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ABSTRACT

GROUP ACTIONS, COBORDISMS, AND OTHER ASPECTS OF
4-MANIFOLD THEORY THROUGH THE EYES OF FLOER
HOMOLOGY

By

Nathan S. Sunukjian

There are two main divisions of this dissertation. each dealing with a different aspect
of smooth 4-manifold theory. and each emploving a different variety of Floer homol-
ogy as the central tool. In the first. we use monopole Floer homology to construct
families of finite cvelic group actions that are equivariantly homecomorphic but not
equivariantly diffeomorphic. In the second main division. we will use Heegaard-Floer
homologyv to look at the relationship between a simple class of cobordisms and the
Ozsvath-Szabo 4-manifold invariant. We will prove that the Ozsvath-Szabo invariant
provides a lower bound on the complexity of certain cobordisms. To accomplish this.
we will calculate the Heegaard-Floer homology of the plumbing of two spheres which

have been plumbed zero times algebraically.
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Chapter 1

Introduction

My soul is an entangled knot.

Upon a liquid vortex wrought

By Intellect. in the Unsecen residing.
And thine cloth like a convict sit.
With marlinspike untwisting it.
Only to find its knottiness abiding:
Since all the tools for its untying

In four-dimensioncd space are lying...
—James Clerk Mazwell

Ever since Donaldson’s landmark work in the 1930°s. gauge theorv has plaved a
central role in the study of 4-manifolds. However. the invariants arising from gauge
theory are notoriously difficult to compute. Floer homology is an attempt to medi-
ate this difficulty bv. in a manner of speaking. breaking the problem up into picces.
Several versions of Floer homology have been defined. but they all have basically the

samie structure: For Y a 3-manifold. some group 7y~ is defined: a d-manifold X with



boundary Y has an associated relative invariant oy- € Gy-; and to two four mani-
folds with a homeomorphic boundary. there is a pairing of their relative invariants.
which ideally recovers sone gauge theoretic invariant of a closed 4-manifold. Today
there are three main sorts of Floer homologylz Instanton Floer homology poineered
by Floer himself, which recovers Donaldson theory: the monopole Floer homology of
Kronheimer and Mrowka. which is associated to Seiberg-Witten theory: and Heegaard
Floer homologyv of Ozsvath and Szabo. which has an associated 4-manifold invariant.
albeit one which lies outside the provenance of gauge theorv proper. All three of these
theories are conjectured to be equivalent. but to date the best and only real evidence

. . 2
for this is that it holds on all known examples.<.

Various techniques have been developed for computing the Floer homology groups.
In fact. the three varieties of Floer homology are formally similar enough that tech-
niques for compuring in one theory verv often work in the other two. In particular,
Floer's surgery exact triangle and the excision theorem have beconie mainstays.

In due course. some of the differences and relative advantages of the different
varieties of Floer homology will become evident in this dissertation. Since the three
theories are formally so similar. often the advantages of one theory over another will
be manifest in the definitions themselves. In the first section. we will describe a simple
situation involving monopole Floer homology. Our goal will be to show how monopole
Floer homology can be used to construct “exotic’ group actions on 4-manifolds.

In the second section. we will turn our eves to much broader questions about 4-
manifolds. Specifically. we will define a particular surgery operation on 4-manifolds

that is related to h-cobordisms. As a first step in investigating this surgery. we

LFor our purposes here we will ignore Floer homology theories such as Lagrangian-
Floer homology and concentrate on primarily on Floer homologies that give rise to
3-maunifold invariants.

2While this tanuscript was in preparation. Kutlulian. Lee. and Taubes announced
a proof of the equivelence of Heegaard-Floer and monopole Floer homology in [23]

9



calculate the Heegaard-Floer homology of the 3-manifold on which this surgery is
performed. Here. our calculation appeals directly to the definition of Heegaard-Floer
homology. It is not clear how one would accomplish this computation in monopole

Floer homology.

o



Chapter 2

Exotic group actions

The world of smooth 4-manifolds exhibits a beguiling array of exotic behavior.

1. Exotic manifolds. There exist 4-manifolds that are homeomorphic but not dif-

feomorphic.

2. Erotic Surfuces. There exist surfaces ¥ and ©/ in a 4-manifold X. such that

(X.Z) is homcomorphic to (WX ©/Y as pairs but not diffcomorphic.

3. Exotic diffeomorphisms. There exist homeomorphisms that are topologically

isotopic but not smoothly isotopic.

In this chapter we are interested in investigating a more rigid version of the third
item. That is. instead of considering a general diffeomorphism on a 4-manifold. we will
look at diffeomorphisims that generate finite group actions. The following question
arises: Do there exist smooth finite group actions on a 4-manifold that are equiv-
ariantlv homeomorphic but not equivariantly diffeomorphic? In particular, are there
such actions on irreducible manifolds? In this chapter we will answer this question
in the aflirmative by constructing such exotic group actions on 4-manifolds. In sec-
tion 2.5 we will give a full statement of the circumstances to which our coustruction

applies.



After briefly reviewing the history of exotic actions on 4-manifolds in section 2.1.
we will survev a general strategy for producing exotic behavior in section 2.2. As an
example. we'll review the technique of knot-surgery for producing exotic manifolds
since our construction of exotic group actions is modeled on it. Once all the necessaryv
machinery is in place. we will be able to construct exotic actions of finite cvelic groups
on irreducible 4-manifolds. This result originally appeared in [13]. and is joint work
with Ronald Fintushel and Ronald Stern. The proof presented here is slightly different
from the original: we remove all mention of “twins™ and <1 actions. We shall end this

chapter with various examples.

2.1 History

It has long been known that the fixed set and orbit data of a group action can tell us
quite a bit about the action itself. In dimension 3. things are particularly rigid. The
classical Smith conjecture from 1939 states that if a finite cvelic group acting S3 has
non-trivial fixed set. then that fixed set has to be the unknot. It was finallv proved
in 1978 using the combined work of Thurston. Meeks. Yau. Bass. and Gordon.

In dimension 4. the Smith conjecture is false. In 1966. Giffen constructed infinite
families of finite group actions on S? with quotient $* and fixed set a knotted S2.

Whereas in dimension 3 we might sayv that group actions on S3 are classified by
their fixed set (i.e. there is onlv one such action with non-empty fixed set). finite
group actions on S% which are a subaction of an S1 action can also be classified.
Fintushel showed that S actions on $% are classitied bv their orbit data.

The classification of finite cvelic group actions on S s far from complete. however.
In 1976. Cappell-Shaneson constructed involutions on homotopy 4-spheres that were
exotic in the sense that they were not equivariantly diffeomorphic to linear actions on

S4, and Akbulut larer showed that the homotopy d-spheres constructed are in fact



$4.16]. [1]. Through different methods. Fintushel-Stern also constructed examples of
exotic involutions on 3. [10].

The advent of Seiberg-Witten theory provided new opportunities for studving
exotic group actions. For one thing. it provided obstructions to the existence of
smooth actions. This is explained in more detail in Section 2.3.1. More constructive
is the result of Ue [42] from 1998. Ue constructed free actions of finite groups on
simply connected 4-manifolds that are equivariantly homeomorphic but not equiv-
ariantly diffeomorphic. The actions he constructed are distinguished by calculating
the Seiberg-Witten invariant of the quotients. In Ue’s construction, the 4-manifolds

. _ @2 2)

being acted upon can all be decomposed as a smooth connected sum with S< x S=<,
e ) . - .

and it is this factor of §“ x 5= that provides the flexibility to construct the exotic

actions. We will offer an example modeled on Ue's actions in Section 2.2.1.

2.2 Exotic Constructions
Many constructions of exotic behiavior on 4-manifolds follow the same general pattern:
1. Define some sort of surgery.

2. Check that the surgery doesn’t change the topological type of whatever behavior

vou are studving.
3. Check using cauge theorv that the surgery changes the smooth tyvpe.
O & o . [=] R & .

Ag an example. we'll describe a neo-classical construction of exotic 4-manifolds
due to Fintushel and Stern. To satisfv step 2. we'll use the following theorem of

Freedman.

Theorem 1. [14] If X and X are smooth. simply connccted 4-manifolds. then they
/A .

are homeomorphic if and only if they have isomorphic cohomology rings.
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To satisfv step 3. well use the Seiberg-Witten invariant. This is described in
detail in the next section. For now. it will suffice to know ST\ € Z[H9(X)] is an

invariant of smooth 4-manifolds.

Knot surgery is a process whereby the neighiborhood of a torus is replaced with
something homologically equivalent. but “kuotted”. Remarkably. this process does
not change the homeomorphism type of a 4-manifold. and equally remarkable is the
effect on the Seiberg-Witten invariant. Specifically. knot surgerv is defined by replac-
. 2 42 ol 3 . ] . Can
ing a copy of D= x T< with §* »x §2\ nb(L). If the surgered manifold is still simply
connected. then one checks by Freedman's theorem that the homeomorphism tvpe of

the manifold is not changed.

Theorem 2. [12/ Supposc that T is an embedded torus in a 4-manifold X with [T]2 =
0. and that K is a knot in S°. If X and XN \'T are simply connected, then X is
homeomorphic to the knot surgered manifold X - = (X \ nb(T)) U, (Sl X (5'3 \
nb(RK))).

Morcover. if €. is the longitude of K. and o : ast x (S'3 \nb(K)) — IX\ (1)2 X
T2) identifies (e with D2 then SH'\'[, w5 obtained from SWy- via multiplication
Xy .

by the symmetrized Alczander polynomial of K:

SWy . = SWy - AR (2(7])

It is cvident from this theorem that if X' is a J-manifold with ST’y # 0 and
contains a suitable torus. then there exist an infinite munber of manifolds that are
homeomorphic but not diffcomorphic to X: apply knot surgery to X using an infinite
collection of knots with distinet Alexander polynomials. There is an algebraic subtlety

hiere, but it is minor enough that we have relegated it to the appendix.

-



2.2.1 A warm up: Exotic Involutions on 2X#(5* x $?)

Theorem 3. Suppose that X is a 4-manifold to which the theorem 2 applies. Then

. . . - 2 2
there are an wnfinite number of exotic group actions on 2X#S5< x §<.

Proof. Let {X .} be a collection of non-diffeomorphic manifolds which all arise as
i
knot surgery on X. If we take the 2-fold branched cover of {X -} over a trivially
i
Lo 9 .
embedded torus we get 2.X K,#.SQ x §= (for this fact see [16] or [18]). It has been
i
. . -2 o
shown by Auckly [2]. and independently by Akbulut [4]. that X - #5% x S2 is dif-
(
. cL 02 L2 o Lo
feomorphic to X#.5% x 5= (see also {5, for a simplified proof). Hence. we have an
infinite family of involutions on 2.V #.5< x S= that are all the same topologically since
they came from topologically equivalent branched covers. whereas these actions are

smoothly distinet since their quotients are not diffeomorphic.



2.3 Seiberg-Witten theory basics

2.3.1 Seiberg-Witten on closed 4-manifolds

Let s be a Spin® structure on a 4-manifold X. and let B(X.s) be the set of gauge
equivalence classes of pairs (A.0). where A is a Spin® connection and o is a spinor
field on X.

For a 4-manifold with a Spin® structure s. the Seiberg-Witten equations are:

1)},; =0 (2.1)
1/2,>(F7\L, — )= (06%) =0 (2.2)

where p is the Clifford multiplication. D_,:f :T(ST) — T(S7) is the Dirac operator.
and (0o™)q is the trace free part of the endomorphism ¢o*. The 2-form w is an
arbitrary perturbation.

