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ABSTRACT

TWILIGHT ZONE: PROTEIN SEQUENCE SEARCH AND CLASSIFICATION

By

Jiarong Guo

Homology search is important for gene annotation and classification. The emergence of

Next Generation sequencing techniques and metagenomics give homology search new

challenges. In this study, I evaluate the commonly used homology search tools: BLAST

and HMMER to find new genes (nirK) in our metagenomic data and classify closely

related genes (amoA and pmoA in UniProtKB). BLAST false positive problem is found

when comparing BLAST and HMMER searching results in metagenomic data.

Furthermore, I also describe methods which use phylogenetic trees to refine the results of

common homology search methods. We evaluated these methods with the above genes,

and find narrow phylogenetic sampling of genes (nirK) will limit sequence annotation

and some genes (amoA and pmoA) are probably misclassified.

Keywords: homology search; BLAST false positive; phylogenetic tree; sequence

misclassification
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Chapter 1

Background

1.1 Importance of homology search

Homologous proteins are proteins that are derived from a common ancestor. They often

have similar sequences, structures, and functions. Because homology is often inferred

from sequence similarity, accurate sequence annotations based on homology search is an

important area in biology. Most protein sequences are annotated by sequence similarity,

and only a small number of sequences are biologically verified by molecular experiments.

UniProtKB is a large database of protein sequences. Within the UniProtKB database, the

biologically verified sequences and those sequences that can be annotated significantly

by homology searches are stored in the SwissProt database, which is maintained

manually. The other sequences, which are annotated by automatic sequence homology

searches, are stored in the TrEMBL database (Wu, preiler et al. 2006). The size of the

SwissProt database (518,415 protein sequences) is much smaller than the TrEMBL

database (11,397,958 protein sequences), indicating that the majority of current proteins

in the UniProtKB database are annotated by automatic homology searches. Problems

with homology searching algorithms may result in incorrect protein annotations

throughout the database.

The emergence of metagenomics presents a new challenge to using homology searches to

annotate and/or classify sequences. Metagenomics is the study ofDNA recovered directly

from environmental samples, and it investigates the diversity and functional pathways

represented by microbial communities (Riesenfeld, Schloss et a1. 2004). Given the fact



that most microbes cannot be cultured in standard lab conditions, metagenomics is an

alternative approach to studying the microbial world. With the introduction of next

generation sequencing (NGS) techniques, metagenomic data have rapidly accumulated in

the last five years. The resulting large number of sequences and their characteristic short

lengths present challenges to sequence annotation.

The most popular homology searching methods use pairwise comparisons or profile

models (also known as position specific scoring matrices).

1.2 Pairwise comparison: BLAST

Pairwise comparison is used to find the best matching local or global alignment of two

sequences. Global alignment tries to align every position in both sequences and is more

effective for similar sequences of roughly equal size. It also has the advantage of being

able to align multiple sequences. Local alignment, on the other hand, compares all

segments of all possible lengths and attempts to align the similar sequence regions

together (Figure 1). These sequence regions could be sequence motifs, which are defined

as amino-acid or nucleotide patterns that might have a biological significance. It is more

useful to detect these similar sequence motifs within their larger dissimilar sequence

context. The Needleman-Wunsch algorithm is a well-known method for global sequence

alignment, while the Smith-Waterman algorithm is famous for performing local

alignment. The Smith-Waterman algorithm is more sensitive at finding remote

homologous sequences, but is not fast enough for large database homology search

(Needleman and Wunsch 1970; Smith and Waterman 1981; Altschul, Gish et al. 1990).



Global i r 1 ' . . .

Seq2 

Seql
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Seq2

Figure 1. Simple examples of global and local alignment. Global alignment aligns

sequences that have similar size and are generally similar over entire length. Local

alignment is good at finding small similar regions (including inversions) within whole

sequences that global alignment is not able to detect.

BLAST (Altschul, Madden et al. 1997) is the most popular bioinformatics tool for

searching homology ofDNA or protein sequence in big databases. It performs a local

alignment of a query sequence against a sequence in database. BLAST, by using a

heuristic method called the word method (Figure 2), is able to perform pairwise

alignments with significantly improved speed and efficiency without losing much

accuracy (Altschul, Gish et al. 1990). BLAST efficiently searches for matches between a

query and a reference by finding the hot spots of high scoring words in database

sequences. It avoids aligning the query sequence with a large portion of database

sequences that have no significant matches. In the word method, non-overlapping k-letter

subsequences (words) in the query sequences are listed. By default k, k is 3 for protein

and 11 for DNA. All k-letter words (20k for protein and 4k for DNA in total) are aligned

with words in the list and scored with a substitution matrix. The high scoring words



(neighborhood words) that score above a threshold T are collected. These neighborhood

words are the ‘queries’ actually searched in the database. When an exact match of one

word is found, the alignment is extended in both directions to find the ungapped

alignment with the highest score, higher than the bit score threshold. These ungapped

alignments, called HSP (high scoring pair), are reported by BLAST.

The BLAST Search Algorithm

query word (W = 3)

Step1 Query: TGSQSLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEAFV

P00 18

PEG 15

Step2 noig'iborhood :28 '1:

Egg :3 neighborhood

PMG 13 scorottroshoid

P80 13 (7" 13) 
 

 
 

PQA l 2

PQN 12

etc...

Step3 e - :

Query: BZSSLAALLNKCKTI’QGQRLVNQWIKQPLMDKNRIEERLNLVEABGS

+L.-\++L~v- TP ('r R-+ +\\'+ P+ I) + ER + A

Subject: 29OTL.»\SVLDCTVTI’MUSRMLKRWLIIMPVRDTRVLLERQQTIGA330

High-scoring Segment Pair (HSP)

Figure 2. The BLAST algorithm. BLAST applies a heuristic search method which finds

k-letter words (default = 3 in blastp) scoring at T (neighborhood score threshold) when

aligned to a specific k-letter word in the query and scored with a substitution matrix.

