Failfififflgfig . («30.1 I \ .. . f. .I ‘v ""0,” :‘ . \ \ 7‘ I' V'"“ , 04....qu r. w SfiADROME DESIGN 4‘ THESIS FOR THE DEGREE OF B. S.A Glenn C. Dailey 1932 . .. r I . s| . u y i .. v .. -II I ‘..,..I )tlu4fii..f 7w . 7%.). ...¢J.ld..b.l‘UvM.. I». u»? .p - .m. 9 .. TM. 0.. M1719. .p‘flnun.t~w math“ “\WWJ‘ ‘. . . V \ 30.35 .’ IT) I .0 ‘. o .31»... .MH n, Oil- 1! NJ” .w ..N%M . . .v\.xj.¥ .0- b nuclen. W. 1%.. .. . .' I *UPPLEMFW’ MATEHHL E? JBnCK OF BOO mJ . :7 1.7 -ub;._f‘_z 433-); l ‘ x \ . .1} .I\ I C ,. ) AJL A; T) .'-.;-‘PI,.T“" 11“ \._J , .1... U‘ 114'1 5‘ s '.‘*;T“ -~ r ’\ 5,1. 8:. a i“ J (V ‘1..Ia E e l r. UK. .THBS‘S ', u . M:- I 3.4.1“. ALVH T-- - .. ‘ u .'-'- w ,—‘ - - . -. ' - . T ‘- . 4 ‘ .‘ ‘5- -... z ‘ 1‘. r , .' .. h. . : ) , ' i a! 0'. ~31 u- _ r‘. _ o! , I I I x a 7- ", n ~< - :—‘ - .f.’ ‘ 3 *‘v‘, '~ I C. _, x , ’1: "' ~ .' ' ‘ l 'r ’ T“ .7 ‘l f‘ 1‘! '\ :— v A “ * ' 4’7» _ " fl ' ’- '- r 7 7" ‘(“1 '7'?“ I ’~ 7 3n r w' — 3 3 1‘ ' ~- ' r ‘- --n~ . ' ", " _‘ ' i. »' v Ll \ - ' ' , it, ‘ .J , , l , u l . J J , l ,, ‘ ° * n ,1 ' v '2. ‘_ 1 v.('\4 pvv. fi—s _ - .-.-| ‘ , v L~ . ,~ -~ -. -.-. ‘<- L ‘e t v.‘ J1": ,L“ igr .. -'\I 717'“. ..)'\‘.\3'1 .‘7', Of“ L'-‘J ':\.AL1 .‘_-.«.I.'_ 1 7 ’- b J w ' “I ‘ \ . q, . a :‘ ' Q . 7 . “ ' " "‘ ."~ ~ fl . f ‘ ‘ 1 ‘.1r . A‘ ‘~“-‘ " " r‘, *"\‘7 L ."* r~ r-v OI LILJnUL,’ “it; 4 ‘_..' “91‘”: ' {,9 C a- U L‘u ’JV “.1 \u.;. .n. 91 LC 11. 2112.? _'W m: . Q 1 J T a j v I a. - cu, ‘- 331-5 i‘ w.‘ ‘ -'s pp — -~._ ~“vsr-- —~ 5‘. v.‘:*"{* - ,~ .'\' 7‘ "1 .‘F ,‘ - 7"” - r1. lit/41 Irr* ‘2 Liz; -' ; 4A; ‘Jl 41:), .~1 u u _ '11. \.:'.'. 1..“ - ’ ‘J.’..‘L~ (PK Q .H. IL W t u n w'm no“! G 1-r1' 11 r‘ r\.~v~ 1 I“ ‘3 1" ‘) ‘ x r : r "1“ ‘1’ )t" " D "' 1 (‘qnm " ~ — L’I‘t‘ 'J"."_.) L U 1 .'.- u «:11 ”X; (’12 6&1 -.I;l(. ' A. L " "AC-D (V'4. 9.13. J .‘-- 41 O -. g L _ _ ..' . . n . T "1 . - \V‘ -' ~ n' “‘3 ' -‘ ‘C n ‘TV'_ A -—‘- ‘~-, -I -- .~ . . - -‘-r‘ ,~\-‘Qr~ - ’ 7.- I h “‘.;.‘ ' 1‘ -. J (1 l ( 'y' \?:I_ 'w' 't: [U It) * IV C _ 4.119 b 4 \.~; ‘ “I. (‘1. 'XLG .. ‘ _.. 1 J ;*“ a ’ v "\ o (— . Q 1 O r I 'y ‘ ‘ u I .1 ‘ . . ", - \‘ - ‘ ' ’~ 'A - . ' w 4'- ' ' ' -‘ -- I -‘ " v -.-'; A , Cm. :1 h! 111 .. !: 7', - L ,-'_L"_ 6.x. ‘ IO C‘fiw. 1 - 7- .0 C: - :JL -.|1I’. 4; x) ' . j 1 ca 1 ‘fi . ”I I \ . .' r v 1 . 'h' f' «a 1 -'.‘ 'V " ‘1 ‘ - .'. r1 -\ v‘ w (u r r? t.‘ x .. ‘- —~, )~' I.’ :- ~— -‘ —, ---;‘ V: .7 ,‘ 7‘ 1;»! L‘-‘ . .._' L'~ , (In LUVVI h I.'\.‘ _ ‘ .=.~- _ L .u 1'4 . \A . LU “.10 u.’ g. U u s 1 - ' 1' ’I 0-] ' '— H I ’ f‘ \ . § A i *t u A I ’\ 1 .