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ABSTRACT

SEA LAMPREYS ORIENT TOWARD A SOURCE OF A SYNTHESIZED

PHEROMONE USING ODOR-CONDITIONED RHEOTAXIS

By

Azizah Wakeelah Muhammad

Engineers envision a world where odor-tracking, mobile robots can locate the

source of toxic gas or detect unexploded ordnance, but such tasks cannot be efficiently

executed until olfaction is fully understood. Given the poor sense of smell in humans, it is

no wonder that what is known about olfaction is gathered from scientists’ observations of

the odor-mediated behaviors of organisms. However, these observations are often made

in a controlled laboratory environment where animal behaviors are easier to analyze than

in their natural habitats. Engineers then use these behaviors as inspiration for odor source

localization algorithms, but rarely is this done in cooperation with scientists using actual

data from behavioral experiments to test their effectiveness. Perhaps more cooperation

between the two communities is needed to solve the odor source localization problem.

This thesis is a collaborative effort between the Department of Fisheries and

Wildlife and the Department ofMechanical Engineering at Michigan State University to

identify how ovulating female sea lampreys track the male sex pheromone (3kPZS) to its

source. Three control algorithms are presented herein that each test a different orientation

hypothesis. The algorithms are then evaluated in computer simulations of the natural

environment. The resulting trajectories are compared with actual observed trajectories

using statistics. Based on this comparison, the best-performing algorithm is chosen.

Strong evidence suggests that sea lampreys use odor-conditioned rheotaxis to locate the

source of synthesized pheromone, as opposed to chemotaxis or stn'ctly rheotaxis.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

This thesis addresses the problem of identifying the underlying mechanisms used

by sea lampreys to locate an odor source. The sea lamprey (Petromyzon marinus) is a

primitive fish that parasitizes other fish when it reaches adulthood. Afterward, it reaches

a sexually mature stage in which it stops feeding and focuses solely on upstream

migration for the purpose of reproduction [1]. In recent years, scientists have discovered

that 3-keto petromyzonol sulfate (3kPZS) is a pheromone emitted by sexually mature

male sea lampreys to attract ovulating female sea lampreys [2]. Ofparticular interest is an

experiment in which scientists used a synthesized component of3kPZS and observed the

behavior of ovulating female sea lampreys in response to the odor [3]. The animals were

able to locate the source ofthe odor over hundreds ofmeters.

The development of control algorithms that mimic these behaviors in sea

lampreys provides mutual benefit to both engineers and scientists. Such algorithms can

improve the odor source-seeking capabilities ofautonomous mobile robots, lending

themselves to be useful in applications such as locating the source of toxic gas and

detecting unexploded ordnance. There are many biologically-inspired odor source

localization algorithms in literature (see Chapter 2), but most ofthem are not compared

with actual observed movement data to determine their effectiveness. This thesis goes

one step further and develops algorithms that are based on sea lamprey behavior

specifically.



Concurrently, sea lamprey chemo-orientation mechanisms can be exploited to

control their population in the Great Lakes region, where they have caused much concern

to scientists due to the stress they place on other fish populations [1], [4]. Current control

methods include the use of 3-trzfluoromethyl-4-nitrophenol (TFM), a larnpricide that is

used to kill sea lampreys in their larval stage [4]. However, TFM is expensive and can be

harmful to other fish, thus the Great Lakes Fishery Commission (GLFC) has reduced its

use by half [4], [5].

This thesis presents three algorithms that each test three different orientation

hypotheses gathered from behavioral ecology: chemotaxis, rheotaxis, and odor-

conditioned rheotaxis (see Section 1.2.2). These hypotheses are used so that the

algorithms are easily validated, and a scientist who is not familiar with pseudo-codes can

still gain understanding from this thesis. These algorithms are evaluated in computer

simulations and compared to observations ofovulating female sea lamprey behaviors

observed by scientists in a bifurcated stream. Subsequently, the best-performing

algorithm is determined by comparing observed and simulated trajectories by statistics.

Furthermore, the best-performing algorithm is evaluated in computer simulations and

compared to the observed data from a novel environment using time series analysis.

1.2 Background Information

This section contains some useful information that will aid in the discussion and

provide a basis for the modeling methods described in Chapter 3.



1.2.1 Brief Overview of Experiments

Scientists in the Department ofFisheries and Wildlife at Michigan State

University conducted two experiments in 2007 and 2008 (not yet published). In these

experiments, ovulating female sea lampreys were released from cages and their

movements were observed. This section will briefly explain both of these experiments.

To begin, there were some procedures common to both experiments that are

worth mentioning. First, synthesized 3kPZS was dissolved in methanol and river water

before being applied to the stream. Second, rhodamine dye was used to visualize the

3kPZS plume in the stream. The distribution and dilution of the plume were measured at

various dye sampling locations and then interpolated. Third, a flow meter was used to

measure the velocity1 ofthe stream at each dye sampling location. The velocity was

interpolated Fourth, the plume structure and flow velocity were mappedz. Finally,

scientists visually observed sea lamprey movements which were recorded and plotted to

the plume and flow velocity maps. Since movements were observed at discrete locations,

this data was interpolated as well. The behaviors ofthe individual females were assumed

to be independent [2], [3].