Words scoring above T (neighborhood words) are searched in database and then extended

in both directions until the score starts to decrease. The resulting locally optimal scoring



alignment is called HSP (high scoring pair) and later reported by BLAST if it has a score

higher than S (BLAST score cutofl) or E-value lower than a specified cutoff.

When pairwise sequence identity is high, putative homology and non-homology can be

distinguished by pairwise comparison methods including BLAST. However, pairwise

comparisons perform poorly on sequence alignments when the pairwise sequence identity

goes down to 20-35% (for protein sequence), the twilight zone of protein sequence

alignment (Rost 1999). The best scoring pairwise alignment becomes uncertain when

aligning two remote sequences with low identity. Thus, pairwise comparison performs

poorly at finding remote homologies in the twilight zone. It is not clear whether the

difficulty of using alignment methods in this zone is caused by a technical problem (i.e.,

detection of statistical significance) or is a special feature of evolution (Rost 1999).

1.3 Profile method: PSI-BLAST, HMMER, and Pfam database

The profile method, also called position specific scoring method, is another method

popularly used for homology searches in sequence databases. A profile is a probability

model, made from a multiple sequence alignment of several homologous sequences

(usually from the same protein family). In the profile, a position-specific scoring system

for insertions, deletions and substitutions is assigned, which shows that some columns of

the multiple sequence alignment are more conserved for several amino acids (or

nucleotides) while some are more open to gaps or indels (Figure 3). The profile

represents conserved or non-conserved sequence information of the multiple sequence

alignment. Compared to the Smith-Waterman algorithm, BLAST, or other traditional

pairwise alignment methods that use position-independent scoring parameters (like



BLOSUM62), profile methods are more precise and more sensitive to detect remote

homology (distantly related sequences). The use of profiles is more effective at capturing

important domains or motifs that are conserved in all query sequences (Gribskov,

McLachlan et al. 1987).
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Figure 3. Simple illustration of profile search. Profile with absolute frequency at each

position (column) is made from MSA (multiple sequence alignment). The profile is

transformed into a new one with relative frequency matrix or log likelihood matrix. The

new profile is aligned with every 7 base pair region of query sequence. The regions with

scores above cutoff are reported.

Profile methods were introduced in the late 19805. Similar methods like “flexible patterns”

(Barton 1990), “templates” (Bashford, Chothia et al. 1987) were introduced at the same

time. One such example is PSI-BLAST which implements the profile method in the

BLAST2 package. This program combines pairwise local alignment and the profile

method. The first round BLAST results are integrated into a profile sequence, then the



profile sequence is used as query in a second round search, and new hits are added to the

profile for the next round search. PSI-BLAST is much more sensitive than standard

protein-protein BLAST in picking up evolutionarily distant homology (Altschul, Madden

et al. 1997). Recently, PSI-BLAST has also been reported to have a homologous over-

extension problem (where it picks up many non-homologies) because the noise

introduced by one non-homology can be amplified through iteration (Gonzalez and

Pearson 2010).

In this study, I choose HMMER (Eddy 1998) as a representative tool implementing the

profile method. The basic advantage ofHMMER is that it uses a formal probabilistic

basis called the “hidden Markov model” to guide how all the parameters in a position-

specific scoring system should be set. The HMMER profiles constructed are called

“Profile Hidden Markov Models” (profile HMMs), which are statistical models of

multiple sequence alignment or even single sequences.

HMMER has a consistent theory for setting parameters in profile HMMS so it is

applicable to a large database of profile HMMs and large scale sequence analysis. The

' Pfam database is a large collection of protein domains represented by profile HMMs. It is

an important part of the Interpro annotation system and is one of the most popular

databases for protein sequence annotation and analysis.

In the past, profile HMM methods were computationally expensive. HMMER2 is about

100x slower than comparable BLAST searches. A new version ofHMMER, HMMERB,

combines the power of using a probabilistic model with high computational speed, is now

essentially the same speed as BLAST (Eddy 2009).



HMMER also has the function (hmmalign) to align multiple sequences to a profile HMM.

The hmmalign gives highly reproducible and high quality alignments when profile seeds

are well selected because all the sequences are aligned to the profile HMM. It is also

faster than pair-wise alignment methods like MUSCLE and CLUSTALW because

sequences are only aligned once each to the profile HMM (Wu and Eisen 2008). Thus,

this is a good alignment option for phylogenetic analysis of sequences from the same

family.

The shortcoming of the profile method is that the choice of seed sequence for profile is

critical (garbage in garbage out) and the method is affected by the quality of underlying

MSA (Madera and Gough 2002).

1.4 Objective of research

In this study, I evaluate the above described protein annotation methods (pairwise

comparison implemented by BLAST and profile method implemented by HMMER) to

find and classify proteins in metagenomic datasets. Our evaluations included: (1)

comparing the usage of BLAST and HMMER to find new environmentally-relevant

genes (nirK) in a soil metagenomic data and (2) the ability of BLAST and HMMER

packages to classify closely related genes (pmoA and amoA) in the UniProt protein

database. Furtherrnore, I also describe a method which uses phylogenetic trees to identify

sequence homology. I evaluated this method with the above genes and compared our

results to other protein annotation methods (HMMER).



Chapter 2

Comparing results of BLAST and HMMER nitrite reductase

genes (nirK) search

2.1 Introduction:

Nitrite reductase genes are a crucial part of global nitrogen cycle. NirK is such a gene and

is involved in denitrification. Denitrification is a microbe-facilitated process that uses

oxidized nitrogen as an alternative electron acceptor to produce energy in environments

where oxygen is limited. The end product of denitrification is molecular nitrogen (N2),

which may be released back to the atmosphere. Denitrification is also useful in

wastewater treatment and bioremediation, though it also causes the emission of a

greenhouse gas which may damage the ozone layer and/or cause nutrient loss in

agriculture (Tiedje 1988). Nitrite reductase catalyzes the reduction of nitrite to nitric

oxide (NO). NirK is a copper based metalloprotein.
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Figure 4. Nitrogen cycling (Madigan, Martinko et al. 2006).

