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ABSTRACT

AN ADAPTIVE REPRESENTATION FOR A GENETIC ALGORITHM IN

SOLVING FLEXIBLE JOB-SHOP SCHEDULING AND RESCHEDULING

PROBLEMS

By

Prakarn Unachak

In a modern manufacturing system, it is imperative that production go on efficiently.

A good scheduler must allocate resources to processes with minimum waste while

fulfilling all constraints of the scheduling environment. The Job Shop Scheduling

Problem (JSSP) is among the most popular scheduling problems. The Flexible Job Shop

Scheduling Problem (FJSP) relaxes the restrictive machine assignment of JSSP, moving

it closer to a real-world application. However, it is still far from a real-world

manufacturing environment, in which disruptions such as machine failure must be taken

into account.

The goal of this dissertation is to create a Genetic Algorithm (GA) approach to F]SP

that can adapt to disruption to reflect more closely the real-world manufacturing

environment. We hope that by using just-in-time machine assignment and adapting

scheduling rules, we can achieve the robustness and flexibility we desire.

The adaptive representation (AdRep) was tested in both a static environment and a

disruption-prone dynamic environment. In the static environment, benchmark problems

and published results were compared with the result of our approach to test its utility

there. Although not as scalable as some approaches usable only for static cases, our

approach discovered all the best-so-far published results on a series of commonly used



benchmark problems in a strong way—it consistently produced, in almost every run, all

of the points on the Pareto front produced when FJSP is formulated as a multi—objective

problem, whereas most of the other approaches maximized only a single one of the

objectives. Then, in the dynamic model (i.e., in which machines break down), we

compared our adaptive method to two benchmark algorithms: a right-shifting rescheduler

and a prescheduler. A right-shifting rescheduler repairs schedules by delaying affected

operations until the disruption is over. A prescheduler works on each disruption scenario

separately, treating disruptions like prescheduled downtime. Experiments showed that

our approach was able to adapt to disruptions in a manner that minimized lost time.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

A J X M Flexible Job Shop Scheduling Problem (FJSP) instance consists of a number

J of jobs in a manufacturing environment of M machines. Each job has a process order

that specifies an ordering in which the operations must be performed (precedence

constraints). There is at least one machine (and sometimes, perhaps several) that can

process each operation, sometimes at differing costs. One machine can process only one

operation at a time (resource constraint), and it will continue processing that operation

until it is finished (non-preemption constraint). The goal is to construct a schedule, by

first assigning each operation a machine, then allocating runtime for it, so as to optimize

the objective function(s), such as makespan—time from when the first operation starts to

when the last operation finishes—while satisfying all the constraints. The environment

can be static or dynamic. In a static environment, once the scheduling starts, there is no

change in the system. (no machine breakdowns or arrival/cancellation of jobs). A

schedule can be expected to proceed unimpeded to its planned outcome. On the other

hand, in a dynamic environment, disruptions such as machine breakdowns or new job

arrivals can occur, either deterrninistically or stochastically. A good scheduler should be

able to handle such disruptions in a way that the repaired solutions are typically not

unnecessarily worse than the original solutions.



In this dissertation, the focus is on 1) minimizing three objectives: makespan (CW:

critical machine workload (WM), and total machine workload (WT) in static environment,

(whereas many heuristics seek to minimize only a single one of them), and 2) minimizing

makespan and repaired schedule makespan (CRMaX) in a dynamic environment with

disruption due to machine unavailability (unscheduled breakdown).

1.2

1)

2)

3)

Goals ofResearch

Design a flexible representation for FJSP.

Currently, few approaches to FJSP seem to focus on the flexibility of the machine

selection, also known as routing, process. By delaying the routing decision until

absolutely necessary and providing simple heuristics to assist the routing process,

while employing adaptive scheduling to sequence the operations based on the

states of the environment, we hope to exploit the states of the system to achieve

more stable solutions (solutions less impaired by machine failures and other

disruptions).

Present a novel way of F]SP rescheduling.

So far, there have been few attempts to expand rescheduling into FJSP. Since our

proposed approach does not bind an operation to a machine, when a disruption

occurs, rendering the machine unavailable, routing rules can reassign any affected

operation to another machine. This can often be beneficial, especially when the

disruption period is especially long, rendering right-shifting less usefiil.

Validate the adaptive representation in the static model.



4)

5)

There are quite a few papers on F]SP. Here, we will test the new adaptive

representation against the current best published results on a number of

benchmark problems. The goal is to show that there is no loss in static

performance, or, if noticeable degradation is found, that improvements can be

made. (The real advantage of the representation is to be its performance on the

dynamic FJSP, rather than improvement on the already-well-optimized static

case.)

Validate the adaptive representation in disruption-prone model.

To date, there has not been much work on the dynamic FJSP, especially against

disruptions such as machine unavailability. The AdRep representation will be

tested in a dynamic environment that is prone to machine unavailability disruption.

The goal is to show that the AdRep can produce solutions that suffer minimally

from disruptions, or at least in which the losses are small relative to those suffered

by other scheduling approaches.

Performance Analysis of AdRep.

While validating the AdRep on published problem instances, we hope to measure

its efficiency in solving the problems. Although it is good to create a good

schedule builder that can adapt well to disruption, it is better to do so with

reasonable cost. We have sought to learn how efficient AdRep is, and, when

possible, have implemented improvements in its efficiency.



 

 

1.3 Overview ofthe Dissertation

‘ This dissertation is organized as follows: Chapter 2 discusses the background of this

dissertation, first on Genetic Algorithm, the evolutionary computation approaches used in

this dissertation. Then the focus problem of the dissertation—FlSP and its parent

problem, JSSP—are discussed. Then, we focus on previous approaches utilized to solve

these two problems. Chapter 3 discusses the architecture of a proposed GA system, the

Adaptive Representation (AdRep) and how it can be used to solve FJSP instances, in both

the static and the disruption-prone dynamic cases. Chapter 4' describes the performance

analysis of AdRep on the static FJSP. Chapter 5 is a performance analysis study of

AdRep on the disruption-prone dynamic FJSP, comparing computational results to those

of benchmark algorithms. Chapter 6 concludes the dissertation and suggests future

directions for the research.



CHAPTER2

BACKGROUND

2.1 Genetic Algorithm (GA)

A genetic algorithm (GA) is an evolutionary computation approach derived from

Darwin’s principle of survival of the fittest and the idea of sexual reproduction. They are

well described in Goldberg’s landmark 1989 book [1], as summarized next. Multiple

individuals, representing solutions or instructions for constructing solutions (indirect

representations), coexist in a virtual environment in which they will be evaluated. The

objective function (makespan, for example) is used to determine which solutions are

“fitter” than others. Fitter individuals have more chance to propagate their characteristics

to the next generation. A recombination function combines the characteristics of two

individuals to produce new solutions, which carry some mixture of their parents’

characteristics. Sometimes the recombination produces more fit individuals, but

frequently the offspring are less fit than their parents. To maintain the diversity of the

population of solutions being explored, a mutationfunction makes changes to individuals

to produce (genotypically) different individuals. This is one of the most popular

approaches to JSSP.

In order to use a GA, or most EC frameworks, to solve a problem, we need a method

to encode schedules (solutions of the problem) as chromosomes, as the individuals in a

GA system are often called. Such an encoding is called representation. Choice of

representation will affect other parts of the GA system. For FJSP, a solution can be a



direct representation, in which the representation is the schedule itself, or it can be an

indirect representation, in which the representation constitutes a way to build a schedule,

not the schedule itself. For example, in the FJSP context, a chromosome including direct

machine assignments and an array of starting times for each operation is a direct

representation, while if the an array of starting times were to be replaced by an array of

priorities, the chromosome would become an indirect representation, since some

“external” scheduling mechanism will be needed to build a schedule out of the priorities

provided in the chromosome.

After we have a representation of the problem, we can start the GA system. The GA

runs in steps, as shown in Figure 2.1 below:

 

1. Initialization. Initial population is randomly or stochastically

generated.

2. Evaluation. Each individual’s fitness is evaluated.

Population of the next generation is generated by

3.1. Selection. With probability proportional to their fitness, two

individuals are selected.

3.2. Recombination or Crossover. Two selected individuals are

recombined to produce offspring.

3.3. Mutation. Small changes are applied to offspring. They are then

put into the new population.

3.4. Repeat until new population is full.

4. Evaluation fitness of individuals in the new population.

If termination criterion is met, results are print and the search

terminates. Otherwise, assign new population as current population and

go back to step 3.

W
M

  
 

Figure 2.1. Steps in a classical genetic algorithm

Initialization is usually random. The key is to have diversity in the population.

However, pregenerated individuals, sometimes called seeds, or specialized sampling

algorithms can also be introduced into the initial population if certain characteristics are



 

desired. Also, as often in scheduling problem, dispatching rules can be used to create the

initial population. Approach to Localization (AL) [2] and Dispatching Rules approach

can also be used to enhance the initial population.

Evaluation is done using a fitness function based on the search goals. However, by

using raw fitness values, it is possible that one or a few individuals quickly dominate the

population, leading to premature convergence of the population. Hence, fitness values

may need to be scaled, or scale-invariant fitness methods such as tournament selection

must be employed. The need for scaling does depend on the selection method employed,

however. Many selection methods, such as tournament selection, do not need scaled

fitnesses.

A crossover operator combines features from two parents and produces offspring

that inherit parents’ alleles. A mutation operator applies changes to the offspring,

introducing some diversity into the population. Appropriate choice of both types of

operators is dependent on the problem at hand and the representation used. Note that

whether crossover operators and mutation operators produce valid results or not also

depends on the representation used. For example, if a permutation-type chromosome is

being used, a single-point crossover operator will not produce valid offspring. In some

cases, a repair mechanism is required to convert an invalid chromosome into a valid one.

Selection assigns probability of being selected to become a parent to an individual.

The probabilities can be proportional to fitness (proportional selection, or roulette-wheel

selection), evenly distributed among individuals, or even based on ranking among

individuals. Alternative selection schemes, such as randomly choosing k individuals and

selecting the fittest one (also called tournament selection), can also be used.

 



Replacement dictates how the population of the next generation is derived.

Replacement can either be generational, where no parents directly survive, or steady-state,

where parents and offspring coexist and replacement decisions are made as each

offspring is created. Sometimes we would want to preserve the fittest individual. In such

cases, we use elitism, a policy that allows preserving the k fittest individuals

automatically into the next generation. Particularly for multiple-objective searches, there

are other replacement methods, such as the one used in NSGA-II [3], where individuals

are successively sorted into non-dominated sets and selected for survival, then removed

from the further sorting.

A Termination Criterion is used by a GA to decide when to quit. It can be a

specified number of generations, a target fitness value, one of many diversity criteria, or

the number of times the evaluation function has been called, for example.



2.2 Flexible Job-Shop Scheduling Problem (FJSP)

First introduced by Brucker and Schlie in 1990 [4], where a polynomial algorithm

was developed to solve a 2-job problem, a JxM Flexible Job-shop Scheduling Problem

consists of J number of jobs and M number of machines. Each job i I i =1..J has a

sequence of operations (Oil 9 0i2 9' ° ’9 Oini ) , where n,- is the number of operations in

job i. Each operation has at least one machine that can process it, at a cost that may vary

from machine to machine. The goal of the problem is to schedule each operation on some

machine, subject to all constraints, and to extremize some additional measures.

