
A STUDY OF BLUETOOTH FREQUENCY HOPPING SEQUENCE: MODELING AND
A PRACTICAL ATTACK

By

WAHHAB ALBAZRQAOE

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Computer Science

2011

ABSTRACT

A STUDY OF BLUETOOTH FREQUENCY HOPPING SEQUENCE:
MODELING AND A PRACTICAL ATTACK

By

WAHHAB ALBAZRQAOE

The Bluetooth is a wireless interface that enables electronic devices to establish short-range,

ad-hoc wireless connections. This kind of short-range wireless networking is known as Wire-

less Personal Area Networks (WPAN). Because of its attractive features of small size, low

cost, and low power, Bluetooth gains a world wide usage. It is embedded in many portable

computing devices and considered as a good replacement for local wire connections. Since

wireless data is inherently exposed to eavesdropping, the security and confidentiality is a

central issue for wireless standard as well as Bluetooth. To maintain security and confiden-

tiality of wireless packets, the Bluetooth system mainly relies on the Frequency Hopping

mechanism to equivocate an adversary. By this technique, a wireless channel is accessed for

transmitting a packet. For each wireless packet, a single channel is selected in a pseudo ran-

dom way. This kind of randomness in channel selection makes it difficult for an eavesdropped

to predict the next channel to be accessed. Hence, capturing Bluetooth wireless packets is

a challenge. In this work, we investigate the Frequency Hopping sequence and specifically

the hop selection kernel. We analyze the operation of the kernel hardware by partitioning

it into three parts. Based on this modeling, we propose an attacking method for the hop

selection kernel. The proposed method shows how to expose the clock value hidden in the

kernel. This helps to predict Bluetooth hopping sequence and, hence, capturing Bluetooth

wireless packet is possible.

ACKNOWLEDGMENTS

First, I would like to express my thankfulness to Allah: ”And say: ‘All the praises and

thanks be to Allah.‘” The Quran (17:111).

I also would thank the support and the scholarship of my country Iraq.

I would like to express my gratitude to my advisor Dr. Guoliang Xing for his guidance,

inspiration and encouragement. Without his invaluable advice and support, this work would

not be possible.

I am grateful to my friend Jun Huang. In particular, I would like to thank Jun for coming

up the idea of using jamming signals to crack Bluetooth hopping sequence. I am thankful to

Jun for weekly meetings with me, helping me with operating the USPR devices and Ubuntu

setup, and even linguistic corrections in this thesis. I would like to thank him for taking

time to exchange ideas with me. His kindness, support, and suggestions are all unforgotten.

I am thankful to my friend Assaad AlSahlani. His support and encouragement are ap-

preciated.

I would like to thank the Iraqi Cultural Office in Washington D.C represented by Prof,

Abdulhadi Al Khalili who has been supporting me in this scholarship.

A special thanks to my family. Their encouragement and support through my study are

invaluable.

iii

TABLE OF CONTENTS

1 Introduction 1
1.1 Related Work . 3
1.2 Motivation . 5
1.3 Thesis Contribution . 5

2 Background 7
2.1 Bluetooth Radio System: A Top View . 8

2.1.1 Bluetooth Radio Spectrum . 8
2.1.2 Bluetooth Communications: Packet Based System 10

2.2 Hop Selection Kernel . 11
2.2.1 Design Principles . 11
2.2.2 Unit Inputs . 12
2.2.3 Bluetooth identity: the device MAC address 13
2.2.4 Digital Clock of the Bluetooth Device 14
2.2.5 Adaptive Hop Selection Facility . 15

2.3 Bluetooth Network Topology . 16

3 The Hop Selection Kernel: Modeling and Analysis 19
3.1 Hop Selection Kernel: Internals . 20

3.1.1 The kernel components . 20
3.1.2 The input parameters . 21
3.1.3 The RF channel table . 23

3.2 The Hop Selection Kernel: Modeling . 24
3.3 Part A of the Selection Kernel . 26

3.3.1 Observations and Discussion . 27
3.3.1.1 The adder block . 28
3.3.1.2 The XOR block . 29

3.4 Part B of the Kernel: ”Perm5” Stage . 30
3.4.1 Observations and Discussion . 33

3.4.1.1 Mathematical description 33
3.4.1.2 The effect of the device clock on Part B 34

3.5 Part C of the Kernel . 36
3.5.1 Observations and Discussion . 37

4 The Hop Selection Kernel: Possible Attacking Method and Simulation 39
4.1 Possible Method for Attacking Part A . 40

4.1.1 Discussion . 41

iv

4.2 Possible Method for Attacking Part B . 42
4.2.1 Discussion . 44

4.3 Possible Method for Attacking Part C . 46
4.3.1 Discussion . 47

4.4 Simple Scenario for Attacking the Kernel . 49
4.5 Simulation and Implementation Challenges 50

4.5.1 Implementation Challenges . 51

5 Conclusion and Future Work 58
5.1 Future Work . 60

5.1.1 Implementing the proposed attacking on real hardware 60
5.1.2 Investigating the possibility of jamming 15 channels of the Bluetooth

space . 60
5.1.3 Exposing the MAC address and the first 6 bits of the clock 61
5.1.4 Suggestions for avoiding the Hopping Sequence attack 61

Bibliography . 64

v

LIST OF FIGURES

Figure 2.1 Transmission of Bluetooth wireless packets over multiple channels. For
interpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this thesis. 9

Figure 2.2 Transmission of wireless packets over single channel. 10

Figure 2.3 The Bluetooth wireless packet format. 10

Figure 2.4 The Hop Selection Box of Bluetooth, [1]. 12

Figure 2.5 The standard format of the Bluetooth MAC address. 13

Figure 2.6 The timing of Bluetooth system clock. 14

Figure 2.7 Bluetooth wireless network: piconet formation. 18

Figure 3.1 The Hop Selection kernel: internal components. 20

Figure 3.2 A revised version of the Hop Selection kernel block diagram. 24

Figure 3.3 Dividing of the HSK into three parts: A, B, and C. 25

Figure 3.4 The hop selection kernel: Part A. 26

Figure 3.5 The natural counting sequence provided by the input A. 27

Figure 3.6 The shifted natural counting sequence of Z ′. 28

Figure 3.7 The shifted counting sequence under the effect of the XOR block. 29

Figure 3.8 The hop selection kernel: Part B. 30

Figure 3.9 Permutation operation of the Perm5 Block. 31

Figure 3.10 Diagram of cell body that is constructed by two MUX (2 1), [1]. 32

Figure 3.11 Z’s elements are manipulated by two different control words. 35

Figure 3.12 Z’s elements are mapped into two images in the sequence of R. 35

Figure 3.13 The unaffected elements 0 and 31 within the sequence R. 35

Figure 3.14 The hop selection kernel: Part C. 36

vi

Figure 4.1 All Possible Outcomes of Part B: the table T . 43

Figure 4.2 Two hopping patterns are collected online. 43

Figure 4.3 Comparing each pattern with the table T and listing candidates. 44

Figure 4.4 Filtering candidate lists by dropping false values. 44

Figure 4.5 Revising two collected patterns by removing the effects of Part A. 45

Figure 4.6 Frequency Hopping behaviour Bluetooth under jamming effect. 47

Figure 4.7 Two possible form of the collected patterns from the output I. 48

Figure 4.8 Removing the effects of Part C. 49

Figure 4.9 Two Bluetooth devices are exchanging wireless data. 50

Figure 4.10 Compressing the table T into two smaller tables: Tc and Ti. 53

Figure 4.11 Calculating the hash value for each row in the table Tc. 54

Figure 4.12 Maximum and minimum number of required patterns to find P . 55

Figure 4.13 Using fewer patterns to hop with Bluetooth. 56

vii

Chapter 1

Introduction

The success of portable consumers products such as laptops, notebooks, PADs, cell phones,

and many portable devices is based on continuous success of cost and size reduction of their

microelectronics circuit. Along with the advance of mobile technology, there is an increasing

demand on sharing documents, music and multimedia files between users within a small area.

Having these devices communicating among themselves within small area is called Personal

Area Networks (PAN). It is obvious that wiring portable devices is not an efficient solution.

An alternative solution is to employ wireless links. Therefore, many wireless standards have

been developed for enabling personal area networking over short ranges wireless connection,

among them Bluetooth is a tone of the most successful technology.

The Bluetooth wireless communication technology is defined under the IEEE 802.15.1

Standard [1]. Because of its attractive features, the Bluetooth is considered an efficient

solution for wireless personal area networking. The Bluetooth is designed to support small-

size, low cost, low power consumption wireless links. For example, a Bluetooth USB adapter

does exceed the size of the ”W” button on a standard computer keyboard. In terms of power

consumption, to establish a wireless link within 10 meters of range, the Bluetooth adapter

only incurs a power consumption ranging from 0.25 up to 2.5 mWatt. The retail price of the

Bluetooth USB adapter is about 0.01$ in the market. Bluetooth radio system works in the

1

unlicensed Industrial, Scientific, and Medical (ISM) band at 2.4 GHz.

Because of these attractive features, we can see a world wide usage of the Bluetooth

devices. Bluetooth technology is embedded in most of portable electronic devices. According

to the Bluetooth Special Interest Group (SIG), the number of Bluetooth enabled devices

was about 1 billion devices in 2006 with a shipping rate of 10 million device per week.

During 2008, 2 billion products had been shipped with Bluetooth enabled wireless interface

[2]. Today, many local wired connections such: headset of cell phones, printers, computer

mouse and keyboard can be replaced with Bluetooth wireless links. And this what makes

it an important electronic technology of human modern life. However, as wireless data is

inherently exposed to eavesdropping, the confidentiality is a central issue for all wireless

networks as well as Bluetooth wireless network. This is because sensitive data, such as voice

data, secret documents, and/or private pictures, is often carried over by wireless links.

The Bluetooth system basically relies on two techniques in order to keep confidentiality

of transmitted data over wireless links, which are:

(a) Encryption: the Bluetooth employs a stream cipher, known as E0, to encrypt wireless

data.

(b) Frequency Hopping: by employing this technique, the Bluetooth radio system is con-

tinuously switching between wireless channels. This will be discussed in more details

throughout this work.

Regarding the Bluetooth stream cipher E0, the cryptanalysis of this encryption is studied

in the literature. There are many researches, including [7, 13], proposed attacking Bluetooth

stream cipher. The second kind of defence is achieved by the Frequency Hopping technique.

This technique is originally proposed for avoiding performance downgrading due to noisy

channels. The Frequency Hopping is the main security fence that users rely on for data

confidentiality. The challenge for an attacker is to predict the next channel of a Bluetooth

link, so that it can tune its radio to follow the link for eavesdropping. The Frequency Hopping

2

mechanism is the main topic of this work. By analysing the Hop Selection kernel, we found

a security threat that can be exploited to predict Bluetooth hopping sequence. Furthermore,

we propose an attacking method for the Hop Selection kernel.

1.1 Related Work

This section can be mainly divided into two topics: in the first topic, the cryptanalysis of the

Bluetooth stream cipher is reviewed. While in the second topic, the Bluetooth Frequency

Hopping and related researches are reviewed.