(x' \r, ."“ " '_“‘ 1‘3.“ 1 . ' ‘v ‘." -’ ‘ ’1 b;_-‘ ' '_T . " " 9‘. Jb~ l _L l *- .~' \ V v _,.. _ ‘3 w , , - _. t. n. ' '. ~ ML (-1. u. 1.) K v K. J“ .. "1 I *‘. C q u 1 v v- 1 N . N1.--“' —. -.‘;‘ . --. .w ,r .. v. g . ’w't.‘ .-‘~.- ‘- - ' I‘V‘ TN.“ ‘ “a..- ‘ , h.‘ ; , .1..- 1 -C , ‘LUL L _ , t . . u Q N). - A , A . «, . a) . ~ v o x u o 1 ~ I " ‘ P. ‘. V . "' ‘ " u' .A . , v ' \, " -“ ' . ' \" ‘ ‘ r- ' " .fl'. r) r ‘ I . ' r ‘ (. ,- \‘j . O n L: ; w , , {I ,JA L l ~_- . ' . A J ' l . ’ — .1 .x‘ .¢ : -.I , - ,. ,. * - .1an J.‘ - - H‘ :1 . , 1 ".7 nfl. .- 1.‘ r r: . . " ‘3 W "" ‘ ,1._(;.' 1' :' .~ 1 1' .' '3' w " ‘. .1 _; ”'2’ C '3 71v:";_ ‘- ~, 0 (" i“ ' '10 r ' ‘ 1h‘r‘O . wq _ 1. ‘_ n J". ; ‘ fi:7V7“>‘A'7 rfi ‘. :36? " “5'1 .6 vt no Vi'“'q O .‘,. ; .‘.w-. r “E” r i o I‘- ' ~ ' 5 .‘ ' . {- ‘:‘( ‘ \ Ni "1 .1 .A i. " " r‘ -~ ' ‘ n—' r ‘ “ _I " - ' ‘_ ’3 n.‘ ‘ .' n '1'. f -‘ ‘ UV»? 0 cog-3n LS r); _ ill .013 m, I’M «C - v »- v‘ :‘ -v > ~ +1 _ nn 5- _ _ _ _._ 0 J- ,1 1 z‘ :4” r‘ ~‘r *~ ‘ . '\ ‘ ~ . P “\1 l .‘O .' ,-, ' . '\ vn r F: He ' ,r'f (I. (2 -1.” I~' Old 1 {u‘ I 1. LI j_(_‘,’]_.r1 m1 “‘4 ‘ r_"1 I -e C'..’ .Lu_ 0]. t I | \ ' T O .1 O A A ‘ I j i O . r I 1 : VL , "‘ ‘v . '_ r‘ " it“ - ‘\ “ ‘~ Vuw 'j ‘ I v f‘ V7 -u- s" ~ ~- r~ w. ' 3 r' ", ‘ "j r"“ ‘ ‘- -‘_" -, T5“ I. ,0» *1 ~ 11 :0 - -,_1* J“, w. («I 3.1 , 1W- Q B {‘w.- r'nr «wt ~n ~11. n - 3’“ "1'"? *n ,. "‘v n'z‘r n r- ': “.""-v*‘/‘" ‘3‘ v “ ‘ Fw"qi“‘~1 Ba w ,0 1%- Cu; u- ,.._1 J). I“ a- J. . .nh WL J k.) ‘ I,‘ -J .V )“finrb n: .‘A-rwr "1‘ ’ 27‘ "1 a “ -‘\“'".‘(‘ “ "'N‘:‘ ’3‘ .““""~‘_- 1 .i""{‘ . " 01.“ 1-“ (“'11”) (V‘LaO-uL &-'- J .!. \ 1‘.J’\j \).1(. 'flqu‘JA ' I J.’- .L('. 1/- 21.3 ‘33 _L- 1-1 k’ \ .Ll .J-',V-5V J v . '1 . \ . a ‘ ‘I . c J ’ 1 3 1:1 1-. . r h ‘ “a ,. - - -‘ ' ,. ‘ . , .‘ 5 r — - ._ ‘ -- 7 , - ~V 7,~ . , ‘- ‘ g :7 l I ;_ \,1 [‘9 1's {‘3 _'.v ‘[ L) A 1'11 t.‘ L _‘ 1 I ‘ 'ler(l_ F _) {_‘3 C 1 I" p L ‘flgyl f 1p": ' ‘16:, m fi’fi 4‘] ‘ I Ii I - y » t o -- _. s . . ' A . .’ n r‘.‘! .‘ ' l .1 "! ‘;_ I A( ‘ ‘j-‘J— ' (‘3~ ‘1 .' 4 “ 1 x L . J, . 1 3- ‘ V 0 , t u l I " fir ' rt ‘1‘ " ,«.-. r —,{‘ Iv“. :‘ ~’ " o '; V _ . , - V P) I 1 ‘ r‘ w T (“I . 'Ir‘ ‘ ‘ ' ‘ (W ”a r ”1 ‘ 1 ‘ ' ‘ " "' *‘O n ' A' 7 1 ‘1 " 7‘ 0‘ 7 1 1 1 k ‘ ’ ‘. u. ‘ , l , I , 'h o ' —_— I I a v1 3" r_ 'fO‘. n" r """ ‘1...“ O f‘ f‘ T '| t“ ' ' ‘y“ r" \‘ l ‘ ' “ F ’ ”1. ' ‘ W (- " U .1 L- . « . fl k . . ‘r J l7 .1 . " n' . _ , ( ‘4 "I 1 ‘ Y ' ' ‘- L. r- “ ~‘ 1 3 ‘x‘ ' -. ‘x o 1",“ x V- -l 73 (1 ‘-\ .1 -\ ’7“, 1 a ’ . g \ | \ ~'-‘ I'- r3 ‘ 1-, - n C n :5 .