2.1.1 Definition

A more formal definition of F]SP is follows:

A nXm FJSP consists of:

J = {J,-}1 _<_ i S n is the set ofjobs to be scheduled.

0 Each job J,- is a set of operations { 01'],on "'°90jn,. } in a predetermined

. th . . .

sequence, where ojx IS the x operatlon ofjobj.

o M = {My} 5 k 5 m is the set of machines available.

0 An operation ojx can be processed on machine mk _C_ M for the time unit cost of

[jack-

 



o Precedence constraint: Let t5(ojx) be the start time of processing ojx and tfiojx) be

the finishing time of processing ojx. Then tfiojx) S ts(ojx+1). That is, in order to

start its job successor ojx+1. ojx must finish first.

0 Resource constraint: Let m(ojx) be the machine on which ojx will be processed.

Then (m(o]) = m(02)) —> (tf(02) S ts(01) | tf(01) S ts(02)). That is, a machine can

only process one operation at a time.

o Non—preemption constraint: an operation cannot be pre-empted out of a machine:

once it starts, it will be processed there until finished (i.e., no other operation can

take over that machine until the one already started has finished).

If all operations can be processed by any machine (although with possibly different

time costs), the FJSP instance is considered to have total flexibility. FJSP instances that

belong to this category can also be called T-FJSP. However, if some operations can only

be processed by a proper subset of all machines available, the problem instance has only

partialflexibility. An FJSP instance of this type is sometime called P-FJSP.

2.1.2 Example of FJSP instance

Table 2.1 contains an example of a 3X3 FJSP instance. Each row represents an

operation, where each table entry t(0j,x, Mm) is the runtime cost for machine Mm to

process the operation 013x.

lO

 



Table 2.1. An example of 3X3 FJSP
 

 

 

 

 

 

 

 

 

 

  

Job Machine

M1 M2 M3

1 01,1 5 6 1

01,2 3 6 2

01,3 10 6 9

2 02,1 7 8 7

02,2 7 9 5

02,3 4 6 5

3 03,1 4 6 5

03,2 6 4 5

03,3 3 9 6      
In this example, the second operation of job 1, 0, would take 6 time units to be

processed by machine 2, but only 2 time units on machine 3.

When every operation is assigned a machine and a starting time, we have a solution: a

schedule. A schedule is a valid one if it follows all the constraints specified by the FJSP

instance. That is, operations in each job do not overlap and follow the precedence

ordering (precedence constraint), every machine processes one operation at a time

(resource constraint), and every operation is processed by a machine from start to end

(non-preemption constraint). Figure 2.2 is a Gantt chart of a schedule example from

solving the F1SP instance in Table 2.1.

Machine
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Figure 2.2. A schedule solution of the problem instance from Table 2.1
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2.1.3 Job-Shop Scheduling Problem and Variants

The FJSP is a variant of a Job-shop Scheduling Problem (JSSP). In the JSSP, each

operation needs to be processed by one specified machine. That is, the routing has been

prespecified (no routing decision is needed). Various approaches to the JSSP have been

surveyed in [5] and [6]. The JSSP is known to be NP-hard [7], making exhaustive search

intractable in the general case. If all the routing decisions are made, an FJSP instance

becomes a JSSP instance.

Many scheduling concepts and techniques employed to solve JSSP instances can be

usefitl in solving FJSP instances as well. One such concept is the critical path. Derived

from the longest path when a JSSP schedule is represented with a disjunctive graph, a

critical path is a set of operations on a schedule, finishing at CM, such that any delay in

beginning any of those operations will cause a delay in completion of the final task at CM

Any operation on the schedule that can be delayed by any amount without causing a

delay in completion of the final operation is not on the critical path. From the schedule

depicted on Figure 2.2, the critical path of that schedule is {(3, 1), (3, 2), (2, 2), (2, 3)}. In

the critical path, an operation’s predecessor or successor in the path will either be (1) a

direct predecessor or direct successor in the operation’s job precedence ordering (called

job predecessor or job successor), or (2) a direct predecessor or direct successor in the

operation’s processing machine (called machine predecessor or machine successor). The

length of the critical path is the makespan of the schedule. Part of the critical path, a

critical block, is a set of continuous operations on a single machine that are included in

the critical path.

12



Since the F]SP and JSSP share scheduling tasks, JSSP solution techniques also apply

to the FJSP.

2.1.4 Objectives in Solving FJSP

The main objective of solving an FJSP instance is usually minimizing makespan

(CM). Makespan is the time measured from when the first operation in the problem

instance starts its processing to when the last operation finishes its processing.

0r, let Cj be the completion time ofjobj. Makespan is:

CM =max(C.)

lsjsJ 1

However, other objectives do exist, such as:

o Tardiness. If deadlines for jobs are given, tardiness can be used as an objective.

If the completion time is later than the deadline, tardiness is the time period

between the completion time and the deadline. If the completion time is earlier

than or at the deadline, tardiness is O. i

0 Flow time. Flow time is the time period between when a job is available to be

scheduled and the job completion time. If all jobs are available at the beginning,

flow time of a job is its completion time.

0 Total Workload. (WT) Total workload is the sum of all utilized time (workload)

of all machines in the system.

0 Critical Workload. (WM) Critical workload is the maximum machine workload

among all machines in the system. Critical workload cannot be greater than

makespan.

13



WT and WM are usually not used as single objectives in scheduling. Instead, they are

typically used in multiobjective optimization, together with makespan.

To solve an FJSP instance, there are two types of task that must be performed:

routing and scheduling. Routing, sometime called machine assignment, is the task of

assigning a machine to each operation. Scheduling, sometime called sequencing, is the

task of setting each operation’s start time, creating a valid schedule that will satisfy all

constraints.

14



2.3 Previous Approaches

2.3.1 In Routing

There are two frameworks for combining routing and scheduling together: (1) a

concurrent or integrated approach, where routing and scheduling are performed at the

same time, and (2) a hierarchical approach, where all the routing decisions are handled

first, then the scheduler processes what is now a JSSP instance.

There are a few ways to represent routing in a solution. First is afixed routing, where

machine assignment is hard-coded into the solution. This is by far the most popular way

of representing routing. Care must be taken, however, in case of partially flexible FJSP

instances, that an operation not be assigned to a machine that cannot process it. For

example, Ho and Tay’s approaches in [8] [9], and [10] utilized a bit string representation,

with just enough bits per operation that there is one bit for each machine that is valid for

that operation, preventing mis—assignment. Although not encoding the machine number

directly, Xia & Wu [11] provided a sorted machine list based on runtime for each

operation. The representation encodes which one in the list to pick. For an FJSP instance,

the same encoding results in the same machine being assigned, regardless of the situation.

However, there is an advantage in sorting machines based on runtime: by limiting the key

in the chromosome to less than the number of machines available, one can essentially

eliminate the machine-operation pairings with relatively high runtimes, heuristically

improving the resulting schedule.

The other way does not encode routing information directly at all. For example, [12]

proposed a representation that only consists of scheduling priority. Routing happens
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when an operation is about to be scheduled, assigning the machine on which the

operation can finish earliest.

Also, a heuristic can be useful to create an initial routing set for a fixed representation.

Kacem et al.’s Approach by Localization (AL) [2] routes operations one by one,

following the precedence constraints, selecting machines with least projected workload,

and uses the choice made at each step to update the information used by the next

operation, resulting in a routing with relatively balanced workload. Pezzella et a1. [13]

improved on AL by adding heuristics to determine which operation will be routed first.

Ho et al.’s CDR-Popgen [9] expanded on AL by, instead of routing one operation at a

time, routing one operation of each job instead, if one is available. Conflict is resolved by

dispatching rules.

2.3.2 In Scheduling

In JSSP and FJSP, the simplest way to schedule an operation is to utilize priority

rules: simple heuristics that base their decisions on some easily computed parameters of

the current state of the partially-solved problem. Examples of those parameters, surveyed

by Panwalkar and lskandar [14], are shown in Table 2.2. Priority rules are quite efficient,

but are very limiting when applied without other additional computations.

Table 2.2. Examples of priority rules

Rule Description

Random Select job in random order.

FIFO First in, first out.

SR Select job with shortest remaining processing time.

DD Select job with earliest deadline. I

NINQ Select job for which the next operation will use the machine

with shortest queue.
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More current research usually combines priority rules with other approaches, such as

a genetic algorithm, or combines it with a state descriptor, allowing selective deployment

of priority rules based on the current state of the system. An example of such adaptive

scheduling is described in [15]. Adaptive scheduling creates a decision system that takes

current state of the scheduling environment into account in order to select the most

appropriate dispatching rule for the time.

One of the most popular scheduling methods uses the GT algorithm, a theory-

grounded approach proposed by Giffler and Thompson [16]. It limits the number of

operations to be scheduled in each decision step to the ones that are in conflict with the

earliest finisher, in the following sense: ( 1) they are assigned the same machine as the

operation that can finish earliest, and (2) they can start before the operation that can

finish earliest finishes. The outline of the GT algorithm is depicted in Figure 2.3 below.

The GT algorithm guarantees to provide an active schedule—a schedule that cannot be

improved unless an ordering between operations is changed (or in other words, left

shifting cannot improve the schedule).

 

1. Start the set of schedulable operations, C, with the

first operation of each job.

2. Calculate the completion time of all operations in C.

Find the minimum completion time t(C) among C. Let

m be the machine where t(C) is achieved.

3. Let G denote the conflict set of operations on set C

that run on machine ml. and can start before t(C).

4. Select an operation from G to schedule.

5. Delete the chosen operation from C. Include its

immediate successor, if there is one, in C.

6. If C is empty, terminate. If not, return to step 2.   
Figure 2.3. GT Algorithm
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To use the GT algorithm, we need to find a way to decide which operation in the

critical set is to be scheduled next. This is the main focus when combining other

approaches with the GT algorithm.

The GT algorithm is not the only schedule generator, however. Ho and Tay [8] have

proposed an alternative algorithm, Makespan Computation Algorithm. Operations are

scheduled one by one, but insertion between already scheduled operations is allowed if

there is a gap large enough to fit the processing time of the current operation in question,

while not violating any constraint.

2.3.3 Local Search

Local search techniques are based on the idea that making small changes, called

iterative improvements, to the initial solution can lead to at least near-optimal solutions in

reasonable computation time. The current solution is a neighbor in the search space of the

previously explored solution.

For local search to work, we need (1) an initial solution (sometime called a seed) to

start the search process from, (2) a neighborhoodfunction, or process to produce a set of

solutions considered to be the current solution’s neighbors, and (3) selection methods to

determine the next current solution from the neighborhood. To define a neighborhood

function, we need to define what a neighbor is to a problem. Neighbors, in general terms,

are obtained by making small changes to the current solution. In other words, we need to

define what changes to the current solution will be allowed. If a neighborhood function

produces too many neighbors to be processed efficiently, we will need sampling

techniques to limit search to the most significant (or promising, in some sense) neighbors.