2.2 Methods:

2.2.1 Samples/Metagenomic Datasets:

For our studies, I used 454 (Metzker 2010) sequenced metagenomic data of various soil

samples. A total of four soil samples were studied: two agricultural soil samples

(biological replicates) and two forest soil samples (biological replicates) from Kalamazoo,

MI (KBS LTER — Kellog Biological Station Long Term Ecological Research). For each

sample, DNA was extracted directly from the soil sample and sequenced with two 454

pyrosequencing runs (Figure 5). The average resulting sequence read length was about

250 base pairs, much shorter than read lengths generated by traditional Sanger

sequencing. I evaluated the ability to identify nirK genes using BLAST and HMMER.

10
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Figure 5. Eight datasets sequenced by roche 454 pyrosequencing.

2.2.2 Data Analysis: BLAST and HMMER comparison

The DNA reads in the metagenomic data were translated into amino acid reads. Six well

known nirK sequences from the FunGene (functional gene pipeline & repository) website

were used to blast against the various soil metagenomic datasets using default parameters

(E-value cutoff was 10). Additionally, the six nirKs were also used to generate a profile

HMM using HMMER3 and searched against our metagenomic data using default

parameters (E-value cutoff was 10) (Figure 6). I chose to use BLAST and HMMER

default parameters with a relatively relaxed E-value cutoff to include all possible real

nirK sequences. Subsequent filtering steps could be used to filter out more false positive

hits (see Chapter3)

11
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Figure 6. BLAST and HMMER comparison processes in metagenomic dataset.

To investigate the difference between BLAST and HMMER search results, I evaluated

which part of the query nirK sequence, domain region or non-domain region, blast hits

were matched to. Functional domains of m'rK (cu-oxidase, cu-oxidase_2, and cu-

oxidase_3) are shown on the FunGene website, and the multiple sequence alignment

12



(MSA) of these domains were downloaded from the Pfam database (stockholm format for

use with HMMER) and then built into HMMs of the domains. Domain regions of the

query seed sequence were located by searching the domain HMMs against the query seed

sequences at an E-value cutoff of 0.01. Then, BLAST hits were matched back to the

query seeds based on the start and end position of matches that are shown in the BLAST

output. If a BLAST hit had more than 20 amino acids matched to domain region of query,

I say it is a match to the domain region. If a query was not matched to the domain region,

I removed it from the BLAST and HMMER comparison (Figure 7). HMMER is

supposed to find hits matched to the conserved region, and thus, by removing non-

domain BLAST hits, I can make the results from BLAST and HMMER comparable. I

assume that if both BLAST and HMMER identify a sequence as nirK, the annotation is

likely to be correct. If a sequence is matched by BLAST but not by HMMER domain

search, I consider it is a false positive.

Domain

Query ———————[ " “ 1
 

 

 

 

BLAST;

hits

 

 

 

Figure 7. BLAST hits and domain mapping. HMMER is good at finding conserved

regions (domain), so I are interested in BLAST hits matched to domain region (red lines)

in order to compare results from two tools.
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2.3 Results and conclusion:

mOnly Only

 
datasetl

dataset2

Figure 8. BLAST and HMMER search comparison. “BlastOnly” are the hits obtained

only by BLAST; “hmmOnly” are the hits obtained by HMMER only; “shared” are

overlap of BLAST and HMMER hits. Search results from both datasets show BLAST

gets more hits than HMMER search.
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Figure 9. Distribution of identities in BLAST search result of six well known nirKs

against datasetl and dataset2.

In BLAST and HMMER search comparison (Figure 9), BLAST has 29 hits while

HMMER has 8 hits from dataset, and BLAST has 36 hits while HMMER has 12 hits

from dataset2. I can see BLAST gets more hits than HMMER, and many BLAST hits are

in the twilight zone (20%-35% identity) (Figure 9), suggesting that there may be false

positive hits in the BLAST result. By matching the BLAST hits back to the query

sequence, I were able to see whether the hits are matched to a domain (functional) region

or non-domain (non-functional) region (Figure 10). The total number of false positive

hits using this method was then calculated (Table 1).

15
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Figure 10. All BLAST hits matched back to a query nirK. Query] is a well known nirK

seed. The red bands show the domain region of queryl. BLAST hits are shown as black

(not found by HMMER domain search) and green (also found by HMMER domain

search).

For nirK searches in our metagenomic data, the FP rate does not change much when the

E-value cutoff gets lower (more stringent) (Table 1, Figure 11).
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Table l. BLAST FP (False Positive Rate) at different E-value cutoffs.

 

 

 

 

 

 

 

    

Cutoff A B FP

10 I9 27 0.587

l 13 15 0.536

0.1 9 14 0.609

0.01 6 10 0.625

0.001 6 9 0.600

0.0001 5 9 0.643

 

A is BLAST hits matched to domain region and also found by HMMER domain search;

B is BLAST hits matched to domain region but not found by HMMER domain search. FP

= B/ (A+B).
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Figure 11. E—value distribution of BLAST hits matched to domain region (blue, A+B in

Table 1) and a subset that were also found by HMMER domain search (green, A in Table

1). BLAST hits matched to domain region (blue) has similar E-value distribution shape as

its subset that are also found by HMMER domain search, which indicates the BLAST

false positive rate (FP) does not change much when E-value cutoff is changed.

For this part of study, I found BLAST might give false positives by comparing BLAST

and HMMER nirK search result in metagenomic data. Many BLAST hits had their

alignment identity in the twilight zone of sequence alignment (20%-35%). When I treated

the overlap of BLAST hits and HMMER hits as true positive hits, the false positive rate

did not change much when E-value cutoff was changed. This indicated that two different

18



tools, BLAST and HMMER, might share some same characteristics, which needs further

study.