Experiments Conducted in Bifirrcated Stream (2007)

Synthesized 3kPZS was applied to each channel of a bifurcated stream as in Fig.

4. One-hundred and forty-four ovulating female sea lampreys were released from cages

that were 250 m downstream from the sources of 3kPZS. The scientists began movement

 

1 Although the word “velocity” is used, it refers to a scalar quantity (magnitude with no direction).

2 These maps contain only spatial data, and it is assumed that the plume and flow velocity are relatively

constant over time.
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observations 110 m downstream from the sources of3kPZS, and only 44 sea lampreys

entered this segment. The scientists observed the full movement trajectories of 33

ovulating female sea lampreys that entered either the left or right channel. The number

that entered each channel and the number that reached each 3kPZS source were recorded.

Experiments Conducted in Novel Environment (2008)

This experiment was conducted in the minor channel of a bifurcated stream as in

Figs. 5 and 6. The channel was 25 m long. The flow ofthe stream was controlled by a

sandbag wing-darn to create flow and no-flow conditions. To create the flow condition,

the wing-darn was positioned to reroute flow from the major channel into the minor

channel to increase water velocity. To create the no-flow condition, the wing-dam was

used to prevent water from entering the minor channel. However, in the no-flow case,

flow velocity was not completely negligible due to some leakage ofthe wing-dam and

subsurface water flow. The scientists alternated between applying 3kPZS and no 3kPZS

(or control solvent) to the channel. In summary, there were four conditions: flow with

3kPZS application, flow with control solvent application, no flow with 3kPZS

application, and no flow with control solvent application. The control solvent consisted of

methanol and river water only. The number of sea lampreys to move upstream was

recorded.

1.2.2 Orientation Hypotheses

Taxis (synonymous to orientation with regard to animal behavior) is “an

organism’s maintaining its body position, changing its body position, or both, with regard

4



to stimulus direction.” There are many types oftaxis, most ofwhich are defined in terms

of the kind of stimulus and stimulus reception [6]. For instance, bacteria use chemotaxis

(taxis in which a chemical is the stimulus) to locate glucose, serine, and other sources that

provide them energy [7].

It is easy to hypothesize that sea lampreys use chemotaxis, since the objective of

this thesis is to determine the ovulating female’s response to pheromone. Rheotaxis (taxis

in which the water current is the stimulus) is another assumption to make, because sea

lampreys dwell in water. However, in a natural environment, a single sense can become

unreliable as stimuli become unavailable [8]. Sea lampreys may be able to locate an odor

source if the chemical is always present But ifthe chemical is unavailable, will they stop

their search or continue using another sense? The former could very well be their demise,

and so they will have to rely on other senses for survival.

Many organisms exhibit chemoreception combined with some other sensory cue.

For instance, foraging blue crabs use chemotropotaxis (a type of chemotaxis in which

multiple sensors are used simultaneously to detect chemicals) and rheotaxis to locate the

odor emitted by their food source [9]. Since chemical molecules are primarily transported

by advection [10], rheotaxis is just as important as chemotropotaxis for the blue crab to

locate its food source. Just as blue crabs rely on mechanoreception for odor source

localization, so do male cockroaches. They modulate their orientation to the wind in

response to the female sex pheromone. This movement pattern is called odor-modulated

anemotaxis (taxis in which the wind is the stimulus) [l 1].

Due to this evidence, this thesis will consider odor-conditioned rheotaxis [12] as a

strong hypothesis for sea lamprey behavior. Odor-conditioned rheotaxis can be described

5



as rheotactic or upstream3 behavior that is initiated or enhanced by an odor, usually at

some threshold. Ifthe perceived odor does not meet the threshold requirement, movement

patterns will be exploratory.

In summary, this thesis will consider the following three hypotheses: chemotaxis,

rheotaxis, and odor-conditioned rheotaxis.

1.3 Purpose and Content of Thesis

The purpose of this study is to explain the underlying mechanisms used by sea

lampreys to locate an odor source. This paper seeks to combine behavioral ecology and

control theory to accomplish this while providing mutual benefit to members ofthe

scientific and engineering communities.

Orientation hypotheses will be used as the foundation for sea lamprey control

algorithms. Each algorithm will be evaluated in computer simulations. These simulated

results will be compared with the observed behaviors from the bifurcated stream

experiment using statistics. It is the hope ofthe author that the simulated behaviors

resemble the observed behaviors within reasonable error.

Based on how well each algorithm performs, one will be chosen to explain the

odor source localization mechanisms of the sea lamprey. This approach will be applied to

the novel environment and evaluated in computer simulations. If the best-performing

algorithm effectively models sea lamprey chemo-orientation, then when applied to a

novel environment, it should still mimic the movements of real sea lamprey.

 

3 Taxes can be either positive (toward the stimulus, i.e. upstream rheotaxis) or negative (away from the

stimulus, i.e. downstream rheotaxis). Since this thesis studies the ovulating female sea lamprey’s

orientation toward the male sex pheromone, all taxes hypothesized here is considered to be positive.
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The remainder of this thesis is organized as follows. Chapter 2 discusses the

various biologically-inspired odor source localization methods in literature. Chapter 3

describes the theory and logic that leads up to the development of the three control

algorithms. Also in this chapter is the protocol used to determine the best-performing

algorithm. Chapter 4 shows the simulated results and compares them with the observed

data. Chapter 5 derives conclusions from the results presented in Chapter 4 and provides

recommendations for future work.



