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ABSTRACT

CHARACTERIZATION AND PROGRESSIVE DAMAGE ANALYSIS OF QUASI-

THREE-DIMENSIONAL COMPOSITES

By

Liangkai Ma

The applications of fiber-reinforced polymer composites are gaining accelerated

growth in aerospace, automotive, and emerging energy industries. This dissertation

discusses issues concerning the characterization and progressive damage analysis of an

innovative quasi-three-dimensional (Q3D) composite using finite element methods.

Firstly, the average field homogenization method based on finite element analysis of

representative unit cells is implemented in ABAQUS/Standard to compute the effective

stiffness of the Q3D woven composite and compare with the conventional laminated and

woven counterparts. Particular attention is given to the optimal choice of geometric

parameters for achieving high in-plane stiffness in the Q3D woven designs. Secondly,

double cantilever beam (DCB) and end-notch flexure (ENF) tests are simulated using the

cohesive zone model to investigate the progressive inter-laminar delamination growth

through the undulation regions in woven composites. The effects of undulation on

delamination propagation in woven designs are highlighted. Next, a three-dimensional

continuum damage mechanics model for the prediction of the initiation and evolution of

intra-laminar damage mechanisms is developed. Combining this damage mechanics

model with the cohesive zone model, different damage modes such as delamination

patterns and fiber-bridging in laminated composites subjected to transverse static and

low-velocity impact loadings are simulated and compared with experimental results. The



necessity of in-ply matrix cracking is emphasized for the accurate prediction of

delamination in laminated plates subjected to transverse static loading. Finally, using the

developed three-dimensional continuum damage mechanics model and the shell-solid

modeling technique, laminated, two-dimensional woven, and Q3D woven composites

subjected to transverse low-velocity impact are simulated in ABAQUS/Explicit. The

Q3D woven composite is shown to have higher impact damage resistance than its

laminated and two-dimensional woven counterparts.
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Chapter 1 Introduction

1.1 Background

Because of their high stiffness-to-weight ratio, fiber-reinforced polymer-matrix

composites have been studied extensively and used successfully in aircraft, ships, high

performance automobiles, civil infrastructures, and armor protection [1]. Laminated

structures made of unidirectional lamina as shown in Figure 1.1(a) are among the most

common forms of fiber-reinforced polymer-matrix composites. Fiber orientation in each

lamina and stacking sequence of laminated structures can be chosen to achieve desired

strength and stiffness for specific applications. In addition to unidirectional laminates,

two-dimensional weaves as illustrated in Figure 1.1(b) are also often laminated together

to produce composites with balanced in-plane material properties. However, laminated

composites are known for their poor inter-laminar shear strength and poor through-the-

thickness properties due to the weak matrix between the plies. This leads to large impact

damage, low compression-after-impact strength, and low fracture toughness. To improve

the inter—laminar shear resistance, through-the-thickness fibrous reinforcements by means

of stitching [2,3], z-pinning [4] and z-binder yarns [5] are introduced into laminated

composites. A problem of these reinforcements in the through-the-thickness direction is

that they can degrade the in-plane properties [5, 6, 7, 8]. To achieve an optimum balance

between in-plane properties and delamination resisance, quasi-three-dimensional (Q3D)

woven designs (Figure 1.1(c)) have been developed. Similar to the two-dimensional

woven designs, the Q3D woven designs consist of three fundamental constituents: fill

and warp tows, and matrix. However, the tows in the Q3D woven designs create

interlocking through-the-thickness layer by layer, which eliminates the weak resin-rich



interfaces between layers in laminated composites without introducing additional

reinforcement in the thickness direction as in the 3D composites. Therefore, it is expected

that the Q3D woven composites offer a balanced solution between traditional two-

dimensional laminated and 3D fiber-reinforced polymer-matrix composites in terms of

in-plane stiffness and delamination resistance.
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Figure 1.1 Fiber-reinforced polymer-matrix composites studied in this work

1.2 Statement of problem

The Q3D woven composites are developed to further improve the delamination

resistance of two-dimensional woven composites by eliminating the resin-rich interfaces

using through-the-thickness interlocking in the undulation regions. Being different from



laminates, both two-dimensional and Q3D woven composites have undulation regions.

Furthermore, Q3D composites have slightly larger undulation angles than their two-

dimensional counterparts. The objective of this work is to differentiate the Q3D woven

designs from the traditional laminated and two-dimensional woven counterparts using

numerical models.

Given the design differences among Q3D, two-dimensional, and laminated

composites, the following questions rise naturally:

How is the in-plane stiffness of the Q3D woven designs compared with that of the

laminated and two-dimensional woven designs?

What are the effects on the delamination propagation introduced by the undulations in

woven designs?

How does damage initiate and propagate in Q3D composites?

Do the Q3D woven designs provide more damage resistance than laminated and two-

dimensional woven designs when they are subjected to transverse impact loadings?

This work is aimed to answer these questions using finite element methods.

1.3 Research approach and organization

To answer the first question above, an average field homogenization method based on

finite element analysis of representative unit cells with periodic boundary conditions is

presented and implemented in ABAQUS/Standard [9] to predict the effective stiffness of

laminated and woven composite designs. The model is validated by experiments. It can

then be used to handle complex geometries and perform homogenization of general

anisotropic materials. This part of study will be summarized in Chapter 2.



To investigate the effects of undulation in woven composites on delamination

propagation introduced by the undulations in woven designs, the cohesive zone model

(CZM) with plain strain assumptions in ABAQUS/Standard is employed to simulate

double cantilever beam (DCB) and end notch flexure (ENF) tests on plain weave models

and compare with their corresponding laminated counterparts. Chapter 3 presents the

results of the studies.

In order to study the damage mechanisms of composites such as the interaction

between inter-laminar and intra-laminar damage modes, a three-dimensional Continuum

Damage Mechanics (CDM) model for the prediction of the initiation and propagation of

intra-laminar damage mechanisms is developed and implemented in ABAQUS/Standard

using a user-written material subroutine (UMAT). This three-dimensional CDM model is

combined with the Cohesive Zone Model available in ABAQUS/Standard to simulate

three-dimensional progressive damage analysis of laminated composite plates subjected

to transverse static loadings. Details of the study are given in Chapter 4.

The developed three-dimensional Continuum Damage Mechanics (CDM) model is

then implemented using a user-written material subroutine (VUMAT), and combined

with the Cohesive Zone Model available in ABAQUS/Explicit [10], to compare the

dynamic performance of the Q3D woven designs with traditional laminated and two-

dimensional woven designs subjected to transverse low-velocity impact. To address the

modeling challenges in the progressive damage analysis of woven composites, the shell-

solid coupling technique available in ABAQUS is used. This technique offers the

numerical accuracy of a full three—dimensional solution and the computational efficiency

of shell finite element model. Chapter 5 addresses this part of the study.



Chapter 6 summarizes the conclusions from this dissertation research and suggests

future studies.
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Chapter 2 Characterization of quasi-three-dimensional woven fabric

material

2.1 Abstract

This chapter discusses issues related to the characterization of elastic behavior of

quasi-three-dimensional (Q3D) woven composite designs. The average field

homogenization method based on finite element analysis of representative unit cells with

periodic displacement boundary conditions is used at the meso-scale to compute the

effective stiffness of Q3D woven composite designs and to compare with the

conventional laminated and woven counterparts. Particular attention is given to the effect

of the geometric parameters of the unit cell on the in-plane stiffness of the Q3D woven

designs. Physical insight is presented for designing Q3D woven composites with high in-

plane stiffness.

2.2 Introduction

To save computational modeling and analysis efforts of composites with complex

geometric microstructures, accurate computation of the effective material properties of

composite materials or the so-called homogenization of macroscopic properties is of

special interest to researchers in composite material design and characterization. This

chapter investigates the elastic behavior of the innovative quasi-three-dimensional (Q3D)

woven composite designs and compare their in-plane stiffness with the conventional

laminated and woven counterparts. The chapter is organized as follows: First, a literature

review of the homogenization methods is presented. The average field homogenization

method based on finite element analysis of representative unit cells with periodic

boundary conditions is then presented. After this, the implementation scheme in



ABAQUS is given. The model is then validated using experimental results from a

literature and previous graduate’s work. Parametric studies of Q3D woven composite

designs and comparison with conventional laminated and woven counterparts are

presented next. Finally, concluding remarks that summarize the results are given in the

last section.

2.3 Homogenization literature Review

Numerous literature reviews e.g. [1-6] are available on the topic of homogenization of

composites. All of the models exploit the periodicity of woven fabric composites to

isolate a representative unit cell (RUC). Then the effective material properties are

calculated by analyzing the RUC using certain assumptions about the geometry, field

distribution, and boundary conditions of the RUC.

Earlier attempts at predicting the effective material properties of composites

approached this problem from the bounding micromechanical models [7-11]. Depending

on the assumptions used c.g. constant state of stress or strain within the composites, some

of these models are more accurate than others in giving the lower or upper bounds of the

material properties. Though the bounding properties obtained using these models provide

a quick estimation of the range of the effective material properties of the composites, they

can not be used for accurate FEA of composite structures.

Later analytical methods [12-23], e.g. mosaic model, crimp model [15] or sub-cell

models [17], utilized classical or modified laminate plate analytical continuum theory

methods and simplified geometric modeling of the RUC to compute the effective material

properties. Though simple formulas obtained in these methods are good for parametric

studies, these analytical methods are either inherently one- or two- dimensional or are



only accurate for composites with simple microstructures because of the assumptions

used.

By dividing the RUC into subcells and calculating the effective material properties

for each subcell using analytical methods discussed above, semi-analytical methods [24-

31] eliminate the need to discretize the unit cell in thickness direction; and thus, they give

balanced accuracy and efficiency compared with analytical method and full 3D FEA.

However, these methods do not provide insight into the non-uniform stress distribution in

the constituent materials that characterizes woven composites.

Asymptotic Expansion Homogenization [32-38], also frequently called the

mathematical homogenization (MH) approach, utilizes a multi-scale perturbation method

to establish mathematical relations between the microfields and the macrofields. It is an

elegant and systematic approach to examine the micro-mechanics and compute the

effective material properties of complex microstructures. Due to a limitation of the

homogenization theory, which assumes the unit cell should be periodically represented in

any specific area, the through-thickness material properties prediction may be not

accurate for thin composites. To overcome this limitation, a modified or enhanced

asymptotic homogenization method (EHM)[37,38] is proposed.

The average field method [39-45] is based on the fact that the effective mechanical

properties measured in experiments are relations between the volume average of the

strain and stress of microscopically heterogeneous samples. The average field method

[43-45] gives the same effective material properties as the Asymptotic Expansion

Homogenization when the representative unit cell is subjected to a series of test strains or

test stresses under periodic boundary conditions. The homogeneous displacement and



traction boundary conditions provide upper and lower bounds for all possible effective

moduli [45] and the periodic boundary conditions provide the effective moduli between

these bounds. In [5], the apparent engineering moduli computed using a representative

volume element subjected to homogeneous boundary conditions are shown to converge

asymptotically to effective moduli of a periodic composite from below and above with

increasing number of uniformly—spaced inclusions in the representative volume element.

The average field homogenization method based on finite element analysis of

representative unit cells with periodic boundary conditions is chosen in this study because

of its accuracy. Furthermore, in this study the material properties of the tow and matrix

constituents are assumed known and the homogenization is performed at the meso-scale.

2.4 The average field homogenization method

2.4.1 The repetitive unit cell

Woven composites can be viewed as periodic structures constructed by the

translations of their representative units cells in the three-dimensional domain. For a

periodic structure, a representative unit cell can be identified to include all characteristics

of the composite such as periodic geometry, material properties, and the periodicity of the

field variables; and the periodic structure can be formed by a collection of the translations

of the representative unit cell in the directions along which periodicity exists within the

solid structure. Herein, the representative unit cell is defined as the “irreducible” unit cell

to mean the smallest region capable of building the whole periodic structure only by

repeating itself through translations without applying any symmetry and rotation

transformations. For the study’s purpose, we choose one such representative unit cell as

the reference unit cell, and all other representative unit cells can be obtained by the

translation of the reference unit cell.
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Figure 2.1 illustrates the periodic structures and unit cells of a 2D plain weave (2D)

and a 2D 5 harness satin weave (2DH5). The overall response of these periodic

composite structures can be characterized in terms of the effective engineering properties,

or the so-called homogenized engineering properties, which can be obtained by analyzing

their unit cells.

 
(a) Five harness satin weave (2DH5) structure (b) Unit cell of 2DH5

Figure 2.1 Composite structures and their unit cells

2.4.2 The average strain theorem for periodic boundary conditions

After the representative unit cells of the composite structures are selected, the

appropriate boundary conditions must be applied to the unit cells in order to produce

accurate effective engineering properties of the composite structures. The most often used

boundary conditions in literature include the homogeneous displacement boundary

11



conditions, homogeneous traction boundary conditions, and periodic boundary

conditions. Discussions about the selection of appropriate boundary conditions can be

found in [5, 39, 44]. Periodic boundary conditions are chosen for this study because of

their accuracy. It has been shown [11, 44] that homogeneous boundary conditions applied

on the surface of a homogeneous body will produce a homogeneous field. Specifically,

the homogeneous displacement boundary conditions associated with constant test strains

applied on the surface of a representative unit cell will produce average strains in the

representative unit cell identical to the applied constant test strains. This is known as the

average strain theorem. Similarly, the average stress theorem states that the homogeneous

traction boundary conditions associated with constant test stresses applied on the surface

of a representative unit cell will produce average stress fields in the representative unit

cell identical to the applied constant test stresses. Here, the average strain theorem is

shown to also hold for periodic displacement boundary conditions. Using this theorem,

efforts can be saved to calculate the average strains by avoiding volume integration over

the whole unit cell.

In the following, the constant test strains 83- will be shown to be identical to the

average strain EU for periodic displacement boundary conditions. For a two-phased

composite with tow material denoted by “1” with volume V] and bounding surface S1,

and matrix material denoted by “2” with volume V2 bounding surface 52. SI and S2

consist of the interface S12 between the tow phases and the external surface S.

Substituting

1

8ij =§(ui,j+uj,i) (2.1)
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into

- 1

817 = — [5‘ng (2.2)

V v

yields

2vK = [V1 (uf‘). + u“). )dV + [V2 (1.4%) + 1.33,th (2.3)

Then applying Gauss theorem

IV uLJ-dV =15 uinde (2.4)

it becomes that

2vE,-,- = [Sr (1.9),: + u(l)n,-)dS + 152(ujzln + u(2)n )dS (2.5)

Assuming perfect contact between the phases with interfaces S12 , i.e.

up) =ufz) on 512 (2.6)

it leads to the cancellation of the contributions from 512. Therefore, we have

- 1
8;} =st(uinj +ujni)dS (2.7)

The external surface S can be divided into boundary pairs with coordinates X0 and

X0 +l , where ldenotes the translation/periodicity vector of the unit cell.

Applying

u(X0 +l) —u(X0): 8,)-lj (2.8)

to the opposite boundary surface pairs of the unit cell gives

2.,- = 83 (2.9)
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This shows that the average strain theorem holds for periodic displacement boundary

conditions.

Using the displacement and material periodicity, strain-displacement relationships,

and material constitutive laws, the periodic displacement boundary conditions can be

shown to be sufficient to guarantee periodic strain and stress distribution for periodic

materials in displacement-based finite element formulations. In a periodic model, it is

assumed that periodicity extends to infinity in all the directions along which periodicity

exists within the solid structure. The correct boundary conditions on a unit cell should

lead to a periodic distribution of the field quantities, namely, displacement, strain, and

stress across the whole periodic structure. The periodic conditions require that the

displacements in the various unit cells differ only by a constant, and the strains and

stresses are identical in all of the unit cells. The relationship of displacement, strain and

stress components between a master node and its image nodes in a unit cell can be

expressed as follows [39]:

EU (X0 +1) =8U(X0) (2.10)

al-J-(Xo +1) =a,-j(xo) (2.11)

u,(X0 +1) =u,(xo) +2.71]. (2.12)

where lj is the periodicity vector component linking a master node to its image nodes in

a unit cell.

Using periodicity and constitutive laws, it is shown below that periodic strain fields

(Eq. (2.10)), and stress fields (Eq. (2.11)) are guaranteed by specifying the periodic

displacement fields (Eq. (2.12)) for periodic structures. Assuming a prescribed array of

14



constant test strains 83 applied to the corresponding nodes on the opposite boundaries of

the unit cell, which are identical to the average strain E17 by the average strain theorem

(Eq. (2.9)), then Eq. (2.11) gives

91ul-(X0+l) =ui(X0)+81jj (2.13)

. 1 . . .
Since 3,-1- = E(u i, j+u J'J ) , and £8 and lj are constant for a given periodlc structure

and displacements are continuous, we have

80- (X0 + l) =£ij(X0) (2.14)

Because of the periodicity of material property, the following holds:

Cijk/(XO +1) = Cijkl (X0) (2.15)

Applying the stress-strain relationship: 0,-1- = Cijkl 8k, yields

0ij(X0 + l) =0'iJ(X0) (2.16)

Therefore, the periodic displacement fields (Eq. (2.12)) for periodic structures

yields periodic strain (Eq. (2.10)) and stress fields (Eq. (2.11)).