It is important to note that the significance of hits, E-value, is not considered here, and

this should be studied more in the future. For example, if I have a BLAST hit matched to

the query’s domain region but the E-value is very high (>10), the hit is probably a false

positive. However, if a low (stringent) cutoff were chosen to reduce false positives,

remote homologs may be overlooked. When searching for novel genes or remote

homologs, picking a high E-value cutoff and then using other methods to filter for better

ones may be a good strategy.
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Chapter 3

Using phylogenetic structure for refining genes identifications

3.1 Introduction:

Pairwise comparison and profile methods are commonly used for homology evaluation,

but they have their weaknesses, i.e., BLAST has poor performance for sequences within

the twilight zone (20-35% sequence identity) (Rost 1999) and profile methods rely

heavily on seed sequences for making a statistical profile (Loewenstein and Linial 2008).

Moreover, homology searching annotation methods may give inaccurate functional

annotations for paralogous sequences (homology through gene duplication) or

orthologous sequences (homology through speciation) which may have different

functions (homolog with different functions). Comparative genomics studies have given

some useful methods to address these challenges, such as gene neighboring methods,

protein domain architectures, and tree clustering methods (Singh, Doerks et al. 2009).

Here, I focus on the tree clustering method to refine gene identification methods for more

accuracy.

Phylogenetic trees show evolutionary relationships among different species or molecular

sequences based on their phenotype or sequence similarity. Here I focus on molecular

sequence phylogenetic trees. There are two types of trees: rooted and unrooted. In a

rooted tree, a unique node represents the most common ancestor of all species or

molecular sequences at the leaves under this node. In an unrooted tree, the relatedness of

branch nodes and leaves is illustrated without assumptions about ancestry. The root can
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be set at any part of the unrooted tree if no other information is provided. Using an

uncontroversial out-group is the most common approach to make a rooted tree. The out-

group should be distantly related to the sequence of interest. If too distant, it will add

noise to the phylogenetic analysis.

Three types of methods are commonly used to construct trees: distance matrix, maximum

parsimony, and maximum likelihood.

The distance matrix method calculates all possible pairwise distances from a multiple

sequence alignment. It includes neighbor-joining and UPGMA (Unweighted Pair Group

Method with Arithmetic mean). The former produces unrooted trees and does not assume

constant rate of evolution, while the latter produces rooted trees and does assume

constant rate of evolution. The distance matrix methods are generally computationally

fast and thus are good for large sequence data analysis (Felsenstein 2004; Mount 2004).

Neighbor-joining tree is the one used my thesis. Figure 12 shows the basic idea of

neighbor-joining process.
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Figure 12. Simple illustration of neighbor-joining process. A, B, C and D stand for 4

sequences. Their pair wise sequence similarities are shown in tables. In every step, two

sequences with highest similarity are first joined.

The maximum likelihood method is a more advanced method, which applies an explicit

model of evolution, such as Jukes—Cantor or generalized time-reversible (GTR) models of

nucleotide evolution and the JTT (Jones-Taylor-Thornton) model of amino acid evolution,

to tree estimation. It is statistically well founded, but computationally much more

expensive than the distance matrix method, and so is not fast enough for phylogenetic

analysis of a large number of sequences (Felsenstein 2004).
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The Tree Clustering Method

The tree clustering method is a systematic approach to find undetected relations among

homologous sequence families or subfamilies based on sequence clusters in a

phylogenetic tree (Loewenstein and Linial 2008; Singh, Doerks et al. 2009).

The ProtoNet database (Kaplan, Friedlich et al. 2004) is a successful application of the

tree clustering method. It provides protein classification based on a phylogenetic tree that

shows hierarchical organization of the whole protein sequence space and evolutionary

relatedness among protein families. The tree is constructed by a modified UPGMA

algorithm, which can handle all the UniProtKB sequences. High correspondence is

shown between clusters in the tree and protein families classified in other databases, such

as Pfam and SCOP. Further, overlooked and new functional connections between

families and sequences can be discovered in the tree, because it provides a global view of

the protein space hierarchy from close subfamily proteins to distantly related superfamily

proteins (Loewenstein and Linial 2008).

There are several reasons why the tree clustering method reveals relations undetectable

by profile methods. First, tree clustering is based on pairwise comparisons of all family

members (in a distance matrix tree), while in the profile method, families are represented .

as a single statistical model (Gribskov, McLachlan et al. 1987). Similarities expressed by

only some remote family members can be detected in tree but are overlooked by profile

method if the remote members are not included in the profile seeds (Loewenstein and

Linial 2008). Second, remote homologs picked up in the tree can help group family

members. Third, the profile method relies too much on the quality of the underlying MSA
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(multiple sequence alignment), which is decided by choice of seed sequences and MSA

algorithm. The MSA tools also have the MSA uncertainty problem (different tools give

different alignments) (Wong, Suchard et al. 2008) when aligned sequences are distantly

related. Examples of hypothetical tree clustering methods are shown in Figures 13 and

14.
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Figure 13. A hypothetical sub-tree of tree of whole protein space with cluster F1, A and

F2 in a specific arrangement.
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Figure 14. A hypothetical sub-tree of tree of whole protein space with cluster Fl , F2 and

A in a specific arrangement.

In Figure 13, hypothetical subfamilies F1 and F2 are known to belong to the protein

family, F. Sequences in subfamily A are sequences from a metagenomic dataset with no

significant matches to known sequences in a reference database. Because of its position

in the tree between known subfamilies, I can infer that A is a subfamily of F. This

example demonstrates the advantage of the tree clustering method (a global view of all

sequence similarities). If using HMM profiles, and only some well known sequences are

picked to make a profile HMM, the sequences in A may not be detected by that profile.

In Figure 14, F1, F2 are the same hypothetical subfamilies as described in Figure 13.

The position of subfamily A is now outside the known families. I cannot infer

confidently A is a new subfamily of F due to the relative position of A, F1 and F2 in the

tree though there is still a possibility.



Although using tree clustering can identify functions that are undetectable by other

methods, this method also has it shortcomings. Like profile comparison methods, the tree

is constructed based on MSA and thus errors or uncertainties used in MSA construction

may result in inaccurate tree building.