The Simple Type Conjecture savs that the moduli space of solutions M (X.s) C
B(X.s) to these equations is a zero dimensional manifold for all 4-manifolds with
bt > 2 with a generic choice of wi we will assume this for the remainder of this paper.
In this case. we define the Seiberg-Witten invariant STy (s). to be an algebraic
count of the points in the moduli space (where signs are assigned via some choice of
orientation). Witten shows that STy (s) depends only on the smooth structure of
X. not on the choice of metric or perturbation. ([45]. see [28] for a mathematically
rigorous proof). A Spin” structure s such that SWiy(s) # 0 is called a basic class.
We encode the information information given from this invariant as an element of
Z‘Z[Hg(.\')] by defining STy := 3 SW(s)cy(s) where the sum is taken over all Spin®

. 2, : : .
structures on X", In the case that F<(X) has 2-torsion. we loose information when we

pass to SHy-. but since we are primarily concerned with simply connected manifolds.

9



this is not a concern.

Note that if ¢ is a diffeomorphism of X. then 0x(S117y-) = SWy-. This provides
a basic obstruction to the existence of certain smooth group actions. For example.
Chen and Kwasik [7] use this idea to show how certain actions that exist on K3 cannot
exist on exotic copies of K3.

A seminal result in Seiberg-Witten theory is the following theorem of Taubes:

Theorem 4. /{1] Suppose (X.&) is a closed symplectic 4-manifold. Then STV v 7 0.
and specifically SWy(s) = 1.

<

2.3.2 Seiberg-Witten on 3-manifolds

Let s be a Spin© structure on a 3-manifold Y. In [22]. Kronhcimer and Mrowka defined
the *‘Monopole Floer homology group’ invariants, a collection of groups associated to
(Y.s). For simplicity. we will restrict our attention to the circumstance where s
is torsion. In this case all of the groups defined by Kronheimer and Mrowka are
equivalent. This invariant is called the reduced monopole Floer homology and we will
denote it by I1.M/(Y.s). It is constructed as follows: Let B(}"s) be gauge equivalence
classes of pairs (A. @) where A is a Spin® connection and @ is a spinor field. Then the

chain groups defining A (Y. s) are generated by the clements of B(Y.s) satisfving:

1/9/)(F[3t )= (00™) =0 (2.3)

l)B("> = ()

Here we fudge slightly: In fact. it is a suitably perturbed version of these equations
that defines monopole Floer homology. aud these perturbations are the source of much

of the complexity in the theory. See [22] for the details.

10



We will primarily be concerned in this chapter with the monopole Floer homologyv
of $1 x Ty where Xy is a surface of genus g. In this case. we have no need to describe

the differential.

Proposition 5. Let st x Ly be endowed with a product metric whose restriction to
L has constant negatiwe curvature, and let s g—1 be the Spin® structure characterized
by (] (sq_l).Eg} =29 — 2. Then the equations (2.3) have a unique solution, [ag] €

7

B(sl xT.s and consequently HM (ST x Sg.6_ 1) = Z.

g—l)

Proof. A detailed proof can be found in [8]. [31]. and [30]. Essentially the proof
comes down to showing that (2.3) is invariant under the obvious ST action. and in
this case these equations simplify to the abelian vortex equations on Zy. But the

vortex equations can be solved explicitly. .

2.3.3 Seiberg-Witten on 4-manifolds with boundary

The full story of Seiberg-Witten equations on 4-manifolds with boundary is a long
one. told in its entirety in [22]. In general. if X is a 4-manifold with 9N = Y. then
associated to X we get an element. vy € H.M(Y.s). We will restrict our attention
to the simple case where 0N = sl x Zg.

Specifically, well cousider the Seiberg-Witten equations on X with an infinite end.
N* =N uUstx EQR'*': Let B(X*.[ag]) be the subset of B(.X'®) which limit to the
element [ag] of Proposition 3 on the end of X*. Then we can define vy geld .\l(b‘l X
S(J'ﬁ!l—l) = Z to be the count of isolated solutions to (2.1) in B(X™. [u]): the count
of elements in the moduli space M (X ™. [ag]). that is. Using suitable perturbations.
Uy g s an invariant. What is more. we can decompose B(X*.[ag]) along its path
components into so called “z-paths’, B(X*.[ag]) = [[Bz(X*.[ag)). and similarly
M(X™. ag)) = [T Mz(X™.{ag]). Moreover. the set of path components of B(X™, [ug])

is a principal homogeneous space for 11-(,‘\.51 x Xg). Hence. if we make some

11



. : : 2y
identification between H=(X. st x L) and the z-paths. we can define

A ’ ] /% 2 - v
SWy 5= S (#A15(X* Jag))h € ZH(X. 5! x T)
he H2(X.S1xT)

which is invariant up to multiplication by an element of H"(/\.Sl X Z).

2.3.4 Seiberg-Witten invariants of pairs
We can define a smooth invariant of a pair {X. Z) as follows.

Definition 6. Let X be a closed 4-manifold containing an embedded surface . then

we define S”'(,\’IE) = SW X\nb($).0) when [S)2 = 0. When [S]’? =n > 0. define

SH'( \|S) = ST where ¥ is the total transform of £.

(N#Fnl P2 \11/)\_4, d)
This notation is somewhat nou-standard. Typically SH'( X|T) is onlv defined for

\_‘g{_)

the case that = 0. but the extension made here makes several theorems easier to

state.

Theorem 7. If X is a symplectic manifold and T C X is a symplectic surface with

1‘) A M /
[S}= > 0. then ST XIS 7 0
The proof is standard. but we outline it here for the sake of comnicreness.
()
Proof. Assume LSJ~ = 0. Decompose X into X = X\ D? x T and D? x T and let
Xp define a family of metries on X via
Ny =(Nustxox .U U2 xsust xTx 0.n])

By Taubes's result above. s, is a basic class of X and (5. X)) = 29 — 2 by the
adjunction equality. Ience. the basic class s restricts to 5g—1 on slxs By a ba-

sic (but difficult) limiting arcument. A/(\,. 54—1) converges to M fag])y > M D? %

12



E. [ag)) as n goes to infinity in some suitable compactification of Une(O x) M((Xn.sg—1))-
But A/(Xy.s) is (algebraically) non-trivial by Taubes’s theorem above.
12

In the casce that [S)= = n > 0. the same proof applies because the proper transform

of £ blown up n-times is still a svmplectic surface. O

13



(D4 I#K) (D%.1)\ nbla) S3\ nb(K)

Figure 2.1: Decomposing (D3. I) into pieces.
2.4 Knotted surfaces

We will examine two methods of knotting surfaces in 4-manifolds: twist spinning a
knot to give a knotted 5= in st (originally defined by Zeeman. [46]). and the closely
related technique of Fintushel-Stern of performing ‘rim surgerv’ on a surface in an

arbitrary 4-manifold. [11].

2.4.1 Twist spun knots

Heuristically. a spun knot is constructed by removing an annular neighborhood of the
equator of a trivial S in st and replacing it with S1 times a knotted arc. Let us
. . : 2 .
spell this out in greater detail. Let n. s € S= be the north and south pole respectively,
and let 1 € D3 be a straight segment from n to s in D3 c rY.
, d .1 3. o2 2 . .
Decompose S* into S* x D2 U S* x D= by thinking of it as the boundary of

2 . . . ..
D? x DS. The unknot can be seen in this decomposition as

(st57) = (s x D351 x YU (2 x D2 {n.s} x D?)

Now if A is a knot in S5, we can form the spun knot Sy in < by replacing

S [ in the definition above with I = sl [# N (see Figure 2.1):

14



(§1.5) = (ST x D3. 1)U (82 x D2 {n.s} x D?) (2.4)

Let us consider an alternate definition that will be easier to generalize. Let o C D3

be a meridian of 7 ¢ N3, Then S1 x a is a torus whose neighborhood we shall write
f)
as S1 x a x Dy,

Then

(ST x D31y = (st x 3. st x n\ s xa x D

Ug ST x ($3\ nb(K))

The gluing map o is characterized by

Il

ox([S1) = [$1]
ox([a]) =[]

ox([OD7)) = ()

where m. is the meridian to A Z .8'3, and (- is the longitude. See Figure 2.1.
A generalization of this construction is the k-twist spun knot Sy . C S4 Whereas
. , 9 N
we defined Sy- = I, U{n.s} x D*. we define Sy p.o= I U{n.s} x D? where I

is defined similarly to 15 above. except we use the giuing map ¢ characterized by

ox(151]) = [S1] + himy)

ox([a]) = [m ]

ox([OD3]) = ()]

15



Heuristically. Sy . spins A around £ times as we go around the S1 factor. Notice
that by these definitions. both spun knots and twist spun knots can be constructed
by performing knot surgery on the torus S1xa in §*. This differs from knot surgery
defined in Section 2.2 i an important respect however: In this case knot surgery does
not change the ambient manifold st changes the embedding of a knotted sphere

in s4.

2.4.2 Rim surgery.

Now we explore knotted surfaces in 4-manifolds that are more complicated than
knotted spheres in s,

Let ¥ be a surface in an arbitrary 4-manifold X and let C' be a simple closed
curve in & that is homologically essential in £, Motivated by the definition of a twist

spun knot:

(5385 )= (S x D310 )0 (8% x D2 {ns) x D?)
K.k K.k

one can define k-twist rim surgery as:
(X. Sy ) = (ST x D31 ) U(Y \ nb(C). S\ nb(C)

This definition was originally made by Fintushel and Stern in [11]. for the case
of k = 0. The & # 0 case was explored by Kim and Ruberman in [19] and [20]. In
contrast to twist spun kunots in S twist rim surgery does not alwayvs change the

topological tvpe of the surface:
Theorem 8. Say X is simply connected.

o [11] If n{(X\ Z) = 1. then (X.X) is homeomorphic to (X.Z - ).

16



o [20] If (X \X) = Z; and (d.k) = 1. then (X.Z) is homcomorphic to

(X.Sp )

In (X.X) let (C' x D3.C x I') be a tubular neighborhood of C'. Define the rim
torus to he R = C x a C C' x D? where a is a meridian of I € D3. Note that this
torus is homologically trivial in X', but homologically essential in X\ nb{X). Since.
we saw that twist spinning a knot was equivalent to doing knot surgery on just such

a torus. the following theoremn should be not too surprising.

Theorem 9. (/11]. [9]. sec also [13]) If © C X has positive self intersection. then

SWixIs ) = SRSy

~“N.k ’

Z)

where I is the rim torus corresponding to the curve C where the rim-surgery was

performed.

Proof. Rim surgery is accomplished by replacing (.S'l x N3.81 x I') with (Sl X
D3.11\r_k). As with twist spun knots. this is equivalent to doing knot surgerv on
on the torus which is S1 times a weridian of I — the rim torus K. in this case.
Recall S”-(,\'!E) corresponds to finding solutions of the Seiberg-Witten equations on
X\ nb(Z) (possibly blown up). and R is a homologically essential torus in this mani-
fold. Fintushel and Stern’s original proof of the knot surgery theorem [12] applied to
closed manifolds. but the same proof works in this case once one recognizes that one

should substitute z-paths where they originallyv spoke of Spin® structures.

Tom Mark has obtained an analogous result in Heegaard-Floer theory that applies

to any symplectic surface in a sviplectic manifold regardless of self-intersection. [26].
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2.4.3 Examples

One can find an elliptic fibration structure on A'3 such that a generic fiber is svin-
plectic and has simply connected complement. This was the original example given in
[11]. Complex algebraic curves also provide a large source of examples since they are
automatically svmplectic. and hence have non-trivial relative invariant by Theorem
- e . . 2 . ,

7. So. for example. if 1 is a generic degree-d curve in (*/°=, we can apply rim-surgery
to 177 as long as my (C'P=\ V) is finite cyvclic. This is true by the Zariski Conjecture

. 9, 1 .

which says 7y (("P=\ 1)) = Z;. See [19] for this and other examples.