For a general anisotropic material, the 6x6 stiffness matrix and the corresponding

compliance matrix have 36 entries. To find the 36 entries, periodic displacement

boundary conditions corresponding to six independent constant test strains are applied to

the boundaries of the unit cell. These six test strains will yield six average stresses. Thus

the 36 entries can be computed using the constitutive relationship

a = Ea (2.17)
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where E is the average stress associated with the average strain E , and C is the

homogenized stiffness matrix. Using the six independent constant test strains given

below:

80(1) = {1,o,o,o,o,0}T

30(2) = {0,1,0,0,0,0}T

30(3) = {0,0,1,0,0,0}T

80(4) = {0,0,0,1,0,0}T

30(5) = {0,0,0,0,1,0)T

20(6) = {0,0,0,0,0,1}T (2.18-2.23)

and the average strain theorem, the homogenized stiffness matrix can be constructed

conveniently as follows:

C : [3(1),E(2),E(3),5(4),5(5),Em)] (2.24)

where 6(i),i=1,2,...6 are the averaged stresses corresponding to the six independent

constant test strains so“) given by Eqs. (2.18-2.23). Explicitly, the stiffness matrix can

be expressed as follows:

PC” C12 C13 C14 C15 El6q 01d) 01(12) 01(13) 6(4) (5) (6)

C21 C22 C23 C24 C25 C26 0'22 322 3 — _ _

— — - -1 -2 -3 -4 -5
C31 C32 C33 C34 C35 C36 03(3) 0353) 03(3) 03(3) 03(3) 333

C41 C42 C43 C44 C45 C46 31%) 53) 51(3) 31(3) 31(3) 51(3)

0
|

11

55] C52 C53 C54 C55 C56 31%) 3632) 51(3) 51g) 31(35) 31(3)

_C61 562 563 C64 C65 C66] —(1) 3(2) —(3) 3(4) —(5) 3(6)    
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By the inversion of the stiffness matrix yields the compliance matrix, the

homogenized compliance matrix is obtained as follows:

- ——1
S = C (2.26)

Strictly speaking, woven composite materials are not orthotropic because they do not

generally possess three mutually perpendicular planes of material symmetry. But they can

be approximated as orthotropic and characterized by nine independent effective elastic

constants. The nine elastic constants (E11,E22,E33,512,Gl3,523,512,F13,523) for an

orthotropic material are obtained by the inversion of the following relationship:

F l/Ell —I/-21/-E-22 -F31/E33 0 0 O

Jig/E11 1/E22 532/1533 0 0 0

§= —;13/E11 —1/-23/E22 l/E33 0 0 O

o o 0 1/012 0 0

0 o 0 0 1/513 0

_ 0 o 0 o 0 1/523 
(2.27)

2.5 Implementation in ABAQUS/Standard

Using displacement-based finite element formulations in ABAQUS/Standard [46],

the periodic displacement boundary conditions (Eq. (2.12)) can be applied to the

corresponding nodes at the boundaries of any parallelepiped unit cells using keyword

*EQUATION.

The flowchart in (Figure 2.2) illustrates the implementation procedure used in this

study. In order to implement the homogenization procedure described above, several

programs have been developed. The procedure is given as follows: A PYTHON Pre-

Processing script can be called using the “abaqus cae script” command to model and

mesh the parts and generate ABAQUS input files automatically. Then, a MATLAB Pre—

17

 



Processing program is called to generate node pairs on the unit cell for applying periodic

boundary conditions. After this, the ABAQUS input files are modified manually to apply

the periodic boundary conditions. Then a general static analysis is performed using the

ABAQUS/Standard solver to generate output database files, which are accessed by

calling a PYTHON Post-Processing script to extract the desired filed variables. Finally,

the MATLAB Post-Processing program is used to compute the effective stiffness.

 

PYTHON Pre-Processing Script

Create model, generate ABAQUS input files

I

MATLAB Pre-Processing Program

Generate node pairs on unit cell boundaries

I

Modify ABAQUS input files

to apply periodic boundary conditions

I

Run ABAQUS Analysis

Generate output databases

PYTHON Post-Processing Script

Generate result files (i.e. stress, strain) from

ABAQUS output databases

   

 

   

 

   
 

   

 

   
7

I MATLAB Post-Processing Program

I Perform homogenization to compute

! effective stiffness

  

  

Figure 2.2 Implementation procedure of the homogenization method

18



2.6 Model calibration using a plain weave problem

To calibrate the developed model, the nine effective engineering constants of a plain

weave problem computed using this model with periodic displacement boundary

conditions are compared with the experimental and analytical results in [30].

 

(a) Meshed unit cell

  

2h

   

 

2a

 w

(b) Unit cell dimensions for two harness woven

Figure 2.3 Unit cell of plain weave

The unit cell used is illustrated in Figure 2.3, and its dimensions are summarized in

Table 2.1. The mesh seeds used are as follows: 6 elements for length a0 , 4 elements for

length a“ , and 2 elements for ply thickness h. The undulation length of the unit cell au is

calculated based on the linear geometry and the fiber volume fraction provided. The

material properties for tow and matrix are given in Table 2.2 and Table 2.3. As shown in

Table 2.4, the results obtained using the method described above correlate well with the

experimental results except for the in-plane shear modulus. The deviation in the effective
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in-plane shear modulus may be explained by the difference of the boundary conditions

imposed between the numerical model and experiment. As discussed in [44], restricting

deformed unit cells of composites to remain a parallelogram with straight edges for shear

loading is an overly restrictive constraint, and it yields larger effective stiffness values.

Table 2.1 Plain weave unit cell geometry [22]

 

 

      
 

 

 

        
 

 

 

Half unit cell Tow width Undulation Ply thickness Unit cell

length 510 (mm) length h (mm) thickness

a (m) au (mm) 2h (mm)

0.87 0.60 0.27 0.05 0.10

Table 2.2 Tow Material Properties [22]

Material Err E22 =533 012 = G13 G23 V12 = V13 V23

(GPa) (GPa) (GPa) (GPa)

E-glass/Vinylester 57.50 18.80 7.44 7.26 0.25 0.29

vf = 0.80

Table 2.3 Matrix Material Properties [22]

| Material l E (GPa) | G (GPa) v |

IVinylester _| 3.40 | 1.49 0.35 J
 
 

Table 2.4 Comparison of homogenized material properties

 

 

 

 
 

E11 =E22 E33 512 513 = 523 F12 F13 = 523

(GPa) (GPa) (GPa) (GPa)

Experiment 24.8 11.1 85:26 6.5208 4210.7 1 011001 0281007

[221

Analytical 25.33 13.46 5.19 5.24 0.12 0.29

122]

Current 25.13 12.78 4.35 3.88 0.15 0.30        
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2.7 More validation with experiments

In this section, the developed model is further validated using cross-ply laminates

L[0/90]6, 2D plain weave 2D[0/90]6, two-hamess [0/90]6, and five harness Q3DH5[0/90]6

from the experimental work [47].

2.7.1 The specimens

The unit cells (see Figure 2.4) are modeled with 12 plies through-the-thickness which

are the same as in the experimental specimens. The dimensions of the unit cell are given

in Table 2.5. Because the unit cells use the same thickness as in the experimental

specimens, periodic boundary conditions are applied only in the in-plane directions of the

unit cells and homogeneous boundary conditions are applied on the top and bottom

surfaces. This type of boundary condition is denoted as IPBC.

To study size effect, multiple cell specimens (see Figure 2.5) matching the

dimensions of the experimental specimens in three dimensions are analyzed with

homogeneous boundary conditions in three directions. This type of boundary condition,

(a) L[O/90]6 (b) 2D[0/90]6

(c) Q3D[0/90]6 (d) Q3DH5 [O/9O]6

is denoted as HBC.

 

  

Figure 2.4 Unit cells analyzed with 12 plies
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Table 2.5 Unit cell geometry [47]

 

 

 

Half unit cell Tow width Undulation length Ply thickness

length a0 (mm) a“ (mm) h (m)

a (mun)

9.96 9.30 . 0.66 0.17     
 

 

(a)L[0/90]6 (4 x4 cells) (b) 2D[0/90]6 (4x4 cells)

0
(c) Q3D[O/90]6 (4x4 cells) ((1) Q3DH5[O/9O]6 (2x2 cells)

  

Figure 2.5 Specimens analyzed to match the dimensions in experiments

2.7.2 Material properties

The experimental specimens are made of CYCOM 1003/W-490 E-Glass Prepregs

with resin weight fraction 36% (equivalent to 45% fiber volume fraction) and matrix

from Cytec Industries Inc. To make thin specimens, the woven specimens are cured and

processed. Therefore, the fiber volume fraction and material properties are changed. Due

to the lack of the material properties of tows and matrix of the specimens in [47], moduli

of the CYCOM 1003/W-490 E-Glass Prepregs and matrix from Cytec Industries Inc. (see

Table 2.6) are scaled by the ratio (13.80/(38.61+8.27) ) of the cross ply laminate stiffness

between the reported result in [47] and the calculated result using the above material

properties to obtain the input tow material properties as shown in Table 2.8.
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Table 2.6 Tow material properties CYCOM 1003/W-490 E-glass

 

Material I 511 J 1522:1333 G12=Gi3 G23 V12=V13 V23

(GPa) (GPa) (GPa) (GPa)

IE-lass/EpoxyL38.6l | 8.27 | 4.14 | 3.43 | 0.26 |0.40|

     

Table 2.7 Matrix material properties from Cytec Industries inc.

 

Material | E (GPa) | v ]

Epoxy | 3.45 | 0.35 |

Table 2.8 Tow material properties used in the analysis (Interpolated)

 

    
 

 

Material Err 522 =1533 G12 = 013 G23 V12 = V13 V23

(GPa) (GPa) (GPa) (GPa)

| E—lass/Epoxy | 22.57 L 4.84 | 2.42 J 2.01 | 0.26 ] 0.40 |

2.7.3 Results and discussions

The computed effective material properties are compared with the experimental

results from [47] as given in Table 2.9. The experimental results are from compression

test and only in—plane stiffness is reported. The homogenized material properties show

the same trend as the experimental results, i.e. the stiffness of the composites are in the

following order:

L>2D>Q3DH5>Q3D

Apparently, the laminated composite has the largest in-plane stiffness because it has

neither matrix pockets nor undulation in it. The in-plane stiffness of the Q3DH5 weave is

always greater than its Q3D counterpart because the Q3DH5 weave has less undulation

than its Q3D counterpart. As it is shown later in the parametric studies, Q3DH5 weaves

can have larger in-plane stiffness than their 2D plain weave counterparts because stiffness

changes with the change of the undulation angle and fiber volume fraction.
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The computed effective material properties for the woven composites are consistently

about 5% lower than the experimental results. This might be due to the interpolated tow

material properties used. In this case, the results show no improvement in the

homogenized results using the actual size of the experimental specimen than using only

one unit cell.

Table 2.9 Comparison of results with experiments E11 =E22 (GPa)

 

 

 

 

 

      

Tested specimen Experiment Numerical Error Numerical

[47] IPBC (unit cell) (%) HBC(Actual size)

L [0/90]6 13.80 13.79 -0.07 13.79 (4x4 cells)

2D[0/90]6 13.63 11% 12.98 -4.80 12.97(4x4 cells)

Q3D[0/90]6 13.31 :t6% 12.69 -4.68 12.68(4x4 cells)

Q3DH5[0/90]6 13.62 12.95 -4.93 12.94(2x2 cells)
 

2.8 Parametric study

This section investigates the effects of the unit cell dimensions on the effective in-

plane stiffness of the 2D and Q3D woven designs by performing parametric studies using

the developed method.

2.8.1 The unit cells and material properties used

For the parametric studies, the unit cells analyzed for different woven designs are

illustrated in Figure 2.6. The dimension diagram for two harness woven designs is the

same as illustrated in Figure 2.3 (b), and the dimension diagram for five harness woven

designs is given in Figure 2.7. Unit cells with two plies in thickness direction are used for

the 2D weaves, while unit cells with six plies ( the minimum number of plies in the Q3D

weaves) are used for Q3D and Q3DH5. Periodic boundary conditions are imposed in

three directions of the unit cells. The mesh seeds used are the same as before: 6 elements

for length a0, 4 elements for length au, and 2 elements for ply thickness h.
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The input material properties used are given in Table 2.10 and 2.11. The effective

moduli are normalized with respect to the effective moduli of [0/90]s laminate given in

9

(a) 2D [0/90] (b) 2DH5 [0/90]

Table 2.12 .

  

   
(c) Q3D[0/90]3 (d) Q3DH5[0/90]3

Figure 2.6 Unit cells used for parametric study
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Figure 2.7 Unit cell for five harness woven

7 Table 2.10 Tow 7Material Properties [43] 7

- 1

L Mammal I E11 1 E22 =E33 I G12 =G13 G23 v12 =V13 V23

(GPa) (GPa) (GPa) (GPa)     
 

firaghite/Epoxyl 134.00] 10.20 | 5.52 [3.43] 0.30 |0.49|

7 Table 2.11 Matrix Material Properties [43] 7

[ Material L E (GPa) | G (GPa) | v |

| Epoxy | 3.45 | 1.28 | 0.35 |

7 Table 2.12 [0/90]s laminate effective moduli [43] 7

LMaterial I 1511:?22 (GPa) I E33 (GPa) I G12=G13(GPa) I "623 (GPa) I

[0/90]s 72.50 10.20 5.52 4.26

laminate 7
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2.8.2 Parametric study by varying a/h

For the parametric studies by varying the ratio of the half cell length over ply

thickness “a/h ” (see Figure 2.7), the dimensions of the unit cell are summarized in Table

2.13. h is scaled according to the ratios a/h =10, 25, 50 and 100, while a is kept constant.

Table 2.13 Unit cell dimensions for varying a/h

 

 

 

Half unit cell Tow width Undulation length Ply thickness

length a0 (mm) au (mm) 1'1 (mm)

a (m)

10 8.33 1.67 0.01~1.00     

The normalized in-plane effective moduli denoted as E1 1 = E22 and G 12 by varying a/h

are plotted in Figure 2.8. Based on the results, the following conclusions can be made:

0 Of all the designs, in-plane stiffness increases with the increase of a/h because

the undulation angle decreases with the increase of a/h .

0 Higher harness woven designs have higher in-plane Young’s Moduli due to the

lower number of undulations in higher harness woven designs.

0 2D weaves have higher in-plane stiffness than their corresponding Q3D

counterparts due to smaller undulation angles in 2D weaves. The differences

become smaller with the increase of “ a/h

0 The engineering constants of all woven designs do not approach those of

laminated counterparts because of the existence of the pure matrix zones and the

undulation regions in the woven designs
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Chapter 3 Two-dimensional progressive delamination analysis of plain

woven composites

3.1 Abstract

This chapter investigates the undulation effects on the interlaminar damage (i.e.

delamination) resistance in woven composites using two-dimensional Cohesive Zone

Model (CZM) with plain strain assumptions. Numerical simulation of DCB tests on both

symmetric and unsymmetric plain weave models and their corresponding laminated

counterparts are performed, the test results are compared, and the undulation effect in

plain weave models are discussed. To study the effects of undulation direction and

number on the interlaminar damage in woven composites, ENF tests are performed on

symmetric plain weave models with cohesive layers inserted at different locations; and

the test results are compared and discussed.

3.2 Introduction

This chapter is aimed to study the undulation effects on the interlaminar damage (i.e.,

delamination) resistance in woven composites using two-dimensional plain weave

models. Progressive delamination will be investigated by simulating DCB and ENF tests

using the two-dimensional Cohesive Zone Model (CZM) in ABAQUS/Standard [l] with

mixed-mode criteria for delamination initiation and propagation. Special attention is

given to the effects on the delamination propagation of undulation in woven composites.

In this study, interlaminar delamination is considered. Each ply is modeled as elastic; and

thus, intra-laminar damage modes such as matrix cracking are not considered.

Furthermore, two-dimensional plain strain is assumed. Thus, the delamination involves at

most Mode I and Mode II.
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3.3 Literature review

3.3.1 Literature review on delamination

Fiber-reinforced polymer composites (FRPCs) can accumulate damage before

structural collapse [2]. Dominant damage modes in FRPCs include intralaminar damage,

e.g., fiber breakage, matrix cracking, matrix crushing, and interlaminar damage, i.e.,

delamination, which is the separation between adjoining layers. Delamination is one of

the most dangerous damage modes in FRPCs, and the prediction of delamination in

FRPCs is challenging because of the anisotropy and heterogeneity natures of FRPCs.

Reviews of the testing and analysis methodologies of delamination can be found in [3-5].

Because of the material anisotropy and geometric complexity of FRPCs, delamination

in FRPCs may involve three modes of fracture simultaneously. The three fracture modes

are illustrated in Figure 3.1 (a), (b), and (c) [5]: the interlaminar tension (Mode 1),

shearing (Mode II), and tearing (Mode III). Each mode is associated with a fracture

toughness value. To characterize the fracture toughness for Mode I delamination, the

double cantilever beam (DCB) test as shown in Figure 3.1 (d) is used. The three-point

bending end notch flexure (ENF) as shown in Figure 3.1 (e) and end loaded split (ELS)

as shown in Figure 3.1 (f) are often used for Mode 11. For two-dimensional studies, the

characterization method for Mode III fracture toughness is omitted. In Figure 3.1 (d), (e)

and (f), a denotes the beam length, 00 denotes the initial crack length, h designates the

height of half a beam, and F denotes the load.
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Figure 3.1 The fracture modes and test methods
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3.3.1.1 Fiber orientation effects on delamination resistance in laminate composites

The application scope of the ASTM E399 standard Mode I DCB test method is

currently limited to delamination propagation through mid-plane of unidirectional

specimens with embedded delaminations [3], and an international consensus of the Mode

II ENF test method has not been reached. The validity of the fracture toughness values

obtained from these unidirectional specimens with embedded delaminations is debatable

because delamination may never propagate between plies of the same orientations due to

the lack of stiffness mismatch at the interfaces [6]. Therefore, multi-directionally

laminated specimens have been investigated intensively [7-10]. The conclusions of the

effects of fiber orientation on delamination from these studies are quite contradictory.

Using sub-laminate specimens, Tao and Sun [10] found that the Mode II interlaminar

toughness of 0/0 interfaces in AS4/3501-6 composite material decreases as the off-axis

angle 0 increases. The test results in [9] showed that the interlaminar fracture energies in

unidirectional laminates were significantly lower than those in multidirectional laminates

under Mode I, Mode 11, and Mixed-Mode I/II loading conditions. However, Morais et al.

[11] observed no significant dependence of the Mode 1 delamination resistance on the

fiber orientation.

3.3.1.2 Fiber orientation effects on delamination resistance in woven composites

In addition to the study of delamination in laminated FRPCs, experimental

investigation of interlaminar delamination in 3D orthogonal interlocked fabric

composites [12,13] has also been reported. They found that the Mode I fracture

toughness values of composites reinforced in the through-thickness direction by weaving
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or stitching were higher than traditional composites by factors of nearly 2 and 3

respectively. Chen et al. [15] investigated the delamination in braided T-piece composite

specimens using the cohesive zone model in ABAQUS and found that the failure in T-

piece composites is dominated by the propagation of the crack rather than its initiation.

However, to the authors’ best knowledge numerical studies of the undulation effects on

delamination propagation in woven designs have not been reported.

The aim of this work is to study the undulation effects on the delamination resistance

in woven composites using two-dimensional plain weave models.

3.3.2 Literature review on progressive damage analysis

Different approaches have been proposed to model the progressive damage analysis

of FRPCs. The multi-level and meso-finite element modeling approaches [15-18] were

shown to make good predictions of the damage initiation using strength based failure

criteria but make poor predictions of damage propagation. In these models, by assuming

periodicity, in which a representative unit cell can be identified to include all

characteristics of the composites such as periodic geometry and material properties and

uniform damage distribution across whole structures; damages characterized by the

degradation of material properties were considered sequentially on representative unit

cells from micro scale (fiber/matrix), meso-scale (tow, matrix pocket), and macro-scale

(composite structures). However, once material damage is localized into a macrocrack in

a narrow band, the assumptions of periodicity and uniform damage distribution are not

valid anymore. This leads to the poor predictions of damage propagation in these

methods.
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Fracture mechanics based Virtual Crack Closure Technique (VCCT) [19,20],

originally proposed by Rybicki and Kanninen[21], assumes that the energy released

during delamination propagation equals the work required to close the crack back to its

original position. Based on this assumption, the single-mode components of the energy

release rate are computed from the nodal forces and nodal relative displacements.

