

applications, and limitations are presented. Section 2.2 presents the complete

procedure of spike train analysis from extracellular recordings, as well as

previous work on spike detection and spike sorting methods.

2.1 Neurophysiological signals and the characteristics

Electrophysiology is the study of the electrical properties of biological cells and

tissues that involves measurements of electric potential and current changes. In

neuroscience, the study focuses on measurements of the electrical activity of

neurons, known as neurophysiological signals [1]. The commonly known types of

neurophysiological signal are Electroencephalogram (EEG), Electrocorticogram

(ECoG), and extracellular recordings, depending on the source of the signal and

the recording sites [2]. EEG, recorded from the scalp, is the summation of the

synchronous activity of large populations of cortical neurons. EEG has been

extensively used in various fields such as neuroscience, cognitive science,



clinical applications, and Brain Machine Interface (BMI) mainly because of the

advantage of being non-invasively recorded. However EEG suffers from poor

spatial and temporal resolutions caused by the filtering effect of the skull and the

artifacts from muscle movements [2].
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Figure 2-1. Types of neurophysiological signals adapted from [12]

The second type of signal is ECoGs and is directly recorded from the

cortical surface to circumvent the rapid signal attenuation effect of the skull [2].

ECoG has higher spatial resolution, broader bandwidth, and higher amplitude

than EEG, because the electrodes record the neural activity from a smaller brain

area [13]. They are also free of muscle, eye-movement, and other artifacts

consistently present in the scalp EEG of waking, moving patients. ECoG has

been used to localize epileptogenic foci during pre-surgical planning, to map out

cortical functions, and to predict the success of epileptic surgical re-sectioning

[14],[15]. Although ECoG delivers these superior features, they are semi



invasively recorded, requiring a craniotomy, and therefore cannot be collected in

healthy humans [2].

Extracellular recording - the observation of action potentials generated by

a single or ensembles of neuron — can be obtained by directly implanting voltage-

sensing microelectrodes. Extracellular recording typically contains two types of

signals: Local Field Potential (LFP), and Action Potential (AP). LFP is believed to

be the sum of action potentials generated by cells within approximately 50-

350um from the tip of the electrode [16]. LFP is obtained by low-pass filtering the

recordingswith cutoff frequency at ~300Hz.

Action potentials - or spikes — constitutes the main communication method

among neurons, and are key to understanding the complex relationship between

physical features of the world and the brain’s representation and interpretation of

those features [2]. APs from a single or population of neuron have been used in

various studies such as measuring connectivity between different areas of the

brain, examining dynamics of neuronal response and their relationship to

behavior, summarizing experimental data, BMI applications, clinical diagnosis of

the brain disorders such as Parkinson’s disease (PD) and certain types of

epilepsy, the application of Deep Brain Stimulation (DB8), and many other

research areas [3-6]. Despite the significance of studying extracellular

recordings, there are technical challenges in recording and processing the data.

Extracellular recordings require a surgery that causes a risk of complications and

permanent tissue damage to implant the recording electrodes [2]. Since the



recordings are contaminated by artifacts and other noise components, the data

must go through multiple steps of signal processing before the statistical analysis

[7]. Despite the risk of surgical procedure and invasive and unstable recordings,

studies of extracellular recordings seem indispensable to biomedical applications

and basic research.

2.2 Extracting information from neural activity

Extracellular recordings must go through multiple steps of signal processing, Pre-

Conditioning, Spike Detection and Spike Sorting, before examining the statistical

property of the neural responses obtained.

2.2.1 Pre-Conditioning

Pre-Conditioning is a combination of processes to enhance the quality of

the signal to make it suitable for further information extraction. The raw

extracellular recordings are contaminated by many noise components such as 1)

background neural activity attributed to neural sources far from the electrode

array, 2) thermal and electrical noise produced by electrical devices in the data

acquisition system, 3) other artifacts from muscle movement and mechanical

noise [17]. The raw extracellular recording is filtered to remove low frequency

10



components such as LFP to be able to detect spikes. Artifacts that have similar

spectral properties with APs as shown in figure 22 must be removed, because

these artifacts could be incorrectly classified as spikes causing a decrease in

accuracy of further analysis results. If the recordings suffer from low signal to

noise ratio (SNR), various noise reduction techniques can be used to improve the

SNR.
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Figure 2-2. Artifacts and action potentials In the extracellular recording

2.2.2 Spike Detection

Detecting the presence of action potentials from the extracellular recording is

referred to as Spike Detection. It is believed that spike arrival times carry all the

information about information processing and not the actual waveform shape.

11



Therefore extracting the temporal information of spikes is a fundamental step in

the analysis of neural recordings [2]. The main challenges in spike detection are

the noisy environment of neural recordings and the similarity between the spike

waveforms and the background noise. Many spike detection algorithms are

available to overcome these challenges. The simplest technique for spike

detection is amplitude thresholding that searches for an event that crosses user-

specified amplitude thresholds [7]. Although its computational simplicity that

makes easy to implement in hardware, the performance of the method declines

rapidly in low SNR. The instantaneous energy of an extracellular signal has been

used to emphasize the spike peak [18],[19]. This method is more robust to the

noise than the amplitude threshold method, but the energy computation without

any noise reduction technique causes a poor performance in low SNR. In

template matching method, templates, obtained during a training session, are

used to locate possible events in the signal by measuring the resemblance

between the template and the segments of the signal [18]. This method relies on

a priori knowledge of the spike shape to form the template. The performance

again decreases in low SNR, since the automatic selection of a template in a

noisy signal is very difficult. Transformation and decomposition of signals are

also used in spike detection methods. Spike features, observed in the wavelet

domain, have an advantage that separates signals from noise by thresholding

the wavelet coefficients [10],[20],[21]. The wavelet based spike detection

methods suggest that sparsity plays an important role in spike detection by

12



increasing the SNR. The main drawback of this technique is the assumption of a

similarity between a family of wavelet base and a spike shape.
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Figure 2-3. Processes to obtain spike train from extracellular recording

2.2.3 Spike Sorting

As the tip of the electrode is surrounded by many neurons, the

extracellular recordings can simultaneously pick up spikes of an unknown

number of neurons. The detected spikes can be assigned into a particular

neuron. This process is called Spike Sorting, and this is valid under the

assumption that each neuron generates a distinguished spike shape from others

13



[7]. Spike sorting methods are categorized into two approaches: 1) The pattern

recognition approach: operates on the individual spikes extracted after the Spike

detection step; 2) The Blind Source Separation (BSS) approach: operates on the

raw data without the need to perform spike detection a priori [12]. The Pattern

recognition approaches typically consist of feature extraction from the detected

spike waveforms and the assignment of the spikes to the individual neurons by

clustering the features. Many feature extraction methods were proposed such as

feature of the shape, such as spike height and width or peak-to-peak amplitude,

principal component analysis (PCA), a set of orthogonal basis vectors that

capture the largest variation in the data, and Wavelet Transform [7],[10],[22].

