
142

709

THS 



”+5518

267 )  

LIBRARY

Michigan State

University
 

This is to certify that the

thesis entitled

HYDROLYSIS OF LIGNOCELLULOSE USING ENZYMES

FROM PELLETIZED TRICHODERAIA REESE]

FERMENTATION

presented by

Ying Liu

has been accepted towards fulfillment

of the requirements for the

MS degree in Biosystems Engineering
  

/%
Major Professor's Signature

05%3 //o

Date

 

MSU is an Affirmative Action/Equal Opportunity Employer

 

 



PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

MQCQ 142011

 

 

 

 

 

 

 

 

 

    
 

5/08 KIProj/AccsPrelelRCIDateDue.indd

  



HYDROLYSIS OF LIGNOCELLULOSE USING ENZYMES FROM

PELLETIZED TRICHODERMA REESE] FERMENTATION

By

Ying Liu

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Biosystems Engineering

2010



ABSTRACT

HYDROLYSIS OF LIGNOCELLULOSE USING ENZYMES FROM

PELLETIZED TRICHODERJWA REESE] FERMENTATION

By

Ying Liu

Pelleted Trichoderma reesei is a desirable morphology for industrial fungal fermentation

to obtain stable cellulase production. Two common cellulosic feedstocks, corn stover and

switchgrass were pretreated by acid, alkaline and ammonia fiber expansion (APEX)

methods. The pretreated cellulosic feedstocks were used as fermentation substrates for

enzyme production. It has been proved in this study that 15 g/LAFEX corn stover in

fermentation medium could stimulate the fungi to yield relatively high cellulase (1.08

U/mL at 93 hours) and xylanase (2.52 U/mL at 24 hours) activities. The enzyme

cocktails from pelletized Trichoderma reesei fermentation were applied on the pretreated

cellulosic feedstocks to produce mono-sugars. A comparison ofenzyme cocktails from

difl'erent pretreated feedstocks and two enzymes sources was conducted to elucidate the

effects ofpretreated cellulosic materials on enzyme production and enzymatic hydrolysis.

The enzyme cocktail (10 U/g dry mass) generated from AFEX com stover has better

enzyme compositions that enhance its hydrolysis especially working on the alkaline

pretreated switchgrass which pretreated under lhour, 121°C, 1% sodium hydrate solution.
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1. Introduction

1.1. Current Transportation Fuels

1.1.1. Fossil Fuels

Since fossil fuels have been commercially produced in the early twentieth century, they

have dominated the transportation energy market due to their availability, high energy

density, and easy distribution. As the world population has increased in the past several

decades, and more developing countries are on the way towards industrialization, the

supply of fossil fiiels has shrunk. This petroleum shortage could severely hurt the

development of the world economy that is powered by the petroleum based fiiels. In

addition, the consumption ofnon-renewable petroleum also leads to environmental

impacts, such as green house gas emission. The 2010 C0penhagen Conference illustrated

that carbon dioxide as one of the major green house gases; it is responsible for at least 50%

of the causes to the global climate change (BRDI. 2006). In the United States, around 33%

US. carbon dioxide emissions is attributed to petroleum-based transportation fuels

(Wang et a1. 2002). Thus, considering both economic and environmental impacts,

renewable energy sources are urgently needed to diversify our energy resources and

reduce the negative environmental impacts of fossil fuels.

1.1.2. Starch Ethanol

Ethanol is one of the approved renewable transportation fuels that are currently available

in the marketplace. Fuel ethanol, from starch, has been commercially produced since the

19805. In the past 20 years, starch ethanol production steadily increased. The fuel ethanol



industry in the US. is currently producing around 20 billion gallons per year, and it is

anticipated that the demands for fuel ethanol would be more than 24 billion gallons/year

by 2020 (BRDI 2006). However, starch crops are major food sources. Ifmore starch

crops are used for fuel, less starch is available for food production. Following the steady

increase ofthe world population, starch-based crops (such as corn, wheat, cassava, rye

and barley) are still not sufiicient to satisfy their demands as animal and human foods.

Using starch-based crops to increase fuel ethanol production is obviously neither

sustainable nor practical (Keshwani et a1. 2009).

l. 1.3. Lignocellulosic ethanol

Lignocellulose, the most abundant renewable resource on the planet, provides an

untapped reserve for bio-fuel production. Agricultural residues, such as crop residues,

grasses, sawdust, and wood chips, are the major sources of it (Hofiichter et a1. 2002). Due

to their high carbohydrate contents, relatively low cost, and worldwide availability,

agricultural residues attract significant interest regarding fuel ethanol production. It was

estimated that utilizing lignocellulosic materials produce bioethanol could replace up to

40% of the fuel consumption in the United States market (Zheng et a1. 2009).

Approximate 80-90 billion gallons of fuel ethanol could be annually produced from 1.3

billion tons of available lignocellulosic residues available in the United States. In addition,

lignocellulosic ethanol as an alternative fuel also would reduce 86% of the greenhouse

gas emission currently generated from fossil fuel consumption (Sun et a1. 2002).