CHAPTER 2

RELATED WORK

This chapter reviews the current biologically-inspired algorithms and techniques

for odor source localization. It is important to note that there aren’t any algorithms

inspired by the sea lamprey or any other vertebrates yet. This is because invertebrates

have proven themselves to be a worthier model for olfactory research than vertebrates

[8]. Hence not much is known about the underlying chemo-orientation mechanisms of

vertebrates. On the other hand, the odor-mediated behaviors of invertebrates and the

simplest of organisms are relatively well-documented. With that in mind, the approaches

discussed in this chapter may or may not be sufficient to identifying sea lamprey chemo-

orientation mechanisms. This chapter begins with the most-studied of all invertebrates:

the moth.

2.1 The Moth Approach

The female moth releases a sex pheromone to attract the male. Upon reception of

the pheromone, the male turns into the wind by an optomotor reaction to the perceived

movement patterns of the ground (optomotor anemotaxis“) [13]. When the male losses

the scent of the pheromone, he switches to a “casting” behavior in which he flies about

perpendicular to the mean wind direction with left-right reversals.

 

‘ An optomotor reaction or reflex is “an individual’s attempting to maintain its entire body, or part of its

body, in a constant position with regard to a moving environment” [6]. Optomotor anemotaxis can only be

defined as an individual’s attempt to maneuver upwind with regard to an environment that only appears to

be moving because the individual is in motion. This mechanism requires the use of visual cues.
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In [14], an unmanned aerial vehicle called the AMOTH (artificial moth) was used

to locate a source of ethanol in a wind tunnel (3 x 4 x 0.54 m (width x length x

height)) using moth optomotor anemotaxis. The absence and presence of ethanol caused

the AMOTH to switch between two behaviors, casting and surge, respectively. The left-

right reversals ofthe casting behavior resulted in a “zigzag” trajectory. The surge

behavior consisted of the AMOTH aligning itself with the wind and traveling against it.

Meanwhile, the AMOTH was constantly checking its path for obstacles using visual cues.

The detection of an obstacle overrode the search strategy and collision was avoided.

This system was able to navigate the wind tunnel with the obstacles and

effectively locate the source of ethanol. It was able to detect the ethanol at almost 4 m

from the source (first detection coincides with first switch to surge mode), about the

maximal length of the wind tunnel. From this observation, the authors of [14] drew the

conclusion that the model can exploit the full dynamic range ofthe odor plume.

However, at such a short distance to the odor source, and with the wind direction in the

tunnel being uniform, it is not for certain how effective the model truly is. Even in these

limited conditions, the AMOTH’s trajectory was determined to be suboptimal and

inconsistent with the documented behaviors of real moths. Although the authors did not

compare the trajectories with actual moth trajectories, so it is not known in exactly what

way the AMOTH was suboptimal and inconsistent.

Perhaps it has something to do with the manner in Which real moths anemotax as

opposed to the direct upwind surges described in [14]. According to [15], real moths

make regular turns across the direction of wind flow whether they are in contact with the

odor plume or not. This differs from the “surge” technique described in [14] and most

9



other algorithms. In [15], the performance oftwo different algorithms was compared

using Digiduca [16], a virtual wind tunnel. The first algorithm consisted of a simple

surge-cast switching strategy. The second algorithm was a modified version ofthe first

that included countertuming across the direction ofwind flow while making upwind

progress when the odor was detected

Model parameters for both algorithms were constrained to values obtained from

moth experiments. For the first algorithm, less than 5% ofthe individuals flown into the

wind tunnel located the odor source in the time allowed. The second (modified) algorithm

had a success rate of about 30%. Success rates for real moths solving the same problem

were at least 50% and often 90%. The improved success rates when using the modified

algorithm suggests that including a countertuming mechanism at all times (as opposed to

surging when odor is present) could improve the optimality and consistency with real

moth behaviors. However, the modified approach still fell short of the performance of

real moths. The authors attributed this to the selection of model parameters and used a

genetic algorithm (GA) to determine the best combination ofparameters. These optimal

parameter values yielded similar success rates but different behaviors in comparison to

real moths. Therefore, [15] shows that there was a trade-offbetween performance (i.e.

success rates) and behaviors.

In [17], the silkworm moth’s wing-fanning technique is applied to a robotic

platform. The male silkworm moth, who walks when tracking pheromone rather than fly

like other moths, uses wing vibrations to draw the pheromone to him and determine the

direction of the pheromone source [18]-[20]. A comparison was made between moths

with wings removed and moths with wings intact. Odor source localization took longer

10



and was much more difficult for the moths with removed wings. Hence, the robotic

platform developed in [l 7] has a directional probe that consists of a small fan and a

semiconductor gas sensor, mimicking the moth’s wings and antennae respectively. This

replaced the need for plural gas sensors to measure the concentration gradient and

anemometric sensors used in other systems [21], [22].This localization system was able

to successfully locate the source of ethanol in wind tunnel but in much longer time than it

took real moths to locate the source of pheromone. An improvement to the directional

probe made the system feasible in a clean room with multiple wind sources that created a

non-uniform wind profile.