Neighborhood functions are usually dependent to the nature of the problem at hand. An

example of a neighborhood function in FJSP is changing the order of operations to be

processed on a given machine. Below are a few examples of local search techniques:
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o Hillclimbing, also sometime called classic iterative improvement, will select the

neighbor that makes the best improvement from the current solution. Hillclimbing

will stop when no further improvement can be made. This can, however, lead to a

local optimum, where, while it is not an optimal solution or necessarily an

acceptable solution, no improvement can found among the neighbors. Additional

mechanisms are required to escape local optima.

0 To provide a measure of protection against stopping at local optima, a threshold

accepting algorithm allows selection of a non-improvement neighbor if the

difference between the current solution and that neighbor is below a certain

threshold. In a threshold accepting algorithm, the threshold starts as a large, non-

negative number and gradually decreases to (or toward) 0 in the end. For

simulated annealing, the threshold values are — Tlnu , where T (temperature) is

reduced gradually and u is a value derived from a uniform distribution over [0, l].

o Tabu (taboo) search also allows selection of a non-improvement neighbor to

avoid local optima. Furthermore, it maintains a taboo list, a list or equivalent

memory structure that can be used to identify previously visited solutions, to

avoid traversing the same path again during a specified number of future steps.

Usually the taboo list will not contain all of the previously visited solutions, just

the most recent ones.

Brandimarte [17] has proposed a two-way hierarchical approach to F1SP. First, the

routing is performed, transforming an FJSP instance into a JSSP instance. Then, tabu

search is performed to solve the scheduling problem. The scheduler then sends critical

path information to the router, allowing the routing to focus on the machine assignment
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ofthose operations in the critical path. Hurink et a1 [18] suggested a concurrent approach,

where rerouting and swapping are moves in the same tabu search, also focusing on

operations on the critical path. Chambers and Barnes [19] incorporated a long-term

memory structure that remembers all visited solutions, keeping repetition to a minimum.

Mastrolilli and Gambardella [20] have proposed a way to limit the possibility of where

the reassigned operation can be inserted into the operation order of its new machine,

which they used in their Tabu search technique. Gao et al. [21], used GA with variable

neighborhood descent: changing the neighborhood structure by reassigning operations on

the critical path.

Local search can also be useful when combined with an evolutionary computing

approach, such as a genetic algorithm. An EC and Local search hybrid is called a

Memetic Algorithm.

2.3.4 Particle Swarm Optimization

Modeled after the swarming pattern of migratory birds, Particle Swarm Optimization

(PSO) explores a search space by making each individual in the population move toward

the best-so-far individual in some way. In each iteration, individuals try to move closer to

the best individual, exploring the search space. In order to do this, a distance function, a

measure to determine how far apart the two individuals are, is required.

Xia and Wu [11] have proposed a representation for their PSO-SA hybrid algorithm.

The chromosome contains only the routing policy. First, each operation has its own

machine index, based on runtime. Each chromosome allele corresponds to an operation,

indicating which machine it will choose based on its machine index. By disallowing large

indices, the system prevents operations from choosing machines with relatively large
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runtimes. Afier routing is done, scheduling is performed by using simulated annealing to

order operations allocated to each machine.

Grobler et al. [12] devised a chromosome without routing policy for PSO, combining

it with the GT algorithm. The chromosome contains only priorities for operations. When

an operation is picked to be scheduled, a valid machine that allows the operation to finish

processing the soonest is selected.

2.3.5 Genetic Algorithm

As mentioned in Section 2.1, to use a GA to solve a scheduling problem, you need a

representation first. Below are examples of representations used to solve FJSP, either by

GA or other EC approaches (some of which can be adopted for GA), are:

As mentioned in Section 2.1, to use a GA to solve a scheduling problem, a

representation must first be developed. Below are examples of representations used to

solve FJSP, either by GA or other EC approaches (some of which can be adopted for

GA):

0 The Parallel Jobs Representation has been proposed by Mesghouni et al. [22] A

chromosome is a J X M table. Each row represents a job, where each entry is a

pair value: {machine start_time} for each operation in that job, where machine

is the machine assignment for that operation and start_time is the time the

operation starts running on its assigned machine. Effort is needed to make sure

that the chromosome is valid (no conflicting start_time entries, for example) or

a repair will be needed. This is a direct representation.

0 An indirect representation containing a pair of chromosomes, A and B, was

proposed by Chen et al. [23]. A is a string of machine assignments (routing
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policy). B is a string of precedence orders, one for each machine, containing

operations that it will perform. Note that the B-string, if used to construct a

schedule directly, needs to be evaluated for validity and to see that it conforms

to machine assignments in the A-String and does not violate the precedence

constraints of the FJSP instance.

Zhang and Gen [24] use a multi-stage operation-based GA (moGA) to simplify

the chromosome. A moGA chromosome is basically a routing string, one locus

for each operation. A Schedule is created by scheduling operations, one by one,

to its earliest valid starting time.

The Assignment Table is proposed by Kacem et al. [2]. The assignment table is

an 0p (total number ofoperations) x M table. Each row represents an operation.

An entry corresponding to an assigned maChine will contain runtime

information (starting and completion times) of the operation. This is a direct

representation.

A string of machine indices was proposed [8] to cope with the fact that

sometimes an operation can only be run on a subset of all machines. Each entry

corresponds to an operation, where the value is the index of a list of valid

machines for that operation. The scheduling part in [8] is represented by

permutations with repetition of job numbers. [25] improved on this by adding

another string which contains precedence constraints between each pair of

operations.
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o Gao et al [26] also uses a pair of chromosomes, where the machine assignment

string is a fixed assignment similar to the A-string proposed by Chen et al [23],

with permutations with repetition used for scheduling.

Due to the relative complexity of scheduling, almost all specialized representations

required specialized crossover and mutation operators developed for the scheduling

components of the chromosome. These operators are, however, very dependent on the

representation used. Examples, along with those used in JSSP, are:

0 Enhanced order crossover is used with permutation with repetition. [26][21],

parents are first converted to conventional permutations, replacing job number

with operation indices. Then, the order crossover is performed: a part of one

parent is copied to the child, while the rest is filled with entries not found in that

part, following the ordering from another parent.

0 Time horizon exchange (THX) was proposed by Lin et al [27]. This crossover

operator works on the schedule level by randomly selecting a crossover point.

The crossover point is a certain time point in the schedule. Before the crossover

point, the child retains identical operation placements from one parent;

operations starting after the crossover point are rescheduled, using the GT

algorithm, according to the temporal relationships among operations in the other

parent.

0 Another schedule-level crossover operator, GT crossover [28], is based on the

GT algorithm, where, in each scheduling iteration, a parent is randomly selected

and the operation in the conflict set that starts earliest in the selected parent’s

schedule is chosen for scheduling next.
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2.3.6 Other EC Approaches

Artificial Immune Systems [29] mimic how immune systems in nature react to

potentially harmful substances, known as antigens. Antibodies in the immune system will

work as pattern recognizers to detect emergent patterns of antigens. Antibodies with

higher match scores will pass on to the next generation. This approach is useful in

preserving diversity of individuals by developing antibodies that will detect common

characteristics among antigens. Ong et al.’s ClonaFlex [30] imitates the vertebrate

immune system, where the most effective antibody (the schedule with the least

makespan) is cloned and mutated rapidly. Diversity is maintained by removing the best

individual to a separate (archival) population. 1

Ant Colony Algorithms, or Ant Colony Optimization (ACO) imitate how ants deploy

pheromones to establish pathways from nest to food sources. In this approach, the

problem must be defined as a graph. Multiple agents then traverse the graph, cooperating

by communication using virtual pheromones. First, agents make solutions. Then

pheromones are applied to solutions. Popular subparts of solutions get more pheromones.

However, these pheromones degrade over time except for the parts of best-so-far

solutions. This preserves common parts among best-so-far solutions. Liouane et al. [31]

used ACO in routing an F]SP instance and combined it with tabu search, assigning the

strength of pheromones to makespans achieved by tabu search using the routings

obtained by artificial ants.

Genetic Programming (GP) is similar to genetic algorithms, but individuals in this

approach represent explicit programs used to produce solutions. Individuals are usually

represented by program trees, where nodes in a tree represent program primitives. Tay
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and Ho [32] used GP to develop Composite Dispatching Rules (CDRs) for scheduling

purpose.
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2.4 FJSP Rescheduling

In a manufacturing environment, unexpected complications can occur. A machine can

break down; a new job can arrive, with or without notice; a deadline can change,

seemingly on a whim. Such changes are called disruptions. When a disruption occurs,

some changes might be required to accommodate it into the current schedule. Such a

process is called rescheduling, or schedule repair. Figure 2.4 depicts such a disrupted

schedule. Operations (2, 2) and (3, 1), whose runtimes overlap with the disruption, are

directly affected by the disruption. However, since other operations might be job

successors or machine successors of the affected operations, their scheduling may be

subjected to change as well.

Machine '

 

 

 

Figure 2.4. A Schedule affected by a disruption

In this case, the non-preemption constraint of F]SP is relaxed, since machines cannot

process operations when they break down. Two different assumptions can be made

regarding to disrupted operations:

1. They are resumable. They can resume their processings after the disruption is

over.

2. They are not resumable. Their progresses are lost and they must restart anew.
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Various work has been published on rescheduling in JSSP and its related

manufacturing scheduling problems. Examples of such approaches, some of which were

surveyed by Vieira et al. [33], are:

Aflected Operations. Affected operations are identified by first putting operations

directly affected by the disruption into the set. Right-shifting is performed on the

first operation, and then the algorithm checks (1) its direct job successor, and (2)

its direct machine successor. If any of the two operations has an earlier start time

than the new finish time, it is affected by the disruption and will be put into the set

with updated starting and finishing times. The process is repeated recursively until

no new operation is added to the set. Subramaniarn and Singh have added

preprocessing to adapt AOR to other disruptions [34], such as new job arrivals or

changes in finishing times in scheduled operations; since those changes will

eventually result in changes of currently scheduled operations’ finishing times,

they can repaired by propagating changes through the schedule using AOR.

Figure 2.5 depicts the result of right-shifiing from the disrupted schedule in

Figure 2.4. Note that operations (2, 2), (2, 3), (3, 1), (3, 2), and (3, 3) are all

affected, and have to be right-shifted, even though only operations (2, 2) and (3,

1) are directly affected.

Machine

 

 

 

 

 

 

Figure 2.5. The Schedule after right-shifting
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0 Partial Rescheduling. Only the affected operations are rescheduled. Lin et al. [27],

proposed GT Rescheduling to handle new job arrival. When a job arrives, the

schedule stops at arrival time. The operations that have not started at that time,

along with operations for the new job, are rescheduled using the GT algorithm. At

the conflict resolution phase, the algorithm will either pick an operation from the

new job, or follow the priorities of the old schedule.