1.2. Objectives of This Study

In response to the need of lignocellulosic fuel ethanol production, an environmentally

friendly biological process to achieve the highly efficient conversion of carbohydrates in

agricultural residues to fermentable sugars for ethanol production needs to be developed

Thus, this study will investigate cellulase and xylanase production using pelletized fimgal

fermentation, and subsequently apply the enzymes to convert pretreated lignocellulosic

biomass into mono-sugars for ethanol production.

The objectives of the study mainly focused on enhancing cellulase and xylanase

production on diluted alkaline treated switchgrass and APEX (Kumar and Wyman)

treated fiber using pelletized fimgal culture, and improving enzymatic hydrolysis on

pretreated cellulosic feedstocks (Esteghlalian, Hashirnoto et al.).

1. 3. Pretreatment

l. 3.1. The composition of lignocellulosic material

Fifty to eighty percent of Lignocellulosic materials consist of three polymers of cellulose,

hemicellulose and lignin. The three polymers tightly pack together to form a stable and

recalcitrant matrix structure. Cellulose is a linear polymer of D-glucose units that linked

by beta-l, 4 glycosidic bonds. The polymer has different levels ofpolymerization degree

and crystallinity. Higher polymerization degree and crystallinity, less soluble and

degradable cellulose is. Hemicellulose is a complex carbohydrate that links lignin and

cellulose fibers. It mainly consists oftwo polymers of pentoses (D-xylose, D-arabinose)

and hexoses (D-mannose, D-glucose, D-galactose). The ratios ofpentoses and hexoses in

hemicellulose are varied with respect to different sources, for instance, hardwood and



agricultural plants contain more xylan, while softwood has more glucomannan.

Hemicellulose is also a linear polymer with short branches. The differences of structure

and composition make hemicellulose much easier to be hydrolyzed than cellulose. Lignin

is another major component of lignocellulosic materials. It is an amorphous

heteropolymer that consists of three units (p-coumaryl, coniferyl and sinapyl alcohol). In

a plant, lignin is closely bound to cellulose and hemicellulose makes which make the

plant structure stiff, and be able to prevent the plant from microbial attack and enzymatic

degradation (Sun et a1. 2002).

1. 3.2. Pretreatment

Due to the facts of complicated composition and structure that lignocellulosic materials

have (Table 1.), a pretreatment step must be implemented prior to enzymatic conversion

of cellulose and hemicellulose components into sugars and further fermentation of

ethanol production. Thermal and chemical pretreatment methods were widely used to

break down the matrix structure and remove the lignin fraction of 1ignocellulosic

materials. This section presented a brief description of different thermal and chemical

pretreatment methods such as steam explosion, ammonia fiber expansion (AFEX), carbon

dioxide expansion, acid and alkaline treatments, and ozonolysis etc based on the key

factors of selecting effective pretreatment methods for lignocellulosic materials (Table 2.)

1.3.2.1 Steam explosion

High-pressure steam is applied on lignocellulosic materials for a short time period (Sun et

a1. 2002). At the end oftreatment, the pressure will be suddenly released that causes an

explosive destruction ofthe material, which leads to a relatively loose structure. Enzyme



and other catalysts can easily access to attack cellulose and hemicellulose to generate

mono-sugars.

1.3.2.2 Ammonia fiber expansion (AFEX)

The ammonia fiber expansion (APEX) method applies liquid ammonia at mild

temperature and high pressure for a short period of time, followed by a sudden release of

the pressure (Gao et a1. 2009). APEX process solubilizes 1ignin and increase surface area

that will significantly enhance the following enzymatic conversion of cellulose and

hemicellulose into mono-sugars. Even though, the AFEX process was not very effective

for the biomass with high lignin content, such as woody biomass, it can effectively

improve the enzymatic hydrolysis for most of agricultural lignocellulose such as

switchgrass and corn stover.

1.3.2.3 Carbon dioxide expansion

C02 expansion is another high pressure treatment similar with APEX and steam

explosion (Sun et al. 2002). It has advantages of using non-toxic chemicals and

generating non-inhibitory compounds compared to APEX and steam explosion. The

carbonic acid produced during the carbon dioxide expansion, to some degree, helps

increase the reaction rate of following enzymatic hydrolysis. However, in terms of

hydrolysis performance, C02 expansion is still not as effective as APEX and steam

explosion.

1.3.2.4 Ozonolysis

Ozonolysis is a chemical method to pretreat lignocellulosic materials (Sun et a1. 2002). It

can remove lignin under the mild condition like room temperature and pressure. The



reaction is only limited to lignin, and has no negative impacts on cellulose and

hemicelluloses (Sun et a1. 2002). The ozonolysis reaction has a relatively high efficiency

to remove lignin. However, the requirement of large amount of ozone leads to a high cost

and makes this technology less feasible.