2.2 The Bacterium Approach

Bacteria such as E. coli use chemotaxis to locate food sources. They are able to

progress up an odor concentration gradient in a series ofnm and tumble behaviors. Run is

when a bacterium swims in one direction, and tumble is when it randomly chooses a new

direction. The fi'equency at which it switches between these two behaviors is modulated

with respect to the odor concentration gradient. In other words, it tumbles less frequently

when the odor concentration gradient is found to be positive. When there is no

concentration gradient, the bacterium executes a random walk [23].

Ref. [24] describes how bacterial chemotaxis — termed “biased random walk” —

can be used for the location of gradient sources, whether odor, light, or heat. Simulations

of the biased random walk were conducted in a two-dimensional grid model ofthe real

world. Robots traveled with a mean free path (MFP) of 10 units ofdistance before

tumbling whenever the concentration gradient was absent (run and tumble as described

11
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above). Like real bacteria, if the robot sensed a positive gradient, it would decrease its

tumbling frequency for a greater run length. Once the simulations were complete, the

algorithm was implemented on a robot in a phototaxis (taxis in which light is the

stimulus) experiment and compared with the gradient descent method [25]. The robot had

a much lower chance ofbeing trapped between concentration minima or maxima when

using the biased random walk strategy than the gradient descent strategy.

2.3 The Aquatic Organism Approach

When it comes to aquatic organisms, invertebrates (i.e. crustaceans) are still more

studied by scientists than vertebrates (i.e. fish). Unlike fish that swim freely in an ocean,

lake, or river, the aforementioned crustaceans each dwell at the lowest level ofwater at

the interface of the ocean floor and fluid [26], [27]. As such, an odor signal takes longer

to reach their antennules and they have to flick them, similar to wing farming in silkworm

moths, to enhance the perception of odors and determine the direction ofthe source [26].

The authors in [28], believe that comparing the known behavior of a robot to the

unknown behavior of an animal will provide information about that animal’s chemo-

orientation mechanisms. They used a biomimetic robot, Robolobster, to test (and discard)

chemo-orientation hypotheses. It is about the size of a real lobster with comparable

turning ability and speed, but it is not intended to match the lobster in appendages or

mode of locomotion. Rather it is programmed with two simple algorithms to understand

Robolobster’s interaction with the turbulent plume. The first algorithm has two rules: the

robot will steer toward the side ofthe chemo-sensor receiving the higher concentration

signal; otherwise the robot moves forward with a constant speed. The second algorithm is

12



the same as the first with the addition of a third rule: if both chemo-sensors do not receive

any concentration signal, the robot will back up at half speed. This third step improved

Robolobster’s accuracy but diminished its speed.

Ref. [29] is a continuation of this study. The Robolobster is made to track a plume

of salt to its source in the same conditions as real lobsters that were observed orienting to

a source of food extract. The Robolobster used the second algorithm in [28]. The authors

compared Robolobster’s behavior to that of real lobster and were able to determine that

lobsters steer toward the antennules receiving the highest concentration signal. Although

the algorithm was not able to fully characterize lobster chemo-orientation, the authors

gained much insight into lobster behavior and can make improvements to the algorithm.

An underwater robot was developed in [30] mimicking the odor-mediated

behavior of the crayfish. It consists of an array of electrochemical sensors and a pair of

farming devices mimicking the antennule flicking of the crayfish. The robot was placed in

an aquarium with stagnant flow and its ability to locate the source of a chemical was

monitored. The robot was able to locate the chemical source successfully, although this

conclusion was not drawn in direct comparison to crayfish behavior.

13



CHAPTER 3

METHODS

3.1 Control Algorithms

All three algorithms are a discrete-time kinematic model, which can be considered

as an averaged or sampled kinematic model, of the sea lamprey behavior. They each test

the three orientation hypotheses below.

1. Chemotaxis: The sea lamprey swims in the direction of increasing 3kPZS

concentration. Otherwise it randomly explores a new direction. Movements are

made independent from 6170“,.

2. Rheotaxis: The sea lamprey swims upstream when it is able to perceive flow.

Movements are made independent from the level of 3kPZS concentration.

3. Odor-conditioned rheotaxis: The sea lamprey swims in an upstream direction

(rheotaxis) when it detects 3kPZS at or above a concentration threshold (i.e. when

it is within the odor plume). Otherwise it executes a countertuming maneuver and

is allowed to swim downstream if necessary to reacquire the odor plume.

Movements are always made with respect to Bflow.

The three control algorithms regulate 9 while keeping v constant to direct the

sea lamprey toward the odor source. The decision for 9 depends on one of three

parameters: 2 (chemotaxis and odor-conditioned rheotaxis), Bflow (rheotaxis and odor-

conditioned rheotaxis), and obstacles (all control algorithms).

14



During respiration, the sea lamprey samples a plume of odor by moving water

into and out of the olfactory epithelium5 [31]. For each sniff, it takes a noisy

measurement of c

z(k) 2 (30¢) + ws (k)

where ws ~ N(0, 0'3 ) is the measurement noise modeled as Gaussian white noise”. The

control algorithms (except rheotaxis) are applied to spatial 3kPZS plume structure maps

and image processing is used to convert the colors to raw values of 3kPZS concentration

in molar at each location on the maps.