0 Total Rescheduling. The entire schedule is rebuilt. In EC, a new evolution cycle

can take place for the affected schedule. This approach is more likely to find an

optimal repaired schedule, but at higher computational cost. Of course, in real-

world application, such an approach might even halt progress until a new

schedule is found.

Unfortunately, only two previous works regarding scheduling in dynamic FJSP have

been found. Gholami et al. [3 5] suggested using right-shifting with a FJSP representation

proposed by Gao et al. [21]. Meanwhile, Grobler et al. [12] adapted PSO schemes

utilized with static FJSP. Both approaches assumed disrupted operations are resumable.

That is, affected operations can continue their processing after the disruption is over,

without having to restart anew. Gao et 01 applies their approach in [26] to deal with FJSP

with scheduled maintenance [36]. Maintenance tasks must take place for a predefined

time units within the pre-specified time windows, but they can be shifted within that time

windows.
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2. 5 Multiobjective Optimization

Sometime, there are needs of optimizing a solution not against just one objective

function, but multiple ones, ofien of conflicting priority. A few ways to combine

objectives together so that an individual can be ranked are described below:

First is aggregation, combining all objectives into a single weighted sum. Gao et al.

[26] and Xia and Wu [1 1] used weighted objectives to combine normalized values of

makespan, total workload, and critical workload together, favoring them in that order.

Ishibuchi et al. [37] used randomized weights to combine objectives. Kacem et al. [38]

used fuzzy logic to calibrate weights in dealing with the same set of objectives.

The next approach is population based. In each generation, subpopulations are created,

one optimized for each objective; then the populations are recombined. Schaffer’s Vector

Evaluated Genetic Algorithms (VEGA) [39] is such an approach.

To understand the next approach, first we need to understand the concept of

domination in the context of multiobjective optimization. An individual dominates

another individual by (1) performing at least as well on every objective, and (2)

performing better on at least one objective. This notion is used in defining Pareto sets—

sets of solutions in which no solution dominates another.

A popular Pareto-based approach is the Non-dominated Sorting GA 11 (NSGA-II) [3].

NSGA-II works by sorting individuals into multiple non-dominated fronts. The first front

is the Pareto front, a group of individuals not dominated by any individual in the

population. The second front is a group of individuals not dominated by any individual in

the population gm those in the Pareto front, and so on. The first non-dominated front will

be chosen first to move on to the next generation, then the second front and so on. Once
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the remaining empty population quota is smaller than the size of the non-dominated front

currently being considered, neighborhood distance is used, favoring the ones located in

the more sparse parts of the front. The Strength Pareto Evolutionary Algorithm (SPEA)

[40] is another Pareto-based approach. SPEA and its successor, SPEA2 [41], maintain a

library of non-dominated individuals for the purpose of breeding. The library is updated

every generation, adding new non-dominated individuals and removing dominated

members of the library. If the capacity of the library is exceeded, a density function is

used to assist in removing individuals in a way that maintains diversity. Ho and Tay used

NSGA-II’s fast ranking system to determine the best individuals to perform local search

on [10].
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2.6 Summary

Although there has been a good deal of research on the FJSP, most focus has been on

the static problem, optimizing single objectives such as makespan. There has been very

little work on FJSP rescheduling. Hence, crurent approaches in FJSP do not seem to

support rescheduling as is. Some of the obstacles are:

1. Routing components of the representation are usually fixed. For the lifetime of an

individual, each operation will be assigned a specific machine. This tends to

function well enough in static environments, but in case of rescheduling, a fixed

routing can be a hindrance. A routing that can adapt in case of unexpected change

in the system will be more useful.

Although many novel approaches in routing exist, such as Approach by

Localization (AL) or Composite Dispatching Rules (CDR), most approaches are

only used to enhance the quality of a fixed routing of an initial population in a

static problem. Heuristics like these can be useful for selecting a more suitable

machine for an affected operation in the case of rescheduling. It is unlikely that

there exists a single heuristic that performs well in every situation. A set of

condition-action aggregates similar to those of adaptive scheduling [15] should be

beneficial to rescheduling throughput.

. Currently, those few works on FJSP that handle disruptions ([35] and [12]) use

only right-shifting to deal with the disruptions. Although simple to implement, the

performance of right-shifting is at the mercy of the length of the disruption. In

order to avoid that, a schedule repair mechanism that allows reassignment of

affected operations will be required.
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CHAPTER 3 ’

ADAPTIVE REPRESENTATION (AdRep)

As seen from the research mentioned in the previous chapter, routing decisions are

mostly done before any scheduling starts. We believe that by delaying routing decisions

until necessary and providing choices of basic heuristics to guide the routing process, we

can improve machine assignments, increasing the quality of solutions as a whole. Also,

since the AdRep representation does not bind an operation to a machine, it can also be

used as a blueprint for rescheduling in the case of machines becoming unavailable due to

disruption. In this chapter, the AdRep representation is described in Section 3.1. In

Section 3.2, the rescheduling process using AdRep representation is discussed. Section

3.3 illustrates how AdRep works with a Genetic Algorithm.

3.1. Representation

Most work on using Evolutionary Computing to solve FJSP performs routing

separately from scheduling, performing routing of all operations first, transforming the

FJSP instance into a JSSP instance, and then performing JSSP scheduling. However,

there may be some advantages in delaying the routing decisions as long as possible. If we

use the GT algorithm with our approach, there is no need to designate a machine for an

operation until that operation is being considered for scheduling, which is the time it is

put into the schedulable operations set for the first time.

The proposed representation consists of 2 integer vectors. The first vector contains

routing policy. The second vector contains scheduling policy. This representation is an



indirect one. It will be used by a GT algorithm to create a schedule. Figure 3.1 illustrates

the chromosome of this representation.
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Figure 3.1. The AdRep chromosome

Since there is one routing policy entry for each operation, the length of the routing

policy component of the chromosome is equal to the number of operations in the FJSP

instance (n). The user specifies how many schedule aggregates will be in a chromosome

(N). Usually, the length of the routing component is considerably greater than that of the

scheduling component.

In the modified GT algorithm, machine assignment for an operation is delayed until

that operation is ready to be scheduled, i.e., being put into the schedulable set. Then, a

machine will be selected based on the routing rule indicated in the corresponding entry in

the routing policy. Then, after the operation in the schedulable that can finish earliest is

located, a conflict set is created. The conflict set consists of operations that (1) currently

belong in the schedulable set, (2) are assigned the same machine as the earliest finisher,

and (3) can start before the earliest finisher is projected to finish. One of the operations
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from the conflict set will be selected to be scheduled. To do that, the adaptive rule

aggregates are checked, from lefi to right. If the state condition indicated by the

aggregate’s descriptor and threshold value is met, the corresponding priority scheduling

rule is used. The last entry of the scheduling policy, RN+1, indicates a “catchall”

scheduling rule that will be used when the conditions in no earlier aggregates are met.

Although all alleles are integers, the actual threshold values are real numbers in the

range of [0, 1]. Therefore, a resolution must be set beforehand. Maximum allele value

will be —1—_. For example, if the resolution is set to 0.1, the threshold allele value

resolution

range will be [0, 10], and a threshold allele value of 7 means that the threshold value is

0.7.

3.1.1. Routing

The routing policy vector consists of machine selection (routing) rules, one entry for

each operation. Each entry utilizes two routing rules—the second rule (r;,), or tiebreaking

rule, is used if there is a tie from the first rule. By utilizing two routing rules per

operation instead ofjust one, or a more complex routing decision mechanism, we hope to

achieve more powerful search, while not overfitting the routing decision. Table 3.]

contains the routing rules used in this new representation.

Table 3.1. Routing rules

Routing Rule Description

Earliest Finish (EF) Select the machine that will allow the operation to

finish earliest.

Smallest Runtime (SR) Select the machine with smallest runtime.

Smallest Workload (SW) Select the machine with smallest workload.

Least Projected Crowding Select the machine with least Projected Crowding

(LPC) value
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The BF rule is inspired by the GT algorithm, but will cover all possible machine

choices. The SR rules are among the machine selection rules utilized by Subramaniam et

al. in [42]. SW is an attempt to incorporate optimizing WM and WT into machine

selection. The LPC rule is an attempt to incorporate global information into the routing

process. LPC works by comparing values in entries of the Projected Crowding Vector

(PCV). There is one entry in the PCV entry for each machine. At the beginning of the

scheduling process, the PCV entry for a machine is determined by counting how many

operations have shortest runtimes on that machine. Note that an operation can have more

than one machine that provides the least runtime, resulting in multiple PCV entry updates.

Once an operation is scheduled, crowding information is updated to reflect the actual

schedule being constructed, removing entries in the machines the operation has least

runtime on, but is not scheduled in, and adding itself into the PCV entry of the machine it

is scheduled to run on. By choosing a machine with a smaller projected crowding value,

workload is expected to be distributed more evenly. At the end of the evaluation, PCV

resets itself to its initial value, ready for the next evaluation. Figure 3.2 shows how PCV

updates itself.
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Figure 3.2. How Projected Crowding Vector works

Since our routing policy is a set of routing rules, not direct machine assignments, as

long as there is a way to exclude invalid machines from routings, AdRep will be able to

handle P-FJSP instances without producing any invalid chromosomes.

Note that, since the routing component makes up the majority of the chromosome, the

number of routing rules available can greatly affect search space, and convergence might

suffer as a result. It might be necessary to limit some pairings of the routing rules to limit ‘

dimensionality somewhat.
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3.1.2. Scheduling

To translate an AdRep chromosome into a F]SP schedule, we modified Giffler and

Thompson’s GT algorithm [16] by adding a machine assignment component to it. We

call this modified algorithm the routing GT algorithm. Figure 3.3 illustrates how the

routing GT algorithm works. Step 2 is the routing component. Note that, afier an

operation is scheduled, step 2 will re-update machine assignment, if the current selection

is no longer the best choice according to the corresponding routing rules.

 

Step 1) Start the set of schedulable operations, c with the first

operation from each job.

Step 2) Assign machines to operations in c according to the

applicable routing policv entries.

Step 3) Calculate completion times for all operatiOns in c. Find the

earliest finisher. Let m * be the machine the earliest finisher

is assigned to.

Step 4) Create the conflict set g, from every machine in c that is

assigned to m* and can start before the earliest finisher can

finish its runtime.

Step 5) Use condition-rule scheduling aggregates to select an

operation in 2. Schedule that operation and delete it from c.

Add its job successor. if one existsLto c.

Step 6) If c is empty, terminate. If not, return to step 2   
Figure 3.3. Routing GT Algorithm

At step 5 of the routing GT algorithm, to choose an operation in the conflict set to be

scheduled, AdRep scheduling, a modified version of adaptive scheduling [15], utilizes the

scheduling aggregates to make the decision. It starts by consulting the leftmost

scheduling aggregate. If the condition specified by the state descriptor and the threshold
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value of the first scheduling aggregate is met, the scheduling rule of that aggregate is

used to determine the operation to be scheduled. If not, the scheduler moves on to the

next aggregate. The catchall rule (RNH) at the last entry of the scheduling policy is used

if none of the conditions specified in the former aggregates are met. Figure 3.4 illustrates

how the scheduling process works.
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Figure 3.4. Order of execution of scheduling aggregates

State condition descriptors used in this dissertation are listed in Table 3.2. The

scheduling dispatching rules used in this dissertation are listed in Table 3.3. Each

descriptor is followed by a suffix —LE or —G., indicating whether to execute the rule

when the condition is less-than-or-equal (-LE) or greater (-G) than the threshold value.

