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ABSTRACT

CONSTRUCTION OF EVEN LENGTH BINARY SEQUENCES WITH

ASYMPTOTIC MERIT FACTOR 6.0

By

Tingyao Xiong

The known families of binary sequences having asymptotic merit factor 2 6 are all

modifications to real primitive character sequences. In this thesis, we show a general

technique of constructing an even length binary sequence based on a symmetric or

antisymmetric sequence. With this technique, we will give new modifications to the

character sequences of length N = p, N = pq, and N = p1p2 . . . p7- respectively. This

in turn gives the construction of binary sequences of length 2p, 2pq, and 2p1p2 . . .pr

with asymptotic merit factor 6.0.
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Chapter 1

Introduction

The problem of finding long binary sequences with the best value of the merit factor

has resisted decades of attack by mathematicians and communications engineers.

The best theoretical proven value for the asymptotic merit factor, 6.0, has remained

unchanged since 1988. All the previously known binary sequence families attaining

the highest asymptotic merit factor 6.0 are of odd length. This thesis is mainly focused

on constructing new families of binary sequences of even length with asymptotic merit

factor 6.0.

In Chapter 1, we introduce the historical background of the Merit Factor Problem,

in both theoretical and applicable aspects. We will give a brief review of the known

results about the asymptotic merit factor, both theoretical and numerical, in Chapter

2. In Chapter 3, we will collect the definitions and properties which will be referred to

in the following chapters. In Chapter 4, we show a common technique of constructing

an even length sequence based on a symmetric or antisymmetric sequence. With

the technique introduced in Chapter 4, we will construct binary sequences of length

N = 2p, N = 2pq, and N = 2p1p2 . . .pr with asymptotic merit factor 6.0 in Chapters

5, 6, 7 respectively.

Now we start with the history of Merit Factor Problem (M.F.P.), and the appli-
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cation of M.F.P. for both theoretical and practical purposes.

1.1 History of Merit Factor Problem

In this thesis, we transfer the well-known binary digits 0 and 1 into the equivalent

forms: 1 = (—1)0 and —1 = (—1)1. Thus we call sequence a: = (230,2:1, . . . ,xN_1) a

binary sequence of length N if all the :cj’s are +1 or —1, wherej = 0,1,... ,N — 1.

Correlation is a commonly used measure to describe the similarity, or relatedness,

between two phenomena. When properly normalized, the correlation measure is a

real number between +1 and —1. For instance, in statistics, the correlation between

two sets of data is called their covariance. Specifically, let or = ( 010,011, . . . ,an )

and '7 = ( 70, '71, . . . , 7n ) be two n—dimensional vectors of real numbers, which could

represent two sets of experimental data. The magnitudes of these vectors are

n 2 1 n 2 1
la|=(zaz-)?, |7|=(Z7,; )2

i=1 i=1

then the covariance of the two data sets

  

C(a, ) = (or-'7) = 2&1 “Hi
1

1.04 m (3:10;): ( 3:173):

Similarly, supposea: = ($0,271, . . . ,xn ) andy = (310,311, . . . ,yn ) are both binary

vectors. Thus

n 1 n 1

le=<zx3fl=¢a=<§jy3>2=lyl
i=1 i=1

then the binary correlation between a: and y is

n

1

(7013,31) = 52:151.?”

i=1
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Note that if a: = y, we call C(x, at) = 1 the autocorrelation of sequence :c.

To conduct research in simpler forms, mathematicians and engineers have studied

the following correlations forms. The application of these definitions will become clear

soon.

Let a: = (x0,x1,...,a:N_1) and y = (y0,y1,...,yN_1) be sequences of length

N (not necessarily binary). The aperiodic crosscorrelation function between a: and y

at shift 2' is defined to be

N—i—l

A$,y(z')= Z xjyj+,-, i=1,...,N—1 (1.1)
.=0

When :1: = y, we call Ax(i) = 143,51; (i) the aperiodic autocorrelation function of a: at

shift 2', where A; (i) is defined as following:

N—i—l

A5,;(z'): Z xjxj+,-, i=1,...,N—1 (1.2)
“:0

Binary sequences with low aperiodic autocorrelations have been widely applied

in communication engineering. To see this statement more clearly, we look at a

simplified communication system with only one signal sender and receiver.

In order to communicate information from a sender to a receiver, the sender needs

to transmit messages through the so called communication channel. It is important

to distinguish here between a signal and a message. In this thesis, 3 signal is a single

digit 1 or —1. While a message means a binary sequence with entries 1 or —1.

As shown in Figure 1.1, in the real world, the sender and receiver have to commu-

nicate over a noisy communication channel. That is, the signals that are received do

not look identical to the signals that are sent. As a result, the receiver must decide

which signal was actually sent, given the actual signal that was received.

The basic problem that serves as a model of detection theory concerns the situation

3
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Figure 1.1: A Simple Model of Communication Channel

in which there are two possible transmitted signals, represented by 1 and —1, and

these are corrupted by Gaussian noise. For instance, if 1 ( or —1 ) is sent, let 1' be the

corresponding signal received. Then we assume that r has a Gaussian distribution

(normal distribution) with mean value 1 ( or —1 ) and standard deviation 0. The

larger value of o, the noisier the channel and the greater the probability that the

receiver will make an incorrect decision as to what was sent.

If a message a: is represented by a binary sequence x = ($0,121, . . . ,$N_1) of

length N, we use notation mm = (0,...,0,a:0,a:1,...,a:N__1_2-) to represent the

sequence delayed by i time units. Then Ag; (i) represents the correlation between

message a: and the delayed message xii] (not normalized). In 1953, in a foundational

paper [1] of communication engineering, Barker proposed a group synchronization

digital system, based on the use of binary sequences a: with correlations | A1; (i) I’s

collectively small. The purpose of this constraint was to ensure a large difierence

between A$(O), the correlation of message m to itself, and A; (i), the correlation of

message a: to its delay xii].

In 1961, Fano [2] proved a considerably general result: Over a channel corrupted

by Gaussian noise, the optimum decision process is to perform correlation detection,

4

 



that is, to calculate the correlation between the actual received message and ideal

models of each of the possibly transmitted messages. And the message having the

highest value of the correlation with the actual received message is the message that

was actually sent. The optimum detector for a given channel is known as the matched

filter for that channel, and the result we have just mentioned is frequently described

as follows: the matched filter for the Gaussian channel is a correlation detector.

Since 1960’s, binary sequences with low aperiodic autocorrelations have been

widely applied in radar, sonar, and many other communication systems as well as

synchronization.

 

 

   
  I ,

WEIGHTING CORRELATION

  I

I MISMATCHED : MATCHED

I SECTION I FILTER

: : SECTION

Figure 1.2: Pulse Compression Radar Using Correlation

Figure 1.2 is from Radar Handbook ( [3], page 10.2, figure (0)). It gives a concrete

example of the application in a radar system. In Figure 1.2, the detection process is

called pulse compression radar using correlation , which has been widely used in radar

’ is received, the correlation detectortechnology. In this system, once a message a:

(“CORRELATOR” in the figure) not only calculates the correlations between 2:, and

all the possibly transmitted messages 2:, but also the correlations between 12’ and

all the delays of xlzl by i time units. The message :1: having the highest correlation

values with 2:, will be detected as the message that was actually sent. Therefore we

5



want the correlations between 2:, and all the delays of xii] (~ Ag;(i)) to be small, for

i > 0, since rlzl is not the correct message. In this model, we can see clearly that

using binary sequences with low aperiodic autocorrelations will increase the accuracy

of correlation detector significantly. More discussion about the application of binary

C sequences for which |A$(i)| is small for each i 75 0, can be found in [4], [5], and [7].

The importance of finding binary sequences a: with small [Ax (i)| values led Barker

to seek answers for large N to the following question:

Question 1.1.1. minimise maxO<i<N [Ax (i)| over all length N binary sequences as.

Barker therefore observed that, for this synchronization application, an ideal bi-

nary sequence :r of length N must satisfy

|A3(i)| = O or 1 for all i 75 0. (1.3)

and he proposed the study of such sequences. We call any binary sequence satisfying

condition (1.3) a Barker Sequence.

This motivates the search of binary sequences .7: of large length N, for which the

elements of the set {|A$(1)|, |A$(2)|,..., |A$(s - 1)|} are collectively as small as

possible. Unfortunately, most mathematicians believe that the following conjecture

is true:

Conjecture 1.1.2. There is no Barker sequence of length N > 13.

Another important definition for binary sequences, which is similar to the defi-

nition of aperiodic correlation, is called the periodic correlation. We will use both

aperiodic and periodic correlations heavily in this thesis.

The periodic crosscornelation function between :3 and y at shift i is defined to be

N—l

Ric’s/(2') = 2 xj yj+i, 0 S ’i < N (1.4)

i=0

 



where all the subscripts are taken modulo N. Similarly, when a: = y, put

N— 1

PW) = 2 xj 2,4,, 0 s i < N, (1.5)

i=0

the periodic autocorrelation function of a: at shift i, where all the subscripts are taken

modulo N.

Mn and Storer proved the following theorem [6] in 1961.

Theorem 1.1.3. ( Taryn and Storer) Conjecture 1.1.2 is true for odd N. Further-

more, for a Barker sequence B of even length N > 2, PB (i) equal 0 for all 0 < i < N.

Readers can find more discussion about Barker sequences in many papers, for

instance [8].

In 1972, to describe the “good” binary sequences with aperiodic autocorrelations

collectively small, Golay ([9]) proposed another important measure called Merit Fac-

tor. Given a binary sequence a: of length N, the merit factor of the sequence 2:, is

defined as

N2

2 23,1211 As (2')

Using the concept Merit Factor, given N fixed, finding a binary sequence :1: of length

Fa:
 (1.6)

N with [Ax (i)|’s collectively small is equivalent to finding a binary sequence a: of

length N with high merit factor value.

Moreover, for the family of sequences

S: {x1,r2,...,zn,...}

where for each i Z 1, xi is a binary sequence of length Ni, if as i approaches infinity,

7



 

N,- also approaches infinity, and the limit of Fri exists, then we call

F 151130 sz- (1.7)

the asymptotic merit factor of the sequence family S.

Golay not only gave a simple measure describing the feature that a binary sequence

has aperiodic autocorrelations collectively small but also revealed the close connection

between the length of the sequence and the aperiodic autocorrelations in an elegant

way. For nearly twenty years, Golay studied the following problem: Let Xn be the

set of all binary sequences of length n,

QUBStiOIl 1.1.4. Fn = maszXn F1; =?

In his series of publications ([9], [10], [11],[12], [13], and [14]), Golay either used

probability theory or computer searching to study Question 1.1.4. Indeed, Question

1.1.4 is still open. That is, at each length N, we do not know the maximum merit

factor value of all the binary sequences with length N except by conducting exhaustive

search for small N. We will discuss these numerical searching results in next chapter.

As discussed before, finding a binary sequence a: with |A$(i)|’s collectively small

can be considered as finding a binary sequence x with high merit factor Fm. In real

communication systems, because of the large amount of information needed to be

transmitted, engineers have more interest in merit factor behavior when the length

of binary sequence is large. Meanwhile, mathematicians have made important break

through in finding the upper bound of the asymptotic merit factor of binary sequences.

To express this question in a mathematical form, we have the following:

Question 1.1.5. lim supn_,oo Fn =?

where Fn is as defined in Question 1.1.4.

 



 

Traditionally, people call Question 1.1.5 the Merit Factor Problem (M.F.P.). Com-

pared to Question 1.1.4, mathematicians have made remarkable progress on the

M.F.P., which will be discussed in more details in next chapter. This thesis is mainly

focused on constructing new families of sequences achieving the known highest value

of asymptotic merit factor.

1.2 Merit Factor and Littlewood’s Conjecture

Mathematicians (for instance, [18],[23], [15]) have tried to approach the merit factor

problem through complex analysis and number theory. An optimal method is to

study polynomials with i1 coefficients on the unit circle of the complex plane, which

have been studied by some famous mathematicians like Littlewood [17]. This section

will give some examples about this connection. Although the topic of this section will

not play a role in the rest of this thesis, here we observe that merit factor is not only

of engineering but also of mathematical interest.

Prior to Golay’s definition of merit factor in 1972, Littlewood [16] and other

number theorists studied questions concerning the norms of polynomials with :I:1

coefficients on the unit circle of the complex plane. Furthermore, some properties

and conjectures from complex analysis can be written in terms of Merit Factors.

Before we see some concrete examples, we need some definitions here.

Let Qa(z) = 25:61 air!i be the complex-valued polynomial whose coefficients

are the elements of the sequence a = (a0, a1, . . . ,aN_1) of length N. The Lg norm

of the polynomial Qa(z) on the unit circle of the complex plane is defined to be

27r . 1/16

[[Qallfi = (i/O [Qa(ez9)[fld0) (1.8)

If the coefficient sequence a = (a0, a1, . . . ,aN_1) is a binary sequence, then we can

9



write the merit factor of a as ([25], Theorem 1.2, page 35)

_ ”Qty”:

“can: — llQall‘21

 

a (1.9)

where Fa is the merit factor of sequence a as defined in (1.6).

The following is one of many Littlewood’s Conjectures ([17], §6, page370):

Conjecture 1.2.1. (Littlewood) Let QN be the set of all the complex-valued polyno-

miaLs whose coefficients are the elements of some binary sequence of length N. Then

there exists a polynomial fN E QN, so that llfNHfi = N4 + 0(N4).

If we write Conjecture 1.2.1 in terms of merit factor, we will have

Conjecture 1.2.2. (Littlewood) limsupn_,00 Fn = 00.

By studying the L4 norms of polynomials with coefficients :I:1, Newman and

Byrnes [18] obtained an important result on the asymptotic behaviour of the merit

factor in 1990:

Property 1.2.3. The mean value of 1/F, taken over all sequences of length n, is

n-l
n .

[I

We see that the merit factor as defined in (1.6) is of considerable practical and

theoretical interest to both engineers and mathematicians. Starting in the next chap-

ter, we will be mainly focused on the Merit Factor Problem as introduced in Question

1.1.5.

10



Chapter 2

Known Results

In this chapter, we will review all the known research results, both theoretical and

numerical, about the Merit Factor Problems as mentioned in Question 1.1.5. From

now on, we always use (i, N) to represent the greatest common divisor of integers i

and N.

2. 1 Theoretical Results

For p an odd prime, a Legendre Sequence of length p is defined by the Legendre

symbols

aj = (f?) I j=03°")p—13

where

' 1, if ' is a s uare modulo ;(l) ___ .7 q p (2.1)

p —1, otherwise.

More generally, for N = p1...p7~, where p1 < p2 < < pp and each pj is an odd

prime, a Jacobi Sequence B of length N is defined by

i=(iillé-l-lt)
11

 



Given a sequence a = ((10,011, . . . ,aN_1) of length N. We call

0” = (alfNJ’aLfNJ+1"”’aN—1’ 00’ 01’ "°’alle-1)

a of length N offset by the factor f.

In 1988, tholdt and Jensen [23] made an important breakthrough by proving

the following theorem:

Theorem 2.1.1. The asymptotic merit factor F of Legendre sequences of length p

offset by the factor f is

1/F = 1/6 + 8(f - 1/4)2, Ifl s 1/2, (2.3)

D

By Theorem 2.1.1, offset Legendre sequences have an asymptotic merit factor 6.0

at the fraction If | = i. This Theorem is very important because even today, 6.0 is

still the best theoretically proven value for asymptotic merit factors.

In 1991, J.M. Jensen, and HE. Jensen and Hoholdt [24] defined a new family of

binary sequences called Modified Jaclobi sequences at length N = pq, with p < q odd

primes:

+1, ifj=0,q,2q,...,(p—1)q

mj = —1, ifj=p,2p,...,(q—1)p (2.4)

(%) - ('91) , otherwise .

In the same paper [24], J.M. Jensen, and HE. Jensen and tholdt proved that

the formula (2.3) is also correct for Jacobi Sequences and Modified Jaclobi sequences

of length pq provided p and q satisfy

(P + (1)5 10g4 N

N3

 

—>0, forN—ioo. (2.5)
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On the other hand, given an odd prime p, the real primitive character modulo p takes

the form

(2.6)
X190):

(13) rif(j,p
)=1;

, otherwise

where (11;) is the Legendre symbol as defined in (2.1).