1.3.4.5 Dilute acid treatment

Dilute acid treatment has been widely used by industry to pretreated lignocellulosic

materials. It removes the majority of hemicellulose and break down the recalcitrant

structure of lignocellulose in order to make enzyme able to attack cellulose to produce

mono-sugars (RJ et a1. 1999). The dilute acid treatment is often teamed up with steam

expansion to improve performance of the pretreatment. The dilute acid treatment can

facilitate the following enzymatic hydrolysis to reach up to 70% conversion rate of

cellulose. Due to the fact ofuse of low concentration of acid, the method has relatively

less impact on the environment.

1.3.4.6 Alkaline treatment

Similar with dilute acid treatment, alkaline pretreatment is another chemical treatment

method that has been widely used to treat cellulosic materials (Keshwani et a1. 2009). The

mechanism ofthis method is that alkaline saponifies intermolecular ester bonds between

hemicellulose and other components (1ignin and cellulose), and alkaline also extracts the

released hemicellulose and lignin so that both hemicellulose and lignin contents are

significantly reduced in the treated samples. The dilute alkaline treated lignocellulosic

materials can reach a 70% sugar conversion rate (Sun et a1. 2002).



1.4. Enzyme production and enzymatic hydrolysis of lignocellulose

Enzymatic conversion of lignocellulosic materials to fermentable sugars is one of the

critical steps for lignocellulose utilization ofbioethanol production It has been widely

reported that most of 1ignocellulose enzymes are generated from fimgal species such as T.

reesei, A. niger, and P. chnisosporium. etc (Dashtban et al. 2009). A unique enzyme

production of pelletized fungal fermentation and enzymatic hydrolysis were discussed in

this section.

1.4.1. Enzyme production

1.4.1.1. Stains

Filamentous fungi have been widely used in commercial cellulase production. In the past

several decades, numerous studies have been focused on finding different fugal species to

improve the efficiency ofenzyme production Trichoderma reesei is one of the strains

that have been identified and commercially used for cellulase production. T. reesei is

used by this study in the same capacity.

1.4.1. 2. Pelletized fungal fermentation technology ofenzyme production

Pelletization of filamentous fungi is one ofmethods that can be applied to improve the

oxygen mass transfer and reactor performance. Compared to clump-like fungal

morphology, pelletized fungal biomass has several benefits, such as a much larger

specific surface area which reduces the mass transfer limitations, better fermentation

broth rheology which in return affects momentum, mass, and heat transfer in the reactor;

consequently, efficiency ofmixing and aeration are enhanced. It has been reported that

higher yields and productivity were obtained using pelletized morphology (Liao et a1.



2002). Another advantage of fungal pellet fermentation is that the pellet makes it possible

to perform high biomass concentration cultures to enhance the productivity (Liao et al.

2002). In addition, pellet morphology not only significantly improves the culture

rheology, which results in better mass and oxygen transfer into the biomass, and lower

energy consumption for aeration and agitation, but also makes fungal biomass reuse

possible. Thus, the pelletized fungal fermentation technology developed by Drs. Liu and

Liao was adopted to fulfill the enzyme production for this study.

It has been reported that lignocellulosic materials have often been used as both the

substrate and inducers in the fermentation processes for cellulase production (Lee and

Fan, 1982). Lower solid concentrations also have been shown to yield higher cellulase

production (Szengyel et al, 1997). The highest cellulase yield from T. reesei culture was

around 150 filter paper units (PPU)/g cellulose using Solka Floc as the cellulose substrate.

The productivity of 55 FPU/L-hr was achieved in the same culture (Xia et al. 2006). This

study used different agricultural residues (APEX corn stover, alkaline treated corn stover,

acid treated switchgrass, alkaline treated switchgrass, acid treated anaerobically digested

manure fiber, and alkaline treated anaerobically digested manure fiber) as the substrates

to compare cellulase production from T. reesei culture. Recently, due to the considerable

increase of feedstock cost (starch and mono-sugars), agricultural residues as the

fermentation substrates for cellulase production could have potentials to reduce

production cost, and enhances the productivity.



1.4.2. Enzymatic hydrolysis

Main enzymes fi'om fungal fermentation include cellulase system ( l, 4-B-D-glucan

glucanohydrolase, l, 4-fi-Dglucan cellobiohydrolyase and B-glucosidase) and xylanase

system (endo-B-l, 4-xylanase, exoxylanase, and B-xylosidase). The function of the

cellulase system is: 1) endoglucanase randomly cleaves cellulose chains to form glucose,

cellobiose and cellotriose; 2) exoglucanase attacks the non-reducing end of cellulose to

release cellobiose units; and 3) Cellobiase cleaves cellobiose units into fermentable

glucose units. However, most fungal cellulase systems are lack of B-glucosidase activity

that is critical to convert cellobiose into glucose. B-glucosidase fiom A. nigers is often

added into the hydrolysis system to enhance the conversion of cellobiose. The xylanase

system has similar function with cellulase system. Endo-B-l , 4—xylanase primarily targets

the internal B-l , 4 bonds between xylose units, exoxylanase releases xylobiose units, and

B-xylosidase convert xylobiose to xylose (Zheng et al. 2009).