The flow direction 6flow is important because moving upstream will get the sea

lamprey closer to the source [3]. Image processing is used on the flow velocity maps

(except chemotaxis) to convert the colors to raw values of Vflow each location on the

maps. The “flow direction”7 6170“, is assumed to be parallel to the banks ofthe stream.

Finally, each control algorithm incorporates an obstacle avoidance strategys,

because real sea lampreys are not physically able to go through them. Without such a

strategy, a simulated sea lamprey is able to disobey this rule and a robotic sea lamprey

will get stuck at an obstacle. Given that obstacles constrain where the sea lamprey can

 

5 The olfactory epithelium is a thin protective layer of tissue in the nasal cavity that is used to detect odors.

5 Low-level Gaussian noise effectively models noises due to central and peripheral functions of olfactory

neural systems [32].

7 The “flow direction” aflow is analogous to the actual stream flow direction: aflow = stream flow

direction +180°. See appendices for more detail.

8 Given the fact that sea lampreys do not use vision during upstream migration [1], their obstacle avoidance

strategy will have to differ from that of animals who avoid colliding with obstacles by relying on optomotor

reflexes (i.e. silkworm moths). A sea lamprey may not be able to actually avoid an obstacle but can push

away from it or follow its contour).
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move and affect the flow, this strategy overrides the main orientation strategy of the

control algorithms [3 3].

All algorithms begin with an “INITIALIZE” process in which the initial values

for (x, y) , 6 , and other parameters are set. The remaining processes for the algorithms

are presented below with flowcharts that show the sequence of their execution. Each

process contains steps that are presented in the appendices.

Each control algorithm is developed with “what ifs” in mind: “what if” there is no

flow velocity or “what if” there is no odor present. It is assumed that a sea lamprey would

know what to do in these situations, no matter what strategy it is acting by, because it is

able to swim hundreds of meters to locate a source of 3kPZS. Therefore, the control

algorithms are designed so that when the stimulus or stimuli that each relies on is absent,

the sea lamprey will not just remain at one location and wait. Rather it will seek it out.

Within each algorithm there are parameters whose values affect the movement

trajectories generated in the simulations (see appendices). The utmost care must be given

to the calibration of these parameters, and so J is defined to be used with parameter

optimization [34].

      

 

J = _ + _

xst yst

+|70 -Xsl +llfo-T'sl

its! is!

+(1- PX0,XS ) + (1 - PX0,XS)

By statistical theory [35], if two trajectories are the same then they have equivalent

standard deviations and equivalent means. Likewise, p with a magnitude of 1 indicates
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that two trajectories are perfectly monotonically related. Therefore, the parameters that

result in simulated trajectories that best resembles the observed trajectories are those that

will minimize J .

3.1.1 Control Algorithm 1: Chemotaxis

l. DETECT ODOR: This process will begin if the sea lamprey does not detect the

odor at the onset of the simulation (i.e. z(l) < :30 9). First, the sea lamprey picks a

random direction to explore. It continues in that same direction for N0 iterations

or until an obstacle is detected. When either of these events happens, it will orient

itself in a new random direction. It repeats this sequence until the odor is detected.

2. FIND ODOR SOURCE: At the first sign of odor, this process will begin. The sea

lamprey uses chemotaxis to swim in the direction of increasing 3kPZS

concentration. It determines that the concentration is increasing by comparing it

with a stored maximum concentration. If the 3kPZS concentration does not

increase for N1 iterations, it will explore a new direction at random. This

sequence was inspired by the “”run and “tumble” observed in bacterial

chemotaxis [23]. This process ends when the odor source is found (i.e.

z(k) > Ztarget )-

 

9 This value is 20 = 10'14 M, the lowest concentration at which it was observed by scientists that 3kPZS

elicited a response from ovulating female sea lampreys.
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Figure 1: Flowchart for control algorithm 1 (chemotaxis)
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3.1.2 Control Algorithm 2: Rheotaxis

FIND ODOR SOURCE: If there is no flow at the onset of the simulation (i.e.

Vflowa) = 0), the sea lamprey will explore a random direction. It will keep that direction

until an obstacle is encountered or it detects flow. Once it detects flow, it will swim

against it. If the flow becomes absent for whatever reason, the sea lamprey will continue

swimming in the same direction until flow is detected again when it will swim against as

before. Since a sea lamprey acting on this control algorithm is not informed ofthe odor

source location by chemical information, the steps in this algorithm will be executed in

an infinite loop as shown in Figure 2.

/P‘——-\

r START l

\ /.

‘b——

  

INITIALIZE

   

 

  

FIND ODOR

SOURCE

I

Figure 2: Flowchart for control algorithm 2 (rheotaxis)
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3.1.3 Control Algorithm 3: Odor-conditioned rheotaxis

1. FIND PLUME: If at the onset of the simulation the sea lamprey is not within the

odor plume (i.e. z(l) < 2,}, 10), this process will be executed. The sea lamprey

begins in an upstream direction or a random direction if no flow is detected as in

control algorithm 2. It continues in this direction until an obstacle is encountered.

Once the sea lamprey determines it is within the odor plume, it will proceed to the

next step.