— 3‘ — - (\ ( L , ,V ._ __ _ ’ . I ' . 7 ._ \ \_ I ,, - - ,. , ‘ . |_‘ 4 ., _ n ’. v.1 _ u ' x v 1 fl ‘ N 1 “ r 51,3. (yr- 7.1 - In ‘ r~~ (‘4‘ ,* (1".7'51 ‘~*.—\. ,‘. “l :1 i f "O ' \ ~ - fi/‘wn . f'x‘.” .1 r lfl,~, ~_, 1 _ V _ , I y , . J- 4 _ _. i ’ .- Q \1 ‘ \ _ -5 J ‘ , ‘ P o I ‘_ - s L- ’_.- ,V '1 A -.V L1,,“ n - \‘.~J‘..'»_,-1x_‘4 ~ » ' - .L .3.- l ' ° ' ‘ J. :3 3" -'- ‘7 .1. . ‘. . . - m A. yx p- 3‘. '91? —~ C (‘1 " ‘ , ~ g — . -",r w .~ ' ("\ {H " Tr.‘ 1 ,~. , 1.. .-~‘ ,sr , r. ' ' '- 'u - ' ' "I -.)_.. ' >1 1. A‘ . .- ‘ ‘ ‘ "_ h v "x o 3‘ u | .5 ~¢ ‘ I". ' - »- . ‘ ’ -r.r‘ fi.‘ ‘\ , 'I ’ 'fi - I -' l H‘ 0'21 1 . v " ". ’1- -;.‘_‘.‘J l‘ 7 ‘ __Ll A L. -9 ._ V I - ‘ 1 a 1 1 .- I-— I ‘y ’J " I“ '- ""~-- “ - ' ; ‘ * r I 1 1‘! 3" '. “ "(y n .’ ‘ ' . 4‘ I ‘ A n - x ‘ '~> ' ‘_ . ;fi - .. a I O 1' 0 \ «1 Yr”: °~ . ' 1 “r“ . :L - 3‘ A -J .1 ‘ : J l-‘ - ‘ ,2 '1 A n11. , ‘ . . 1 _‘,. A.' 1- _' .- , L1 _ ‘ ,0 C- " [2‘39“7.’ ~‘ ‘ , "T". ufi‘fi' } ”-11.3. "f‘ _' r ‘ *1(\ n I‘ 3‘ w 57 rlrfifl n’“*°"" 3s Vrrfi Tonl. VVWfi"fenfi“Tr C; 8385"” . . .. .,‘ _‘ . __ ‘ fi . .0: .... ‘ ‘ : *i- ' '-L J— A ‘ ' ysriurrbrce me very dr?:n¢qe 11Pi s no CCJPCTJC £11. -———37~%rwc:s fil'fi P*]1 V7?” Pév shcvf of 916*r1“* r‘ aL-s ._- w '0' —., n., . -J'V..,. M '. ,- nu¢fivtic or y901 *0. 5 saw f~7 Chr.*«vnb°1 'rd in» r nit“ '2‘.“ 1 p';10f P 'v'r; 1-10-.. in .5! {:9 rrJI—l , ,-,-'-. I‘r ~-. .: ~‘ ~. :71 1631" u-{.V:1 fz‘o -_.. ~— _ , _ .. ...- “ "-~ . -—-*: ;; ‘._: -- -. O 1’, l_ I i O f) >I i I '3 o _J K o - v I' . (L . o L: ‘ , 1‘1; _" 1 , I I? I :‘fi , ’ :- ’ r‘ .‘ 7 . ‘1. I , ‘i-n,.:‘r7 -'- (-_l—~—O’ [r‘ 0"- .-~ I '9 ‘ ‘ ‘ . 7 __J.I_J_‘ 0 r‘_‘ A ‘ ‘ ~ ,‘ q o — I I I - _’ 1 ‘4‘ 1a.} 1 (\n 1 I.“ \ .\“{; “‘1 1(5‘7'“ :1. 7 r‘ q-r.‘ (-‘n 15- I‘“ 7 ~.( ‘ — - .2 ] -'-! ‘ -<;- _I v \ ’_ , t . .1 ' ‘ _ : I }\. 5‘ \H" (I | C(— ( 1 a: , . 'v 1.." ‘ "r. 1 ‘frl Czfl‘ V" {QC f n )1~~ fl’ ’ ’ _ - ‘ ‘ ,- v ‘ ' "‘ I. — T - I" - . ‘ - J.— d ' _ .L. . 1 V.. Cor 2‘; (*1 .-"r‘c I‘.“|1 I ‘ wrrr ‘.V‘L\’}' W15 “"\ (N’r‘ 0‘1"" no 1".“ n... ‘ -' ‘ ' I I l _ . .. O. l ’. .17 . ~' - _. - 4 ‘_ L.) , A \A 0 g 0 ~ I :3. '- ,-‘-., ‘~¢'”:,..:' w" w‘ 3'} _ 1.3 ( ,_ p *3 1‘ .-»»-' .4 A‘,‘ , _ V VJ . , _ -. , L . —__..']"~ rrnpa" T_ .. : ' ‘--'«--~ 1",r ‘*".."' -‘ " -'- 1‘ r— r 0 -, "\“f‘ffl‘ __ “”717 s‘AJ x rJ‘ --:f1‘ — 'nn fl" ‘1' 11h :n '7:~!t‘-’fl' ‘._ ,3 ‘24, ”p7 ..1.,._4,. ,. (‘1‘ , --..' AW-) I: ,~ 3... ,V, ,. :‘ 1'- {-7 : ‘..i w: F. ha,“ ”Minn _~.