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ABSTRACT

INVESTIGATION OF MICROWAVE CAVITY APPLICATORS FOR PLASMA
ASSISTED CVD DIAMOND SYNTHESIS AND PLASMA ASSISTED
COMBUSTION

By

Kadek Wardika Hemawan

The objective of this research was to design, build, optimize, and
experimentally evaluate microwave applicators that operate at high pressures for
two specific applications: (a) microwave plasma assisted chemical vapor
deposition (MPACVD) and (b) microwave plasma assisted combustion (MPAC).

Microwave plasma assisted chemical vapor deposition was experimentally
investigated using a cylindrical plasma source, high purity, 2-5% H/CH4 input
gas chemistries and operating at high pressures of 180-250 Torr for diamond
synthesis. A microwave cavity plasma reactor was specifically modified to be
experimentally adaptable and tunable in order to enable operation with high input
microwave plasma absorbed power densities within this higher pressure regime.
Uniform polycrystalline diamond films were synthesized on 2.54 cm diameter
silicon substrates and single crystal diamonds were deposited on HPHT diamond
seeds at substrate temperatures of 950-1282 °C. The polycrystalline growth rates

ranged from 3 to 21 um/hr at 2-5% CH4/H, while single crystal diamond growth

rate varied from 8 to 36 um/hr at 3-5% CHg4/H,. Higher operating pressures,

absorbed power densities, and methane concentrations resulted in higher



diamond growth rates. FTIR transmission and Raman measurements indicated
the synthesized diamond at these high pressures was of excellent quality.
Microwave plasma assisted combustion was also investigated using

cylindrical and coaxial microwave cavity applicators using premixed gas
chemistries of O,/CH4. These applicators were developed to enable the efficient

coupling of microwave energy into gases/plasmas/flames at pressures of one
atmosphere. The mechanical tuning of the applicators allowed for the efficient
matching of microwave power into the flame and also allowed the optimal
positioning of the flame with respect to the impressed electric field. The addition
of a few Watts of microwave power to a combustion flame with a flame power of
10-40 W served to extend the flammability limits under fuel rich and fuel lean
conditions, increased the flame length and intensity, and also increased the
number density and mixture of excited radical species in the flame vicinity.
Optical emission spectroscopy measurements showed gas rotational
temperatures in the range of 2300 - 3600 K.

This thesis research has led to two experimental applicator designs and
associated systems that allow experimental investigation of microwave energy
interaction with combustion flame and a microwave applicator that enables
MPACVD diamond synthesis at 180-250 Torr pressure regime. This MSU

MPACVD reactor design has recently been commercialized.
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CHAPTER 1
INTRODUCTION

1.1 Research motivation

A major motivation of this thesis research was to develop microwave
applicator technologies that efficiently create and maintain microwave discharges
at pressure regimes of 180 Torr and above. Thus, this thesis research was
devoted to exploring microwave discharge coupling behavior at high pressures
and developing the associated microwave plasma cavity applicator technologies.

The approach which was primarily experimental initially extends the limit
of the existing microwave reactor technologies from 180 to 250 Torr. This was
done by a redesign of a specific reactor in order to enable it to operate robustly
and optimally in the 180-250 Torr pressure regime. Other experiments were

performed at one atmosphere where small, efficient microwave applicators

sustain a microwave discharge in argon and molecular gases such as CHy, Oz
and Na.

The reliability and efficiency of the applicator designs was then evaluated
in the specific high pressure microwave discharge applications. In particular,
applicator designs were experimentally investigated in two applications: (1)
MPACVD synthesis of diamond and (2) microwave plasma assisted combustion

(MPAC). Each application is briefly described in section 1.1.1 and 1.1.2 below:



1.1.1 Microwave plasma assisted CVD diamond synthesis

Early investigations of chemical vapor deposition of diamond employed

low power density microwave discharges/reactors (< 5 W/cm3) that were

operated within the low pressure, 20-100 Torr, regime and used input CH4/H»

gas mixtures that varied between 1-5% [1, 2]. Both polycrystalline and single
crystalline films were synthesized with deposition rates that increased from less
than a one uym/h at very low methane concentrations (< 1%) to a maximum of a
few um/h as methane concentrations were increased to 5%. However, high-
quality films could only be produced under low methane input conditions (< 1%)
and as a result, diamond growth rates were very low; i.e < ~1 ym/h. Attempts to
increase the growth rate by increasing the input methane concentrations led to
the formation of defects such as secondary nucleation and unepitaxial
crystallites. While these results were of scientific interest [2] the very low growth
rates limited the commercial potential of microwave plasma assisted CVD
synthesis of diamond. Thus, in the mid 1990’'s an important scientific and
engineering challenge and opportunity that remained unsolved was to discover
and develop diamond synthesis methods that dramatically increase the

deposition rates while still producing excellent crystalline quality.