. . Ol 9 . . 9 ) PN
Similarly. in S< x 5% the curve Uj representing d([{S* x pt] + [pt x 5¢]) has
) ) . . - .

m1(S= x 5=\ Uy) = Z; by the generalized Zariski conjecture [32]. Therefore we can

also find an infinite family of exotic [;’s.



2.5 Knotting group actions

We finally have all of the necessary machinery in place to construct the promised
exotic actions. Before we do so. let us look at two model theorems. Our actions will
arise as branched covers over rim surgered surfaces. First we'll consider the branched
covers of twist spun knots in $%. In all that follows. denote the cannonical d-fold

branched cover of X over T as (X S)d when /1](X\X)=Z.

Theorem 10. Lct Sp- ;. C 1 be a k-twist spun knot. and let d € Z be relatively

prime to k. Then (s, S']\-_k)’l is diffeomorphic to s,

Proof. Gifien showed that such a branchied cover is a homotopy d-sphere. [15]. Gordon
extended this. and showed it is a homotopy 4-sphere that admits an Sl action. (17].
Pao (using Fintushel's classification of s actions on homotopy 4-spheres) showed

that any homotopy 4-sphere admitting an S L_action is diffeomorphic to S4. 136].
) P! I g p {

Corollary 11. Say U s a 2-handle attached to slx p3 along sl x {pt}. If we write
(Sl x D3UL, 11\-.}.,7,)‘] as (Sl x D3, 11\—_,1.)”"*\) {lx',/}glzl where the U are the d disjoint
lifts of U, then

(st 31 tury = p?

Proof. We can exteud Iy - C SLx D3UT to a twist spun knot in 53

(st s y=(stxp3ur 10t pPun?)
Ik L.k

By Theorem 10. the d-fold branched cover is again just s
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st= (st x 3oty duwt p?un?)d
= (st x 3.1 pfu(Drur. p?2uD?)?

= (stx D31 ptuntun
This implies that (5'1 x D3. 1]\'_;\,)(1 U U7 is diffeomorphic to D3,
O

Now we will coustruet actions on 4-manifolds that are locally just like those given

in Corollary 11.

Theorem 12. [13/ Let Y be a simply connected 4-manifold with an embedded surface

satisfying the following conditions:
e T isof genus g > 1

o T2 >0

771()’\2) =Z(1

the pair (Y. X) has non-trivial Seiberg- Witten invariant.

o ¥ contains a non separating loop C' which bounds an embedded 2-disk whose

interior lies in Y\ T

Let X be the d-fold branched cover of Y. Then X admits an infinde family of smoolh

Z, actions that are topologically equivariant, but smoothly distinct.!

Proof. The first three conditions imply that ¥ is a suitable surface for the rim-surgery

counstruction. and the fourth provides a tool for indentifving the diffeomorphism tyvpes

IThe same proof works where X is the ¢/-fold branched cover of ¥ where d’ divides

d.
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of the branched covers. Let k be an integer such that (k.d) = 1 and let {}Y. Z K;. -} be
a family of smoothly distinct pairs, where © K,k is obtained by A-twist rim surgery
on (" using some knot A;. Let X; be the d-fold branched cover over ¥ K; ke ie. X; =
Y.z Ki)d' Then the induced Z; actions on the X; are all topologically equivariant.
because they came from brauched covers of topologically equivalent surfaces: and they
are smoothly distinct because the images of their fixed sets are the surfaces & K.k
which are smoothly distinct.

It only remains to show that A’ is diffeomorphic to X. Note that the branched
covers only differ where the rim surgery was performed. Specifically. X is obtained
from X by replacing (€' x D3.C x I with (C'x D3, T e ;‘T)d . We'll look at a slightly
larger region. Let {7 be a regular neighborhood of the disk bounded by (". Then we
can obtain A’; from X by replacing (' x D3.C x I)dU {1 with (C'x D3. ]1\'.1.:)dU("1
where '] is a lift of {”. By the Corollary 11. (€' x D3. ]Kj‘.)d Uty = D?}. Therefore

X; is diffeomorpiic to X

2.5.1 Examples

In Section 2.4.3 we saw a number of surfaces to which the rim surgerv construction ap-
plies. If we wish to use these examples to find exotic actions. it remains to check that
the surfaces in these examples contain a suitable curve ' that bounds an embedded
disk.

For complex degree-d curves. 1, € ('P~. the curve V7; is the fiber of a pencil.

S d d
Suppose d > 2 Then we can take (" to be any loop in 1; bounding a vanishing cvcle.
. . ) . e
The same is true for the curves 'y C S= x S= described in Section 2.4.3 above.
d
By taking the branched cover over V7. we get an infinite family of finite cvclic
. d: ) ) .

. . P2 52 . B

exotic group actions on. for example. ('P=#G6GC P~ by looking at the 3-fold branched

cover over V3. Actions on K3 can be constructed by looking at the 4-fold branched
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cover over Vy as well as the 2-fold branched cover over V. The 3-fold branched cover
. 2 2. N i o

of '3 C §° x 5= is again K3. In fact. onlv Zo. Z3. and Zj. can act on K3 in such a

wayv that the fixed set is a conneeted surface — and we have constructed exotic actions

in each of these cases. This can be shown by a bit of algebra using the following two

formulas which relate the euler characteristic and signature of a manifold to those of

its branched cover.

_(d=1(d=+1)
3d

12
=]

(8™



Chapter 3

Complexity of cobordisms via

Heegaard-Floer homology

We exhibited a variety of exotic behaviors in the last chapter. In this chapter, we
will shift perspective slightly. and interpret exotic behavior on 4-manifolds through
5-dimensional techniques. In particular. we’ll examine the following 2 questions from

a 3-dimensional perspective:

1. How can vou tell if homeomorphic 4-manifolds are diffeomorophic?

2. When is a self-homeomorphism of a 4-manifold isotopic to a self-diffeormophism?

These are very difficult questions to answer in general. What the 5-dimensional
perspective will give us is a way to quantify how far two manifolds are from heing
diffeomorphic. or how far a self-homeomorphism is from being a sclf-diffeomorphism.
This is accomplished by measuring the complexity of a cobordism between two 4-
manifolds as follows. Let A/} and /5 be homeomorphic 4-manifolds and let C(M 1-/2)
be the set of all cobordisms from /7 to Ao that possess a decomposition with only

2- and 3-handles. Then we can define



A(M1. W Al9) = min{geometric intersection number of the belt sphere of the

2-handles with the attaching spheres of the 3-handles}

where the minimum is taken over all handle decompositions of W' using only 2-
and 3-handles. Define Ap(M7. 117, V/5) similarly but take the minimum over handle

decompositions of W with only one 2- handle and one 3-handle. Now define

AN My) = ‘I‘l}i’n A(M] W M)

<
A(My- Mo) = min Ay (M. 1)

ALY = min A(M W AL)
. Wece
W is an h-cob
h . .
AT (M. M) = min A (M WA g)
o Wec
W is an h-cob
The relation between Question 1 and the A invariants is transparent. It is not
hard to show that Ah(‘\ll. M) = 0if and only if Vo and Mg are diffeomorphic. And
the greater A is. the greater the disparity between the smooth structures of 1/j and
M.
A and AP Lave quite different hehavior. however. Many families of exotic mani-
folds that have been constructed have A = 2. This is explained in [5]. On the other
hand. A’ exhibits more interesting behavior. even for h-cobordisms of a manifold

to itself (so called nertial h-cobordisms). e.g. the following theorem of Morgan and

Szabo.

Theorem 13. [20] For «ll n € Z there exist 4-manifolds My, and an inertial h-

cobordism of Mn. say Wy, such that A(My . Wn. My, is unbounded as n increases.
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These invariants also shed light on question 2 above.

In section 3.7 of this chapter we will construct an obstruction to a self homeo-
morphism of a 4-manifold being isotopic to a self diffeomorphism based on the !
invariants. In particular. associated to ¢. a self homeomorphism of a 4-manifold M,
we will construct a cobordism (A/. 1o, M) such that A(M. W@, Al) = 0 if and only
if ¢ is isotopic a diffeomorphism. The theorem of Morgan and Szabo gives examples
of homeomorphisms that are not realized by diffeomorphisis. Contrast this with the
previous chapter. In the previous chapter (Section 2.3.1) we saw how the Seiberg-
Witten invariant provides such an obstruction. A partial motivation for our study
here is to understand how these two obstructions are related.

Our goal in this chapter is to lay a framework for studving the A invariants.
Ultimately. we would like to understand how, for instance, the Seiberg-Witten. or
Oszvath-Szabo 4-manifold invariants of cobordant 4-manifolds are related and to
understand the A invariants. A full understanding is. at present. bevond our reach.
As a first step in this direction. however. we will calculate the relevant Heegaard-Floer
homology groups associated to simple cobordisms (defined in Section 3.1).

The main technical content of this chapter is a calculation of the Heegaard Floer
homology for the plumibing of two splieres. At the end of this chapter we will use this
calculation to derive a relationship hetween the 4-manifold invariants of M. and the

A invariants for certain cobordisms.

3.1 Basic Definitions

The purpose of this section is to fix a consistent set of notation and terminology for
basic handlebody theory.
A handle decomposition of a manifold is a thickened version of a cellular complex:

An i-cell is defined to be a copy of DY, We can “attach an n-cell to a space X using

)
<t



a map OD! — X. That is. we attach cells by gluing their boundaries to a space. A
CW compler is defined inductively by attaching cells of increasing dimension. We
can construct n-manifolds in a similar way. but evervthing must be thickened: Define
an n-dimensional i-handle, denoted h;. to be D' x D" which is attached to an
n-manifold M via a map a : (9D') x D"t — 9M" - we glue handles along the
thickened region that we glued cells. We call ((’)l)'i ) X D" the attaching region and
we call o the attaching map. Additionally. we call 9D; x 0 the attaching sphere. and
0x OD" the belt sphere.

By elementary Morse theory. every n-manifold A" has a handle decomposition

where handles are attached in increasing index. We will denote this by:

.\[n=Zho+Z}?1+...+th

Also useful will be the dual of a handlebody decomposition whereby the roles
of the belt spheres and attaching spheres are reversed: an i-handle h; is an ‘upside

=i

down’ (n-i)-handle h, _; = h7. the attaching region becomes D' x 91 cte.

Heuce. we can also write:

M= AY A N,
= Y hy_p+ Y by

We can also define relative handlebodies which are built on an /n-1)-manifold N
MU=Tx N4> hy+..+> Iy

In this case. we denote 97 M = {0} x N and TN = 9M — 9~ M For the
subhandlebody composed of handles up to index i we will write (), By the muddle

. : . . . n—1)/2
level of a handle decomposition of odd dimension n. we will mean ot ag(tn=1)/2)
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For odd dimensional manifolds. it will be convenient to convert the “bottom-up”
handle decompositions described above into “middle-out™ handle decompositions by
dualizing the handles below the middle level. For example. we can convert handlebody

decomposition of a 3-manifold ala:

.\/3 =/I0+Z}ll +ZI?2+113
=W+ Y M+ (Sx1)+> ho+hs

=1!3+2112+(EX ])+Z}l-2+h3

That is. we attach two sets of 2-handles handles to the middle level. one going
up. the other going down. For a 3-manifold we can actually draw a picture of a
middle-out handlebody decomposition. Such a picture is called a Heegaard diagram
and these are explored further in Section 3.4. Middle-out decompositions will also

arise in our investigation of 5-dimensional cobordisis.