In this chapter, “tree squeezing method”, an application of the general tree clustering idea,

was used to refine the possible 3055 nirKs down from FunGene website. I found the

phylogenetically narrow known nirKs limited the application of tree squeezing method.

3.2 Methods:

Using the tree squeezing method to find more nirK genes:

I evaluated the use of the tree clustering method, also called the tree squeezing method, to

identify true nirK genes from those listed on the FunGene website. The nirK genes listed

on FunGene are based on a profile matching of sequences in the NCBI non-redundant

database which match a well-annotated seed model of 6 well-known nirK genes.

Building the tree

In order to build a tree for this method, I initially needed to identify additional “known”

sequences (in addition to the six seed sequences). To do this, I searched the six seed nirK

profile HMM (see Chapter 1) against all 3,055 nirKs listed on the FunGene website.

From the distribution of E-values of all hits, I selected a cutoff (arrow in Figure16) and

treated hits with E-values lower than the cutoff as known nirKs and hits with E-values

higher than the cutoff as potential nirKs. As a result, 124 nirKs were picked as known,
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and the other were marked as unknown (Figure 15). All 3,055 sequences were aligned to

the 6 seed nirK profile using the hmmalign function in the HMMER package. The MSA

was then used to construct a neighbor-joining tree by QuickTree (Howe, Bateman et al.

2002). QuickTree, an implementation of the neighbor-joining algorithm, can quickly

construct phylogenetic tree of thousands of sequences.
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Figure 15. E-value distribution of 3055 nirKs from FunGene (blue) and 32 sequences

from tree squeezing method (green). Sequences on the left of P (stringent cutoff) are

treated as known nirKs.

In the tree shown in Figure 16, if an unknown sequence L or a branch node N is

neighbored with a known nirK or a node of known nirKs, and there is another known
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nirK outside the neighborhood, I can infer that L or the sequences in N are more likely to

be real nirKs. A python script was written to automatically find such sequences whose

function could be “tree squeezed” out of sequences with known functions.

 

~ Known nirK]

 

Unknown Sequence

(potential nirK)

  

 
~ Known nirKZ
 

 

Two requirement:

1) Find a neighboring known nirK

2) Find one more knownnirK outside the neighborhood   
 

Unknown sequence is squeezed and more likely to be real nirK
  

Figure 16. Definition of tree squeezing method.

3.3 Results and Conclusion:

Using the 124 “known” nirKs in our tree, I was able to squeeze out another 32 sequences

as potential nirK genes. A closer look at their E-value in HMMER 6 seed profile search

output showed that there was variations in E-values, which indicate the tree squeezing

method gave results different from HMMER search.
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Figure 17. A hypothesis explaining why only small number of sequences is squeezed.
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Green: known 124 nirKs

 
Figure 18. Phylogenetic tree of all 3055 FunGene nirK sequences. The 124 known nirKs

are marked green. The tree shows the 124 nirKs treated as known are not

phylogenetically diverse.

An explanation for the small number of squeezed sequences (32) is that the 124 known

nirKs are not phylogenetically diverse and clustered in a small part of the whole tree

(Figure 17). The position of 124 known nirKs (green) in tree in Figure 18 supports this

conclusion (Figure 18).

Though I can use the tree squeezing method to add confidence to the conclusion that the

32 squeezed potential nirK genes are valid, further validation with biological experiments

is required.
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Chapter 4

Classification of amoA and pmoA

4.1 Introduction:

Methanotrophs are a special group of bacteria utilizing methane as the only carbon and

energy source. They are commonly found at the interface of aerobic and anaerobic

environments (i.e., hot spring), and are a very important part of the global methane cycle

(Oremland and Culbertson 1992). Methane monooxygenase (MMO) is the enzyme that

catalyzes methane oxidation. Two different types ofMMOs have been found, the soluble

form (sMMO) in cytoplasm and the particular form (pMMO) bound to the membrane.

Despite the functional similarity, they do not show any sequence similarity. The switch

between their expressions is regulated by a copper ion (Cu2+) (Stanley, Prior et al. 1983).

Only pMMO is present in all methanotrophs.

Ammonia monooxygenase (AMO) is the enzyme that catalyzes oxidation of ammonia,

which is crucial for the global nitrogen cycle. AMO is found only in ammonia oxidizing

nitrifying microbes (Holmes, Costello et al. 1995).

pMMO and AMO are both integral membrane proteins, having similar sequences and

structures and thought to be evolutionarily related, despite their different physiological

functions. PmoA and amoA are genes coding the alpha subunit ofpMMO and AMO

respectively. They are around 450 bp long and highly conserved (McTavish, Fuchs et al.

1993; Semrau, Chistoserdov et al. 1995). Their protein products are grouped in the same

Pfam domain family called AMO (PF02461) and the same family (IPR003393) in
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InterPro database. PmoAs are found in 01- and y-Proteobacteria while amoAs have been

detected in B-, y-Proteobacteria and archea. Some amoAs in y-Proteobacteria are more

similar to pmoAs from y-Proteobacteria than other amoAs (Holmes, Costello et al. 1995)

suggesting that these two genes share a common ancestry.

Given their sequence similarity, BLAST and HMMER3 fail to separate these two very

closely related genes. I evaluate the resolution of the tree clustering methods to classify

pmoAs and amoAs.

4.2 Data:

Initially a collection of well-known sequences for BLAST and HMMER searches was

created:

Eight well-known pmoA seed sequences were downloaded from FunGene, and six amoA

seed sequences from well studied ammonia oxidizing nitrifying bacteria were

downloaded from UniProtKB database. These genes were from species including

Nitrosomonas europaea ATCC 19718, Nitrosomonas eutropha C-7I, Nitrosospira

briensis C-128, Nitrosovibrio t'enuis Nvl , Nitrosococus oceam' ATCC 19707, and

Nitrosospira multiformis ATCC 25196. The whole UniProtKB database release 2010__05

(including Swiss-Prot and TrEMBL) was also downloaded.