More generally, for an odd number N, where N is a product of distinct odd primes

p1p2 . . . p,- with p1 < p2 < - - - < pr, the real primitive character modulo N takes the

form

XNU) = Xp1(j)Xp2(J') - - - XPTU) (2-7)

The Legendre sequences, Jacobi and Modified Jacobi sequences just redefine the

value at the i—th position where (i, N) > 1. In this sense, all of the Legendre sequences,

Jacobi and Modified Jacobi sequences are modifications of character sequences. Table

2.1 shows the close connection between the two categories.

 

 

 

33k (k, N) = 1 k E 0(mod p) k E 0(mod q)

Legendre sequence xN(k) +1 —

Jacobi sequence xN(k) xq(k/p) xp(k/q)

at length N = pq
 

Modified Jacobi sequence XN(k) +1 —1      
Table 2.1: Primitive characters and sequences of Legendre families

We can see clearly all the known families of sequences with high asymptotic merit

factor are highly related to the primitive character sequences as defined in (2.7). By

performing calculations on the character forms ( which are actually triple-valued ),

Borwein and Choi [25] proved that (2.3) is correct for all the sequences defined as in

13

 



 

(2.7) under an improved restriction on p,- ’s

e

11:,— —> 00 for any 6 small enough (23)

1

We can combine all the theoretical results mentioned above into the following

theorem.

Theorem 2.1.2. (Heholdt, Jensens, Borwein and Choi, 1988, 1991, 2001) Let aN

be

(I) a Legendre Sequence of length N = pl,

(2) a Jacobi or Modified Jacobi Sequence of length N = plpg,

(3) a real primitive character Sequence of length N = p1p2 . . . pr

with 191 < p2 < < pr and each pj is an odd prime. Now construct any infinite

sequence of such sequences

a = {aN1,aN2,...aNi,...},

Then the asymptotic merit factor F of a ofiset by the factor f is

1/F = 2/3 — 4m + 8f2, lfl s 1/2

provided that

NE/pl —+ 0, for any 6 > 0 small enough as N —> 00.

El

In Chapter 3, we will explore the properties of character sequences more deeply.
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2.2 Numerical Approaches

2.2.1 Skew-symmetric Sequences

A common strategy for extending the reach of merit factor computations is to impose

restrictions on the structure of the sequence. One of the most historically popular

definition is the skew-symmetric binary sequences, defined by Golay [9]:

A binary sequence a = (a0, a1, . . . ,a2m) of odd length 2m + 1 is called a skew-

symmetric binary sequence if

am.” = (_lliam-i for 'i = 1, 2, . . . ,m.

Skew-symmetric binary sequences are good possibilities to have large merit factor

because of the following property [9]:

Property 2.2.1. A skew-symmetric binary sequence .7. of odd length has Az(i) = 0

for all odd i. CI

The computational advantage of only searching skew-symmetric binary sequences

with large merit factor is that it roughly doubles the sequence length that can be

searched with given computational resources. In [11], Golay showed that skew-

symmetric sequences attain the optimal merit factor value Fn (as defined in Question

1.1.1) for the following odd values it < 60: 3, 5, 7, 9, 11, 13, 15, 17, 21, 27, 29, 39, 41,

43, 45, 47, 49, 51, 53, 55, 57, and 59. The optimal merit factor over all skew-symmetric

sequences of odd length n was calculated independently by Golay and Harris [14] for

n _<_ 69 in 1990 and by de Groot, Wiirtz and Hoffmann [26] for n 5 71 in 1992. And

also in 1990, Golay and Harris [14] found good skew-symmetric sequences for odd

length n with 71 _<_ n S 117 by interleaving one symmetric sequences and another

anti-symmetric binary sequence.

15



Based on heuristic searches for long skew-symmetric sequences, Golay proposed

the following conjectures:

Conjecture 2.2.2. (Golay, [11]) The asymptotic optimal merit factor of the set of

skew-symmetric sequences is equal to lim sup.n_,00 Fn.

Conjecture 2.2.3. (Golay, [12]) limsupn_,oo Fn g 12.32.

2.2.2 Exhaustive Computation

The other results of exhaustive searching for Fn values are listed as following:

(i) for ”small n” in 1965 by Lunelli [19]

(ii) for 7 S n g 19 by Swinnerton-Dyer, as presented by Littlewood [16] in 1966

(iii) for n g 32 by Turyn, as presented by Golay [12] in 1982

(iv) for n S 48 by Mertens [20] in 1996

(v) for n S 60 by Mertens and Bauke [21] in 2004

2.2.3 Periodic Appending

From Section 2.1 we know that 6.0 is the best theoretical proven value of the asymp-

totic merit factor. In other words, we can safely claim that

6.0 3 lim sup Fn S 00

n—Ioo

In [23], tholdt and Jensen made the following conjecture:

Conjecture 2.2.4. (tholdt and Jensen) limsupnmoo F", = 6.0

16

  



On the other hand, some numerical observation ([27]) strongly suggest that

lim sup Fn > 6.0 .

n—+oo

Before we introduce that result, we need some definitions. Given sequences X =

{$0,x1,...,zN_1} of length N, Y = {y0, . . . in-l} of length M, a real number

0 g r <1, we define

e Rotation Xr = {x0+[TNJ,$1+[TNJI-~I$N_1+[7~NJ},

. rI‘fImcation XT={xO,$la-'°aerNJ—1}’

o Appending X;Y= {x0,...,a:N_1,y0,...,yM_1}.

In 2004, Borwein, Choi, and Jedwab [27] used the rotation and appending method

as just defined and obtained the following result:

Observation 2.2.5. (Borwein, Choi, and Jedwab) Suppose X is a Legendre sequence

of length N = p with p prime, then

1 1

o For large N, the merit factor of the appended sequence X1; th‘I is greater than

6.2 when t ~ 0.03.

e For large N, the merit factor of the appended sequence Xr; X; is greater than

6.34 for r ~ 0.22 and r N 0.72, when t ~ 0.03.

Furthermore, Borwein, Choi, and Jedwab ([27], Theorem 6.4 and equation (20))

gave an estimate of the asymptotic merit factor of the appended sequence Xr; X; :

Theorem 2.2.6. (Borwein, Choi, and Jedwab) Let X be a Legendre sequence of
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prime length p and let r, t satisfy 0 S r S 1 and 0 < t S 1. Then for large p

2 ' 2
t 1 l—t 1 .

FXT;X" l—t
t §(F—)1{T+1) ,fort=1.

Now we summarize the known results about the asymptotic merit factor of binary

sequences.

0 6.0 is the highest proven asymptotic merit factor value.

a All the known “good” sequences with high asymptotic merit factor are modi-

fication of the character sequences by putting new values at positions i, with

(i,N) > 1.

o All the known “good” sequences with high asymptotic merit factor are of odd

length: mm . . . pr, and each p, is an odd prime.

0 All the known “good” sequences with high asymptotic merit factor are rotations

of modified character sequences.

0 It may be possible to obtain sequences with asymptotic merit factor > 6.34 by

rotating, truncating, and appending a Legendre sequence.

In the summation above, we have put the key phrases in italic forms. In the

following chapters, we will construct new families of binary sequences. In contrast

with the features listed above, these new families of sequences satisfy the following:

0 Obtain high asymptotic merit factor value 6.0.

0 Give new modification of the character sequences at positions i, with (i, N) > 1.

o Are of even length: 2p1p2 . . . pr, and each p,- is an odd prime.

18

  



 

o Are free of rotations of modified character sequences.

We will start with introducing new definitions and properties in next chapter .
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Chapter 3

Preliminaries

This chapter provides the definitions, notation and properties that will be used in later

chapters. Some well-known results are included in order to make the presentation self-

contained.

3.1 Definitions

Given a sequence a: = (r0, :I:1, . . . WEN—1) of length N, we have the Discrete Fourier

’II‘ansform (DFT) of the sequence, that is,

. N—1 .

xléjvl= Z racial“, j=o,1,...,N—1 (3.1)

k=0

where 5%, = egg“.

Definition 3.1.1. Given two sequences a: = (320,31, . . . ,xN_1) and

y = (y0,y1,...,yN_1), we define the product sequence b = x :1: y by b,- = mil/i: for

2': 0,1,...,N— 1.

Definition 3.1.2. A binary sequence a = (00, a1, . . . ,aN_1) of odd length is sym-

metric if az- = O‘N—ir for 1 S i S N — 1, and antisymmetric if a,- = "O‘N—i: for

20

 



1 S i S N — 1.

Lemma 3.1.3. Suppose N is an odd integer. We define a sequence

s=(sO,sl,...,sN_1)

of length N by

—1 W , i ',N =1;3j = ( ) f0 ) (3.2)

0 , otherwise.

Then the sequence s is antisymmetric.

Proof. For 1 S j S N — 1, via Lemma 3.1.7 and 3.1.3, 3N—j = (—1)N—j =

(—1)N—j = —(—1)j = —s]- since N is odd. Therefore, 3 is antisymmetric. El

Definition 3.1.4. Given a binary sequence a = (010,011, . . .,aN_1), we write —a

for (—a0,—a1,...,—aN_1).

Definition 3.1.5. For 6 = 0,1, let the four sequences :Eflwl be given by

(”2")5).") = (—1) (3.3)

For instance,

—fl(0) = —1) -1, +1, +1, - - - , —1,—]., +1, +1, . . .

and

15(1) = +1) _1) _1, +1, . . - , +1, -1, _1, +1, . . .

Definition 3.1.6. Suppose r is an integer. For any 1 S i S r, if (i, r) = 1, then

there artists a unique i7, with 1 S 5 S r, such that i '5. E 1 (mod r). Put i;- = E,

where k = min{i, r — i}.
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For instance, when r = 5, i = 3, then 77,: = g = 2, because 3 x 2 E 1 (mod 5).

While {,1 = 33‘5“ = 2—5' = 3, because 2 = min{3,5 — 3}.

As (r — i)(r - E) E 1 (mod) r, we have

Lemma 3.1.7. Suppose r is a positive integer. For any integer i, if (i,r) = 1, then

M:r 42?. D

Forexample, ifr=5,i=3, then (r—i)r=(5—3)5=Z=5—35=3.

Definition 3.1.8. Given two nonnegative numbers A and B, A < B means that

there exist a positive constant C, independent of A and B, so that A < CB.

Definition 3.1.9. For an integer n, the divisor function d(n), is defined to be the

number of positive divisors of n, or

d(n) = Z 1

0<d|n

Definition 3.1.10. For n a positive integer, write n = 5:119:11), where p1; ’s are

distinct primes. We define w(n) = r to be the number of distinct prime divisors of n.

We will end this section with a notation commonly used in number theory.

Definition 3.1.11. Let n be a positive integer, and f (51:) be a function. Define

n n

2 'f(x) = Z f(=v)

3:]. 3:1

(z,n)=1

For example,

4 N

Z’xz=12+32=10, and Z’l=¢(N).

x=1 . =1

where ¢(N) is the Euler Function of N.
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3.2 Properties

Property 3.2.1. Let x = (x0,x1,...,xN_1) and y = (y0,y1,...,yN_1) be se-

quences of equal length N, and A$,y(i) and Px,y(i) are as defined in expressions

(1.1) and (1.4). Then

Px,y(’t) = Aggy“) + A$,y(N — 7.), fOT' 0 < Z < N.

In particular, if x = y, then

133(2) = A550) + A$(N — 2) for O < 2 < N.

Proof. The proof of Property 3.2.1 could be found in many resources, for instance in

([36], (2), page 137)- '3

Property 3.2.2. For any integer i, (_1)(im) = (—1)-i, for any odd m.

Proof. (_1)i(m+1) = 1 since m + 1 is even. Thus (_1)im = (—1)—i. El

Let the character sequence xN be as defined in expression (2.7). Then we have

the following property

Property 3.2.3. xN is symmetric if N E 1 (mod 4), and antisymmetric if N E 3

N—1

(mod 4). In particular, xN(—1)=(—1) 2 is 1 ifN E 1 (mod 4) and—1 ifN E 3

(mod 4).

Proof. First of all, we assume N = p, so r = 1. But in Z5, —1 is a square if and only

if p :— 1 (mod 4), as desired. Now suppose N = p1p2 . . . pr with r 2 2. Without loss

of generality, suppose pl 5 192 E Epk E 3 (mod 4), and pk+1 E pk+2 .3
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pr E 1 (mod 4). Then by the r = 1 case,

xN(N-i) =Xp1(N-i)----ka(N-i) 'ka+1(N—i)“"Xpr(N-i)

= (—1)’°Xp1 (2') ----- ka(il - ka+1(i) - - - wait)

= (—1)kXN(i) -

Therefore, if k is even, then N E 1 (mod 4), XN(N — i) = XN(i), and XN is

symmetric; while if k is odd, then N .=_ 3 (mod 4), XN(N -i) = —XN(i), and XN is

antisymmetric. El

Property 3.2.4. Suppose N is odd. For the sequence a = (a0,a1,...,aN_1)

of length N, let the sequence 3 = (po,p1,...,pN_1) with s,- = (—1)jaj. Ifa is

symmetric, then fl is antisymmetric, while ifa is antisymmetric, then B is symmetric.

Proof. If a is symmetric, then aj = aN_j, for 1 S j S N - 1. Therefore,

5': —1j01'= -1ja _-=——1N_ja _-=—fl _-sinceNisodd..7 J N .7 N J N ]

So ,6 is antisymmetric. Interchanging the roles of a and fl gives the other case. [3

Lemma 3.2.5. Suppose Xp is as defined in form (2.6). Then

p-l - .
p - 1 I if plk,

Z Xp(n)Xp(n — k) =

”:0 -1 , otherwise

Proof. Readers can find the proof to Lemma 3.2.5 in many references, for instance,

Lemma 2 in [42]. [I

An immediate application of Lemma 3.2.5 is the following property.

Property 3.2.6. For an odd prime p, suppose a is a Legendre sequence of length p

as defined in expression (2.1).
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(1) Pa(i) = —1,ifp E 3 (mod 4).

(2) Pa(i) = 1 or —3, ifp El (mod 4).

iprl (mod 4);a _ -,

Proof. For 0 < j < p, from Property 3.2.3, aj = p 3

if p E 3 (mod 4).
—aP—j’

For 0 < i < p

p—l

Pa(i) = Z ajaj+z~

.=0

p—I

= aoat + ap—iao + Z Xp(j)Xp(i + 2')

i=0

= a0(a,- + ap_,-) — 1 by Lemma 3.2.5

When p E 3 (mod 4),

ai=—ap_,- => Pa(i)=1XO—1=—I.

This finishes the proof of part (a). When p E 1 (mod 4),

a7; = ap_,- => Pa(i) = 2010a,; — 1 = 1 or — 3.

Theorem 2.1.1 is based on a famous result for Gauss Sums:

. 27r '.

Theorem 3.2.7. (Gauss Sum) For any j 6 Z, let gfv = e'le. The Gauss sum

is the DFT XNl EN] associated to the primitive character x mod N of (2. 7):

. N-l .

XN Iéjv I = Z XN(m) Ex}

m=0
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Then

[leéjv] [= 2 (J ) (3.4)

0, otherwise

Proof. This is a very well-known result. Readers can find the proof in many resources,

for instance, [38] page233.

Lemma 3.2.8. Let N = p1p2...pr, where p1 < p2 < < pr’ are distinct odd

primes. Then

d(N) < r x E-

p1

where d(N) is the divisor function of N.

Proof.

d(N) < imp,- — 1) < r x 5

i=1 ”1

Cl

Property 3.2.9. Given a sequence x = (x0,x1, . . . ,xN_1) of length N, let x [5%,]

be defined as in expression (3.1) for 0 S j S N — 1. An interpolation formula is

N—l 5k

$I-Efyl=% Z fiaififvl

k=0 N+5N

Proof. This is a well-known result from numerical analysis. Readers can find the

proof in many references, for instance, [23], ((2.5), page162) and [24], (5.6), (page

624). III

For the rest of this section, to simplify the notation, without confusion, we

- ituse {3' instead of 5%,, to represent e .

Given a binary sequence x = (x0, x1, . . . ,xN_1) of length N, the following prop-

erty gives the relation between the merit factor F3; and the DFT of the sequence

x.
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Property 3.2.10. Given a binary sequence x = (x0, x1, . . . ,xN_1) of length N, for

21r ' .