3.2 Simple cobordisms and surgery.

A cobordism between two smooth n-manifolds A and Moy is an (n + 1)-dimensional
manifold X" with OX = MU .Ma. If the inclusion of My (or equivalently M9) is a ho-
motopy equivalence. then X is called an h-cobordism. The h-cobordism theorem says
that if two simply connected manifolds of dimension greater than 4 are h-cobordant.
then they are actually diffeomorpliic. It is the failure of this theorem in dimension 4
that is the source of the beguiling exotic behavior exhibited by smooth 4-manifolds.

Consider the simplest class of cobordisms between 4-manifolds: cobordisms that
have a handlebody decomposition as a single 2 handle and 3 haudle pair. We will
refer to these as simple cobordisms. In this scetion we will characterize how a simple
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Figure 3.1: T(n.m) surgery.
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cobordism induces a surgery relationship between its boundary manifolds.

Proposition 14. If My and My are simple cobordant 4-manifolds, then My can be
obtained from Mo by a surgery of the type given in Figure 3.1. We will call this
operation T (n.m)surgery when the ‘outer’ 1- and 2-handles cross geometrically n

times and algebraically m times.

We shall refer to the 4-manifold given by this Kirby diagram as D(n.m), and the
three manifold which is its boundary as T'(n.m).

Notice that a degree-0 log transform is a T'(2,0) surgery using this terminology.

Proof. A simple cobordism can be given a “middle-out” decomposition:

N = "\]1 G I+/l-2+h3

= hg+1x X2 4 hg

! ; : : ) & (2 :
Call the attaching regions for these two 3-handles So and Sgz. In X (2), the union

Sa U Sy is the neighborhood of two plumbed spheres, given in Kirby calculus by

: 29 (v (2) fa 3 . e
Figure 3.2. Then My = 07 (X< + hg), which is equal to surgery on Sg. This
corresponds in Kirby calculus to changing the O-framed 2-handle that corresponds to

Sj into a dotted 1-handle. Similarly, M is obtained by the same operation on the
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Figure 3.2: The figure on the left is the plumbing of two spheres So and Sz in

2 : :
X2), The pictures on the right are the result of surgery on each of these spheres
respectively.
other 2-handle of Figure 3.2.

a

Corollary 15. If My and My are simple h-cobordant. then they are related by a
T(n.1) surgery. Moreover, if My (and Mgy ) have indefinite intersection forms, and
A\II#SQ x S2 4 diffeomorphic to A\lr_)#ﬁ'r—) x S2, then My s related to Mo by both a

T(n,1) surgery and a T(n',0) surgery.

We remark that for non-spin manifolds, being simple h-cobordant is equivalent to
) SRR, Srg ' . 2 adh By R0, a
M;#S5< x S* being diffeomorphic to Mo#5< x S=. We do not know if this is true

for manifolds which are spin.

Proof. The handles of a simple h-cobordism necessarily intersect algebraically once,
; : : . b T ;
proving the first part of the corollary. When M;#5< x S is diffeomorphic to

9 i) ¢ X % s
Mo#5< x §< we can build a simple cobordism such that the handles intersect al-
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. 2 0 . .
gebraically once or not at all as follows: Let S Ta and Si'b be the obvious spheres in

.\/1#52 x $2 and similarly S%a and S%b in .\1-2#52 x §2

Let 117 be the cobordism from ,\11#52 x §2 to M given by attaching a 2-
handle to S%a. Similarly. define W9 by attaching a 2-handle to S’%a. We now form
the cobordism W = W7 U, W9 where ¢ is a difleomorphism from ;’\11#52 x S2 to
;112#52 x S2. By a theorem of Wall. we may adjust our diffcomorphisi such that
ox( [S%a]) = [b‘gh] or [S%”‘}. Therefore. the two spheres to which we attach 3-handles
to get M and /9 are o([h’l‘za]) and S%a or S:%)a which intersect algebraically once or

not at all.

]

Remark 16. The T(n.1) surceries coming from h-cobordisms are submanifolds of

Akbulut corks (see. for example [21]), and T'(n.0) surgeries correspond to plugs, [3].

3.3 Descriptions of the surgery 3-manifold T'(n. m)

In the previous section. we showed how we could replace the problem of understanding
simple cobordisms with the problem of understanding surgery along T(n.m). A
first step to understanding how 4-manifold invariants change under this surgery is to
understand the Floer homology of T'(n.m). Before we can compute this. it will be
useful to have as many deseriptions of T(n.m) as possible. Above we described it as
the boundary of the plumbing of two <2, They are plumbed n-times geometrically
and algebraically m-times.  Three additional descriptions of the manifold T(n. m)

manifold will he useful to us:

1. Surgery description. If we change the dotted 1-handles in Figure 3.1 into surgery
curves with framing 0. then we have a surgery description of the 3-manifold

T(n.m).
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2. Decomposition into pieces. Let Ay denote $2 with n open disks removed. and
denote the boundarv components of Ay by U?:()l S;. We can decompose the 3-

manifold T(n.m) as sl Ay UOSI x A, where 6 slx 04y — 51 x A, is,
restricted to each boundary torus. just one of the two orientation reversing maps
exchanging the factors (use one of the maps on m of the boundary components.

and the other on the remaining (n — ) boundary components).
3. Heegyaard diagram. This will be exhibited in Section 3.4

From description (2) we see a number of surfaces contained in 7'(n. m): There are
the n tori given by s x S; for i = 0ton —1. Call these tori T;. In the case of
T(2n.0) there are two other obvious surfaces of genus n/2. 1 and I9: To form Ry.
we cap off 0 x Ay C T(n.0) by annuli in 51 x Af,. More specifically. let 7, be arcs in
A7 such that each component of &), contains exactly one endpoint of the ;- Then
we can arrange o such that Ry = 0x A, J, U ,‘Sl X 7; is a closed. orientable surface.

The obvious symmetry of T(21.0) gives us a second such surface. Ro. See Figure 3.3.

Lemma 17. o Ho(T'(2n.0)) is freely generated by the 2n — 1 tori {TI}?QJQ and

the surfaces K1 and Ro.
o Ho(T(n.1)) is freely generated by tre n— 1 tori {T,}:':_U‘2

Proof. This is a simple application of the Mever-Vietoris sequence. O

3.4 Heegaard diagrams for 4-manifold theorists

A Heegaard diagram is just a representation of a ‘middle-out™ handlebody decomposi-
tion of a 3-manifold 3. We will restrict our interest to decompositions with a single
3-handle on cach side of the middle level. The middle level of such a decomposition

) ) . B a: pe
is a surface which we will denote by S0 Then Y = hg+ 3 h(;' FIXS+S + hs.
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Figure 3.3: The top figure is a decomposition of 7°(4,0) into two copies of S 1y An
and the bottom figure is the surface Ry.



Since there are no framing issues to deal with in dimension 3. any such decom-
position can be described by a triple (Z.a. 3). where a = U‘?:la.,- — the set of
homologically independent artaching curves for the 2-handles below the middle level
— and similarly 3 = U'?___l 3; the 2-handles above the middle. Such a picture is called
a Heegaard diagram. Every closed. orientable 3-manifold admits a Heegaard diagram.

and these diagrams are unique up to a certain set of ‘Hecgaard moves’. [40].
S = 1

3.4.1 ‘Bottom-up’ handlebody descriptions

Before we draw a IHeegaard diagram of T(n.m). we'll first construct a standard
bottom-up handle decomposition using 0. 1. 2 and 3 handles. A 0-handle is just
a 3-ball: represent its boundary by the plane plus the point at infinitv. It is not nec-
essary to draw the I-handles. It suffices to draw their attaching region in the plane:
two disks. The 2-handles are also represented by their attaching regions. which are
simple closed curves.

We can also describe relative handlebody decompositions this way by attaching
1-handles and 2-handles to a surface. or disjoint union of surfaces. Using relative
handlebody diagrams will make it possible to glue handlebodies together. something

that is cumbersonie with ordinary Heegaard diagrams.

3.4.2 Induced handle structures on S x S!

Given a handlebody decomposition of a surface S (which may or may not be closed),
we can induce a handlebody decomposition of S x S1as follows.
The simplest case is when S is a disk D=, i.e just a 2-dimensional 0-handle. Then
1042 . o
S* x D~ is a 0-handle and a 1-handle. both of dimension 3. Similarly. for a handlebody
decomposition of a general surface S. any A-handle in S gives rise to a k-handle and a

k+ 1 handle in ST x 5. See Figure 3.4. Also. Figure 3.6h shows the this for § = Ag.
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Surface S Induced handlebody handle diagram
decomposition of S x S

Figure 3.4: Crossing a surface with § 1

More generally, if we begin with a relative handlebody description of S, (i.e. oue
where 075 # (). we see that 975 x $1is a collection of tori. On these tori,
our procedure builds a relative Heegaard diagram by again attaching a & and a &+ 1
handle to these tori for each k-handle in S. In Figure 3.5 we use a relative handlebody
description of the twice-punctured sphere to find a different picture that also describes

sl x Ao. See also Figure 3.6a for st x As.

3.4.3 Gluing handlebodies and constructing 7'(n,m)

Using this technique. we can find two descriptions of s1x A3. one with J7 a collection
of tori. and the other with ¢~ a collection of tori. We can now build. for example,
Lo x sl by superimposing the tori from the second description on top of the boundary
tori of the first. The boundary tori are shown in in Figure 3.6. and their superposition
is given in Figure 3.7.

If. on the other hand. we superimpose the diagrams. but via different homeo-

morphisins of the boundary tori. then we can form. e.g. T(3.1). where we alternate
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1-handle > >
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2-handle

Induced handlebody

fo e
Surface 5 decomposition of S x S!

handle diagram

. - . . . 9
Figure 3.5: Two pictures of A x S1. The top has T = T+ whereas we are more
interested in the bottom picture. where ot =0
between right and left twists. It is straightforward to generalize this to get diagrams

for T'(n.m). and more general pictures will be given in Section 3.6

3.4.4 Converting to Heegaard diagrams

To convert these standard handlebody diagrams to Heegaard diagram. we dualize the
I-handles to become - curves on a surface. This is illustrated from two different
perspectives in Figure 3.8, with the pictures on the bottom representing how we will
normally draw our diagrams. The top pictures are to illustrate that, in tact. both

diagrams actually represent a genus-1 handlebody.

3.4.5 Identifying the generators of Ho(T(n.m))

We will take this opportunity to find generators of Ho{(T(4.0)) in this Heegaard
diagram. since we will need them later when we calculate Ieegaard Floer homology.

Recall by Lemma 17, [9(T(4.0)) is generated by thee tori. plus [ty and 9. The
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Figure 3.6: One of the tori is shown in the top picture where we have explicitly drawn a
1- and 2-handle. The other tori are represented more typically by the bottom pictures,
where it is understood that part of each torus is contained on the 1- and 2-handles
which are represented only by their attaching regions.

36



DO — @O

Ba
(E) G
e e ;_/

Figure 3.7: The top figure shows how to glue together two copies of sl x A3. The
bottom left shows the standard gluing which gives sl x Lo while the alternate gluing
on the right gives T(3.1).
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Figure 3.8: The pictures on the left represents a 1-handle attached to a 0-handle.
To convert to a Heegaard diagram, dualize to get a 2-handle (plus an unpictured
3-handle) which we attach. in this case. to a torus. Note that we represent a 1-handle
and the surface with the same notation: a labeled pair of circles.

tori are the tori that we glued along. as mentioned above (Figure 3.6). The other two
generators are slightly harder to see. It is shown in Figures 3.9 and 3.10 how R and
Ro are constructed from the pieces explained in Section 3.3: pt x Ay and two annuli
from Figure 3.3. The annuli are in one copy of sl x Ay and pt x Ay is in the other.