1.5. Problem and possible solution

Current issues of lignocellulosic ethanol production are: 1) strong thermal or chemical

methods for feedstock pretreatment; 2) high cost of fungal enzymes production; and 3)

relatively low efficiency ofenzyme systems. In order to facilitate finding solutions for

these issues, this study systematically investigated three components of fungal enzyme

production, feedstock pretreatment and enzymatic hydrolysis of sugar production. An

integrated solution ofpelletized fungal fermentation on APEX corn stover for enhanced

enzyme production, dilute alkaline treatment with less chemical loading, and improved

hydrolyzibility with optimized enzyme system was concluded from this study, which



would significantly alleviate the barriers that lignocellulosic biorefineries are

encountering.
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2. Materials and Methods

2.1. Microorganism

The strain for cellulase and xylanase production was Trichoderma reesei ATCC 56765. It

was cultured on potato dextrose agar slants at 28 °C for 5-7 days to form spores. The

spores were collected by using sterile distilled water to wash the agar. A sterile cheese

cloth was used to remove mycelia. The concentration of spore suspension was 1x109

spores /ml. The spore solution was stored at 4 °C.

2.2. Substrate

2.2.1. Substrate for Enzyme Production

Purified cellulose powder was from Sigma-Aldrich(a-D-G1ucose, anhydrous, 96 %).

AFEX pretreated corn stover was provided by 'Dr. Bruce Dale at Department of Chemical

Engineering of Michigan State University. It contained: 34.4% (dry basis) of glucan, 22.4%

(dry basis) ofxylan, 4.2% (dry basis) of arabinan, 0.6% (dry basis) ofmannan, 1.4% (dry

basis) of galactan, 3.8% (dry basis) of uronyl, 11% (dry basis) of lignin and 5.6% (dry

basis) of acetyl content.

2.2.2. Substrate for Enzymatic Hydrolysis

Switchgrass was used as the substrate for the enzymatic hydrolysis. It was harvested in

the farm at Michigan State and the component is cellulose 36.75 %, hemicellulose 28.76 %

and lignin 17.93 %. It was grinded to 4.0 mm prior to biological pretreatment and

hydrolysis.

11



The APEX corn stover for the enzymatic hydrolysis provided by Dr. Bruce Dale at

Department of Chemical Engineering ofMichigan State University with the following

components : 34.4% (dry basis) of glucan, 22.4% (dry basis) ofxylan, 4.2% (dry basis) of

arabinan, 0.6% (dry basis) ofmannan, 1.4% (dry basis) of galactan, 3.8% (dry basis) of

uronyl, 11% (dry basis) of lignin and 5.6% (dry basis) of acetyl content.

2.3. Medium

The medium for spore culture was potato dextrose broth (Sigma-Aldrich, 24 g/L).

Two media for cellulase and xylanase production by T. reesei were used. One is the basic

chemical defined medium that contained (1 L): glucose 10.0 g, cellulose 10 g, xylan 10g,

lactose 10 g, yeast extract 0.3 g, peptone 0.75 g, KH2P04 15 g, (NH4)2SO4 5 g,

MgSO4-7H20 1.23 g, CaClZ'ZHZO 0.8 g, CaC03 4 g, Tween 80 0.5 g, FeSO4-7H20

0.00271 g, MnSO4-H20 0.0016 g, ZnSO4-H20 0.0014 g, CoC12-2H20 0.0036. The

other is the modified chemical defined medium that 15g/L AFEX corn stover has been

used instead of glucose, cellulose, yeast extract and peptone in the previous basic

chemical defined medium, and other salts and trace elements are kept as the same.

2.4. Enzymes

Accellerase® is commercially available through Genencor. The cellulase and xylanase

activity are 26 FPU/mL and 20 FPU/mL, respectively. It has been used in this study as a

contrast to compare with the cellulases system produced by the laboratory.

12



2.5. Cellulase and Xylanase Production

One mL T. reesei spore suspension was inoculated into 50 mL ofPDB medium in a 125

mL Erlenmeyer flask. After being cultured at 27 °C for 24 h on a rotary shaker at 170 rpm,

10% (v/v) of seeds was inoculated into another 50 mL PDB medium for an extra 24 h.

Consequently, the pelletized seeds were inoculated into the production medium with an

inoculum size of 10% (v/v). Cellulase and xylanase were produced in 50 mL

fermentation medium in a 250 mL flask at 180 rpm, 27°C for 96-120 hours. After that,

the culture broth was centrifuged at 3500 rpm for 10 min (AllegaraTM X-12R, Beckman

Coulter) and the supernatant was used as cellulose enzyme solution.

2.6. Process for Pretreatment and Enzymatic Hydrolysis

2.6.1. Dilute Alkali Pretreatment of Switchgrass

Switchgrass was treated using an autoclave with various sodium hydroxide concentration

(0.1%, 0.5%, 1%, wt), reaction time (1 hour, 2hours) and temperature (105°C, 121°C).

Fiber concentration was fixed at 6% dry mass. After the treatment, the reaction solutions

were adjusted to pH 4.0-5.0 using 20% sulfuric acid solution. The treated samples were

centrifuged, and solid residues were washed 4-5 times using deionized water. The solid

residues were alkaline treated switchgrass, and stored in a freezer of -20 °C. The

composition of the alkali treated switchgrass was measured to be 61.18% (dry basis) of

cellulose, 17.02% (dry basis) ofxylan, 9.14% (dry basis) of lignin.