Table 3.2. State descriptors
 

 

 

 

 

   

State Descriptor Description

RCW Relative current machine workload

RTW Relative average machine workload

CON Machine contention

COM Current Completion
 

RCW checks how well the machine has been utilized so far. RTW examines the

utilization rate of all machines in the system. Machine Contention, which counts how

many operations are assigned to it at this time, indicates the current competition for that

machine. Completion rate checks the percentage of scheduled operation compared to the
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total number of operations, indicating how much work relating to all available work has

been done so far and how close it is to being finished.

Table 3.3. Scheduling priority rules
 

 

 

 

 

 

 

 

 

 

 

    

Priority Rule Description

COp Smallest current-runtime-to-shortest-runtime

ratio

EFS Earliest finishing operation

LFrac Largest fraction of work done by the

operation for its job

SFrac Smallest fraction of work done by the

operation for its job

LR Largest remaining job runtime (summing

shortest possible times for each operation)

SR Smallest remaining job runtime (as above)

LRA Largest remaining job runtime, after current

operation is scheduled

SRA Smallest remaining job runtime, after current

operation is scheduled

LPT Largest runtime among operations available

for scheduling now

SPT Smallest runtime among operations available

for scheduling now

OPT Operation with current runtime closest,

proportion-wise, to its shortest value
 

3.1.3. Duplication Count

During the process of development, we noticed that AdRep suffered greatly from

false competition, finding multiple distinct chromosomes that actually represent identical

solutions (schedules). In order to alleviate this, a schedule-counter map was introduced to

monitor the population during the evolutionary process. If an individual that produces the

same schedule and fitness values as another already discovered is encountered, the

counter for that schedule of that fitness value is increased. This counter is then used to

reward individuals that produce novel schedules and thereby to attempt to reduce false

competition. discouraging a schedule represented by multiple chromosomes from



crowding out other schedules in the population. Fitness values are also remembered in

solving the dynamic FJSP, where different AdRep individuals might create identical

initial schedules, but differ on rescheduling, resulting in different repaired makespan

fitness values. This mechanism is similar to that of global memory in [l 9].

3.1.4. Chromosome Example

Here, in Figure 3.5, is a sample chromosome, where n = 3 and N = 1:

  

 

EFILPC SRIEF SRISWI ICOM-EL 0.5 EFS ISPTI
     

Figure 3.5. an example chromosome

According to the first entry of the routing policy component of the chromosome, the

first operation selects a machine by choosing the one that allows it to finish the soonest; if

there is more than one such machine, the one with the least PCV value is chosen. 0n the

other hand, the second operation, which corresponds to the second entry, favors the

machine with the least runtime, breaking ties using the earlier finishing time. The last

operation also prefers the machine with the shortest runtime. However, it will break a tie

using a workload criterion, picking the one with the least workload if there is more than

one machine with smallest runtime.

0n the scheduling side, if there is more than one operation in the conflict set, the

Routing GT algorithm first looks at completeness—how many operations have been

scheduled compared to the total number of operations. If completeness is less than or

equal to 0.5—not more than 50% of total operations have been scheduled yet—it selects

the operation with earliest finishing time to be scheduled. If not, and there is no more

scheduling aggregate, the catchall rule is used. In this case. it is the SPT rule. The

operation with the smallest runtime is selected.
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3. 2. Rescheduling

A machine-unavailability disruption (henceforth will be referred just as “disruption”)

is a period of time when a certain machine is not available to process operations. It can

come from many causes: machine breakdown, sudden operator sickness, or maintenance.

In the scope of this dissertation, we will focus on this type of disruption. When a

disruption occur, operations currently scheduled on the disrupted machine will have to

either (1) delay their processing until the disruption is over, or (2) be reassigned to

another machine.

Sometimes, during the course of a manufacturing day, there will be more than one

disruption. A disruption scenario is a set of disruptions that occur in a single evaluation.

Each scenario is composed of possibly multiple disruption events, each of which is a set

of disruptions that start at the same time on different machines.

 

M2

M, VA

—l-—-I-2—|—-l-—|-—I6-—I—-I

Figure 3.6. A disruption scenario

 

 

Figure 3.6 depicts a disruption scenario. Here. there are two disruption events. one at

time 2, where both MI and M2 break down. Note that both will not become operational
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again at the same time. M] will come back at time 4, while M; will work again at time 5.

The second event occurs at time 6, where M, breaks down again for 1 time unit.

When a disruption occurs, a rescheduling process is used to repair the schedule. The

repaired schedule must avoid the disruption, still following all constraints, and

minimizing repaired makespan. However, we want a scheduler that performs well when

there is no disruption, as well. Therefore, we should also consider initial makespan,

makespan from a disruption-free schedule. A good scheduler should produce good values

for both objectives.

3.2.1. Disruption-prone FJSP

In the scope of this dissertation, the following assumptions have been made about the

nature of disruptions:

- The disruption pattern is unknown to the AdRep rescheduler. Only reactive repair

will be performed to cope with the disruptions.

o The end time of a disruption is known at the time it starts. The rescheduler can

plan to place operations after the disruption’s end time, with no risk that the

disruption will continue past that time. There are no guarantees that the operation

will be safe from a further disruption, however.

0 Operations are not resumable. If an operation is affected by a disruption, it must

restart its processing anew. There will be no partial completion gained from the

processing interrupted by the disruption. However, the job will not lose work

completed by the disrupted operation’s predecessors. Only the work of the

affected Operation needs to be redone from its start.



3.2.2. AdRep and Rescheduling

The AdRep rescheduler will handle one disruption event: a collection of disruptions

that start at the same time. If another disruption event occurs, the rescheduler needs to be

called again. Figure 3.7 shows how the rescheduler works against a scenario.
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Figure 3.7. Rescheduling a disruption scenario

An operation is directly affected by the disruption if the following conditions are met:

1) It shares a machine with the disruption.

2) There is an overlap between the operation’s runtime and the disruption. If the

operation starts before the disruption ends @ ends after the disruption starts,

there is an overlap.

Two types of operations will be rescheduled: (11) those that are directly affected by the

disruption(s), and (2) those that start at the same time as the disruption event. or after that.

This will allow maximum flexibility in terms of rerouting. We use the Routing GT again

to reroute and reschedule operations.



Figure 3.8 is an example of rescheduling in response to one disruption event.
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Figure 3.8. Rescheduling against an event

Note that, since there is a change in the current schedule environment. routing policy

may assign an operation to a different machine. Also, the order of operations in a

machine might change. This allows AdRep to adapt to disruption. preserving makespan

as best as it can.
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3.3. Using AdRep with a Genetic Algorithm

To use the AdRep representation with a Genetic Algorithm, we must first decide the

operators to employ with the GA system. Figure 3.9 illustrates an outline of our

framework.

 

Step 0) Setup. Parameters and data structures are initialized.

Step 1) Initialization. lnitial population is generated randomly.

Step 2) Evaluation. Evaluation operator determines fitness of an individual.

For the static case, we used the Routing Giffler-Thompson (GT)

algorithm, discussed earlier, to create a schedule from a chromosome.

For the dynamic case, Routing GT might be called multiple times to

repair the schedule. All objectives involved will be discussed below.

Step 3) Selection. Individuals are selected for mating. Since NSGA-Il is

already an elitist replacement strategy, we use random selection to

alleviate premature convergence.

Step 4) Crossover. Two individuals are recombined together, creating offspring

that inherit some traits from each parent. We use two-point crossover.

Step 5) Mutation. Small changes are applied to individuals, exploring the

search space. Details will be discussed below.

Step 6) Local Search. Iterative search is performed on selected individuals to

seek better solution.

I Step 7) Newly created individuals are evaluated.

Step 8) Replacement Strategy decides which individuals will pass on to the

next generation. We use the Non-dominated Sorting GA 11 (NSGA-ll)

[3], which was discussed earlier.

Step 9) Migration. Some individuals from one subpopulation are randomly

selected to be relocated to another subpopulation.

Step I0) If the Termination Criterion is met, the GA run is stopped. 1f the max

generation has been reached, the program terminates. If not, the

program returns to Step 3.  
 

Figure 3.9. The GA framework
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Since our replacement strategy, NSGA-Il, is inherently elitist, we use random

selection to choose individuals for crossover and mutation, in order to maintain some

diversity in the population.

AdRep representation is, in essence, an array of integers. The initial pop 1, 3 ion can be

generated randomly without the fear of illegal chromosomes, since all values in any allele

have valid translations.

3.3.1. Crossover Operation

We use an adapted two-point crossover with the AdRep chromosome, applying

crossover independently to each of the two parts of the chromosome. For the routing

vector, it can be used without any modification. For the scheduling vector, however, care

must be taken so that an adaptive rule aggregate is not divided by crossover. We should

treat an aggregate as an atomic locus. Figure 3.10 shows an example of such crossover.
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. r3r2 “1'2 -EL

. 1”“ RCW 0.6
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Figure 3.10. AdRep Crossover
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3.3.2. Mutation Operation

For the routing policy vector, uniform mutation can be used simply to change the

machine assignment of an operation. Mutating a routing allele changes the routing rule

the corresponding operation will use to select a machine. For the adaptive scheduling

policy, a few different mutations are used.

0 The order between rule aggregates can be swapped, changing priority between

them.

0 Individual entries in an aggregate can also be changed. Since the threshold values

tend to be represented with more resolution (higher cardinality of alleles) than the

condition descriptor and scheduling rule, care must be taken that the threshold

values be explored as evenly as the other parts of the scheduling aggregate.

A list of mutation operators is shown in Table 3.4.

Table 3.4. List of Mutation Operators
 

 

 

 

 

 

   

Mutation Operator Description

Machine Reassign Change values in routing policy vector.

Aggregate Swap Exchange positions of two scheduling aggregates.

Descriptor Change Change the descriptor of an aggregate.

Value Change Change the threshold of an aggregate.

Priority Rule Change Change priority rule of an aggregate.
 

3.3.3. Replacement Scheme — from NSGA—II

To determine which individuals will pass on to the next generation, we use the non-

dominated sorting rule from the Non-dominated Sorting GA 11 (NSGA-Il) [3] , a Pareto-

front optimization replacement method. Non-dominated sorting works by sorting

individuals into multiple non-dominated fronts. The first front is the Pareto front. a group

of individuals not dominated by any individual in the population. The second front is a
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group of individuals not dominated by any individuals in the population gft_er those in the

Pareto front are excluded, and so on. The first non-dominated front is chosen first to

move on to the next generation, then the second front and so on. Once the empty space

remaining in the next-generation population is smaller than the size of the non-dominated

front currently being considered, neighborhood distance is used, favoring individuals

located in the more sparsely populated parts of the front in determining which solutions

survive.