Delamination growth is predicted when the delamination criterion in terms of the critical

energy release rates is met. The VCCT approach is computationally effective since the

energy release rates can be obtained from only one analysis. However, this approach

relies on the assumption of existing initial defects or cracks. Furthermore, it requires

complex mesh techniques to advance the crack front when the local energy release rates

reach a critical value.

The cohesive zone models (CZM) [22-28], originally proposed in [29], are

particularly advantageous for delamination modeling of laminated composites where the

interfacial strength is relatively low compared with that of the in-ply materials [30,31].

The CZM approach relates traction to separations at an interface where a crack may

occur. Damage initiation is related to the interfacial strength, i.e., the maximum traction

on the traction-separation curve. When the area under the traction-separation curve is

equal to the fracture toughness, the traction is reduced to zero and new crack surfaces are

formed [27]. The CZM approach combines the advantages of the strength based failure

criteria for the prediction of damage onset and the fracture mechanics based criteria. for

crack propagation after damage onset. Thus, it has the capability to predict both onset and

propagation of delamination without previous knowledge of the crack location and

propagation direction. The CZM has an advantage over stress-based methods because it
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uses traction-separation laws to overcome spurious mesh dependence. It also has an

advantage over the fracture mechanics based approach like VCCT because it does not

rely on the assumption of existing initial cracks. Therefore, CZM is widely used to

simulate the resin-rich layers connecting adjacent laminae of laminate structures for the

progressive delamination analysis.

This work investigates the undulation effects on delamination propagation in plain

woven designs using the CZM in ABAQUS/Standard. In this study, only delamination is

considered. Each ply is modeled as elastic; and thus, intralaminar damage modes are not

considered. Furthermore, two-dimensional plain strain is assumed. The out-of-plane shear

stress associated with Mode III is assumed zero. Thus, the delamination involves at most

Mode I and Mode 11. Progressive delamination will be investigated by simulating DCB

and ENF tests using the two-dimensional CZM with mixed-mode criteria for

delamination initiation and propagation. Special attention is given to the effects on the

delamination propagation of undulation in woven composites.

3.4 Delamination modeling

Delamination occurs between adjacent layers of laminated composites. An interface

can be inserted between any two adjacent layers where delamination may occur [32].

Using CZM, cohesive elements are inserted between layers of solid elements where

delamination is expected to occur. Cohesive elements enable the modeling of fracture

initiation and propagation in finite element analyses. However, to obtain a successful

finite element simulation using CZM, the cohesive zone contribution to the global

compliance should be small enough to avoid the introduction of artificial compliance to

the model. Also, the progressive damage analysis using CZM poses numerical difficulties
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associated with the proper definition of the stiffness of the cohesive layer, the

requirement of extremely refined meshes, and the convergence problems caused by

material softening. The material parameter determination and numerical issues related to

the implementation of CZM are discussed in this section.

3.4.1 Damage evolution law

CZM uses damage evolution laws, which are traction-separation curves, to control the

crack initiation and growth. Most of the available traction-separation laws assume

initially linear elastic traction-separation displacement behavior followed by the initiation

and evolution of damage. The most often used traction-separation curves can be found in

[27]. The traction-separation relationship for fracture simulation using cohesive finite

elements is characterized by fracture toughness, initial stiffness, and strength of the

interface. Figure 3.2 illustrates the bilinear damage evolution laws under pure mode

conditions [3 1].

In Figure 3.2, kl- and If (i=1, 2, 3) are the interlaminar normal and shear stiffnesses

and strengths, di(i=1, 2, 3) are the damage variables, 01C (1' = I ,II ,III ) are the critical

energy release rates associated with fracture modes I, II and III, and (5'! (i=1, 2, 3) are the

final displacements corresponding to the complete failure of material respectively. The

determination of these parameters is discussed next.
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3.4.2 Material properties for the cohesive interface

The cohesive interface represents a thin (of the order of 10"7 ~ 10"5 mm [27]) resin-

rich layer between two adjacent layers, and it can be modeled as an entity of zero (or very

small) thickness and large stiffness. The initial interface stiffness does not represent a

physically measurable quantity and is introduced as a penalty parameter to simulate a real

connection between two adjacent layers before delamination initiation. Ideally, the

stiffness of the cohesive element should be infinite so that it does not affect the overall

compliance of the model before the damage initiation point. However, a finite value must

be used in the finite element context for numerical stability. The initial interface stiffness

should be large enough to provide reasonable connections but small enough to avoid

numerical problems in finite element analysis. Discussions of different guidelines for

selecting interface stiffness can be found in [34]. A penalty parameter of 106 suggested

by Zou et al. [33] is used here to multiply the interface strength to calculate the initial

interface stiffness.

The damage initiation point corresponds to the interface strength, which can be

identified as the peak value of the traction-separation relationship. Based on the studies

of [28, 34], reducing the maximum interface strength enables obtaining accurate global

load-displacement results with coarser mesh. However, the stress concentrations in the

bulk material near the crack tip might be less accurate if the used interface strength is too

low. The actual interface strength value is used in this work.

The damage evolution of cohesive elements defined in terms of traction-separation is

controlled by the fracture toughness of the interface (or the critical energy release rate).
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Fracture toughness values from experiments should be used for the correct prediction of

delamination in finite element analysis.

3.4.3 Delamination initiation and propagation criteria

The procedure of progressive delamination analysis in ABAQUS/Standard is given in

Figure 3.3. The damage initiation and propagation criteria employed in this study will be

presented next.

3.4.3.1 Delamination initiation criterion

The quadratic stress criteria in terms of tractions of different modes have been shown

to predict the delamination initiation successfully in previous studies [35, 28, 33, 31].

Considering that compressive normal tractions do not affect delamination onset, the

quadratic failure criterion in two-dimensional is given as [35]

I<TI>I2 +I ’2 I2 :1 (3.1)
—c T?

71 IT2 /

where 2'1 is the interlaminar normal stress and 7'2 is the shear stress, Tic (i=1, 2) are the

interlaminar normal and shear strengths, and the symbol ( > represents the Macaulay

bracket defined by

TI 11 > 0

r = 3.2

< l) {0 1'1 < 0 ( )
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3.4.3.2 Delamination propagation criteria

In this section, the energy based delamination propagation criteria are presented.

The single-mode delamination propagation criteria are given as follows:

Mode I (DCB)

£1: (33)

GIC

Mode II (ENF)
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.911. = 1 (3,4)

GIIC

where Gic(i = I,II ) are the critical energy release rates associated with fracture Modes I

and II, which can be determined from experiments. Gi(i = 1,11) refer to the energy

release rates, fracture resistance or work done during the damage process by the traction

and its conjugate relative displacement in the normal tension (Mode l) and sliding shear

(Mode II ) directions, and they are evaluated as

G, = 155171ch (3.5)

G” = I32 Tzda (3.6)

where 5, (i=1,2) are the maximum relative displacements obtained at the point under

consideration.

The critical energy release rates or the fracture toughness values are equal to the area

under the traction-separation displacement curves. That is

f

G/C =I061 add (3.7)

f

GIIC =13?- 72615 (3.8)

where (fl-f (i=1,2) are the final displacements corresponding to complete the failure of

material.

The criteria used to predict delamination propagation under mixed-mode conditions

are given in terms of the energy release rate and fracture toughness. The criteria available

in ABAQUS for the prediction of delamination propagation under mixed-mode
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conditions are the “power law” by Wu [36] witha =1~ 2, (Eq. (3.9)) and the “BK

criterion” (Eq. ( 3.10)) proposed by [37].

a 0:

[EL] {ELI =1 (3.9)

GIC GIIC

GIC +(G/IC -Glc)(-G—) = GC (3.10)

T .

where 05 =0” in two-dimensional, GT =01 +GS , Gc is the mixed-mode critical

energy release rate associated with mixed-mode ratio 2; , 77 is a material parameter

T

determined by curve fitting.

3.5 Numerical issues of delamination analysis

In progressive delamination analyses, which involve nonlinearity due to material

softening, the equilibrium equations are solved using a step-by-step incremental solution

technique such as the Newton-Raphson method for the complete time range of interest.

Because of the linearization assumption used in the Newton-Raphson method, a solution

may be subjected to significant errors or may be unstable depending on the time or load

step size used. In practice, multiple iterations may be necessary to obtain sufficient

accuracy in the solution of the equilibrium equations until the out-of-balance load vector

or the displacement increments are sufficiently small. The calculation and factorization

of the tangent stiffness matrix can be very expensive for the analysis of large-order

systems. One alternative to the Newton-Raphson’s iteration scheme is the Broyden—

Fletcher—Goldfarb—Shanno (BFGS) method, which approximates Newton’s method using

line search to solve nonlinear problems. The line search technique is activated using the

Keyword * Controls in ABAQUS/Standard.
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Material softening and stiffness degradation using cohesive elements lead to

convergence difficulties in implicit solution procedures like ABAQUS/ Standard . To

combat the convergence problems due to material softening, an artificial Duvaut-Lions

viscosity model [38] is implemented to cause the tangent stiffness matrix of the softening

material to be positive for sufficiently small time increments. Two drawbacks can occur

when increasing the viscous parameter. The first one is that using a large viscous

parameter may prevent damage localization from happening. Secondly, increasing the

viscous parameter will increase the energy dissipated at a material integration point

undergoing damage evolution. Consequently, it is important to use as small a viscous

parameter as necessary to solve convergence problems [39]. To ensure correct prediction

of delamination propagation, the energy dissipated due to viscous regularization must be

small compared with the strain energy in the whole model.

There are two ways to prevent the delaminated structures from penetrating to each

other. One method is to keep the failed cohesive elements. By the constitutive law of the

cohesive elements, the stiffness in tension and shear of the failed cohesive elements will

be degraded to zero while their stiffness in compression will remain intact. This method

is used for the regions where original cohesive elements are being inserted, while contact

constraints using keyword “Contact Pair” in ABAQUS are used for the initially cracked

regions.

3.6 Model calibration

The two-dimensional delamination model is calibrated by comparing the predicted

results with the experimental results and numerical results from the 3D model in [31] for

the DCB and ENF tests as illustrated in Figure 3.1 (d) and (e) .
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3.6.1 The specimens and material properties

The specimens simulated are 102mm long, 25.4 mm wide, with two 1.56mm-thick

arms. The initial delamination length of the specimens is 32.90mm for DCB and 39.30

mm for ENF. Using the notations in Fig. 3.1 (d) and (e), the geometry of the specimens is

summarized in Table 3.1, and the material properties used are given in Table 3.2.

Table 3.1 Geometry of the specimens [31]

 

 

 

    

(mm
DCB I ENF (mm) (mm)

102.00 32.90 | 39.30 1.56 25.40

 

Table 3.2 Material properties [31]

 

Ply material aroperties AS4/PEEK

E11 E22 I E33 I G12 013 I 023 V12

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

122.70] 10.10 I 10.10] 5.50 5.50 | 3.70 I025] 0.25 | 0.45

Cohesive layer material properties

 

V13 I V23

 

  
 

 
 

 

 

 
    

Stiffness (Calculated) Strength Fracture toughness

(MPa) (MPa) ( J /m2)

1‘1 I k2 I k3 if I r; I 736 GIC I GIIC I Gmc

ii

80X106 1100x106 IN/A 80 I 100 IN/A 969 I1719 IN/A

 

3.6.2 Selection of elements and mesh size prediction

The incompatible mode plain strain elements CPE41 from ABAQUS [l] are selected

for the plies and the two-dimensional cohesive elements COH2D4 are selected for

modeling the zero-thickness interface layers. The incompatible mode elements CPE41

have incompatible deformation modes added in addition to the standard displacement

degrees of freedom to eliminate the parasitic shear stresses that cause the response of the
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regular first-order displacement elements to be too stiff in bending. Furthermore, they use

full integration, and thus they have no hourglass modes.

Different guidelines and formula for the estimation of the cohesive zone length and

the maximum mesh size in cohesive zone in the direction of crack propagation have been

discussed in the literature [34, 40]. Turon et al. [34] proposed a formula to predict the

cohesive zone lcz length as follows

GIC

(If)2

where E33 is the Young Modulus of the material associated with Mode 1, GIC is the

(3.11) 

lcz = M533

Mode I fracture toughness, if is the maximum interfacial strength, and M is a parameter

that depends on each cohesive zone model. Following [41] (M =1) and applying the

material properties from Table 3.2 in Eq. (3.11), the cohesive zone length is calculated to

be 1.53mm.

According to the study in [42], a minimum of three elements should be included in

the cohesive length to capture the smoothing continuum of randomly inhomogeneous

material so that each of the three regions of the cohesive zone i.e. elastic, damage

evolution, and fully damaged, can be represented by one element. By allowing three

elements in the cohesive zone along the direction of crack propagation [34,42], the

element size in the direction of crack propagation is given as

_ 1.53mm
 16 = 0.51mm

The mesh converge study with different mesh sizes 1m, 0.5m, 0.25mm, and

0.125mm using a DCB test is given in Figure 3.4; and this validates the element size

estimation from the calculations above. The study shows that a mesh size of 0.5mm based
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on the given material properties gives converged results, and it is used for all the

following two-dimensional case studies of progressive delamination in this chapter.

Figure 3.5 shows the stress distribution at the delamination front from a DCB test.

 

  
 

200. - . ~ . ,
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Figure 3.4 Cohesive element mesh converge study using a DCB test
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(a) Tensile stress in the plies
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(b) Nominal inter-laminar normal stress in the cohesive zone

Figure 3.5 Stress distribution at the delamination front in a DCB test

3.6.3 Comparison of results

Using the elements and mesh size selected and single mode delamination propagation

criteria, DCB and ENF tests in [31] are simulated and the comparisons of the results are
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given in Figure 3.6 and in Table 3.3. It can be concluded that good agreements have been

obtained between the current two-dimensional CZM and the 3D numerical model and

experimental results in [31].

Table 3.3 Summary of result comparison of model calibration

 

 

  

 

 

   

Tests Max. Load (N) Displacement at Max. Load

Experiment Numerical Experiment Numerical

[31] 30131] ICurrentZD [31] 30131] I Current2D

DCB 147.10 135.30 | 138.50 4.80 4.70 | 4.50

ENF 734.00 696.00 | 720.50 3.90 3.90 | 3.80    
3.7 Selection of mixed-mode delamination propagation criterion

To determine the appropriate delamination propagation criterion, the mixed-mode

criteria presented earlier are studied and compared with the single mode criterion under

Mode I loading condition using an antisymmetric cross-ply [0/90] double cantilever

beam. The results given in Table 3.4 demonstrate the existence of mix-mode effect in

[0/90] laminate under single mode (Mode 1) loading condition. The results show that the

forces required to peel the cross-ply double cantilever beam using different delamination

propagation criteria are in the following order:

Single mode < BK law < Power law (a = 1) <Power law (a = 2)
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Figure 3.6 Comparison of predicted and experimental results
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Table 3.4 Summary of mixed-mode effect study in DCB of [0/90] laminate

 

 

 

      

Delamination propagation criteria Single BK law Power law Power law

Mode (11:2.284) (11:1) (01:2)

Maximum load (N) 59.06 64.98 67.01 73.97

Displacement at Max. load (mm) 5.15 5.64 5.84 6.40

 

Apparently, the single mode criterion gives the smallest load because of the

incapability to capture mixed-mode effects in the [0/90] laminate. In [31], the power

criterion with a = 2 has been shown to be inadequate to predict delamination under

mixed-mode conditions. The result obtained using BK criterion with 77 = 2.284 from [31]

is very close to that obtained using the power law criterion witha =1. However, the BK

interaction law requires an additional material parameter 77 that is determined by curve-

fitting of test data from delamination tests.

The power law criterion with 0: =1 and the BK criterion are most widely used in the

literature for the delamination propagation under mixed-mode conditions and the power

criterion with a =1 is recommended based on the assessment of [31,43] because of its

advantage of using one fewer variable (11) than the BK criterion while giving results

comparable to the more sophisticated BK criterion. Therefore, the power law criterion

with a = 1 is used to predict the delamination propagation in this study.

3.8 Case study

This section is aimed to study the effect of the undulation in woven composites on the

delamination propagation. The approach adopted here is as follows. First, specimens

made of two-ply [0/0], [0/90], and [90/90] laminates are simulated in DCB tests and their

53  



delamination resistances are compared. Then DCB tests are performed on specimens

made of four-ply laminates and their corresponding plain weave counterparts, and their

delamination resistances are evaluated. Finally, DCB and ENF tests are simulated in plain

weave specimens by inserting the cohesive layers along different interfaces within the

models to investigate the effects on delamination propagation of undulations in woven

designs.

Figure 3.7 shows the dimensions, loading, and boundary conditions of the models

used for case study. As can be seen Figure 3.7, the dimensions of the specimens analyzed

are the same as given in Table 3.1 except that the initial crack is kept constant as 33mm

for all the cases studied; but the structure of each beam is varied, e.g. single lamina, 2-ply

unidirectional laminates and plain weave. The material properties, elements, and mesh

size used for the case studies in this section are the same as for those used in calibration.

The power criterion with 0: =1 is used to predict the delamination propagation.

A u

L 33mm
‘
 

  

 II3.12mm

If 102mm ’5!

U

 
 

(a) DCB test model

    

   

U

3.12mm

102mm

(b) ENF test model

Figure 3.7 Models used for case study
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3.8.1 DCB test of two-ply laminates

Specimens made of two-ply [0/0], [0/90] and [90/90] laminates are simulated in DCB

tests. The comparison of load-displacement curves is given in Figure 3.8. The maximum

loads and the displacements associated with the maximum loads for all specimens are

given in Table 3.5. The deformed shapes after the DCB test are illustrated in Figure 3.9.