During the mid 1990’s and early 2000’s several research groups [3-8]
searched for improved diamond synthesis methods. Their experiments, which

synthesized both polycrystalline and single crystalline materials, utilized high

power density (50-100 W/cm3) microwave discharges operating at moderate



pressures between 100-180 Torr. They found that (1) synthesis rates for both
polycrystalline (PCD) and single crystalline diamond (SCD) were greatly
increased and (2) the diamond quality was improved as the microwave discharge
power density and process pressure were increased. In particular, good quality
PCD was deposited at 4-10 um/h [7-8] and SCD was produced at rates of 50-100
pm/h [3, 5]. These growth rates were higher by a factor of 5 to 100 times than the
growth rates for good quality CVD synthesized diamond that was obtained in the

early 1990’s using low pressure microwave discharges.

The research activities in this thesis were directed towards the
development of new microwave reactor technologies that enable the
experimental exploration of CVD diamond synthesis at operating pressures
above 180 Torr. A motivation of the research was to grow diamond at high rates
and high quality. The results of this investigation have been submitted for
publication in Diamond Related Materials and also have been commercialized by

Lambda Technologies.

1.1.2 Microwave plasma assisted combustion

Diamond can also be synthesized using combustion CVD. The first
experiments were conducted by Hirose and Kondo [8] using acetylene flames
and later confirmed by Naval Research laboratory [10]. Combustion CVD is a

potential technique for diamond synthesis because of its simplicity of the



experimental systems, it is scalable technique, and has lower capital costs as
compared to other plasma assisted CVD [11].

As of late, an emerging topic that combines both plasma and combustion
fields commonly referred to plasma assisted combustion, has gained attention
among the plasma and combustion scientific community. Many researchers have
investigated techniques that combine electrical energy with a flame. They
demonstrated the potential to modify the combustion process with the addition of
electric energy. Various discharges such as DC and AC, dielectric barrier, RF,
pulsed corona, and microwave discharges were experimentally investigated for
their ability to interact with, and to modify premixed and diffusion flames.
Microwave plasma-assisted hydrocarbon treatment was initially investigated for
internal-combustion engine improvement [13-17] and for the conversion of
hydrocarbons into methane and acetylene gases [18]. More recently the
conversion of hydrocarbons into hydrogen fuels has been also investigated [19].

By investigating microwave plasma assisted combustion, it was desired to
understand any macroscopic changes in the plasma behavior when the
combustion flame is subjected to microwave energy. Thus, the thesis research
developed and experimentally evaluated two microwave applicator designs that
were able to gradually and efficiently couple microwave energy into a flame.
Some of the investigation results have been published in the Applied Physics
Letters, 89, 141501 (2006) and the Review of Scientific Instruments, 80, 053507
(2009). These reactors are now available as experimental test facilities that

enable further investigation of microwave energy interaction with combustion



flames and also may lead to new MPACVD reactor designs that at high pressure
combine combustion and microwave plasma i.e., a hybrid MPACVD combustion

flame reactor for CVD diamond synthesis.

1.2 Research objectives and approach

The objective of this research was to design, develop, optimize, and
experimentally evaluate microwave applicators that operate at high pressures (>
180 Torr - 1 atmosphere) for two specific applications: (a) microwave plasma
assisted chemical vapor deposition (MPACVD) and (b) microwave plasma

assisted combustion (MPAC).

The specific goal of the microwave plasma assisted CVD research was to
extend the operation of an existing MSU reactor technology to higher pressures.
When increasing the operating pressure, it is expected that the diamond growth
rate and quality will increase. The high pressure plasma reactors and
experimental methods described in this thesis allow the spatial positioning and
shaping of the resulting discharge in a high pressure, thermally inhomogeneous,
high power microwave density discharge, and thereby enable the synthesis of
polycrystalline and single crystal diamonds at high pressures between 180 to 250

Torr.

The specific goal of the microwave plasma assisted combustion research
was to build and modify microwave cavity applicators that enable the

investigation of the underlying microwave coupling mechanism, the macroscopic



changes that occur when electromagnetic energy was added into the combustion

flame, and study the hybrid plasma flame discharge characteristics at 760 Torr.