First: The Bluetooth stream cipher E0

Despite the cryptanalysis of the E0 stream cipher is beyond the thesis scope, it is useful

to review some related works. The E0 stream cipher is designed specifically for Bluetooth

[7]. Cracking the E0 stream cipher is studied by Levy et al [13] who proposed a uniform

framework for cryptanalysis of the Bluetooth E0 cipher. This method assumes that the E0 is

employed outside the Bluetooth environment. In other words, the encrypted stream of data

is not affected by the Frequency Hopping mechanism of Bluetooth. Lu et al [14] proposed a

practical attack on Bluetooth encryption; the author assumes that an attacker can observe

the stream of encrypted data which implies the stream is outside the effect of Frequency

Hopping. Shaked et al [7] proposed a method for cracking the Bluetooth PIN (Personal

Identification Number). The PIN can be used for decrypting Bluetooth wireless packet, in

case of being encrypted. This method requires that an attacker witnesses the pairing process

of two, or more, Bluetooth devices. Because this is not practical condition in most cases,

the author proposed some method to enforce already paired Bluetooth devices to break their

connection and proceed with a repairing process.

Second: Frequency Hopping

The Frequency Hopping technique is originally proposed to improve Bluetooth performance

by avoiding noisy channels. Since the Bluetooth operates in the free unlicensed ISM band,

3

there is a probability to face some noised channels by other wireless radios in the ISM band.

The Frequency Hopping technique is a potential security feature because of the difficulty

of capturing Bluetooth wireless packets. Capturing a wireless packet requires an attacker

to predict the next channel to be employed by Bluetooth. In a piconet setup, the MAC

address and the clock of the piconet master are utilized to generate pseudo random hopping

sequence, where the hopping sequence is a string of pseudo random numbers.

With respect the Frequency Hopping, Spill et all [6] proposed a mechanism for extracting

the MAC address and the first 6 bits of the device clock of the targeted piconet mater device.

In order to hop along with Bluetooth, All the bits of the device clock, except the first bit,

along with the device MAC address bits are required to be known. The first 6 bits of the

clock are not enough. Hence, there is a missing part which is the rest bits of the clock

CLK25−7. In this work, we base on the results of Spill [6] in order to expose the missing

part of the clock. By this way, we will be able to hop just like the targeted Bluetooth.

Some of the proposed attacks target the pairing process of the Bluetooth. Sensitive

information is exchanged through the pairing process of Bluetooth devices. This includes

information about the hopping sequence synchronization, encryption, encryption keys, and

so on. However, listening to the pairing process in not possible all the time. Hence, the

authors proposed breaking an established links in order to force users to proceed with pairing

procedure again. This kind of attack also assumes that wireless packets are not affected

by the Frequency Hopping mechanism and can be captured by an attacker. Among these

researches, Haataja et al [9, 10, 11] proposed Man-In-The-Middle kind of attack on Bluetooth.

This can be achieved by listening to the pairing process which is often impractical to be

achieved at early communication stages. Therefore, the author proposed several methods for

breaking an established connection. This can be conducted by jamming wireless connections.

Another way is sending some counterfeiter packets to legitimate users so they might think

something wrong going on and initiates the repairing process.

4

1.2 Motivation

The Bluetooth wireless network plays an important role in today’s computing world. This

wireless technology system relies on the Frequency Hopping technique to maintain the con-

fidentiality of its wireless data since Bluetooth encryption can not be trusted any more.

Bluetooth employs a special hardware for hopping sequence generation. This hardware,

which is called the Hop Selection kernel, is basically a kind of pseudo-random number gen-

erator device. Now imagine what could happen if an eavesdropper captures some Bluetooth

wireless packets transmitted from a Bluetooth enabled wireless keyboard to a PC when you

are accessing a bank account? In this case, the password of your bank account is vulnera-

ble and may be exposed. Another example is the leakage of secrets documents when being

transmitted to a Bluetooth enabled wireless printer. This kind of attack is called ”passive

attack”. On the other hand, an active attacker can fake sensitive requests and send them

to a computer machine on behalf of its Bluetooth enabled wireless keyboard. Therefore, we

found that investigate the security threats of Bluetooth is important; and specially the Hop

Selection Kernel as it plays a central role in Bluetooth security.

1.3 Thesis Contribution

In this work, we first propose modeling the Hop Selection kernel by dividing it into three

parts. This kind of partitioning is important to understand the function of the kernel by

studying the role of each part individually, and this is the basis for the attacking method.

Second, we propose a systematic attacking procedure against the Hop Selection kernel of

Bluetooth. The proposed attacking method is based on examining the design details of

the Frequency Hopping kernel and analyzing the functionality of its consisting hardware

components. The analysis of the kernel, which we present in this work, is suitable to expose

weak points that can be exploited by an attacker against the Hop Selection Kernel.

In later chapters of the thesis, we introduce useful definitions and background about the

5

Bluetooth radio system. This will be presented in Chapter 2 where we will review important

technologies used by Bluetooth for channel bandwidth spacing as well as overview of the Hop

Selection Kernel. This includes defining the essential parameters utilized for determining the

hopping sequence. These parameters are the clock and MAC address of the Bluetooth device.

The network topology will also be considered in Chapter 2 as it necessary for understanding

the formation of Wireless Personal Area Network by Bluetooth devices. This is known as

Piconet.

In chapter 3, we mainly focus on analyzing the functionality of the Hop Selection kernel

by examining its hardware components. We analyze the Hop Selection kernel by dividing

its function into three components or parts: A, B, and C. Then, we analyse each part

separately and find a special mathematical expression that rules its behaviour. Based on

the analysis of chapter 3, we introduced the proposed attacking method in chapter 4. The

chapter includes two main topics: in the first topic, we present the theoretical analysis of

the proposed attacking method. The method suggests manipulating the kernel parts: A, B,

and C individually. In the second topic, we present the simulation software of the attacking

method using Matlab environment. The implementation challenges are discussed as well.

Chapter 5 has two sections: in the first section we derive the conclusion of the thesis and

emphasize the results that we obtained in this work. While in the second section we will

be talking about the future works and directions of the thesis. This includes adopting the

attacking procedure on experimental devices such as the USRP and commercial hardware

devices such as the Ubertooth.

6

Chapter 2

Background

The Bluetooth is a universal radio system that enables electronic devices to establish short-

range wireless connections. This wireless technology adopts packet-based communication

scheme which is similar to other standards of data communication systems such as WiFi

and BigZee. Another point of similarity to other standards is utilization of the free unli-

censed ISM 2.4 GHz band. However, the Bluetooth system is characterized by many aspects

that make it different from others. One of these features is the Frequency Hopping tech-

nique. The Bluetooth system adopts the Frequency Hopping for accessing wireless channels.

The hopping sequence is determined based on the Bluetooth MAC address and clock. The

hopping sequence selection is achieved by the Hop Selection kernel. In this chapter, we re-

view some important characteristics about the Bluetooth wireless system. Furthermore, we

discuss definitions of the hop selection kernel and its input parameters.

This chapter is organized as follows: in section 2.1, a top view of the Bluetooth Radio will

be presented; where we focus on the radio spectrum and the packet-based communication

scheme. In section 2.2, the Hop Selection Kernel is presented along with the definition

of two important inputs for the kernel, that are: the device identity, or the device MAC

address, and the Bluetooth device clock. The Adaptive Frequency Hopping (AFH) will also

be reviewed as well. In section 2.3, the Bluetooth networking topology is discussed with the

7

pairing process.

2.1 Bluetooth Radio System: A Top View

This section presents the general characteristics of the Bluetooth radio system.

2.1.1 Bluetooth Radio Spectrum

In order to enable a world wide usability of the Bluetooth technology, the radio spectrum

must be open and can be used by public without the need for licenses. Toward this end,

the free unlicensed spectrum of the ISM Band was the choice for Bluetooth. This band, the

Industrial, Scientific, and Medical, is globally available and this enables users from connecting

their portable devices wherever they travel. In most of the countries, including the United

States and Europe, the ISM band ranges from 2400 MHz up to 2483.5 MHz [3].

The freedom and world wide availability of the ISM band have some negative side effect

as well. The side effect of using the free ISM band is possibility of facing noisy channels.

This noise is simply caused by other wireless radios operating in the same frequency of the

Bluetooth radio on the same time slot. Therefore, a significant amount of interference might

be added by those radios affecting the Bluetooth wireless link throughput or performance

downgrading. Some of the options available for the Bluetooth radio to mitigate the interfer-

ence effects are: interference suppression and avoidance. Interference avoidance is the most

attractive solution since suppression requires adding more components and circuitry to deal

with unwanted frequencies. Avoidance can be achieved in time and/or frequency. The time

avoidance is suitable in the case of a pulsed jamming source of interference; while avoidance

in frequency is more practical solution. This is because the free bandwidth offered through

the ISM band is about 80 MHz and most radio systems are band-limited which increases the

probability of finding a part of the ISM spectrum where there is no dominating interference

[3].

8

This reason and a number of properties make the Frequency Hopping (FH) is the best

channel accessing technique for the Bluetooth radio. The Bluetooth radio system defines 79

hop carries within the ISM band. Each carrier is spaced by 1 MHz of channel bandwidth.

The following equation rules this kind of division:

f = 2402 +K MHz, k = 0, 1, ..., 78 (2.1)

Where f , which is measured in MHz, represents the channel frequency that will be used for

transmission. The parameter K is an index that is used to specify one channel among the

79 channels. Determining the value of the index K is the responsibility of a hardware unit

called The Hop Selection kernel. The analysis of this hardware component is the main topic

of chapter 3.

Time Slots

2402 MHz -

Bluetooth wireless packet

7
9

 C
h

a
n

n
e
ls

2480 MHz -

t1 t2 . . . tn625
μsec

Figure 2.1: Transmission of Bluetooth wireless packets over multiple channels. For interpre-
tation of the references to color in this and all other figures, the reader is referred to the
electronic version of this thesis.

For the Hop Selection kernel, coordination of hopping sequence is not allowed by the

FCC rules. Instead of this, a large number of pseudo-random hopping sequence is defined.

The kernel hardware selects a particular hopping sequence based on the MAC address of

the Bluetooth device. The Bluetooth clock is used to determine the phase in the hopping

sequence. The nominal dwell time of utilizing a hopping channel is defined to be 625 µ second.

Therefore, the Bluetooth Hop Selection kernel generates about 1600 hops per second that are

9

selected in a pseudo-random fashion. Based on this pseudo-random scheme of hop selection,

the Bluetooth wireless packets between a sender and a receiver can be illustrated as in Fig.

2.1. As a counterexample of using the Frequency Hopping Scheme, Figure 2.2, illustrates

transmitting wireless packet over a single channel as an opposite option to the frequency

hopping over 79 channels:

Time Slots

2402 MHz -

Wireless packet

7
9

 C
h

a
n

n
e
ls

2480 MHz -

t1 t2 . . . tn

Figure 2.2: Transmission of wireless packets over single channel.

2.1.2 Bluetooth Communications: Packet Based System

The Bluetooth wireless system employs a packet-based communication scheme. The bit

stream that is ready for transmission is fragmented into packets. There are 16 packets types

are defined by the Bluetooth standard. All packet types share the same format except the

payload portion which varies from type to type. The general Bluetooth packet format is

illustrated in Fig. 2.3.

72 bits 54 bits 0-2745 bits

PayloadHeader
Access
Code

Figure 2.3: The Bluetooth wireless packet format.

On each wireless channel, a single wireless packet can be transmitted. For the next

packet, a new wireless channel is selected in a pseudo random way. Packets sent by one

10

party should be confirmed upon receiving by the other party. This is known as Acknowl-

edgement/Negative Acknowledgement (ACK/NACK) in terms of networking. It is defined

by the Bluetooth designer that even time slots are used by the piconet master. While, odd

time slots are used by slaves Bluetooth devices participating in the piconet. By this way, the

Transmission/Receiving timing is maintained [3]. Bluetooth network topology is discussed

in section 2.3.