‘ ‘ A A " x A L 1 -‘ u ,, o . a 1‘I-wgrnY- '1 “‘Iwn fi"/\wr(‘ -nf\ n11 PW}, f,‘ “(\ w. o J—‘-.,- ”‘('- (n‘ur 7w n-L‘ 1., . :75 '-‘A . ‘ .-.“- ’~--x “' ’ ‘. '\_;‘ . -.A L x' .. L’, ~. . .. , p " - —'|‘ O 3 ' I o x Q 87 Jit“) 11):".31 ”'r “70 "I’f’“‘-'“‘;7" 1‘: “I“ ”f"; A“ “."W‘ h" "“- ., _ *3 . . \ . ‘ A vs V 0 i V ". n Tnv-w ~rx~1 9‘18, 'r‘p $‘1(\1r~‘.-\ J—s-fil- ,..(\ "—111 o my‘J-1-- ‘y‘pvrr-. . _‘ _. _. J. / \- ‘ | A _ . v w I o _I o l 1 o o '1 (yer-pm n ~ -.-- 'n‘r-C‘ ch'r‘v n” 1 -* r 0ij ‘1"( wt; 5; ,m . 1,“.-- —-.‘, - -.., .. - . H _ . _ v. _ . J . ‘ . . ’ o I ._ . _ J_ A o !_ ‘ 9_\ O . T'—“‘1."Y!C-‘ 051‘}; 'a.- I‘- 3...? 112-0— 3 r31“ Ififfi ."h ‘. urcvj"? T r 6‘ 11". 1’1 l .9 . "' ' 4 L " ‘ I‘ ‘ (w P‘ .- A 17v- -.|r] ‘ v- fl~1r~ . -'- J 7 J- - 1‘ f‘ , -. r‘ x . ‘ m 1\ .:~,r) 11 L»’ l x > ." \ Y‘."“ Q r)“ "‘ I\ g) , . J, 1 l [ »,(. I r '\_.- r ' - h’ n '\ I ( ~_\. _. k t - V. . -1. 1 ‘J \l .. I‘- ’ - -.I .' I g ‘ (4 Q A ’ () A \ t‘ ‘ ' r\ ‘ r . 1 0 j J r‘ r r ‘ ., . ‘ . - --— ,. ~_.. » - ' ‘\- --,-‘ k. ‘ 3 . 1.L‘. ‘: ; .‘r ‘. - I; 1‘ 19C, "LI .- 0 u ’ . DESIGN The weights on the floor of a Seadrome are very difficult to conceive due to the fact that there is available little or no information upon the subject. A assumed weight of 125 pounds per square foot has been found sufficient to cover all of the cases. In some instances the weight over a smal portion will undoubtably exceed this but at this time the greater portion of the floor will be without load so the stress will be less than 125 pounds per square foot over the entire floor. THICKEESS OF FLOOR From formula 3 3 33 the thickness is 3/8 inches deflection is equal to 5/384 Elf deflection equals 5/384 X 125E; 36 x 36 x 36 x 36 g 12 30,000,000 x’lé x 0.375" -equals 3.36 inches-~To much def. Try 0.5" plate deflection I 5 x 125 x 36 x 36 x 36 X 362x 12 --~—-—---—- ——--o~-—— 0...... 30,000,000 x 12 x 0.375“ = 0075" In View of the fact that the plates are welded at the ends and also that the live welsht is an emergency weight only this will be 0. K. QQNPUTATION 0F REACTIONS Uniform load = 125 f/ft Plate load 3 20. # ft Total weight 1 5. ~ t Weight per 3 ft span 436.2 fl/ft Assumed weight of girder 49.8 #[ft Total weight 486.0 #— m1 4M2 M = ---1w12 Til-r9 41% 1574 I “'2‘?! l 2 Ni = M4 2 30 x 486 x 15 = 219,000 ft # -%w12 = % x 486 x 100 x100 - 2,430,000 ft # Solving M2 equals N3 equals 530,000 ft# 530,000 lOORl -(486 X 100 X 50) R1 3 46,350 # 530,000 : (46,350 x 200) - (215 X 30 x 486) - (160 x 486 x 150) - (100 x 486 x 50) 100R2 R2 = 41,000# An attempt was make um use