These extracted features are clustered using unsupervised classification

methods such as hierarchical clustering, k-means and fuzzy c-means, Gaussian

mixture model and the t-distribution mixture model, and self organizing map

[7],[23-26]. K-means clustering is relatively sensitive to outliers, and mixture

model based clustering methods usually need assumption of certain distribution

to yield accurate clustering results. The clustering is data-driven process which

means that there is no absolutely superior clustering method than others. Each of

clustering method is designed for the certain type of data, and a proper clustering

method must be selected regarding the nature of the data to yield an optimal

clustering result [27].

In 888 approach, the observation signal is considered to be a mixture of

multiple signals, and the original signals can be estimated from the mixture by

14



finding the unmixing weights [7]. Independent Component Analysis (ICA) and

Multiresolution Analysis of Signal Subspace Invariance Technique (MASSIT) are

examples of the BBS approach [28],[29]. Spike sorting has become crucial in

multiple spike train analysis, because the accuracy of spike sorting influences the

validity of subsequent analysis [6].

2.2.4 Spike Train Analysis

Statistical properties of population of neuron are estimated using the

temporal arrival time information of identified neurons [6]. Action potentials can

be represented a stream of binary events, or called a spike train, where ‘1’

represents the arrival of spike and ‘0’ is not. Spike trains are widely used in the

study of neurophysiology especially neural coding, characterizing the relationship

between the stimulus and the individual or ensemble neuronal responses and the

relationship among electrical activity of the neurons in the ensemble [2],[5],[6].

Spike train analysis is the attempt to find patterns in spike trains that

reflect some aspect of neural functioning. This could include relating neural

activity to stimuli, finding functional interactions among neurons, and estimating

codes distributed across a neuron population [30].

2.2.4.1 Single Neuron Properties

15



One of the simplest ways to study the patterning of spike activity of a

neuron is to construct an lnterspike interval histogram (ISlH). This is simply a plot

of the distribution of the observed times between spikes collected in fixed width

[5]. Peristimulus Time Histograms (PSTH) are histograms of the times at which

neurons fire. These histograms are used to visualize the rate and timing of

neuronal spike discharges in relation to an external stimulus or event [31].

2.2.4.2 Multi Neuron Properties

The cross-correlogram is a function that indicates the firing rate of one

neuron versus another. Cross-correlograms give a measure of the firing rate of

one neuron around the time that another neuron fires which indicate the

dependency of the pair neurons [32].

Joint Peristimulus Time Histogram (JPSTH) gives not only the ability of

cross-correlograms, but also displays the stimulus-related dynamics of the

relationship. The temporal information that is given by the two-dimensional nature

of the JPSTH is important in studying neural connectivity [33].

Advanced analysis tools consist of identifying relationships between the

observed neurons from spike train ensembles. NeuroQuest offers two algorithms

to achieve that goal: multiscale clustering and Dynamic Bayesian Network (DBN).

The first algorithm identifies any potential statistical dependency between spike

trains, often referred to as functional connectivity [34]. The second algorithm

16



infers the type of connection (excitatory/inhibitory) and directions between the

functionally-interdependent neurons, often referred to as effective connectivity

[35]. This is achieved through DBN. This two-stage framework can efficiently

identify neural circuits in large neuronal populations. It can also be utilized to

track plastic changes associated with learning and memory.

17



CHAPTER 3

Overview of NeuroQuest

This chapter provides context for the contributions of the thesis. First, the

structure of NeuroQuest and the organization of individual processing modules

are presented in Section 3.1. Second, Section 3.2 discusses the contributions of

NeuroQuest that overcome the limitations of current existing software packages.

Finally, summary of individual process modules are presented in Section 3.3.

3. 1 Structure and Organization of NeuroQuest

NeuroQuest is designed to process the large-scale raw extracellular recordings

to obtain dynamics of neural population with statistical tools. NeuroQuest bundles

multiple processing modules designed as Graphical User Interface (GUI), and

they are connected to each other through the main workspace as shown in figure

3-1. Total 8 processing modules provided in the software are classified into two

groups: spike sorting group and spike train analysis group. Spike sorting modules

require the raw or pre-processed extracellular recordings, while spike analysis

tools handle single or multiple spike trains. Once the input data is loaded, the

corresponding group of modules becomes available on the main menu. Each

module contains sub-modules that assist to yield more accurate analysis results.

18



Figure 3-1 illustrates the organization of the individual processing modules and

their sub-modules of NeuroQuest. Details of each process are discussed in

section 3.3.

The flowchart in Figure 3-2 demonstrates the complete neural data

processing and analysis steps in NeuroQuest. After the extracellular recording

data is loaded, the group of spike sorting tools is activated for further process.

The first stage is to denoise the data to enhance the neural yield. After denoising,

spikes are detected from the recording. Detected spikes are extracted from the

data and sent to the spike sorting algorithm to obtain spike trains. The obtained

spike trains are then further analyzed using the primary spike train analysis tools

such as lnterspike Interval Histogram(lSlH), Peristimulus Time Histogram(PSTH),

Joint Peristimulus Time Histogram(JPSTH), Cross-Correlogram (CC), and the

advanced spike train analysis tools such as functional and effective connectivity

estimation among observed neural population. Since individual modules are

designed as an independent GUI, the analysis results of each module can be

saved and loaded separately for the later data analysis.

3.2 The contributions of NeuroQuest

The main contribution of NeuroQuest is to provide a tool that assists a researcher

to translate neural dynamics into statistical measurements. Many

19



neurophysiological signal processing software packages were developed for the

purpose , but they did not fulfill the needs with their limited capabilities to deal
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with the experimental data. NeuroQuest is designed to overcome the limitations

of the existing software packages, and following aspects make NeuroQuest

distinguished from the others: 1) comprehensive toolbox, 2) simple GUI and

visualization tools, 3) capability of handling large-scale neural data, 4) varieties of

spike detection and sorting methods, and 5) developer friendly environment.

3.2.1 Comprehensive toolbox

As mentioned in chapter 1, most of the current existing software packages fall

into two groups, spike sorting software and spike train analysis tools. Since both

groups are required to perform a complete neural data analysis, a combination of

multiple software packages is used to analyze experimental data. However this

scheme has several drawbacks. First of all, input data must be converted into

suitable format for the different software packages, since each software package

requires different input data format. It is also time consuming and inefficient

process due to the stream of non-unified processes for the single analysis.

TABLE 3.1 illustrates the provided features of several software packages

available. Among spike sorting software, only NeuroMAX and OSort offer limited

spike train analysis tools [11]. Among spike train analysis tools FIND is the only

software equipped spike detection and simple spike sorting tools [36].

NeuroQuest offers comprehensive tools from pre-processing of

extracellular recordings to analyzing multiple spike train to achieve seamless
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TABLE 3-1. FEATURES OF THE SOFTWARE PACKAGES
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neural data analysis. This seamless and unified process eliminates the burden of

converting data and speed up the analysis.