£3: = e—le, let x [63-] be as defined in expressions (3.1), and x [—£j] as defined as

in Property 3.2.9. Then the merit factor F3; satisfies

1 Eli? "leis-1 |4+ IxI—tjl l‘f

F}: _ 2N3 A -1

   

Proof. Again, the proof of this Property 3.2.10 could be found in many papers, for

instance [23], ((2.2) and (2.3), page 161), and [24], (expression (1.9), page 618). E]

If a sequence u could be written as a sum of two sequences U and v, then following

property shows the difference of l/Fu — l/FU.

Property 3.2.11. Suppose sequences u, U, and v are all of length N. And

3512-u=U+v,thatisuj=Uj+vj,forj=0,1,...,N—1.Let§j=e , write

Uléjl = Uléjl+vI€jl = Ulijl+au where aj =v[€jl-

til-63°] = U{-6)} + vl-éjl = U{-63-} + b a where bj = vI-éjl-

Let

i_i__G_

Fu FU—ZN3

Then

N—l 4 2 2 2 2
IGIS Z [Iajl +6IUl€jll 1a,) +4(|Ul€jll +laj| )IajIIUIEle

j=0

N_1 4 2 2 2 2
+ Z [ijl +6|Ul-€jl[ ijl +4<|UI-t,-I| +ij| )lbjllUl-éjIH
j=O
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Proof. From Property 3.2.10,

, zf=31(|ult,1|4+|uI—t,~1|4)

E: 2N3 _1

 

iii—01([Uléjl+aj[4+[UI-éjl+bj[4)

= 2N3

 

, 2§V=31(lvlt,-I|4+|UI-tjll4)

E: 2N3 _1

 

Therefore
_ 1

F173
1
H

xii—01 (l U [5,] +a, [4 — | U 15,-I [4 + | U {-i)-1+ b,- |4 — | U {—53-} [4)

= 2N3

 

Then

N-l

Z (I U [5,)”,- [4- l U [5,] [4+ | U {—ng +12,- [4— | U {-6)} I4)
,=

N

s:
i=0

G

H
o

[0 U Iéjll + laj |)4 - [ U Iéjl [4 + ([ U I-ifl] + “’3' |)4 - [ U I-Ejl [4]

2 —l

S [lajl4 + 6 [Uléjll2 Iajl2 + 4( [Ulfjll2 + lajl2 )lajl [Ulfjl[[

M
E
E
M

II o

+ [ ijl4 + 6 lift-61]2 lb,-I2 + 4< |UI-t,-I|2 + ijl2 )ijl [UI-éjll]

.7
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El

Given a family of binary sequences {A(n)}, if at each length n, we only change

positions considerably small in number compared to the n value, the following prop-

erty show that the asymptotic merit factor of the new family of sequences is equal to

the asymptotic merit factor of {A(n)}.

Property 3.2.12. Let {A(n)} and {B(n)} be sets of sequences, where each of A(n)

and B(n) has length n. Suppose that for each n, all elements of A(n) and B(n) are

bounded by a constant independent of n. Suppose further that, as n —+ co, the number

of nonzero elements of B(n) is o(\/;i) and that FA(n) = 0(1) and PA(n) = 0(n).

Then, as n —-> 00, the element-wise sequence sums {A(n) + B(n)} satisfy

1 1

F<A<n> + B(n)) =nF<A<__(11) + 0“”
 

Proof. The reader can find the detailed proof at [36] (Proposition 1., page138). El

For a sequence u (not necessarily binary) is the sum of two sequences U and v

(both U and v are not necessarily binary), the following property gives a concrete

expression of the periodic autocorrelations of a sequence u , in terms of the periodic

autocorrelations of U and v.

Property 3.2.13. For sequences u, U and v, (not necessarily binary) of length N.

Ifuj =Uj +vj,forOSj <N—1, then we have

N—1N—1

:21 132(2)..— 1—21 PV(i)+ :le P3(t)+2 Z PV(t')Pv(i)

i=1

[v.11

+ Z [2PV(i)(t)PV,,(t)+2PV(t)P,,V(t)]

N—ll

+ Z [2Pt(t)Pv,.,(t) + 2Pt(t)Pv,v(t) ]

i=1
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Z

Z
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N—l

+ Z [ 2Pv(2)PV,v(i)
+ 2Pv(i)Pv,V(i)

[

#1

N—l

+ Z [2PV,,(t)P,, (i)+PVv(i)+P2V(t)]

i=1

=A+B+C+D+E+F

In the proof above, we have separated the summands into six groups. For instance,

in the summation above,

N—1

F: [2PV,,(t)PW(t)+PVv(t)+PW(t)].

i=1
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Chapter 4

Construction of Even Length

Binary Sequences

In this chapter, we will give a technique of constructing an even length binary sequence

based on a symmetric or an antisymmetric sequence. In the following chapters this

technique will be used heavily.

We will start with a property about the sequences fl as defined in expression (3.3).

Lemma 4.0.14. Let N be an odd number. If the binary sequence )8 of length 2N is

one of the four sequences 1:8(5) of Definition 3.1.5, then for 0 S a, b < 2N we have

 

(6—axb+a+26—1)

Ba. [31, = (*1) 2

Proof. When 0 S a, b < 2N, by definition

( a + 5) ( b + 6)

2 + 2

5a 3b = (*1)

(a+6)(a+6—1)+(b+6)(b+6—1)

=(-1) 2
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e2+2es+fl—e—t%t2tzmrwfl—b-5

 

 

=(—1>

a2t2a6—a+b2+2b6—b 2

=(—1) 2 since6 —6=0when6=00r1

a2+2a6—a+b2+2b6—b 2
fi 4 —a +a—2a6

=(_1) 2

since - a2 + a is always even and — 2 a 6 is also an even

b2-a2+a—bi2b6—ga6

= (-1) 2

 

Lb—a)(b+a+26—1)

=(—1) 2 .

El

Suppose the sequence ,8 is one of the four sequences $305) from Definition 3.1.5.

The notations “;” and “*” are as defined in Observation 2.2.5 and 3.1.1. Then we

have the following two lemmas:

Lemma 4.0.15. Let a be an arbitrary binary sequence of length N, and let ,6 of

length 2N be one of the four sequences :Efiwl from Definition 3.1.5. Consider the

new sequence b = {a ; a} * ,8. For even i, we have

(—1)"/2 (Ash) + Pea», if 0 < t < N;

A6(1')=

(—1)i/2Aa(t—N), i > N
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Proof. Note that the sequence b is of length 2N. When 0 < i < N,

ZN—i—l

A6“): 2 bjbj+i

i=0

N—i—l N—l 2N—i-1 (4.1)

= Z bjbj+t+ Z bjbj+t+ Z bjbj+t
'=0 j=N—i j=N

Here II only contains the items from the first half of the sequence, Ir only contains

the items from the second half, and 1m consists of the products of the terms from the

first half and the terms from the second half. As i is even, by Lemma 4.0.14 we have

N—i—I N—i—l

II = Z bjbj+i= Z 5j5j+tajaj+t (4-2)

1:0 i=0

N—t—I i(i+2j+26—1)

___ Z (-1) 2 ajaj+i by Lemma 4.0.14

i=0

 

because i + 23' + 26 - 1 is odd when i is even

N—i—I

(—1)z/2 Z ajaj+i = (—1)z/2Aa(i) by Property 3.2.2

i=0

Similarly, by definition, we have

2N—i—1 2N—i—1

[7. = Z bjbj'i't = Z fijflj+zaj_Naj+z_N (4.3)

j=N j=N
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N—i—l i(2j+i+26—1)
 

= Z (-1) 2 O‘j—Naj+i—N by Lemma 4.0.14

.20

N—i—I . _

= —1 2/201 -a- - = —1 z/2Aa i by Property 3.2.2
J 3+2

=0

N—l N—1

Im = Z bjbj-I-i = Z: fijflj+iajaj+i—N (4.4)

j=N—i j=N—i

. N—l—(N—i) .

= H)”2 Z ajaj+N—z' = (-1)’/2Ae(N — 2').

i=0

Combining (4.2), (4.3), and (4.4), by PrOperty 3.2.1, we have

11+ 1m + I,» = (—1)i/2 [ 2Aa(i) + Aa(N — i) ] = (—1)i/2 [ 210(2) + Pap) ].

For even i 2 N, Lemma 4.0.14 gives

2N—i-1 2N—i—1

At(i)= Z: bjbj+t= Z [itinerant—N
j=0 j=0

2N—i—1 Ki+2j+26—1)

= Z (‘1) 2 aj“j+z‘—N

i=0
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This finishes the proof of Lemma 4.0.15. Cl

Lemma 4.0.16. For an odd integer N, let a = (010,041, ""O‘N—ll be a symmetric

or antisymmetric binary sequence of length N as defined in Definition 3.1.2, and let

b = {al a} * B be the corresponding sequence defined in Lemma 4.0.15. For odd i, we

have

(—1)6+Ta0aN_z-, if 0 < i < N;

(—1)6+Taoai_N, if i Z N.

Proof. When 0 < i < N, following (4.1) we write

2N—i—1

Aim = Z bjbj+i
i=0

= Z bjbj+t + Z bjbj+t + Z bjbj+t
j=0 ij—i j=N

First consider any term bjbj+i = Ujfij+iajaj+i in I). By the definition of b and

Lemma 4.0.14

i(2j+2N+i+26—1)

bj+ij+t+N = 5j+Nfij+t+N2jaj+t = (“1) 2 ajaj+t

 

because Ni is odd. By Property 3.2.2, we have

i(2j+i+26—1)

bj+ij+i+N = -(-1) 2 ajaj+i = -fljflj+tajaj+t = —bjbj+i:
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Thus bjbj+i is canceled by bj+ij+i+N from IT. That is, I) + Ir = 0. For any

item bjbj+i = fijflj+iajaj+i—N in Im with i+j 74 N, we have 0 <j < N and

i+j > N. From Lemma 4.0.14

b2N—jb2N—j—i = U2N—jB2N—j—iaN—ja2N—j—i

i(2j+i—26+1)

= (‘1) 2 aj“j+t'—N

 

i(2j+i+26-1)

= —(—1) 2 ajaj+i—N

 

= _fijfij+iajaj+i—N = —bjbj+t-

The second equality follows from the property that a is symmetric or antisymmetric.

Therefore when i+ j # N, the item bjbj+i is canceled by b2N—jb2N—j—i' When

i+j = N, b2N—jb2N—j—i 6 Ir, so only bN—ibN remains in Im. Ffom Lemma

4.0.14

i(2N—i+26-1)

bN—th = fiN—tfiNaN—tao = (-1) 2 O‘N—iO‘O

 

N+6+i 1 6+i—1

= (-1) UaoaN—t = (-1) TaoaN—t-

This proves the first part of Lemma 4.0.16. Now we prove the second part.

For i _>_ N, if j > 0 then by Lemma 4.0.14, 0 is symmetric or antisymmetric, and

i being odd,
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i(2j+i+26—1)

bjbj+i = fijfij+tajaj+t—N = (-1) 2 aN—ja2N—j—t

 

i(2j+i—26+1)

= -(-1) 2 aN—ja2N—j—t

 

i(2j+i—26+1-4N)

— -(-1) 2 O‘N—jO‘ZN—j—i

 

= —fl2N—jfi2N—j—taN—ja2N—j—t = —b2N—jb2N—j—t-

Therefore every term bjbj+i is canceled by b2N—jb2N—j—i except for the term

(2")
50 by; = 30 5t 00 ai—N = (-1) Goat—N

(-1)2 Z Tao ai—N = (-1) Taoa,_N,

where the last equality holds because i is odd. This proves the second part of Lemma

4.0.16. CI

Lemma 4.0.17. For an odd N, suppose a = (a0,a1,....aN_1) is a symmetric

or antisymmetric binary sequence of length N. Let b = {a ; or} * B be one of the

sequences of Lemma 4.0.16. Then

2N—1 N—l N-l N—l

Z A§(k)=N+ Z A2,,(k)+2 Z Pa(k)Aa(k)+ Z Pa(k)2.

evenk evenk
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Proof. From Lemma 4.0.15 and Lemma 4.0.16, we have

2N—12N—12N—1 2k

2 21200:]; A,2((k)+ :1 Ab(

oddk evenlk

2N—1 2N—1

= 2A2(k)+ :11 A,2((k)+ Z A,2()

k=1 N=+1

odd It even1k even k

N—l 2N—1

=N+ Z [Pe<k)+Ae(k)l2+ Z Airs—N)

k=1 k=N+1

evenk evenk

N—1 2N-—1 N—1

=N+ Z A2(k)+ Z: A2(k —N)+2 Z Pa(k)Aa(k)

k=1 k=N+1 k=1

even It even It even k

N—l 2

+ Z Pave)

k=1

evenk

N—l N—1 N—l

=N+ Z A2,(k)+2 Z Pa(k)Aa(k)+ Z PC2,(k) El

k=1 k=1 k=1

evenk evenk

Remark. From Lemma 4.0.17, we can see that if we have a family of binary sequences

a of length N that at each N, (1 satisfies the following:

o a is symmetric or antisymmetric.

e EAL-11P2(k) is smaller than than N2
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Then for each N, we can construct an even length binary sequence b of length 2N,

so that the asymptotic merit factor of b is four times of the asymptotic merit factor

of family of 0. There is no rotation in the new families of sequences. In the following

chapters, we will construct new families of a which satisfy the two features above.

Then we can obtain sequences of even length binary sequences of high asymptotic

merit factor 6.0.
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Chapter 5

Sequences of Length 2p with

Asymptotic Merit Factor 6.0

5.1 The Asymptotic Merit Factor of Doubled Leg-

endre Sequences

In expression (2.3), it was shown that if F is the asymptotic merit factor of cyclically

shifted Legendre sequences corresponding to the offset fraction f (the number of

positions shifted divided by the length), then

1/F = 2/3 — 4m + 8R. Ifl s 1/2. (5.1)

In particular for the Legendre sequences a of length p with no shifting (f = 0) we

have

2

Lemma 5.1.1. lim 1) = g.

2"” 2 2i: Age)

 

Now we are ready to prove the main theorem of this chapter.
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Theorem 5.1.2. For each odd prime number p, let a = up be the Legendre sequence

of length p given in (2.1), and let 0 = [31; be one of the binary sequences of length

2p from Definition 3.1.5. For each p, we further let b = bp be the length 2p sequence

{a ; a} * 0. Then the asymptotic merit factor limp—>00 (Fbp) is 6.

Proof. By Proposition 3.1.2, the Legendre sequence a is symmetric for p E 1 (mod 4)

and antisymmetric for p E 3 (mod 4). Therefore by Lemma 4.0.17 we have

2p—1 p—l p—l p—l

Z: A2(k) =p+ZA3(k)+2 Z ckAa(k)+ Z ck2,

evenk evenk

where Ck = Pa(k) = :l:1 or -—3 from Proposition 3.2.6.

AS lckl S 3,

p—l

2 (2,2 = 0(1)).

even k

By Lemma 5.1. 1, 21);,I A2O,(k) = 0(p2); so by the Cauchy—Schwarz inequality

 

     

P—1 P—1 3

Z ckAaa) _<. 2 Age) 0(p>s\/o<p3)=0<p2).

k=1k \ k=1k

We combine these results with Lemma 5.1.1 to find

1 1. 2(221‘1 Agek»
1m

p-eoo Fbp p—)oo (2:02

 

1 -1

_ 1.... WE”;A2<k>+zzell 1._lakAa<k>+:€....=1cx.2>
19"“ (2M2
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even [:21
 

-1 2 p-1 p

P 22:1 A006) _,_ 2 Z CkAa(k) _,_ Zeven kzl ck
 
  

 

= +
p—>oo 2P2 2P2 2,92 2,92

-l

__, l 2ZhflAQM ~1x2—3

_ p—>OO 4 p2 — 4 3 -— 6 '

That is, limp—’00 Fbp = 6. D

Here we present some numerical experimentation inspired by similar results in

[27].

 PT I I T

 

 

    
 

6'2 H I] l 1 $1111! '1

61 l '; Ezl-' willll ‘ _

l 2% '
2

’

'5 z 11

'3 515~ 1‘ .

LL

'5
:2

5» -

4.5L .

6 7 8 9 1o 11 12 13 14

L092P

Figure 5.1: Merit factor for Parker’s sequences with appending ratio 0.065.

For the sequence b of Theorem 5.1.2, we write (—b)f for the sequence (-b0, —b1, . . . ,

—b[fpj _1) obtained by truncating —b to the fraction f of its length. Computer cal-
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culation then indicated that

lim supF Z 6.20

pa... {b:(-b)f}

for 0.06 _<_ f S 0.07. Figure 5.1 shows the merit factor asymptote of {b ; (—b)f }

when f = 0.065.