As shown in Table 3.5, the maximum load obtained for the [90/90] specimen (43.63 N) is

only 31.5% of the maximum load obtained for the [0/0] specimen (138.50 N). The peak

load obtained for the [0/90] specimen (59.06 N) is only slightly bigger than the [90/90]

specimen. The displacements at the maximum loads, denoting the opening of the

specimen at the loading point, are in reverse order. The above results show that the

stiffness along the longitudinal direction of the specimen is proportional to the maximum

load, and the stiffness of the less stiff arm dominates the maximum load as demonstrated

in the [0/90] specimen. However, the delamination propagation length in the stiffer [0/0]

specimen is much bigger than that in the less stiff [0/90] and [90/90] specimens as

illustrated in Figure 3.9. Therefore, the advantage of using larger stiffness materials is

that it can improve maximum load to initiate the delamination in Mode 1, but the

disadvantage of using larger stiffness materials is that the delamination propagates faster

in stiffer materials than less stiff materials once the delamination starts to propagate. As

expected, the post-test shape of the [0/90] specimen (Figure 3.9 (b)) is unsymmetric

because of the unsymmetry of the specimen.
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Figure 3.8 DCB load-displacement curves of 2 ply laminates

Table 3.5 Comparison of DCB results of 2 ply laminates

 

 

 

    

Specimen [0/0] [0/90] [90/90]

Maximum Load (N) 138.57 59.06 43.63

Displacement at Maximum load (mm) 4.46 10.30 13.83

 

>\

(a) [0/0] (b)[0/90] (c)[90/90]

 

Figure 3.9 Post-test shapes of 2 ply laminates in DCB
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3.8.2 DCB test of four-ply laminates

For a comparison of all the laminates studied, the load-displacement curves obtained

from the DCB test are given in Figure 3.10. The unsymmetric laminate [0/90/0/90]t

gives slightly higher delamination resistance than the symmetric laminate because Mode

11 is involved in the unsymmetric laminate, which has coupling between extension and

bending. Since the load-displacement curve for [0/90]s is almost indistinguishable from

that of [90/0]s, only result of [0/90]s is plotted in Figure 3.10. Similar to the conclusions

from the two-ply laminate study, the study using the four-ply laminates shows that the

stiffness is a dominant factor in the Mode 1 delamination resistance.

3.8.3 Comparison of plain weaves with 4-ply laminates in DCB

In this section, composites made of symmetric plain weaves of [0-90/90-0]s and [90-0/0-

90]s, and antisymmetric plain weave [0-90/90-0/90-0/0-90]t as shown Figure 3.11 are

simulated in DCB tests. The results are compared with their cross-ply laminated

counterparts as shown in Figure 3.12. As can be seen in the figures, the load-

displacement curves corresponding to the laminated regions match very well between the

plain weave composites and the associated cross-ply laminates. However, the load drops

to a plateau segment through the undulation region in the plain weave because the

average stiffness is lower in the undulation region. Similar to the conclusion of the 4-ply

laminate study, the antisymmetric laminate of plain weave gives slightly higher

delamination resistance than the symmetric laminates because Mode II is involved in the

nonsymmetric laminates due to the presence of the coupling between extension and

bending.
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Figure 3.11 4-ply plain weave models
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Figure 3.12 Comparison of DCB load-displacement curves of plain weaves and

laminates

3.8.4 Undulation effects on delamination propagation in plain woven

To study the effects of the undulations in woven composites on the delamination

propagation, three models of the symmetric plain weave [90-0/0-90]s as illustrated in

Figure 3.13 are analyzed in this section. In Model A (Figure 3.13 (a)), a single

“horizontal” cohesive layer is inserted into the middle plane of the laminate to simulate

the matrix interface at the middle plane and restrict the delamination to propagate along

this interface; In Model B (Figure 3.13 (b)), a single “skew” cohesive layer is inserted

above the upper surface of the 0 ply of the lower arm through the undulation region to

confine the propagation of the delamination along the matrix interface there; In Model C

(Figure 3.13 (c)), both the “horizontal” and “skew” cohesive interfaces in Mode A and

Model B are inserted to allow the delamination to propagate along both paths

simultaneously.
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(b) Model B with “skew” cohesive layer

 

(c) Model C with both “horizontal” and “skew” cohesive layers

Figure 3.13 Three models of plain weave [90-0/0-90]s

3.8.4.1 DCB test results and discussions

The load-displacement curves of the three models from the DCB tests are given in

Figure 3.14. In the legend, “Horizontal” denotes Model A, “Skew” denotes Model B,

and “Hor_Skew” denotes Model C. The three load-displacement curves are almost

identical before the undulation region. Once the delamination reaches the undulation

region, the three curves start to digress from each other. Model A with the horizontal

cohesive layer stays on the top, which means it consumes more energy for the

delamination to propagate along the horizontal interface. Model B with the skew

cohesive layer stays on the bottom, which means it consumes the least energy for

delamination to propagate along the skew interface.

The load-displacement curve of Model C with two cohesive layers shows some

fluctuation when the delamination enters the undulation region, and then it drops to
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match the curve in Model B. The fluctuation phenomenon or the so-called bifurcation

effect in Model C happens because of the competition of the two cohesive elements at the

intersection between the cohesive layers. According to [44], the bifurcation effect is a

numerical problem inherent in a softening material model and it happens when multiple

cohesive elements experience damage simultaneously. Eventually, the delamination in

Model C propagates along the skew interface as in Model B because it consumes less

energy along this path. This is shown by the load-displacement curve overlap between

Model B and Model C.

The DCB simulation results may be explained by comparing the stiffness of the

materials on the two sides of the interfaces. The material distribution is symmetric about

the horizontal cohesive interface, and thus the materials have the same stiffness on the

two sides of the horizontal interface. However, the material on one side of the skew layer

is different from the other side; and thus, a stiffness mismatch exists between the two

sides of the skew interface. This stiffness mismatch may lead to the easy delamination

propagation along the skew interface.

3.8.4.2 ENF test results and discussions

In this section, the three models are simulated in ENF tests. The resulted load-

displacement curves of the three models are given in Figure 3.15.

Contrary to the delamination propagation in the DCB tests, the ENF results show that

it consumes less energy for the delamination due to Mode II to propagate along the

horizontal cohesive layer than along the skew cohesive interface. This may be explained

by the elementary beam theory, according to which, the peak shear stress occurs in the
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middle plane of the beam. Again, the bifurcation effect is observed in Model C with two

cohesive layers as shown in the load-displacement curve in Figure 3.15.

3.8.4.3 Energy dissipation due to viscous regularization

To ensure correct prediction of delamination propagation, the energy dissipated due

to numerical viscous regularization must be small compared with the strain energy in the

model. As shown in Figure 3.16, the energy dissipation due to numerical viscous

regularization is zero in the DCB tests for both Model A and Model B. In the ENF tests,

the energy dissipated due to numerical viscous regularization is less than 5% of the strain

energy for both Model A and Model B as illustrated in Figure 3.17. This shows that the

numerical viscous regularization and stabilization schemes used in the analyses do not

affect the correct prediction of the final results. The presence of the dissipation energy in

ENF tests may be associated with the stabilization scheme used to prevent penetration

between upper and lower beams in the initial crack area.
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Figure 3.16 Energy dissipation in DCB tests
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3.8.4.4 ENF test results and discussions

To further study the undulation effects on delamination propagation in woven

composites, the whole undulation curves in plain woven composites are simulated with

cohesive layers added into different interfaces in the models. The initial crack and the

overall geometries of the specimen are the same as given in Table 3.1; and the

dimensions of the undulation regions are illustrated in Figure 3.18. Model D, E, and F

(See Figure 3.19) with cohesive layers simulating the upper, middle, and lower

delamination paths in the undulation regions are studied by simulating ENF tests. Figure

3.20 (b) shows the resulted load-displacement curves. In Figure 3.20 (a), the numbers

denote the location where the undulations occur in the plain weaves. As can be seen from

Figure 3.20 (b), delamination propagation through the undulated paths in Model D and F

consumes more energy than that through the horizontal layer in Model B. This conclusion

is the same as that from the study of models with half undulation path in plain woven

composites. The load-displacement curve of Model D with upper cohesive layer shows

smooth transition through undulation “2” and “3” compared to the other two models. This

may be due to the difference in the mesh used: 0.25mm is used for the cohesive layer for

Model D due to convergence issues, while 0.5mm is used for the other two models.
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Figure 3.18 Dimensions of the undulation region (Dimensions in mm)
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(a) Model D with upper cohesive layer

 

(b) Model B with horizontal cohesive layer
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(0) Model F with lower layer

Figure 3.19 Models with through cohesive layers
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Figure 3.20 Load-displacement curves of Model D, E and F
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For comparison purpose, the displacement curves of Model A (Figure 3.13 (a))with

horizontal cohesive layer in plain weave model of one-undulation and Model E (Figure

3.19 (b)) with horizontal cohesive layer in plain weave model of two undulations are

depicted in Figure 3.21. As can be seen, the peak loads are the same for both models. The

difference in the displacements at which the peak loads occur is due to the stiffness

difference in the two models: model B has lower stiffness than Model A because of the

one additional undulation involved.

 600.

500. ~

’0‘.

C

.......

   -- Middle (one undulation)

100' . """ Middle (two undulations) -

  
o. ' 5'. ' '16. ' 1'5. ' 2’0.

Displacemenflmm)

Figure 3.21 Load-displacement curves of Model A (one undulation) and E (two

undulations)

3.9 Conclusions of two-dimensional delamination study

0 In laminated composites, the average stiffness of each arm of a DCB is an

important factor for delamination initiation and propagation. Large stiffness tends
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to increase the maximum load required for delamination initiation, but it also

promotes the delamination propagation rate once delamination propagation starts.

0 Compared to cross-ply laminated counterparts, plain weave composites have a

plateau in their DCB load-displacement curves associated with the undulation

region because of the stiffness variation from the laminated regions.

0 Nonsymmetric laminates give slightly higher delamination resistance than their

corresponding symmetric laminated counterparts because Mode II is involved in

the nonsymmetric laminates due to the presence of the coupling between

extension and bending.

0 The delamination propagation direction through the undulation regions in plain

woven composites depends on the loading conditions:

0 Delamination due to Mode I in DCB test propagates along the skew interface

through the undulation region.

0 Delamination due to Mode II in ENF test propagates along the skew interface

through the undulation region. Based on this result, delamination resistance

may be improved by eliminating the horizontal pure matrix interface in

laminated composites using interlocking through layers as in the Q3D weave

design.

0 Cohesive layers should be used selectively due to the bifurcation effect.

0 The two-dimensional study is computationally efficient, but the information that

can be obtained is very limited compared to 3D analysis. 3D progressive damage

analysis with intra-laminar damage modes will be considered in the next chapter.

69



10.

11.

12.

REFERENCES

ABAQUS/Standard User’s Manual, online ver. 6.8 (2008), Hibbit, Karlsson &

Sorensen, Inc., Pawtucket, Rhode Island.

C. T. Herakovich, Mechanics of fibrous composites, John Wiley & Sons, Inc. , 1998

A.J. Brunner, B.R.K. Blackman, and P. Davies, A status report on delamination

resistance testing of polymer-matrix composites, Engineering Fracture Mechanics 75

(2008) 2779 - 2794

AC. Orifici, I. Herszberg, and RS Thomson, Review of methodologies for

composite material modelling incorporating failure, Composite Structures, Volume

86, Issues 1-3, November 2008, Pages 194-210

T.E. Tay, Characterization and analysis of delamination fracture in composites: An

overview of developments from 1990 to 2001, Appl Mech Rev vol 56, no 1, January

2003.

D. Liu, Impact-Induced Delamination—A View of Bending Stiffness Mismatching,

Journal of Composite Materials, Vol. 22, No. 7(1988), 674-692

P. Naghipour, M. Bartsch, L. Chemova, J. Hausmann, and H. Voggenreiter, Effect of

fiber angle orientation and stacking sequence on mixed mode fracture toughness of

carbon fiber reinforced plastics: Numerical and experimental investigations ,

Materials Science and Engineering A 527 (2010) 509 - 517

J. Andersons and M. Konig, Dependence of fracture toughness of composite

laminates on interface ply orientations and delamination growth direction, CompOs

Sci Technol 64 (2004). PP. 2139—2152.

N.S. Choi, A.J. Kinloch, and JG Williams, Delamination fracture of multidirectional

carbon—fiber/epoxy composites under mode 1, mode 11 and mixed-mode I/II loading,

J. Compos. Mater. 33(1999), 73-100.

J. Tao and CT. Sun, Influence of ply orientation on delamination in composite

laminates, J. Compos. Mater. 32 (1998), 1933—1947.

A.B. de Morais, M.F. de Moura, J.P.M. Goncalves, and PP. Camanho, Analysis of

crack propagation in double cantilever beam tests of multidirectional laminates,

Mechanics of Materials 35 (2003) 641—652

A.P. Mouritz, C. Baini and I. Herszberg, Mode I interlaminar fracture toughness

properties of advanced textile fibreglass composites, Compos Part A: Appl Sci A20

(7) (1999), Pp. 859-870

70



13. Y. Tanzawa, N. Watanabe, and T. Ishikawa, Interlaminar fracture toughness of 3-D

orthogonal interlocked fabric composites, Compos Sci Technol 59 (8) ( 1999), pp.

1261—1270.

14. J. Chen, E. Ravey, S. Hallett, M. Wisnomc, and M. Grassi, Prediction of delamination

in braided composite T-piece specimens, Composites Science and Technology 69

(2009) 2363—2367

15. A. E. Bogdanovich, “Multi-scale modeling, stress and failure analyses of 3-D woven

composites” J Mater Sci (2006) 41:6547—6590

16. X. Tang, J. D. Whitcomb, A. D. Kelkar, and J. Tate, Progressive failure analysis of 2

x 2 braided composites exhibiting multiscale heterogeneity, Composites Science and

Technology 66 (2006) 2580 - 2590

17. S.V. Lomov, DS Ivanov, I. Verpoest, M. Zako, T. Kurashiki, and H Nakai, Meso-FE

modelling of textile composites: Road map, data flow and algorithms. Compos Sci

Technol 2007; 67:1870 - 91.

18. L. Gorbatikh, D. Ivanov, S. Lomov, and I. Verpoest, On modelling of damage

evolution in textile composites on meso-level via pr0perty degradation approach,

Composites: Part A 38 (2007) 2433-2442

19. R. Krueger, Virtual crack closure technique: history, approach and applications. Appl

Mech Rev 2004;57:109—43.

20. 1.8. Raju, Calculation of strain-energy release rates with higher order and singular

finite elements, Eng. Fract. Mech. (1987), 28(3), 251-274.

21. E.F. Rybicki and M.F. Kanninen, A finite element calculation of stress intensity

factors by a modified crack closure integral, Eng. Fract. Mech. (1977), 9, 931—938.

22. C. Balzani and W. Wagner, An interface element for the simulation of delamination

in unidirectional fiber-reinforced composite laminates, Engineering Fracture

Mechanics, Vol. 75, Issue 9, June 2008 2597-2615

23. W. Wagner, F. Gruttmann, and W. Sprenger, A finite element formulation for the

simulation of propagating deleminations in layered composite structures, Int J Numer

Methods Engng 51 (2001). Pp. 1337-1359

24.2. Petrossian and M. R. Wisnom, Prediction of delamination initiation and growth

from discontinuous plies using interface elements, Composires Part A 29A (1998)

503-515

25. A. Pantano and R. C. Averill, A mesh-independent interface technology for

simulation of mixed-mode delamination growth, International Journal of Solids and

Structures Vol. 41, Issue 14, July 2004 3809-3831

71



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

RP. Camanho, and CG. Davila, Mixed—Mode Decohesion Finite Elements for the

Simulation of Delamination in Composite Materials, NASA/1‘M-2002-21 1737

Z. Zou, S.R. Reid, S. Li, and RD. Soden, Application of a delamination model to

laminated composite structures, Composite Structures 56 (2002) 375—389

G. Alfano and M. A. Crisfield, Finite element interface models for the

delaminationanalysis of laminated composites: mechanical and computational issues,

Int. J. Numer. Meth. Engng 2001; 50:1701-1736

G.I. Barenblatt, Mathematical Theory of Equilibrium Cracks in Brittle Failure,

Advances in Applied Mechanics 7 (1962).

A. Needleman, A Continuum Model for Void Nucleation by Inclusion Debonding,

Journal of Applied Mechanics 54 (1987) 525—53 1.

PP. Camanho and CG. Davila, Mixed-Mode Decohesion Finite Elements for the

Simulation of Delamination in Composite Materials, NASA/TM-2002-211737

O. Allix and P. Ladeveze, Interlaminar interface modelling for the prediction of

delamination. Compos. Struct. 22 (1992) 235-242.

Z. Zou, S.R. Reid, and S. Li, A continuum damage model for delaminations in

laminated composites, Journal of the Mechanics and Physics of Solids 51 (2003) 333

— 356 ,

A. Turon, C.G. Davila, P.P. Camanho, and J. Costa, An engineering solution for mesh

size effects in the simulation of delamination using cohesive zone models,

Engineering Fracture Mechanics 74 (2007) 1665—1682.

W. Cui, M. R. Wisnom, and M. Jones. ”A Comparison of Failure Criteria to Predict

Delamination of Unidirectional Glass/Epoxy Specimens Waisted Through the

Thickness.” Composites 23(3), 1992, 158-66

E.M. Wu and Jr C. Reuter, Crack extension in fiberglass reinforced plastics, Report

no. 275, T&AM, University of Illinois, 1965.

ML. Benzeggagh and M. Kenane, Measurement of Mixed-Mode

DelaminationFracture Toughness of Unidirectional Glass/Epoxy Composites With

Mixed-Mode Bending Apparatus, Composites Science and Technology 56 (1996)

439—449.

G. Duvaut, Lions, J .L., Inequalities in Mechanics and Physics, Springer-Verlag Berlin

Heidelberg New York, 1976

P. Maimi, PP Camanho, J Mayugo, and CG Davila, A continuum damage model for

composite laminates - part II: computational implementation and validation.Mech

Mater 39 (2007) 909—19

72



40. P. W. Harper and S. R. Hallett, Cohesive zone length in numerical simulations of

composite delamination, Engineering Fracture Mechanics 75 (2008) 4774—4792

41. A. Hillerborg, M. Modéer, and RE. Petersson, Analysis of crack formation and crack

growth in concrete by means of fracture mechanics and finite elements, Cement

Concr Res 6 (1976), pp. 773-782.

42. Z.P. Bazant and BH. Oh, Crack band theory for fracture of concrete, Materials and

structures 1983 (16) 155—177

43. ,J. R. Reeder ”An Evaluation of Mixed-Mode Delamination Failure Criteria.” NASA

TM 104210, 1992

44. K. Y. Volokh, Nonlinear Elasticity for Modeling Fracture of Isotropic Brittle Solids,

J. Appl. Mech. ,January 2004 -- Volume 71, Issue 1, 141

73



Chapter 4 Three-dimensional static progressive damage study of

laminates

4.1 Abstract

This chapter is aimed to show the necessity of in-ply matrix cracking for the

prediction of delamination in laminated plates subjected to transverse static loading. First,

a three-dimensional continuum damage model is developed for the prediction of the

initiation and propagation of intra-laminar damage mechanism. This continuum damage

model is then combined with the cohesive zone model in ABAQUS/Standard [1] to

perform three-dimensional progressive damage analysis of skew-angled laminated plates

subjected to transverse static loadings. Finally, the numerical predictions are compared

with the results of the delamination patterns and fiber-bridging damage modes from the

original experimental works in [2,3]. Good correlations are achieved between numerical

simulation and experiments for the damage modes and delamination patterns.