Pictures of the R in T(2n.0) for any integer n are given in Section 3.6

3.5 Background of Heegaard Floer homology

Given Y. a closed oriented 3-manifold. Ozsvath and Szabo define a collection of 3-
manifolds invariants. HFT(Y)., HF7(Y). 1/F>(Y). and 1/]7’()'). The original ref-
erence is [35]. Other surveys ave [27] and [39].

These invariants are modeled on Lagrangian Floer homology: To a svinpiectic
manifold M with two Lagrangian submanifolds Ly and Lo. a homology theory can
be defined where the chain groups are freely generated by the points of Ly N Lo.
and the differentials are defined by counting J-holomorphic Whitney disks in M with

boundary on L1 N Ly.



Figure 3.9: This is a picture of R} (shaded) in 7'(4.0). (a) A4 x pt is shaded. (b) The
two annuli are shaded. (c) The composite, R1, is shaded with a perforation where
Ay is glued to the annuli.
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(O)

(O)
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J

Figure 3.10: This is a picture of Ro (shaded) inside 7°(4.0). (a) The two annuli are
shaded. (b) pt x Ay is shaded. (¢) The composite is shaded with a perforation where

Ay is glued to the annuli.
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The Heegaard Floer invariants fit into this structure as follows: Say a given three
manifold }" has a genus g Heegaard diagram (Z. a. 8.z) where o and 3 are the sets
of attaching curves, and z is a point in ¥\ ¢ U 8. Then Sym9(XZ) will play the
role of symplectic manifold in this Floer homology. If we think of Sym9(ZT) as the
quotient of ©*9. then the images of Ty :=ay X ... X ag and Tg := 8] x... x 8g are
transversely intersecting submanifolds of SymJ{Z). plaving the role of Lagrangian

submanifolds.

Definition 18. A Whitney disk between points a and b in Ta N7Tg is a map:

o:{z €C|0 < Re(x) <1} — SymI(T)

such that
lim oé(r)=a
I—2X

lim o&(x)=5
I——nC

o(r) € Ty for Re(2) =0
olr) €Ty for Re(z) =1
If. additionally. J is an almost complex structure on Sym9(S). then ¢ is called a

J-holomophic Whitney disk when ¢*J = i.

Heegaard Floer homology is only defined for suitably perturbed almost complex
structures. Details can be found in [35] and we shall make no further mention of this

technical point.

Definition 19. Let  and § be points in Ty N Tg. Then mo(&. %) is defined to be the

set of homotopy classes of Whitnev disks connecting 7 to i in Sym9(Z)
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Definition 20. For any point w in ¥ in the complement of the a and 3 curves. define
Ty : 7:'2(;f. 17) — Z

by the algebraic intersection number

ny:(0) = #o_l({ur} X Symg_l(Eg))

3.5.1 Definition of Heegaard-Floer homology

Let (.a.8.z) be a pointed Heegaard diagram for a three manifold Y. The chain
groups of HE.HF™, HF~. and HF™ associated to this diagram are defined re-

spectively as:

CFa.8.2)= €D Zi]
.'L‘ET() ﬂTd

(F*(a.8.2) = @ GB Z{x. 1]

€L atET()ﬂTB

CF (a.8.2) = @ @ Zlx. ]

1<0 IGT() ﬂTj

OC(n 3 -
(.v'F+(u.;3.:) _ CF*(a.3.z)
CF {a.d.2)

The differentials are defined by

G 6'77(.(1.8.:) — ﬁ’(a.g?.z)

P > > #

jeTaUT 3 0cmo(3.7)
- ufo)=1
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and

DO (0. 8.2) — CF>(a.8.z)

[T.d] — Z Z W(c‘))[gjz —nz(0)]

yeTaUT 3 0€m9(T.9)
p(o)=1

where (@) is the Maslov index of o. the expected dimension of the space of J-
holomorphic Whitney disks. and #TT (¢) is the count of unparameterized holomorphic
Whitney disks (i.e. mod out the set of J-holomorphic Whitney disks by the obvious
R action) that are homotopic to o. By various energy bounds. it can be shown that
#ﬁ(d)) is finite for a generic choice of almost complex structure on Sym9(Z) (see
[35]. Section 3 for details).

Moreover. by Lemma 3.2 of [35]. j(0) # 0 only when nx(0) > 0 (see also Propo-
sition 29 below). Therefore C'F~ and C'F7T are sub aud quotient complexes respec-
tively of ('F°°. and hence the differential 9> defines all three homology groups
11F+()'). HF7(Y). and HF>{Y). That this notation makes no reference to the

underlving Heegaard diagram is justified by the following theorem:

Theorem 21. /35 If (S.a.4.:) s a weakly admissible Hecgaard diagram. then
HFT(Y) and 1/177(}') are invariants of Y : and if it is strongly admissiblc. then
HFE™(Y) and HF> are invariants of Y as well (that is, they do not depend on

the particular Heeqaard diagram chosen).

What is meant by ‘weak and strong admissibility” will be defined in Se~. 3.5.3
after a few more preliminaries.
As one further refinement. we remark that the chain complexes deconipose accord-
ing to Spin® structures on Y. So. for example. C'F>(a.3.z2) = 25651)1'71”()’) CF>¥(a.3.2.8).

which gives rise to the decomposition I1F7>(Y) = (Y) HF>“(Y.s). There

—sENpinS
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are similar decompositions for the other Floer homologv groups. An algorithm for

determining this partitioning will be given in Proposition [?]

3.5.2 Calculating Heegaard Floer homology from a diagram

If we wish to do a ‘by hand™ calculation of these invariants, there are a number
of things we need to find. First. we will divide up the generators by their Spin®
structure. Second. we identify the homotopy classes of Whitney disks between all
generators within a given Spin® structure. Then. we will calculate the Maslov index
of each homotopy class of disks. And finally, if we are lucky. we will be able to
count the number of J-holomorphic disks the homotopy classes with Maslov index 1.
Techniques for accomplishing each of these steps are explained below. Proofs can bhe

found in [35]. unless otherwise indicated.

3.5.2.1 Domains

Insofar as Whitnev disks in Sym9 are rather inconvenient to deal with. we will pro-
gressively simplify the information they contain. first by discussing an equivalence
between Whitney disks and maps into &, and then by "discretizing” such maps via a

quantity called the domain.

Lemma 22. [35. Lemma 3.6] There is a one-to-one correspondence between Whitney

o ~ 9 : .
disks in Sym9(Z), and maps of surfaces o : F< — T such that the following diagram

commutcs.
Wi
)
-2 O > X ¢ P1 L e

F- \)
7| |
D2 L) Sym9(T)

where f 15 a branched covering map. py s the projection to the first component, and

=po ol
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Such maps can be visualized in £ by looking at a discretization called the do-
main which is the algebraic representation of such a map. A surprising amount of
information about the homotopy class of a map ¢ € mo(x.y) is contained in this

quantity.

Definition 23. Let S—Ua; U3; =[] D;. a disjoint union of regions. Then we define
a domain to be a formal sum. >_ a; D;. where a; € Z.

Moreover. choose a point in the interior of each region. z; € D;. Now. to a

~t !
Whitney disk o € mo(ir. y) we can associate a domain D(0) = ) nz;(0)Dj. Note this

depends on the homotopy class of @ and not on the choice of the z;’s.

3.5.2.2 Visualizing m9(2.y) using domains

Using the correspondence in the last section. we are now in a better position to
understand mo(2.y). In particular. we will see how to construct the domains D(o)

for all & € mo(x.y). We begin with the simpler case of mo(x. r).

Definition 24. A class 0 € mo(r.2) is called a periodic class if nz(0) = 0 and D(o)

is called a periodic domain. The set of periodic classes is denoted I1.

Note that the boundary of a periodic domain is a sum of a- and 3-curves.

To a periodic class o € I, let o be a surface F —» © given by the correspondence
in Lemma 22. Since the boundary of such a disk is a sum of a and # curves, we can
define a closed surface in Y by adding the cores of the 2-handles defined by a aud 3.
This gives us a map H : [Ty — Ho(}") which. because of the normalizing condition
nz(®) = 0. is actually an isomorphism.

When ¢ > 2. it can be shown that ﬂQ(.S'g/r)zfl(S,,)) = Z. Call a generator of this

group [S].

oy Y- o NN 1o ' r oY Je re . ) g fas
Proposition 25. [35) When g > 2. we have that mo(x.x) is isomorphic to Z o G 5

HH(Y).



When mo(x.y) is non-empty, it is a homogencous space modeled on wo(r. x)

It is also worth pointing out that the Maslov index is additive under this action.
That is, (o + @) = p(og) + p(e).

The group action is given by concatenation of Whitnev disks. Proposition 25 tells
us specifically that if we can find a represeutation of at least one Whitney disk in
mo(z.y). we can find representations for all elements of mo(z.y) (and hopefully their
corresponding domains) by adding periodic domains.

For example. if ¢(.0 € mo(x.y) and {h;} is a basis for IIz. then
D(b) = D(og) + Zaij)(hi) + s[S for some a;.s € Z

where by [Z] we mean simply a sum of all the regions of £\ (Ta N Ty)

3.5.2.3 Calculations using domains.

Now we'll see how domains can help us conveniently partition the generators of our
chain complex into Spin€ structures as well as calculate the Maslov index of a Whitney

disk.
Definition 26. Define the culer measure of a domain D = Y n;D; by
AN(D) = Z n;(x(D;) — 1/4(Fof corner points of D;))
and define
pp(D) = Z z(ﬁum of multiplicities of D in the 4 regions hordering ;)

:L‘,Ef
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Finally. define the quantity
p(D.Z.g) = xX(D) + pg(D) + ugv(l))

i o . 2
It is worth pointing out that if D corresponds to an embedded surface F< whose
- . . 2
boundary maps to a disjoint union of a- and 3-curves, then x(D) = x(F<). In

this case. the above definition amounts to a convenient wayv of calculating the Euler

characteristic of a surface by looking at the domain. ]

Proposition 27. [25] The Maslov index of a Whitney disk o € 7mo(x.y) can be
computed via
plo) = u(D(0). x.y)

Proposition 28. [54. Theorem 4.9] If o € Uy, then
(c1lsx). H(0)) = p(D(0).x. 7)
More generally. if o € mo(x.x). then
(c1(s2). H(0)) = p(D(6). x.x) — 21z (0)

In other words. the Spin® structures and the Maslov index can be computed
through completely combinatorial means from a Ieegaard diagram.
Say ji(¢) = 1. In a few lucky cases we can determine # M (@) just based on the

domain D(o). This is the final step to finding the dilferential of our chain complexes.

Proposition 29. o If D(&) contains reqgions of negative multiplicity. then #;W(o) =

0.

IThis simplifies finding. c.g. \(/9) in Figure 3.15.
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o If D(0) is either a bigon or a square with multiplicity 1. then #ﬁ(d)) =1.
o If D(0) represents a disconnected region in T, then #ﬁ(o) = 0.

The first two statements are standard. The third statement has a careful proof in
[38] wherein a number of other cases are analvzed as well. In general. knowing the
domain is insufficient to calculate #1/(0) since this quantity depends on the almost

complex structure on Sym9(X).

3.5.3 Admissible Heegaard diagrams

The Floer homology groups defined above arc only invariants if we have what arc
called ‘admissible” Heegaard diagrams. To understand this necessity. consider the
following situation. Say oy € wo(x.y) has p1(og) = 1 and o € Iz has pu(o) = 0.
Then ¢ * nd € mp(r.y) has Maslov index 1 for all n € Z. Since the differentials
in the Heegaard-Floer chain complex are defined by counting holomorphic Whitney
disks in mo(z. y) with Maslov index 1. a priori our differentials might be infinite sums
in this situation. However. if we begin with a Heegaard diagram which is properly
‘admissible’. we can guarantee that only finitely many homotopy classes of Whitney

disks actuallv contain a holomorphic representative.