3.2.2 Simple GUI and Visualization Tools

A large number of parameters selections are required in each step of the analysis

and the complexity of the parameter selection increases the learning time of the

software for the users. The simple GUI of NeuroQuest reduces the complexity of

the parameter setting and shortens the learning time. Various graphical tools help
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the manual parameter selection by instantaneously illustrating the effect of the

parameter changes on the analysis results. The extensive visualization of the

manual process helps to improve the accuracy of the analysis results. We

demonstrate the effectiveness of the GUI by comparing the spike detection result

against OSort, a spike sorting software package, using the same energy-based

spike detection method with three simulation data sets obtained from the OSort

package [1 1].

Detection Rate is defined as a total number of positive detection over a total

number of the actual spikes. As Figure 3-1 shows, NeuroQuest yields more

reliable positive spike detection results with various noise levels while

maintaining the same false detection rate. Details of the spike detection

comparison between NeuroQuest and OSort results are found in TABLE 3-2. The

improved detection performance is due to the threshold selection tool in the spike

detection GUI that assists a user to select a proper threshold.

3.2.3 Capability of handling large-scale neural data

Complex behavioral related experiments require hours of data recordings, and

processing these data become another challenge in neuroscience and BMI

development [7]. Most of existing spike sorting tools are missing the capability of

handling large-scale neural data mainly due to the MATLAB environment
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Figure 3-3. Comparison of Spike Detection performance between

NeuroQuest and OSort

TABLE 3-2 SPIKE DETECTION RESULTS OF NEUROQUEST AND OSORT

WITH FOUR SIMULATION DATASETS
 

   

 

 

SNR 4 3 2 1
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The shaded area indicates the results of NeuroQuest and the white background

is the result of OSort.
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,known for poor handling of large dataset, and this is a significant drawback in

the process of the experimental data. Although NeuroQuest also runs on

MATLAB environment, we circumvent the memory issue by allocating large data

set into small segments. This segmentation helps to speed up the process and

resolves the ‘out of memory’ problem. The segmented process also helps to

improve the accuracy of the analysis results by estimating the important

parameters for the process locally.

3.2.4 Spike Detection and Sorting methods

Some characteristics of extracellular recordings, caused by the different

geometry of the recording electrode array, require specially designed processing

technique. Most of the software packages only offer single spike sorting method

that is not suitable for processing the different types of data. NeuroQuest is the

only software that offers array detection and sorting algorithms that are specially

designed to analyze the data recorded using the closely spaced electrode array

such as stereotrodes, tetrodes and polytrodes.

3.2.5 Developer Friendly Environment

Very few software tools exist to date that integrate all the needed processing

steps in one comprehensive package. As a result, every lab relies on custom
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built analysis tools in one form or another. This is coupled with a significant lack

of community—wide standardized set of tools that enables replicating

experimental data analysis across labs to facilitate objective comparison between

scientific findings. In NeuroQuest individual modules are designed as an

independent GUI, and this design scheme allows a developer to integrate their

own processing module into NeuroQuest easily for the performance comparison.

3.3 Summary of individual modules

3.3.1 Data format

Since most of the commercial extra-cellular recording systems store the

recordings with their own data structure, proper data conversion is the inevitable

step to use the academic software packages. Without a standard data format,

data conversion is one of the difficulties in the development of neurophysiological

signal processing tools. There have been a consensus on unifying data structure

of neurophysiological recordings, and NeuroShare (http://neuroshare.orgl) is

one of the many efforts. This data structure is designed to efficiently store

neurophysiological signals, and several commercial and academic software

packages are supporting this format. However the NeuroShare data converter

requires mediate levels of understanding in computer language C++.
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To make usage of the software more universal, a generic MATLAB data

file is used for the input data of NeuroQuest. NeuroQuest works with a MAT file

that contains a specific data structure (see Appendix A) that can be created

easily with a beginner level of understandings in MATLAB script language. Once

the following components are saved in a MAT file, NeuroQuest automatically

enables the group of modules that can be applied to the data.

3.3.2 Pre-Conditioning

Pre-Conditioning tools are designed to improve the quality of data and preserve

the information at the different frequency range other than APs (frequency range

of 300Hz - 5000Hz) such as LFP. Properly pre-conditioned data improve the SNR

and fewer artifacts that increase the accuracy of further processes such as spike

detection and spike sorting. Three pre-conditioning tools in NeuroQuest, LFP

Removal, Artifact Removal, and Wavelet Denoising are presented in this section.
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Figure 3-4 Pre-Condltloning GUI

3.3.2.1 LFP Removal

LFP is low frequency oscillation, range of OHz - 300Hz, that measures the activity

in a population of neurons. LFP is robust over time comparing with AP, while it.

provides highly specific information [2]. Conventionally LFP was considered as a

noise component and filtered out from the recordings [7]. However current

studies show that LFP has excellent decoding properties for Brain Machine

Interface and other studies [2]. NeuroQuest extracts LFP data from the unfiltered

extra-cellular recording and displays it using a spectrogram [37]. 5th order
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Butterworth filter is implemented in NeuroQuest for LFP extraction, and a user

can specify upper and lower band limits of the filter [38].

3.3.2.2 Artifact Removal

One of the common noise components in extra-cellular recording is the artifacts

from different sources such as electromyogram (EMG) from muscles in the scalp,

jaws, neck, and body, and many types of electrical artifacts as the animal moves

[39]. These artifacts are highly correlated through neighboring electrodes, and

the artifacts have similar spectral content to the desired spikes. This similarity

causes cluster overlap in feature space that make difficult to define clean

boundaries for spike sorting. These artifacts can be identified using principle

components analysis (PCA). First two or three PCs, the best representation of

the data, reflect the correlated noise components and the artifacts can be

removed from the recordings by eliminating these dominant PCs. Details of the

method are found in [39].

3.3.2.3 Wavelet Denoising

Multi-electrode arrays are intended to simultaneously monitor large number of

neurons and therefore detection of as many neurons as possible from the

recorded signals is of fundamental importance. Effective denoising improves the
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results of further signal processing steps, such as spike detection and spike

sorting [9].

Spatially-correlated noise across channels is one of the fundamental

problems faced during spike detection. It arises due to the synchronized firing of

large cell assemblies that are not close enough to the recording array to be

individually detected. Suppressing this noise component is necessary for optimal

spike waveform detection. Conventional linear filtering methods, such as Fourier

transform-based filters, are not suitable to discriminate this noise component

from the signal of interest [9]. The Discrete Wavelet Transform (DWT) is a

nonlinear transform that possesses many desirable properties not present in

linear filtering methods. The DWT is a powerful signal processing tool that has

been demonstrated to have excellent properties in many applications of

denoising and compression with relatively simple mathematical computations

[40],[41],[17],[20],[10].