The research approach and specific tasks conducted during the

investigation are outlined below:

1. Modify the existing microwave plasma assisted CVD reactor design and

test the new applicator for diamond synthesis at higher pressure

a.

Modify the reactor to enable the excitation of a hybrid (TM013 +
TEMO001) mode and provide additional length tuning for the coaxial
section of the reactor.

Design and build a water cooled stage and substrate holders for
high pressure polycrystalline CVD diamond synthesis.
Experimentally synthesize polycrystalline diamond at 180-240 Torr.
Design and build a water cooled stage and substrate holders for
single crystal diamond synthesis.

Experimentally synthesize single crystal diamond (without nitrogen)

at 180-250 Torr.

2. Develop microwave plasma applicators at one atmosphere for plasma

assisted combustion

a.

Experimentally evaluate a premixed combustion flame at 760 Torr
pressure using a miniature coaxial plasma torch burner (new

applicator design).



b. Improve microwave coupling of the coaxial plasma torch burner by
placing it inside a tunable cylindrical seven inch cavity (new
applicator design).

c. Modify the microwave coaxial re-entrant plasma cavity applicator
for efficient and optimum coupling between the microwave energy

and combustion flame (applicator design improvement).

1.3 Dissertation outline

The thesis research activities have two major research components: (1)
MPACVD for diamond synthesis at operating pressures of 180-250 Torr and (2)
microwave plasma assisted combustion at operating pressure of 760 Torr. These
are described respectively in Chapter 2 to Chapter 5 and Chapter 6 to Chapter 9.
In Chapter 2, the theoretical background and literature review of microwave
plasma assisted chemical vapor deposition is presented. In Chapter 3, the
MPACVD diamond reactor design is described. The chapter begins with a brief
review of MSU generic reactor technology followed by the description of the
existing or reference reactor. Detail designs of the modified or hybrid reactor is
also presented. This includes a new water cooling stage and substrate holder
designs. General background of circular and coaxial waveguides/cavities such as
mode charts and field patterns is also presented. Chapter 4 begins with the
description of the overall experimental system setup. The description of the CVD

diamond synthesis experimental multivariable space and experimental



procedures are discussed. Presentation of experimental results such as the
reactors performance, optimization, and microwave plasma discharge
characteristics are presented in Chapter 5. Here the diamond growth rates,
diamond uniformity, diamond surface morphology, and diamond quality for both

polycrystalline and single crystal diamonds are discussed.

Chapter 6 presents the background and literature review of plasma
assisted combustion. In Chapter 7, the microwave plasma assisted combustion
experimental systems and procedures are described. This includes, microwave
system networks, optical emission spectroscopy set up, and rotational

temperature calculation procedures for both N, and CH. Chapter 8 covers the

microwave plasma assisted combustion applicator #1, i.e., hybrid cavity plasma
flame burner system which consists of miniature plasma torch combined with the
seven-inch cavity applicator. The experimental results such as influence of
microwave coupling on the flame structure, flammability limits, and gas
temperature are also presented. Chapter 9 covers the microwave plasma
assisted combustion applicator #2, i.e., compact re-entrant cavity plasma flame
burner and the experimental results drawn from the experimental measurements.
Chapter 10 concludes the dissertation with a summary of the work on the
microwave plasma assisted combustion and microwave plasma assisted CVD

diamond synthesis. Recommendations for future research are also presented.



CHAPTER 2
MICROWAVE PLASMA ASSISTED CVD DIAMOND
BACKGROUND

2.3 Introduction

This chapter presents general background and literature review of CVD
diamond synthesis at high pressure (< 120 Torr and above). It begins with basic
properties of diamond and its potential use in various technical applications.
Then, the comparison between microwave plasma CVD versus combustion CVD
for diamond deposition technique is presented. The general growth process and
surface kinetics chemistry of CVD diamond is also described. A literature review
of polycrystalline and single crystal diamond deposition at high pressure

concludes the chapter.



2.2 Diamond structure, properties and its applications

Diamond has a crystal structure of face-centered cubic (FCC) lattice with a
basis of two identical carbon atoms or lattice points primitive unit cell, one at (0,
0, 0) and the other at (1/4, 1/4, 1/4). It can be viewed as the superposition of two
FCC lattices one displaced relative to the other along the body diagonal by one
quarter of lattice parameter from the origin. At room temperature, the unit cell is
cubic with a side length approximately equal to 3.567 Angstrom. Every carbon
atom in the lattice is bonded with four other carbon atoms to form a tetrahedral

structure. Four valence electrons in each carbon atom form strong covalent
bonds by sp3 hybridization with nearest neighbor distance of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>