3.3.4. Local Search

A local search technique has been devised to assist AdRep in covering the search

space. We use a simple hillclimbing algorithm to make a series of small changes to the

selected individual. The local search stops when no more improvement is being made or

when the specified maximum number of steps, also known as maximum local search

depth, has been reached.

Although local search can be useful, it can be expensive, since each neighborhood

lookup in AdRep requires a new evaluation. Also. care must be taken to avoid premature

convergence. A parameter (PLocal) will limit the probability that a selected individual is

used as the starting point for a local search.

3.3.5. Objective Functions

In static, disruption-free cases. we will use three main objectives: (1) makespan, (2)

maximum machine workload, and (3) total machine workload. Two helper objectives are

also used: duplication counts. as mentioned in Section 3.1.3 and Guided Workload

Distribution (GWD).

48



GWD rewards a schedule that distributes workloads more evenly among

machines. However, only rewarding an even distribution will not guarantee a good

schedule. Instead, GWD is based on the following formula:

GWD=CM2 +WT +WM2 +5
workload

where “workload is the standard deviation of workloads among machines. This

way, GWD will be bound by all three main objectives, eliminating individuals that

distribute workload evenly among machines but do not perform as well in terms of the

main objectives.

For disruption-prone dynamic cases, two objectives will be the main foci: makespan

(CM) and maximum repaired makespan (CRMax)- Average repaired makespan (CRAvg)

and duplication count will be used as helper objectives. The AdRep rescheduler will be

tested against not one scenario at a time, but a disruption scenario set which contains a

number of disruption scenarios. The greatest makespan from a repaired schedule caused

by a scenario in the set will be used as the maximum repaired schedule makespan. The

mean of all makespans from repaired schedules will be used as the average repaired

makespan. Average repaired makespan is used as a helper objective to reward a

rescheduler that can repair many schedules well, even if there are a few schedules it does

not handle as well, resulting in high maximum repaired makespans. Figure 3.11 shows

how AdRep interacts with disruption scenarios in the dynamic case.
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Figure 3.11. How AdRep derives fitness values in dynamic cases

3.3.6 The AdRep Framework

Combining everything together, we have an AdRep framework, as depicted in Figure

3.12 below:
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Figure 3.12. The AdRep framework



First, the AdRep scheduler (and rescheduler) reads in problem instances,

including an FJSP instance, and, in case of dynamic instances, a set of disruption

scenarios. Information from the problem instance is used to start the GA framework,

which sends individuals to be evaluated. The duplication counter serves as a long-term

memory which, when presented with a schedule, along with the schedule’s fitness values

(which might not be the same for identical schedules in the dynamic case), returns the

duplication count, which is used to discourage repetition.

51



CHAPTER 4

PERFORMANCE ANALYSIS—STATIC FLEXIBLE J0B-

SHOP SCHEDULING PROBLEMS

In this chapter, we will test our AdRep representation on published FJSP instances.

The results will be compared with published Pareto fronts. We then will discuss the result

in terms of effectiveness—whether the published Pareto fronts are matched or

exceeded—and in term of efficiency—how efficiently AdRep performed.

In addition to the usual FJSP assumptions, the following assumptions are made in the

problem instances that are used in this experiment:

0 All machines are available at time 0.

o All jobs are released to be scheduled at time 0.

0 There is no cost in moving jobs from one machine to another. The only cost that

is incurred is the runtime cost from scheduling operations on machines.

Section 4.1 depicts benchmark FJSP instances that were used in the experiments,

along with their published best solutions (points on their Pareto fronts). Section 4.2

discusses the parameters and design of experiments. The results of experiments are

presented in Section 4.3. Section 4.4 concludes the chapter and discusses the results.



4.1. Benchmark Problem Instances

For the static model, we will use 3 FJSP instances reported in various publications.

The first is an 8 X 8 FJSP instance with partial flexibility. [2] In this instance, there are 8

jobs with 27 operations. This instance is illustrated by Table 4.1, below. An ‘X’ entry

indicates that the operation is not compatible with that particular machine and cannot be

scheduled there.

Table 4.1 An 8 X 8 FJSP instance with rtial

M1 M2 M3 M4

5 3 5

10 X

X 10

5 7

X 8
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The second is a 10 X 10 F1SP instance with full flexibility. [2] In this instance. there

are 10 jobs with 30 Operations. This instance is illustrated by Table 4.2.
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Table 4.2 A 10 X 10 FJSP instance with total flexib
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The third is a 15 X 10 FJSP instance with total flexibility. [38] In this instance, there

are 15 jobs with 56 operations. This instance is illustrated by Table 4.3 on the following

page.
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Table 4.3 A 15 X 10 FJSP instance with total flexi 
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Table 4.3. (cont’d)
 

 

 

 

 

 

 

 

     

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Ml

J14 014,1 2 3 5 4 6 5 4 85 4 5

014,2 6 2 4 5 8 6 5 4 2 6

014,3 3 25 4 8 5 6 3 2 5 4

014,4 8 5 6 4 2 3 6 8 5 4

J15 015,1 2 5 6 8 5 6 3 2 5 4

015,2 5 6 2 5 4 2 5 3 2 5

015,3 4 5 2 3 5 2 8 4 7 5

015,4 6 2 ll 14 2 3 6 5 4 8          

4.1.1. Pareto fronts of benchmark problem instances

The Pareto fronts of all three instances, established by [26] and [10], are shown in

Table 4.4. Each row is a set of objective values obtained from a solution. Our AdRep

schedulers are expected to produce all Pareto-optimal results in the Pareto set for a

problem instance in each run. Prior to this work, only [10] has captured the whole Pareto

front, but did not report the frequency of capture.

Table 4.4. Pareto Fronts of Benchmark Problem Instances

Problem Solutions

Instance C w w

8x8 12 77

12 75

1 1 77

13 73

5 43

6 42

5 42

7 41

10 93

11 91 
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4. 2. Design ofExperiments

AdRep is implemented in the Open Beagle framework (http://beagle.gel.ulaval.ca/).

Open Beagle is an open-source multi-platform object-oriented C++ framework for

Evolutionary Computation (EC). With Open Beagle, the user builds an EC system by

creating an XML structure, calling on provided EC operators. The user only needs to

implement primarily components that are _ not widely in use, usually including the

evaluation operator. Open Beagle is compliant with the C++ ANSI/ISO 3 standard. As

long as the user-created components are also compliant with the C++ ANSI/ISO 3

standard, the framework can used across platforms. The experiments in this chapter and

the next chapter were run in a Linux environment. More information on the Open Beagle

framework can be found in [43].

Table 4.5. Experiment Parameters
 

 

 

   
 

 

 

 

 

 

  
 

 

 

  

Problem Description 8X8 10X10 15X10

Populations Size of population 3 X 200 3 X 800 3 X 800

Max Maximum generation termination criteria 100 1,000 2,000

Generation

N Number of scheduling aggregates 7

Resolution Resolution of threshold allele 0.1

pals, Probability of crossover 0.5 0.8

pmd Probability that an individual will be mutated 0.3 0.4

pm", Probability that a mutation will occur to a 0.4 0.1

routing allele

pag, Probability that a mutation will occur to a 0.5 0.3

scheduling aggregate

p,..,,p Probability that a scheduling aggregate will be 0.3 0.4

swapped

panghold Probability that threshold value allele will be 0.7

mutated

nmu, Number ofindividuals that will migrate l

gerfl, Interval of migration 10

pm“. Probability that an individual will be 0.0 0.001

performed local search

dLm. Local search depth 0 50    
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Table 4.5 contains the experiment’s parameters. These parameters are derived from

preliminary experiments that showed the most reliable results. Each problem instance

was run 100 times. The number of generations for the AdRep scheduler to reach the best

published makespan and number of generatiOns to establish the published Pareto front are

observed. The run terminates when the maximum generation is reached.

Since dimensionality of routing policy can greatly affect the performance of the

AdRep scheduler and rescheduler, we limited the rule pairs to 8 of a possible 12,

eliminating the pairs with greatest similarity (runtime and runtime, workload and

workload). Table 4.6 contains the pairings that were used in this chapter and the next.

Descriptions of the routing rules can be found in Table 3.1.

Table 4.6. Routin Rule pairs used
 

 

 

 

 

 

 

 

 

Initial Rule Tiebreaking Rule

EF SW

EF LPC

SR SW

SR LPC

SW EF

SW SR

LPC EF

LPC SR    
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4. 3. Results

For problem instances 8X8 and 15X10, all experiment runs reached the published

Pareto front. For the 10X10 instance, 94 out of 100 runs reached the published Pareto

front, and the other six failed to find one point on the front: an individual with (CM=7,

WM=5, WT=43). The results are recorded in Table 4.7. It is noteworthy that AdRep was

successful in establishing the entire Pareto Front in 98% of all runs made.

Table 4.7. Experiment Results
 

 

 

 

 

     

Problem Generations to Pareto Front

Instance Minimum Maximum Mean Std

8X8 5 57 21.63 9.03

10X10 23 857 240.32 176.5

15X 10 100 1923 683.24 418.44
 

Figure 4.1 contains a schedule derived from an AdRep solution for the 15X10

problem instance. It has CM = 1], WM = 11 and WT = 91, which make it a member of

the published Pareto front.
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Figure 4.1. A solution for the 15X10 problem

Although the AdRep scheduler did reach the published Pareto front in almost all runs,

there is some concern about its scalability. because of the procedures used to obtain this

level of robustness of search. It took only about 8 seconds to finish an 8X8 run, however,

it took approximately 8 minutes and 32 minutes to finish 10X10 and 15X10 runs,

respectively. Even taking into account population size and maximum number of

generations, there is still apparently exponential growth in required runtime.
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4. 4. Relation to size ofpopulations

The next experiment measures the effect the population size has on convergence to

the Pareto front. Two new sets of experiments were performed on the 15 X 10 instance. We

used the parameters as in Section 4.2, but with a few changes. First, the subpopulation

size was changed. The first set consisted of three subpopulations of 400 individuals each.

The subpopulation size is 1,200 for the second set. Also, for the 3X400 trials, maximum

generation was set to 4,000. The results, as reported in Table 4.8, are compared below

with those of the 800 subpopulation size reported in Section 4.3.

Table 4.8. Experiment Results for 15X10 FJSP instance with various pofllation size
 

 

 

 

   

Population Number of Mean Generations Standard

successful trials to Pareto Front Deviation

3 X400 98 1,408.27 825.92

3X800 100 683.34 418.44

3Xl,200 100 510.19 278.61    

Two of the trials with the 3X400 subpopulations reached maximum generation before

finding the last solution point on the published Pareto front. This behavior has been

observed before when the population is not large enough for AdRep to converge reliably

to the front. The Wilcoxon Rank-sum test between the 3X800 set and the 3X1200 set

yielded a two-sided P-value of 0.0053. Therefore, the numbers of generations required

for these two sets to reach the Pareto front are statistically significantly different.