For example, in the DWT domain, the signal is concentrated in very few

coefficients with large amplitude while small amplitude noise coefficients are

widely spread. This characteristic of DWT permits to suppress the noise by

thresholding small coefficients. The performance of DWT denoising depends on

the choice of the threshold. Six different thresholding methods are provided in

NeuroQuest: Heursure, Rigrsure, VisuShrink, SureShrink, BayesShrink, and

Minimaxi. Details of these methods are found in [40],[42],[43].
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3.3.3 Spike Detection

The compactness property of the wavelet transform facilitates the detection of

neural spikes in the wavelet domain. NeuroQuest performs multi-level stationary

wavelet packet decomposition (SWT) of the recorded data. It uses a likelihood-

ratio test (LRT) for detection, in which a sufficient statistic is computed depending

on the array geometry [44],[45].

If the array is closely spaced, the statistic is computed from a snapshot of

the entire array to minimize the effect of the spatially correlated noise component.

If the array is not closely spaced, then the sufficient statistic is computed from

snapshots of individual channels and therefore improves spike detection in both

single and multi channel scenarios [41]. Not only wavelet detection, NeuroQuest

also provides three time domain detection methods: single amplitude, absolute

amplitude, and energy-based. Single amplitude detection method identifies any

signal that crosses the threshold as a spike, while absolute amplitude detection

applies both positive and negative thresholds simultaneously [7]. Energy-based

Spike detectors compare the local power of the signal with a threshold estimated

from the power of noise [19]. This method is more robust to the noise than the

amplitude threshold methods.

Several detection tools help to maximize detection performance. Manual

detection allows a user to select a threshold value from the selected data

segments. Different data segments, the lowest SNR, the smallest noise variance,
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and a large data segment (30 sec of data segment is selected empirically) can be

selected for the threshold value estimation. In wavelet detection, choices of

different wavelet bases help to maximize the compactness of wavelet

coefficients.

3.3.4 Spike Sorting

Spike sorting is a step where spikes are assigned to the individual neurons that

have emitted them [7]. Overall spike sorting algorithm in NeuroQuest is described

in figure 3-6.
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Figure 3-6. Flowchart of Spike Sorting Algorithm in NeuroQuest

First, the specific type of the recording electrode must be specified to choose the

proper spike sorting method. Geometrical differences of the recording electrode

array require different spike sorting approaches. lf spacing between neighboring

electrodes is close such as stereotrodes, and tetrodes, there is high chance to

record the same action potential with a group of electrodes. Recordings from

these electrodes allow additional information to be used for more accurate spike

sorting [15]. Two types of spike sorting techniques, single and multi channel
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sorting, are embedded in NeuroQuest. Single channel sorting method does not

consider any correlation between the recordings from the adjacent electrodes

and processes individual signal independently, while multi channel sorting

captures the correlation among multiple electrodes and use the information to

identify the source of the spikes.

Second, if two adjacent events are close enough, the event is considered

to be an overlap. In the case, Multiresolution Analysis of Signal Subspace

Invariance Technique (MASSIT) resolves the spike overlap based on an

augmented representation of the observation space to simultaneously

incorporate the spectral, temporal and spatial information of the spike waveform

[44].

The algorithm verifies whether the detected events consist of a simple spike or

overlap of two or more spikes. In the non-overlapping case, wavelet features of

the spike waveform are compared to previously extracted features during

training. If matching occurs, the spike is classified to belong to the matching

class. If not, a new class is created. More details are provided in [44]. Spike

sorting in NeuroQuest consists with three steps: spike extraction, feature

extraction and clustering. Details of each step are discussed below.

3.3.4.1 Spike Extraction and Alignment
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Detected spikes are extracted and aligned in this step. Since duration of spikes

may vary, proper spike extraction is crucial to preserve the information for spike

sorting. Spike alignment is also important factor in accurate classification [7].
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Figure 3-8. Clusters of detected spikes in temporal PCA feature space with

different alignment methods.
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3.3.4.2 Feature Extraction

Next step is feature extraction from the properly extracted and aligned spikes.

Extracting a feature set that represents a group of spikes emitted from the same

neurons is the key to maximizing spike sorting accuracy. Typical feature sets for

spike sorting are features of the shape, such as spike height or width, and

dominant PCs of a spike. Recent studies show that DWT is a powerful feature

extraction method, and with properly selected wavelet base DWT outperforms

the PCA—based feature extraction [46]. NeuroQuest provides a flexible feature

extraction method that allows a user to visualize the extracted feature set in the

feature space instantaneously; different combinations of features or wavelet

bases can be adjusted to achieve the best cluster separation in the selected

feature space. Figure 3-9 shows the clusters of the same set of extracted spikes

with the different feature sets. Wavelet footprint is a wavelet feature set that

represents the transient of the spike by extract the largest wavelet coefficients

through the nodes within a certain range or called the cone of influence [47].

Details of the method are discussed in chapter 4. As mentioned in chapter 2,

properly selected wavelet base DWI“, in this example Symlet wavelet base with

scale 4, outperforms the PCA-based feature extraction by clearly forming 4

clusters while only three clusters appear in the temporal PCA domain.
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a) Wavelet footprint with a) Wavelet footprint with a) Temporal PCA

sym4 wavelet base db4 wavelet base

Figure 3-9. Clusters of extracted spikes in different feature spaces.

3.3.4.3 Clustering

Clustering is a method for finding clusters in multidimensional data sets and

classifying data based on those clusters. There are many methods for clustering

and the best clustering method is driven by the nature of the data [27]. Estimating

the number of cluster is one of the difficulties in clustering, and the automated

class selection can yield a reasonable estimation only in certain condition such

as sufficient cluster separation and accuracy of assumption of the distribution

model [27]. Among many class estimation methods NeuroQuest employs the

modified Expectation-Maximization (EM) algorithm for the class estimation

method. This specific algorithm can be applied to any type of parametric mixture

model for which it is possible to write an EM algorithm, while most of the literature

on finite mixtures focuses on Gaussian mixtures [48]. Clustering of the extracted

features is achieved through four clustering methods: Fuzzy c-means, EM, k-

mean and manual cluster cutting [27],[25].
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3.3.4.4 Sub-Clustering

Once the spike sorting is performed, initially classified classes can be further

sorted into smaller classes using sub-clustering algorithm. Sub-clustering

algorithm allows selecting one of the classified classes, and projects them into

the different angle of the original feature space or a different feature space. If

there is any improvement in cluster separation in the new feature space, new

clusters are classified using the different clustering methods. Details of sub-

clustering are illustrated in figure 3-10.

3.3.4.5 Extra spike sorting tools

NeuroQuest also provides two graphical tools to evaluate and enhance the spike

sorting result. lnterspike Interval Histogram (ISIH) is used to validate the sorting

result, since a significant number of interspike interval within the refractory period

indicates an error of the sorting results. Another assistant tool is class merging

GUI that allows merging multiple classified classes into single class.
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Figure 3-10. Scheme of Sub-Clustering.

Cluster Merging

  
Initial Clustering Final Clustering

Result : 10 clusters Result : 5 clusters

Figure3-11. Example of Cluster Merging Tool
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Merging tool helps to correct the clustering error without re-clustering entire data.