built up sections and also rolled sections for the cross-supports of the floor but due to the excess weight this was discarded and a truss selected. A sketch for computation purposes is found in the pocket in the hack of this thesis. STRESS IN VE”8ERS DIAGONAL NEHWERS L1 02 --- 2,750 L16U15 --- 21,800 L2 U3 --- 5,500 L17U15 -—- 19,100 L3 U4 --- 8,200 L18U17 --- 16,300 L4 U5 --- 10,900 L19U18 --- 13,500 15 U6 --- 13,700 nguig --- 10,800 L6 U7 --- 16,450 L21U20 --- 8,100 L7 UA --- 19,200 L22U21 --- 5,350 L8 UA --- 43,700 L23U22 --- 2,600 L9 U8 ---42,000 L23U24 --- 2330 L10U9 --- 38,400 L24U25 --. 5,070 L11U10 “' 35:400 I25U26 “" 7:805 L120 11--- 32,900 L26U27 --- 10,520 L13U12 --- 30,000 L27U28 --- 13,300 L14U13 --- 27,300 L28U29 --- 16,000 L15U14 --- 24,500 129030 --- 18,900 L30U31 151U32 1133032 L341’33 I55U34 156U35 L37U36 158U37 21,600 24,400 32,800 30,000 27,300 24,500 21,900 19,000 I-'39U38 L401739 I-41U40 142U41 I~43U42 L¢4U43 I4§M4 All of the above diagonals are tension. VERTICAL MEMBERS 11 U1 12 U2 L3 ”3 14 U4 L5 U5 L6 U6 L7 U7 L8 08 L9 U9 L10U 10"" L11U11 I~12” 12"“ 1944 3,888 5,832 7,776 9,720 11,664 13,508 46,350 30,998 29,054 27,110 25,166 L13U13 I'14U14 L15U15 L16U16 1'17U17 L18U18 119U19 L2OU20 L21U21 L U 22 22 L U 23 23 L24U24 16,300 13,500 10,750 8,000 5,300 2,560 000 stressed in 21, 278 19.334 17.390 15.446 13,502 11,558 9,624 7,680 5,736 3,790 1,944 53,592 fa )1 L25325 L26U26 L‘27”27 L28U28 L29U29 I'30U30 L31U31 I~32U32 L33U33 I-34U34 I351335 5,536 7,480 9,424 11,368 13,312 15,256 17,200 41,000 23,198 21,254 19,310 L36U36 L37U37 138U38 L39U39 L40U40 L41U41 L42U42 L43U43 L44U44 L45U45 A11 vertical members are stressed in compression. UPPER CHORD MEMBERS U1 U2 --- 000 U9 U10 --- 175,556 U2 g3 --- 1,944 UlOUll --- 150.400 U3 U4 --- 5,832 011012 --- 127,178 U4 U5 --- 11,664 U12U13 --- 105,900 U5 U5 --- 19,440 U13U14 486 86,556 U5 U7 --- 29,160 U14U15 --- 69,176 U7 UA --- 40,824 U15U1¢ --- 53,730 UA U8 --- 231,730 U16U17 --- 40,228 U8 U9 --- 202,676 U17U18 --- 28,670 U18U19 U19U2O U20U21 U21U22 U22U23 U23U24 U24U25 U25U26 U26U27 U27U28 U28U29 U29U30 U30U31 All upper chord members tension LOWER CHORD FEMBERS L1 L2 ..2 L2 13 --- L3 L --- 11,664 19,056 11,376 5,640 1848 0000 0000 1,645 5,240 10,776 18,256 27,680 39,048 52,360 1,944 5,832 U31032 U321133 U33U34 U34U35 U35U36 U36U37 U37U38 U38U39 U39U40 U41U42 U42U43 U43U44 043845 U45U46 67,616 --- 126,874 105,620 86,210 68,944 53,522 40,044 28,510 18,920 11,274 5,572 1814 000 000 are stressed in 17 LA "' LA L8 --- 262,728 118 1.9 --- L4 L5 --- L6 L7 --- 19,440 29,160 40,824 54,442 231,730 L9 LlO--- 202,676 L16L11--- 175,555 L11L12--- 150,400 I. I. -—.a_—- — ... g... .