2.2 Hop Selection Kernel

As discussed in the previous section, the Frequency Hopping scheme was originally proposed

to mitigate interference effects caused by co-users sharing the unlicensed ISM band, such as

WiFi and BigZee. In this channel accessing scheme, a single channel is selected for a specific

amount of time then another channel is utilized. This rapid switching technique among

relatively large number of narrow bandwidth channels adds an important security feature

to the Bluetooth radio system. By its hopping over wireless channels, Bluetooth presents a

capability of equivocating. This capability makes it difficult for an attacker to sniff Bluetooth

wireless packets. There is no doubt that monitoring all wireless channels defined in the ISM

band is not a practical solution. The other way to sniff Bluetooth wireless packets is to

predict the next wireless channel to be accessed by Bluetooth. This is the main topic of this

work and we investigate the possibility of this kind of prediction.

2.2.1 Design Principles

The Hop Selection kernel applies a special selection mechanism for the hopping sequence.

The kernel is designed to meet the following principles:

(a) The kernel selects the hopping sequence based on the device identity, which is the MAC

address, and the device clock.

11

(b) The selected hopping sequence is allowed to be repeated every 23 hours.

(c) For every 32 consecutive hops should span over 64 MHz of the defined spectrum.

(d) The number of hopping sequences should be very large.

(e) All frequencies should be used with equal probability, in average.

(f) Any change in the clock and/or the MAC address selection mechanism should instanta-

neously be changed.

These design requirements are necessary for suitable operation in terms of the Frequency

Hopping.

2.2.2 Unit Inputs

As it is mentioned previously, the Hop Selection kernel simply controls the frequency hopping

using the index K. Adjusting this index to a new value is translated as switching from one

channel to another by the Bluetooth radio, i.e., selecting a new frequency for transmission.

A top view of the Hop Selection kernel is illustrated in Fig. 2.4.

Hop Selection
Box

/Clock

AFH_channel_mapN

UAP/LAP /
28

27
RF channel index

Figure 2.4: The Hop Selection Box of Bluetooth, [1].

For the Hop Selection kernel, a large number of hopping sequences is defined. The

selection kernel determines a single hopping sequence based on the value of MAC address

and the clock of the Bluetooth device. The input parameters of the Hop Selection kernel, or

Hope Selection Box, are as follows:

12

(a) CLOCK, this is the device digital clock.

(b) UAP/LAP, which is simply the device MAC address.

(c) AFH channel map, this input is a table contains the status of each wireless channel.

these parameters are related to the Adaptive Frequency Hopping mechanism which is

discussed in section 2.2.5.

(d) N, is also provided by the AFH technique. This input parameter is basically an integer

represents the number of good channels that can be used by the Bluetooth radio.

The following three subsections are dedicated to discuss these important input parameters

of the Hop Selection kernel.

2.2.3 Bluetooth identity: the device MAC address

In the networking world, standards impose assigning a special ID number for each device

participating in the network; this kind of IDs is called The device MAC address. The same

standard is defined for the Bluetooth wireless system. The device MAC address should be

unique over the network. To be more specific, sharing the MAC address by two, or more,

Bluetooth devices is not allowed. The MAC address of Bluetooth device consists of 48 binary

bits binary. The MAC address binary number is composed of three parts as illustrated in

Fig. 2.5. These three parts are as follows:

LSB

0000 0001 0000 0000 0000 0000 0001 0010 0111 1011 0011 0101

MSB

company_assigned company_id

NAPUAPLAP

Figure 2.5: The standard format of the Bluetooth MAC address.

(1) The Lower Address Part LAP: this part consists of 24 bits.

13

(2) The Upper Address Part UAP: this part has 8 bits only.

(3) The Non-significant Address Part NAP: this part holds the rest of the 48 bits, which are

16 bits.

2.2.4 Digital Clock of the Bluetooth Device

The Blutooth clock is basically a kind of free-running digital counter device. Such kind of

clocks is different from many known clocks because it not related to the real time of day.

This means the Bluetooth clock can be initialized with any value [1]. The Bluetooth clock

counter consists of 28 bits, hence, it is capable of counting up to (228 − 1), as shown in Fig.

2.6. This counter is designed in such a way that its counting sequence can be repeated every

23 hours. The Bluetooth clock rate is 3.2 kHz [1]. Therefore, the Least Significant Bit (LSB)

of this counter ticks, or flips, every 312.5 µ second.

72122 3 2 1 0827 3.2 kHz Clock

625
μsec

312.5
μsec

1.25
msec40

msec

655.3
sec

Figure 2.6: The timing of Bluetooth system clock.

Figure 2.6 illustrates a basic schematic digram of Bluetooth clock counter with some

important bits and their flipping rates. The Bluetooth clock is an essential input parameter

with respect to the Hop Selection kernel. It is important to mention that the Least Significant

Bit of the clock, namely CLK0, is not involved in the operation of the Hop Selection kernel.

14

2.2.5 Adaptive Hop Selection Facility

The Adaptive Frequency Hopping (AFH) technique was proposed to improve the Bluetooth

performance by avoiding transmission over noisy channels. Because the Bluetooth operates

in the free unlicensed ISM spectrum, there might be some other wireless sources sharing the

same frequency of Bluetooth in the same time period. Therefore, some of the 79 channels

can be noised and should be avoided by Bluetooth to maintain its throughput. The adaptive

Frequency Hopping utilizes some measurements techniques to detect noisy channels and

decide which one is ”Good” and which one is ”Bad”. Good channels can be used by Bluetooth

while bad channels should be avoided. These mechanism of detecting the status of wireless

channels is beyond the scope of this work. In general, the AFH technique provides the Hop

Selection kernel with two essential input parameters, which are:

1. The AFH channel map: is basically a string of 79 cells, where a cell consists of 2-bit.

Each cell holds the channel classification report of the corresponding channel. The

classification includes one of the following status: Good, Bad, Unknown. Based on the

provided report, or the status of each channel, the Hop Selection kernel can decide to

use the channel or not.

2. The parameter N : this parameter represents the number of Good channels that can

be used by the Bluetooth wireless system.

It is obvious that within noisy environment, the number of usable channels will be less

that 79 channels. The minimum number of channels that is allowed for Bluetooth to operate

with is 20 channels. This is the minimum requirement for normal operation of the Bluetooth

wireless system. Thus, we can express the parameter N in terms of the allowed range as

follows:

20 ≤ N ≤ 79 (2.2)

15

The value of the input parameter N plays an important role in the operation of the Hop

Selection kernel. In the next two chapters, we will further analyse the effect of this parameter

on the operation of the Hop Selection kernel.

2.3 Bluetooth Network Topology

The network topology of the Bluetooth wireless network is a decentralized kind of networking

known as the Ad Hoc wireless networking. This scheme is recognizable aspect of the Blue-

tooth system and it is required by the IEEE standard of Wireless Personal Area Networks as

follows[1]: ”The functions and services required by an IEEE 802.15.1-2005 device to operate

within ad hoc networks.”

In general, wireless networking systems can be classified as centralized and decentralized

networking. In the centralized type, the wireless network requires a pre-existing infrastruc-

ture in order to establish the network connection. As an example of such kind of networks:

a group of routers that are connected by a wired network, a mobile network established by

one or more central nodes, called base stations, where nodes rely on a wired backbone infras-

tructure, and even a WiFi access points connected via a wired or a wireless infrastructure

can be a good examples of that. It is obvious that the central node, i.e. the base station, is

strictly distinguishable from other nodes in the network, which are called terminals.

The opposed to this networking scheme is the decentralized networking scheme. In such

networking scheme, connected devices don’t rely on a pre-existing infrastructure. The ad-

hoc wireless network can be classified as a decentralized type of wireless network. In the

decentralized networking system there is no distinguishing features between the participating

nodes. In other words, nodes are not classified as base station or terminals. The connectivity

style of wireless ad-hoc network relies on peer to peer communication, with no need for wired

infrastructure. The Bluetooth wireless adopts the ad-hoc network topology. The Bluetooth

ad-hos networking futures can be summarized as follows [3]:

16

• Infrastructure: there is no underling infrastructure, such as wired network, to sup-

port the connectivity between portable wireless Bluetooth units.

• Central node: this kinds of nodes is not defined in the Bluetooth ad-hoc Network.

• Coordination of communication: there is no such kind of coordination for an Ad

Hoc network. In other words, many Bluetooth ad-hoc networks can exist in the same

area at the same time.

With respect to Bluetooth, the IEEE standard states that an ad-hoc Wireless Personal

Area Network (WPAN) can be formed in a spontaneous manner by a number of Bluetooth

devices, typically from 2 up to 8 devices. And this kind of networks should require no

infrastructure and is limited in temporal and spatial extent [1]. This formation of Bluetooth

devices is called piconet, which is basically a personal area network of Bleutooth devices.

One of the Bluetooth devices participating in a piconet should be the piconet master, which

is the one that initiates the PAN formation. All other participating devices are slaves.

Moreover, a piconet master device controls Hopping sequence pattern of the whole piconet.

This is necessary in order to make all slave devices associated with a piconet hop just like

the piconet master. By this way, the slave devices can capture wireless packets sent by

the master device [3]. More details about hopping sequence selection mechanism will be

discussed in chapter 3. Figure fig:piconet1 illustrates the formation of Bluetooth piconet

network.

17

Piconet master

Piconet slave

Unassociated device

Master

Slave

Figure 2.7: Bluetooth wireless network: piconet formation.

In order for two Bluetooth devices to start communication, the Bluetooth devices should

go through the pairing process. In the pairing stage, Bluetooth devices exchange essential

information for link establishment such as: the encryption status, encryption keys, hopping

sequence synchronization and so one. To synchronize their hopping sequence, the piconet

master sends a special information packets to the slave(s) that contains the master device

MAC address and clock. By using these two parameters, slave(s) can hop along with the

piconet master device and receive transmitted wireless packets normally.

18

Chapter 3

The Hop Selection Kernel: Modeling

and Analysis

We have seen in the previous chapter that the hopping behaviour is totally mastered by

the piconet master device. In the Bluetooth device, there is a built-in hardware called

Hop Selection Kernel. This piece of hardware is responsible for determining the hopping

sequence of the Bluetooth system. Despite the importance of the hop selection hardware,

most of researchers avoid diving into the design details of such box. It is even considered

as ”black box”, such as in [3]. Therefore, analysis the components and understanding the

function of such box are the main goals of this chapter.

We start this chapter by defining the set of input and output of the hop selection kernel

along with internal components of the kernel; this is in section 3.1. In section 3.2, we present

the proposed model for the kernel. This modeling is useful for better understanding the

functionality of the Hop Selection Kernel. In this modeling, we propose dividing the kernel

into three parts: Part A, Part B, and Part C. The function of each part in investigated

in sections 3.3, 3.4, and 3.5 respectively. Examining and analysing the role of each part

is important to understand the vulnerable points in each part, and demonstrate security

threats for the kernel.