Jedwab [22] reports that Parker has done similar calculations.

5.2 The Asymptotic Merit Factor of Parker’s Se-

quences

In [28] Parker gave a construction for sequences of length N = 2p, with p prime,

which motivated the present investigations. We restate his results here. Let Do be

the set of squares in GF(p)\0, and let D1 be the set of nonsquares. First, Parker

constructed a sequence of length 4p by specifying a subset C of ZZN’ then defined

the characteristic sequence s’(i) of C:

1, ifz'EC

o, ifi¢C

s'(i) =

LetC’:{{n}an|cng2;,ogn<r},F={Gxo|G_c_Zr},andC=C’UF.

Then Parker gave the concrete description of C as follows:

If prime p = 4f + 1,

then let CO = D0, C1: D0, C2 = D1, C3 2 D1, G = {1,2}.

If primep = 4f + 3,

then let CO = D0, Cl = D0, C2 = D1, C3 2 D1, G = {0,1}.
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Under this construction, the characteristic sequence 3’ (i) of C = C" U F is of the

form s’(i) = s(i), for 0 _<_ i < N, and s’(i) = s(i -- N) + 1, for N S i < 2N, where

s(i) is a {0, 1}-sequence of length N. We convert s(i) into :tl binary form by putting

b,=(—1)3(i), 0 g i g N — 1. (5.2)

Parker did computer calculations indicating that the aymptotic merit factor of

the sequences b given by (5.2) is 6.0. We will show that Parker’s sequence (5.2) is

almost identical to the length 2p sequence b of Theorem 5.1.2 coming from the choice

3 = _p(0).

By the Chinese Remainder Theorem there exist n and m so that

n E 1 (mod 4), n _=_ 0 (mod p); m E 0 (mod 4), and m E 1 (mod p)

Specifically, whenp= 4f+1, n =p, m: 3p+1; whenp= 4f+3, n = 3p, m =p+1.

Thus the construction of C = C, U F as above becomes

(0,C0) = {mDO} _=_ 0 (mod 4
7

(1,01) = {n+mD0} 51 (mod 4

).

l,

(2,02) = {2n+mD1} E 2 (mod 4);

(3,03) = {3n+mD1} E 3 (mod 4).

Now let j E (0, 2p) with j 3f p:

1. Suppose j E 0 (mod 4). Ifj = mfi for some 5 6 D0, thenj 6 (0,00) and

bj = (—1)5(j) = —-1. At the same time, 6 6 D0 implies that afl = 1. Therefore

bj = (—1)5(j) = —a3 sincej E 6 (mod p). Ifj ¢ mfi for any 6 6 D0, then

s(j) = 0 and so bj = (—1)S(j) = 1 = —a- That is, ifj E 0 (mod 4) thenJ.

j=—%-

Similarly, ifj E 1 (mod 4) then bj = —aj .
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2. Supposej E 2 (mod 4). Ifj = 2n + ml? for some 6 E Db thenj E (2,02)

and bj = (—1)S(j) = -1. At the same time, 3 ¢ DO implies that 05 = —1.

Therefore bj = afl since j E 6 (mod p). If j 75 2n + m6 for any 6 E D1,

then s(j) = 0 and so b_,- = (—1)3(j) = 1 = ozj. That is, ifj E 2 (mod 4) then

bj = aj.

Similarly, if j E 3 (mod 4) then bj = ozj .

Finally, when p = 4f + 1, we have F = {p, 2p} under Parker’s construction, so

3(0) = 0 and b0 = (—1)3(0) = 1. Then s(p) = 1 gives bp = (-1)S(P) = —1. When

p = 4f + 3, we have F = {0, 3p} under Parker’s construction, so 3(0) = 1 and

b0 = (——1)3(0) = —1. Now s(p) = 0 gives bp = (_1)s(p) = 1. Therefore under

Parker’s construction the sequence b has the following form:

—a,-, ifiE00r1 (mod4),i7$0;-1

be = (4)3210, b.- = (5.3)
01,-, ifi‘2-20’r3 (mod4).

Comparing (5.3) with the —[3(0) form of b in Theorem 5.1.2, we realize that the

two sequences are exactly the same when p = 4f + 3. When p = 4f + 1 they are

identical in every position except the first; Parker’s sequence begins with do, while

—fi(0) sequence from Theorem 5.1.2 starts with —a0. From Property 3.2.12, we know

that a change in one position of each sequence will not influence the aymptotic merit

factor of a family (for instance. Therefore Parker’s sequences have asymptotic merit

factor 6 by Theorem 5.1.2.
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Chapter 6

Sequences of Length 2pq with

Asymptotic Merit Factor 6.0

This chapter is divided into three sections. In the first section, we will prove that for

a character sequence XN with N = pq, we have freedom to put any new values at

those position i’s with (i, N) > 1 while the asymptotic merit factor of the new family

of sequences still has the same form as in Theorem 2.3. In the second section, we

will apply the doubling technique introduced in chapter 4 to the Jacobi and Modified

Jacobi Sequences of length N = pq. In the third section, we will apply the doubling

technique introduced in chapter 4 on some newly constructed sequences of length

N = pq, so that we will obtain several families of binary sequences of length N = 2pq

with high asymptotic merit factor 6.0. In both sections 6.2 and 6.3, the new families

of sequences are free of cyclic shifting.

Throughout this chapter, we simplify 6%, as

. 27r'.

€j=€§v=€7vzz
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6.1 Theorem 6.1.1 and Proof

From the discussion in section 2.1 , we have seen that Legendre sequences, Jacobi or

modified Jacobi sequences are modifications of character sequences by putting new

values at positions i, with (i, N) > 1. When N = pq, the number of those positions

is greater than \/N. In view of Property 3.2.12, people have been hesitant to change

the values at those positions. However, we show in the following theorem that we are

free to put any new values at those position i’s with (i, N) > 1.

Theorem 6.1.1. Let N = pq, where p < q are distinct odd primes. Then for each

N, let the binary sequences uN = (u0,u1, . . . , uN_1) satisfy

2' , i i,N = 1 ;

:I:1, otherwise .

where the sequence xN is as defined in expression (2. 7) Now construct any infinite

sequence of such sequences

u = {uN1,uN2,...,uNi,...},

where N,- = Piqi for p,- < q, distinct odd primes. Then u has the same asymptotic

merit factor value F form as the character sequence x, given by

1 2 2

_ E _ — 4 < 2F 3 |f|+8f, m_1/,

whenever

N6

P'— —> 0 when N,- —-> 00, (6.2)

i

where f is the fraction of shifting and e is any positive number satisfying 0 < e < 13'-

Given a sequence a: = ($0,271,...,113N_1) of length N, we have the Discrete
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Fourier Transform (DFT) of the sequence, that is,

N—l

x[gj] = Z xkék, j = 0,1,...,N— 1, (6.3)

k=0

2,2.-where {j = e .

Furthermore, for 0 _<_ t < N, let :ct = (xt,2:t+1,...,:1:N_1,:1:0,:rl,...,a:t_1) be

the offset :1: sequence arising from t cyclic left shifts of sequence 1:. The Discrete

Fourier Transform (DFT) of :ct is then

N—l k

ast[£j]= 2.1-Hts, j=0,1,...,N—1, (6.4)

k=0

where all the subscripts are taken modulo N.

Property 6.1.2. Let :1: = (:50, 1:1, . . . ,xN_1) be a real-valued sequence of length N,

21%“63- = e . For :c[§j] the DFT ofx as defined above,

N—l

2 12215,]? = Nllzvll2,

i=0

where ”:13”2 = git—bl xi.

Proof. There is a well-known trigonometric identity

N-‘1 2 k'. - -.

Z ell-N12: N) lle]: (65)

k=0 0, otherwise

Then
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j:—0 m=0

N—1N—1 N—l ”(k—mm,

=2 Zxkmee

k:0m=0

N—l

= Z xk2-N=N “:ch2

k=0

m=k

Property 6.1.3. Suppose we have sequences a = (a0,a1,.. .,,am_1) and b =

(b0,b1,..bn__1) with (m, n)—— 1. Let N: ran and consider 21:10 aJ-bj, where

the subscripts are taken modulo m and n respectively. Then

N—1 m—1 n—1

Z “ij =(Z “kHz 58),

Proof.

N—1 m—1n—1 m—l n—l

Z ajbj: Z Z ak‘n-l-Sbs = 2:: b5 2: akn+s= (Z ak) ' (2 b8)

where the last equality follows from the fact that (m, n) = 1. Cl

Proof of Theorem 6.1.1
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N N
For each N, write u , where the sequence XN is the character sequence= XN + v

of (2.7) and uN is as defined in (6.1). In the following proof, in order to simplify

N
the notation, we write u, x and v instead of u , xN and vN . Then for each N,

0 S t < N, put ut = xt +vt, where ut = ( ut,ut+1,...,uN__1,u0,u1,...,ut__1)

and similarly for xt and vt.

a2For 53' = e , where 0 S j g N — 1, for a fixed t, from the Discrete Fourier

Transform as shown in (6.4),

11%,] = 211,-} + vt [5,1 = xtléjl + a, , (6.6)

utl-fijl = th_€jl + Utl—Ejl = th‘Ejl + b' , (5-7)

where aj = vt[€j] and b, = vt[—§j].

Let FtN be the merit factor of xt. Then by Theorem 1.2 of [25] (page 35), when

condition (6.2) is satisfied,

N—

1 1 t 4 t 4 2 2

Nil-POO—FN ”IV-131002N3 §1(IX lgjll +lX l 6]“ ) 3 lfl+8f ,

where f = [72'] is the offset fraction.

Let FtN be the merit factor of ut. Then from ([24], (5.4) page 624),

N—

1 _ 1 t , 4 t . 4
ENE—‘3 3:010” [53“ +|u [‘5le )—1

Put 1/FtN — l/FtN = G/2N3. Our goal is to prove that the limit of FtN takes

exactly the same form as FtN . In other words,

1 2

=§-4lfl+8f2.lim

N——+OO FtN
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provided condition (6.2) is satisfied, where f = [7%,] is the offset fraction. So it

suffices to prove that

G/2N3—>O asN-eoo.

Again, using the form ([24], (5.10), page 624),

N—l

IGIS Z [laj|4+6lxt[€jll2-laj|2+4(lxtléj1|2+|ajl2)-laj|-Ixt[€jl|] (6.8)

j=0

N-l

+ Z [lg-14 + anti—en? - 1b,? + 4< Ixtl—éjll2 +ijl2 rial-1214,11] .

j=0

Now we look at the values of a, and bj, where 0 S j S N — 1.

P—1 27rmz' . (1‘1 27rk2' .

_ i z

a, = vt[§j] = g]. t E vmqe p + E vkpe q ,

m=0 k=1

P—l 27rm2'. 9—1 27rkz'z.
_ z

bj = vt[—§j] = {j t Z vfnqe p + I; vfcpe q , (6.9)

where vqukpa’Ufnqa'Ufcp 6 {+1, —1}, for 1 S m < q, 1 S k < p. Denote

l . .

' P—l 27rm2. .. (1‘1 27rk2. .
_ i _ z

gjt Z vmqe P = ”2], g]. t kape q = [1,1,];

m=0 k=1

tip-1 I nm 2 tq-l I 27mg, .

6] Z '0qu p = l~f9la Ej Z vkpe q — l'fifll

m=0 k=1

For any j,

27rm]j+p ) i 27rm 2'2. 2771904412 ,- 27Tk,2 z

e P = e P and e q = 6 q ,



so we have for any j,

. .+ N. .;+

lvgja|=lvf9 pl, Ivfil=lvz72 pl; (610)

Ivil = Ivi+qL I531] = W91.

From Property 6.1.2, we have

p-l . p-l .

Zia/{.12 = 2127;)? =p2. (6.11)

9': j:

and

q-1 . q-l .

2111512 = 2127512 = q(q— 1). (6.12)

j=0 j=0

Now we estimate the sum within the first bracket in expression (7.41). Note that

|e,-| _<_ |u{,| + legl, |b,-| g reg) + reg]. Then for 1 g s g 4,

N41 .N—l . . s.N—1 s\ . .

Z lag-I33 Z (Iv{;|+|v?;|)3= 2: ~ IviIm-lvéls‘m,

j=o j=0 7n=0j=0 1%)

N—1 N—1 _ , s N—1 s , ,

Z ij|8 S 2 (l5f9|+|55|)3= Z lfifylm-lfiéls—m-

i=0 j=0 m=0 j=0 m

The following calculations are the upper estimates to the values of

s N—1 , .

2: 2 win - W-..
m=0 j=0

for 1 S s S 4. Suppose r is either p or q. Applying the result from (6.10), (6.11) and
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(6.12), we have

 

N—I ,2 N r—1 192

I141 =7-Zlvrl gm; (6.13)

j=0 k=0

N—l
' N

1214:723le s-r-w(231122212)2.<.Nr3

i=0

N—l r—1 r—l
' N N

1141:;- lvf‘lsj Zlvfl2-rsNfi-

Note that (r, N/r) = 1. By Property 6.1.3 we have

 

 

IV—l , , ,r—l AUr—l

EE:h#I'W%U,l= ]§E:h¢|]- §::IvE@A (6L0

3:0 1:20 m=0

r—l N/’" 1 3

3 2111.212” 2 lvN/rl250/2.
— m=0

Furthermore, since (r, N/r) = 1, from (6.10), Property 6.1.3 and the estimate

shown in (6.13) and (6.14), we obtain

N—1 3 N r—1 k3 N r—-1]c2 r—I k\ 5

1le =7 lvrl 37- 21v.) - Zlvrl)s1vfl; (6.15)
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N/r—l

ZIIJJIvilIZ-IN/I=(Zlv¢I2) Z Ivy/TI mm.

k=0

Combine all the results above, noting that we assume p < q. Then when p and q

are large enough, we have

N— . . . . . . . .

= Z (|v£l4+lv§|4+4lv%|3-Iv§|+4lvfil-lv§|3+6lv%|2-lv5|2)
j=0

3

g Np3 + Nq3 + 4N?(1o2 + q2) + 6N2 < 10Nq3. (6.16)

Similarly, under the same conditions for p and q, we get

. . 5

Z IajI3 s (Ivfil + Ing >3 < 3ng ; (6.17)

i=0 i=0

N—1 2 N—l , , 2

IajI s (Iv;I+Iv;I> <4Nq;

3:0 i=0

N-l N—l

Ia,I< Z<Iv£I+Iva><2NqE

J=0 i=0

In the calculation above, if we replace 11'}, with i713), and 215 with '63, then for

0 S m S s S 4, the upper bounds for Zj'i—ol |v139|m- Ivgls-m as in (6.13) and (6.15)

are also the upper bounds for EN-1 [film - l'z‘z'jIS—m. As a result, the upper bounds

for 2].:—Olaljls are also upper bounds for 2N:OllbjIS, for each 1 < s < 4. By

Theorem03.2.7,

Ixtléjll = IgthIngI = waléjll s «N. (6.18)
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Using the interpolation formula ([23], (2.5), page 162)

xtl——€j]=N 2153——+€jxxtlékl,

and the inequality (for instance, [24], page 625),

N—l

5k

€k+€j

 SNlogN,

  k=0

combined with the result in (6.18), we have

lth‘Ejll S 2\/—N-logN, for 0 S j g N — 1. (6.19)

Combining the results from (6.18) and (6.19), we can write

IxtHzfjll s 2\/Nlog N, for 0 g j g N — 1. (6.20)

Now we give an upper bound to the two brackets of form (7.41) simultaneously.

We use symbol cj to represent either aj or bj. Using (6.16), (6.17) and (6.20), we

have that there exists a positive constant C independent of N, such that

N—l

Z chI4 < CNq3;

J=0

N—l N—1

Z 6|xt(igj)|2 - ch|2 S 24Nlog2N- Z ICjI2 < CN2qlog2N;

J'=—0 J'=0

N—1 3 N—l 5 1

Z 4|Xt((:téj))13 ch |<32N210g3N Z chl <CN2q210g3N;

J=0 J=0
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N—l

Z 4|Xt(i§j)| - Icy-I3 g 8x/NlogN. (:1 |cI3) < CNEqfilogN.
.=0

Thus the sum in the two brackets of form (7.41)

2I II4 +6|x(15,“? loI2 +4< IX(W2 +Ic,I2 > lc--I Ix (ifijfl I ~ o<N2)

provided the condition (6.2) is satisfied. This finishes the proof of Theorem 6.1.1. [:1

6.2 The Doubling of Known Sequences

Suppose the binary sequence 2 of length N = pq is a Jacobi sequence as defined in

expression (2.2). The correponding modified Jacobi sequence of length N = pq is

given by

+1, j=0,q,2q,...,(p—1)q;

mj == —-—1, j: p, 2;), 3p, . . . , (q —1)p; (6.21)

[72,] , gcd(J.N)=1.