—< f ~4— "H M... —-—v ———-— o—u— .— d... 0—. .— u— 5". vi .4 ..~- -.. IT "wok. “—0:— 12 £12113 --- 127.178 L28L29 --- 40.048 L13L14 --- 105,900 L29L30 --- 53,360 L14L15 --- 86,566 L30L31 --- 68,616 L15L16 --- 69,176 L31L32 --- 85,816 11161117 --- 53,730 1.52133 --- 126,874 L17L18 --- 40,228 L331,34 --- 105,620 Llsng --- 28,670 13,135 --- 86.310 L19L2O --- 19,056 L35L36 --- 68,944 L20L21 --- 11,376 L36L37 --- 55,522 L21122 "' 5'640 L37138 “" 40:044 L22IQ3 --- 1848 L38L39 --- 28,510 L23L24 --- 1,848 L39L40 --- 18,920 L24125 "' 5'240 L40L'41 "' 11,274 L25L26 --- 11,776 L41L42 --- 5,572 1.261127 --- 19,256 Lhelma --- 1814 L27L28 --- 28,680 L4314§ --- 000 All lower members are in compression. DESIGN OF MEMBERS Stress limits used are 16,000 pounds per sq. inch for members in tension and the column formula of the Joint Commi‘tea of the A. R. E. A. and the A. S. C. E. was used. ( P/A 3 15,000 - 50 x 1/r L1U2 .- stress 2.750% 2,750 9 2 a 1.375%, stress in one member 1.375 9 16,000 I 0.085 sq in area roqd. A 1/8 inch bar was selected field required was one inch at each an . weight is 3.£5 x .053 s 0.73 pounds In form similar to the above computation the following table was eimputed. liomber L1 He 13 U4 ‘Ilji 11:3 Stress 2,750 5.500 8,200 10,900 13,700 16,450 19,200 43,700 42,000 38,400 35,400 32,900 30,000 27.300 Size 1/8 x 1/8 7/16 x 7/16 1/2 x 1/2 5/3 3/4 3/4 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 X X X I X I x X X X 1 Weld 5/3 3/4 3/4 2 1/4 2:3/4 2 5/3 2 5/16 2 1/4 2 2 1 7/8 4“ '2'?" 1 H 15' 1%" 1a" 1.1.." 9‘ 3}. 1|! 1!! Weight .78 7.4 9.6 15.0 21.6 21.6 23.0 53.0 50.0 44.0 42.0 39.0 39.0 35.5 L33" {3 . . "" FE:.:.‘rL:'-‘ :r-a ‘0 T'y‘u'hvu g:’:. a , 5'9f38 ’0 It '- V . . . 3' ‘71‘1‘1-‘7 a All_ ; A 5 “55 #364 {1" 1‘“??? ’3. 54‘": A J I 4. l1 ' 0V3. 5‘3! 3 ":3. '7' .’ rm! . , ' .p’ .‘ . l - .41”:on ...’ g. r ,3“ .1 4L; ' v 77' L ‘J 54‘ .1: 4._ ‘3' . 528%. '2 "' " ‘ 3' 38“!" ..iffi I- . .1.“ ‘ 1" 1!!!! g‘=’:4 i ’1' .._.Jt 13 3' i l l , 1 ‘ . ‘5‘"- 1' (£7? 16:9 a?! . ‘ a .A‘.'l'-. ' gfféé- e_.1'. . f I o ‘ .0. . .4 .1. . _ . “52,311: 't'.‘h‘.‘.';f: ($351. _. A , ' 5 :111.51[j.'lfi<2{ . «.4 ,1 #- 7 3 ,j ..' ’ ('Jxrff I 6 ‘13; I v. - j; z“ 1 ! , - 41 . 1 ‘.' | e ., .4 1 ,. .. . , V . I ». 3" I_- "4. I". .. . ., 0 . -. ‘ a . . O ‘ I. '1, a , . . 1. i v {‘5' 1‘" 1. . F ’I. ,h . . v- -' n7} ' Q ' If I! 1 . r '4 ., . V~ . .2133: 5195!