Definition 30. A Heegaard diagram is called weakly admissibly for a Spin® structure
s if every periodic domain D such that (¢1(s)H(D)) = 0 has regions of both positive
and negative multiplicity.

A Heegaard diagram is called strongly admissible for a Spin® structure s if every
periodic domain L) such that (¢1(s). H(D)) = 2n > 0 has a region of multiplicity

greater than n.

Both of these conditions imply that for a given n € Z. only a finite number of
o € mo(x,y) such that n:(o) = n will have D(¢) with only positive regions. Hence,

by Proposition 29. only a finite number have holomorphic representatives.
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3.6 The Heegaard Floer homology of multiply plumbed

spheres

The Floer honmology of plumbings is completely understood in a few basic situations.
For example. the three manifold associated to a linear plumbing diagrams is just a lens
space, whose Floer homology is considered in [34]. In [33]. plumbing diagrams which
are trees are considered. The manifolds considered here, T(2n.0). have plumbing

diagrams that are not simply connected.
We will use the notation in Section 3.3 for representing generators of Ho(7T'(2n.0))

Say s; € Spin“(T(2n.0)) is characterized by:

{e1(s)).[I;]) =0 forall j=0..... 2n—1
(c1(8;)- [R1]) =0

{c1(s;). [Ral) = ¢

Theorem 31. I F°(T(2n.0).s() is tsomorphic to HFOC'(T?’#-;E(n—1)(5'1 XS‘?).SO)—
a standard group— 1f we use cocfficeents m Zo. Similarly. HF%(T(n.1).sq) is iso-

morphic to HF% (#(n — 1)(st x 5'2)) with Zo cocfficients.

Proof. According to [24]. if ¥7] and Y5 are 3-manifolds, o : Hl()'l) — Hl()'Q)
is an isomorphism that preserves the triple cup product, and s is a torsion Spin€
structure on Y], then HF2(Y].s) is isomorphic to HF> (Y. 0(s)) using Zoy coeffi-
cients. The triple cup product of T'(2n.0) is characterized by (PD(Ry)U PD(R9) U
PD(T;).[T(n.m)]) = 1. This is evident from Figure 3.3. If the generators of

111('1’3#(7: - 1)(S1 X SQ)) are 71.79.73 and S5; for i = 1 to n — 1. then we have
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an isomorphism

o: HYT@1.0)) — 111340 - 1)(8! x 82

)
PD(Ry) =~ 1
I’D(Rg) — 19
PD(Ty) — 13
PD(T;)—= m53+.5; fori=1..... n-1
The proof for HF>(T(n.1).sq) is even easier. By Lemma 17. Hl(T(n. 1)) has
)

vanishing triple cup product and by = n — 1. the same as Hl(#(n - 1)5'1 x S

O
Theorem 32. Supposen > 2. Then IF(T(21.0).5;) =Z n—=1 "7 und ]’1F+(T(2n.0).51‘) =
(2(71—1))
Z* n=1 "7 fori=2n—2. Furthermore, both groups are trivial for i > 2n — 2.

Bricfly. we will accomplish this calculation by:

Identify the periodic domains.

Check that we have an admissible Heegaard diagran.

Find the points in the Heegaard diagram corresponding to s9,, _o.

Find domains corresponding to all homotopy classes @ € wo(a.b) for all a.b €
To N T3 that correspond to 9, _9.

—

Compute p(0) using the domain and compute # M (o) when p(e) = 1.

In Section 3.4 above. we demonstrated a method for constructing Heegaard di-
o (e}

agrams for T(n.m). In Figures 3.11 and 3.12 we exhibit a diagram for T'(2n.0).
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Following the process in Section 3.4, a diagram for T'(2n.0) is constructed by stack-
ing a piece of tyvpe 1. then (n —2) pieces of type II. followed by a piece of type III. We
shall refer to the 3 curve which is dual to a given 1-handle by, for example, referring
to the dotted curve encircling the 1-handle "a’ as 34. Notice that we have isotoped
some of the 5 curves to ensure that our diagram will be weakly admissible. Curve
37 has been wound (I — 1)-times around for reasons that will become clear in the

computation.
Lemma 33. This Heegaard diagram is weakly admissible.

Proof. 1f we can show that every nontrivial class oy € Ily such that p(ogz) = 0
has regions of both positive and negative multiplicity, then we have achieved weak
admissibility. Equivalently. assume that for ¢ € Il we have that D(oy) has ouly
all positive or all negative regions. We will show that D(o) = 0. Our diagrams have
a number of “test domains® labeled that we will use to accomplish this.

A basis of the periodic domains is given by R} —I[X]. Ry. and T} fori = 0....,2n—
2. Therefore we can write D(oy) = r1(R] = l[Z]) + roR9 + Z?:EQiiTi- Then
plog) = ryp(Ry) +rop(Ro)+ 3 w(T;) = rj(2n—2). Since n > 2. this can be 0 only
when ry = 0. It is also true that ro = 0 for the following reason: The multiplicity
in D(o) of region I)l[’}-,r) is 79 while the multiplicity of region I)(}'?2 is —r9 (see Figure
3.15). Now our assum;)tion that D(o) has ouly regions of positive multiplicity implies
ro = 0.

The rcason that the t; vanish is slightly more intricate. Refer in the following
to Figure 3.13. The multiplicity of region Dgy in D(¢) is iy, while the multiplicity
of region D(-) is —tg. Hence tg = 0. The multiplicity of region D(/’ in D(o) is
ti—1- i,j. Because the multiplicity of this region is non-negative, inductively 0 =

tg > ...to—1 = t9,—9. But the multiplicity of D? is t;

; which implies ¢; > 0.

Therefore (; = 0. Thercfore the only periodic domain with all non-negative regions
1 R o) &
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is the trivial domain.

a

We will see that on each 5 curve. there will be at most two intersection points
which will be used in any generator corresponding to s9,, _o. For tidiness. these are
the only intersections labeled on the figures. To refer to specific 7, we introduce
the following shorthand. Order the elements in T in the order given by, eg. T =

.« b

{.rIZ. a‘(bl . .1(:.1. e ..TB"_I.:L"[’)} which we shorthand as x(l.a.a.....b.a).

Lemma 34. The interesction points that correspond to 59, _9 are of the form x(i. .. .)

where i = 1 or 2 and wherc there arc (n-1) b's in the string.

Proof. We claim that these are the intersection points that maximize (c(sz). Rp).
and we will show this using Proposition 28 and Figures 3.11. Specifically. we will use a
so-called ‘greedyv’ algorithm: Choose a 3 curve and decide which intersections on this
curve contribute the most to (¢y(sg). Ry). Move to the next 8 curve. If the intersec-
tion point that would contribute most to the sum is still available. then we will use it.
Then repeat for the rest of the 8 curves each time choosing the intersections that will
maximize the sum. If for some reason the maximallv contributing intersection point
is unavailable (that is. if we have previously used its a curve). then we need to check
that if we reset our greedy algorithm. and began the entire process with this 3 curve,
then we would not maximize (c1(sy). R1) - the best choice on this 3 curve does not
maxiwize the sum. In this case. we choose the next best intersections available. This
algorithm is carried out in Table 3.1 referencing Figures 3.11 and 3.12.
Conveniently. all such 2’s actually correspond to points in Tq NT 4 (a priori such
on+1

a string might *double use” an a curve). There are such generators.

Since \(R1) =1=3n, and 1(R1.7.7) is found by adding up the entries in Table
3.1. by Proposition 28. any such ¥ will have (R.s;) = 2n—=2if we place the basepoint

z in region 12 (Figure 3.11).



Figure 3.11: Rj in pieces I and II



Figure 3.12: Ry in piece III



Step | - curve possible contribution to | maximizes?
intersections p(Ry.z.7)

1 By mIZ or l‘QZ 40— 4 ves

2 31 T 2 ves

3 Ja

Bbi
3e; Zstar 2(times (2n — 1)) | ves
54
.’3(—
4 3C1' T?w. or I?‘v 1 No. There is a point that con-
! ! tributes 2 to u(Ry,z.z). How-
ever. this point is on the same
a curve as T 4, therefore if we
chose the maximizing point on
36'7' we would have to choose a
different point on 3 4. the only
other intersection points on 3
either a) are on the same o
1 2
curve as 7, and z7%,. and for
big enough 1, any 7 not includ-
ing those points won’t maxi-
mize: or b) contribute nothing
to the sum. and again one can
check that this creates a deficit
which cannot be overcome.

5 I35 at‘l’ ) or :lfll)) 1 No. But they are second best.
and should be used. for reasons
identical to the 8(;7, case.

6 8 B a"[’}i or 1%7 0 None of the intersection points

contribute to the sum. These
are the ouly two intersections
whose a curves have not al-
ready been used in previous
steps.

Table 3.1: Algorithm for maximizing (¢q(sz). I'1)



3- curve intersections contribution to u(R9.z.2)

1 .2
dZ .Tz., lZ 0.0
6 T A 1
3q. ,3()?.. ;3(;1.. 3. 3¢ Tstar Ix(2n —1)
3 a b
3 p IC'i.TC'i 0.2
8p 2 :z'lbi 0.2
o] Q .1)
¥ f’i :LHI L Ja Bz 0

Table 3.2: Data to calculate (¢q(sg). I?9)

In Figures 3.13 and 3.14 we label the tori Tj.. ... T9,,—9 (only some of the cor-
responding domains are shaded because. e.g. the domains T(y and T7 overlap). One
checks. again using Proposition 28, that (T;.sy) = 0. This is necessary. by the
adjunction inequality. for the Floer groups to be non-trivial.

Now we will identify the subset of the z(...) such that (c¢y(saz). R9) = 0. The
data compiled in Table 3.2 (calculated using Proposition 28 and Figures 3.15 and
3.16) shows that intersections labeled with superscript ‘b’ contribute 2 to py while
those with ‘a’ contribute nothing. If we sayv b is the number of intersections with
superscript ‘b’ in a given intersection point, then since \(R9) = 2 — 4n. we get
that (c¢q(sg). Ro) = 2 — 2n + 2b. Therefore the ¥ € Spin©(sg,, _9) have exactly
n — 1 intersections with superseript b. This implies that in ﬁ(E a.f8.:.89,_90) is

2(n—1)

. , .9 MO
generated by 2( 1 ) elements.

O

Finally we are in position to calculate the Floer homology. We have identified

2(7:—1))

n—1 ) generators for (/777(_2.0,. H.z.89,_9) all of the form e.g. 2(2.a.b.a....)

2(
where there are n — 1 b’s in this string. If we can show that @ = 0. then we are
done. To accomplish this. we'll find the general form of a domain D{o) for any map

0 € mo(x(=). x(~)).

Consider the domain D). We remarked in Proposition 29 that such a domain

o0
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Figure 3.13: The top figure has the domain corresponding to 7{) shaded while the
bottom picture has To; ;1 shaded. We have not shaded Ty; because it overlaps with

T 1.
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Figure 3.14: The domain corresponding to T9,,_o is shaded. We have not shaded
T9,, 1 because it overlaps with T9,, 9.




Figure 3.15: R9 in pieces I and II of T'(2n.0)
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Figure 3.16: R9 in piece III of T'(2n.0)
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Figure 3.17: The domain I';

corresponds to a holomorphic disk, and further we see that this Whitney disk is in
).x(2,—)). Similarly the domain —Dj corresponds to a Whitney disk in
mo(x(2. —).z(1, —)), however it has no holomorphic representative.