As defined in Section 2.1, the asymptotic merit factor F of Jacobi or modified

Jacobi sequences of length N = pq offset by the factor f is

1/F= 2/3—4|f| +8f2, |f| :1/2, (6.22)

provided p and q satisfy

(19 + (1)510g4 N
N3 —+ 0, for N —> oo. (6.23) 

Particularly, for the sequence a (equal to the Jacobi sequence 2 or a modified

Jacobi sequence m) with no shifting (f = 0):
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 Lemma 6.2.1. Under condition (6.23), we have Nlim

It is important to realize that under (6.23) both p and q go to infinity as N goes

to infinity.

Theorem 6.2.2. For each pair p and q of distinct primes with p E q E 1 (mod 4),

let a = aN be a Jacobi sequence or a modified Jacobi sequence of length N = pq; and

let ,8 = ,8N be one of the binary sequences of length 2N from Definition 3.1.5. For

each such N, we further let b = bN be the length 2N sequence {a ; a} * fl. Then the

asymptotic merit factor lim F is 6 for N = pq subject to 6. 23 .
N—>OO bN

Proof. It was shown in [24] that a Jacobi or modified Jacobi sequence of length

N = pq is symmetric when p E q E 1 (mod 4). By Lemma 4.0.17 we thus have

2N—1 N—l N—l N-1

Z A§(k)=N+ Z Ag(k)+2 Z Pa(k)Aa(k)+ Z Pa(k)2.

evenk evenk

We may assume throughout that q > p.

For a a Jacobi sequence, the periodic correlation function Pa(k) has the following

distribution [24, Theorem 4.2]:

Pa (k) =p occurs (q — 1) /2 times;

— 3p occurs (q — 1) /2 times;

q occurs (p — 1)/2 times;

-— 3q occurs (p — 1)/2 times;

1 occurs (p — 1)(q — 1)/4 times;
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170(k): — 3 occurs (p —1)(q —1)/2 times;

9 occurs (p -1)(q — 1)/4 times.

Therefore

N— 1

Z Pa<k)2 =0(pq2>.

k=1

even/c

By Lemma 6.2.1, when p and q satisfy (6.23) we have 25:31 213(k) = 0(N2).

Therefore by the Cauchy-Schwarz inequality

 

     

N—l N-l

Z Pa(k)Aa(k) S Z 4309) 0 ( pq2 ) S 1/0 (p3q4 ) = 0 (19qu)

k=1 k=1

evenk \ _evenk _

Combining these results with Lemma 6.2.1, we calculate (as in Theorem 5.1.2)

that, for p and q subject to (6.23), the asymptotic merit factor is

 

 

2

lim (Fb)= lim ”(351) 2

N...» N~oo2(::,,=1 Abe»

— lim 4N2

N~00 2 25: Age)

3
=4 -2x2 6

Similarly for 0: a modified Jacobi sequence, the periodic correlation function 190(k)

has the following distribution [31, p. 246]:

Pa(k) =q — p — 3 occurs (q — 1) times;

p-q+l occurs (p—l) times;

1 occurs (p — 1)(q — 1)/2 times;
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Pa(k) = — 3 occurs (p — 1)(q — 1)/2 times.

Therefore ZN:1PPa(kk)2 = O(pq) = O(N) .

evenlk

By Lemma 6.2. 1 when p and q satisfy (6. 23) we have Ell—:11 A2a(k)= O(N2).

Hence by the Cauchy-Schwarz inequality

 

N—l N—l 3

Z Pa(k)Aa(k) 3 Z A2,(k) O(N)S 0(N3)=o(N2).

k 1

ev; k \ Lev; k -     

We again combine all the results above with Lemma 6.2.1 and find that, when p

and q satisfy (6.23), the asymptotic merit factor is

2

lim F = lim 2182A?

N——>oo N—+002(Zk=1A2b(k))

 

 = lim 4N2

N2002(2*"’_;1 A200)
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6.3 The Construction of New Sequences and Dou-

bling

Throughout this section, we define the triple-valued sequence V of length N to be

(6.24)

From Property 3.2.3, the sequence V is symmetric when N E 1 (mod 4) and

antisymmetric when N E 3 (mod 4). Our goal is to construct specific families of

binary sequences based on the triple-valued sequence V. These new sequences have

the same symmetric type as the sequence V, depending upon the values of N modulo

4.

Definition 6.3.1. Suppose N = pq, where p and q are distinct odd primes. Let the

sequence V of length N be as defined in (6.24). Then we define the binary sequences

2:, y and z of length N with

$j=yj=Zj= j, f0Tj=0 and (j,N)=l.

Otherwise, for {r, d} = {p, q} and l S k S r — 1, put

(—1)kr ,ifNE 3 (mod 4);

Wed: j; ,

(—1)7‘ ,ZfNE 1 (mod4).

ykd =

xd(-1) Mk) , if k > 23—1.

2M = (Xd(—1))k -Xw~(k)-
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To better understand the definitions of sequences at, y, and 2, we will study a

concrete example.

Example 1. Suppose N = 3 x 5 = 15, the sequence V of length 15 is as defined

in expression (6.24), and the Jacobi sequence J of length 15 is as shown in Table 1.

Then we have

position j 0 1 2 3 4 5 6 7

V]- +1 +1 +1 0 +1 0 0 —1

Jj +1 +1 +1 +1 +1 +1 —1 —1

T

X5(1) X5(2)

position j 8 9 10 11 12 13 14

V,- +1 0 0 —1 0 —1 —1

Jj +1 —1 —1 —1 +1 —1 —1

T T

X5(3) X5(4)

Here V is antisymmetric because 15 E 3 (mod 4). But the Jacobi sequence J is

neither symmetric nor antisymmetric; indeed, the positions 0, 3, 6, 9, and 12 give a

subsequence (1, x5(1), x5(2), x5(3), x5(4)) which is symmetric since 5 E 1 (mod 4).

Definition 6.3.1 gives new values on positions j, with (j, 15) > 1:

J 3 5 6

J3 X5(1) =1 X3(1) =1 X59) = -1

x,- (4)13 = —1 (—1)E = _1 (—1)—5 = —1

yj 150) = 1 130) = x5(2) = —1

Note that in Example 1, 11:, y and 2 only differ at positions j, where (j, N) > 1,

and all are antisymmetric, as is V. This is a concrete example of the following general

result.
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j 9 10 12

Jj X5(3) = -1 X3(2) = -1 X5(4) = 1

xj (-1)§§=1 (_1)E=1 (4)35: 1

yj -X5(3) = 1 X3(2) = -1 -X5(4) = —1

zj (—1)3X5(3)=1 X3(2)=—1 (—1)4X5(4)=1

Lemma 6.3.2. Suppose N = pq, where p and q are distinct odd primes. Let the three

binary sequences 1:, y and z of length N be as defined in Definition 6.3.1. Then as, y

and z are symmetric if N E 1( mod 4), and antisymmetric if N E 3( mod 4).

Proof. To shorten the proof, we use the notation uj to represent one of xj, yj, or zj.

If (j, N) = 1, uj = Vj, thus by Lemma 3.2.3, we have

uj =“N—j1 ifN E 1 (mod 4) ;

uj = _“N—j1 ifN E 3 (mod 4) .

We wish to prove this for all j ’s with 1 S j S N -— 1.

m—l

By Lemma 3.2.3, for m E {p, q, N}, we have Xm(—1) = (—1) 2 . In particular,

the two equalities above are equivalent to the single equality

uj 'uN—j = XN(—1).

Let {r, d} = {p, q}, so that N = rd and N— kd = (r—k) -d. Therefore to complete

the proof of the lemma, it is enough to verify

de ' u(r—k)d = XN(_1)'

for all 1 S k S T—E—l We do this in cases.
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First,

ykd ' y(r—k)d = Xr(k)'Xd(—1)'Xr(7‘ “- k)

= Xd(—1)-Xr(k)-Xr(-k)

= xd(-1)-><r(—1)-(><r(k))2 = xN<—1>.

Next,

zkd . 20.4.” = (xd(—-1))’° -x.~(k) - (>cd(—--1))"—’c -w — k)

= ecu—1))" -x.~(k) -x.~(—k>

= Xd(—1)'Xr(—1)'(Xr(k))2 = xN(—1).

since when r is odd, (Xd(—1))T = Xd(—1).

Finally, if N E 1 (mod 4),

N
~

In - Stu—km = Ht?" - cut—k)?

while if N E 3 (mod 4), then by Lemma 3.1.7

 

zkd -mm = H)” - (AW-’9)?"

— (-1)E-(—1)T"E

= (*1)? = --1 = XN(-1)-

Combing all the results above, we have that x, y and z are symmetric when

N E 1( mod 4), and antisymmetric when N E 3( mod 4). In other words, :13, y and

2 have the same symmetric type as the sequence V. E]
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Recall that the product of sequences ”*” and sequence 6(5) are as defined in

Definition 3.1.1 and Definition 3.1.5. In [39], certain sequences b = (u,u) =1: (:tfi(6))

give rise to sequences with asymptotic merit factor 4 x F once the following are

demonstrated:

(a) u is symmetric or antisymmetric ;

(b) the sequences u have asymptotic merit factor F ;

(c) the periodic autocorrelations have 2:21:11 P3 (2') ~ 0(N2) .

Here Lemma 6.3.2 provides (a), and Theorem 6.1.1 gives (b) with F = 1.5. There

fore we will be able to prove the following theorem, once we have studied autocorrela-

tions in the next section. Based on the new constructions, we will prove the following

Theorem.

Theorem 6.3.3. For each N = quN, where pN < qN are distinct odd primes,

let uN be any one of the binary sequences :12, y and 2 as in Definition 6.3.1. Let the

sequence fiN of length 2N be one of the four sequences $805) from the Definition

3.1.5. Let bN = {uN, uN} * 6N, be a sequence of length 2N . Then the sequence of

sequences {bN} has asymptotic merit factor 6.0 provided

N6

— —> 0 when N ——> oo , (6.25)

pN

where 6 satisfies 0 < e < 13'.

We will prove Theorem 6.3.3 in steps.

From Lemma 3.2.5 and Property 6.1.3, the periodic autocorrelations of XN are

1-p .ifplj;

PXN(j)=PXP(j)XPXq(j)= 1-q .ifqu;

+1 , otherwise.
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Therefore, the periodic autocorrelations of the sequence V of (6.24) satisfy

1+1? ,ifplj;

”Di/(ills 1+q ,ifQIJ'; (6-26)

+ 3 , otherwise .

where V is as defined in (6.24).

Property 6.3.4. For p an odd primes, let Xp be the primitive character mod p as

defined in (2. 6) Then for any 1:, we have

1

36p 210gp+1 ,ifp’fk

I Z (71)Xp(n+k)l3

0 .ifplk

Proof. The result is obviously correct when plk. Now suppose p f k. From Lemma

3.2.5,

p—l

I Z (-1)nxp(n)Xp(n + k)|

n=0

231 PT
:IZXp(2j)(Xp2j+kl- 21X(2)j—1Xp(2j—l+k)|

i=1 3'1:

251 a;
s I :3 humor + m H :3 Xp(2j‘1)Xp(2j—1+kll

3231—1 3:1

s 2| Z Xp(2j)><p(2j + k)l +1

= 2|];1 meow—1k»! +1.
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Weil [34] proved that the Riemann Hypothesis is true for the zeta-function of an

algebraic function field over a finite field. A specifically useful consequence is that,

for any integers u and v with u > 0,

1

| Z Xp(f(j))|39mp?10gp. (627)

u<j<u+v

where f (3:) E Fp[:z:] is a polynomial of degree m not of the form b(g(:r))2 with b E Fp,

g(:r) E Fp[a:]. (The readers can find a detailed proof for equation (6.27) in [37]

Corollary 1.) When p f k, the polynomial IL‘(.’L‘ + 2—1k) is not the square of any

polynomial over Fp[:z:], so

——1

22— 1

I Z we +2—1km s 18102 Iogp.

i=1

hence

P-1
1

n

I Z (_1) XP(n)Xp(n + kll S 36p210gp +1 ,

n=0

For the triple-valued sequence V defined in (6.24), write uj = V]- + 123*, where u

could be any one of the binary sequences 3:, y or z of length N as defined in Definition

6.3.1. For instance, for {r,d} = {p, q} and 1 S k S r - 1, when u = :r,

(a); ,iszkd, and NE 3 (mod 4);

213-: : (_1)kr , ifj = kd, and N E 1 (mod 4);

O , otherwise;

and ifu= z,
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k . .

—1 - k , i = kd ;0],: (xd( )) Xr( ) fr (628)

O , otherwise.

In all three cases, we have

ZIvylSpq—(p-1)(q—1)=p+q-l<2q. (629)

as p < q. As remarked1n the previous section, we wish to prove that 2N11 P2(Z)~

0(N2). The most important part of that13 the following technical lemma.

Lemma 6.3.5. Suppose N = pq, where p, q are distinct odd primes with p < q. Let

the sequence V be as defined in form (6.24), and write uj = Vj +1139, where u could be

any one of the binary sequences :5, y or z of length N as defined in Definition 6.3.1.

Then when p and q are large enough, for {r, d} = {p, q}, we have

2. if(i.N)=1.

IPUU(i)| S 1

4r? log3(r). if(vl.N) = d.

Proof. For any 1 S i S N _ 11 Pvu(i=l 29:61?)113‘“0;”, while from the definition

vjuvj+i¢0¢>(jaN)=m1
>1, and (j+z,N):m2>1

We break the proof into cases:

Case 1 m1 75 m2, and (i, N) = 1.

Case 2 m1: m2 = (i,N) = d, with {r, d} = {p, q}.

We first note that this handles all situations in which nonzero coefficients occur.

68



Clearly if m1 = mg, then (i, N) = m1 = m2. If m1 75 m2, there must be 0 < k < r

and0<s<dwith

kdii=jiiEsr (modN),

As (1 f s we have d ’f i, and similarly r f i as d f k. Therefore m1 aé m2 implies

(i,N) = 1.

Case 1 m1 75 m2, and (i,N) = 1.

First suppose d = m1, r = mg. Then as above there exist 0 < k < r and

O < s < d, such that

kd+i=j+iEsr (modN), (6.30)

Such a pair k and s is unique. Indeed if there exists another pair 0 < k, < r and

0 < s’ < (1, such that

k’d+ 2' s s’r (mod N),

then (k —- k’)d a (s — s’)r (mod N). As le and d|(k — k’)d, we find d|(s — s’) with

O < s, s’ < d. Therefore, 3 = s’, and similarly, k = k’.

In addition, if expression (6.30) is satisfied, then kd +i E sr (mod N) implies

(d — s)r + i E (r — k)d (mod N), and this must give the unique solution pair when

r = m1 and d 2 m2. Therefore, when (i, N) = 1,

IPt‘(z)| S lvi‘dvé‘r + vgkdvgsrl S 2'

Case 2 m1: m2 = (i,N) = d, with {r, d} = {p, q}.

There is an s with O < s < r, and

r—1

1:1

Case 2.1(i,N)= d and u = x.
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In 1998, W. Zhang [32] proved that for any integer t,

r—l _ _—

Z (_1)717‘+(n+t)7" g (5 log2r. (6.32)

n=l

r[n+t

where 72.? is as in Definition 3.1.6.

More generally, for any integers t, t1 and t2 with t > 0, H. Liu proved [33]

 

| Z (—1)n—T+(n+t)T|S\/Flog3r. (6.33)

t1<n<t2

r]n,n+t

In the following proof, to simplify the notations, we use notation 3 instead of 3;.

When N E 3 (mod 4), from (6.32),

T—1 r—l _. _

va(i) = Z vfdvfs+j)d = Z (‘1)]+S+J S W logzr,

J=1 j=1

r+j+s

When N E 1 (mod 4), suppose s S (r — 1)/2. Then from Lemma 3.1.7 and

expression (6.33),

r—1

_ a:
[PUCL' (2)] Z vjdv(8+])d

J=1

r—1_ r—l

T s _2— r—l—s r—1

= ( Z + Z + + Z )vjdv(s+])d

J=1 j=£§l—s+1 Jar—51“ J=r-s



  

r-1_s r—1

2 —. —T 2 _. —'—.