13



2.6.2. Dilute Acid Pretreatment of Switchgrass

Switchgrass was treated using an autoclave with various sulfuric acid concentration (1%,

wt), reaction time (1 hour) and temperature (130 °C). Fiber concentration was fixed at 6%

dry mass. After the treatment, the reaction solutions were adjusted to pH 4.0-5.0 using 20%

sodium hydroxide solution. The treated samples were centrifuged, and solid residues

were washed 4-5 times using deionized water. Solid residues were stored in a fi'eezer of -

20 °C. The composition ofthe acid treated switchgrass was measured to be 60.74% (dry

basis) ofcellulose, 24.38% (dry basis) of lignin.

2.6.3. APEX Pretreatment ofCom Stover

The APEX corn stover was pre-milled (passed through a 10 mm sieve) with 60%

moisture (kg water/kg dry biomass) and added into a high-pressure Parr reactor. Heated

liquid ammonia (1 kg ofammonia! kg ofdry biomass) was filled up the reactor vessel

resulting in immediate rise in temperature to 130°C. The reactor was maintained at 130°C

for 15 min by an external heating mantle (within i10°C). At the end of 15 min, the

pressure was reduced to the atmospheric level and the temperature decreased rapidly. The

instantaneous pressure drop in the vessel caused the liquid ammonia to vapor, then

cooling the biomass down to less than 30°C. The pretreated materials were left under a

hood overnight to ensure the residual ammonia volatile completely. The APEX-treated

stover was kept in room temperature until fin'ther use. Its composition was measured to

be 34.4% (dry basis) of cellulose, 28.60% (dry basis) ofxylan, 11% (dry basis) of lignin.

14



2.6.4. Dilute Acid Pretreatment ofCom Stover

The corn stover was treated using an autoclave with sulfuric acid concentration (1%, wt),

reaction time (1 hour) and temperature (120°C). Fiber concentration was fixed at 6% dry

mass. After the treatment, the reaction solutions were adjusted to pH 4.0-5.0 using 20%

sodium hydroxide solution. The treated samples were centrifuged, and solid residues

were washed 4-5 times using deionized water. The solid residues were stored in a freezer

of -20 °C. The composition of the acid treated corn stover was 59.31% (dry basis) of

cellulose, 0.3% (dry basis) ofxylan, 19.74% (dry basis) of lignin.

2.6.5. Enzymatic Hydrolysis ofPretreated Switchgrass

The enzymatic hydrolysis system contains 2 g alkaline pretreated switchgrass (dry basis),

20 FPU cellulase from T. reesei produced in the lab or Accellulase® from Genencor, and

0.5 mL 2 M sodium citrate buffer, the total weight ofreaction solution was brought to 40

g by adding DI water. The reaction solutions were incubated at 50 °C for 48 hrs at 140

rpm.

2.7. Ethanol fermentation

Saccharomyces cerevisiae D5A, obtained from American Type Culture Collection

(ATCC, Manassas, VA), was used in the ethanol production from fermentable sugars.

Initial seeds were cultured for 15 h at 30°C in a 250mL flask on ATCC Medium No. 1245

(10 g/L yeast extract, 20 g/L bacto peptone, and 20 g/L glucose). The seed culture

solution was centrifuged to collect yeast biomass for next step of ethanol fermentation.

The inoculum size was fixed at 10% (v/v) and then the biomass was mixed with an

autoclaved nutrition solution (10 g/L ofpeptone, 5 g/L of yeast extract, and glucose from
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hydrolysates) to conduct the fermentation. Samples were taken at the beginning and end

of a 26-28h fermentation process for both glucose and ethanol analysis using HPLC.

2.8. Analysis methods

2.8.1. Fiber Content Analysis

Neutral detergent fiber (NDP), acid detergent fiber (ADP), and acid detergent lignin

(ADL) of samples were analyzed using the Van Soest Fiber Analysis System (Goering

and Van Soest, 1970). NDF, ADP and ADL were used for calculate cellulose,

hemicelluloses and lignin contents. Cellulose and hemicelluloses can be determined by

the different of%ADF - %ADL and %NDP - %ADF, respectively. Lignin content was

expressed by ADL.

2.8.2. HPLC Analysis

2.8.2.1. Enzyme fermentation sample analysis

The supematants of all the enzyme samples were filtrated through the 0.22 pm filter.

Sugar (cellobiose, glucose, xylose and mannose) analysis was performed by high

performance liquid chromatography (HPLC) on SHIMADZU LC 20AD series equipped

with RI detector using an Aminex HPX-87P column (7.8 X300 nm; 5 pm) at 65 °C. The

mobile phase utilized Millipore pure water at a flow rate of 0.6 mUmin.