Furthermore, consider the annular domain I'; in Figure 3.17. This corresponds to
a Whitney disk in mo(z(7,. ... 1 OO R A b.a,...)) where i =1 or 2, a Whitney
disk. that is. that leaves the net number of b's constant. By summing the Whitney
disks corresponding to the I';. and to D we can construct a Whitney disk between
any two generators of CF(a.B. $9n—92).

Hence, for ¢ € mo(x(—).x(~)), the domain will have the general form D(¢) =
ri1R] +roRo + > t;T; + 3 v;I'; + 6Dz + s[X] where 4 is either 1, -1, or 0.

Using the additivity of the Maslov index, and Proposition 27, we have that
o) =r1(2l+2n—-2)+ 6+ 2s (3.1)

Furthermore. observe that

nz(0)=ril+6é+s. (3.2)

We will use these two equations to glean information about o and 0% in the
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following series of claims.
Claim 1. If u(¢) =1, then § =1 or —1.

Proof. The only option to rule out is the case 6 = 0. This cannot happen: if 4 is 0.

then by (3.1) we would have that u(¢) is even. 4d

Claim 2. If ¢ is a Whitney disk such that (0) = 1, and ¢ admits a holomorphic
representative. then o s a member of either mo(x(1. =). x(2.~)) or mo(z(2. ). 2(1. ~

).

Proof. This follows immediately froin Claim 1. Notice in particular that if § = 1. then

o is in mo(x (1. =).x(2.~)): whereas if § = —1. then ¢ is in mo(x(2.-). 2(1.~)) O

Claim 3. Suppose we have 0 € mo(r(1.=).2(2.~)) such that p(0) =1 and n;(0) =

0. Then o cannot admit a holomorphic representative.

Proof. Since o is in wo(x(1.—).x(2.~)), we have that § = 1. Additionally, p(d) —
2nz(o) = 1 implies. by Equations (3.1) and (3.2), that r;(n — 1) = 1. Since n is
positive. this can only happen if n =2 and r; = 1.

Suppose this is the case. Equation (3.2) now implies | + 1 + s = 0, Which
implies that s is negative. However. out of the regions under consideration. only [Tl

conntains the point at oo. Therefore n {pt at oo}(o) = s, which cannot be negative

bv Proposition 29 if ¢ is to admit a holomorphic representative. O

Claim 4. Suppose we have o € mo(a(l. =). 2(2.~)) such that p(o) =1 and nz(o) =
1. Then D(o) = Dy and #ﬁ(o) =1 or =1. That is. ¢ is in mo(x(l. =). 2(2.-))

and admits a unique holomorphic representative.

Proof. Since ¢ is in mo(z(1. —). (2. ~)). we have that § = 1. Additionally. ju(o) -
2n:(¢) = —1implics by Equations (3.1) and (3.2) that 7 (n—1) = 0. Since n > 0. this

implies that 1 = 0. and by Equation (3.2). we can now say that s = 0 as well. Hence
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D(0) is of the form roRo+ 31, T; + >~ ; + Dz. However, if there is a holomorphic
Whitney disk corresponding to this domain, then according to Proposition 29 the
domain D(0) must be connected. Dy is disconnected rom 7. the I';. and the Tj.
Therefore ro. the ¢;’s. and the +;’s must be 0 as well. Hence. D(6) = Dz. and by

Proposition 29 again. we have that #1/(0) = 1 or =1 since D7 is a bigon. g

Claim 5. For all intersection points x(2. =) and x(1.~). we have that

Z #ﬁ(c’)) =0
o€mo(x(2.—).c(l.~))
p(o)=1
n-(o)=0

Proof. Here we will use the fact that 02 = 0. Assume i > 0. Then by Claims 2, 3,

and 4. we have that

(1) = > 3 £ (0)[x(2.~).i]
(2. ~)oemy(r(l.—).x(2.~))
u(o)=1
nz{o)=0

r(2.~)oemy(x(l.—).x(2.~))
oj=1
nz(o)=1

+ lower order terms

=0+ [x(2. =).i = 1] + lower order terms

63



Therefore.

(')+2[;17(1. —=).d) = 07 ([¢(2. =).i — 1] + lower order terms)

#37(@6)[1‘(1. ~).1 = 1] + lower order terms

1%

r(l.~) oemo(x(2.=).a(l.~))
p(d)=1
n:(o)=0

The claim now follows from the fact that 0+2 = 0.

~

Now we are able to show that 9 = 0. Claim 2 implies that any holomorphic
o must be in either mo(x(1.=).2(2.~)) or mo(x(2. —).2(1.~)). For d. we are only
interested in the Whitney disks where n;(0) = 0. so by Claims 3 and 5 we have that
ﬂﬁ (¢) = 0. Hence 3 = 0. and the statement about HE follows.

Now we can turn our attention to HFT. Filter CF1(a. 3. .69, _9) by defining

Fp= ({{e(1. =) jllsz(x(1. =) = 80,50 & j < i})

P (2. =) flisz(a(1. =) =59, 9 & j < i—1})

One can find the induced differential on the associated graded complex r—’—I again
’—-
by looking at domains.

By Claim 2. the only homotopy classes of maps that have Maslov index equal
to 1 are in 7o(x(1.—). 2(2.~)) and mo(x(2. —).2(1.~)). However. in the associated
graded complex this simplifies. Notice. in fact. that the only non-trivial differentials
here will correspond to maps in mo(2(1. ). 2(2.~)) where n>(¢) = 1. By Claim 4.
the only non-zero differential induced on g—— is [x(1.=).i] = [2(2.—=).i = 1] or

i—1
[z(1.=).i} = =[r(2.=).i = 1] given by D (the sign depends on how the moduli

space is oriented. but either choice will give the same result). Consequently.
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F 0 when i >0
4
=)= (2(11—1))
z\ n-1 when 1 =0
Associated to the short exact sequence
F
0—>Fl‘_1—)F,‘-—)—‘——>O

i—1

is a long exact sequence

F
- H(F,‘_l) g I‘I(FI) - H([ ! ) -
1—1
Using (*). this exact sequence. and the fact that H(F_1) = 0, we arrive at

(2(11——1))
HEFF(T(20.0). 59, _9) = limlI(F;) = Z* n=1 ).

3.7 Applications

We offer two calculations of the A invariants. The first is merely to offer some per-
spective on how the relationship between diffeomorphisms and h-cobordisms can be
exploited. The second applies our Floer homology calculation.

Let ¢* be an automorphism of H*(AI). Construct the h-cobordism |1 @ as follows:
Let 11'] and W9 be cobordismns from M to ."/#b':) x S2 built out of a single 2-handle.
Wall's theorem shows that there 1s a self-diffeomorphism ¢ of M/ #SQ x 52 that
induces ¢ on IT*(M) and is the identity on the cohomology of S2 % 2. Then define
e = Wi U, Wy, By a theorem of Quinn ([37]) and standard surgery theory. 1é

is determined up to diffeomorphism by o*

Theorem 35. An automorphism o™ is induced from a diffcomorphism of M if and

only if A(M. WP A) =0



Proof. If A(M. WO Al ) = 0. then WO is smoothly a product. That is, there is a
diffcomorphism from (M. M x I, M) to (M. W, Al) which. when restricted to M x 1.
induces ¢* on H*(M/).

Conversely. if 0* is induced from a diffeomorphism of A/, then we can arrange the
diffeomorphism ¢ : M #52 x S2 — A #k'z x 52 such that it is just the identity on
52 x §2. But by construction, this forces the handles of W to cancel.

O
In the language of we have been using here. NMorgan and Szabo prove the following

Theorem 36. [29] Say An = C'PQ#m(f—P2 where m = (2n + 1)2 + 1. Then there
erist automorphisms q‘).,"; of H*(Xp) such that A(Xy,. won_ x n) is unbounded as n

NCTEASES.

From the perspective adopted here. this means that there exist homeomorphisms
that are arbitrarily far from being diffeomorphisms.

As a sccond application of the A invariants, we derive the following elementary
relationship between the 4-manifold invariant of Ozsvath-Szabo. and the complexity

of certain cobordismns.

Theorem 37. Say a simply connected spin 4-manifold My has a Heegaard-Floer basic
class [h] € Ho(X') with divisibility d, and self intersection 0.
Say M 1#52 x §2 s di ffecomorphic to \ 12#52 x §2. Then there exists a cobordism

W such that Ay (M. W.AMo) > d + 2

Proof. A theorem of Wall says that if two elements of Hy have the same sclf inter-
section, divisibility. aud are either both characteristic or regular (not characteristic,
that is). then there is an automorphism of the cohomology ring taking one of these
elements to the other. [43]. Wall also showed that this automorphism can be realized

. . : : 9 2
by a sclf diffeomorphism if the manifold splits as a smooth conneet sum of §< x S
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and an indefinite manifold. [44]. Note that (1/d)[h] is a regular homology class. be-
cause it has a dual ¥ such that ((1/d)[h]. E) = 1. which cannot happen if (1/d)[h] is
characteristic, since .X has an even intersection form.

Hence. there is a diffeomorphism ¢ : MQ#SQ x §2 — M 1#52 x S2 such that
c):.‘([S2 x pt]) = (1/d)[h]. As in Proposition 15. we can construct a simple cobordism
W using this diffeomorphism. Hence. if we take a handlebody decomposition of W’
where the belt sphere of the 2-handle intersects the attaching sphere of the 3-handle
2n times, then Ay and Ay are related by a T(2n.0) surgery in /1. Moreover. by
construction we have ((1/d)[h]) = Ho(D(2n.0)) C Ho(M]) (recall that D(n.m) is
the 4-manifold corresponding to T'(n. m) surgery).

This implies that Floer homology maps that define the Oszvath-Szabo 4-manifold
invariant factor through HF7T( T(2n.0).s,4). For this to be non-trivial. the compu-
tation in the previous section requires d < 2n — 2.

d

Examples of manifolds satisfving the hvpotheses of this theorem exist in abun-
dance. Note also that this inequality has no dependence on the manifold M9, and

that the cobordisms constructed here are never h-cobordisms.
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Chapter 4

Appendix: Idiosyncrasies of the

knot surgery formula

Recall the knot surgery formula. S¥ 'XI\' = Sy - A (2T)).

It is evident from this result that one can construct infinite families of exotic
smooth manifolds. What is not prima facie evident is that knots with two different
Alexander polvnomials will always give non-equivalent knot surgeries. The purpose

of this appendix is to clarify and resolve this issue.

Theorem 38. If K| and Ko arc knots with different Alezander polynonuals. then

A K and X y¢ cannot be diffcomorphic.

This subtlety arises because of the somewhat imprecise way we have described
SWy € Z[Ho(X)] as an invariant of X. It should really he though of as an invariant
up to automorphisms of Z[Ho(X)]. Here is why: The Seiberg-Witten invariant is
typically defined as a map SW @ Spin“(X) — Z. We encode this information as
an element of Z[Ho(X)] by defining STy := 3~ SW/(s)PD(cy(s)) where the sum is
taken over all Spin® structures on X. When we do knot surgery on X to produce
Xy our new Seiberg-Witten invariant S”:\,I\' is an element of Z[I9(X )], We

can think of this as an element in Z[//9(.X')] — which is what we do implicitly in
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the knot surgery formula because Ho(X) is isomorphic to Ho(X ). In fact, this
isomorphism is canonical, but only with respect to the surgery. Different knot surgeries.
even surgeries that give diffcomorphic manifolds. will induce different isomorphisms
of Hg, and hence might manifest the resulting Seiberg-Witten invariants as different
elements of Z{Ho(X))].