4.2 Literature review and the modeling methodology

4.2.1 Continuum damage mechanics models for composites

In Continuum Damage Mechanics (CDM) models e.g. [4], material damage, the

initiation and growth of micro-cracks in a continuous medium was modeled with internal

damage variables first introduced by L.M. Kachanov [5]. The damage variables can be

interpreted as the reduction of effective loading area to characterize the degradation of

the material stiffness caused by damage such as cracks and voids. Effective stresses were

introduced by Y.N. Rabotnov [6] to represent the stresses acting on the net (undamaged)

loading area. The effective stresses may be expressed in terms of the damage variables

and the actual stresses by applying equilibrium equivalence in one-dimension (1D) model
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and energy equivalence in three-dimensional model as explained later. The effective

stresses will be used in the failure criteria to define the loading functions later.

Crack-bl A0

 

(a) Damaged material with area A0 under actual tress 0'

6 Ad=(1—d)Ao 6

 

(b) Damage model with net loading carrying area Ad under effective stress 0'"

Figure 4.1 One-dimensional continuum damage mechanics model

To introduce the concepts of damage variables and effective stresses in CDM, a one-

dimensional CDM model is given in Figure 4.1. In Figure 4.1(a), damage is created in the

form of a crack by an actual stress 0 in a specimen with cross section area/10. The

continuum damage model for this one-dimensional example is given in Figure 4.1(b),

where Ad denotes net (undamaged) loading area in the fictitious undamaged

configuration, and 6' is the effective stress applied on this fictitious area. To characterize

the degradation of material stiffness due to damage, damage variable (1 (OS (1 $1) is

introduced and defined as follows.

d :10? (4.1)

Eq. (4.1) can be rewritten as follows:
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Ad = (1— 60/10 (4.2)

which reveals that the net loading carrying area Ad that characterizes the stiffness of the

material will decrease with damage growth.

A zero value of damage variable indicates undamaged material, and a value of 1

represents fully damaged material. Applying equilibrium equivalence to the actual

configuration Figure 4.1(a) and fictitious undamaged configuration Figure 4.1(b), we

have

6Ad = 0A0 (4.3)

Inserting Eq. (4.2) into Eq. (4.3), the effective stress can then be defined in terms of

the damage variable (I and the actual stress 0 as follows.

6' = 3— (4.4)
l — d

The effective stress in the fictitious undamaged configuration is imaginary and can

not be measured directly, while the actual stress a is a physically measurable quantity. As

can be seen in Eq. (4.4), the effective stress increases as damage accumulates in the

 specimen. The so-called damage operator 1 is a magnifying factor that relates the

actual stress to the effective stress. In the one-dimensional case, the damage variable and

effective stress are scalars. As shown later, they are tensors in three-dimensional CDM

models.

Assuming orthogonal damage modes and using the energy equivalence principle,

which assumes that the elastic energy of the damaged material is in the same form as that

of the undamaged material except that the actual stresses are replaced by the effective

stresses; Cordebois and Sidoroff [7] outlined a three-dimensional damage model to take
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into account the material anisotropy. Matzenmiller [8] presented a detailed formulation of

constitutive model for fiber-reinforced composites with elastic-brittle behavior. Based on

the anisotropic damage mechanics models developed by Cordebois and Matzenmiller,

Zako [9] performed a three-dimensional progressive damage analysis on a unit cell of

plain woven fabric composites subjected to on-axis uniaxial loading using stress-based

failure criteria.

Starting from the definition of complementary free energy density, Maimi et al. [10-

12] developed a continuum damage model for the prediction of the onset and evolution of

intra-laminar failure in composite laminates under plane stress conditions. Using

equivalent displacement and stress concepts, Lapczyk et al. [13] presented an anisotropic

damage model for predicting failure and post-failure behavior in composite laminates

under plane stress. To alleviate mesh dependency due to strain softening, both works

used the crack band model to integrate a characteristic length into the constitutive models

to calculate the strain corresponding to the material failure.

4.2.2 Progressive damage analysis of laminated plates subjected to transverse

loading

Using CZM for both the intralaminar and interlaminar damages, the peanut shape

delamination in cross-ply laminates was simulated in [14,15]. But this approach requires

the knowledge of the locations of the intra-laminar damage in advance.

Using CZM for delamination and stress-based criteria for interlaminar damage, the

peanut-shaped delamination in cross-ply laminates subjected to transverse loads is

reproduced in [16, 17]. In their intralaminar damage models, once the stress-based

criterion for an in-ply damage mode is met, the associated elastic modudi or stresses at
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corresponding material points are reduced or zeroed accordingly. This method needs pre-

runs to determine the parameters describing the damage-resisting capability of the

structures [18].

Most recently, by extending the continuum damage model introduced by Maimi et al.

into a three-dimensional model for intralaminar failure prediction and using the cohesive

zone model for interlaminar failure prediction, Lopes et al. [19] performed a progressive

damage analysis of dispersed stacking sequence laminates subjected to transient low

velocity impact using the explicit finite element method in ABAQUS.

Pilchak et al. [3] investigated experimentally the fiber-bridging damage modes in

small-angle laminates and proposed a technique to combat delamination using small-

angle laminates. To the author’s best knowledge, simulation of the fiber-bridging

damage modes in small-angle laminates subjected to transverse loads has not been

reported in the literature.

4.3 Three-dimensional progressive damage modeling methodology in this work

The CZM approach is efficient for the simulation of delamination, a fracture at the

interface in composites. It is less efficient for modeling intralaminar damage, the fracture

in the bulk materials results in the simultaneous use of two material models for the same

physical material. It is desired to incorporate a material failure law directly in the stress-

strain constitutive description of the bulk material. This is achieved by modeling the

material failure via elastic strain softening model with stiffness degradation to be

introduced in the next section. The overall three-dimensional progressive damage

modeling methodology adopted here is shown in Figure 4.2.
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Figure 4.2 Three-dimensional progressive damage modeling methodology

4.4 Development of the continuum damage mechanics model for intra-laminar

damage

In this section, a continuum damage model for intra-laminar damage is developed.

The basic concepts, constitutive models, and numerical techniques to be introduced about

this model are given in Figure 4.3.
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- Damage modes - Energy dissipation - Crack band model

- Damage variable - Consistency conditions - Viscous regularization

- Effective stress - Damage evolution laws

   
- Damage operator

- Damage threshold

- Loading function

- Activation function    
Figure 4.3 Continuum damage model

4.4.1 Formulation of one-dimensional continuum damage model

This section is aimed to introduce the basic concepts and formulation of a continuum

damage model using a uniaxial example.

4.4.1.1 The elastic softening model

Fiber-reinforced polymer composites behave like quasi-brittle materials, i.e., such

materials fail after reaching peak strengths without significant plastic deformation [8].

Consequently, fiber-reinforced polymer composites can be modeled as elastic-brittle

materials with neglected plastic deformation. In the elastic softening model with stiffness

degradation [20], strain-softening is due solely to the degradation of material stiffness

without other inelastic behavior. After the material is damaged, unloading leads to the

complete closure of the cracks. This means that the material will unload along a straight

line pointed toward the origin in the stress-strain curve of the material and reload at the

degraded stiffness along the line with a slope of (l-d)E as illustrated in Figure 4.4.
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In Figure 4.4, 0'6 is the strength of the material and EC is the strain associated with

0'6 at which the material damage (strain softening) initiates and can be calculated as

0C

EC = —— (4.5)

E

where E is the Young’s Modulus of the material. The damage variable (1 represents the

degradation of material stiffness. 8f is the strain associated with material failure.

Then the questions to be answered in Figure 4.4 are:

How is 8f computed?

How is the damage variable (1 calculated?

The first question will be answered by introducing the concept of mesh dependency

and crack band model, and the second question will be answered later.

0"

 
 

 

Figure 4.4 Elastic softening model with stiffness degradation

4.4.1.2 Mesh dependency and crack band model

In continuum mechanics, the constitutive model is expressed in terms of stress-strain

relations. Once the material is damaged, the material exhibits strain-softening behavior

leading to strain localization. The softening stress-strain constitutive equations may result
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in physically inadmissible responses. That is, the energy dissipated is proportional to the

volume of the failed element. As a result, the damage is localized in a region of zero

volume, which is the so-called softening crack band [20] as shown in Figure 4.5. This

leads to a fracture without energy dissipation with mesh refinement. This is known as

mesh dependency of the finite element results in that the energy dissipated decreases

upon mesh refinement. A good example of mesh dependency can be found in [13]. To

correct this behavior, the strain associated with material failure is computed using the

crank band model proposed by [21], in which fracture is modeled as a smeared crack

band consisting of parallel densely distributed micro-cracks as illustrated in Figure 4.5

0 4

Softenin- crack band

 
 

0

Figure 4.5 Stress-strain curve of the crank band model

 
In Figure 4.5, we is the crack band width or the so-called characteristic length in the

unloaded state, a strain softening localization limiter to overcome mesh-dependency, A is

the elongation of the crack band in loaded state, — 1S the inelastic fracturing straln,

WC

and% is the elastic strain of the bulk material. Using the crack band model, 8f is

calculated by keeping the energy dissipated over the fracture surface constant as follows:
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20‘”

C

awe

sf = (4.6) 

where CF is the fracture toughness.

4.4.1.3 Damage variable calculation

Once the material is damaged, the damage evolution is controlled by the damage

variable defined as follows:

f max_ c

(1:8 (8 8) (4.7)
gmaxwf _8c)

x

 

where am is the maximum strain obtained after damage initiation and before full

damage, and it is used to track the damage in the strain domain and can be calculated as

follows.

emax =min{ rnax {86,8},€f} (4.8)

i=0”max

Eq. (4.8) indicates that the maximum strain emax must increase monotonically after

damage initiation associated with strain EC and before full damage associated with

failure strain 8f . It specifies the condition that material can not be recovered after

damage, which ensures thermodynamics irreversibility.

To scale the strains by the critical strain 8C associated with material damage

initiation, the elastic domain threshold is defined as follows.

r = — (4.9)

As can be seen in Eq. (4.9), the elastic domain threshold r is a dimensionless scalar.

Using Eq (4.9), the damage evolution can be mapped from strain domain as shown in

Figure 4.4 to the domain of elastic domain threshold as illustrated in Figure 4.6.
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Figure 4.6 Damage evolution in the domain of elastic domain threshold

The damage variable can then be expressed in the elastic domain threshold as

f max_

- r (r 1) (4.10) 

— rmax (rf —1)

. . . . . . . max .

where rf IS the elastic domam threshold assoc1ated w1th material failure, and r 1S the

elastic domain threshold associated with the maximum elastic strains that can be attained

before further damage occurs, i.e.

rf =—— (4.11)

and

 rm" = 8 (4.12)

Using Eqs. (4.8), (4.11), and (4.12), we have

rmaxzmin{ max {1,r},rf} (4.13)

t=0,tmax

Eq.(4. 13) specifies the thermodynamics irreversibility condition as Eq. (4.8) does.
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4.4.2 Formulation of three-dimensional continuum damage model

After the introduction of the basic concepts and formulation of the one-dimensional

continuum damage model, the derivation of the three-dimensional orthotropic continuum

damage model is presented in this section.

4.4.2.1 Damage modes in fiber-reinforced polymer composites

Dominant damage modes in a fiber-reinforced polymer composite subjected to

transverse loading include intralaminar damage e.g. fiber breakage, matrix cracking,

matrix crushing, and interlaminar damage (delamination). The fibers are in forms of

bundles and arranged unidirectionally within lamina of laminated fiber-reinforced

polymer composites; and thus, they may be treated as orthotropic materials with

longitudinal fiber damage mode and transverse matrix damage mode orthogonal to each

other. The matrix layers between the laminae are resin-rich and can be modeled as

isotropic materials; and hence, the interlamiar damage mode of delamination can thus be

defined. As demonstrated in Figure 4.2, the intralaminar damage modes are modeled

using the continuum damage model in this section and delamination is modeled using the

CZM in ABAQUS/Standard.

4.4.2.2 Constitutive model

To characterize the above damage modes, the damage tensor introduced in [7] is

adopted here and is given by Eq (4.14).

d1 0 0

D=diag{d1,d2,d3}= 0 d2 0 (4.14)

o 0 d3
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where the damage variable d1 is associated with fiber failure along the longitudinal

direction, the damage variable d2 is associated with matrix failure (cracking or crushing)

in the transverse direction, and the damage variable d3 is associated with delamination

(In the implementation of current model, it is set to 0 because delamination is treated by

CZM). The three damage modes are illustrated in Figure 4.7.

  
(a) Fiber failure (b) In-ply matrix failure (c) Delamination

Figure 4.7 The three damage modes in fiber-reinforced composites

The actual stress and the effective stress introduced earlier now are tensors in three-

dimensional. Let [c] be the actual stress tensor and [6] be the effective stress tensor as

follows:

011 012 013

[6] = 022 023 (4.15)

'sym 0'33

and

511 5'12 5131'

[61: 6'22 6'23 (4.16)

Lsym 6'33

Using the transformation law proposed in [7], [6] can be obtained in terms of [o] and

D as

[6]=-;-[(1-D)"[a]+[o](1—D)"l (4.17)

or explicitly
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0'11 0'12( 1 + 1 ) 0'13( 1 + 1 )

1-d1 2 1-d1 l—d2 2 l—d1 1—d3

[6]-- 3i “1% 1 + 1 ) (4.18)
l—d2 2 l—dl 1—d3

s... 1035
_ — 3 _  

Using contracted notations, the above equation can be expressed as

6=Mo
(4.19)

where

._ . . . . . . T
6-{011,022,033,012»013,023} , (4.20)

T
0={011.0221033312313923} (4,21)

and the damage operator introduced earlier, which relates the actual stresses and the

effective stresses, is now a tensor in three-dimensional and it takes the diagonal form

1 1 1 1 1 1 1
M: diagl —( ).-( )-( )}

l-ld, ’1-c12’1-ar3 ’21-dl 1— d2 21—d1+1-d3 21- d2 1—d3

    

(4.22)

Recalling that the effective stress is derived earlier using equilibrium equivalence (see

Eq. (4.3)) in one-dimensional, the damaged constitutive equations in three-dimensional

are now derived by the energy equivalence principle [7], which assumes that the elastic

energy of the damaged material is in the same form as that of the undamaged material

except the actual stresses are replaced by the effective stresses i.e.

‘P(6,dl) '—‘ “10(6) (4.23)

where

‘P(o,d, ) = i—oTSdo (4.24)

is the elastic energy in terms of the actual stresseso and the compliance matrix of the

damaged material Sd , and
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1110(6) = £67806 (4.25)

is the elastic energy in terms of the effective stresses 6 and the compliance matrix of the

undamaged material S0.

Inserting Eqs (4.24) and (4.25) into Eq. (4.23) and applying Eq.(4.19), we have

Sd = MTSOM (4.26)

Eq. (4.26) establishes the relationship between the compliance matrix of the damaged

material Sd and that of the undamaged material S0.

The relationship between the stiffness matrix of the damaged material and that of the

undamaged material is derived by taking the inverse of Eq.(4.26) as follows.

Cd = (Sd )‘1 = M‘1(SO)“M‘T = M"1C0M‘T (4.27)

4.4.2.3 Energy dissipation

In case of elastic damaged material under isothermal conditions, the complementary

free energy density takes the same form as the elastic energy in Eq. (4.24) in terms of the

actual stresses. To ensure the thermodynamics irreversibility of the damage process

imposed by the second law of dynamics, the rate of change of the complementary free

energy minus the externally supplied work to the solid at constant strains must be non-

negative:

)? — (Fa 2 0 (4.28)

Applying Eq. (4.24), it yields

67(51—a)+a—Wd, 20 (4.29)
ad,

88



To ensure non-negative dissipation of mechanical energy, the above inequality must

be satisfied for arbitrary stress rates. The expression in the parenthesis must be equal to

zero, which yields

934:0
do

This recovers the constitutive equation

The inequality Eq. (4.29) becomes

3‘}! . .

—d =Yd 20
ad] I I I

where

,=av_=1,ras_d,
6d, 2 8d,

are the thermodynamic forces conjugate to their

(4.30)

(4.31)

(4.32)

(4.33)

respective damage variables dI

(l=1,2,3), and they are associated with the three different damage modes. In the

following, the thermodynamic forces will be shown to be non-negative.

Taking the derivative of Eq (4.26), it gives

38,, 6M
__ = MS __

ad, 0 ad,

For a physical material

So>O

(4.34)

(4.35)

The damage operator M in Eq (4.22) is diagonal and positive definite, i.e.

M>O

Since
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(4.36)



 

8M 1
—=———2 0 0110, (4.37)

adl 2(1-41)2{ }

3M 1
= 020101, (4.38)

adz 2(1—d2)2{ }

and

9M=——1—2{0 0 2 0 1 1} (4.39)

6d3 2(1—d3)

wehave

99120 1:123 (4.40)
3.1,

Using Eqs (4.34), (4.35), (4.36) and (4.40), the following condition must hold

fl2 0 (4.41)

8d,

Eq (4.33) gives

Y, _>_ 0 (4.42)

Therefore, the condition of positive evolution of damage variables (d1 20) is a

sufficient condition for the proposed material model to fulfill the thermodynamics

irreversibility imposed by the second law of thermodynamics.

4.4.2.4 Loading functions (damage initiation criteria)

To simulate the progressive damage of laminated composite plates subjected to

transverse loading, the loading functions F1 (1:1, 2+, 2-, where 1 is associated with fiber

damage, 2+ is associated with matrix cracking and 2- is associated with matrix crushing)

are defined using the intralaminar damage initiation criteria developed by [21] as follows.

For fiber failure
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a 2 6'2 +a2

For transverse matrix cracking (6'22 2 0)

 

6' 6' 6'

F2+ = J(—22)2 +(——12)2 +(———23)2 (4.44)
YT 512 Sm23

For matrix crushing (6'22 < 0)

 

A 2A A A

1 a Y 0' 0' 0'
F2_= _( 22)2+ C 22 _ 22 +( 12)2 (4.45)

4 512 4S122YC YC 512

 

where:

6'” - effective stress in the fiber direction

(3'22 - effective stress in the transverse direction

612 - effective shear stress in the plane of fiber and transverse directions

6'23 - effective shear stress in the plane transverse and through-thickness plane

6'13 - effective shear stress in the plane of through-thickness and fiber directions

XT - tensile strength in the fiber direction

YT - tensile strength in the transverse direction

Y . . . .
C - compresswe strength in the transverse direction

Sf - shear strength involving fiber failure

$12 - shear strength in the fiber and transverse plane

Sm23 - shear strength for matrix cracking in the through-thickness direction
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As can be seen from Eqs. (4.43), (4.44), and (4.45), the loading functions depend on

the effective stresses and material properties. A value less than 1 of a loading function

means no damage. A value greater than or equal to 1 of a loading function indicates that

its associated damage mode is initiated.