2.8.2.2. Enzymatic hydrolysis sample analysis

All of the enzymatic hydrolysis reactions were finished at 48 hours and each reaction

solution was diluted to 100 ml in a volumetric flask. The supematants were filtrated

through the 0.22 pm filter, and then analyzed for cellobiose, glucose, xylose and mannose

concentrations by HPLC.
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2.8.3. Enzyme Activity Analysis

Cellulase activity (measured as filter paper activity), the reaction mixture (4.5 mL)

contained 4 mL of 0.05 M citric acid-sodium citrate buffer Solution (pH4.8), 0.5mL

enzyme solution and a l x 5 cm stripe ofWhatman No.1 filter paper. The reaction was

incubated at 50 °C for 60 min, and stopped the reaction by adding 3 mL DNS Solution

and the concentration ofthe reducing sugar in the reaction mixture was determined by the

dinitrosalicylic acid (DNS) method (Ghose, 1987). One unit of cellulase activity was

defined as the amount of enzyme needed to produce 1 mol of glucose per min at 1 hour

of reaction time and 50 °C of reaction temperature.

Xylanase activity of Trichoderma reesei was determined by Mandel’s method (Mandel et

al.). The reaction mixture (2.5 mL) contained 1 ml citrate-NaOH buffer solution (50 mM,

pH4.8), 0.5 mL enzyme solution and lml substrate (it was prepared by dissolving xylan

in citrate buffer (1%, w/v) and removing any insoluble material by centrifuging for 10

min). The reaction was incubated at 50 °C for 30 min, and then the reaction was stopped

by adding 3 ml dinitrosalicylic acid (DNS) reagent. The samples were heated in a boiling

water bath, and then cooled, diluted with 20 ml water, and the absorbance read at 545 nm.

Blank, enzyme and substrate controls were also carried out under the same conditions.

One unit of xylanase activity was defined as the amount ofenzyme needed to produce 1

mo] of xylose per minute under 1 hour of reaction time and 50 °C ofreaction

temperature.
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2.9. Statistical analyses

All experiments with at least two replicates were performed by completely random

design (CRD). Analyses ofVariance (ANOVA) and Fisher’s least significant difference

(LSD) test were used to analyze the data.
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3. Enzyme Production

3.1. Morphology evaluation

The influence of spore concentration on the pellets was studied using potato dextrose

broth (Sigma-Aldrich, 24 g/L). Two different levels of inoculum size were set for 109/m1

and 107/m1. Figure 1. shows the pellets after 2 generations of culture, the fungal pellets

fi'om higher inoculum size had a smaller diameter of 1.7-1.9 mm A smaller diameter can

facilitate mass transfer and fiirther enhance the cellulase’s production.

3.2. Cellulase and xylanase productions on basic chemical defined

medium

Cellulase activity was increased following the increase of the culture time, while

xylanase activity was dropped in the first 48 hours, and then increased for the rest of

culture time (Figure 2.). After the first three days, enzyme production for both cellulase

and xylanase reached their peaks. Cellulase activity was 0.9 U/ml, and xylanase activity

was 2 U/ml. In the basic chemical defined medium, 10 g/L glucose was the main carbon

source for strain growth and produce secondary metabolic products, and 10 g/L lactose

was added as an inducer for enzyme production.

3.3. Comparison of basic chemical defined medium and modified

medium

According to Figure 3, cellulase activities on both media were increased within first 3

days. There was a significant improvement on cellulase activity on the modified medium

at the third day". the activity reached 1.5 U/ml which was twice than the activity in basic
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chemical defined medium (0.7 U/ml). Meanwhile, the xylanase activities on both media

were also increased in first 2 days. The xylanase activity on modified medium reached

the peak value of 1.3 U/ml at 48 hours. After 2 days of culture, the xylanase activities on

the modified medium were leveled off, while the xylanase activities on the basic

chemical defined medium were still increased

The enhancement of cellulase and xylanase activity was largely due to the carbon sources

of cellulose and xylan in the modified medium. Both substrates also played a role to

induce the enzyme production. However, both enzyme activities in the modified medium

were leveled off at the 4th day. It was much earlier than the trend of chemical defined

medium fi'om previous culture (Figure 2). The main reason was that pH of culture on

modified medium was decreased much faster than the chemical defined medium, which

means that T. reesei on modified medium grew better than chemical defined medium.

More metabolic products including various organic acids released into the broth led to a

quicker drop ofpH on the modified medium. Thus, pH had to be controlled in order to

further enhance enzyme production on the modified medium.

3.4. Comparison of CaC03 and Tris-maleate buffer solution as the

neutralizer in cellulase and xylanase production

The impact of neutralizers on enzyme production was presented in Figure 4. The data

indicated that both CaC03 and buffer solution had positive impacts on enzyme

production. The figure also elucidated that CaC03 was a better neutralizer than buffer

solution. The maximmn enzyme activities for both enzymes were obtained at the fourth

day.
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Acidity measurements and enzyme activity tests firrther demonstrated the impacts ofpH

on enzyme production. The pH values of the medium with CaC03 as the neutralizer did

not change during the entire cultivation, while the pH values of the medium with buffer

solution started dropping at the 3rd days.