Sequences are downloaded from UniProtKB to build a tree for tree clustering:

Sequences annotated as amoA (n = 176) from cultured were downloaded from

UniProtKB. The keywords for the search were: (amoA AND (namezammonia OR
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name:amoA) NOT gene:amoB NOT gene:amoC AND gene:amoA NOT

taxonomyzenvironmental NOT organisszali).

The 10,470 sequences annotated as amoAs that were sequenced directly from

environmental samples (not cultured) were downloaded from UniProtKB. The keywords

for the search were: (amoA AND (namezammonia OR namezamoA) NOT gene:amoB

NOT gene:amoC AND gene:amoA AND taxonomyzenvironmental).

Another 233 sequences annotated as pmoAs from other research using the culturing

methods were downloaded from UniProtKB. Keywords for the search were: (pmoA NOT

taxonomyzenvironmental AND (namezmethane OR nameszoA) AND genezpmoA).

Finally 3062 sequences annotated as pmoAs that were sequenced directly from

environmental samples (not cultured) were downloaded from UniProtKB using keywords:

(pmoA AND taxonomyzenvironmental AND (namezmethane OR nameszoA))

4.3 Methods:

4.3.] BLAST and HMMER comparison (Figure 19)

The 6 amoA seed sequences and 8 pmoA seed sequences were separately searched against

UniProtKB database using NCBI-BLAST blastall with parameters: -p blastp -v 100000 -

b 100000 -e 10.

Also, the 6 amoA seed sequences and 8 pmoA seed sequences were separately made into

profile HMMs by hmmbuild in HMMER3. The two resulting HMMs were searched

using HMMER against UniProtKB database using hmmsearch with default parameters.
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Figure 19. BLAST and HMMER comparison flow chart.

4.3.2 Building the tree

First, the 176 sequences annotated by UniProtKB as amoAs and 233 sequences annotated

as pmoAs from cultured bacteria were combined and aligned by hmmalign in HMMER3

using the AMO Pfam domain family (PF02461) profile HMM. The alignment was made

into a neighbor-joining by QuickTree.

Second, all 10,646 sequences annotated by UniProtKB as amoAs and 3,295 sequences

annotated by UniProtKB as pmoAs from both culturing method and environmental

samples were combined and aligned by hmmalign in the HMMER3 package using AMO

Pfam domain family profile HMM. The alignment was made into a neighbor-joining tree

by QuickTree.
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Figure 20. Flow chart of constructing phylogenetic tree of amoAs and pmoAs.

4.4 Results:

4.4.] The use of BLAST and HMMER to differentiate between amoAs and pmoAs in

UniprotKB

BLAST and HMMER search results against the UniProtKB database showed that

sequences of amoA and pmoA could not be separated effectively (Figure 21-24). For

example, in Figure 21, BLAST hits for amoA consisted of both sequences annotated as

amoA and pmoA in the UniProtKB database. If a very low E-value was used, amoAs

identified by BLAST were largely also annotated as amoAs in UniProtKB; however,

using very stringent E-value cutoffs resulted in less sequences identified in general. Due

to the high similarity of these genes, BLAST and HMMER did not have enough

resolution to separate these amoA andpmoA sequences in UniProtKB.
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Figure 21. E-value distribution ofamoA BLAST hits. Blue is overall E-value distribution

ofamoA BLAST hits. Green is a subset of overall BLAST hits that are annotated as

amoA in UniProtKB. Red is a subset of overall BLAST hits that are annotated as pmoA in

UniProtKB.
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E-value distribution of amoA HMMER hits
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Figure 22. E-value distribution of amoA HMMER hits. Blue is overall E-value

distribution ofamoA HMMER hits. Green is a subset of overall HMMER hits that are

annotated as amoA in UniProtKB. Red is a subset of overall BLAST hits that are

annotated as pmoA in UniProtKB
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E-value distribution ofpmoA BLAST hits
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Figure 23. E-value distribution ofpmoA BLAST hits. Blue is overall E—value distribution

ofpmoA BLAST hits. Green is a subset of overall BLAST hits that are annotated as

amoA in UniProtKB. Red is a subset of overall BLAST hits that are annotated as pmoA in

UniProtKB.
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Figure 24. E-value distribution ofpmoA HMMER hits. Blue is overall E-value

distribution ofpmoA HMMER hits. Green is a subset of overall HMMER hits that are

annotated as amoA in UniProtKB. Red is a subset of overall HMMER hits that are

annotated as pmoA in UniProtKB.

4.4.2 Using the tree clustering method to differentiate amoAs and pmoAs

To effectively use the tree clustering method, I needed to identify a significant number of

“known” amoA and pmoA sequences. Thus, I treated sequences from culturing methods

as known sequences and those sequenced directly from environmental sample as

unknown. The reasons supporting this assumption were: 1) most well known amoAs or

pmoAs are obtained by culturing ammonia oxidizing species or methanotrophic species
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and the culturing process is actually a screening step for ammonia oxidizing or

methanotrophic species and thus increased the confidence that these annotations are real;

and 2) environmental sequences, especially those sequenced by next generation

sequencing techniques, are more likely to be incorrectly annotated because they are

sequenced directly from environmental samples, without culturing first.

The tree built from “known” amoAs and pmoAs (sequences from culturing method)

showed amoAs and pmoAs separated very well (Figure 25). There are also segregations

for different taxonomy groups within amoAs orpmoAs. This separation is promising

evidence that I can apply the tree clustering method for amoA andpmoA classification.

40



Tree of known amoAs and pmoAs

Green : amoA \

white: pmoA

 
Figure 25. Tree of known amoAs and pmoAs. The green colored sequences are amoAs.

The others are pmoAs. Tree is made from known amoAs (from culture) and known

pmoAs (from culture). AmoAs and pmoAs separate well on tree though a small cluster of

amoAs from y-proteobacteria are closer to pmoAs from y-proteobacteria than other amoAs

(referenced by an arrow in Tree).