TRACK PLUME: The sea lamprey is within the odor plume at the onset of this

process and will try to track the plume to the odor source using rheotaxis. If the

sea lamprey leaves the plume, it will execute the next process. This process ends

when the sea lamprey locates the odor source.

REACQUIRE PLUME: The sea lamprey will countertum with respect to 6/10“,

so that it re-enters the odor plumel 1. This process ends when the sea lamprey

reacquires the odor plume.

 

‘0 On the plume structure maps, the “plume” of 3kPZS is depicted by the yellow region. The lowest

concentration of this region is z”, .

” This uses the assumption that if 9 is greater (less) than aflow’ decreasing (increasing) 9 will result in

the sea lamprey re-entering the plume.
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Figure 3: Flowchart for control algorithm 3 (odor-conditioned rheotaxis)
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3.2 Determination and Validation of Best-Performing Control Algorithm

The simulated trajectories by control algorithms 1, 2, and 3 are compared to the

observed movements in the bifurcated stream experiments (2007). The comparison is

restricted to the 1 10 m segment of the bifurcated stream where the scientists monitored

for sea lamprey movements. The initial positions recorded by the scientists for the 33

different observed trajectories are chosen as starting points for the 33 simulated runs of

each algorithm. The observed trajectories were recorded at non-uniform sampling times.

For a fair comparison, the trajectory points of the observed data are interpolated to make

their sampling time uniform and equivalent to the sampling time ofthe simulated

movements.

The number of simulated sea lampreys that entered the left and right channels and

successfully located the 3kPZS source in each channel according to control algorithms 1,

2, and 3 are compared to the observed data. Furthermore, Eq. ( l) is used to quantify the

similarities (or lack thereof) between the simulated and observed trajectories. The best-

performing control algorithm is chosen to be that with the lowest value of J .

Once the best-performing control algorithm is determined, it is evaluated in a

computer simulation ofthe novel environment (2008). The algorithm parameters

calibrated in the bifurcated stream are used. The simulated trajectories are compared with

the observed trajectories using Eq. (1) to validate the best-performing control algorithms

applicability to any environment. Next the results are presented.
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CHAPTER 4

RESULTS

4.1 Bifurcated Stream Results

Without the use of flow data, the sea lampreys simulated by control algorithm 1

(chemotaxis) were unable to progress upstream to either source of 3kPZS in the

bifirrcated stream”. A reason for this is that in a turbulent environment, the odor plume

becomes intermittent and the concentration gradient has many local maxima and minima

[8], [36]. Even in the absence ofturbulence, odor plumes tend to meander large distances

from the source [3 7]. Taking into account that 3 out of 33 (Table l) ofthe sea lampreys

simulated by control algorithm 1 were able to progress into one ofthe two channels

suggests a possibility that it could work if the sea lampreys are in proximity to the odor

source, but not over hundreds of meters.

The absence of olfaction in control algorithm 2 (rheotaxis) caused the sea

lampreys to swim past both sources of3kPZS. However, they were able to progress

upstream into either of the channels. A lesser number of sea lampreys simulated by

control algorithm 2 entered the right channel than the real sea lampreys (12 out of 33

compared to 20 out of 33 respectively; Table 1).

Control algorithm 3 simulated sea lampreys whose movements into the left and

right channel were not different than real sea lampreys. With the combination of chemo-

and mechano-reception, the simulated sea lampreys located the sources of 3kPZS with a

 

‘2 The computer simulations timed out if the sea lampreys did not locate the source of 3kPZS in 10.000

iterations, which corresponds to 5,000 seconds. Running the simulations for longer lengths of time requires

more memory than is available on a computer.
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success rate comparable to that of real sea lampreys. Tables 1 and 2 both show significant

evidence that control algorithm 3 is the best strategy in the bifurcated stream. This is also

true by a qualitative comparison as shown in Fig. 4.

Table l: Localization comparison of movement patterns of ovulated female sea

lampreys in bifurcated stream. The number ofovulated female sea lampreys and

simulated females according to control algorithms 1 (chemotaxis), 2 (rheotaxis), and 3

(odor-conditioned rheotaxis) that entered the left channel (“Left”) and right channel

(“Right”). Percent success left and right is the percent ofthe sea lampreys that entered the

left or right channel that also entered within 0.5 m2 ofthe left 3kPZS source or right

3kPZS source respectively.

 

Data Source Observed Left Right % Success Lefi % Success Right

Exp. 33 13 20 92% 95%

Alg. l 33 l 2 0% 0%

Alg. 2 33 21 12 <5% 0%

Alg. 3 33 12 21 83% 57%     
Table 2: Statistical comparison of movement patterns of ovulated female sea

lampreys in bifurcated stream. Means and standard deviations of J generated twenty

times for simulated sea lampreys according to control algorithms 1 (chemotaxis), 2

(rheotaxis), and 3(odor-conditioned rheotaxis).

 

Alg. l Alg. 2 Alg. 3

j 6.2240 3.2684 2.3970

0", 2.0583 0.9841 1.5411
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Figure 4: Sea lamprey movement trajectories in bifurcated stream. Observed

movement trajectories of ovulating female sea lampreys (a) and simulated trajectories by

control algorithms 1 (b), 2(c), and 3 (d). Magenta trajectories are the females that entered

the lefi channel and cyan trajectories are females that entered the right channel. Color-

coding indicates the estimated concentration of synthesized 3kPZS (M) through the

stream.