Merging tool can be also used as a manual clustering tool by initially clustering

data into many classes and combining them. In figure 3-11 initially clustered 10

classes using Fuzzy-c mean are merged into 5 clusters.

3.3.5 Spike train analysis

Since-it is believed that the time of arrival of the spikes carries all the information,

the Spike waveform is abstracted into a stream of binary events where an

isolated '1' represents an action potential [6]. The binary waveform is referred to

as a spike train. The patterns of spike activity are influenced by three things: a)

the intrinsic properties of the neuron, especially the properties of its membrane,

b) network interactions, because spike activity in one neuron might have

feedback effects on that neuron because of the changes that it produces in

reciprocally connected neurons and c) the nature of the inputs to that neuron [5].

Spike train analysis is the attempt to find patterns in spike trains. NeuroQuest

provides a number of spike train analysis tools categorized into three groups:

single unit analysis (SUA), multi unit analysis (MUA), and advanced analysis

tools.

3.3.5.1 Single Unit Analysis tools.
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One of the simplest ways to study the patterning of spike activity in a neuron is to

construct an lSIH. This is a plot of the distribution of the observed times between

spikes collected in ‘bins’ of fixed width.

PSTH, a histogram of the times at which neurons fire, is used to visualize

the rate and timing of neuronal spike discharges in relation to an external

(k)

stimulus or event. Let "t (u) be the spike count of neuron iin the uth bin of the

kth trial. Then, the average spike count,

K

1

<n§k><u>> = E Znikkm
19:1 (3.1)

represents the probability of the occurrence of the spike event of neuron iat bin

(’9)

u, where K being a total number of trials. The histogram of (”i (71)) over index

u represents the PSTH [49].

SUA GUI displays the raster plot of multiple spike trains and the stimulus,

if presented. Number of parameter selections for ISIH and PSTH such as Bin

Size and pre and post stimulus duration for the PSTH display, are available in

SUA GUI. NeuroQuest also provides a curve fitting tool for the ISIH that validates

the quality of spike trains. ISTH of a typical neuron demonstrates a single

negative exponential distribution with the empty first few bins of the histogram

due to the refractory period, and the curve fitting tool verifies the quality of the

spike train by fitting the distribution of the ISIH with exponential distribution [6],[5].
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Figure 3-12 Single Unit Analysis GUI

3.3.5.2 Multi Unit Analysis tools.

The cross-correlogram (CC) is a function which indicates the firing rate of the

target neuron versus the reference neuron. CC give some measure of the firing
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rate or firing probability of the target neuron around the time that the reference

neuron fires. Therefore, the CC provides some indication of the dependence of

the two neurons [50]. The cross-correlation function can be defined as

Qi,j(7') = Et[(32‘(n)3j(n + 7)] (3.2)

where EtH denotes expected value over time n, and 330 is a sum of Dirac

delta functions of neuron j at the time of firing events [51].

The JPSTH provides not only the ability of the CC, but also displays the

stimulus-related dynamics of the relationship. The temporal information which is

given by the two-dimensional nature of the JPSTH can be quite important in

studying neural connectivity [50]. In the computation of the JPSTH, a square

matrix with a size of the trial duration T is prepared. The two time axes are locked

to the stimulus onset at the left-bottom corner. The square matrix is divided into

the bins, each of which is specified by a pair of two integer indices (u, v) [49]. At

each compartment, we assign the matrix element that quantifies the probability of

the occurrence of a joint event, where neuron 1 has a spike event at bin u and

neuron 2 has one at bin v,

K

(n12(u, ’0» M:

K1k= (3.3)

where mm) (u v)-— ni’“ (207220002) (3.4)

Similar to SUA GUI, MUA GUI also provides the number of parameter selections

for both JPSTH and CC such as Bin Size, Window Size for CC, and pre and post

stimulus duration for the JPSTH display.
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Figure 3-13 Multi Unit Analysis GUI
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3.3.5.3 Advanced Analysis tools

Advanced analysis tools consist of identifying relationships between the

observed neurons from spike train ensembles. NeuroQuest offers two algorithms

to achieve that goal: multiscale clustering and Dynamic Bayesian Network (DBN).

The first algorithm identifies any potential statistical dependency between spike

trains, often referred to as functional connectivity [34]. The second algorithm

infers the type of connection (excitatory/inhibitory) and directions between the

functionally-interdependent neurons, often referred to as effective connectivity

[35]. This is achieved through DBN. This two-stage framework can efficiently

identify neural circuits in large neuronal populations. It can also be utilized to

track plastic changes associated with learning and memory.
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Figure 3-14 Advanced Spike Train Analysis GUI
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CHAPTER 4

Spike Detection and Feature

Extraction

4.1 Introduction

Spike detection refers to the identification of the arrival time of action potential

waveforms produced by a neuron during active communication with other

neurons in the nervous system. It is believed that spike arrival times carry all the

information about information processing and not the actual waveform shape.

Therefore extracting this temporal information is the first step to analyze neural

recordings [7].

Extracellular recordings are corrupted by many noise components such as

thermal and electrical noise, caused by signal amplifiers and other components

of the data acquisition system, background neural activity, and the occasional

similarity between the spike waveforms and the background noise [44]. Spikes

are non-stationary over a long period of time due to many reasons such as

electrode shifting, cell migrate, etc, and non-stationary background noise makes

the presence of spikes unclear. The goal of spike detection is to obtain temporal

information believed to be the most important parameter of neural activity from

the noisy extracellular recordings [7].
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Many spike detection algorithms were proposed to overcome these

difficulties and they can be categorized as supervised or unsupervised, manual

or automated methods [7],[19],[18],[44].

In this study, we focus only on automated and unsupervised detection

methods. The simplest detection method is the amplitude threshold detection

method which identifies any signal that crosses the threshold as a spike. Even

though this method is simple, the detection performance is sensitive to noise.

Energy-based spike detectors compare the local power of the signal with a

threshold estimated from the power of noise [19]. This method is more robust to

noise than the amplitude threshold method.

The wavelet method has been motivated as an alternative to threshold or

energy based detection methods. Wavelet-based spike detection methods

transform the extracellular recordings into multiple sparse representation spaces

and compare them to a threshold. Wavelet-based spike detection methods were

suggested due to the sparsity they introduce and therefore plays an important

role in spike detection by increasing the signal-to-noise ratio (SNR) and localizing

transients in extracellular recordings [18],[44].

However the sparsity in wavelet detection methods requires a rule for

threshold selection because the distribution of the test statistic is not trivial to

derive. This causes a complexity in automating the detection methods, and the

threshold selection inevitably relies on an empirical approach.

Another problem of current wavelet detection methods is the relatively high
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computational complexity due to the redundant detection routines in entire or

selected wavelet subspaces. In wavelet domain, spikes are represented in

relevant subspaces, and the general wavelet methods detect the spikes from

each subspace separately and combine the detection results either by majority

voting or logically OR them [44],[21]. Under this detection scheme, a single spike

is detected multiple times creating a redundant detection.

in conventional spike sorting algorithm, detected spikes are extracted and

properly aligned to obtain the feature set for spike sorting. These time consuming

steps require to store entire recording or segments of detected spikes which is

undesirable in large-scale neural data process.