However, each generation with a population size of 3X1200 performs 50% more

evaluations than does a generation with a population size of 3X800. Therefore, in terms

of number of evaluations performed, the population size of 3X800 requires fewer

evaluations to reach the Pareto front than does the population size of 3X 1200. One can

see that, although the variability in number of generations required with a population size
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of 3X800 is about 30% higher, in terms of evaluations, the variability is not nearly so

high. The mean number of evaluations required to reach the front is about 10% lower for

the case of 3X800, and it is still able to find the Pareto front in 100% of the cases tested.

Therefore, depending on the parallelization scheme used (the number of evaluations that

are done in parallel), the best choice for population size may change. For example, if all

evaluations are run on a serial machine, or one population is run on each processor, then

the population size of 3X800 will generally produce the Pareto front sooner. However, in

a massively parallel environment in which each individual to be evaluated in each

population is sent to a separate processor for simultaneous evaluation, and assuming

synchronization at the end of each generation, the population size of 3 X 1200 will produce

the Pareto front sooner.
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4. 5. Summary

In this chapter, we applied our scheduling approach, using an adaptive representation,

to static FJSP instances. Our approach, AdRep, uses just-in-time routing heuristics with

adaptive scheduling to take into account the current state of the scheduling environment,

in order to make better routing and scheduling decisions.

We tested our approach against three published FJSP instances, with the goal of

reaching the published Pareto front of each problem instance, proving the ability of our

approach to discover the best-so-far solutions of these problem instances. AdRep

succeeded in reaching the target Pareto fronts in 98% of all runs (100% for each of two

cases, and 94% for the other). However, it suffered somewhat in terms of scalability. As

the size of problem increased, the resource and runtime requirements increased at a faster

rate.

In Section 4.4, we tested AdRep with various population sizes, one larger than the

former test, the other smaller. We found two instances in which the trial with the smaller

population size did not converge to the known Pareto front. Although the larger

population size did decrease generations required to converge, the number of evaluations

required for each generation increased. Therefore, it is evident that, depending on the

level and type of parallelization available for the problem, the ideal population size may

change.

AdRep, although functional in creating schedules in a static environment, is mainly

designed for rescheduling. In the next chapter, we will test the ability of AdRep to repair

schedules with machine-unavailability disruptions.



CHAPTER 5

PERFORMANCE ANALYSIS —DISRUPTION-PRONE

FLEXIBLE JOB-SHOP SCHEDULING PROBLEMS

In this chapter, the effectiveness of AdRep in regards to rescheduling will be tested.

Two benchmark algorithms will be employed for comparison: a right-shift rescheduler

and a prescheduler, which rebuilds schedules from the start at each disruption scenario.

Section 5.1 contains the design of experiments. Section 5.2 discusses the test cases

used in the experiments. Section 5.3 describes the two benchmark algorithms. The results

of the experiments are recorded in Section 5.4. Section 5.5 concludes the chapter.

5.] Design ofExperiments

As mentioned in Section 3.2.1, the following assumptions are made in regards to the

nature of the rescheduling problem under consideration:

0 The disruption pattern is unknown to the AdRep rescheduler. Only reactive repair

will be perform to cope with the disruptions.

o A disruption has a predetermined end time. known to the rescheduler at the start

of the disruption (e.g.. it is possible to estimate how long it will take to repair or

return a given machine to service, once it has broken down).

0 There is no partial completion credit. If an operation is interrupted by a disruption.

it must start anew, either on the same machine or another. running for the whole

runtime cost as specified in the problem instance.

64



In this dissertation, a scenario set will contain 10 disruption scenarios. Two objectives

will be the targets of optimization; (1) initial makespan, makespan derived from a

specified disruption-free FSJP instance, and (2) maximum repaired makespan, the highest

makespan of the ten repaired schedules from the ten scenarios in the scenario set. Two

helper objectives will be used, average repair makespan and duplication count.

Table 5.1 contains the parameters for the experiment. Note that local search was not

used for AdRep in this experiment.

Table 5.1. AdRep parameters for dynamic case
 

 

  

 

 

 

 

 

 

 

    

Problem 10Xl0 15X10

Populations 2x500 3 X500

Max Generation 300

N 7

Pcross 0'8

Pind 0'3

Proute 0']

Page 0'3

Pswap 0'4

Pthreshold 0'7

nmig l
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5.2 Test Cases

To test the effectiveness ofAdRep in rescheduling, we used a disruption scenario set

based on 10X10 and 15X10 problem instances from Chapter 4. Two types of scenarios

were used: the “small” set contained disruptions with smaller duration, but occurring

more often, while the “large” set had disruptions with longer durations but less frequent

occurrence. Fifty scenarios sets were created per disruption type per problem instance,

making 200 problem instances in total. Table 5.2 contains the characteristic parameters of

the test cases.

Table 5.2. Characteristics of the Disruption Test Cases
 

 

 

 

  
 

   

Problem Best Disruption Disruption Disruptions per

Instance Initial Characteristic Duration Scenario

Makespan

Smml 1—2. 4—6

10X l0 7

Large 3 — 4 I — 2

Small 1 — 3 4 — 6

l 5 X 1 0 1 1

Large 5 — 8 l — 2

 

AdRep was run 100 times against randomly generated problem instances from

each disruption type from each problem instance. At each generation, a new set of test

scenarios was generated stochastically, based on the characteristics provided, so that the

GA cannot overfit a fixed set of scenarios. The best individuals were tested against the

50 pre-generated test cases. Best results from each run were recorded.
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5.3 Benchmark Algorithms

Two rescheduling approaches are used as benchmarks to AdRep rescheduling: a

Right-shifting (RS) rescheduler and a (non-causal) Prescheduler (PS) rescheduler. The

Prescheduler approach is providing a limiting case in the following sense: it “knows”

about the breakdowns in the scenario at the beginning of the run, so is essentially

scheduling them as additional, pre-planned operations. Therefore, a “reactive” scheduler

using the same scheduling approach would not be expected to match the behavior of the

Prescheduler, which provides an ideal against which a scheduler without advance

information about breakdowns can be compared. (Below, the PS will be compared

against the AdRep scheduler, which uses a different approach, so the PS does not

necessarily bound the AdRep performance.) Both RS and PS schedulers used fixed

machine assignments for routing and permutation with repetition for scheduling. By

utilizing the GT algorithm, the scheduling chromosomes are used to decide which

operation in the conflict set is to be scheduled first, by finding the leftmost unused allele

that corresponds to one of the jobs that one of the operations in the conflict set belongs to.

  

M1 M2 M. M [J1 J2 J1 J2

Figure 5.1. Chromosome used by benchmark algorithm

        

Figure 5.1 shows a chromosome of an individual from a 2X2 FJSP instance with 4

operations. The left chromosome is the routing chromosome, while the right one is the

scheduling chromosome. From this pair of chromosomes. we know that. for example. the

operation 012 is assigned to machine 2. And, in the scheduling process. if there is a
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conflict in the first iteration of the scheduling, operation 01,2 will be selected over

operation 02,] , based on the value of the first allele in the scheduling chromosome.

Table 5.3. Evolution Operators for Benchmark Chromosome
 

 

 

 

Routing Scheduling

Initialization Random Shuffle

Crossover Uniform Modified Order

Mutation Uniform Swap

     

Table 5.3 contains some operators used in GA evolution for the chromosomes used

by the two benchmark algorithms. Shuffle initialization starts with generating an ordered

array with repetition, with number of repetitions for each value equal to the number of

operations in the corresponding job. For example, if there are 3 operations in job 2, there

must be 3 alleles with value 2. Then the array is shuffled, swapping allele values

randomly.

Modified order crossover is based on the order crossover [44] operator commonly

used with a permutation representation. First. half of a two-point crossover is performed

on one parent. copying part of a chromosome to a child. Then, the operator takes note of

how many entries are still needed for each value. and the order in which they appear is

taken from the other parent and filled into the rest of the chromosome. Figure 5.2

illustrates how Modified order crossover works. The gray allele values are taken from the

first parent, leaving one of each of the values missing. The underlined alleles in the

second parent are the ones from which the left of the child’s chromosome (the white

alleles) takes their ordering.
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Figure 5.2. Modified Order Crossover
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The non-dominant sorting algorithm from NSGA-II is used for the replacement

strategy, and random selection decides which individuals are selected for breeding. Also, '

hillclimbing local search is employed to speed up the convergence.

The two benchmark methods utilize the same representation and are evolved in the

same framework. The difference between the two methods is how they deal with

disruptions.

5.3.1 Right-shift Rescheduler

For the right-shift (RS) rescheduler, the rescheduler starts from a disruption-free FJSP

instance using the GT algorithm to create an initial schedule. In a disruption scenario,

when a disruption occurs, the rescheduler performs the affected operation rescheduling

[45]: it right-shifts directly the affected operations. delaying them until the disruption is

over, then the rescheduler checks the affected operations’ job and machine successors,

right-shifting them if they are affected by their predecessors’ updated finishing times.

After a scenario is handled, the repaired makespan is recorded and the schedule is reset to

being an initial schedule. The RS rescheduler then moves on to the next disruption
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scenario in the set. CRMax is collected the same way as in the AdRep rescheduler, from

the scenario that inflicts the highest repair makespan. Also, like AdRep, the single RS

rescheduler handles every scenario in the set.

For each disruption characteristic, the RS rescheduler is run 100 times. The ranges of

best (lowest) maximum repaired makespans found in each run, along with the mean

values, are reported in Table 5.6.

5.3.2 Prescheduler

For the prescheduler, each rescheduler works with only one scenario at a time, instead

of a set of them as in the AdRep and right-shift reschedulers. The rescheduler treats all

disruptions as predetermined downtime; that is, all disruptions are known to the

rescheduler at the time of the initial scheduling. In a sense, the prescheduler performs

complete rescheduling, evolving a new schedule to suit each disruption scenario.

Operating as it does with full foreknowledge of all breakdowns, one would expect that its

results would act as a lower bound on the disrupted makespans of any scheduler that does

not make use of this foreknowledge of the breakdowns. However, we shall see that

because the prescheduler is not using as powerful a representation and search operator

pair, even its foreknowledge will not necessarily allow it to outperform the AdRep

scheduler in coping with disruptions. Figure 5.3 illustrates how preschedulers work with

a set of disruption scenarios.
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Figure 5.3. Prescheduling a set of scenarios

The prescheduler evolves very much like a static scheduler, only with predetermined

periods in which it cannot schedule an operation. It uses the GT algorithm for creating a

schedule, with an extra mechanism added in so that, when the finish time for each

operation is calculated before the conflict set is computed, it delays any operation that

cannot start at an available time before the disruption without having overlap, which is

very similar to avoiding a scheduled downtime.