=| Z (_1)]+8+J__ Z: (_1)]+s+J

j=1 j=£§l—s+l

r—1—s 7 ——+ r—l f ——+

+ Z (_1)J+S+J _ Z (_1)]+S+] l

j:T—1+1 jo—S

r—1_S r—1

3 Z (4)759 + Z (—1>3+3+—J’

j=1 j=£§l—s+1

r—-—1—-s _T ——. r—l __ __

+ Z (_1)]+8+] + Z (_1)]+S+]

3.1.1.—1+1 jz'r—S

34¢? log3r.

Case 2.2 (i,N) = d and u = y.

If d E 1 (mod 4), then from Lemma 3.2.5, expression (6.31) is

r—l r—l

Pvt/(1) - j_1”jd”(s+j)d — J; Xr(J)Xr(J + S) — -1-

If d E 3 (mod 4), then expression (6.31) becomes

  

r-l

- _ y y

[va(z)] — ; vjdv(s+])d

r—1_s r—1

2 2 r—l—s r—I

__ y y
— ( Z + Z + + )vjdv(s+j)d

3:1 y=%—s+1 j=1§l+1 FT—S



   

r—1_S r—l

T _2—

S 2 Xr(j)Xr(3+J) + Z Xr(j)Xr(3+J)

3:1 J=r—§—1-—s+1

r—1—s r—l

+ Z Xr(j)Xr(8+j) + Z Xr(j)Xr(S+J')

Fig—1+1 FT—S

3 72¢; logr,

The last inequality follows from equation (6.27) by taking the degree m = 2.

Case 2.3 (i,N) = d and u = 2:.

Equation (6.31) becomes

r—l . .

I— |2v«gdvf,(,_,,dI = I Eur—1))? -x.~(j) - (Xd(-1))(S+J)’" -Xr(3+j)l.

j=1

whereOS (s+j)7~ g r— 1, and (s+j)r E s+j (mod r).

Now we study the values of (j: (Xd(—1))j+(3+3)7' From Definition 6.3. 1, we

have

1. 9:1, 11.121 (mod 4).

2. 9- = (—1)J'+(8+J')r, ifd a 3 (mod 4).

Ide1(mod4),

[ZXMJl)Xr(8+j)l= 1, sincedfs.

If d E 3 (mod 4), let ll be the number such that s +j1 < r, but 5 +j1 +1 2 r.
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Then

r— 1

IP02 W|=l§XrU)(xrs+j)- Z Xr(JJ')Xr(s+J')l

j:—1 j=j1+1

.71 r—l

:Ith(j)xh(s+J)l+I Z xh(J)x7~(s+J)I

J'=1 J=J1+1

S 36%? logr.

Again, the last inequality comes from equation (6.27) by putting the degree m =

2. [:1

Now we are ready to prove that 2N11 P.3(i) ~ o(N2):

Lemma 6.3.6. Suppose N = pq, where p < q are distinct odd primes. Then when

2
q S p , and both p and q are large enough, we have

N—

21193 i)<ch

where u may be any one of binary sequences x, y and z of length N as defined in

Definition 6.3.1 and c is a constant independent of N.

Proof. Again, using the notation of Lemma 6.3.5, we write u = V + v, where u may

be any one of sequences um, vy, or uz. Then by Property 3.2.13, we have

ZP3(2')=A+B+C+D+E+F (6.34)

In expression (6. 34), we have separated the summands into six groups. For instance

A: EAL—111W“), and F: 221.:—11[2Pv,,,(i)P,,,V(i) + 133,7}(2') + P3 Va) ]. In the

following, each of the sums X E {A, B, C, D, E, F} will be bounded above by cX -Nq

for appropriate constants cX. To simplify the notation, it should be understood that
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all of the following statements are valid when p and q are large enough.

For group A, from equation (6.26),

N—l N—l N—l N—l

2 1312/6): 2 P,2/(t)+ Z P,2,(t)+ 2: P36) (6.35)

i=1 (i,N)=1 (i,N)=p (i,N)=q

39¢(N)+qx(1+p)2+px(1+q)2<3Nq.

For group B, using Lemma 6.3.5, we have

N—1

2123(1): Z P3(i)+ Z P3(i)+ 2: P36)

i=1 (i,N)=1 (i,N)=p (i,N)=q

g 4¢(N) + 16q210g6 q + 16p210g6p < Nq .

Also from Lemma 6.3.5,

N—l N—l

lCl = 2I Z: Pv6>Pn6>I s 2 Z IPv(i)Pn(i)|

i=1 i=1

:2 Z [PV(i)Pv(i)l+2 Z IPV(2')Pe(z')I+2 Z IPV(2‘)Pv(z‘)I

(i,N)=1 (i,N)=p (i,N)=q

1 1

g 12¢(N) + 9Np? log3p + 9Nq7 log3 q

1 3
< 19Nq2 log q < Nq.
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For group D, by equations (6.26) and (6.29), the absolute value of the first item is

N—l N—l N—l

| Z Pv(i)Pv,v(i)| = Z Pv(i) ( Z vme_z-)

i=1 i=1 m=0

N—1 N—1 N—1

s :3 IPV6)I Z Iva <2qx Z IPv(i)|;

Similarly, we can show that any other item in group D is bounded above by

N—1

2a X Z IPv(i)|-

i=1

Again from (6.26), we have

N—l N—1 N—1

IDIS8q>< 2 IPv6) =8q><[ Z IPv(z')|+ Z IPV(2')| ]

i=1 7;: i:

(i,N)1=1 (i,N)1>1

S 8q x [3¢(N) + 3N] < 48Nq.

Now for group E. Again, consider the absolute value of item

N—l N—l N—1

I Z P..,V6)Pe6>I =I Z Pv(i)( Z vjvj+.->I

N—1 N—1 N—l

S 2 IPv(i)| Z [va <2q Z IPv(i)|-

Similarly any other item in group E has absolute value bounded above by

N—1

29 Z [1311(1)]

i=1
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Thus using Lemma 6.3.5 and expression (6.29),

N—l

IEIsquIPe(2)I=8qxI Z IP66)l+ Z IP66)I+ Z IP66)

i=1 (i,N)=1 (72,N)=P (i,N)=q

3 3 3 3
3 8g x [2¢(N) + 4p? log 12 + 4219106 (1]

S 17Nq.

where the last inequality follows from the assumption that q 3 p2.

Finally, consider the first item in group F.

2 2—1N—1 —1

l :1 PV,u (2)131} =l Vjvj+ivme+i|

i 1 j=0m 0

l—N—l :
2

—1

vjvmVj—z'Vm+2‘|

0

(
1
1
2
%

1 j=0mS
.

ll

1N—1 N—l

Z vjum( Z V_ij+,-)|

m=0 i=1

N—

=(|XN1) Z

J'=0

N—1N— 1

=|XN(-1) Z vjvav((m+J')|

j=0 m=0

I
I

N—1N—

[2: 2:11;jv—sjPV(5s)[ wheres=m+j

N—l

=l Z Pv(S)PV(5)|~

=0C
I
:

Similarly, we can prove that any other item in group F has the same absolute value
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[29:01 Pv(S)PV(8)|- SO

N——1 N—l

IFI S4| Z Pv(8)Pv(8)| S 4 X (IPv(O)PV(0)l+l Z Pv(3)Pv(S)|) -

s=0 3:1

From equation (6.29),

Pv(0)PV(O) < 2Nq ; (6.36)

From the estimate for group C, we know that

N-l 1 3

| Z Pv(s)PV(s)| < 19N6216g q < Nq; (6.37)

s=1

Now (7.27) and (7.28) imply that

IF] <12Nq.

Combining all of the inequalities above, we obtain the desired result. El

. . . . N—1 .
Lemma 7.2.7 shows that when condltlon (6.25) 18 sat1sfied, 22-:1 P30) ~ 0(N2),

where u may be any one of the binary sequences :6, y and 2 as defined in Definition

6.3.1. Therefore, as remarked at the end of the previous section, we are now ready to

prove Theorem 6.3.3.

Proof of Theorem 6.3.3.

For each odd N = pNqN with pN < qN1 Lemma 6.3.2 shows that each of the

three sequences 11:, y and z is symmetric or antisymmetric. Let

bN={uN;uN}*fi

N
where u = x, y or 2 as defined in definition 6.3.1. In the following, without confu-
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N
sion, we use b and u instead of bN and u . Then lemma 4.0.17 gives

2N—1 N—l N—l N—l

Z A§(k)=N+ Z A,2,(k)+2 Z Pu(k)Au(k)+ Z Pu(k)2.

evenk evenk

When condition (6.2) holds, Theorem 6.1.1 shows that

2 Z Ago.) ~ §N2. (6.38)

N—l N—l

Z 103(k) s 103(k) = 0mg)

evenk

Then given condition (6.2), by the Cauchy-Schwarz inequality

 

N—l

z Pu(k)Au(k)

k=1  

N—l 3 1

S [2: A12L(k)JO(N9)N qug = 0W2)-

k=1

Therefore, for p and q subject to (6.2), the asymptotic merit factor of b is

 

 

. . (2N)2
11m (Fb ) = 11m

N—>oo N N—>oo 2 2N—1A2 k(zkzl bN< )>

— lim 4N2

N—m 2 2,?sz Am)

3
= 4 _ =

X 2

This finishes the proof of Theorem 6.3.3. D
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6.3.1 Conclusion

For a character sequence of length N = pq, the number of positions j with (j, N) > 1

is larger than x/N, so those “modified” positions are large enough to make a difference

in the merit factor. However, Theorem 6.1.1 shows that subject to condition (6.2),

any modification on these positions will give the same asymptotic merit factor values

as the character sequences. The authors were informed recently that Jedwab and

Schmidt have obtained the same result independently under an improved condition

([40]). In [39], the doubling technique shown in Lemma 4.0.17 was only applied

to some of the Jacobi or modified Jacobi sequences with additional restriction to the

values of p, q (mod 4). Here we have constructed new sequences considerably different

from the canonical Jacobi or modified Jacobi sequences and with no restrictions on

the values of p, q (mod 4), yet achieving the same asymptotic merit factor, as seen in

Theorem 6.3.3.
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Chapter 7

Sequences of Length 2191192 . . . p7.

with Asymptotic Merit Factor 6.0

In this chapter, we will give a new modification to the character sequences XN, where

N = plpz . . . pr, for pi’s distinct odd primes and r 2 2. In Section 7.1, we will give

the definition of the new families of binary sequences 2. In Section 7.2, we will give

an estimate to the periodic autocorrelations of 2. And in Section 7.3, we will prove

the asymptotic merit factor of 2 satisfies formula (5.1), and we will construct a family

of binary sequences of length 2p1p2 . . .pr with asymptotic merit factor 6.0.

7.1 Construction

Definition 7.1.1. Let N = p1p2 . . . pr, where p,- ’s are distinct odd primes and r 2 2,

forlngN—I, define

(xd(-1))k°xN/d(k) , if (j,N)=d>1 andj=kd;

O , otherwise.

’Uj = (7.1)
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and

1 .ifj=0;

zj= 22,- ,if (j,N)>1; (7-2)

V} , otherwise

where V is character sequences defined in expression (6.24).

To see the definition of sequence z more clearly, let’s consider a concrete example.

Suppose N = 3 x 5 = 15, so p = 3 E 3( mod 4), q = 5 E 1( mod 4). Let V denote

the character sequence as in (6.24), then

V={0,+1,+1, 0,+1,0,0,—1,+1,0,0,—1,0,—1,—1}

z = {+1, +1, +1, -1,+1, +1,-1,—1,+1,+1,-1,—1, +1,—1,—1}

Note that in the above example, we put in italic type those entries at j-th positions

where (j, N) > 1.

It is obvious that when r = 2, the sequence defined in Definition 7.1.1 is exactly the

same sequence 2 as in Definition 6.3.1. Therefore Definition 7.1.1 is a generalization

of Definition 6.3.1 for length N = pq. Then similar to Lemma 6.3.2, we will prove that

the sequence 2 defined in Definition 7.1.1, is symmetric or antisymmetric depending

on N.

Lemma 7.1.2. Suppose N = p1p2 . . . pr, where p,- ’s are distinct odd primes, and the

binary sequence 2 of length N is as defined in Definition 7.1.1. Then 2 is symmetric

if N E 1 (mod 4), and z is antisymmetric if N E 3 (mod 4).

Proof. If (j, N) = 1, zj = vj, thus from Property 3.2.3,

zj = ZN—j’ if N E 1 (mod 4) and 23- = "ZN—j, if N E 3 (mod 4)

Now suppose (j, N) = d > 1, and j = kd with 1 S k < N/d. For the similar reason
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stated in the proof of Lemma 6.3.2, it is enough to prove that

de ' zN—kd = XN(—1)-

de - z(r-k)d = (tr—1))" - mac) - (xd(—1>>’"—k -m — k)

= (Xd(-1))r - Xr(k) -Xr(-k)

= xd(-1) 'Xr(‘1)°(Xr(k))2 = xN<—1),

since when r is odd, (xd(—1))7' = xd(—1). El

The main theorem of this chapter is as follows:

Theorem 7.1.3. For any positive integer r 2 2, suppose N = p1p2...p1-, where

p1 < p2 < ...pr are distinct odd primes. Then for each N, let zN be the binary

sequence defined in Definition 7.1.1. Now construct any infinite sequence of such

sequences

,0 I .z={zN1,zN2,...,zNi },

with increasing lengths N1 < N2 < < Ni <

(1) Let F be the asymptotic merit factor of 2, f be the ofiset fraction. Then we have

1/F = 2/3 — 4m + 8f2, m 31/2. given

N6

— -—> 00 for any 6 small enough as N —) 00. (7.3)

pl

{2) Let the sequence D of length 2N be one of the four sequences ifiw) from the

Definition 3.1.5. The new sequence b = {z ; z} * fl of length 2N has asymptotic merit

factor 6.0 given {7.3) is satisfied.

We will prove Theorem 7.1.3 in steps. First of all, we will estimate the periodic

82



autocorrelations of sequence 2 in the following section.

7.2 Periodic Autocorrelations of Sequences z

First, we review some simple properties from number theory.

Lemma 7.2.1. Let y1 = ( yé ,... ,y11V1_1 ), y2 =(yg,...,y12V2_1),..., yr 2

( y6 , . .. ’ylVr—l ) be r sequences (not necessarily binary) of length N1,N2, . . . Nr

respectively, such that (NiaNj) = lfor any 1 S i < j g r. LetN = N1 XN2 - - -er,

define a new sequence u = y1 <8) y2 (8) . . . yr of length N via

j 377612 j N—l '1:
Furthermore, let EN = e , let u[€N] = Zk=0 uk({‘17v) be the DFT ofu as defined

in {3.1). Then there exist integers 31,32, . . . ,sr with (32-, Ni) = 1 for 1 S i S r, and

, r .

u [it] = H yil {£31

i=1

Proof. We will prove the two results simultaneously by the induction on r. When

r = 1, the result is trivial. Now suppose Lemma 7.2.1 holds for r = k — 1, where

k 2 2. Then for r = k, suppose y1,y2, . . . yk_1,yk is a series of sequences, where

for each i, sequence yi has length Niv and (Ni, Nj) = 1 for any 1 _<_ i < j S k. Now

denote N’ = N1 x N2~~ x Nk_1,u1= y1 @312 ®...yk'—1, then u = u1®yk. By
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induction,

PuU) = Pulwpykv)

. . I '8

u[ at] =u11 535,1 -yk[ 6N5]

where (s', N’) = 1 and (sk, Nk) = 1. Then by induction

’6

1311(7): Pul(.7)Pka) =P1—Iy

i=1

On the other hand, by induction,

I ..[ k—l . jss

UlléfiS/l = H y’léN. 3]

j=1 3

where(s Nj=) 1), forj=1,2,...k—1. Since (s',N')=1, wehave (s',Nj)=1,
Sj)

forj = 1,2,. ..k—l. Thus (s'sj, Nj) = 1, which finishes the proof of the Lemma. C]

We consider a simple example of Lemma 7.2.1. Let sequence V be as defined in

. form (6.24), for r = 2, so N = pq, where p and q are different odd primes. Then from

Lemma 7.2.1

1’ . .

l 1_p :zfpl]

PV(j)= 1_q ,z'qu ,lngN—l. (7.4)

+1 , otherwise

Expression (7.4) is exactly the same as the form (6.26).