4.4.2.5 Damage activation functions and consistency conditions

The three damage activation functions f, (1:1, 2+, 2-) are defined using the loading

functions as follows:

f1 = F: - rim“ 5 0 (1:1. 2+. 2-) (4.46)

where

rim” 6 [1.r,f ] (1:1, 2+. 2-) (4.47)

are the elastic domain thresholds associated with the damage modes 1:], 2+, 2- . They

take an initial value of 1 before the material is damaged, and they increase with damage

growth until reaching r,f (I=1, 2+, 2-) when the material is fully damaged. r1f is the

elastic domain threshold associated with full damage in the fiber direction, rzf+ is the

elastic domain threshold associated with full damage in transverse matrix cracking, and

r2f_ is the elastic domain threshold associated with full damage in transverse matrix

crushing.

To ensure thermodynamics irreversibility, the damage activation functions Eq. (4.46)

have to be always non-positive. While the damage activation function f, is negative, the

material response is elastic. When a criterion is activated, f, = 0, the gradient of the

loading function F, should be evaluated. If the gradient is not positive, the state is one of '
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unloading or neutral loading. If the gradient F, is positive, there is damage evolution;

and the consistency condition has to be satisfied:

f1 = F1 — f1max = 0 (4.48)

The elastic domain thresholds take an initial value of 1 before material damage, and

they increase monotonically with material damage. When the material is failed, they are

set to be r,f . r,f (1:1, 2+, 2-) are the elastic domain thresholds corresponding to material

failures. That is

I‘lmax =min{max{l, max {Fl}}ir1f } (4.49)

{=01max

max _ - f
r2+ —min max 1, max {F2+,F2_} ,r2+ (4.50)

(=0Jmax

rzl'llax =min max 1, max {F2_} ,rzji} (4.51)

t=OJmax ,-

where t is the loading time and rmax refers to the current loading time.

Eqs. (4.49), (4.50), and (4.51) specify the condition that the elastic domain thresholds

increase monotonically with material damage calculated through the loading

functions F, . Eq. (4.50) takes account of the damage effect on matrix in tension due to

matrix crushing. Two important characteristics of the model proposed here are that the

elastic domain threshold values are a function of the damage variables and that the

loading functions depend on the effective stress tensor.
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4.4.2.6 Damage evolution and damage variable computation

Similar to the one-dimensional case, once the material is damaged, the damage

evolution is controlled by the following relation:

 

:lf(r]max___1)

d,- (4.52)

ax(rlf - 1)

In the above equation, r,f is calculated as follows:

F

of = ——2ECIS’ (4.53)

(0'! ) wc

where we is the crack band width, and the material properties associated with each

damage mode are given in Table 4.1.

Table 4.1 Material properties associated with each damage mode'in three-

dimensional model

 

 

 

  
 

      

Material Properties Damage Strength Young’s Moduli Fracture

threshold toughness

r,max 0'? El G,F

Fiber failure (I=l) rlmax XT E11 GIF

Matrix cracking (I=2+) rZinFaX YT 522 l G5:

Matrix crushing (I=2-) r2_ax YC 522 t G2F_

 

To avoid the so-called snap-back effect in the stress-strain relation of the constitutive

model, the following must hold:

r,f 21 (4.54)

which guarantees the strain energy released before damage initiation must be not more

than the fracture toughness.
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Since the finite element size must be not larger than the crack band width wc, the

critical finite element size le can be obtained by combining Eqs. (4.53) and (4.54) as

follows:

F
< 213,0,

[6 S we _

(0f)2

(4.55) 

This critical finite element size (characteristic length) 18 is given as an input variable

in ABAQUS/Standard user subroutine UMAT [1]. As shown later in the case study, this

model does not eliminate mesh dependency completely; and it is recommended to align

the mesh with the direction of crack propagation.

4.4.2.7 Viscous regularization of the damage variables

Material softening and stiffness degradation in the elastic-softening model lead to

severe convergence difficulties in implicit analysis programs, such as

ABAQUS/Standard. In order to improve the convergence of the numerical algorithm, an

artificial viscosity model originally proposed in [26] and used successfully for

progressive damage analysis of composites in [12, 13] is implemented here as

4:” fun—db (4.56)

where d)’ (I = 1,2+,2 —) are the “regularized” damage variables used in the calculation of

the damaged elastic matrix, (I , (I =1,2+,2-) are the true damage variables, and ,u is the

viscosity parameter representing the relaxation time to control the rate at which the

regularized damage variables d}’ approach the true damage variables d, . Using viscous

regularization with a small value of the viscosity parameter compared to the characteristic
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time increment i.e./1 << At, enables the tangent stiffness matrix to be positive for small

time increments during the softening regime, and thus, improves the rate of convergence

of the model in the softening regime. As é—t —> oo, d7 —> dv so that the solution of the

,u

viscous system relaxes to that of the inviscid case.

To update the “regularized” damage variables at time to +At , the above equation is

discretized using the backward-Euler scheme in time as follows:

 

 

At [1
dv : d +——dv 4.57
It0+At fl+Atlt0+At fl+AtltO ( )

Thus,

ad; = A’ (4.58)
8d, fl+At

Eq. (4.58) will be used in the calculation of the tangent constitutive tensor in the next

section.

4.4.2.8 Solution algorithm and material tangent constitutive tensor

The Newton-Raphson method is used to solve the system of nonlinear finite element

equations. To ensure a fast convergence rate of the solution algorithm, the material

tangent constitutive tensor must be calculated correctly, and it is computed as follows:

V max A

a.:_ d+z[a&8][ad, ad, ar, is] (4.59)

I

 

  

3; - ad1" ad, arlmax 86 as

Using Eq (4.58)

do At 3Cd adI dqmax

as d ,u + At 7[ ad; 8134"“ aa 0 ( )
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  where aCd is obtained by differentiating Eq (4.27), 8d,
v

max is computed from Eq.

ad]
8r,

max

(4.52), and 2%— can be derived using the loading functions Eqs. (4.43), (4.44), and

o

(4.45).

4.4.2.9 Implementation of the material model

The three-dimensional intralaminar continuum damage material model developed was

implemented in ABAQUS non-linear finite element code using a user-subroutine UMAT

and the flowchart is given in Figure 4.8.

4.4.2.10 Modeling of delamination

Delamination is modeled using the three-dimensional cohesive zone model in

ABAQUS with mixed-mode failure criteria, and the damage initiation and propagation

criteria are given as follows.

Damage initiation criterion [24]

“my {if +[13—J2 =1 (4.61)

K Tic 726 T36

where r, is the inter-laminar normal stress and 2'2 and T3 are the inter-laminar shear

stresses, while If (i=1, 2, 3) are the inter-laminar strengths, and the symbol ( )

represents the Macaulay bracket defined as

l- 0 Tl<0 .
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, , Update strains and effective stresses

Get material properties and "+1 n n+1

- - e = e + d8
compute stiffness matrix C0 '

6714-1 =CO 811+]

i

Update thresholds Compute loading functions

(rlmax )I‘H'l (Eqs 4.49_451) F] (Eqs. 4.43-4.45)

dI = O

No change to Cd

Update damage variables

d, (Eq. 4.52)

Fully damaged: d, =1

Update Cd (Eq. 4.27)

Damage growing? No change to

(rlmax )n-l-l > (rlmax )n d1 and Cd

. . do

Regularize damage variables a— : Cd (Eq. 4-60)

(Eq. 4.57) 8

V

f
 

Compute damaged stiffness and

tangent stiffness matrices

Cd , g—a (Eqs. 4.27, 4.60)

8

Update actual stresses

an+1 = Cd8n+l 

     t

[ Exit UMAT ]

 

 

Figure 4.8 UMAT flowchart
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The quadratic failure criterion Eq. (4.61) assumes that the compressive normal

stresses do not affect the initiation of delamination.

Delamination propagation criterion [25]

{—01]+ {—011J+[——G’”]=1 (4.63)

GIC GIIC Gmc

where G,C(i = 1,11,!!!) are the critical energy release rates, which can be determined

from experiments. G,(i = 1,11, 111) refer to the energy release rates.

4.5 Calibration of computational model

To validate the model, a 90mm x 90mm square regular[0/ 9015 glass fiber reinforced

polymer plate subjected to quasi-static displacement loading in [23] is simulated. The ply

thickness is 1.07mm. Because of symmetry, only one quarter of the plate with a

distributed load at a 6mm/sec rate in a central area of 0.5 mm x 0.5 mm is modeled (see

Figure 4.9 (a)). Two zero-thickness cohesive layers of 25 mmx 25 mm are inserted at the

center of the top and the bottom interfaces between the 0 and 90 plies (see Figure 4.9 (b))

to detect the delamination there. A mesh size of 0.5mm x 0.5 mm is used for the cohesive

layers and the center of the plies, and a mesh size of 2mm x 2mm is used anywhere else.

One element is used for each ply thickness. Due to identical mesh through thickness,

shared node constraints are used to connect the cohesive layers and the plies.

Incompatible mode continuum element C3D81 is used for the plies, and cohesive element

COH3D8 is used for the cohesive layers. Clamped boundary conditions are imposed

along the edges. The material properties are given in Table 4.2, where the fracture

toughness associated with in-ply matrix failure is assumed to be the same as the Model I

fracture toughness of the cohesive interface material properties from [17], and the
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fracture toughness associated with in-ply fiber failure is assumed because of the lack of

the data in literature.
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(a)Loading and boundary conditions (b) Delamination modeling

Figure 4.9 Modeling of the quasi-static indentation test in [23]

Table 4.2 Material properties used for three-dimensional progressive damage

analysis

 

GFRP ply material properties

 

  

 

 
 

 

 

Ell I 522 I E33 G12 I 013 023 V12 V13 V23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

37.90 I 9.07 | 9.07 | 3.72 | 3.72 | 3.72 0.296 | 0.296 1 0.4

Strength Fracture toughness

(GPa) (J/mz)

 

 

- , 1

X7 IYTI YC I 512 I Sf I523I 61F I 02’: I Of.

900 | 74 | 237 | 64 | 190 | 64 l 2880 | 240 | 240

Cohesive layer material properties
 

 

 

     

Stiffness (Calculated) Strength Fracture toughness

(MP3) (MP3) ( J lmz)

k‘ I k2 I k3 If I 15 I I; GICI GIIC I 01116

24x106 I 34,5,(106 I 34.5x106 24.0 I 42.7 I 42.7 240 I 640 I 640

 

The numerical results correlate well with the experimental results. The load-

displacement curve comparison is given in Figure 4.10. The comparison of delamination

shape and size at the bottom cohesive layer is given in Figure 4.11. Interestingly, if only

the delamination failure criteria for the cohesive layers are activated and the intralaminar
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damage is not allowed, the delamination will grow into an ellipse as illustrated in Figure

4.12. From the comparison of the results with intralaminar damage criteria activated and

deactivated, we can conclude that the intralaminar damage, matrix cracking, along the

fiber direction in the bottom ply promotes the delamination to grow to the peanut shape

obtained from experiment.

 

  
 

3500. . . - . . a - r . . . .
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,3"...
1
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Displacementlmm)

Figure 4.10 Load-displacement curve comparison
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(a) Simulated delamination (39.2mm) (b) Matrix cracking at bottom ply (c) Experimental delamination

Figure 4.11 Delamination comparison between numerical and experimental results

in [23]

 

Figure 4.12 Delamination with intralaminar damage deactivated
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4.6 Case study-impact induced damage modes

This is a qualitative study of the delamination patterns and fiber—bridging damage

mode in two-ply skew-angled [0/01] (01:90, 75, 60, 45, 30, 15, and 10 degree) laminated

plates (see Figure 4.13) subjected to transverse low velocity impact. Delamination

patterns in laminated plates subjected to transverse low velocity impact are shown to be

independent of material properties in the original experimental work by [2]. Material

properties used here are the same as for the model calibration given in Table 4.2.

Top 0 ply

    

Cohesive layer

Bottom (1 ply

Figure 4.13 Modeling of [Old] laminate

4.6.1 Model I

In Model I, the whole 90mm x 90 mm square plate (see Figure 4.14 (a) ) is modeled

to study the skew angled laminates. Clamped boundary conditions are used, and uniform

transverse displacement at a 6mm/sec loading rate is applied to the 9 nodes at the center.

A 50mm x 50mm zero-thickness cohesive layer is inserted into the center of the interface

between the t0p and bottom plies (see Figure 4.14 (b)). The mesh used is shown in Figure

4.14 (c), a mesh size of 0.5 mm x 0.5 mm is used for the cohesive layer and the center of

the plies, and a mesh size of 2mm x 2mm is used everywhere else for the plies. The ply
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thickness is 0.5 mm and one element is used for each ply thickness. Again the elements

used are C3D81 for the plies, and COH3D8 for the cohesive layer. The total element

number in the model is 38,800.

(a) Loading and boundary conditions

0 ply

":my

 

 

Cohesive layer

6
(b) Cohesive layer

(c) Mesh

Figure 4.14 Model I with the same mesh through thickness
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4.6.1.1 Results and discussions

In Figure 4.15, the delamination patterns obtained using Model I for [0/01] (01:90, 75,

60, 45, 30, and 15 degree) laminated plates are compared with experimental results from

[2]. For large angle (a 2: 30 degree) laminates, the correlation between experimental and

numerical results is very good. However, the numerical delamination shape for small

angle [0/ 15] laminate is not observed in experiment. This numerical artifact is due to

mesh sensitivity. The damage modes in the small angle laminates will be investigated

using Model 11 introduced next. In large angle (a 2 30 degree) laminates, delamination

and matrix cracking in the bottom plies are the dominant damage modes, and the

delamination in the interface layers and the matrix cracking in the bottom layers are

shown in Figure 4.16. Similar to the result in the cross-ply laminate, the matrix cracking

in the bottom plies promotes the delamination to grow into the peanut shapes along the

fiber directions in the bottom plies.

105



    
[0/90]

a

[0/60] '

Figure 4.15 Delamination pattern comparison between experimental (center) from

[2] and numerical (left and right) using Model I

[O/90] ' [0/75] ‘ [0/60] [0/30]

I .

l [0/901 l[0/75] I [0/60] I [0/45] .

(a) Delamination

Matrix cracking at bottom layers

 

.-

[0/30]

    
[0/15]

  
 

I Numerical artifact

i because of mesh sensitivity

 
 

   

 

Figure 4.16 Damage modesin large-angle [0/ a] laminates (a>=30)
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4.6.2 Model 11

To investigate the damage modes in small angle laminates, Model 11 as illustrated in

Figure 4.17 (a) with a circular [0/15] plate of 90mm in diameter is employed. Clamped

boundary conditions are used, and uniform transverse displacement at a 6mm/sec loading

rate is applied to the 9 nodes at the center. A zero-thickness cohesive layer of 50mm in

diameter (see Figure 4.17 (b)) is inserted into the center of the interface between the top

and bottom plies. The ply thickness used is 0.5mm, and one element is used to model

each ply in thickness direction. To model the matrix cracking along the fiber direction in

each ply, a mesh size of 0.5mm x 0.5mm is used for the rectangular area of 32mm x

50mm in the center of the plies and the cohesive layer. The mesh direction is aligned with

the fiber direction in each ply as shown in Figure 4.17 (c) and (d). Automatic mesh

scheme is used everywhere else. The elements used are C3D81 for the plies and COH3D8

for the cohesive layers. The total element number in the model is 31,553. Surface-based

tie constraints are used to tie the cohesive layer with the plies.

4.6.2.1 Results and discussions

As explained in the development of the damage model, the crack band model does

not eliminate mesh dependency completely; and it is recommended to align the mesh

with the direction of crack propagation. Using Model II with mesh aligned with ply fiber

orientation enables the correct prediction of damage mode in small angle laminates as

illustrated in Figure 4.18 because cracks propagate along the fiber direction in fiber-

reinforced composites. As shown in Figure 4.18, the delamination using Model II is

negligible. This shows that the crack band model can overcome mesh sensitivity due to

size, but it can not avoid the mesh sensitivity due to direction. The top views of damage
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evolution in a [0/15] laminate given in Figure 4.19 show that matrix cracking first

initiates along the fiber direction in the center line of the bottom ply due to tension, and

then matrix cracking along the matrix cracking line in the top ply follows. This happens

because the two plies are bonded together due to negligible delamination. This damage

mode is called fiber-bridging, and it can be used to combat delamination using laminates

with small angle between adjacent plies. The fiber-bridging damage mode is illustrated

using a [0/10] laminate in Figure 4.20. Detailed discussion of its advantages can be

found in the experimental work by Pilchak et al. [3].

I.

Cohesive layer

-, . 0 ply

‘15 ply

 

(a) Loading and boundary conditions (b) Cohesive layer

 
(c) Top layer ((1) Bottom layer

Figure 4.17 Model 11 with mesh aligned with ply fiber orientation
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  [0/15] 7

   

 

Delamination Delamination

    
Matrix cracking Matrix cracking

at bottom 15 ply at bottom 15 ply

(a) Model I (b) Experiment (0) Model II

Figure 4.18 Result comparison of [0/15] laminate using Model I (left) and Model H

(right) with experiment (center); Pictures in the top show the delamination and

pictures in the bottom show the matrix cracking in the bottom ply.

(b) Delamination

    
(c) Bottom ply (15) with Matrix cracking

Figure 4.19 Damage evolution in [0/15] (Top view)
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(a) Matrix cracking in top ply(0) (b) Delamination (0) Matrix cracking in bottom ply(10)

 

 

  
 

Fibers in t0p layer

0 - N
(0 ply) form bridges

Matrix cracking in

0 \
bottom layer (10 ply)

creates a river    

   
(d) Fiber-bridging diagram

 
e) Fiber-bridging from experiment [3]

Figure 4.20 Fiber bridging in a [0/10] laminate

4.7 Stacking sequence effect on the delamination area

Figure 4.21 shows the comparison of predicted normalized delamination areas between

numerical simulation and bending stiffness mismatch theory [2] in two-ply [0/01]

laminates with respect to the change of stacking angle 01. In Figure 4.21, all the
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delamination areas are normalized with respect to the delamaintion area of [0/90]

laminate. For 01 >15, the predicted delamination areas from both the numerical simulation

and the bending stiffness mismatch theory increase with the increase of the angle 01.