} n” - ..il ' "‘ 0 if.', I .‘ . ‘ ifi‘.7:'.’,‘-?f.._-: C 1 .- ' 0'0 ' a, v , ’ . .“ : ‘ “i‘ -.I ..‘ - ‘ ‘ 1 I. ‘ ‘ v 9 '0. “ a . _a- - a * . \ '; 2'- . u o‘ v ‘_ ‘5' ‘ 1, . ‘ . ‘ v - " ‘ l_‘ . 7.. o ‘. ~ _ " v”, . .5 a . _ -. u- . .0- _ a V)"; ‘l v , I I. P. . I a Q, _ 4 or , - .3. q. ' x '0 '4: . 1 ’ - a .4‘ _ .' . 'v _ . . .. “ \ . 3., ..‘ ‘ .I ' .8 ..‘ H« ' ;' v ‘ o ’0 ..n \1‘. A .,. -- . '. ' - . -.. Y . I . he. 0’" . V . 1 o _ _ ‘_‘ -0 Q ‘ -. "‘: k. . a a nmggfi. "P ' ‘- , ' I: -...f _o I; - Iv ‘w . r: . . II‘ A v 1 ' L1 to L3 ---Maximum stress 5832 # 16 5832 0 13,500 =.43 square inches 45 degree lateral bracing ”eight 92# per pannel Use 2-11.5# 8" channel with Above is sampel of computations from which the following table was computed Member L3 to LA to 19 to Lllto I13“ L15t0 117to ngto L34t0 L34 1L44 Max. 19,440 40,834 54,422 2029720 202,676 150,400 105,900 69,176 85,818 126,874 86,310 Stress Wt 8" 11.5 11.5 11.5 21.23 21.25 18.75 13.75 11.5 11.5 21.25 11.5 Channel‘ Plates 2- 3/8"x 10" 1- 1/4"x 10" Total weight of lower members is 5,114# Wt. per pan. 92 92 92 292 225 150 110 92 92 170 92 ..- _ .. -- - _ — .d _ Wrap-p... l7 DESIGN @F UPPER MEMBERS It was found that the best method of constructing the member was to use a built up "I" beam. Minimun plate depth used was 9%" and the minimum angel used ’1‘" was 22 x 25". The limiting feature was the stress of 231,730 pounds being member UA to U9. It will be noted that, as in the case of the lower members, the design was made for a Span of two pannels. Minimum plate 5" X 9%" 3: 2.39 sq. in. M nimum angles 3/16" ' 3.60 sq. in. Stress is possible of 5.98 x 16,000 or 95,500 pounds The following table was computed. Stress Plate thickness UA t0 U9 231,730 1/2" Member Angle thickness 3/16" 1/4" 9/16" 175.565 3/8" 1/2" Ullto U13 127,178 1/ " 3/8" 3/16" 1/4" 126,874 1/4" 3/9u 3/16" 1/4" Total weight of upper chord members is 4,300# U9 to U11 Ul3t0 U32 67,615 U32to U34 U34t0 U45 86,000 ' z ,- .3 . . .: "'1’0/1: " if; I.‘ . ' l ' " . a '_ -‘ ,, s , '. ' I .. 1 . -, 4 .‘."‘ ‘i . - . ‘. . . 4 u t“ ’ . 1’ -' . I 33.. f. . « '3 :0 0 j! 1" 9 ’ o." ea, .-~. 2! 8.351;: ”I? f '5. "u' .1" ._ .‘r, . . ’0' 1531‘? 594 if I 31;! V I ."1 by 1 0 45 BE If 4 ' ’l ‘ I ‘ ‘ I . n ‘ . tl‘ ‘.I‘O?’l" ' I2, ' . .’ I ‘1', . I ._- ‘ “RTE.“ ‘ by}, . -‘_ ~99- ..M'h' . 9:}. . O‘Df‘fl.‘ ; Jig/7M '1 . 1.55"" -.‘H 2 p M: _ :‘J'fl’ {v - o t -J‘_ -. . .» 31's. manna-+1- 1 7p. IJ_Ifi'-‘;‘3(_. J’i‘e . !H I F . o ." ' '1' r 41"}. o . ‘fi . o ..' 