Generally, for r 2 2, N = p1p2 . . . pr, where pi’s are distinct odd primes, we have

the following upper estimate for the periodic autocorrelation for V.

Lemma 7.2.2. Let N = plpg...p7~, where p1 < p2 < < pr are distinct odd
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primes, r is finite. Let the sequence V of entries {0, :tl} be as defined in form (6. 24),

then we have

1-Ipv(ill <(i N);

2

2. 2:21:11 P12/(i) S C - a]? , where C is a constant only depending on r.

Proof. For part 1, if (i,N) = 1, then (i,pj) = 1 forj = 1,2,...,r. From Lemma

3.2.5 and 7.2.1,

2) = H Pxpj (i) = :tl

Now if (i, N) = N1 > 1, then (i, N/Nl) = 1. Use the above result and Lemma 7.2.1,

11w): = IPXN1(0) >< PX N (2'): _<_ IPXN1(0)I s (i,N).

Ni

So part 1 is true.

For part 2, by Lemma 7.2.1,

N—l

232/“) 2: PW“ 2 PW)

i=1 _(i,N)=1 (i,N)>1

N

2(

(1%“;13111132”’9'”+323;[PM”WW/W")

< Z 1+Zal2 -Z—=¢(N)+ZN-d

(i,N)=1 le d|N

N_2

< (11—

P1

where d(N) is the Euler function of N, and C1 is a constant only depending on r. E]
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Before we can give an upper bound of the periodic autocorrelations of sequence

v, we still need one more property.

27ri

Lemma 7.2.3. Let {N = e—N, suppose N = N1 x N2 - - - x NT, where (Ni, Nj) = 1,

for any 1 S i < j S r, then for any integer k, there exist integers k1, k2, . . . , kr, such

that (ki’Nz) = 1, and

7.

He-

4% = H 5N;

i=1

Proof. We will prove the lemma by the induction on r. When r = 1, the result is

obviously true if we choose k1 = 1. Suppose the result is correct for r = s — 1, where

s 2 2. Then for r = s, so N = N1 x N2~~ x NS__1 x N3, where (NiaNj) = 1, for

any 1 S i < j S s. Denote N’ = N1 x N2 x Ns_1, so (N’,Ns) = 1. Then there

exist integers k, and 193, such that

ksN' + k’Ns = 1 => k a kksN’ + kk’Ns (mod N)

’ kk

=>€jkif =43? 'ENSS

by induction

s— 1

kk' _ kk’s-

EN, — ch‘Ni .

Z:

where (si,Nz-) = 1, for 1 S i S s— 1. Now

ksN’+k'Ns=1=> (k’,N’) = 1 => (k’,N,-) = 1 for 1 SiSs—l

Let k,- = 11’s,, for 1 _<_ i g s — 1. Similarly, kSN’ + k’Ns = 1 => (k3,Ns) = 1, then

we have the desired result. [:1

Lemma 7.2.4. Suppose N = p1p2...p7~, where pi ’s are distinct odd primes fori =

1, 2,. . . ,r. Let XN be the primitive character mod N, f(x) be a polynomial of degree

It. Iffor each pa, 1 S a S r, there is afactorization f(x) = b(x—x1)d1 (x-x3)d3
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in 719a: where x,- ¢ xj, fori 793' with

(pa—1,d1,...,ds)=1,

then

1

I Z mom» I < 21.er log (N)

u<nSu+t

where u and t are integers and t > 0.

Proof. From Lemma 3 in [37] (Page 374), we know that for each pj, 1 S j S r,

2 1p,- (f(x))e 1’] 3 rep} (7.5)

for any b E Z. At the same time, one form of the Erdos-Turan inequality ([37] Lemma

4, Page 375) is presented as following

If m E N, the function g(x): Z —><C is periodic with period m, and u and t are real

numbers with 0 S t < m, then

m m
t+1 _ hn27r-

I 2 g(n)Is—m—|Zg(n>u+ 2: VII llZg(n)e m ‘I (7.6)

u<nSu+t n=1 1g|h|gm/2 n=1

Now apply equation (7.6) with N and xN(f(n)) in place of m and g(n) respectively,

87



and use Lemma 7.2.3 and equation (7.5):

  

  

  

 

Z XN(f(n))

u<nSu+t

t+ 1 N _1 N hn27rz-

S T Z XN(f(n)) + 2 lhl 2 X1y'(f(n))e W (7-7)

n=1 lsIhISN/2 n=1

t+ 1 7' pj T pj M,-

= —N— H mum» + Z W4 H 2 moans 1”]

j=1 n=1 1S|h|SN/2 j=1 n=1

r Pj T 1 1

and $1] ZijUUl» SQXtEIHpES2xN2

3:1 n=1 j=1 . 

The last inequality follows from equation (7.5).

The calculations above follow from the fact that kj’s are integers such that

(kj1pj)=1

For the second item in (7.7), from equation (7.5), we have

hk-n27r

1 n))_l—p'2' 1 1

Z W” H 2112]“)? J S2x Z |h|‘ N2

1311431102 1':—1 n=11_<_|h|sN/2
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Again the last inequality follows from equation (7.5). Therefore we obtain

| Z XN(f(n))|

u<nSu+t

11+ 1 r Pj 1 r pj hkpZ-n27ri

s—N— H vaa» + Z Ihl" H prjvmne J

i=1 n=1 1S|h|SN/2 j=1 n=1

1 1 1 1

g kTN? + kTNQ Z |h|_ < 2k7‘N2 log (N)

lslhISN/2

which is the desired result. El

Remark 1. In the hypothesis of Lemma 7.2.4, for each pj, 1 S j S r, f(x) can’t be

a perfect square over ij. As an application of Lemma 7.2.4, the following property

gives a general estimate for all f(x) of degree 2.

Property 7.2.5. Suppose N = p1p2 . . . pr, where p,- ’s are distinct odd primes and r

is finite. Let x be the primitive character mod N. Let u and t be integers such that

OSt<N,thenforanylSklaékZSN—l,wehave

1- l2u<ngu+t XN(n + k1)XN(n + k2)| S 2 - ma${l§€fl, 2T vN/d 10s (N/d)}

2- IZu<ngu+t(-1)"XN(n+k1)XN(n+k2)| S 4'ma${l§€fla2r x/N/Ul 10s(N/d)}

where d = (k2 — k1,N).

Proof. We will prove part 1 first. For d 2 (k2 — k1, N), write N = ds, thus (k2 —
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191,3): 1. Then

| Z XN(n+ k1) 'XN(n + k2)|

u<nSu+t

=| Z XN(n)'XN(n+k2—k1)|

u+k1<n_<_u+t+k1

=1 2 x3<n>~x3<n113m + 12 — km.

u’<nSu’+t

whereu’ =u+k1. Letm=|_%]=[Nd] ThenfromLemma7..,24 wehave

I Z xN(n)-XN(n+k2-k1)l

u’<nSu’+t

m

<21|sz(k2-k1)|+l Z xS(n) -Xs(n+k2—k1)|

J=1u’+ms<nSu’+t

<m+2T x/E- log(s)S2 max{|_([3],-2T \/N d-log (N/d),

where the second inequality follows from the fact that (k2 — k1, s) = 1, thus PXs (k2 —

k1) = —1, and Lemma 7.2.4.

For part 2,

Zu<nSu+t(_1)nXN(n + kllXN(n + ’92)
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s | Z (-1)2"XN(2n + k1)XN(2n + kg) (7.8)

l%J<nSll§11

+ z (—1)2n—1XN(2n—1+k1)xN(2n—1+k2) |+2

l%l <nSllail

S I Z ><N(2n + k1)XN(2" + k2) l

Lamas-#1

+| Z XN(2n—1+k1)XN(2n—1+k2)I+2

135102511?“

For the first item in expression (7.8),

| Z XN(2n+ k1)XN(2n+k2)| (7.9)

1&1 <ns1%t1

=| Z XN(n+2_1k1)XN(n+2_1k2)|

[121anij

S 2 - max {[%],2T\/N/d log (N/d)}

from part 1. Similarly, from part 1, the second item in expression (7.8),

| Z XN(2n—1+k1)XN(2n—l+k2)| (7.10)

Lgi<nsLU=F1

=1 2 xN<n+ 2‘1<k1—1>>xN<n+ 240:2 — 1)»

wealth

S 2 - max {[%],2r\/N/d log (N/d)}
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Plug the result from expressions (7.9) and (7.10) into (7.8). Then we get the result

we want to prove. C]

Based on Property 7.2.5, we will give an estimate of the upper bound of the Pv(i),

where the sequence v is as defined in Definition 7.1.1.

Lemma 7.2.6. Suppose N = p1p2...pr, where p1 < p2 < < pr are distinct

odd primes and r 2 2 is finite. Let (1) be the function as defined in Definition 3.1.10.

Then for the sequence v as defined in Definition 7.1.1, for each 1 S i S N — 1, given

condition (7. 3) holds, we have

_ FNMA—122") 129%) , if d = 1;

lP'UCEZH S d/Pl , if (d(d) = 7‘ _ 1; (7.11)

max {d, \/N/d log (%)} , otherwise;

 

where d = (i, N), and C is a constant only depending on r.

Proof. For any 1 S i S N — 1, Pv(i) 2: 2?:01 ”jvj+i1 while from the definition

”jvj+i # 04:) (j,N) =m1 > 1, and (j+i,N) = m2 >1.

Suppose ”jvj+i 71$ 0, and put (m1,m2) = d1. Then m1 = d1d2, m2 = d1d3,

and d1d2d3IN. In the following proof, we put D = d1d2d3. Write j = kd1d2,

j+t = Sd1d3. Then

N N

[661le + Z = 8611613, and (’6, mg) = (15,-d3;)= 1. (7.12)
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Actually, starting with equality (7.12), we can obtain a series of equalities as following

(k + d3)d1d2 + 1' = (s + d2)d1d3 (mod N),

(k + 2d3)d1d2 + t = (S + 2d2)d1d3 (mod N),

(7.13)

(k + Md3)d1d2 + i = (s + Md2)d1d3 (mod N).

where M = 9/7 — 1. Note that all the values in (7.13) are taken modulo N.

Denote (k + nd3,N/d1d2) = g1, and (s + nd2,N/d1d3) = g2. Then all of the

equalities above give us the following partial sum in PU.

M

Z vl (k + nd3)0110lzl '“Ul (8 + n(112)0l1dsl

n=0

M

= 2 vi (k + ”d3)d1d2l-vl(8 + ”d2)d1d31

n=0

91-92>1

M

+ E v[ (k + nd3)d1d2 ] -v[ (s + nd2)d1d3]

n=0

91=92=1

M

= 2 'U[ (k + ndsld1d2l ”Ul (8 + “d2)d1d3l

n=0

91 -92>1

M

+ Z Cn-X N (k+nd3)°x N (3+nd2) (7-14)

n=0 did; 3133

91=92=1

where Cn = (Xd1d2(_1))(k+nd3) - (Xd1d3(_1))(s+nd2) from Definition 7.1.1.
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Therefore,

M

Z Cn'X N (k+nd3)-X N (s+nd2) (7-15)

n=0 31-32 3113-

M

= Z gn.XN/D(k+nd3)-xd3(k+nd3)-xN/D(s+nd2)'Xd2(8+nd2)

n=0

M

E Z Cn . XN/D(k +nd3) - XN/D(s +nd2) ' X61309) 'Xd2(5)

n=0

= X61309) ' Xd2 (3) 'XN/D(d3) ' XN/D(d2)'

M

n=0

where d2d2_1 E d3d§1 E 1 (mod N/D). So we have

  

M

Z ("'X N (k+nd3)'x N (8+nd2) (7.16)

"=0 21132 3133

91=92=1

M

n=0

Now we take a closer look at the Cn values. From the Definition 7.1.1,

1- (n = 1. if Xd1d2(—1) = Xd1d3("1) = 1;

_ k - _ _ .
2. a — (—1)< ”+870, 11 xd1d2(-1) — xd1d3(-1) — —1,

3- (71 = (4)16”, ifxd1d2(-1) = —1, Xd1d3(-1) =1;
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where k E k + nd mod N , E s + nd mod N .

n 3( 211715) 1,, 2‘ 31716)

Now we study each case separately. In the following cases, we let n1 be the first

number that k + n1d3 2 ail—35, and n2 be the first number that s + n2d2 Z 31%;.

For case 1,

M

IX Cn-xN/D(n+kd3—1)-XN/D(n+sd2_1)| (7.17)

n=0

M

= |Z XN/D(n+ kdgl) -XN/D(n+ sd2_1)|

n=0

—1 —1

For case 2, if n1 = n2, then we still have

M

I: a - xN/D(n+ 1.33-1) - XN/D(n+ 53,-1))=IPXN/D(sd;1_ kdgln
n=0

So suppose n1 aé n2. Without loss, suppose n1 < n2, noting that all of d2, d3, 31%

N
and H— are odd. Then we have

1 3

M

| Z(n-XN/D(n+kd3—1)-xN/D(n+sd2—1)| (7.13)

n=0

3 2 I Z XN/D(n+kd§1)'XN/D(n+3d2_1)I

n1—1<nSn2—1

—1 —1
+|PXN/D(sd2 —kd3 )|
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Since cases 3 are 4 are similar, we consider case 3. Then (77. = (—1)k’n, we have

M

I: cn-xN/D<n+kdg11 -xN/D<n+sd;1>1

n=0

2 | Z (—1)n-XN/D(n+kd§1)~XN/D(n+sd§1)

O<nSn1—1

- Z (-1)”-XN/D(n+kd§1)~XN/p(n+8d2_1)|

n1—1<nSM

:1 Z (—1)"-xN)D(n+kd§1)-xN/D(n+sd;1)1

O<nSn1—1

+1 2 (—1)".XN/D(n+kdg1).XN/D(n+ed2-1)| (7.19)

n1—1<TLSM

If N/D = 1, then all of the expressions (7.17), (7.18) and (7.19) are 0(1). So

suppose N/D > 1.

Put (i,N/D) = 11, and (3112-1 — kd§1,N/D) = 12. Then we will prove that

1'1 :12.

Suppose d2d2_1 = k1 - g— + 1, and d3d3_1 = k2 - 2A),- + 1 for some integers k1 and

k2. Then from (7.12), we have

_ _ N N
(3712 1— kd3 1)1) = sd1d3(k1-E +1) — kd1d2(k2 - 5 +1)

- (sk1d1d3 — kk2d1d2) + (Sd1d3 — kd1d2)

- (Sk1d1d3 — kk2d1d2) +7:

D
I
Z
D
I
Z
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. N . N .
(t, 5) = (1 => 21 I I .13 - (8k1d1d3 — kk2d1d2) + t I

:> 1:1 I (3112—1 — kd§1)D =>11 1 (3111;1— 1.19:1) since (11, D) :1

N
:>iI—=>iIi.
1D 1 2

On the other hand,

. _ _ . N .
12 | (3112 1— kd31) => 12 | I—D—(sk1d1d3 — kk2d1d2) + 1]

. N . .
1.2 I .13 => 22 I 7.1.

So we have (1', N/D) = (3112—1 — kdg1, N/D).

Put (1, N/D) = 10, so (3712—1 — kd§1,N/D) :11).

By lemma 3.2.5 and 7.2.1, expressions (7.17) satisfies

_1 _1 .
IPXN/D(Sd2 — kd3 )I S 21) (7.20)

From Property 7.2.5, equations (7.18) and (7.19) satisfy

M

n=0

N N

S4-max{iD,2r . log< . )}

D-iD D-iD

If (i, N) = d = 1, then ip = 1. We want to show that w(D) 2 2. If w(D) = 1,

(7.21)

  

  

then d1 = pj for some 1 S j S r, d2 = d3 = 1. Then expression (7.12) becomes

kpj+i=spj => iji=> dej
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which contradicts to the hypothesis that d = 1.