In this chapter we propose a novel spike detection method using sparse

representation in wavelet domain. Combining information scattered across

multiple wavelet subspaces can reduce redundant detection. The proposed

threshold selection method modifies the distribution of the observation to

maximize separability between the noise and the signal distributions. We also

propose the feature extraction method that captures the compact representation

of the transient of the signal, called wavelet footprint. Under the proposed feature

extraction scheme, a compact feature set is obtained at the same time detecting

spikes that eliminates spike extraction and alignment steps as shown in figure 4-

1.

The proposed wavelet detection method incorporated with the threshold

selection was tested and the results were compared to several commonly used
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spike detection methods. The proposed methods outperformed other methods in

low SNR cases, and the wavelet footprint extraction method reduced the several

steps in conventional spike sorting method: spike extraction, alignment and

feature extraction, while keeping the desired separability of clusters for the spike

sorting. Under the proposed wavelet footprint detection, significant amount of

data reduction can be achieved for offline processing.
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Figure 44. Block Diagram of the proposed wavelet footprint detection

method.

4.2 Theory

4.2.1 Observation Model

We formulate spike detection as a binary hypothesis test problem, where
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under the null hypothesis Ho the signal is not present, while under hypothesis 7711

the signal is present

H0:y[n]=z[n] n=0,1,...,N—1

H1 :y[n]=a:[n]+z[n] n=0,1,...,N——1 (4.1)

1><N lxN . .

where y 6 ER is the observation, 117 E §R is action potentials

§RIXN

from single source, and Z 6 is a white Gaussian noise with

Z N N“), 02) where N is the number of samples in time domain [44].

Sparse representation of a transient signal has advantages in spike

detection mainly because it maximizes the SNR by characterizing non-transient

samples of the signal with large number of small coefficients, while discontinuities

of the signal with small number of large coefficients. Second, the sparse

representation tends to be highly localized in time domain, and this characteristic

makes the detection robust to variations in spike durations. Transforms that yield

the most compact representation of the signal are also desired to maximize the

spike detection performance, and wavelet-based techniques demonstrate

compact representation with precise frequency and time localizations [44].

4.2.2 Wavelet Transform and its Properties
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Wavelet LIJ, also called a mother wavelet, is a function of oscillation with

finite energy and zero mean. A family of wavelet can be obtained by scaling and

translating the mother wavelet [40]

wa,b(t) = 713% (7) a,b e R

(4.2)

where a > O is the scale and b is the translation.

The projection of a random signal y(t) onto the subspace of scale a has the

form

y<a><t> = [Rutiwakodt
(4.3)

where 9(a)“) is the sparse representation of the signal y(t), a wavelet coefficient,

at the ath wavelet subspace [40].

The wavelet transform has several attractive properties for signal and image

processing [47]. Locality allows the wavelet atom localized simultaneously in time

and frequency, and Compression transforms real-world signals to sparse

representation. Persistence is a propagating tendency of wavelet coefficients

across scales, and it is the key property supporting the proposed method [47].

Since a sparse representation of a spike propagates across multiple subspaces,

there will be a redundancy across the relevant subspaces. Measuring the
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correlation among the subspaces can capture the redundant representation of a

single spike, and this can reduce the number of detection routines.

To maximize the correlation, wavelet coefficients must be invariant among

different subspaces, and Stationary Wavelet Transform (SWT), designed to

achieve the translation-invariance, satisfies our need for this study [40]. Figure 4-

2 shows the sparse representation of spikes in wavelet domain and the

properties of wavelet are clearly illustrated.

Now we derive the model in wavelet domain. By the linearity of SWT at

scale j, observation y can be expressed as

ye) ___ We)

. 1 N .

where 31(3) 6 R x is wavelet coefficients at jth subspace and 20(3) is a

corresponding wavelet base [44]. With L level wavelet domain transform, the two

hypotheses in (4.1) have the following form:

H0:g[n]=_z_[n]n=0,1,~- ,N—1

’Hl:_y_[n] alnl+élnl n=0,1,~-,N—1 (4.5)
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domain The signal is transformed into 4 level wavelet domains using SWT and
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gin. = .y(1)in]:- . - :y(L)[nll

gin = [sum nj , . . . ,33(L) [72]]

érni = :3“) 772, - ~ - i 23¢) [71]] (4.6)

where y[n], x[n], and z[n] are a snapshot of wavelet coefficients of the

observation, the spikes, and the noise, respectively, across multiple subspaces

mflmen

Let RWol’g) and 73011 L11) be the conditional risks associated with accepting

and rejecting the hypothesis 7'10 given the evidence y respectively. These risks

can be expressed as
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73(H1ly) = A00P(H0|y)+/\01P(H1|y_)

73(Holy) = AtoPlffolyHAtthtly) (47)

’\(ii‘) = Amimj) is the loss incurred for deciding Hi when the true state of

nature is Hi. Since correct decisions are not penalized, /\00 and /\11 are zero.

This leads new expression of conditional risks described as

73(Hlly) = AOIPWIIQ) and Rmolai = AIOPWOIQ). The fundamental rule is to

decide 711, imelifl) < RWOIE) and vice versa. After invoking the Bayes rule

sz'ly) = PQI'HJ/PQ), the decision rule becomes

P(QI’H1) >71, /\01 Pail) é

)Home) <“0 2:: Pitta ’7 (4.8)

 

Note that n represents the acceptance threshold for 711. Under the unsupervised

detection scheme, the covariance matrices of the signal and the noise are

unknown and they can be estimated from the observation. Under the assumption

that the noise is Gaussian we have PQIHO) "’ N“): 2) and PQIHI) ~ N(i#t2)

where pi is the L-component mean vector of the signal x and Z is the L-by-L

covariance matrix of the observation. The generalized likelihood ratio test

(GLRT) can be expressed as [45]
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T —1 H

E 2 2222321097 (4.9)

This is essentially a blind energy detector [44]. The sufficient statistic T for spike

detection is

(4.10)

4.2.3 Optimal Threshold Selection for a x2 Distributed Signal

The threshold n in (4.9) is estimated considering the costs of false detection and

a priori probability of Ho and 'Hi [27]. Since information about the true action

potentials and the noise is unknown in unsupervised detection, n is estimated as

mean and variance of the observation [52]. Median Absolute Deviation (MAD) is

used to estimate the noise variance, but it is only valid with a Gaussian noise

assumption [52]. Since the square of a random variable with a normal distribution

is x2 distribution, the sufficient statistic T in (4.10) is x2 distributed. x2 distribution

is a special case of a gamma distribution expressed as

(4.11)
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with a scale parameter [3 = 2, where Na) = (a — W, a shape parameter c =

v/2, and v being the degree of freedom of the random variable x.