5.3.3 Experiment Parameters for the Benchmark Algorithms

AdRep and the RS Rescheduler are each run 100 times for each disruption

characteristic and problem instance. The PS scheduler evolves a schedule directly for

each individual scenario among the test cases, keeping the best of three runs for each

scenario. The range of best maximum repaired makespan is reported in Table 5.6. The

experiment parameters. as described in Table 5.4. are shown in Table 5.5.
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Table 5.4. Description of Benchmark Experiment Parameters

 

Parameters Description

 

ngulations Size of Population

 

Max Generation Max Generation Termination Criteria

 

Probability of crossover

 

 

 

 

  
 

 

 

 

   
 

 

 

 

 

 

  

Pcross

Pind Probability of an individual to be mutated

Pint Probability of an allele to be mutated

nmig Number of individuals that will migrate

p Probability of individual local search
Local

dLocal Local search depth

Table 5.5. Experiment Parameters for Benchmark Algorithm

Parameters RS PS

10X10 15x10 10x10 15x10

Populations 2 x 500 3 x 500 2 x 500 3 x 800

Max 300

Generation

Pcross 0'8

Pind 0'4

Pint 0'1

nmig l

PLocal 0'01

dLocal 50 
 

 

 



5.4 Results

The results of the experimentation comparing the AdRep and the two benchmark

algorithms on scenarios with disruption are reported in Table 5 .6.

 

  

 

 

 

 

Table 5.6. Results of the Reschedulin Experimentation

Problem Best Disruption RS PS AdRep Makespan

Instance lnitial Characteristic Makespan Makespan

Makespan Range Average Range Average

10X10 7 Small “—13 11.15 9 10—14 10.9

Large 12 — 13 12.05 9 10 — 13 10.79

15X10 11 Small 15—19 16.53 15 15—20 17.13

Large 19—21 19.95 (16) 15 —22 17.34          

AdRep surpassed the RS rescheduler in most test cases, performing worse for only

one disruption type on one problem. Almost all best AdRep solutions also obtained the

best initial makespan when run without disruption. The exceptions were 11 runs (of 100)

of the large disruption characteristic on the 15X10 problem instance and 3 runs (of 100)

of the small disruption characteristic on the same problem instance. In these cases, the

solution with the best repaired makespan produced the initial makespan of 12.

Unexpectedly, the PS rescheduler did not match AdRep in some runs of the large

disruption characteristic for 15X10 instance, resulting in worse maximum repaired

makespans, even though it was scheduling with foreknowledge of the disruptions. That

result is enclosed in parentheses in the table. Further investigation revealed that the

individuals produced by AdRep that surpassed the PS rescheduler suffered from larger

than usual total workloads. which might be a reason the PS rescheduler had difficulty

reaching that solution.

Figure 5.4 shows a schedule created by an individual obtained from an AdRep run.

The repaired schedule by the same individual when a disruption scenario containing



disruptions at Machine 3 from time 3 to time 9, and on machine 10 from time 5 to time

12, is depicted in Figure 5.5.
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Figure 5.4. A CM=11 Schedule
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Figure 5.5. A CRMax=14 Repaired Schedule
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5.5 Summary

In this chapter, we investigated the performance of AdRep in terms of rescheduling

from machine-unavailability disruption. Using a Routing GT algorithm, we can often

repair the schedule by reassigning some affected operations (including ones scheduled to

run later on the disrupted machine) away from the disrupted machine, depending on their

routing policies.

To test how effective AdRep is in rescheduling, it was run against multiple disruption

scenario sets, each a collection of breakdown scenarios. AdRep was evolving against

multiple scenarios in a particular set at the same time—at each generation, a new set of

scenarios was generated, reducing the likelihood of overfitting. Maximum repair

makespan, the highest repaired makespan for any scenario in the set, was used as the

objective function to be minimized, along with the initial makespan of the schedule

without any disruption. That is, an AdRep individual is expected to produce a schedule

that performs well whether or not there are any disruptions.

In Section 5.3 we introduced two benchmark rescheduling algorithms against which

to test AdRep. The first is a Right-shifter rescheduler, or RS rescheduler. The RS

rescheduler repairs disrupted schedules by delaying directly affected operations and those

affected by the changes in their predecessors’ finishing times, until the disruption is over.

The second benchmark algorithm is the prescheduler. The prescheduler (PS) works

by treating each breakdown scenario as predetermined downtime, evolving to deal with

each of them separately. By gaining disruption knowledge in advance and being allowed

to evolve against each scenario separately. the PS algorithm is given a major advantage in

competing against AdRep.



Section 5.4 contains the results of the experiments. AdRep performed noticeably

better than the RS algorithm in most of the trials. However, the fact that the PS

rescheduler performed worse in one case than AdRep, taking into account the advantage

of foreknowledge of failures that the PS has, suggested that the PS algorithm suffers from

some limitations relative to the AdRep algorithm in terms of exploring the search space.
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CHAPTER 6

CONCLUSION

FJSP adds another layer of complexity into JSSP by the need to determine machine

allocation to operations, in a process known as routing. This makes the already difficult

task of scheduling a JSSP instance even more challenging. In this dissertation, we have

developed a novel way to represent an FJSP solution, providing a new way to assign

machines to operations and a more flexible scheduling component. Our approach has

proven to be able to replicate the set of best published solutions of popular problem

instances, and to do so reliably in each run of the algorithm. Although it suffers

somewhat in term of scalability in the static case, the rescheduling results in the

disruption-prone dynamic cases have been promising.

6. 1. Summary

In this dissertation, our main objective has been to create a representation and genetic

operators that are conducive to rescheduling, especially in the case of machine

unavailability due to disruptions. However, the solutions should also perform well in the

static (undisrupted) case. Our representation, Adaptive Representation (AdRep), consists

of a routing component and an adaptive scheduling component. The routing component

assigns a simple routing policy to an operation instead of directly assigning a machine to

it. This allows the operation to be rerouted to another machine in case the scheduling

environment has changed so drastically that the current machine is no longer suitable,

while. in the static case, it enables the operation to be assigned to a viable machine in the
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first place. The adaptive scheduling components use the current state of the system to

direct the routing GT algorithm to select an operation to be scheduled.

To make sure AdRep performs well in the static FJSP, we have tested it against 3

published instances. These three, of varying sizes and dimensionalities, have been used in

various experiments. The Pareto fronts of all three problems are well known, having been

discovered (often by different authors) in work reported in the literature. In reliably

reaching all of the points on these Pareto fronts, AdRep has shown that it is viable in the

static case. The experiments have shown that, while suffering somewhat from scaling

with increases in problem size, AdRep did succeed in reaching the Pareto front for almost

all of the benchmark problems. We then tested AdRep with varying sizes of populations.

The results showed that, while a decrease in population size can hurt the chance that the

GA wilI locate the entire Pareto front, increasing the population size will eventually hit a

point where, although the decrease in number of generations required to converge to the

Pareto front still occurs, the increase in number of evaluations in each generation no

longer supports a guarantee that a larger population size will enable faster convergence.

Other factors, such as degree and method of parallelization, need to be taken into account

in setting optimal population size.

To prepare AdRep for rescheduling, one need only create the partial schedule from

the one disrupted by machine unavailability. By removing directly affected operations

and those that start after the disruption, and preparing them to be rescheduled, they

constitute a partial schedule that the AdRep rescheduler can use as a starting point. By re-

executing the routing GT algorithm, rerouting operations as needed, a repaired schedule

is created. This means that, in practice in a flexible job shop. when a disruption occurs,
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the new schedule to cope with the disruption can be produced almost instantaneously, by

running only the scheduling algorithm, without needing to perform any new search.

To test the performance of the AdRep rescheduler, two benchmark algorithms were

used: a right-shift rescheduler, and a prescheduler. The right-shift rescheduler and AdRep

were evolved against a set of disruption scenarios, while the prescheduler evolved against

one scenario at a time. In this experiment, AdRep has shown that it can produce a good

initial schedule that outcompetes the right-shifting rescheduler in most cases. It even

managed to outperform the prescheduler in some cases, even with the prescheduler’s

foreknowledge advantage.
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6. 2. Contributions

The main contributions of this dissertation are summarized as followed:

(1) In this dissertation, we have proposed a novel alternative to represent an FJSP

solution. Also, we have put forward a simple scheme to assign machines to

operations. By allotting a simple routing policy to each operation, instead of

assigning them a machine outright, we can retain some flexibility and can gain

some information about the schedule environment at the time that the operation is

about to be scheduled, improving routing decisions.

(2) Furthermore, AdRep can be used as a measure to reschedule an FJSP schedule

that suffers from disruption to machine unavailability. Since AdRep’s repair

mechanism is inherent in the chromosome itself, the disrupted schedule can be

repaired just by rescheduling from the disruption starting time using the

chromosome that it used for scheduling. This allows rerouting as needed,

improving the quality of the repaired schedule.

(3) We also performed a performance analysis, confirming the ability of AdRep to

match the published result in term of Pareto front in most cases. Also, we have

tested AdRep against two benchmark rescheduling algorithm. The results prove

the superiority of AdRep to produce repaired makespan, in comparison to right-

shifiing rescheduling. Furthermore, AdRep has been shown to perform not much

worse than complete rescheduling.

(4) The work in this dissertation has resulted in two papers published to date. The

author has presented “Adaptive representation for flexible job-shop scheduling

and rescheduling”. which entails a makespan-focused static FJSP scheduler and
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dynamic FJSP rescheduler, at the 2009 World Summit on Genetic and

Evolutionary (GECS) Computation at Shanghai, China, and published in the

proceeding of that conference. The paper, “Solving Multiobjective Flexible Job-

shop Scheduling Using an Adaptive Representation”, which focused on the

multiobjective static FJSP, was accepted as full paper, published, and presented in

July, 2010, at the Genetic and Evolutionary Computation Conference 2010 in

Portland, Oregon.
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6. 3. Future Work

(1) ln static FJSP, although AdRep can achieve all best published results on the

benchmark problems nearly always, its convergence efficiency suffers

considerably when the size of the problem increases. An effort to improve AdRep

efficiency should be worthwhile—for example, devising an effective local search

operator for AdRep. A neighborhood structure will need to be analyzed for a

meaningful neighborhood traversal to be done.

(2) There is still a considerable distance between FJSP and real-world scheduling

applications. The following factors should be taken into account:

Set-up costs to prepare a machine for an operation. This also includes the cost

of reassigning an operation to another machine. If such a cost exists, a routing

rule should take it into account. The number of rerouted operations can be

used as an objective, for example.

Deadlines. Soft deadlines can be handled by making tardiness one of the

objectives. Hard deadlines, on the other hand, might require some

modification to the scheduling system itself, limiting machine choices if a

deadline is to be breached and giving priority to near-deadline operations to be

scheduled first.

Additions to the system such as new jobs or new machine arrivals. Adapting

to added machines should not be difficult, providing the characteristics of the

machine are known. Adapting to job arrivals, or instances where job number

is not set. can be much more difficult. Perhaps jobs can be divided into



categories and AdRep can be based on operations in a job category instead of

a particular job.

(3) Improving the AdRep data structure. Although AdRep is currently quite effective

in creating a good scheduling solution, especially on the rescheduling capacity, a

more efficient and more expressive data structure would be advantageous. As it is,

routing components constitute a solid majority of the chromosome, since there is

one allele per operation. A more compact routing component should improve

efficiency, but care must be taken not to go too far, or performance will be lost.

The current adaptive scheduling component might, however, be too restrictive. A

more expressive structure could help in scheduling performance. One suggestion

is to implement AdRep in two program trees, one for routing and one for

scheduling. Coevolutionary GP could then be used to improve them.
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