19

3.1 Hop Selection Kernel: Internals

The block diagram of the Hop Selection Box and its main input parameters were presented

in section 2.2. In this section, we discuss the internal components of the selection kernel, the

input parameters of each component, and the RF channel table. The kernel internals block

diagram is illustrated in Fig. 3.1:

ADD

X
5
/

A
5

X
O
R

mod 32

1
1
1
.
.
1
1
1
.
.
1

G
G
.
.
.
G
G
G
.
.
G

XOR

5
/

0
2
4
.
.
7
1
3
.
.
7

8

7

ADD

AF_channel_map

mod N

B
4

C
5

D
9

E
7

F
7

Perm5

RF_channel

I
7
/

6

Y2

Y1

K
7
/

5
/

5
/

Figure 3.1: The Hop Selection kernel: internal components

3.1.1 The kernel components

The selection kernel is composed of the following components:

1. ADD block: this is a 5-bit adder. The inputs to this component are A and X; while

the output is the parameter Z ′. This block is followed by mod32 operation.

2. XOR block: there are two inputs for the XOR block: the input parameter B and the

parameter Z ′. This block outputs the parameter Z.

3. Perm5 block: the input for the Perm5 block is the parameter Z; while the output is

the parameter R. The function of this block is controlled by the input parameters: C,

Y1, and D. The definitions of the input parameters will include more details.

20

4. The second ADD block: the inputs to this block are E, F , Y2, and R. The output

of this component is a 7-bit parameter, which we call I (In this work, we name this

segment of the selection kernel as I since it is unnamed by the IEEE Standard [1]). This

block is followed by modN operation; where N is one of the kernel input parameters.

3.1.2 The input parameters

The selection kernel inputs are defined in section 2.2. The kernel components inputs are

mainly derived from: the Bluetooth device MAC address and the device clock. The device

MAC address determines the hopping sequence of the Bluetooth; while the device clock

determines the phase inside the hopping sequence. The input parameters for the kernel

components are defined as follows:

(1) X: a 5-bit binary number that can be directly derived from the device clock bits

{6,5,4,3,2}. Formally, we can express this as follows:

X = CLK6−2 (3.1)

(2) A: a 5-bit binary number that can be obtained by XORing (XOR is the logical bit-

wise XOR operation) the MAC address bits {27,26,25,24,23} with the device clock bits

{25,24,23,22,21}, and it is expressed as follows:

A = MAC27−23 ⊕ CLK25−21 (3.2)

(3) B: a 4-bit binary number that is directly derived from the MAC address bits {22,21,20,19},

and it is expressed as follows:

B = MAC22−19 (3.3)

(4) C: a 5-bit binary number that can be obtained by XORing the MAC address bits

21

{8,6,4,2,0} with the device clock bits {20,19,18,17,16}, and it is expressed as follows:

C = MAC8,6,4,2,0 ⊕ CLK20−16 (3.4)

(5) D: a 9-bit binary number can be obtained by XORing the MAC address bits {18-10}

with the device clock bits {15-7}, and it is expressed as follows:

D = MAC18−10 ⊕ CLK15−7 (3.5)

(6) E: a 7-bit binary number that is directly derived from MAC address bits {13, 11, 9, 7,

5, 3, 1}, as follows:

E = MAC13,11,9,7,5,3,1 (3.6)

(7) F : a 7-bit binary number that can be obtained by multiplying the device clock bits

{27-7} by 16 followed by modN operation, and it is expressed as follows:

F = [16× CLK27−7] mod N (3.7)

(8) Y1: a 5-bit binary number that is derived from the second bit of the device clock, namely

the CLK1 bit. In fact, the clock bit CLK1 is duplicated into 5 bits to be suitable for

5-bit XOR operation with the parameter C. Therefore, Y1 can take one of the following

forms:

Y1 =


00000 if CLK1 is 0

11111 if CLK1 is 1

(3.8)

(9) Y2: a 6-bit binary number that can be obtained by multiplying CLK1 by 32. Therefore,

22

Y2 can take one of the following forms:

Y2 =


000000 if CLK1 is 0

100000 if CLK1 is 1

(3.9)

Note that the first bit of the device clock, namely CLK0, is not involved in the operation of

the hop selection kernel [1].

3.1.3 The RF channel table

The RF channel table and the AFH channel map are shown at the right side of Fig. 3.1.

The RF channel table is used to determine the value of the output parameter K. This table

is basically a register contains the RF channel indices. In other words, the table holds all

possible values of the parameter K, which is defined in equation 2.1. The list of channel

indices is ordered so that all even RF channel indices are listed first and then all odd indices

are listed. This is important to have a 32-hop segment spans over 64 MHz [1].

It is important to consider the role of the input parameter AFH channel map in more

details. This input parameter is associated with the RF channel table. It provides the kernel

with useful information about the status of the Bluetooth wireless channels. By detecting

the noise level, each wireless channels can be classified as:”Good”, ”Bad”, or ”Unknown”.

Good channels can be used by the Bluetooth; while, bad channels should be avoided. The

mechanism of determining the status of a wireless channel is beyond the scope of this work.

The mechanism of calculating the output parameter K can be stated as follows: the kernel

utilizes the parameter I to address the RF channel table; and then the value of the output

parameter K is determined based on the contents of the RF channel table. Note the two

inputs parameters N and AFH channel map are related. That is marking any channel as

”Bad” channel by the AFH channel map leads to decreasing the value of N by one; where

N is the number of Good channels as defined in section 2.2.5. The RF channel table is a

23

constant one-to-one function that maps the value of the parameter I into a specific value at

the kernel output parameter K. This mapping function can be expressed as follows:

I =


k/2 if k is even

bk/2c+ 39 if k is odd

(3.10)

In the following, we will consider the hop selection kernel as it contains no RF channel

register. The parameter I can be considered as the output of the kernel. This is because

the sequence of the parameter I can directly be obtained when the sequence of the kernel

output K is obtained. The revised version of the hop selection is illustrated by the block

diagram of Fig. 3.2.

ADD

X
5
/

A
5

X
O
R

mod 32

XOR

5
/ ADD

mod N

B
4

C
5

D
9

E
7

F
7

Perm5

I
7
/

6

Y2

Y1

5
/

5
/

Figure 3.2: A revised version of the Hop Selection kernel block diagram.

3.2 The Hop Selection Kernel: Modeling

In the previous section, the internal details and the inputs definitions of the hop selection

kernel were discussed. For better understanding of the selection kernel operation, we suggest

partitioning the kernel into three parts: Part A, Part B, and Part C (The word ”Part”

will be associated with kernel partition’s letter to distinguish them from the kernel input

parameters: A, B, and C). The kernel partitioning is illustrated in Fig. 3.3:

24

27,26,25,24,23MAC 22,21,20,19

ADD
6
5
4
3
2

CLK

X
5
/

A
5

X
O
R

mod 32

Part A

+
25,24,23,22,21CLK

Z
5
/

Z
5
/

 8, 6, 4, 2, 0

Part B

+
20,19,18,17,16

11111/00000CLK1

+

18,17,16,15,14,13,12,11,10

15,14,13,12,11,10, 9, 8, 7

+

4
/

4
/

1
/

Part C

13,11,9,7,5,3,1

[16 ×CLK27-7] mod N

100000/000000CLK1

ADD

mod N

B
4

C
5

D
9

E
7

F
7

Perm5

R
5
/

I
7
/

6Y2

Y1

5 5
P13-9 P8-0

'

Figure 3.3: Dividing of the HSK into three parts: A, B, and C.

25

This kind of partitioning is useful since it breaks the problem into smaller parts that each

can be conquered individually. Based on the analysis of each part, we find a security threat

where as eavesdropper can predict the value of the device MAC address and the device clock

seeded inside the kernel. In the following three sections, we discuss the function of each part

of the hop selection kernel.

3.3 Part A of the Selection Kernel

Part A is important for the Bluetooth Hop Selection kernel as it initializes the hopping

sequence generation procedure. The structure of Part A is illustrated in Fig. 3.4, where it

is composed of two principle components as follows:

27,26,25,24,23MAC 22,21,20,19

ADD
6
5
4
3
2

CLK

X
5
/

A
5

X
O
R

mod 32

Part A

+
25,24,23,22,21CLK

Z
5
/

Z
5
/

4
/

4
/

1
/

B
4

'

Figure 3.4: The hop selection kernel: Part A.

(1) The ADD block: is a 5-bit binary adder block. There are two input parameters for

this block, which are: X and A and both are 5-bit binary numbers. This ADD block is

followed by mod32 operation, and its output is the parameter Z ′.

26

(2) The XOR block: is a 4-bit XOR block. There are two inputs for the XOR block: the

parameter Z ′3−0 and the input parameter B; which are both 4-bit binary numbers. The

output of this XOR block is Z3−0.

By reviewing the components definition of Part A, we defined the input parameters to

Part A that are: X, A, and B. On the other hand, the output of Part A is a 5-bit binary

number Z4−0. The most significant bit of Z, namely Z4, can be obtained by forwarding the

most significant bit of Z ′, namely Z ′4 directly to the output Z.

3.3.1 Observations and Discussion

In this subsection, we will try to find a mathematical expression for describing each com-

ponent in Part A; this would be useful for understanding and predicting their performance.

First, we describe the input parameter X that initializes the hopping sequence generation

procedure. The input X provides Part A, and the whole kernel, with a natural counting

sequence. This is true because X is directly derived from the device clock portion CLK6−2.

The natural counting sequence goes from 00000 (≡ 010) up to 11111 (≡ 3110) then resets

again to 00000 (≡ 010). Recall that X is a 5-bit binary parameter.

3 4 5 26 27 28 29 30 31210

Reference point

Figure 3.5: The natural counting sequence provided by the input A.

Figure 3.5 illustrates the natural counting sequence and its reference point where it starts

counting. Next we examine the ADD and the XOR components of Part A.

27

3.3.1.1 The adder block

The operation of this block is ruled by the following equation:

Z ′ = (X + A) mod 32 (3.11)

The ADD block in Part A shifts the natural counting sequence by the value of A parameter.

As an example, assuming the value of A is 5 (≡ 001012) at the moment, then the counting

sequence of the parameter Z ′ would look like: {5,6,...,31,0,1,2,3,4} and it illustrated in Fig.

3.6.

8 9 10 31 0 1 2 3 4765

Reference pointA=5

Figure 3.6: The shifted natural counting sequence of Z ′.

The following observations are important about the adder block:

(1) The input A can be considered as a constant value for a while. The parameter A is

derived from: (a) the MAC address portion MAC27−23 which is constant; and (b) the

device clock portion CLK25−21, which also can be considered as a constant for a while.

The clock portion CLK25−21 requires about 655 seconds to alter. This is a long period of

time when it is compared with the hops generation rate of the Bluetooth. The Bluetooth

generates 1600 hops per second.

(2) The mod32 operation, which follows the ADD, acts as clipper that only keeps the 5

least significant bits of the adder’s result. Any extra bits of the addition operation will

be neglected. This can be justified by the Fact 3.1.