If d = iD :2 1, and w(D) Z 2, then expression (7.21) satisfies

M

—1 —1 r—2 N N
Cn'X (n+kd )-x (n+sd ) S2 —-log(—)E0 N/D 3 N/D 2 pm pm

And d = 1 implies expression (7.20)

P d—1 — led—1) —— 1
XN/D(3 2 3 - '

So we have proved that when d = 1,

M
I N N

Z Cn'X N (k+nd3)‘X N (s+nd2) <1+2’"-1 ———log (__)

n=0 22132 El d P1112 P1192

1 3

  

Next we want to show that w(iD) S r — 2. If w(iD) = r - 1, then iD = N/pj,

for some 1 S j S r, d1 = pj and d2 2 d3 = 1. Then equation (7.12) becomes

kpj+i=spj => iji=> NIi.

This contradicts to the hypothesis that i < N. Thus w(iD) S r — 2.

For d = (i, N), suppose w(d) = r — 1. Then from the above statement we have

just proved,

(i, N) d

S — .

P1 P1

 1—(1fl)<
D— 11)—

Thus

IPXN/D (3112—1 — 19113—1)I = (31153-1 — kd§1,N/D) :11) g d/p1 .
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When w(d) = r — 1,

   

N N N
'N =' > > .

(2’ /D) zD—D-z'D- D-iD log(D-z'D)

when N is large. So expression (7.21) satisfies

n=0

S 4.max {iD’ 2T D1~ViD log (DjiD)}

d

S4-iDS4-F.

1

 M I

  

Finally, for 1 S w(d) S r — 2, because 0,11%) = iD S d = (i,N), so equation

(7.21) satisfies

M

n=0   

  S 4 - max {iD,2T log ( N )} by Property 7.2.5

S 4 . max {d,2TII g—log (%)}

Now for the first term of expression (7.14).

M

2 vl (’6 + nal3)d1612 1 WI (8 + ”d2)d1d31 79 0

n=0

glg2>1
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It means that there exist another set of factors (1’ , (1’2 and d, , with d’ld’2dé I N

such that

I I I - I I I

k d1d2 +i = s d1d3

where (k’, —,N—,-) = (s’, 7117—) = 1. Then we can set up another series of equalities

d1d2 d1d3
similar to (7.13) and obtain the same upper bound as before. Repeating the previous

steps, we could come up with the following

M

IPv(i)|S Z IZCn'XN(n+kd)'XN(n+3d)l

1<d|N n=0 7 7

where Cn = {+1, —1} depending on n values, kd and 3d are some integers depending

on the values of d with (sdkd, 1%) = 1 and (sd — kd, %) = (11%1

Noting that

curt)==j[:1

dIN

is a finite number only depending on r value, by the discussion above, we have proved

the lemma. [3

Now we are ready to prove the following lemma:

Lemma 7.2.7. Suppose N = p1p2...pr, where p1 < p2 < < pr’s are distinct

odd primes and r is finite. Let 2 be the binary sequences of length N as defined in

expression (7.2). Then

N—1

2 133(1) 3 C x NQ/pl .

i=1

where C is a constant only depending on r.

Proof. Let the binary sequence V be as defined in form (6.24). Then zj = Vj + v -,

where sequence v is as defined in definition 7.1.1. So from Property 3.2.13, we know
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that

N—

2111932 =A+B+C+D+E+F (7.22)

In expression (7.22), we have separated the summands into six groups. In the follow-

ing, we will show that the absolute value of every sum from the same group has the

same upper bound. To simplify the notation, it should be understood that all of the

following statements are valid when p1 and p2’s are large enough. For group A,

from Lemma 7.2.2

where Cl is a constant only depending on r.

For group B, we denote iN = (i, N). From Lemma 7.2.6, we have

N_ 2 2 2
211103 :2 PU (1') + Z PU (1') + Z PU (1).

i1: iN=1 w(iN)=r—1 1Sw(iN)Sr—2

From Lemma 7.2.6,

2

0g2 (_)_< 021 x —N—, (7.23)

111192 111192111

 2 133(1) 3 C21x N x

tN=1

where C21 is a constant only depending on r.



Note that

N/d

)3 103(2) = Z Z ’P3<md1

w(iN)<r—2 dIN m=1

w(d)Sr—2

2

g 2: g x d2 + 5:112— x log2 (N/d)

w(d)Sr—2 w(d)Sr—2

d>‘/N/d log (N/d) d<\/N/d log (N/d)

2

S022 X :I—l- , (7.25)

where C22 is a constant only depending on r.

Combine the results from equations (7.23), (7.24) and (7.25), we have

N—l 2
N

i=1 p1

where C2 = max{C21, C22,r}.

For groups C and D, every term in this group could be written as

N—l N—l

Z PVU) Z: ’Umém, where {m 6 {+1, -1}.

i=1 m=0

Lemma 3.2.5, 3.2.8, 7.2.1 and Lemma 7.2.2 give

N—l N—l N-l

1 2 PW) 2 vaml .<_ rN/pl x Z IPv(i)|
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N—l N-

MWMZWWH23WWI

i-l i 1

(1317)»

N/d

< 1~N/p1 x [N + Z Z ’IPv(kd)ll

le 11:1

ng/p1 x [N+ ZN/dxd]

dIN

SC3XN/p1XN

= C3 X N2/p1,

where C3 is a constant only depending on r. Again, the inequality second to the last

follows from the fact that d(N) is a finite number.

Now we consider the terms in group F.

N—l 2 N—lN—IN—l

Z PV41“) 2 Vjvj+ivam+i

i=1 i=1 j=0 m=0

—1N-N—1

:NZ:1 Zlvj VN—mvN—m——i (7°26)

i=1 j=0 m:0

N—l-N1N—

: :1 2:01 ZOVjvj+ivme+i=1:—:11PV,11() V“)

1:1 jO: m:0

N—l N—l

Zfim=2wmmm

i=1 i=1



Therefore for every term in group F, it is enough to estimate the upper bound of

>3911PM)Pv,V(i)-

N—l —1N-1N—1

PV,v(z)Pv,V(z) = VjvJ-l-vaVm-I-Z

i=1 i=1 j=0 m=0

N—lN—lN—l

= vjvmVj—sz-l—i

2:1 3:0 m=0

N—lN—l -—1

I); 2 ”WM:Vj V—m—2')

j:—0 m=0

N—lN—l

(—1) vjvaV(m +j)

j=0 m=0

Also

N—lN—l

I Z: Z vjvaV(m+])I

3:0 m=0

N—lN—l

=| vjvs—jPV(S)|

5:0 j=0

N—l 2 N—l N

SI ’UJPv(0)|+| Z Pv(8)Pv(8)|+ I Z Pv(8)(-1)T|

J20 3:1 3:

3:0 (s,N)>1

From Lemma 3.2.8,
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N—l N—l

| Z vgpvmn = M 2 12%| 3 TN x N/pl g r x N2/p1 (7.27)

i=0 i=0

In the proof of Lemma 7.2.6, we know that when (5, N) = 1,

N

Nlo(g .

191372 P1102

  

IPv(S)| S 2r

Then when 'r 2 2,

N
N N

I I r 7‘ 2
2 P3 <2 Ps <N><2 log — 2 xN p 7.28

l v( )I I v( )I 191192 g_(p1p2) / 1 ( )

3:1 3:1

 

We will have to be more careful in estimating | EgN)>1 PU(s)PV (s)|. We write

N—l

Z Pv(8)Pv(8)|S| Z Pv(S)Pv(8)| (729)

3:1 w((s,N))=r—l

(s,N)>1

+ I Z Pv(S)Pv(S) |

w((s,N))§r——2

For the first item of equation (7.29),

 

r Pk—l

| Z Pv(8)Pv(8) |= | Z Z Pv(mN/pk)Pv(mN/Pk)| (7-30)

w((s,N))=r—1 k=1 m=1

7' IP‘k 7" Pic—1 N

(m P mN —$221111) N/pk|X|v( /pk|<gn§1plpkxpk
k:1m=1

T

<21 N2//(P1Pk) < N2/191

105



Now for the second item of equation (7.29),

I Z Pv(3)Pv(5ll (7.31)

w((s,N))_<_r—2

N/d

= I Z Z ’Pv(md)PV(md)|

d|N m=1

w(d)Sr—2

N/d

3 Z Z 'va(md)I|Pv(md)l

w(d)_<_r—2

N 2 N3 N N2
g 2 Exd+ 2: dx d—3xlog(g)3031xfi,

d|N le

day/N/d log (LXI) d<,/N/d log (127,)

here C31 is a constant only depending on r .

= :1 is finite

le

Now equations (7.27) and (7.28),(7.30) and (7.31) give us

—lN— 1 N—lN— 1 N2

I}: :0 :0 Vyvj+ivme+i| =| Z Z 7’j<vaV(m+j)l <03 X H

i=1 j0= =0 J=0 m=0

where C3 is a constant only depending on 7' .

Finally, for the items in group B, we first consider

N—l N— 1

:W, =2Pvm 2:12)]-
i=1

We will use a similar method to the proof for Lemma 7.2.6 to give an upper estimate
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ME]:—10 ”3V744

From Lemma 3.2.8 and 7.2.6, we have

vjVj-lr’i 7501:?» (j,N) =d>1 and (j+i,N) =1

WriteJ' = kd, j+i= 3. So , (k,N/d) = (s,N) = 1.

Again, we can set up the following series of equalities, noting that all the values

are taken modulo N.

kd+i=s

(k+1)d+i=s+d

(7.32)

(k+(M—1))d+i=s+(M—1)d

_ N
where M — 7'

The equation series in (7. 32) give the following partial sum of Z].__Olv117-16+,-

Cm' (m) (md+i)Z: XLXT XN

M—l

=Xd(i)'XN(d)' ( Z Cm'XN(m)'XN(m+id_l)) ,
71 mzo 'J U

I

where (m = +1, or (—1)m with m’ s m (mod N/d), dd‘1 2 1 (mod N/d). Note

that (d, N/d) = 1, so that (id—1,12%) = (1,—lg). Then from Lemma 7.2.6, if (m = 1,
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forallOSmSM—l,then

IZJmeN(m)x1_C\L/r(m+zd)|= lPxN(id_1)I=(i,g)SiN (7.33)

I

If Cm = (—1)m , where m’:— m (mod N/d), then just repeating the process in

expression (7.19) and using Lemma 7.2.5, we can obtain

—1

Z (—1)m' - XN (m) “ii (m + td—l) (7.34)

m=0 H-

N 10 N }

d-t'D g d-t'D

  

  S maa:{iD, 27'

where iD = (i, N/d).

1
For the remaining items in 29;?) vjVj+iv we use a similar argument to before.

Since d(iN) is a finite number, we have

N—1
. /_N N

I Z ”J'VJ'+i | S max{iD, i log (i_)} (7.35)

j=0 D D

By Lemma 7.2.6 and expression (7.35), we have

N- N—l

IILZIIPUWX1:2:OIUJ'VJ+i)I SZIIP (ilIXIZUJ‘VjH’I

N/d

=(§=<tlIPe>IxIZ§1vjW+tl+§VZI'IPv()8dIXIZ jj+sd|
i,

s:
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Z IP71“) IXIZIUJ'Vj+iI

(i,N)=1

N/d

+( Z + Z ZIP’USdIXIZJJ-l-Sdl

le le

dZ‘/N/d log(N/d) d<‘/N/d log (N/d

( )

3 C41 x I: Z Nd+ 2 $103 (g)

  

 

k 1 am le

( d2,/N/d log (N/d) d<,/N/d log (N/d) }

x N o 2 Ni+ 041 “NEH ___pm 1e (N) <C4xp1;

where C4 is a constant only depending on 7‘.

Using the similar method to expression (7.26), it can be shown that Pv(i)P,U,V(i) =

Pv(i)Pv,v(i), for any i = 1,. . . , N — 1. Then all of the inequalities above will give us

the desired result. [:1

Now we are ready to prove Theorem 7.1.3.

7.3 Proof of Theorem 7.1.3

Proof. ( Theorem 6. 3.3 part (1) )

We denote gN —-e7vli. For any sequence a: of length N, let x[ 6N] be the Discrete

Fourier Transform of x as defined1n Definition 3.1. Recall the interpolation formula
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as in Property 3.2.9,

N—l 5k
' 2

ml —€%Vl :N Z (I:

Then for the sequence 2 as defined in Definition 7.1.1, we have

zI {iv} = VI 61,} + vI 6%,]

Note that from Gauss sum,

x/N, 2f (j,N)=1;

0, otherwise

M e.“ =

Therefore, using the interpolation formula (7.36), we have

  

 

 

7 2 E1 6h I.
|V[—€N1|= — —-—V[€N]

Nk=0%+%
5k

_ <\/NlogN

<m2065%+€NI

Now consider v[ 6V]. By definition

vItN]= Z de 531+ Z de 453,1

le le

dEN( mod 4) d$N( mod 4)

Using the Gauss sum ([38], page 233),

I Z XdlégllIS Z IXdléfillsg

dIN dIN

dEN( mod 4) dEN( mod 4)
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(7.36)

(7.37)

(7.38)



As in (7.38), we have

. . N

| 2 ml if)“ S 2 leI 456])“ S C X (Elf-103 (if) I

le d|N 1 1

d¢N( mod 4) d¢N( mod 4)

where C is a constant only depending on r.

Then we have obtained

N N

v[ 6N] < C x filog (p—l) (7.39)

Note that

vI 4%,] = Z de 43,] + Z de 63)]

d|N le

dEN( mod 4) daéN( mod 4)

Then using exactly the same method, we have

vl —t§VI s C x \Elog (1%) (7.40)

Let F be the merit factor of sequence as, F the merit factor of V. From Property

3.2.10,

1 _ . .

1/P= ——§ :3 [IzItvaI4+IzI—t}VII4] -1
J20

1 N ' 4 ' 4
1/P=——3 :30 [IVItivII +|V[-€}V]l ]—1

Let 1/F —1/F = G/2N3, want to show that

G/2N3—+0 asN—+oo.
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Put aj = v[ {k} and bj = v[ —§:,7V]. Then from Property 3.2.11,

N—l

IGI s 2 I IajI4 + 6|V[ eJ-IIZIaJ-I2 + 4< M €jll2 + lay-I2 )Iajllvl thI I (7.41)

j=0

N—l

+ Z I IbJ-I4 + filVl—éjllzlbjlz + 4< IVI-EJ-IIZ + ijI2 )lbjllVI—éjll I

j=0

If we apply the results from (7.37), (7.38), (7.39), and (7.40) to (7.41), then we obtain

N3

|G| << 7171-1051 (N) (7.42)

Thus provided (7.3) is satisfied, we have

which finishes the proof for part (1) of Theorem 6.3.3. 1:]

Now we are ready to prove part (2) of Theorem 7.1.3.

Proof. ( Theorem 7.1.3 part (2) )

For N = plpg . . .pr odd, Lemma 6.3.2 shows that sequence z is symmetric or

antisymmetric depending the value of N (mod 4). Let the sequence D of length 2N

be as defined in (3.1.5). Then for

b = {2; 2} *fl

2N—1 N—l N—l N—l

Z A§(h)=N+ Z A§(h)+2 Z Pz(k)Az(k)+ Z 102(k)?

evenk even]:
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By Lemma 4.0.17.

The proof for part (1) of Theorem 7.1.3 shows that

2 :11 A2(k) ~-N2 (7.43)

if the condition (7.3) holds. Lemma 7.2.7 shows that

— N—l N2

Z P2032: 2: Peat)2 <C<<;—
1

even I:

Then given condition (7.3), by the Cauchy-Schwarz inequality

 

N—l N—l N—1

eruahens IEZPQNIIZZPQM

It: even k even It even

 

S [ Az(k)l-[ 102(k)] <<—-

k=1 k=1 m

Therefore, provided condition (7.3) holds, the asymptotic merit factor of b is

 

 

2

lim (Fb) = lim 21(31N1) 2

New Newmzk .43»

4N2
2 11m N—1 2 =4xg=6

NTOO 22k 1 140(k)

This finishes the proof of part (2) of Theorem 7.1.3. [:1

Conclusion. For a long time, being afraid of losing ideal properties of the real prim-
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itive character sequences, people have been passive in changing the values of those

j—th positions with gcd(j, N) > 1. This thesis has provided new modifications to char-

acter sequences on those j-th positions with gcd(j, N) > 1. Particularly, at length

N = 121102, the author has shown that we could have more freedom in changing

the values on those positions. The author was informed recently that Jedwab and

Schmidt have obtained the same result independently under an improved condition

([40])-

All the known binary sequences obtaining high asymptotic merit factor 6.0 prior

to this thesis are of odd length. This thesis also provides a general technique to

construct binary sequences of even length, from which the high asymptotic merit

factor 6.0 can be achieved as well.
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