However, no delamination is predicted in the numerical simulation for 01 <15 because of

the fiber-bridging effect, which is in line with the experimental results in [3].
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Figure 4.21 The comparison of predicted normalized delamination areas between

numerical simulation and mismatch theory [2]

4.8 Conclusions of three-dimensional damage analysis of laminates

o A three-dimensional continuum damage model for the prediction of the initiation

and evolution of intra-laminar damage mechanisms is developed by integrating

the stress-based failure criteria for damage initiation, fracture-mechanics based

criteria for damage propagation, and the crack band model for alleviating mesh

sensitivity. Thermodynamics irreversibility of this model is ensured by the

positive evolution of damage variables.
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The developed intralaminar damage model combined with the cohesive zone

model in ABAQUS enables the correct prediction of damage modes (i.e.,

delamination and fiber-bridging) in laminates subjected to transverse static

loadings.

Damage in laminates with large angles (0t>=30) between adjacent plies is

dominated by delamination, and the matrix cracking along fibers in the bottom

ply promotes the delamination to grow into peanut shapes.

Damage in laminates with small angles (a<20) between adjacent plies is

dominated by fiber bridging, which is a preferred damage mode over

delamination. To predict the fiber bridging damage mode in small angle

laminates, mesh aligned along fibers in each ply should be used.

Severe convergence difficulties are observed in the three-dimensional progressive

damage analysis using ABAQUS/Standard. The analysis is often terminated

before completion of the analysis job. The results presented are recorded at

different loading times in the loading history. A 2-ply laminate modeled with the

cohesive zone model only inserted in the center results a total element number of

between 30,000 and 40,000 in the model. Typically, a job needs about one week

to complete using a computer on a Linux machine with a Dual Intel Xeon E5345

2.33GHz 64bit processor and 8GB RAM. Therefore, this model must be used

selectively for computation efficiency.
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Chapter 5 Three-dimensional progressive damage analysis of woven

composites subjected to impact loading using shell-solid coupling

technique

5.1 Abstract

The objective of this chapter is to evaluate the dynamic response of laminated and

woven composite plates subjected to transverse low-velocity impact. The shell-solid

coupling technique is implemented to model the complex geometry ofwoven composites

because of the numerical accuracy of the three-dimensional solid elements and the

computational efficiency of the shell elements. The studies use the homogenization

method developed in Chapter 2 to compute the effective material properties for the global

shell elements. To model delamination and intra-laminar damage modes in the local

region, the cohesive zone model (CZM) presented in Chapter 3 and the continuum

damage mechanics (CDM) model developed in Chapter 4 are employed.

5.2 Introduction

Compared with the progressive damage analysis for laminated composites, the

progressive damage analysis for woven composites has not been well investigated.

Currently, studies of delamination of woven composites using the cohesive zone model

(CZM) and continuum damage mechanics (CDM) model have been limited to the

sublarninate model with each layer modeled as homogeneous and orthotropic material.

Using the sublarninate model, lannucci et. al. [1-3] studied the damage modes in plain

woven composites subjected to impact loading. In their study, the laminated plain woven

composites were modeled with two homogeneous layers and a resin-rich interface in

between. The damage modes of homogeneous layers were modeled with plane stress

shell elements, and delamination on the interface was modeled with cohesive elements.
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The sublarninate model using shell elements is efficient. However, the information

between plies of each woven layer can not be obtained because homogeneous material

properties are assumed for each layer. In order to obtain the damage information within

each woven layer, full three-dimensional modeling of woven composites may be

necessary. However, full three-dimensional progressive damage analysis of woven

composites poses the following challenges:

1. The finite element modeling ofwoven composites is much more complex than the

modeling of laminates due to the irregular matrix pockets and the undulation

regions present in woven composites. Different elements and meshing schemes

have to be used for the laminated region, undulation region, and pure matrix

pocket region.

While the cohesive zone model (CZM) may be useful for modeling the fracture

interfaces between adjacent layers of laminates, convergence problems due to

material softening make implicit solvers, such as ABAQUS/Standard, impractical

for progressive analysis of woven composites. Furthermore, inserting zero-

thickness cohesive layers into different locations of woven composites is also a

challenge.

The Continuum Damage Mechanics (CDM) model may be a viable solution for

woven composites. However, it has the following potential problems:

0 Similar to the CZM, the material softening behavior in CDM model is known

for possible lead to severe convergence difficulties in implicit solvers such as

ABAQUS/Standard. In implicit solvers, iterative algorithms such as the

Newton-Raphson method are used to solve the non-linear system of
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equilibrium equations. With material softening and stiffiiess degradation in a

model, there is a tendency for damage to accumulate in small elements. The

degradation of stiffness due to accumulated damage may cause the tangent

stiffness matrix to be non-positive definite, leading to severe convergence

difficulties.

0 In a CDM model with fracture mechanics based damage propagation criterion,

if the finite element size is larger than the smearing crack band width, the

dissipated energy (strain energy release rate) may become greater than the

fi‘acture toughness of the material when stresses reach the strength of the

material. The stress will then drop to zero immediately. The finite element

analysis will become unstable leading to the so-called snapback issue. To

avoid the snapback issue in models with fracture mechanics based criteria for

crack propagation, the finite element size must be small enough, typically

smaller than 0.5mm for fiber-reinforced polymer matrix composites. This

imposes high demands on computation resources and efforts.

4. The experimental methods for obtaining some of the material properties including

fracture toughness and strength employed in the damage initiation and

propagation criteria in composites are still under development. This poses another

challenge for the progressive damage analysis of composites using the fi'acture

mechanics based criteria as those experienced in. CZM and CDM models.

Published data of these material properties are very limited. Some of the material

properties used in this study are from the literature and some others are assumed
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as explained in the three-dimensional static progressive damage analysis in

Chapter 4.

5.3 Proposed Methodology

To address the above challenges of progressive damage analysis of woven

composites, the organization of dynamic progressive damage analysis shown in Figure

5.1 is adopted in this study. To model the complex geometry of woven composites, a

shell-solid coupling technique is used. The computed effective material properties using

the homogenization method developed in Chapter 2 are assigned to the shell sections of

the global region. Regarding the modeling of the damage modes in the local region,

delamination is handled with the cohesive zone model presented in Chapter 3, and the

intralaminar damage is tackled with the continuum damage mechanics model developed

in Chapter 4. The detailed discussions ofthe modeling techniques are followed.

5.3.1 Shell-solid coupling technique

In light of the complexity of the modeling of woven composites, the shell-solid

coupling technique available in ABAQUS will be employed. The shell-solid coupling

technique combines the numerical accuracy of three-dimensional solid elements and the

computational efficiency of shell elements. Krueger et al. [4-7] have applied shell-solid

coupling technique successfully in the investigation of delamination in laminated

composite structures. Good correlation with experiment and simulation based on full

three-dimensional model has been achieved. In the current study of composites subjected

to impact loading using the shell-solid coupling technique, each ply in the local areas of

interest in the composite specimens is modeled with continuum elements, interfaces
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between plies are modeled with cohesive elements; and the rest of the composite

specimens are modeled with shell elements.
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Figure 5.1 Organization of dynamic progressive damage analysis

5.3.2 Material modeling

The three-dimensional continuum damage model developed in Chapter 4 for the

prediction of the initiation and evolution of intra-laminar damage mechanisms will be

implemented in ABAQUS/Explicit [8] using a user subroutine VUMAT. The VUMAT

will be used to control the initiation and evolution of damages within each ply. The

regions where no damage is expected will be modeled with shell elements, and the

material properties computed using the homogenization technique developed in Chapter 2

will be assigned to these shell elements to achieve high computational efficiency.
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5.3.3 Solution technique

To overcome the convergence problems in implicit solvers caused by material

softening present in the CZM and CDM, ABAQUS/Explicit solver will be used for the

dynamic analysis in this study.

5.3.4 Cohesive layer modeling

Damaged interfaces between different layers in laminated and plain woven

composites are modeled with zero-thickness cohesive layers. Damaged interfaces with

undulations in plain woven and Q3D woven composites are difficult to model with zero-

thickness cohesive layers; and thus, they are modeled with a thickness of 0.1% of the ply

thickness through PYTHON scripts in ABAQUS/CAB. In the delamination model using

cohesive elements with constitutive response defined in terms of traction-separation laws

as discussed in Chapter 3, the cohesive layer represents an infinitesimally thin layer of

adhesive, typically modeled with geometric thickness close or equal to zero. The

geometric thickness does not affect the solutions because the constitutive thickness of 1.0

is used for traction-separation response in ABAQUS to ensure that the nominal strain is

equal to the separation (relative displacement). However, typically zero thickness or less

than 3.0% of ply thickness is used by most researchers, e. g. [9] in modeling the cohesive

layers.

5.3.5 Implementation of the material model

The three-dimensional intra-laminar continuum damage model developed in Chapter

4 was implemented in ABAQUS/Explicit non-linear finite element code using a user-

subroutine VUMAT and the flowchart is given in Figure 5.2. The notations and the
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equations used here are the same as those shown in the UMAT flowchart given in Figure

4.8.

5.3.6 Modeling of delamination

The interlaminar damage (delamination) is modeled using the three-dimensional

cohesive zone model in ABAQUS with mixed-mode failure criteria. The damage initiation

and propagation criteria are the same as in Chapter 4.

5.4 Model calibration

5.4.1 Material model calibration

A uniaxial tension test is carried out using a 0.25m x 0.25m x 0.25mm cube

modeled with one continuum three-dimensional C3D8R element with reduced integration

to verify the material model implemented in VUMAT. As illustrated in Figure 5.3,

uniform static displacement loading along the vertical direction is prescribed at the nodes

of the top surface of the cube to simulate homogeneous deformation and stress

conditions. Zero displacements along the vertical direction are assigned to the nodes on

the bottom surface. To prevent rigid body motion modes, zero displacements in the other

two directions are also imposed on one of the corner nodes at the bottom surface.

This model is analyzed using the VUMAT in ABAQUS/Explicit and in

ABAQUS/Standard (an implicit solver) using the UMAT developed earlier in Chapter 4.

The resulting force-displacement curves are compared in Figure 5.4. To make sure the

energy in VUMAT is updated correctly, the internal energy is plotted and compared in

Figure 5.5. As can be seen, the results fi'om the UMAT in ABAQUS/Standard (implicit

solver) correlate very well with those of the VUMAT in ABAQUS/Explicit.
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Figure 5.3 Static tension test on a single element
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Figure 5.5 Internal energy comparison

5.4.2 Dynamic modeling calibration

To ensure that the impact model including contact algorithm and dynamic solver are

set up correctly, a transverse impact test is performed on an aluminum plate and

compared with the experiment [10]. As illustrated in Figure 5.6, a 76.2mmx 76.2mm x

2.06mm (length x width x thickness) plate made of A1 6061 T6 is modeled as an elastic-

plastic material using the Johnson-Cook plasticity model available in ABAQUS/Explicit.

In this model, the whole plate is modeled to compare the displacement contour later on.

The material properties used are as follows:

Young’s Modulus E=68.9GPa, density p =2720 kg/ m3 , Poisson’s ratio v =0.33, and

the Johnson-Cook Coefficients from [11] are used for the Johnson-Cook plasticity model.

The impactor with a hemisphere of 12.7mm in diameter is modeled as a rigid

analytical surface associated with a point-wise mass of 5 .2 kg, which are the same as in

the experiments. An initial velocity of 1.62m/s in the impact direction is prescribed to the
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impactor, simulating the impact velocity measured during the tests. Additionally, a

gravitational force is applied to the impactor to take account of gravity. The general

contact algorithm in ABAQUS/Explicit, which uses a penalty enforcement contact

method, is employed to simulate the contact between the impactor and the specimen. The

friction coefficient of 0.1 is assumed and introduced between the impactor surface and

the specimen. The plate is modeled with elements of type C3D8R, and clamped boundary

conditions are used. A fine mesh size of 1.27mm x 1.27mm is used for the area under

impact, and coarse mesh size of 6.35m x 6.35mm is used for the rest of the plate.

The model is analyzed in ABAQUS/Explicit, and comparisons with experiments of

the load history, load-displacement curve, and displacement contour are given in Figure

5.7, 5.8, and 5.9, respectively. Reasonable overall correlation between numerical

simulation and experimental result has been achieved. The unloading curves match well

between the numerical and the experimental results. The over-prediction of the peak

force and displacement may be due to the material properties used. As explained earlier,

material properties fi'om Ref. [11] were used in the simulation due to the lack of the

tested material properties available.

 
Figure 5.6 Transverse impact of aluminum plate model
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(a) Numerical (b) Experimental[10]

Figure 5.9 Comparison of displacement contour with experiment [10]

5.4.3 Shell-solid coupling model calibration

To ensure that the shell-solid coupling technique is applied properly, the quasi-static

indentation test on the 90mm x 90mm square [0/90]s glass fiber reinforced polymer plate

[12] studied in Section 4.5 is employed again here for the shell-solid coupling model

calibration purpose. Due to material and geometric symmetry, only a quarter plate of

45mm x 45mm is modeled using the shell-solid coupling technique as shown in Figure

5.10. In the shell-solid model, the square of 25mm x 25mm in the center of the plate

where damage is expected to occur is modeled with three-dimensional elements and the

rest of the model is modeled with plain stress shell elements 84R.
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Figure 5.10 Shell-solid coupling model of [0/90]s plate for static analysis

In the local three-dimensional model, solid elements of type C3D8R are used for the

plies and the three-dimensional cohesive elements COH3D8 are used for the interfaces

between plies. Again, two cohesive layers are inserted into the interfaces between the 0°

and 90° plies of the local three-dimensional model. Enhanced hourglass control based

on the assumed enhanced strain method for solid elements is used for the element type

C3D8R.

A mesh size of 0.5mm x 0.5mm is used for the solid section and mesh size of 2mm x

2mm is used for the shell section. Simply-supported boundary conditions are applied

along the edges of the shell, and symmetries are imposed on the associated symmetric

boundaries of the quarter plate. Displacement loading is imposed on the center 4 nodes

of the model, similar to that in Section 4.5.

The material properties computed using the homogenization technique developed in

Chapter 2 are given in Table 5.1. They are assigned to the global shell section. The

material properties to be used for the local solid and cohesive sections are given in Table
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3

5.2. Table 5.2 is the same as Table 4.2.Besides, density p = 1850 kg/m and p = 1210

kg/ m3 are used for the composite plies and cohesive layers, respectively.

Table 5.1 Homogenized material properties for global shell section of [0/90]s

 

V13 = V23

      
 

I 1511 = E22 E33 012 613 = G23 V12

(GPa) (GPa) (GPa) (GPa)

| 23.58 | 9.08 | 4.14 | 3.75 | 0.09 | 0.36 |
 

The model is analyzed using ABAQUS/Standard. The results fiom the shell-solid model

correlate well with those fiom experiment [12] and full three-dimensional model (see

section 4.5). The comparison of load-displacement curves is given in Figure 5.11. As can

be seen from Figure 5.11, the full three-dimensional model over-predicts the force when

displacement is greater than 2.3mm. This may be due to the use of element C3D81 with

full integration. The shell-solid model (using element C3D8R with reduced integration)

denoted as Shell/3D in the plot under-predicts the force. The difference increases with the

growth of the displacement. This may be because the shell-solid coupling constraint

becomes troublesome as the damage (matrix cracking and delamination) gets close to the

coupling boundary. The comparison of the forces obtained at the delamination length of

40mm is given in Table 5.3. The comparison of delamination shape and size at the

bottom cohesive layer is given in Figure 5.12. No delamination at the top cohesive layer

was reported in the experiment [12]. The damage evolution and the predicted unphysical

delamination at the top cohesive layer are discussed next.
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Table 5.2 Material properties used for local solid and cohesive sections
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Figure 5.11 Force-displacement curve comparison

Table 5.3 Comparison of forces obtained at delamination length of 40mm

 

 

 

 

 

  

Experiment Numerical

[12] Full three- Shell/three-dimensional

dimensional

Force (kN) 2.72 2.85 2.46

Deviation (%) N/A 4.8 -9.6  
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(3) Predicted delamination at bottom 90/0 interface

 

(b) Predicted matrix cracking at bottom 0 ply
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Figure 5.12 Comparison of damage

The damage evolution diagrams are given in Figure 5.13, while the interlaminar

stresses of the top 0/90 interface and the bottom 90/0 interface are given in Figure 5.14

and Figure 5.15, respectively. With the comparisons of Figure 5.13 (a) and Figure 5.14

for the top 0/90 interface and Figure 5.13 (b) and Figure 5.15 for the bottom 90/0

interface, it can be seen that the maximum interlaminar shear stresses occur at the

delamination fronts (fracture process zones). The matrix cracking at the centerline in the

bottom 0° - ply and the peanut-shaped delamination at the bottom 90/0 interface correlate

very well with the experimental results given in Figure 5.12 (0). However, the

delamination at the top 0/90 interface as shown in Figure 5.13 (a) is much larger than that

observed in experiments. This may be due to the inaccuracy of the failure criterion used

for the delamination prediction in this study.
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(a) Delamination at top 0/90 interface

(b) Delamination at bottom 90/0 interface

 

     
(c) Mam'e'r‘aiagg Ofbottom 05.31;--- _. .

Figure 5.13 Damage evolution (only a quarter of specimen shown)
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(b) Interlaminar shear stresses

Figure 5.14 Stresses at top 0/90 interface
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(b) Interlaminar shear stresses

Figure 5.15 Stresses at bottom 90/0 interface

5.5 Case study of impact- induced damage

5.5.1 Comparison of laminate, plain weave, and Q3D weave specimens

In this section, the laminate L[0/9O]6, plain weave 2D[0/90]6, and quasi-three-

dimensional Q3D [0/9O]6 weave specimens investigated experimentally in [13] are

analyzed following the flowchart outlined in Figure 5.1. As can be seen from the damage

sequence of the tested specimen shown in Figure 5.16, the damage is concentrated to a

local region of about one unit cell of plain weave and quasi-three-dimensional weave at

the center of the test specimen. Therefore, the shell-solid coupling technique can be

employed for computational efficiency.