An optimal threshold must be selected to maximize the positive detection

rate and to minimize the false detection rate [27]. Figure 4-3.a and 4-3.b illustrate

the probability density function (PDF) and the cumulative distribution function

(CDF) of x2 distribution for different v. Since T is a combination of the x2

distributed signal and noise with the parameter v close to 1, discriminating one

from another is not easy. Figure 4-4.a illustrates the x2 distribution of the

sufficient statistic 7'. Red bars represent histogram of noise and black bars

correspond to the signal. There is no clear separation between the two

distributions.

A modification of the histogram of T helps to estimate the threshold.

Histogram equalization (HE) is a method of contrast adjustment in image

processing using the histogram of the image [53]. This method increases the

global contrast of the image presented by close contrast value by linearizing the

cumulative distribution function (CDF) [53]. Linearization of the CDF to lead an

increase in the parameter v. If the HE shifts v from 1 to 3 or larger values, the

distributions of the noise and the signal are separable as shown in figure 4.3.a.

The general HE at bin index k is expressed as

_ cdf(k) — cdfmm

has) — Cdfmam '— Cdfmin X (L - 1) (4.12)
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Figure 4-3. PDF and CDF of X2 distribution with different parameter v and

>the equalized CDPs using the general histogram equalization (HE) and the

modified histogram equalization (MHE)

where cdfmin being the minimum of CDF, and cdfmax being the maximum of

CDF, L being a total number of bins. However the regular HE method creates a

significant quantization distortion in the case of x2 distribution with v=1 as shown

in figure 4-3.c. The modified HE (MHE) for x2 distribution is expressed as
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, (cdf(k)—cdf(k—1))xk k>1

h (k) :{ cdf(k) x k k =1 (“3)

The MHE yields much smoother linearization of the CDF of x2 distributed signal

with v=1. Once the histogram is equalized using the MHE, the histogram is

transformed into the modified histogram (MH) with v greater than 1 where the

separation between the noise and signal is more favorable.

Figure. 4-4.b shows the modified histogram of T that has a clear separation

between the noise and the signal distributions. The estimated threshold is located

at a local minimum between the two peaks. This is similar to the gray-level

histogram threshold selection in image processing [54].

4.2.4 Wavelet Footprint

The discontinuous structures of a signal often carry critical information, thus

efficient characterization of the discontinuity of the signal is a central task in

signal processing [47]. In general, larger wavelet coefficients tend to be around

the edge of a signal and these wavelet coefficients collect most of the energy of

the original signal. A wavelet footprint is defined as scale space vectors obtained

by gathering all the wavelet coefficients around the discontinuities of the signal

that model discontinuities in piecewise polynomial signal exactly [47].
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Given a piecewise constant signal y with only one discontinuity at position k,

wavelet footprint 1km) is the scale-space vector obtained by gathering together

the largest wavelet coefficient from each node in the cone of influence of k.

This footprint 1km) can be written as

D} D1 D
13:0) _—_ [max(y(1)[k — ? : k + 7 L '

D
(L) __ __I:

], ,maa:(y [k 2 .k+ 2 I] (4.14)

. .th

where Di is duration of the cone of influence of l subspace at k. The cone of

influence (COI) is the region of the wavelet spectrum in which edge effects

become important and details of COl are found in [40].

We can expand the feature extraction method from the single channel

case to multi-channel data set when high correlations between neighboring

channels is present by concatenating a footprint from single channel together

with ones from other channels into one event vector, a long feature vector can

consolidate all the information in three domains: time, scale and space. Figure 4-

5 demonstrates how the method can be applied to multi- channel data.

4.3 Results

To evaluate the performance of the presented spike detection and the threshold

selection methods, simulated datasets with different SNRs were used. For
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comparison, the datasets were obtained from OSort, a spike detection and

sorting package [11]. Stimulated datasets were generated by using a database of
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Figure 4—5 Wavelet footprint extraction method for the correlated multi-

channel signal. (a) Multi-channel data. A spike event, a snapshot of neural

action potential across the multi channels, is extracted and forms a vector of

event. (b) Wavelet footprint extraction from an event vector. Different colors

indicate specific nodes of SWT.

150 mean waveforms taken from well-separated neurons recorded in previous

experiments. The random background noise is generated by selecting randomly

scaled spike waveforms from the database and added to the noise traces.

Identifiable spikes are added by simulating a number of neurons (3 in dataset 1
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and2, and 5 in dataset 3), with a renewal Poisson process with a refractory

period 3ms and a fixed firing rate between 1 to 10 HZ [11]. The proposed

detection algorithm was fully implemented in NeuroQuest, a software package for

neural data analysis, and all the results were obtained using NeuroQuest [55].

First, receiver operating characteristic (ROC) curves were plotted to

examine the detection accuracy of each method. The SNR was calculated as the

root-mean square (RMS) of the spike divided by the standard deviation of the

observation [11]. Three commonly used spike detection methods, single

amplitude detection (SAD) with a single threshold, absolute amplitude detection

(AAD) with both positive and negative thresholds, energy-based detection (EBD),

and the proposed wavelet detection (WD) were used for the comparison. For the

WD, the observation signal was transformed into wavelet domain using 5-level

SWT with a symlet 4 wavelet base. The sufficient statistic T was estimated from

D2 to D4 where D denotes a detail node of wavelet transform, because typical

action potentials have frequency range between 1 KHz to 5 KHz. From Figure 4-

6, SAD performed poorly, while WD performed better than the other methods in

the lowest SNR cases.

We compared two different threshold selection methods, the proposed

modified histogram equalization (MHE), and the MAD. For the comparison, we

used 3 and 5 times of the MAD, because other wavelet and energy based

detection methods typically estimate the detection threshold with 3 or 5 times of
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the MAD [11]. The results shown in figure 4-7 illustrate the robustness of MHE

method in low SNR cases.

We compared the spike detection performance with EBD. EBD was selected for

the comparison because of its robust detection performance from the ROC test

and the x2 distributed EBD samples that the MHE method can be applied to.
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TABLE 4-1. SPIKE DETECTION RESULTS OF EBD AND WD
 

 

 

Dataset3 (2986) SNR:5.4 SNR:2.7 SNR:1.8 SNR:1 .3

EBD + TP:100% TP:98.6% TP:91 .3% TP:76.1%

5 x MAD FP: 0% FP: 6% FP: 12% FP: 33%

EBD + TP:98.6% TP:93.5% TP:64.1% TP:54.4%

MH FP: 0% FP: 2% FP: 1% FP: 2%

WD + TP:96.4% TP:95.3% TP:93.5% TP:80%

5 x MAD FP: 1% FP: 5% FP: 48% FP: 54%

W0 + TP:96.4% TP:96.7% TP:75.4% TP:58.3%

MH FP: 1% FP: 1% FP: 1% FP: 3% 
 

Dataset 3 was used for the comparison. There are 2986 spikes in the dataset 3.

TP and FP represent true positive and false positive of detection, respectively.

FP rate is calculated by the number of false detection divided by the maximum

false detection with a detection threshold value at 0.