3.5. Effects of different concentration of CaC03 on cellulase and

xylanase production

Different concentrations (0 g/L, 4 g/L and 10 g/L) ofCaC03 have been used to study the

effects ofCaC03 on enzyme production. Figure 5. showed that there were no significant

difference on enzyme activities between 4 g/L of CaC03 and 10 g/L ofCaC03, while

enzyme activities on the medium without CaC03 were significantly lower than other two

CaC03 concentrations.

Besides maintaining the broth system under a stable pH level, the enhanced formation of

pellets in the fermentation also indicated that CaC03 as a neutralizer not only prevented

pH from dropping, but was also a favorable factor for the fimgal pelletization and

biomass accumulation The calcium ion has been reported as a metal inducer to facilitate

mycelial aggregation during fungal growth, which has been verified by this study. The

medium with CaC03 produced smoother and more homogeneous pellets than those

without it.

3.6. Comparing different agricultural residues with purified cellulose in

cellulose production

Although the relatively high enzyme activity has been achieved using the carbon source

modified medium, the purified glucose and cellulose powder were still not the optimal
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feedstock for enzyme production at commercial scale. More abundant and less expensive

lignocellulosic feedstocks such as agricultural residues should be compared (Table 5. ,

Table 6.).

Seven different lignocellulosic feedstocks (APEX corn stover, alkaline treated corn

stover, acid treated corn stover, alkaline treated switchgrass, acid treated switchgrass, and

acid treated anaerobically digested fiber, and alkaline treated anaerobically digested fiber)

were compared with the modified medium to evaluate the impacts ofthem on enzyme

production.

The results of cellulase and xylanase production in 250 m1 flasks all using 15 g/l

lignocellulosic substrates were shown Compared with dilute alkaline treated substrates,

all the dilute acid treated substrates had less enzyme production on both cellulase and

xylanase. Alkaline pretreatment did not remove all of hemicellulose in the sample, which

might be a reason to enhance both cellulase and xylanase production. Among the alkaline

treated samples, APEX corn stover presented the highest activities on both enzymes, so it

was selected as the substrate to produce enzymes for the following study.

3.7. Effects of different concentrations of AFEX corn stover in cellulases

production

A further study of effects of concentration ofAPEX com stover on enzyme production

was conducted (Figure 12, 13). Cellulase activities were increased for all three

concentrations with the increase of culture time, while xylanase acitivities reached the

peak at 69 hours. Four different concentrations ofAPEX corn stover were tested, and the

concentration of 15 g/L showed the highest cellulase activity, while the concentrations of

15 g/L and 30 g/L presented the highest xylanase activities. Considering both cellulase
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and xylanase activities, the APEX corn stover of 15 g/L and cultivation time ofthree days

were chosen as the optimal condition for enzyme production (Figure 14).

3.8. Comparing cellulases production with the optimal condition on

both chemical defined medium and AFEX corn stover medium

Enzyme production on the medium with 15 g/L ofAPEX treated corn stover was

compared with the chemical defined medium (Figure 15). The data showed that 20% and

40% increase were achieved by APEX medium on xylanase and cellulase, respectively.

In addition, enzyme productivity showed even larger improvement by APEX corn stover

(Figure 16). APEX corn stover obtained 100 % enhancement on cellulase productivity

and 79 % enhancement on xylanase fermentation. The increased enzyme activities could

be benefits on the enzymatic hydrolysis of 1ignocellulosic materials (discussed in Section

4).
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4. Enzymatic Hydrolysis

4.1. Enzymatic hydrolysis of lignocellulosic materials

4.1.2. Comparing different enzymes and substrates combinations

Nine enzyme cocktails produced from previous fungal fermentation were applied on four

pretreated corn stover and switchgrass samples to elucidate the effects ofenzyme

cocktails from different culture medium on the hydrolysis (Figure 18, 19, 20, and 21).

The enzyme cocktail fi'om the culture on the APEX corn stover had the best hydrolysis

performance on all pretreated fibers among all nine cocktails, particularly on APEX

treated corn stover and alkaline treated switchgrass, which the enzyme cocktail had the

cellulose conversion rate of 70% and 60%, respectively.

Furthermore, according to the fiber analysis results (Tables 8. through 10.), alkaline

treated switchgrass has highest cellulose content of45% among the treated fiber

feedstocks. More cellulose in the sample, more glucose might be produced in the

following enzymatic hydrolysis. Thus, alkaline treated switchgrass was chosen as the

lignocellulosic material to fulfill the study ofenzymatic hydrolysis.

4.1.3. Enzymatic hydrolysis of alkaline pretreated switchgrass using Accellerase®

Ten FPU Accellerase®/g substrate was used to conduct the hydrolysis of 5 % pretreated

switchgrass. The switchgrass was pretreated by dilute alkaline using a completely

randomized design (CRD). Two pretreatment times (1 and 2 hours), two temperatures

(105 and 121°C), and three NaOH concentrations (0.1 %, 0.5 %. 1.0 %) were tested to

compare the effects of pretreatment on enzymatic hydrolysis.
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The data ofreducing sugar (glucose and cellobiose) from twelve treatments (Figure 22,

23, 24 and 25) demonstrated that 0.1% NaOH was too low to break down the matrix

structure, while both pretreatment conditions (105°C and 1 hour; 121°C and 1 hour) at the

elevated alkaline concentrations of 1% reached the highest sugar concentration of 29 g/L.