Using all amoAs and pmoAs (sequences from both cultures and environmental samples)

to build a tree, I observed that there was, in general, good separation of amoAs and

pmoAs (Figure 26). However, somepmoAs were located on amoA tree clusters, and

some amoAs were located onpmoA tree clusters suggesting possible incorrectly

annotated sequences.
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Tree of all amoAs and pmoAs

Green : amoA

white: pmoA

 
Figure 26. Trees of all amoAs and pmoA5. Tree is made from all amoAs and pmoAs

(including those from culture and environmental samples). The majority of amoAs and

pmoAs separate from each other though some pmoAs are scattered in amoA clusters and

some amoAs are scattered in pmoA clusters.

4.4.2 Using low nodes and high nodes for tree clustering

To further classify unknown sequences (sequenced directly from environmental samples)

based on the tree clusters, I implemented a low node method and a high nodes method to

attempt to group together amoA and unknown sequences or pmoA and unknown

sequences in neighboring tree branches.
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1) Using the low node method, I identified the low node as the rightmost (closest to

leaves) branch nodes that only contain a list of sequence types. The list can be any

combination of amoA, pmoA, and unknown sequences. To identify amoA and pmoA,

respectively, I was interested in amoA low nodes that contain only known amoAs and

unknown sequences, and pmoA low nodes that contain known pmoAs and unknown

sequences.

2) The high node method uses high nodes which are defined as the leftmost (furthest

from leaves) branch nodes that only contain a list of sequence types. For identify amoA

andpmoA using the high node method, I was interested in amoA nodes containing only

known amoAs and unknown sequences, and pmoA high nodes containing knownpmoAs

and unknown sequences. Examples of using both the low node and high node methods to

identify an unknown gene are shown in Figure 27.

The low node method gave more accurate classification, while the high node classified

more unknown sequences but with less accuracy. Since unknown sequences outside the

low node can also be included in high node (unknown2 of Tree A in Figure 27), the high

node method is able to classify more unknown sequences and the sequences classified by

low node method is a subset of those classified by high node method.
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Figure 27. Simple example trees for super node analysis. Known amoAs are marked as

amoA 1, amoA2, KnownpmoAs are marked as pmoA 1, pmoA2, Environmental

sequences are treated as unknown sequences for classification. Those environmental

sequences annotated as amoAs in UniProtKB are marked as amoA_envl, amoA_env2,

Those annotated as pmoAs in UniProtKB are marked as pm0A_env1 , pmoA_env2, In

Tree A, the low node ofamoA and ‘env’ (environmental) sequence is N]; the high node

of amoA and ‘env’ sequence is N2, which include one more ‘env’ sequence (amoA_env2)

than low node method. In Tree B, the low node of amoA and ‘env’ sequence is N] and

N2, which shows pmoA_env1 may be incorrectly annotated; the high node ofamoA and

‘env’ sequence is N3, which includes one more ‘env’ sequence than low node method.

The low node ofpmoA and ‘env’ sequence is N4; the high node ofpmoA and ‘env’

sequence is still N4.

As Table 2 shows both low node and high node methods have sequences classified

differently from UniProtKB annotation. High node method was able to classify the most

unknown sequences (12,980/13,532), while low node method classified only a small

number of sequences (528/13,532).
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Using the low node, a total of 291 and 23 7, respectively, could be classified as potential

amoAs orpmoAs (Table 2). Using the high node, a total of 10,242 and 2,738, respectively,

could be classified as potential amoAs orpmoAs (Table 2). Several sequences identified

by the tree squeeze method disagreed with annotations in UniProtKB and require further

investigation.

Table 2. Numbers of sequences classified by various methods.

 

 

 

 

 

Low Node High Node

amoA pmoA unclassified sum amoA pmoA unclassified sum

Total 291 237 13004 13532 10242 2738 552 13532

UniProt

289 7 10174 10159 3i 280

amoA

UniProt

2 230 2830 83 2707 272

pmoA         
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4.4.3 Investigating sequences identified by tree clustering that disagreed with

UniProt Annotations

Comparing sequence alignments

When checking the alignment of some UniProtKB amoAs that agree with low node

method (correctly classified) and UniProtKB pmoAs (incorrectly classified), I found that

they are very similar and I could not recognize amoAs and pmoAs from each other based

on the alignment alone (Figure 28)
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Figure 28. A part of the alignment of two correctly classified amoAs (land 2), two

incorrectly classified pmoAs (3 and 4) found by low node method, two well known

amoAs (5 and 6) and two well knownpmoAs (7 and 8). Alignments shows all the two

sequences are very similar and I cannot recognize amoAs from pmoAs on the alignment.
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I evaluated the position of the possibly misclassified genes in the tree. In general, I

expected that either (1) a possibly misclassifiedpmoA was in a cluster of known or

unknown amoAs or (2) a possibly misclassified amoA was in a cluster ofpmoA3. By

investigating the nodes surrounding the sequence in question, I hoped to better

understand the misclassification.

1) For example, in Figure 29.A1, the known neighboring amoA, amoA_bacBlO2, helped

the classification ofpmoA_X1 805 and the surrounding amoAs (known or unknown)

strengthened the possibility that this may be a misclassification ofpm0A__X1 805 in the

UniProt database. Note that the position of this known amoA was also evaluated in

relation to other known amoAs in the tree of all known amoAs and pmoAs to further

support this hypothesis (Figure 29.A2).
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Evaluating sequence positions in tree

  

 

 

 
 

 

  
 

 

 
 

 

 
 

 

  

pmoA_Xl974

meA—XI476 ’ —— amoA_bacB62

amoA X8934

— —- A b B50

_ amoA_X6505 am - 3“
amOA xs544 —" am0A_baCB99

amoA:X8791 amoA_bacB72

__ amoA_X7715 amoA_bacBlUZ

amoA_X6967 amoA_bacB96

amoA_bacB128 “mA hale40

pmoA_X1806 ’

[ pmoA_X1805 4‘— —- ‘_amoA_bacBlll

amoA_bacBlOZ — ——amoA-bacBl3

pmoA_X] 172 amoA_bacBSZ

amoA_X7695

A1 A2

 

[- pmoA_X2865 —]__{—_— amoA_bacB120

amoA_bacBl35
L

pmoA_X1400
amoA_bacG-I 

  