Four different combinations of two detection methods and two threshold

selection methods were tested. From the result shown in Table 4-1, we conclude

that W0 is robust to the noise and MH yields low false detection rate for high

positive detection rate. In the highest SNR case, however, the performance of

WD was lower than EBD. The reason was that a small number of overlapped

spikes were represented as a single spike in the wavelet domain.

We examined the spike sorting result using the wavelet footprint feature

set. Once spikes were detected, the wavelet footprint was obtained by extracting

a local maximum of each subspace within the cone of influence of the detected

spike. Since the typical duration of single spike is 1-2 ms, the range of the cone

of influence is K :i: D/2, where K is being a position of the detected local

maximum and D being total samples equivalent to 2ms. D in this study was 50

with 25kHz of the sampling rate.

66



 
(a) Raw dataset3 with SNR 5.4 in time domain
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(b) Corresponding Sufficient Statistic of subspace redundancy and different

threshold selection methods

(c) Flaw dataset3 with SNR 1.8 in time domain
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(d) Corresponding Sufficient Statistic in subspace redundancy and different

threshold selection methods

Figure 4-7. Sufficient statistic T of the segment of dataset 3 and the

different threshold selections Markers indicated the detection points with the

corresponding thresholds.
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The spike sorting result of two feature sets - the wavelet footprint and the

entire spike waveform - were compared. First, we tested the method with

simulation data set that consists of two independent recordings. For display

purposes, we selected only the largest two principle components of each feature

set. All the spike sorting results were obtained by fuzzy c-mean clustering

method. Both Channel 1 and channel 2 were recorded from three neurons. As

the confusion matrices in figure 4-8 demonstrated, both the wavelet footprint and

the temporal PCA achieved the similar accuracy of spike sorting results.

We applied the method to extracellular recordings from the barrel cortex

of an anesthetized rat. The sampling frequency of the data was 25 KHz. Total

1849 spikes were detected, and the spike sorting results with the temporal PCA

and the wavelet footprints were compared. The results of spike sorting are shown

in figure 4—9. Three clear clusters were identified in temporal PCA, while four

clusters were identified in the wavelet footprint. The identified clusters in the

wavelet footprint were more scattered than those found in the temporal PCA

which is not desirable. However it helped to separate two clusters which were not

separable in the temporal PCA.

Finally, we applied the method to the multi-channel data recorded in the

dorsal cochlear nucleus of an anesthetized Guinea pig. The wavelet footprint

feature set was obtained as described in section 4.2.4, and the temporal PCA

feature set was extracted from the concatenated spike waveform extracted from

the each channel of the array.
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TABLE 4-2. CONFUSION MATRICES OF THE SPIKE SORTING RESULTS

 

  

 

 

    

 

  

 

    

Channel Neuron Neuron Neuron Channel 2 Neuron Neuron Neuron

1 1 (181) 2 (159) 3 (25) 1 (173) 2 (190) 3 (32)

Classified 97.5% 1 (0) O Classified 100% 2 (7) 0

Neuron1 (95.1%) Neuron1 (100%)

Classified 2 (4) 98.3% 0 Classified 0 98% 0

Neuron2 (100%) Neuron2 (93%)

Classified 0 0 1 00% Classified O 0 100%

Neuron3 Q 00%) Neuron3 (100%) 
 

( ) indicates the sorting result using the wavelet footprint feature set. Confusion

matrices show the similar spike sorting results of both feature sets.

1 00V

   

  

     

0.1Sec
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Temporal PCA

Temporal PCA

Channel 1

5 5 Channel2 5

  

 

  

Wavelet PCA

5:

Wavelet PC

Figure 4-8 Clusters of temporal PCA and the wavelet footprint Raw signals,

feature spaces in temporal PCA and wavelet footprint, and templates of sorted

spikes. Channel 1 and 2 are recorded from three different neurons. Color

indicates links between spike templates and clusters.
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Temporal PCA Wavelet Footprint

Spike1 (108) Spike2 (262) Spike1 (107) SpikeZ (271)

3.2451 to ww

Spike?’ (1479) Spike3 (894) Spike4 (577)

Figure 4-9 Spike sorting results of spontaneous recordings from an

anesthetized rat. 3 units are identified in Temporal PCA, whereas 4 units are

found in wavelet footprint domain. Spike 3 in temporal PCA can be further

separated into two units, spike 3 and spike 4 in the wavelet footprint domain.

For comparison, we fixed the number of clusters 6 and used the fuzzy-c

mean clustering method. As figure 4—10 illustrated, the two different feature

spaces displayed similar distribution. This implies that wavelet footprint feature

set shares the similar variation with the actual spike waveform, because PCA is a

projection of the data onto the eigenvector that has the direction of the largest

variation in the data [27]. This is an indication of the effective feature extraction

performance of wavelet footprint that can achieve a significant amount of data

reduction, 90% of compression rate per spike sampled at 25KHz.
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Figure 4-10 Spike sorting result of the multi-channel dataset The color-

coded clusters match with the corresponding spike waveforms. The width of the

shaded area in the spike waveform indicates the variance. Clusters and the

sorted spike waveforms in two different feature spaces, temporal PCA and

wavelet footprint, have similar distribution. This result implies that the wavelet

footprint is the effective sparse representation of the data.

4.4 Conclusion

Sparse representation of the extracellular recordings is key to achieve reliable

spike detection in low SNR, and the wavelet transform exhibits advantages in

characterizing these signals. We presented two contributions: 1) a novel spike

detection method, capturing the correlations across multiple subspaces, and 2)

the threshold selection, modifying the distribution of the observation to maximize
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the separability between the noise and the signal. The proposed detection

method demonstrated improved detection performance in low SNFis.

We also have shown the simultaneous feature extraction method using

wavelet footprints, a sparse feature set that captures the information across

scales. Many different data sets including actual recorded data from anesthetized

animals were tested to verify the effectiveness of the method. The entire spike

waveform and the wavelet footprint feature set demonstrated very similar

distributions in PCA domain among many different data sets. Since the size of

wavelet footprint feature set is one tenth of the entire spike waveform, a massive

reduction in data transmission and storage can be achieved. The proposed

method also eliminates multiple processing steps in the conventional spike

sorting algorithm which is crucial step to implement the algorithm into a realtme

online sorting.
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Appendix A

NeuroQuest Input Data Structure

NeuroQuest works with a MAT file that contains a specific data structure.

The data file must have

data: A cell array that each cell contains 1 sec raw data.

BinWidth: Inverse of the sampling rate. 1/(sampling rate)

chanlnfo: channel labels. it is a raw vector. Ex) Four channel data with

channel index 1,3,5,7. chanlnfo = [1 3 5 7];

plotOption: a structure array that contains seven components (raw,

denoise, detection, stimulus, LFP, Spiketrain, and Trials). plotOption is a

set of flags that indicates types of data the file contains. If a data file has

only raw data, plotOption.raw is 1 and other values are 0.

fileDescription: a cell array that contains a short description of the data.

All the labels are case-sensitive and missing components will cause an error.
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