Longer reaction times had negative impacts on sugar concentrations. In addition, there

were no significant differences on sugar concentrations between two pretreatment

temperatures (105 and 121°C). Thus, alkaline concentrations (1 and 2%) and pretreatment

temperatures (105 and 121°C) were used to conduct the following the experiment of

enzyme comparison.

4.1.4. Comparison ofdifferent levels of Accellerase® and cellulase on pretreated

switchgrass

Commercial cellulase and cellulase cocktail produced from APEX corn stover were used

for the experiment. Two different levels ofenzyme activities (5 U and 10 U cellulase/g

fiber (all based on dry matter)) were tested Other experimental conditions were listed in

Table 10.

The data indicated that at the same enzyme activity levels the cellulose cocktails

performed significantly better than commercial Accellerase (Figure 26, 27, 28 and 29). In

addition, relatively high alkaline concentrations and high temperatures showed better

sugar conversion. Enzymatic hydrolysis ofpretreated switchgrass from the treatment of

121°C, 1.0 % NaOH and 1 hour generated 40 g/L and 30 g/L of sugars for cellulose

cocktail and commercial cellulase, respectively.
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High substrate concentrations under the optimal pretreatment conditions was applied to

further study the effects of different enzyme sources on the hydrolysis (Table 11.), the

cellulase cocktail has a better hydrolysis performance than Accellerase. The highest sugar

concentration of 60 g/L was obtained on switchgrass using the cellulase cocktail (Figure

30).

The possible reasons of better performance of cellulase cocktail might be: 1) Effects of

xylanase supplementation: based on the enzyme activity measurements, the activity ratio

(0.65) of xylanase and cellulase in Accellerase® was much lower than that (2.0) from

cellulase cocktail. It has been reported that glucose release is improved by hemicellulose

removal. 2) The synergistic action among other untested enzymes: a recent published

study indicated that there were more than 5 enzymes co-existed in the broth with

cellulase and xylanase. They can synergistically work with cellulases and xylanase, and

facilitate the conversion of cellulose into glucose.

In addition, another major difference between cellulase cocktail and Accellerase was that

cellulase cocktail was production on lignocellulosic materials. The lignocellulosic

materials can also induce the strain to release certain secondary metabolic products,

which led the enzyme to have better hydrolysis performance.

4.2. Ethanol Fermentation

In order to further evaluate the ethanol production yield from diluted alkaline pretreated

switchgrass, an enzymatic hydrolysis at high solid contents (10 % dry basis) followed by

ethanol fermentation was conducted. A yeast strain S. cerevisiae D5A was used to carry

out the ethanol fermentation. A 68% ethanol yield (ethanol yield [%] = ethanol produced

[g]/ (0.51 * 1.1 1*cellulose in sample [g]*100)) was obtained on the hydrolysate from
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cellulase cocktail treated switchgrass, which was higher than 58% of Accellerase treated

switchgrass (Figure 31).
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5. Conclusion and Perspectives

This study has concluded that pelletized fungal fermentation on AFEX corn stover

significantly improved the enzyme production and enzyme activity, and consequently

enzymatic hydrolysis on switchgrass demonstrated high sugar conversion rates.

Fungal morphology is a very important factor in fungal fermentation of cellulose

production Small fungal pellets enhanced enzyme production. Various lignocellulosic

materials as carbon sources had different effects on enzyme activities and ratios of

cellulase to xylanase. Cellulase and xylanase activities from the cultures on APEX corn

stover were significantly higher than cultures on other lignocellulosic materials. Cellulase

production from a culture on 15 g/L AFEX corn stover reached the highest activity of

1.08 U/ml at 93 hours, while xylanase also reached the highest activity of 2.52 U/ml at 72

hours.

The experiments of consequently enzymatic hydrolysis using the enzyme cocktail

produced form the pelletized fungal fermentation elucidated that the cocktail from the

APEX corn stover culture had better sugar conversion rates on all 4 pretreated fibers

compared to the enzyme from chemical defined culture. Considering both sugar

concentration and conversion rate, enzymatic hydrolysis on alkaline treated switchgrass

showed better performance than other lignocellulosic materials. A complete randomized

design on alkaline treatment concluded that 121°C, 1 % NaOH and 1 hour reaction time

is the optimal conditions to treat switchgrass.

The future studies should focus on investigating enzyme compositions of enzyme

cocktails from cultures on different lignocellulosic materials, and discovering the

interactions of different enzymes during fermentation and following hydrolysis.
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Consequently the impacts of various enzymes in the cocktails on hydrolysis can be

concluded, which will lead to a mechanistic understanding of synergistic functions of

enzymes on hydrolysis, and further make it possible to intentionally design enzyme

cocktails with respect to different lignocellulosic materials.
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