 

  

 

pmoA_X2574 amoA_arc7

amoA_arc4

pmoA_Xl676 A———j: “mm-ml

pm0A_.\’2374 <-— amoA_arc3

amoA arc2

o111ur\__um.u-r

____:amoA_arc6

pmoA_XZ031 a moAfla rcS

pmoA_bacCQ

B1 B2

Figure 29. Closeups of two possibly misclassified pmoAs in tree of all amoA andpmoA

(A1 and B1) and two known amoAs (green and grey shaded) that help classify the two

possibly misclassified pmoAs in tree of all known amoAs and pmoAs.
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2) Another example of a possible misclassified gene was pmoA_X2374 which was in a

cluster ofpmoAs (known or unknown) (Figure 29.81). Looking more closely at its

neighboring amoA, amoA_bacG4, I see that it was located in a big cluster of both amoAs

and pmoAs of the tree of known amoAs and pmoAs. In this situation, I had to be skeptical

about whether amoA_bacG4 was correctly annotated. This example highlighted the need

for more reference sequences before more conclusions could be drawn (here the known

amoAs or pmoAs still may be incorrectly annotated).

4.5 Conclusion:

In general, this study found that tree clustering method gave higher resolution for

separating two genes with similar sequences but different functions, such as amoA and

pmoA. The low node method gave better accuracy in classification, while the high node

method classified more unknown sequences with lower but still reasonably good

accuracy provided by the tree hierarchy. The high node gave more aggressive assertions

that the unknown sequences outside lode nodes are also classified with lower confidence.

Meanwhile, the difference between tree clustering method classification and UniProtKB

annotation showed that some of the annotations of amoAs and pmoAs in UniProtKB were

probably wrong, especially those of genes sequenced directly from environmental

samples. These sequences need further computational or biological verification.

The stronghold of the tree clustering method is also its shortcoming—it is based on an

underlying tree. Problems in multiple sequence alignments and tree constructing tools
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will results in incorrect classification with the tree clustering method. An example of this

would be sequences containing multiple domains which are difficult to cluster on a tree.

I used the tree clustering method to differentiate amoA andpmoA mainly for family

classification. However, I could also study the evolutionary relationship ofamoA and

pmoA. Significant efforts have focused on quantification of these genes in samples due to

their ecological importance (Webster, Embley et al. 2005; De Corte, Yokokawa et al.

2009). A close evolutionary relationship has been inferred based on their high sequence

similarity, but their evolutionary mechanism still needs further study. The multiple amoA

orpmoA copies within individual strains have resulted from gene duplication events

(paralogous evolution) not horizontal gene transfer (Klotz and Norton 1998). But the

reason that initiated the paralogous evolution and the time when paralogous evolution

started with respect to speciation is still unknown. What is the evolutionary relationship

between amoA and pmoA, convergent or divergent? I may use comparative genomics,

phylogenetics, or other methods to get a better understanding of their evolution

mechanism.
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Chapter 5

Conclusions and future work

5.1 Conclusions:

5.1.1 Biology is increasingly reliant on sequence similarity with the use of new

sequencing technology, and sequence similarity may not give accurate gene

annotations.

When using BLAST and HMMER to identify nirK genes in a metagenomics dataset, I

found that BLAST hits could be unreliable, with several false positives within the

BLAST results. Using these tools to classify amoA and pmoA, these genes could not be

differentiated due to sequence similarity. The examples shown in this study exemplify

that computational methods infer homology from similarity, but similarity does not

necessarily mean homology. A major challenge to using these methods is a lack of a

standards or controls to assess the “truth”. Biological experiments can be used but are

expensive and take long time. For most genes, there are only a few sequences which are

biologically verified. I should be cautious when using annotation tools and consider the

possibility of incorrect annotation.

5.1.2 Annotations are sometimes incorrect.

The classifications ofamoA andpmoA genes in our tree which disagree with UniProt

annotations highlight the possibility of incorrect annotations in reference databases.

Homology searches based on incorrect annotations will result in future incorrect
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annotations. Tools which could evaluate the accuracy of annotations would be very

useful for making sound biological conclusions from homology searches.

5.1.3 Narrow phylogenetic sampling is a problem.

Our ability to detect novel nirK and reliably classify pmoA/amoA is strongly affected by

the lack of diverse nirK/pmoA/amoA. Tools which could highlight important “sequencing

gaps” would be useful in providing more resolution to maximize gene discovery using

homology searches to annotate sequences.

5.2 Novel approaches:

Here I used the tree clustering method as a filtration step downstream of initial homology

search. The general tree clustering idea, which assumes more similar sequences are

closer in a tree, is already widely used (Loewenstein andLiniaI 2008; Singh, Doerks et al.

2009). In this study, I presented and evaluated some new “tricks” for discovering

“sequence closeness” including “tree squeezing”, “low node and “high node” methods to

complement other methods such as BLAST or HMMER. These methods helped refine

the result of BLAST and HMMER search and found possible misclassification of current

reference database.

5.3 Future directions:

A phylogenetically diverse set of well known sequences of a gene is very important for

annotation and classification of new sequences. Sequences that could contribute

substantially to annotation and classification can be picked out from the phylogenetic tree

for further biology experiment verification.
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I present here tools evaluated with specific examples. A natural extension of this work

would be to use these tools for other datasets, metagenomic and otherwise. For example,

the low/high node methods used here could be applied to the classification of other

protein families with closely related subfamilies such as those that can be found in the

ProtoNet database.

The tree clustering method may also be a method to identify novel groups of genes within

a family. For example, big nodes close to the root with all unknown or new sequences

are possibly new subgroup of the family.

5.4 Parting Thoughts:

A repetitive theme throughout this study was that tools that are currently used, whether

BLAST, HMMER, or even a reference database, can often give the incorrect results

which could result in wrong conclusions. Understanding the limits of the tools and their

underlying methodology is important in their effective use. Much like experimental

methods, using computational tools requires preliminary thought and planning.
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