Fact 3.1: A special case of modN operation, if the divider integer N can be expressed as

28

2m, then the modN will be restricted to a logical AND operation with (2m − 1). This can

be expressed formally as follows:

x mod 2n ≡ x ∧ (2n − 1) (3.12)

3.3.1.2 The XOR block

The operation of the XOR block can be defined as a group of functions G as follows:

G = {gi , 0 ≤ i ≤ 15} (3.13)

Group of functions means that for every value of i, gi can be defined as a one-to-one mapping

function from the input space to the output space. This can be formally expressed as:

gi : Z ′ → Z, 0 ≤ i ≤ 15, (3.14)

The input space for the XOR block is the set of all possible values of Z ′3−0, which are

contained in {0, 1, ..., 15}. On the other hand, the output space is the set of all possible

values of Z3−0, that are also contained in {0, 1, ..., 15}. Note that the value of i is the value

of the constant input parameter B. Therefore, the version of the gi function and its effect

can be determined in advanced in case of knowing the MAC address. The XOR basically

conducts permutation on the shifted input sequence provided by Z ′. Another important

fact is, for any XOR operation, the input set, which is the domain, is the same as the

output set, or the codomain. This means the XOR operation does not produce a new set

of elements rather than those defined in the input set. Figure 3.7 illustrates the shifted

counting sequence, shown in Fig. 3.6, under the effect of the XOR when B = 5:

6 3 2 30 25 28 24 27 26745

Figure 3.7: The shifted counting sequence under the effect of the XOR block.

29

As a result, Part A acts as one-to-one mapping function from the input space X to the

output space Z. This can formally be expressed as follows:

PartA : X → Z (3.15)

The input space for Part A is the set of all possible values for the parameter X, namely

the 32 elements contained in the set {0, 1, ..., 31}; and the output space is all possible

values for the parameter Z, that are also contained in the set {0, 1, ..., 31}. This can be

expressed in other words: Part A provides the selection kernel with an input sequence that

is a shifted-permuted version of the natural counting sequence {0, 1, ..., 31} initialized by

the parameter X. The shifting amount and permutation scheme are determined based on

the values of A and B.

3.4 Part B of the Kernel: ”Perm5” Stage

Part B of the Hop Selection Kernel is also known as ”Perm5 stage” (We will use ”Part B”

or ”Perm5 stage” alternatively to refer to the same part of the kernel.) [1].

Z
5
/

 8, 6, 4, 2, 0

Part B

+
20,19,18,17,16

11111/00000CLK1

+

18,17,16,15,14,13,12,11,10

15,14,13,12,11,10, 9, 8, 7

+

C
5

D
9

Perm5

Y1

5 5
P13-9 P8-0

R
5
/

Figure 3.8: The hop selection kernel: Part B.

30

Part B is illustrated in Fig. 3.8. There is only one block in Part B which is the ”Perm5”

block. The input to this block is the parameter Z. And it is controlled by a 14-bit control

word called the control word P . On the other hand, the output of Part B12 is a 5-bit binary

number called R parameter, as shown in Fig. 3.8.

Z0

P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Z1

Z2

Z3

Z4

R0

R1

R2

R3

R4

Figure 3.9: Permutation operation of the Perm5 Block.

For understanding the role of the Perm5 stage, let us examine the internal design of this

block. This block consists of 14 cascaded cells; each cell is responsible for swapping two bits

of the input parameter Z. The internal structure of Perm5 block is illustrated in Fig. 3.9.

The cell can be constructed by using 2 multiplexers devices, each one is a 2× 1 multiplexer.

The cell body is illustrated in Fig. 3.10. Note that each cell is also provided by a control line

”Control”. The status of the control line helps the cell to make a decision about swapping

the incoming bits or not. If the control line is set to ”1” then the cell would swap the

two input bits. Otherwise, the cell would forward the two input bits directly to the output

regardless of their contents. By cascading 14 cells, there would be 14 control lines which

compose the control word P of the Perm5 stage. This control word is denoted as P13−0 and

it is composed of two parts:

31

0

1

0

1

P

Figure 3.10: Diagram of cell body that is constructed by two MUX (2 × 1), [1].

(1) The first part P13−9: a 5-bit word can be obtained by XORing two input parameters:

C and Y1 as in the following equation:

P13−9 = C ⊕ Y1 (3.16)

(2) The second part P8−0: a 9-bit word is directly derived from the input parameter D, as

follows:

P8−0 = D (3.17)

The role of Part B is reordering the 5 bits of the input Z. In other words, it shuffles the

five bits of the input Z, and produces permutation version of Z’s bits. As an example of

Part B operation, when Z=8 (≡ 010002), Part B presents one of the following values:

{(000012), (000102), (001002), (010002), (100002)} (3.18)

By reviewing the architecture of Part B or the Perm5 stage, we defined the input param-

eters to Part B, which are Z and P , and defined the output parameter R.

32

3.4.1 Observations and Discussion

Just like Part A, we start the analysis by finding a mathematical expression for describing

the behaviour of this Part. This kind of description is useful for better understanding the

effects of Part B.

3.4.1.1 Mathematical description

As it is mentioned previously, Part B produces a permutation version of the input bits. This

means the codomain set of elements is the same as the domain set of elements; there is no

new elements are added by Part B. Based on the experimental results, we found that the

Perm5 stage is a one-to-one mapping function from the input space Z to the output space

R. The version of the mapping function is determined by the value of the control word P .

Therefore, Part B represents a group of functions Pf as follows:

Pf = {Pfj , 0 ≤ j ≤ 16383} (3.19)

The term ”Group of Functions” means that for each value of j, there is a Pfj that can be

defined as a one-to-one mapping function from the input space to the output space. This

can be formally expressed as follows:

Pfj : Z → R, 0 ≤ j ≤ 16383 (3.20)

The input space for Par B is the set of all possible values of the parameter Z, namely {0,

1, ..., 31} and the output space is the set of all possible values of R which are contained in the

same set {0, 1, ..., 31}. Also it is important to note that the value of j is the instantaneous

value of the control word P . Note there are 16384 possible values of the control word P

since 214 ≡ 16384.

33

3.4.1.2 The effect of the device clock on Part B

In order to study the performance of Perm5 stage, we have to understand the flipping rates

of some bits of the device clock. The ”flipping rate” refers to the required period of time for

a bit, or a sequence of bits, to alter its value. With respect to Part A, The behaviour of Part

A is directly affected by the device clock CLK6−2 and Part A presents a different value on

its output if the input value of the clock portion CLK6−2 is changed. Part B is affected by

the clock portion: CLK20−7 and CLK1.

As we mentioned previously in Chapter 2, there is a specific frequency for each bit of the

device clock. In other words, the flipping rate is different for each bit, or part, of the device

clock. We can list the the required time for one flip for some important parts of the device

clock as follows:

(a) One flip of CLK1 = 625 µ second.

(b) One flip of CLK6−2 = 2× period of CLK1 = 1250 µ second.

(c) One flip of CLK20−7 = 26 × period of CLK1 = 40000 µ second.

(d) One flip of CLK25−21 = 220 × period of CLK1 = 655360000 µ second.

Because CLK1 flips twice faster than the clock portion CLK6−2, we can conclude that Part

B applies two different control words for each element presented by the input Z. The first

control word, which we denote as P , is produced when the value of Y1 is 00000. On the

other hand, the second control word, denoted as P ′, is produced when the value of Y1 is

11111. These two values of Y1 affect the first part of the control word P . This is expressed

as follows:

P = (P13−9 ⊕ 00000)|P8−0, (3.21a)

P ′ = (P13−9 ⊕ 11111)|P8−0, (3.21b)

34

This important case is illustrated in Fig. 3.11.

1 1 00 . .

P' control word

P13 P0. .P12P11P10
0

P9
1

1 1 11 1CLK1

1 1 00 . .

P control word

P13 P0. .P12P11P10
0

P9
1

0 0 00 0CLK1

Figure 3.11: Z’s elements are manipulated by two different control words.

For this reason, the input sequence supplied by Z contains 32 elements while the sequence

at the output R contains 64 elements. This is true because each element in the input sequence

Z is mapped into two images at the output sequence R. This is illustrated in Fig. 3.12.

10222 4 853 . . .

Z sequence

.

Z1 Z32

R sequence

R1 R64

Figure 3.12: Z’s elements are mapped into two images in the sequence of R.

It is important to notice that we have two elements are excepted from the effect of Part

B. These two elements are: 0 and 31. The output sequence of Part B contains the following

pairs of elements: {0,0} and {31,31} according to the occurrence of 0 and 31 respectively.

This can be justified as follows: the first element 0 is not affected by the operation of Part B

because the binary representation of the input element 010 is 000002; this means permuting

these five bits does not produce any new element, i.e. the output will stay 0 whatever the

value of the control word P . The same argument is true with respect to the input element

3110 ≡ 111112. This is illustrated in Fig. 3.13.

0 0 31 31 27 2941
R1 R2 Rm Rm+1 Rn Rn+1 R63 R64

.

Figure 3.13: The unaffected elements 0 and 31 within the sequence R.

35

In general, we can state that Part B is a one-to-one mapping function from the input

space Z to the output space R. This is expressed as follows:

PartB : Z → R (3.22)

The input space, or the domain, is the set of all possible values of the parameter Z that are

the 32 elements contained in the set S32 = {0,1,2,....,31}. On the other hand, the output

space R has 64 elements that are all derived from the set S32. The elements of the set S32

are duplicated in the output space.

3.5 Part C of the Kernel

Part C is the third part of the Hop Selection Kernel. This part is illustrated in Fig. 3.14.

Part C

13,11,9,7,5,3,1

[16 ×CLK27-7] mod N

100000/000000CLK1

ADD

mod N

E
7

F
7

R
5
/

I
7
/

6Y2

Figure 3.14: The hop selection kernel: Part C.

Part C consists of one adder block ADD, which is followed by modN operation, where N

36

is the number of ”Good” channels that is determined by the Adaptive Frequency Hopping

(AFH) facility. The inputs to the ADD block of Part C are:

(1) E: a 7-bit binary number that is a constant since it is derived from the MAC address.

(2) F : a 7-bit binary number that is ruled by equation 3.7.

(3) Y2: a 6-bit binary number that is rules by equation 3.9

(4) R: a 5-bit binary number supplied by Part B of the selection kernel.

By defining the input parameters to this block, we actually defined the inputs for Part C of

the kernel. On the other hand, the output of the this adder block is K; this is, which is also

the output of the kernel. The parameter I is a 7-bit binary number.

3.5.1 Observations and Discussion

Since Part C has one adder block ADD followed by modN operation, then it is formally

expressed as follows:

I = [E + Y2 + F +R]modN (3.23)

The effects of Pact C can be explained by the following points:

1. The input parameter R provides a sequence of 64 elements. Each element can range

from 0 (≡ 000002) to 31 (≡ 111112).

2. The role of parameter Y2 is to span these incoming elements over 64 MHz. It simply

adds 0 to odd elements of R and adds 64 to even elements.

3. The parameters E and F try to redistribute the sequence again over 79 channels. Note

the value of the parameter F is changed when the input X is rested to 0. In other

words, for a complete 64 elements presented by the R parameter, the value of F does

not change.

37

4. The modN follows the adder ADD block basically acts as clipper that keeps the addition

result within the range of from 0 to 78.

Part C is the interface of the selection kernel and outputs the final hopping sequence. So

monitoring and analysing the outgoing sequence of this part is the only way to predict the

future behaviour of the selection box. Part C can also be seen as the guard of the kernel

because breaking the modN operation seeded in this part is not trivial. Therefore, the first

step to crack the Hop Selection kernel is to attack Part C. At the first glance, this mission

seems to be hard but we will see in the next chapter how to deal with it.

In chapter 3, we discussed the analysing and modeling of the selection kernel. We started

by defining the internal components of the kernel. Then we presented our proposed method

for dividing the kernel; that is partitioning the kernel into three parts. This analysis is

important for better understanding the kernel function. Afterward, we discussed the function

of each part individually. This included finding a mathematical expression that rules the

kernel parts. This analysis steps are considered as the basis for the next chapter where we

discuss the kernel attacking method.