Consider the following illustrative example: Say X is a 4-manifold containing
two tori 77 and T9 representing different homology classes such that there is a self-
diffcomorplism of X taking 77 to To. For a single knot K. do knot surgery on T;
and T forming X and Xo. Clearly knot surgery can be performed in such a way
that these manifolds are diffeomorphic. but note that their Seiberg-Witten invariants.
as elements in Z[Ho(X)]. will be different. According to the knot surgery formula.
if c1(s) is a basic class of X. then on X| we get new basic classes of the form
c1(s) + n[Tq]. whereas our new basic classes on X9 are of the form cy(s) + n{T5].
However. the diffeomorphisin of XA'| to X9 induces an automorphism of Ho(X") that
takes [T7] to [T5] (and consequently takes SH'XI to SH '/\—2).

In the case at hand. where A | £ A Ko and we want to show A’y ] is not
diffeomorphic to X Ko+ W will need to associate to each element of Z[Ho(X)] a

quantity that is not affected by automorphisms of Ho(X').

Definition 39. Suppose Ho(X) is torsion free. a is an irreducible element of Z[Ho(X)].

and ¢ is an automorphism of Z[Hy(X)]. Define a map ', , : Z[[o(X)] = Z by

7 4 of elements of {0 (a)|n € Z} that can be factored

out of x counting multiplicity

This map is well defined because Z{I/o(X)] is a UFD. Morcover. I has the follow-
ing basic properties:
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Proposition 40. (i) Fora.b € Z[H9(X)]. we have T ,(ab) =T ,(a)+T, ,(b)
(1) To500=Tq
(iii) Ty of A (IT)) = Ty gl A e (IT)) when a € Z{([T))]

Proof. Ouly the third property deserves further comment. Suppose T ,(Ag) >
T, ;d(Ar). This means that o (a) can be factored out of A;. for some integer n
such that o''(a) # a. We will show there can be no such factor.

Since Ay can be factored into irreducibles that are in Z[([T])]. we have that
uo' (a) € Z[([T])] for some unit u € Z[H9(X)]. Since o € Z[([T])], we can write
wé™(a) = uY ;0" ([T)") for a; € Z. This summation must have more than one
term since otherwise ¢"(a) would be a unit. Therefore, since uo™(a) € Z[({T})],
we have that uO"([T]U = [T]j, and uon([T]",) = [T]j, for some i # i’ and j # j'.
Therefore, [T]_JJ = u,_lo([T]—'J), and this implies that [T]j_j, = O"([T}i—i’).

Since ¢" must preserve degree. we get that that ¢([T]) = [T]. and hence o' (a) = a.

O
These properties are sufficient to prove theorem 33.

Proof. 38 Assume AI\-I # AI\'Q but that ,\’I\'l is diffeomorphic to ,\’1\'2. We will
derive a contradiction. According to the knot surgery formula. the Seiberg-Witten
invariants of XKI and XA".Z are STy - AKI and SWy - Ap-o respectively. A
diffeomorphism ¢ : ,\’1\-1 — "\’1\'2 induces an automorphism ox : Z[HQ(X]\'I)] —
Z[HQ(/\']\'Q)] where ox (ST y - A]\rl) =SWy - A]\'Q

Since A I # A Ko+ We can choose a to be an irreducible element of Z[{[T])]
that divides Al\—l with a greater multiplicity than it divides Ap- . In other words
ra.i<i(A1\'l) > I‘a.id(‘/'\l\'g)'

In fact. via property (iii) we have T’ (Ap-)>T (Ap-).
a.0ox =Ny a.0x - —ho
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To the equality ox(SHW 'y « Ay ) = SWy - Ajp- we apply I', . (here short-
X K X Ko .0

handed as I') and use properties (i) and (ii) above:

F(O*(SH';\’ . A[\'l)) =T(SWy - AK!))
F(C)*(g”:\')) + F(c‘)*(AI\'l)) = F(SH'/\') + F(AI\’O)

[(Ak,) =T(Ag,)

This. however. contradicts our choice of a.

a

Remark 41. An essential hypothesis of this theorem was that Ho(.X) be torsion free:
Otherwise Z[Ho(X')] is not a UFD and we cannot define I'. Note. however. that in
the case Ho(X') has torsion. the same proof can be carried out as long as the image
of SWx in Z[H9(X)/tor] is non-trivial. Simply replace every instance of Z[Ho(X')]
above with Z[Ho(X)/tor].

Remark 42. The above proof can also be applied to rim surgery to show that any two

knots with different Alexander polvnomials will give rise to inequivalent rim-surgeries.



[1]
2]

[9]
[10]

[11]

BIBLIOGRAPHY

AKBULUT. S. Cappell-shaneson homotopy spheres are standard.

AKBULUT. S. Variations on Fintushel-Stern knot surgery on 4-manifolds. Turk-
ish J. Math. 26. 1 (2002). 81-92.

AKBULUT, S.. AND Yastl. K. Corks. plugs and exotic structures. J. Gokova
Geom. Topol. GGT 2 (2008). 40-82.

Avckry. D. Families of four-dimensional manifolds that become mutually dif-
feomorpliic after one stabilization. In Procecdings of the Pacific Institute for
the Mathematical Sciences Workshop “Invariants of Three-Manifolds™ (Calgary.
AB, 1999) (2003). vol. 127, pp. 277-298.

BAYKUR. I., AND SUNUKJIAN. N. Round handles. logarithmic transforms and
smooth 4-manifolds. preprint.

CAPPELL. S. E., AND SHANESON. J. L. Some new four-manifolds. Ann. of
Math. (2) 104. 1 (1976), 61-72.

CHEN, W.. AND KWaSIK, S. Svmmetries and exotic smooth structures on a
K3 surface. J. Topol. 1.4 (2008). 923-962.

DoNALDSON. S. K. The Sciberg-Witten equations and 4-manifold topology.
Bull. Amer. Math. Soc. (N.S.) 33, 1 (1996). 45--70.

FinTUSHEL. R.., AND STERN. R. J. Surfaces in 4-manifolds™ addendum.

FINTUSHEL. R.. AND STERN. R. J. An exotic free involution on S*. Ann. of
Math. (2) 113. 2 (1981). 357-365.

FINTUSHEL, R., AND STERN. R. J. Surfaces in 4-manifolds. Math. Res. Lett.
4.6 (1997), 907-914. v

FINTUSHEL, R.. AND STERN. R. J. Knots. links. and 4-manifolds. Invent.
Math. 134. 2 (1998). 363-400.



(13]

[14]

[15]

[16]

[17]

[18]
19]

120]

21]

22]

23

FINTUSHEL. R.. STERN. R. J.. AND SUNUKIJIAN, N. Exotic group actions on
simply connected smooth 4-manifolds. J. Topol. 2. 4 (2009), 769-778.

FREEDMAN, M. H. The topology of four-dimensional manifolds. J. Differential
Geom. 17. 3 (1982). 357-433.

GIFren. C. H. The generalized Smith conjecture. Amer. J. Math. 88 (1966).
187-198.

Goarpr, R. E.. AND STIPSICZ, A. 1. 4-manifolds and Kirby calculus. vol. 20 of

Graduate Studies in Mathematics. American MNMathematical Society. Providence,
RI. 1999.

GORDON. C. M. On the higher-dimensional Smith conjecture. Proc. London
Math. Soc. (3) 29 (1974). 98-110.

HAMBLETON. I.. AND HAUSMANN. J. Conjugation spaces and 4-manifolds.

Kiv. H. J. Modifving surfaces in 4-manifolds by twist spinning. Geom. Topol.
10 (2006). 27-56 (clectronic).

Kinv. H. J.. AND RUBERMAN. D. Topological triviality of smoothly knotted
surfaces in 4-manifolds. Trans. Amer. Math. Soc. 360. 11 (2008). 5869- 5881.

KirBY. R. Akbulut’s corks and h-cobordisms of smooth, simply connected 4-
manifolds. Turkish J. Math. 20. 1 (1996), 85-93.

KRONHEIMER. P.. AND MROWKA. T. Monopoles and three-manifolds. vol. 10 of
New Mathematical Monographs. Cambridge University Press. Cambridge. 2007.

KuTtLuHAN. C., LEE. Y.. AND TaUBES. C. Hf=hm i1 : Heegaard floer homology
and seiberg—witten floer homology.

LipMaN, T. Ou the infinity flavor of heegaard floer homology and the integral
cohomology ring. 2010.

LipsHITZ, R. A cylindrical reformulation of Heegaard Floer homology. Geom.
Topol. 10 (2006). 955-1097 (electronic).

MAarKk., T. Knotted surfaces in 4-manifolds.

McDurF. D. Floer theory and low dimensional topology. Bull. Amer. Math.
Soc. (N.S.) 43. 1 (2006). 25-42 (electronic).

MORGAN. J. W. The Sciberg-Witten cquations and applications to the topology
of smooth four-manifolds. vol. 44 of Mathcmatical Notes. Princeton University
Press. Princeton. NJ. 1996.

MORGAN, J. W.. AND SzaABO. Z. Complexity of 4-dimensional h-cobordisms.
Invent. Math. 136. 2 (1999). 273-256.

73



[30] MoRrGAN. J. W., SzaBO. Z., AND TAUBES. C. H. A product formula for the
Seiberg-Witten invariants and the generalized Thom conjecture. J. Differential
Geom. 44. 4 (1996), 706-788.

[31] MutnNoz. V., AND WANG, B.-L. Seiberg-Witten-Floer homology of a surface

times a circle for non-torsion spinC structures. Aath. Nachr. 278, 7-8 (2005),
844-863.

[32) NoRL. M. V. Zariski's conjecture and related problems. Ann. Sci. Ecole Norm.
Sup. (4) 16. 2 (1983). 305-344.

[33] OzsvATH, P., AND SzABO, Z. On the Floer homology of plumbed three-
manifolds. Geom. Topol. 7 (2003). 185-224 (electronic).

[34] OzsvATH. P.. AND SzABO. Z. Holomorphic disks and three-manifold invariants:
properties and applications. Ann. of Math. (2) 159. 3 (2004). 1159-1245.

[35] OzsvATH, P., AND SzABO. Z. Holomorphic disks and topological invariants
for closed three-manifolds. Ann. of Math. (2) 159. 3 (2004). 1027-1158.

[36] Pao. P. S. Nonlinear circle actions on the 4-sphere and twisting spun knots.
Topology 17. 3 (1978). 291-296.

[37] QUINKN. F. Isotopy of 4-manifolds. J. Differential Geom. 24. 3 (1986), 343-372.

[38] RASMUSSEN, J. Floer homology and knot complements. PhD thesis. Harvard
University. 2003.

[39] SAHAMIE, B. Introduction to the basics of heegaard floer homology. 2010.

[40] SCcHARLEMANN, M. Hecgaard splittings of compact 3-manifolds. In Handbook
of ycometric topology. North-Holland. Amsterdam. 2002. pp. 921-953.

[41] TavBes. C. H. Seciberg Witten and Gromouv invariants for symplectic 4-
manifolds, vol. 2 of First International Press Lecture Scries. International Press,
Somerville. MA, 2000. Edited by Richard Wentworth.

[42] UE, M. Exotic group actions in dimension four and Seiberg-Witten theory. Proc.
Japan Acad. Ser. A Math. Sci. 74. 4 (1998). 68-70.

[43] WaLL. C. T. C. On the orthogonal groups of unimodular quadratic forms.
Math. Ann. 147 (1962). 328-338.

[44] WaLL. C. T. C. Diffeomorphisms of 4-manifolds. J. London Math. Soc. 39
(1964), 131-140.

[45] WITTEN, E. Monopoles and four-manifolds. Math. Res. Lett. 1.6 (1994). 769~
796.

[46] ZEEmaN, E. C. Twisting spun knots. Trans. Amer. Math. Soc. 115 (1963).
471-495.