(a) Observed movements (b) Control algorithm 1
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Fig. 4 cont.

(c) Control algorithm 2 ((1) Control algorithm 3

 
4.2 Novel Environment Results

Based on the performance results in Tables 1 and 2, control algorithm 3 was

applied to four environmental data sets described in Section 1.2.1 to validate it in

different physical habitats that were not used for calibrating it (bifurcated stream).

Simulated movements of sea lampreys by control algorithm 3 in the novel environment

match well with observed movements. This strongly supports odor-conditioned rheotaxis,

and more specifically control algorithm 3, as an underlying mechanism for chemo-

orientation in sea lampreys. It is interesting that the simulated trajectories by control
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algorithm 1 in the bifirrcated stream (Fig. 4 (b)) resemble more closely the observed

movements in the no-flow and 3kPZS case (Fig. 5 (c)) than control algorithm 3 (Fig. 6

(c)). This could be due to any ofthe following reasons:

1. The sea lamprey switches strategies when there is no flow but a presence of

3kPZS, so it progresses upstream in a purely chemotactic manner.

2. Control algorithm 3 is able to use the most minuscule value of Vflow to determine

Qflow as long as it is not zero, although real sea lampreys do not seem to be able

to detect such low quantities of ”flow Control algorithm 3 needs to take into

account a threshold value for Vflow» i.e. the minimum flow velocity at which the

sea lamprey is able to discern Hflow.

3. Rather than have the sea lamprey use the previous measurement of 0flow when

Vflow = 0 , Qflow needs to, be a random direction.

These possibilities lead to the conclusions of this thesis and recommendations for

future work.
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Table 3: Statistical comparison of movement patterns of ovulated female sea

lampreys by control algorithm 3 in novel environment. Means and standard

deviations of J generated twenty times for simulated sea lampreys according to control

algorithm 3.

 

Treatment J 0'J

Flow-3kPZS 3.5448 1 .0529

Flow-Control 3.6524 1.1987

No-flow-3kPZS 4.1973 1.1235

No—flow-Control 4.2375 1 .2783  
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Figure 5: Observed sea lamprey movement trajectories in novel environment. (3)

Flow — 3kPZS application. (b) Flow - control solvent application. (c) No-flow - 3kPZS

application. ((1) No-flow — control solvent application. Color-coding indicates the

estimated concentration of synthesized 3kPZS (M) through the stream.

(a) Flow - 3kPZS (b) Flow —— control solvent

 
(d) No-flow - control solvent

1

if ' .

¢k\

‘" .\\

b

I- \
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Figure 6: Simulated sea lamprey movement trajectories by control algorithm 3 in

novel environment. (a) Flow — 3kPZS application. (b) Flow — control solvent

application. (c) No-flow — 3kPZS application. ((1) No-flow — control solvent application.

Color-coding indicates the estimated concentration of synthesized 3kPZS (M) through the

stream.

(a) Flow — 3kPZS (b) Flow — control solvent

 
(c) No-flow — 3kPZS (d) No-flow - control solvent
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, three control algorithms founded on behavioral ecology and control

theory are presented. Control algorithm 1 is similar to bacterial chemotaxis [7], [23] and

uses only the concentration of 3kPZS to locate the odor source. Control algorithm 2 uses

only flow information for the sea lamprey to try to locate the odor source. Control

algorithm 3 uses both concentration and flow information The three algorithms were

evaluated in computer simulations and based on the results presented in Chapter 4,

control algorithm 3 was highly successful, and thus, odor-conditioned rheotaxis is a

sufficient explanation for sea lamprey chemo-orientation. Testing control algorithm 3 in a

novel environment validates its robustness. The author believes this thesis to be a helpful

contribution to the study of olfaction for both scientists and engineers, particularly in

vertebrates which are understudied compared to invertebrates. Although there may be

some additional chemo-orientation mechanisms that remain unrevealed, an investigation

into the following may provide more insight: determine if sea lampreys switch between

odor-conditioned rheotaxis and chemotaxis; take into account a minimum threshold flow

velocity at which the sea lamprey can measure the “flow direction”; randomize “flow

direction” when flow velocity is zero. The aforementioned investigation will provide

improvements (if any) to control algorithm 3, after which the algorithm can be

implemented on an autonomous underwater vehicle (AUV) equipped with chemo— and

mechano-sensors to locate an odor source.
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APPENDICES

A. Control algorithm 1: chemotaxis

INITIALIZE

11. Let the initial position and heading angle be (x(1), y(1)) and 6(1) respectively.

12. Measure 2(1).

13. Let zmax(l) = 0, 05(0) = O and 19d(0) is random direction.

14. Let k = l.

DETECT ODOR

01. while the sea lamprey does not detect any odor (z(k) < 20) do:

02. if obstacle is encountered then: 6d (k) is chosen such that the obstacle is

avoided end if

03. if 6d has been the same direction for the last N0 iterations then:

6d (k) is random direction and a(k) = 0

else: 6d (k) = 9d (k — l) and a(k) = 0 end if

04. (State update) x(k +1) = x(k) + Tv cost9(k) + wx (k)

y(k +1) 2 y(k)+ Tvsint9(k)+ w ,(k)

6(k +1) 2 9d (k) + we(k)

05. zmax(k +1) 2 max{ z(k), zmax(k)}

O6. Measure z(k +1).