38

Chapter 4

The Hop Selection Kernel: Possible

Attacking Method and Simulation

In chapter 3, the hop selection kernel was modeled and analysed. The modeling strategy

suggests dividing the kernel into three partitions: A, B, and C. The suggested model is a

kind of breaking the original problem into three smaller problems that each can be treated

separately. In this chapter, we relies on the analysis and the kernel model proposed in the

previous chapter to develop a suitable method for attacking individual parts. This leads to

a systematic method for cracking the whole kernel operation. Cracking the kernel basically

means revealing the numerical value of the device clock, hence, predicting the future hopping

sequence is possible.

The suggested methods for cracking the kernel parts are based on some useful results

obtained by Spill [6] who showed how the device MAC address and the first six bits of the

clock, namely the clock portion CLK6−1, can be obtained.

In sections 4.1, the proposed method for cracking Part A is presented. Removing the

effects of Part A is discussed in this section. Cracking Part B of the kernel is discussed in

section 4.2. The P control word is targeted. The cracking method proposes constructing a

table all possible outcomes of Part B. This table is constructed by considering all possible

39

incomes to Part B. Then monitored patters can be compared against the table to extract

the P control word. In section 4.3, a suitable method for cracking Part C is presented. The

proposed strategy invest wireless jamming to reduce the value of the input parameter N

into 32. by this way, the modN operation seeded in Part C follows Fact 3.1 and can be

cracked. In section 4.4, we review a simple scenario that shows a general idea of cracking the

kernel in total. In section 4.5, the simulation software and the implementation challenges

are discussed. We also present useful solutions that can be adopted to overcome the stated

implementation difficulties.

4.1 Possible Method for Attacking Part A

In chapter 3, we discussed the operation of Part A. This part shifts and permutes the natural

counting sequence generated by the input parameter X. The shifting and permutation

processes are conducted via the ADD block and the XOR block respectively. The amount

of shifting is determined based on the value of input parameter A to the ADD block. On

the other hand, the permutation function is determined based on the value of the input B

of the XOR block.

The main goal of attacking Part A is to expose the values of the input parameters: A

and B. This would provide more information about the input sequence supplied by Part A

to other parts of the Kernel; in other words, we can predict this kind of sequence. To be

more specific, we should be able to answer the following questions in terms of breaking Part

A:

(a) How the natural counting sequence of the input X is shifted by the ADD block? What

is the value of input parameter A?

(b) How the shifted sequence has been permuted by the XOR block? To answer this question,

the value of the parameter B should be known.

40

4.1.1 Discussion

In chapter 2, we discussed the the results of Spill [6]. The paper proposed a method to extract

the device MAC address and the first six bits of the clock. Hence, these two parameters are

known by the literature [6]. This leads to the following facts:

(i) The value of the input B is known since it is part of the MAC address.

(ii) The value of the input parameter X associated with each hop of the sequence is known

as well.

We continue to calculate the value of the input parameter A. To keep things simple, consider

the Hop Selection kernel consists of Part A only. The next step is to monitor the fluctuation

of the output parameter Z, for a specific period of time and recording the outgoing sequence

of hops. Then, the value of the input parameter A is calculated by applying the following

equations:

Z ′3−0 = Z3−0 ⊕B, and Z ′4 = Z4 (4.1)

And then,

A = Z ′ −Xi, 0 ≤ Xi ≤ 31 (4.2)

Note that by revealing the value of the input A, the value of the clock portion CLK25−21

can be calculated by reversing equation 3.2 as follows:

CLK25−21 = A⊕MAC27−23 (4.3)

The value of this portion of the clock is important in order to follow the hopping sequence

for a long time period.

Because the Hop Selection kernel has two more parts, namely Part B and C, the previous

assumption of considering Part A only is not the practical one. We gradually progress by

adding one more part, i.e. Part B, and see what we can do.

41

4.2 Possible Method for Attacking Part B

In chapter 3, we discussed the function of Part B. The control word P of this part is derived

by XORing the clock portion CLK20−7 with some portions of the device MAC address. Since

the clock portion CLK20−7 is naturally counting from 0 up to 16383, then the possible values

of the control word P lies in the range [0,16383]. The sequence supplied by Part A, was also

discussed in chapter 3. This sequence is a shifted permuted version of the natural counting

supplied by the input parameter X. Moreover, the supplied sequence by Part A does not

change unless the clock portion CLK20−7 counts from 0 up to 16383 and reset again to 0.

One important fact about Part B is that the sequence of 32 input elements is considered as

a sequence of 32 pairs; where the elements of each pair are identical. The role of Part B is

to break the bounded pairs and redistribute them over the set of 64 elements at the output

R. The elements of each pair would be scattered in a pseudo random fashion depending on

the value of the control word P .

By attacking Part B of the Hop Selection kernel, we mainly aim to reveal the value of

the control word P and then extract the clock portion CLK20−7 of the targeted device. The

proposed method for attacking Part B can be described as a pattern recognition procedure.

We first consider all possible sequences that can be presented by the output parameter R.

This can be conducted by considering all possible input values of Part B, the parameter Z

and the control word P , and construct a table of all possible hopping sequences at the output

R. We denote the constructed table as T . This scheme is similar to the idea of building a

truth table that holds all possible outcomes against all possible incomes of a specific logical

expression. Second we collect a sequence of hops which is considered as a ”pattern”. The

word ”pattern” refers to a hopping sequence of 64 elements presented by the output R when

Part B is fed by 32 elements from Part A. Third we look up the table T and find the matching

pattern(s). At this point, the features of the table T are clear: it has 16384 rows and each

row holds a pattern of 64 elements. Each row reflects a specific value of the clock portion

42

CLK20−7. The table is illustrated in Fig. 4.1:

1 2 2 3 29 29 30 30 31 31100

4 2 16 29 15 30 27 31 31100
2 4 16 18 27 15 30 29 31 31100
16 8 10 17 23 30 29 15 31 31200

20

4 2 16 29 15 30 27 31 31100 20

2 4 16 18 27 15 30 29 31 31100
16 8 10 17 23 30 29 15 31 31200
4 2 16 29 15 30 27 31 31100 20

. . . .

. . . .

. . . .

. . . .

. . . .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

. . . .

. . . .

.

.

P\X

16383
16382
16381

5
4
3
2
1
0

.

.

.

Figure 4.1: All Possible Outcomes of Part B: the table T .

For attacking Part B, we reassemble Part A and B together and follow the steps of:

(1) Building the table T , as shown in Fig. 4.1.

(2) Monitoring the output parameter R and collecting some hopping patterns. This is

illustrated in Fig. 4.2.

(3) Comparing each collected pattern against the table T and reporting a list of candidate

values for the control word P . This is illustrated in Fig. 4.3.

(4) Filtering the reported lists by dropping false values. This is illustrated in Fig. 4.4.

. . . .

. . . .16 8 10 17 23 30 29 15 31 31200

Collected patterns

Pattern1
Pattern2

2 4 16 18 27 15 30 29 31100 31

Figure 4.2: Two hopping patterns are collected online.

43

L2
L1

.
163824

Lists of candidate values for P control word

L1 is collected by comparing pattern1
L2 is collected by comparing pattern2

.
163813

. . . .

. . . .

16 8 10 17 23 30 29 15 31 31200

. . . .16382

4
hit P=

16 8 10 17 23 30 29 15 31 31200

Comparing pattern1 against the table

.

Figure 4.3: Comparing each pattern with the table T and listing candidates.

. . . .

. . . .74 88 93 99 1638150203
L1
L2

73 87 92 98 1638249214

93 99887450Filtered list

. . . .C4 C5 C6 C7 CnC3C2C1

Figure 4.4: Filtering candidate lists by dropping false values.

By repeating the steps 2-4, the number of candidates shrinks into one element that is the

real value of CLK20−7. The list of candidates is reduced by dropping false values from the

candidates list. The criteria that we adopt for dropping false values bases on the following

fact: consecutive hopping patterns of the Bluetooth device are produced by consecutive

values of the clock portion CLK20−7. This is why the values marked with red cross are

dropped, as shown in Fig. 4.4.

4.2.1 Discussion

Attacking Part B is not as simple as it looks. However, we have to consider the following

issues:

• What is the suitable sequence for the parameter Z? In order to construct the table T ,

a specific sequence should be considered for the parameter Z.

• How can we recognize a complete pattern of 64 elements? Assuming a sequence of two

or three hundreds of hops is just collected, this does not ensure knowing the starting

44

point of each hopping patterns.

In the proposed setup of the selection kernel, Part A and Part B are reassembled together.

This means that only the parameter R can be monitored. Note hopping pattern elements

presented by the parameter R are all affected by the mapping function of Part B except two

elements: 0 and 31. Hence, the value of the input A can be extracted because the value

of the parameter X, that is associated with each hop, is given. Moreover, the device MAC

address is also given. Up to this point, we can proceed with one of the following two options:

(1) Construct the table T by calculating the parameter Z. This can be conducted by

emulating the operation of Part A. This option requires the table T to be constructed online

before comparing any collected patterns along the table. Online construction of the table T

is a time consuming job.

(2) The other option is to neglect the effects of Part A and consider a natural counting

sequence instead of the parameter Z. In this case, the table T can be constructed offline.

However, the collected patterns should to revised by removing the effects of Part A before

they can be compared with the table. Removing the effects of the ADD and XOR blocks of

Part A in the execution time is much easier than constructing the table T .

It is obvious that (2) is the option when the table T is constructed. By considering option

(2), Part A would implicitly be cracked first. The process of revising collected patterns is

illustrated in Fig. 4.5.

0 2 1 31 27 30 29 15048

Removing the effects of Part A

8 31 30 23216
31
31 29 1500 1

0 2 1 3127 30 29 150 48

8 3130 23216
31
3129 1500 1

Pattern1
Pattern2

Pattern1
Pattern2

Figure 4.5: Revising two collected patterns by removing the effects of Part A.

45

With respect to the issue of recognizing 64-element patterns when several hundreds of

hops are collected, the given values of the parameter X to recognize 64-element patterns.

When the value of the input X equals 0, this means the starting point of the pattern; while

the value 31 refers to the end point of the pattern.

The proposed steps to crack Part B are modified to the steps of:

(1) Building the table T using natural counting sequence instead of the parameter Z.

(2) Monitoring the output parameter R and collecting some hopping patterns.

(3) Revising the collected patterns by removing the effects of Part A.

(4) Comparing each of the revised patterns against the table T and reporting a list of

candidate values for the control word P .

(5) Filtering the reported lists by dropping false values.

4.3 Possible Method for Attacking Part C

In chapter 3, we discussed the function of Part C of the selection kernel. This part contains

single adder block ADD. The inputs to the ADD block are: E, F , Y2, and R; while the

output paramter is denoted as I. The role of Part C is to span the 64 elements of each

hopping pattern over 64 MHz. Moreover, Part C redistribute the incoming elements over

the defined space of 79 channels.

The main goal of attacking Part C is to expose the hopping patterns supplied by the

input parameter R. The parameter R is basically the output of Part B. By extracting the

pseudo random numbers supplied by the parameter R, we can apply the proposed methods

for attacking Part A and Part B of the selection kernel. Cracking Part C is complicated

because of the modN operation seeded in Part C of the kernel. The parameter N represents

the number of ”Good” channels that can be used by the Bluetooth. There are two modN

46

operations in Part C: the first one follows the ADD block; while the second one is involved

in the calculation of the parameter F .