134



 

 

  

     

   
Deflection

Figure 5.16 Damage sequence in Q3D samples from experiment [1 3]

Rigid impactor

9.53mm in diameter Clamped along the

\ edges

 

Shell solid coupling

28.14mm

9.96mm/'\ ‘1

Symmetries along t e Local solid

symmetric planes model

Global elastic region modeled

with shell elements S4R

Figure 5.17 The generic shell-solid model used for L[0/ 90]6 , 2D[O/ 90]6, and

Q3D[0/90]6 specimens

135



To model the laminated L [O/90]6 , plain weave 2D [O/90]6 , and quasi-three-

dimensional Q3D [0/90]6 weave specimens, a generic shell-solid model as shown in

Figure 5.17 is created. The test specimens are of 76.2mm x 76.2 mm x 2.04mm (length x

width x thickness). Using symmetry, only a quarter of the plate of 38.1mm x 38.1 mm

needs to be modeled. At the center of the specimen, which is 9.96m x 9.96 mm, a solid

model is used while a shell model is used for the global region. The material properties

used for the local solid and cohesive sections given in Table 5.2 are used here. The global

shell model is the same for the three specimens including L[0/90]6, 2D[0/90]6, and

Q3D[0/90]6 , except that different homogenized material properties must be used for the

shell elements S4R to account for the three different microstructures. Table 5.4 shows the

homogenized material properties computed using tow material properties of Table 2.6

while Table 5.5 shows the homogenized material properties computed using the tow

material properties given in Table 2.8. As explained in Section 2.7.2, the tow material

properties in Table 2.8 are interpolated by scaling to ensure that the computed effective

stiffness is the same as the measured stiffness from experiment of cross ply laminates.

In Figure 5.17, the impactor is modeled as a rigid surface associated with a point-wise

mass equal to 12.86 kg as used in the experiments. It has a spherical surface with a

diameter of 9.53mm, which is the same as the impactor used in the experiments. An

initial velocity of 3.1 m/s in the vertical direction is prescribed to the impactor, simulating

the impacting velocity measured during the test. Additionally, a gravitational force in the

vertical direction is applied to the impactor.
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Table 5.4 Homogenized material properties using tow material Table 2.6

 

 

 

 

 

Material Err = 522 E33 012 613 = 023 V12 V13 = V23

(GPa) (GPa) (GPa) (GPa)

Laminate 23.58 9.08 4.14 3.75 0.09 0.36

[0/90]6

Plain Weave 21.25 8.64 3.81 3.54 0.10 0.37

[0/9016

030 Weave 20.73 8.64 3.77 3.66 0.10 0.38

[0/90],        
 

Table 5.5 Homogenized material properties using tow material Table 2.8

 

 

 

 

 

Material E11 = 522 E33 012 013 = 023 V12 V13 = V23

(GPa) (GPa) (GPa) (GPa)

Laminate 13.8 4.84 2.35 2.08 0.09 0.36

[0/ 9016

Plain Weave 12.97 5.22 2.32 2.14 0.10 0.37

[0/90]6

Q3D Weave 12.69 5.20 2.31 2.17 0.10 0.38

[0/9016        
 

To simulate the specimens used in experiments, the local solid models are modeled

with continuum elements and cohesive elements as illustrated in Figure 5.18.

137  

 



  

Interfaces modeled with

Plies modeled with solid cohesive elements COH3D8

elements C3D8R

(a) Laminated [0/ 9O]6 (only 2 cohesive layers are shown)

Interfaces modeled

with cohesive

 

  Tows modeled with
. 4.65mm 0.66mm

solrd elements

(b) Plain weave [0/ 90]6' (analytical model at the left, illustrative model at the right)

Interfaces modeled with Tows modeled with

cohesive elements solid elements

0.66mm

4.65mm

(c) Quasi-three-dimensional weave [O/ 90]6 (analytical model at the left, illustrative

model at the right)

Figure 5.18 The local solid models
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In Figure 5.18, each composite ply is modeled with one solid C3D8R element

through-the-thickness. For the irregular regions in the plain weave and quasi-three-

dimensional weave structures, such as the undulation zones and matrix pockets, six-node

linear triangular prism elements C3D6 and four-node linear tetrahedron elements C3D4

of reduced integration with hourglass control are used. Since the reduced-integration

element formulation considers only the linear part of the incremental displacement field,

the major drawback of this formulation is mesh instability known as hourglass modes. To

minimize mesh distortion due to hourglass modes, the default enhanced hourglass control

in ABAQUS is used for the solid elements.

In ABAQUS/Explicit, localized stiffness reduction associated with damage can cause

excessive element distortion, leading to numerical convergence difficulties and reducing

the stable time step. These two factors may cause the analysis to run slowly or even to

abort. In order to prevent excessive mesh distortion and allow the analyses to complete

successfully, the elements are removed from the mesh once their dwage variables reach

0.99, which was widely used in studies of composites such as [9]. In this study, it was

also found that element removal upon damage variables above 0.99 led to analysis

termination due to excessive element distortion. Element-based surfaces are defined on

the interior of solid bodies for use in modeling erosion due to element failure. The

general contact algorithm removes contact faces and contact edges from the contact

domain and, if an interior surface is defrned, activates newly exposed surface faces as

elements fail. Thus, element-based surfaces are used to describe eroding plies/tows in this

case.

139



The resin-rich interfaces between plies are discretized with COH3D8 and cohesive

elements that model delamination by means of the traction-separation laws. To mesh the

resin-rich interfaces in the undulation zones where COH3D8 elements can not be used,

six-node three-dimensional cohesive elements COH3D6 are used In the study, the

thickness of the cohesive layer within each layer is of 0.1% of the nominal ply thickness

for the cohesive layers with undulation in Q3D weave and plain weave. For the interfaces

between layers in laminated composites, cohesive layers with zero-thickness are used.

The cohesive elements are removed to avoid uncontrolled distortion when the stiffness

reduction reaches 0.99 [9], and they are replaced by the penalty contact formulation

between plies specified in the general contact algorithm of ABAQUS/Explicit. Two

algorithms for modeling contact interactions are available in ABAQUS/Explicit. The

general contact algorithm allows the contact with eroding bodies and fiiction between the

plies when the cohesive elements failed, while the “contact pairs” algorithm does not

allow these features. Therefore, the general contact algorithm is used in this study.

A mesh size of 0.25m x 0.25mm is used for the solid elements and the cohesive

elements, and a mesh size of 1mm x 1mm is used for the shell section. Each ply of

0.17mm is modeled with one element in thickness direction. Due to the small sizes of the

elements, the typical stable step increment calculated in ABAQUS/Explicit is found to be

10’8 second. Variable mass scaling is applied to the elements with incremental time step

less than 10—8 second. Overall, the increase in the total mass of the model is kept under

1%. Fixed boundary conditions are applied along the edges of the shell, and symmetries

are imposed to the associated symmetric boundaries of the quarter plate. The shell-to-

solid coupling constraint in ABAQUS is a surface-based technique for coupling shell
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elements to solid elements, and shell-to-solid constraints couple the degree of freedom

such as displacement and rotation of each shell node to the average degree of freedom of

the solid surface in the vicinity of the shell node. The shell-solid coupling constraints are

used here to connect the global shell elements to the local solid model.

5.5.2 Result discussion

The three models associated with laminate L[0/90]6, plain weave 2D [0/90]6, and

Q3D[0/90]6 weave specimens are analyzed by ABAQUS/Explicit. The load-deflection

curve from experiments [13] is given in Figure 5.19, while the load-deflection curves

from simulation are shown in Figure 5.20. All the load-deflection curves show that the

Q3D woven composite can absorb more energy than its traditional 2D and laminated

counterparts. As can be seen in Figure 5.20, the Q3D woven design obtained the largest

peak load and the maximum energy absorption, while the laminated design has the

smallest peak load and the minimum energy absorption. By comparing Figure 5.19 with

Figure 5.20, it can be seen that the computed load-deflection curves show much larger

energy absorption differences among the three different structures than those observed in

experiments. While very close peak load correlation between experiment and simulation

is obtained for laminated deign, the peak load difference for the Q3D woven design is as

large as 50%. Furthermore, the simulation curves also show larger stiffiress than the

experimental results. The discrepancies in the peak load and stiffness may be caused by

the lack of the strain rate effect and plastic deformation in the material model employed

because good correlation in the peak load and stiffness has been achieved in the static

analysis of Section 5.4.3 using the same material model and solid-shell coupling

technique. In the current dynamic analysis of high impact energy of 61.79 J (impactor
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with a mass of 12.86 kg and a velocity of 3.1 rn/s), the strain rate effect may not be

neglected anymore. This may also explain the small change obtained in the displacement

curves in Figure 5.20 using different material properties. The computed maximum

deflections for all the three designs are consistently smaller than the results from

experiments. The load-deflection curve (Figure 5.20 (b)) using the less stiff material

properties from Table 5.5 approaches closer to the load-deflection curve from the

experiments than the one shown in Figure 5.20 (a), which is computed using

homogenized material properties from Table 5.4 computed with the tow material

properties directly form the supplier as given in Table 2.6. The strength and fracture

toughness material properties used in the simulations are the same as shown in Table 5.2.

The maximum deflection difference may be due to the following reasons:

1. Different material properties are assumed in computation than those used in the

experiments due to the lack of the tested material properties.

2. The CDM model assumes no plastic deformation for the composites. This

assumption may prevent the large deflections obtained from experiments. The largest

deflection using similar assumptions was 6 mm for 4.4mm thick laminated plates

subjected to impact loading [9], compared with 4 mm deflection for 2mm thick structures

in the current study.

3. In this study, the stress based quadratic failure criterion (Eqns. (4.61) and (4.62)) is

used for the prediction of delamination initiation under mixed-mode conditions. In the

quadratic failure criterion, compressive inter-laminar normal stresses are assumed to not

affect damage initiation. This may lead to the inaccurate, large delamination in the top

0/90 interface of the [0/90]s plate; and accordingly, the computed energy absorptions for
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the three structures are consistently smaller than the experimental results. Results may be

improved by replacing the quadratic delamination initiation criterion by the criterion

proposed by Hou et al. [14], which takes into account the constraining effect of the

compressive inter-laminar normal stresses in delaying the delamination initiation

Figure 5.21 shows the comparison of the damage. As can be seen, the damage at the

center of the specimens due to the penetration of the impactor is captured with one unit

cell modeled with damage.
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Figure 5.19 The load-deflection curve from experiment [13]
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Figure 5.20 Load-deflection curves from computation
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5.6 Discussion of the delamination initiation criteria

For all the delamination studies in this work, the cohesive element formulation

implemented in ABAQUS based on the original work of Camanho and Davila [15] is

employed. This formulation uses the stress-based quadratic failure criterion Eqns. (4.61)

and (4.62) for delamination initiation prediction and the energy based failure criterion

Eqn. (4.63) for delamination propagation prediction. As pointed out in the current studies

of the laminated [O/90]s and the work of Ayrnerich et al. [16,17], this formulation

predicts inaccurately large delamination at the top 0/90 interface of [0/90]s laminates.

Confusingly, by implementing the cohesive formulation proposed by Camanho and

Davila in LSDYNA Hu et al. [18, 19] did not find the inaccurately large delamination at

the top 0/90 interface of [0/90]s laminates in their studies.

Ayrnerich et al. claim that the large delamination is caused by the delamination

initiation criterion used in this formulation because the stress-based quadratic failure

criterion, Eqns. (4.61) and (4.62), does not include the compressive inter-laminar normal

stresses in the decision of damage initiation. Furthermore, Ayrnerich et al. claim that

correct delamination at the top 0/90 interface of [0/90]s laminates can be predicted by

using the failure criterion proposed by Hou et al. [14] given by

< > 2 2 2

31— + -T—2 + :3— =1 for 1120 (5.1a)
2,16' 2.26 T36

2 2 2
f 2 2

7—2 + 2- —81 =1 for — Q—HLszl<0, (5.1b)

T20 1'36 2'16 8

7224-1 2

No Delamination for 11<— —8——3—— (5.1c)
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In the above failure criterion, the constraining effect of the compressive inter-laminar

normal stresses in delaying delamination initiation is assumed. However, Ayrnerich et al.

did not provide any information concerning the mix-mode formulation and calculation of

the damage variables for the criterion proposed by Hou et al. [14]. The mix-mode

formulation and calculation of the damage variables are critical to the implementation of

this criterion because the damage variables control the initiation and propagation of the

damage.

In Camanho and Davila’s cohesive formulation, a mixed-mode relative displacement

associated with the stress-based quadratic failure criterion, Eqns. (4.61) and (4.62), is

defined as follows

 

6,, = «512) + 622 + 632 (5.2)

where 6,-(1' = 1,2,3) is the relative displacement associated with Mode 1, II, and 111.

To investigate the effectiveness of the delamination initiation criterion proposed by Hou

et al., a mixed-mode relative displacement associated with the criterion by Hou et al.

(Eqn (5.1b)) is proposed as follows

 

5,, = Jazz + 532 — 8<612> (5.3)

Impact tests are performed on a two-layer [0/90] laminate model to study the

delamination effect using the proposed formula. Only a quarter of the two-layer [0/90]

laminate is modeled as shown in Figure 5.22 (a) due to symmetry and it is impacted by an

impactor of diameter of 9.53mm and mass of 2kg with an initial velocity of 0.5 m/s. To

monitor the delamination initiation and propagation, damage is only allowed to occur to

the nine cohesive elements at the center of the plate as illustrated in Figure 5.22 (b) and
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the rest of the model is assumed to be elastic using the material properties from Table 5.2.

The delamination initiation using Eqn (5.3) is found to be slower but the delamination

propagation is much faster than using Eqn (5.2). Figure 5.23 shows the post-impact

damage of the nine cohesive elements. In Figure 5.23, a value of zero indicates no

damage to the element. The element damage increases with the value increases and a

value of one represents failed elements. This study indicates that the inaccurate

delamination predication problem may not be solved by only replacing the quadratic

delamination initiation criterion with the criterion proposed by Hou et al. Modifications

of the delamination propagation criterion in the formulation of Camanho and Davila

should he considered. This is consistent with the conclusions of previous studies in the

literature [20 21 22], in which it was found that the delamination propagation criterion is

the dominant factor in delamination prediction.

 
 

 

 

     
(b)

Figure 5.22 A quarter of [0/90] laminated plate (a) with damage specified to occur

only to the nine elements (b) at the center
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Figure 5.23 Post-impact damage of the nine elements (a) using Eqn (5.2) (b) using

Eqn (5.3) (0 denotes no damage; damage increases with the value increases)

5.7 Final comments of three-dimensional dynamic damage analysis

The developed intra-laminar damage model combined with the cohesive zone model

in ABAQUS/Explicit and the shell-solid coupling technique are used to investigate the

performances of transverse impact resistance in laminate, plain weave, and Q3D weave

structures. The results demonstrate the advantage of the Q3D weave over its plain weave

and laminate counterparts in damage resistance.

The computed maximum deflections for all the three designs are consistently smaller

than the results from experiments. The maximum deflection difference may be due to the

lack of plastic deformation assumed in the material model, the delamination initiation

criterion used, and the material property difference between computation and

experiments.

The preliminary studies of the delamination initiation criteria show that the inaccurate

delamination predication problem cannot be solved by only replacing the quadratic

delamination initiation criterion with the criterion proposed by Hou et al. and thus
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modifications of the delamination propagation criterion in the formulation of Camanho

and Davila should be investigated.
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Chapter 6 Conclusions and recommendations

6.1 Conclusions

1. Using the developed numerical homogenization method, good correlations with

experiments are achieved for the comparison of stiffness between Q3D woven

composites and their laminated and two-dimensional woven counterparts.

Parametric studies using this homogenization method show that undulation and

fiber volume fraction are the two key factors affecting the effective in-plane

stiffness of woven composites. Based on the results of the parametric studies,

guidelines are presented for designing Q3D woven composites with high in-plane

stiffness. Furthermore, the developed method can be used to perform

homogenization of composites with complex geometries.

2. Using the cohesive zone model in ABAQUS/Standard, double cantilever beam

(DCB) tests are performed on composites made of unidirectional layers and plain

weaves. The effects of stiffness on delamination initiation and propagation in

these composites are discussed. Both DCB and end notch flexure (ENF) tests are

modeled for woven composites with cohesive layers inserted at different

interfaces. The undulation effects on delamination propagation in woven designs

are investigated. An important conclusion from the ENF test is that delamination

resistance can be improved by eliminating the horizontal pure matrix interfaces in

laminated composites and using interlocking layers as in the Q3D weave designs.

3. A three-dimensional continuum damage mechanics model for predicting the

initiation and propagation of intra—laminar damage mechanisms is developed by

integrating the stress-based failure criteria for damage initiation, fracture-
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mechanics based criteria for damage propagation, and the crack band model for

alleviating mesh sensitivity. Thermodynamics irreversibility in this model is

ensured as a result of the positive evolution of damage variables due to

consistency conditions. The three-dimensional damage model is implemented in

ABAQUS/Standard using a user-written material subroutine (UMAT). The

effectiveness of this model is demonstrated based on the good correlations

between numerical results and experimental results reported in the literature for

laminated plates subjected to transverse static and low-velocity impact loadings.

The progressive damage process of fiber-bridging in small-angle laminated

composites subjected to transverse low-velocity impact is successfully simulated.

The results demonstrate the necessity of in-ply matrix cracking for the successful

simulation of delamination and fiber-bridging in laminated composites subjected

to transverse loadings.

. To study the impact resistance of composites, composite plates made of

unidirectional layers, plain weaves and Q3D weaves are investigated in

ABAQUS/Explicit. With the use of the shell-solid coupling technique, both

numerical accuracy due to three-dimensional solid elements and computational

efficiency owing to shell elements can be achieved. In the shell-solid model,

material properties computed using the homogenization technique developed in

Chapter 2 are assigned to the shell elements in the global region. The damage of

local region is modeled using the developed three-dimensional continuum damage

mechanics model. A user-written material subroutine (VUMAT) for intra-laminar

damage is implemented in ABAQUS/Explicit. The results demonstrate the
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advantage of the Q3D weave over its plain woven and laminated counterparts in

damage resistance to transverse impact.

6.2 Recommendations

1. It is recommended that a mix-mode formulation be derived by using the criterion

proposed by Hou et al. [1] for delamination initiation prediction and modifying

the delamination propagation assumptions in the formulation of Camanho and

Davila [2].

In the development of the continuum damage mechanics model, it is assumed that

strain-softening is solely due to the degradation of material stiffness without any

inelastic behavior. After the material is damaged, unloading leads to complete

closure of the cracks. For fatigue analysis of composites, plastic deformation

might be needed. The assumption of lack of plastic deformation might prevent the

correct prediction of the large deflections obtained from experiments in the

impact analysis of current study.

The developed three-dimensional continuum damage mechanics model assumes

no strain-rate effect in the material behavior. Good correlation with experiment is

achieved for static tests. In order to obtain good correlation for impact tests, the

strain rate effect should be considered.

The modeling of woven composites is very complex when using continuum

elements for intra-laminar damage and cohesive layers for inter-laminar damage.

Delamination modeling may be integrated into the three-dimensional continuum

damage mechanics model to ease modeling efforts.
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