07. Increment k by 1 end while
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FIND ODOR SOURCE

SI. while sea lamprey has not located the odor source (z(k) < z, argefi do:

82. if obstacle is encountered then: 9d (k) is chosen such that the obstacle is avoided.

end if

else: go to step 82 end if

S3. if 3kPZS concentration is not increasing (z(k) S zmax(k) + 5 ) then:

if sea lamprey does not detect odor (z(k) < 20) then:

if 6d has been the same direction for the last N0 iterations then:

9d (k) is random direction and a(k) = 0

else: 9d (k) = 6d (k -—1) and a(k) = 0 end if

else:

if 6d has been the same direction for the last N1 iterations then:

6d (k) is random direction and a(k) = 0

else: 6d (k) = 6d (k — 1) and a(k) = 0 end if

end if

else: 9d (k) = 0(k — 1) and a(k) = 0 end if

S4. Perform steps 03-05.

S5. if z(k) S zmax + 6 then: zmax(k +1) 2 xizmax(k)

else: zmax(k +1) 2 z(k) end if

S6. Measure z(k +1).

S7. Increment k by 1 end while
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B. Control algorithm 2: rheotaxis

INITIALIZE

11. Let the initial position and heading angle be (x(1), y(1)) and 0(1) respectively.

12. Measure vmag(1).

I3. if vmag(l) : 0 then: lamprey selects a random direction for Hflowa)

else: Bflowfl) is measured at (x(1), y(1)) end if

14. Let a(0) = 0 and 6d (0) = 6flow(1)-

15. Let k =1.

FIND ODOR SOURCE

S 1. if obstacle is encountered then: 6d (k) is chosen such that the obstacle is avoided

end if

52. (State update) x(k +1) = x(k) + T9cosB(k) + w, (k)

y(k + 1) = y(k) + Tvsin6’(k) +w, (k)

9(k +1) = 6,, (k) + wa(k)

S3. Measure vmag(k +1).

S4. 1r vflow(k +1) = 0 then: BflOMk +1) = aflowac)

else: 6fl0w(k +1) is measured at (x(k +1), y(k +1)) end if

S5. Increment k by 1

S6. Perform steps Sl-S5.
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C. Control algorithm 3: odor-conditioned rheotaxis

INITIALIZE

11. Let the initial position and heading angle be (x(1), y(1)) and 6(1) respectively.

12. Measure 2(1) and vmagfl).

13. if vmag(1) = 0 then: Bflowfl) is random direction

else: Bflowfl) is measured at (x(1), y(1)) end if

14. Let (1(0) 2 O.

15. if z(l) < 2,), then: 6d (0) is random direction in

[9fi0u.1(1)- A91a9fl0w(1)+ 491]

else: 9d (O) is random direction in [6170».(1) — A62 , 6fl0w(1)+ A62]

16. Let k =1.

FIND ODOR PLUME

P1. while sea lamprey is not in the odor plume (z(k) < 2,}, ) do:

P2. if obstacle is encountered then: 6d (k) is chosen such that the obstacle is avoided

end if

P3. 1r 9(k) < 9,70,,(k) - A6, AND 61(k) > eflwrk) + A611 then:

19,, (k) = 91,0“,(k) end it

P4. (State update) x(k +1) = x(k) + Tv005901?) + w, (k)

y(k +1) = y(k) + Tvsir16(k) + w,,(k)

6(k +1) = 9a (k) + Watk)
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P5. Measure z(k +1) and vmag(k +1).

P6. if vmag(k +1) 2 0 then: 6110“,.(k +1) = 6fl0W(k)

else: Bflow(k +1) is measured at (x(k +1), y(k +1)) end if

P7. Increment k by 1 end while

TRACK PLUME

Tl . while sea lamprey has not located the odor source (z(k) < z, alga) do:

T2. if sea lamprey exits odor plume (z(k) < 2,], ) then: go to step R1

r

else: go to step S3 end if

T3. if obstacle is encountered then: 6d (k) is chosen such that the obstacle is avoided

else: 6d (k) = 9d (k — 1) and a(k) = 0 end if

T4. if 6d (k) < 6fl0w(k) —~ A62 0R 6d (k) > 6fl0w(k) + A62 then:

(Z; (k) :2 6fl0w(k) end if

T5. Perform steps P4-P6.

T6.Increment k by 1 end while

REACQUIRE PLUME

R1. while sea lamprey is not in odor plume (z(k) < 21h) do:

R2. if obstacle is encountered then: 9d (k) is chosen such that the obstacle is

avoided

else: go to step R3 end if

R3. if sea lamprey exited odor plume on right side then:
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6d(k) =6d(k—1)+a(k-l) and a(k) = 4x1013|z(k)—z,h|

else: (Z; (k) = 0d(k - ])-a(k ‘1) and “(1‘): {x 1013M“ ‘Zthl

end if

R4. Perform steps P4-P6.

R5. Increment k by 1 end while
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