4.3.1 Discussion

The proposed method to to crack the modN operation seeded in Part C is to tune the

parameter N value to be in the form of 2m. In this case, the modN follows the principle of

Fact 3.1. In the range of the parameter N , there two possible values operation that we can

consider: 32 and 64. In this work, we adopt the value of 32. Wireless jamming is a useful

tool that can be invested to tune the value of N down to 32. In the ideal case, jamming

47 channels of the 79 channels defined for the Bluetooth, the value of the parameter N is

reduced from 79 down to 32. The wireless jamming is illustrated in Fig. 4.6.

Time Slots

2402 MHz -

Bluetooth wireless packet
2480 MHz -

t1 t2 . . . tn625
μsec

2434 MHz -

47 channels are jammed

Figure 4.6: Frequency Hopping behaviour Bluetooth under jamming effect.

By tuning the value of the parameter N into 32, the inputs (E,F ,Y2) and the output I of

Part C will be affected in the following ways:

(1) The input parameter E in Part C will not be affected by the value of N because it is a

constant derived from the device MAC address.

(2) The least significant bits F4−0 of the parameter F will be considered. Recall that the

modN operation involved in calculating the value of F follows the Fact 3.1 too. Moreover,

47

the parameter F will be restricted to two values: 0 and 16. This because the fifth bit

F4 of the parameter F is affected by the clock bit CLK7, see equation 3.7. These two

values of the parameter F are added to consecutive patterns alternatively.

(3) The parameter Y2 is neglected because this parameter affects the sixth bit of the output

parameter I.

(4) The output of the ADD block will be shrunk to 5 bits only. In other words, the least

significant bits I4−0 of the parameter I will be considered.

Based on this argument, we can conclude that only two values are added to consecutive 64-

element patterns of the parameter R. These two values are: E+F (0) and E+F (16). Despite

of this addition, the unaffected values of Part B {0,31} can still be detected. Consecutive

collected patterns will be in one of the following forms: A or B. Both forms are illustrated

in Fig. 4.7.

E+16
E+0 31+0E+0

31+E+16. . . .E+16
Pattern1
Pattern2

31+0
31+E+16

. .

. .
. .
. .

. .

. .

(A)

E+16
E+0 31+0E+0

. . . . 31+E+16

. . . .
E+16Pattern1

Pattern2 31+0
31+E+16. .

. .
. .
. .

. .

. .

(B)

Figure 4.7: Two possible form of the collected patterns from the output I.

By removing the effects of these two values, we get pure hopping patterns as they are

presented by the output parameter R. This is illustrated in Fig. 4.8.

48

E+16

0 2 1 31 27 30 29 15048

8 31 30 23216
31
31 29 1500 1

Pattern1
Pattern2

E+0 31+0E+0

31+E+16. . . .E+16
Pattern1
Pattern2

31+0
31+E+16

. .

. .
. .
. .

. .

. .

. .

. .

E+F(0) is removedE+F(16) is removed

E+F(0) was added E+F(16) was added

Figure 4.8: Removing the effects of Part C.

Up to this point, Part C can be cracked by following the steps of:

(1) Jamming 47 channels of the Bluetooth space; and this implies reducing the parameter

N value down to 32.

(2) Monitoring the output parameter of the kernel, which is I, and reporting some hops of

the Bluetooth system.

(3) Removing the effects of the parameters E and F from the collected patterns.

4.4 Simple Scenario for Attacking the Kernel

Assuming an ideal situation where two Bluetooth devices are paired and some files are being

exchanged between them at the moment, as illustrated in Fig. 4.9.

The proposed attacking method follows the steps of:

(1) Constructing the table T as shown in Fig. 4.1. This is constructed offline.

(2) Starting the attack by jamming 47 channels and in order to leave 32 channels for the

Bluetooth to hop over. This is shown in Fig. 4.6.

(3) Collecting some hopping patterns and removing the effects of Part C as shown in Fig.

4.7.

49

Bluetooth wireless packet

User1 User2

Figure 4.9: Two Bluetooth devices are exchanging wireless data.

(4) Calculating the values of the input parameters: A and B; and revising the patterns by

removing the effects of Part A as shown in Fig. 4.5.

(5) Comparing each revised pattern with the table T and reporting lists of candidate values

of the control word P as shown in Fig. 4.2 and Fig. 4.3 respectively.

(6) Dropping false values of the candidates as shown in Fig. 4.4.

(7) Repeating steps 5 and 6 until a unique value of the control word P is found.

(8) Removing the effect of jamming, stated in step 2.

(9) Emulating the Hop Selection kernel operation by using the revealed values of the MAC

and the clock of master device; and this means hopping along with targeted Bluetooth

and capturing its wireless packets is possible.

4.5 Simulation and Implementation Challenges

In this section, we discuss the simulation environment and the implementation challenges of

the proposed method for cracking the selection kernel. The simulation program is important

because it helps to:

(1) Have better understanding for the Hop Selection kernel operation.

50

(2) Validate the proposed method for cracking the selection kernel.

(3) Evaluate the performance of the proposed algorithm.

(4) Specify the implementation challenges of such algorithm.

The simulation software is constructed in Matlab R2010a environment. The program mainly

consists of three components:

(a) The Hop Selection kernel: this software package imitates the operation of the selection

kernel in terms of generating pseudo random hops. The inputs to this component are:

the device MAC address as an integer, the device clock as an integer, the parameter N as

an integer value, and finally an integer represents the number of hops to be generated.

The output of this software component is a list of integers representing the hopping

pattern of the kernel.

(b) The table T builder: this software component of the program is responsible for con-

structing the T table. It has no inputs; it just returns the table T .

(c) The Cracking Program: this software component represents the implementation code of

the proposed attacking method as described in section 4.4.

4.5.1 Implementation Challenges

The discussed attacking method relies on some ideal considerations, such as: the availability

of full CPU speed and large amount of cache memory for the proposed attacking method.

Because this is not the practical situation, we mainly aim to reduce the required time to

crack the hopping sequence of a targeted Bluetooth system. We also concern about the

computational resources required for this kind of attack. This includes: the CPU speed and

the required amount of memory. In general, the implementation challenges

(A) Constructing the table T is a time consuming issue. It is possible to constructed the

table T offline?

51

(B) The size of the table T requires more than million of bytes; is it always possible to host

such table on commercial hardware devices with limited amount of memory space?

(C) The proposed algorithm for searching the table is inefficient one; can we make it faster?

(D) In worst cases, how many patterns should be collected to extract a unique value for the

control word P? Collecting large number of hops may not be always possible.

Regarding (A), which is about the construction of the table T . This issue is discussed

in section 4.2. We showed that the table T can be constructed offline by:

• Considering the natural counting sequence, such as the supplied sequence by the input

parameter X, instead of the parameter Z.

• Revising collected patterns by removing the effects of Part A before they can be com-

pared against the table T .

With respect to (B), the size of the table T is 16384 × 64 = 1048576 bytes (1 byte per

element). Because of memory limitations in most commercial hardware, the size of such

table is a problem. We propose a solution that relies on some statistical analysing about the

resident data in the table T . The statistics show that the table T contains many redundant

patterns, or redundant rows. Hence, we compress the table T into two smaller tables that

are: Tc and Ti. Figure 4.10 shows these two tables as (A) and (B) respectively.

52

4 2 16 29 15 30 27 31 31100
2 4 16 18 27 15 30 29 31 31100
16 8 10 17 23 30 29 15 31 31200

20
. . . .
. . . .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

T_c Table

R960

R3
R2
R1

.

.

.

.

1638352
1163823
2163834

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

T_i Table

R960

R3
R2
R1

.

.

.

.

. .

. .

. .

(A)

(B)

Figure 4.10: Compressing the table T into two smaller tables: Tc and Ti.

Each row in the table Tc represents a unique pattern of the original table T . On the other

hand, the equivalent row in the table Ti represents a list of rows numbers where the pattern

is located in the original table T . As an example, consider the third pattern in the table Tc.

The equivalent row in the table Ti, i.e. the third row, holds a list of rows numbers where the

third pattern is located in the original T table. The memory space required to host each of

the tables Tc and Ti is 960 × 64 (61440) and 960 × 30 × 2 (57600) respectively. By using

such compression method, the following optimizations are gained:

(1) The required memory space to host the tables Tc and Ti is 61440 + 57600 = 119040

bytes. The compression ratio is 119040/1048576 × 100%= 11.35%. This much better

than the space required to host the original table T .

(2) The search algorithm is optimized as well. The new compressed table Tc requires 960

pattern comparisons in worst case; and a list of rows numbers is directly obtained from

the table Ti. While, the table T requires 16384 pattern comparisons in order to collect

53

a list of rows numbers.

(3) The table Tc and Ti are constructed offline. This means constructing these two table is

not a time consuming issue.

Referring to (C), which is about the search algorithm. The proposed method of com-

pression introduced the table Tc, which is the source of patterns that should be searched for

patterns matching. This table holds static data that does not change in the execution time.

Hence, the Perfect Hashing Algorithm can be employed to optimize the search algorithm.

The perfect hashing algorithm process is illustrated in Fig. 4.11.

4 2 16 29 15 30 27 31 31100
2 4 16 27 15 30 29 31 31100
16 8 10 23 30 29 15 31 31200

. . . .

. . . .

. . . .

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

T_c Table

R960

R3
R2
R1

.

.

.

.

2
3
4
.
.
.

T_c Hashed

R960

R3
R2
R1

.

.

.

.

Perfect
hashing

Figure 4.11: Calculating the hash value for each row in the table Tc.

In order to adopt the perfect hashing technique, we have to:

(1) Construct a new table, which we denote as Tc − hashed. This table is a hashed version

of the table Tc.

(2) Each collected pattern should be hashed before it can be compared against the table

Tc − hashed.

The table Tc − hashed is constructed offline by calculating the hash value for each row in

the table Tc. The hash value should be in the range of [1-960]. The size of the Tc − hashed

is 960 × 2=1920 bytes. The new memory space required is 119040 + 1920 = 120960 bytes.

It is clear that the efficiency of the search algorithm is optimized because it requires O(1)

54

operation to locate a pattern in the table T and load the equivalents list held by the table

Ti.

The required number of patterns to extract a unique value for the control word P is a

challenge, as stated in (D). It is important to know the max number of patterns required

to extract a unique value for the P control word. The statistical analysis that we conduct

using the table Ti shows that in worst cases, 32 patterns should be collected to extract one

value for the control word P . In best cases, 2 patterns are good enough to achieve this.

The curves plotted in Fig. 4.12 represent the relation between the number of patterns to be

collected and the number of candidates for the control word P in best and worst cases.

N
u

m
b

e
r

o
f

ca
n

d
id

a
te

 v
a
lu

e
s

fo
r

P

Number of patterns to be collected

0-- - - - - - - -

5-

10-

15-

20-

25-

30-

0 5 10 15 20 25 30 35

Best case

Worst case

Figure 4.12: Maximum and minimum number of required patterns to find P .

It is clear that collecting 32 patterns (2048 hops) is impractical all the time. To deal

with this problem, we propose a solution that relies on the curves plotted in the graph of

Fig. 4.12. The red color curve represents the required number of patterns in worst case.

Regarding the red curve, observe the period from 4 to 5 on the x-axis. Increasing the number

55

of patters to 5 helps by dropping 2 candidates values out of 10. This reduction does not

exceed 50% of the total number of candidates. The same argument holds for the periods of:

8-9, 16-17, and 32-33. Moreover, the percentage of reduction does not exceed 50% over all

the period from 3 up to 32 on the x-axis. We base on this fact to deal with the problem.

Our proposed method is explained by the following example. Consider the case when the

number of patterns is 4 and the number of candidates is 10. And we don’t want to wait until

a new pattern is collected and false values are dropped as illustrated by Fig. 4.13 (A). The

following steps are applied to follow the Bluetooth hopping sequence by using three earliest

collected patterns:

4 2 16 29 15 30 27 31 31100
2 4 16 18 27 15 30 29 31 31100
16 8 10 17 23 30 29 15 31 31200

20

2 4 16 18 27 15 30 29 31 31100

. . . .

. . . .

. . . .

. . . .

. . . .16383

74
50
22
5

16 8 10 17 23 30 29 15 31 31200
16 8 10 17 23 30 29 15 31 31200
16 8 10 17 23 30 29 15 31 31200
16 8 10 17 23 30 29 15 31 31200

88
93
99

(C)

22

. . . .

. . . .74 88 93 99 16383505
L1
L2

73 87 92 98 1638249214
. . . .C4 C5 C6 C7 CnC3C2C1

(B)

. . . .

. . . .74 88 93 99 1638150203
L1
L2

73 87 92 98 1638249214

93 99887450 Filtered list

. . . .C4 C5 C6 C7 CnC3C2C1

(A)

Figure 4.13: Using fewer patterns to hop with Bluetooth.

(1) Increment numerical values in the list of candidates by one, as illustrated by Fig. 4.13

(B).

(2) Load the equivalent patterns from the table Tc, as illustrated by Fig. 4.13 (C).

(3) Follow the dominating hopping pattern in blue color shown in the table of Fig. 4.13 (C).

56

We can conclude that 3 patterns are good enough to follow the frequency hopping of the

targeted Bluetooth.

In this chapter, we discussed the proposed attacking method for for the hop selection

kernel. Attacking each part of the kernel were explained individually. In sections 4.1, 4.2, and

4.3 the attacking methods of Part A, B, and C were discussed respectively. The discussion of

the attacks methods include show the main parameters that are intended to be exposed from

individual parts. In section 4.4, a simple attacking scenario was discussed to demonstrate

the attacking process of the whole kernel. In section 4.5, the main implementation challenges

were reviewed with some proposed solutions to overcome the challenges.

57

Chapter 5

Conclusion and Future Work

The Bluetooth technology is an emerging communication standard that is suitable for short

range wireless connections. This wireless system is characterized by: low cost, low power

consumption, and simplicity of use. Because of its attractive features, the Bluetooth wireless

system becomes one of the popular and widely used technologies. Security and confidentiality

of wireless data is one of the central issues that wireless systems developers concern about.

The Bluetooth system relies on two techniques to maintain the confidentiality of wireless

packets: first the encryption and second the Frequency Hopping technique. Bluetooth utilizes

a stream cipher, called E0, to encrypt wireless packets. The cryptanalysis of this cipher is

studied thoroughly in the literature. On the other hand, the Frequency Hopping technique

is rarely studied by researchers. The hopping technique does not add any kind of encryption

to wireless packets; however, it enables the Bluetooth device to access wireless channels

in a pseudo random fashion. For each wireless packet, a wireless channel is specified for

transmission.This kind of random selection, makes it difficult for an attacker to predict the

next channel to be utilized by Bluetooth. Hence, capturing wireless packets is not a trivial

job.

In this work, we mainly focused on the Frequency Hopping mechanism and specifically

examined the Hop Selection kernel that masters the hopping behaviour of Bluetooth. We

58

analysed the kernel hardware by partitioning it into three parts. This kind of modeling is

essential to understand the selection kernel operation. Based on this modeling scheme, we

propose an attacking method for the Hop Selection kernel. The propose method shows the

possibility to expose the value of the Bluetooth clock that is used to predict its hopping

sequence. Therefore, capturing wireless packets is possible.

In chapter 2, we presented a useful background and definitions about the Bluetooth

wireless system. This background is necessary the analysis of the Hop Selection kernel that

is presented in chapter 3. In chapter 2, we discussed the spectrum of the Bluetooth radio

system, the frequency range, channels definition, and bandwidth spacing. The definition of

the Bluetooth Hop Selection kernel is presented as well. The two essential parameters for

the selection kernel are defined. The Bluetooth network topology is reviewed in chapter 2.

In chapter 3, we analysed the Hop Selection kernel hardware. We started by defining

the internal components of the kernel and the input parameters for each constituting com-

ponent. To understand the kernel function, we propose partitioning the kernel into three

parts. This modeling scheme is useful for understanding the role of kernel parts individually.

Furthermore, we mathematically expressed the operation of each part.

In chapter 4, we presented the proposed attack for the Hop Selection kernel. The proposed

attacking method relies on the kernel analysis of chapter 3. After discussing the possible

attack for each part of the kernel, we presented a simple scenario that showed how to crack

the whole selection kernel. Cracking the selection kernel exposes the internal value of the

Bluetooth clock. Which can be exploited to predict the Bluetooth hopping sequence and,

hence, capturing wireless packets. In chapter 3, the simulation software is discussed. This

software is constructed in Matlab environment. The implementation challenges and the

proposed solutions were discussed at the end of chapter 4 as well.

59

5.1 Future Work

With respect to the future work, we aim to further investigate the following topics:

5.1.1 Implementing the proposed attacking on real hardware

In order to implement the proposed attacking method on real hardware, there are two main

options: (1) Implementing the propose method using some experimental electronic devices

that are available in the laboratory. An example of such device is the Universal Software

Radio Peripheral (USRP) device. The available models are: USRP-1 and USRP-N200. The

second one is capable of monitoring up to 50 MHz of channels bandwidth; and this makes

it a good option for jamming and monitoring wireless channels. The operation of the USRP

devices can efficiently mastered by the GNU radio software package.

(2) The second option is to use some commercial hardware such as the Ubertooth device.

The primary analysis show that at least 4 Ubertooth devices are required to monitor part

of the Bluetooth hopping sequence. Then, the monitored sequences can be invested by the

proposed attacking method.

5.1.2 Investigating the possibility of jamming 15 channels of the

Bluetooth space

The proposed attacking method suggests reducing the value of the input parameter to 32.

This is conducted by jamming 47 channels of the defined 79 channels for Bluetooth. The 32

is preferred number for our attacking method, since it can be expressed in the form of 2m.

There is another useful number that can be expressed in the form of 2m, which is 64. In the

future work, we investigate the possibility of jamming 15 channels to reduce the value of N

down to 64. This case is more efficient than the case of jamming 47 channels.

60

5.1.3 Exposing the MAC address and the first 6 bits of the clock

The proposed attacking method in this work relies on some useful results obtained by Spill

[6]. The Spill proposed a method to expose the device MAC address and the first 6 bits of

the clock. In the future work, we focus on the possibility of extracting these two essential

parameters from the collected hopping pattern. In other words, there will be no need to

adopt Spill methods any more.

5.1.4 Suggestions for avoiding the Hopping Sequence attack

In our future work, we concern to find a suitable solution for preventing the presented

Frequency Hopping attack as well. Toward this goal, there are mainly two possible directions

that we can go with:

(1) Modifying the hardware components consisting the Hope Selection kernel.

(2) Modifying the Bluetooth software is another solution that helps the Bluetooth system

to avoid such security threat.

The solution of modifying some hardware components inside the kernel can be further

studied to avoid such problem in next generations of the Bluetooth adapters. In other words,

it is limited to the new generation of Bleutooth products.

With respect to the Bluetooth devices that are currently in use, the hardware solution is

impractical one. However, modifying the Bluetooth software can be a more feasible solution.

One of the sensitive components that can be modified by software is the clock of the Bluetooth

device. The Bluetooth device frequently changes the value of the clock for synchronization

purposes with the piconet master device. This capability of updating the clock value can

be invested to prevent frequency hopping attack. To be more specific, the piconet master

device can be programmed to change the value of its clock in a random fashion and inform the

piconet slave device(s) to synchronize their with the master device. In this way, exposing the

61

master device clock value, by an attacker, is worthless since the clock value can be changed

any time causing the attacker to lose the synchronization and failure to capture wireless

packets.

62

BIBLIOGRAPHY

63

BIBLIOGRAPHY

[1] 802.15.1-2005 IEEE Standard Part 15.1: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs).

[2] Bluetooth Special Interest Group (SIG), See the ”Our History”:
http://www.bluetooth.com/Pages/History-of-Bluetooth.aspx [Accessed Oct 2011].

[3] Jaap C. Haartsen; The Bluetooth Radio System, IEEE Personal Communications, Febru-
ary 2000.

[4] Jaap C. Haartsen and Stefan Zurbes; Frequency Hop Selection in the Bluetooth Radio
System, Spread Spectrum Techniques and Applications, 2002 IEEE Seventh International
Symposium on, Czech Rep. 2002.

[5] Petar Popovski and Hiroyuki Yomo and Ramjee Prasad; Strategies for adaptive frequency
hopping in the unlicensed bands, IEEE Wireless Communications Journal, Vol. 13, No.
6, Pages 60-67, ISSN 1536-1284, Dec 2006.

[6] Spill, Dominic and Bittau, Andrea; BlueSniff: Eve meets Alice and Bluetooth, Proceed-
ings of the first USENIX workshop on Offensive Technologies, Boston, MA 2007, pub-
lisher: USENIX Association, Berkeley, CA, USA.

[7] Yaniv Shaked and Avishai Wool; Cracking the Bluetooth PIN, In Proceedings of the 3rd

international conference on Mobile systems, applications, and services (MobiSys ’05).
ACM, New York, NY, USA, 39-50.

[8] Morsi, K. and Xiong Huagang and Gao Qiang; Performance estimation and evaluation of
Bluetooth frequency hopping selection kernel, Pervasive Computing (JCPC), 2009 Joint
Conferences on, Pages 461-466, IEEE Dec 2009.

64

[9] Haataja, K.; Toivanen, P.; Two practical man-in-the-middle attacks on Bluetooth secure
simple pairing and countermeasures, Wireless Communications, IEEE Transactions on,
Vol. 9, No.1, pp.384-392, January 2010.

[10] Hypponen, K.; Haataja, K.M.J.; Nino man-in-the-middle attack on bluetooth secure
simple pairing Internet, 2007. ICI 2007. 3rd IEEE/IFIP International Conference in Cen-
tral Asia on , vol., no., pp.1-5, 26-28 Sept. 2007

[11] Haataja, K.; Toivanen, P.; Practical Man-in-the-Middle Attacks Against Bluetooth Se-
cure Simple Pairing Wireless Communications, Networking and Mobile Computing,
2008. WiCOM ’08. 4th International Conference on , vol., no., pp.1-5, 12-14 Oct. 2008

[13] Levy, O. and Wool, A.; Uniform Framework for Cryptanalysis of the Bluetooth E0
Cipher, First International Conference on Security and Privacy for Emerging Areas in
Communications Networks, 2005. SecureComm 2005.

[14] Yi Lu and Willi Meier and Serge Vaudenay; The Conditional Correlation Attack: A
Practical Attack on Bluetooth Encryption, Advances in CryptologyCRYPTO 2005, vol-
ume 3621 of Lecture Notes in Computer Science, Springer-Verlag.

65