1 ‘0 '3 a ,I I . ‘0)“ t M! ' , I! ,g . . " : ”Fl". 5 "-'I'.;[ ._ -‘ . ' Inf-n .4 fl 0, 1. 1. II .I "WI-4- ‘ I": 1.611151. l':'fl:i"" ! ,4 2. .‘ ,I 5 7 O 511‘ 1 ”H... _.‘ '. .'_-. I iam- 4|?" = I '. ' 45.1“ ‘ ‘ ‘4 ' a , ”I" 1 W . www.414- r}: c . - . v V 1 ,I - r- 5. " 1. r " A ' . « .I I _ .':' . .- c I. n! A! _1 , I -. r f ' .._. .. f "0 3 .t a ‘ - Q. , _ . “ .. I _ .i. .. I." 1‘ ' ‘._ .. 1:. o t ‘ ---,.— .-c ‘ ":7..- . , ,.-,, .,.., t..." want“? .9" - '.“ .- .v — “ If K. _ ‘4 8 h a .‘ :1; 1.1., . ...‘ ‘ . DESIGN OF VERTICAL mswssas_ D Design of the vertical members is by means of the column formula of the Joint Committee of the A. R. and the A. S. C. ( P/A = 15,000 - 50 1/r ) E. A. 1 X 1 X 1/4 was the minimun angle used for any member. Angle size r 8 0029 P/0.44 = 15,000 1 X 1/4 0.44 Stress allowable is 5,550 50 x 5 x 12 9 0.29 Above is a sample of the computations from which the following table was computed. Member L1 U1 L2 02 L3 ”3 L4 U4 L5 U5 L6 U6 L74 18 08 1‘9 U9 l10U10 I-'11‘311 L12U12 L13U13 L14U14 Stress 1,944 3,888 5,832 7,776 9,720 11,664 13,508 30,998 29,054 27.110 25,166 23,222 Size angle 1 X l X 1/4 1 X l X 1/4 1 X l X 1/4 1 X 1 X 1/4 1 X1 X 1/4 1% X 1% X 5 1% X 1% X % 2 X 2 X 5/16 2 x 2 x 5/16 13 X 1% X 5/16 1% X 12 X 5/16 12 X 12 X 1/4 12 X 1% X 1/4 1% X 1% X 1/4 We ight 12.70 12.70 12.70 12.70 12.70 19.20 19.20 39.2 39x2 33.9 33.9 27.9 27.9 23.4 Weld 1:. i E P E i ' F g g i r I P i (LCQ‘J In}: 1.14;: I I. I.“ 7 l u {-7.}. 2- '- V A .I‘AZ-Jl'u}! A 1, Member L15U15 I4161116 L17U17 L18U18 L19U19 L2oU2o L21U21 L22U22 L23U23 L24U24 L25U25 L26U26 L27U27 L28U 28 L U 29 29 L5 OH} O L311431 L32U32 L33U33 L34U34 L"51135 J L36U36 L37U37 All other members Weight of vertical members is 976.40 Stress 17,390 15,446 13,502 11,558 9,624 7,680 5.736 3,790 1,944 1,592 5,536 7,480 9,424 11,368 13,312 15,256 17,200 41,000 23,198 21,254 19,310 17,366 15,422 Size angle H H a: £14 1...: NH M“ NH +4 14 F3 14 +4 I4 F‘ +4 14 +4 14 F’ +4 NH NH '9 £024 2 x 2 x 3/8 12 x 12 x 5/16 12 12 .1. 12 12 1. 12 H (‘55:. N 1...: 22 .Ma 2p 22 >4 x +4 14 x M >4 NH N N >4 >4 WMHMJuMk-x F’ +4 F’ 24 l4 24 14 e! 24 l4 »p NH MP NH x x M1 2» 2P 22 NH Xl% X 5/16 X 1%va 1/4 Weight 23.4 19.4 19.4 19.4 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 19.2 19.2 23.4 47.0 28.6 28.6 23.4 23.4 19.4 19.4 Weld 1:12" ._1_" 14 l H l" l" V’”' I'dfiffi J1 ¢ 1 3 fig 334:3??ng _ . QEEEH Y I 'fiziut q‘ 125:. £3: 0 {‘l' .q‘! . r -- . -1 1:31.! If 1"". r3 .7 “9‘5 9 r 1.- ;:‘ 1'13" .7 2 -‘ z .2. J 1.4" 5&5 ”-1,... . l",'.'r I ‘( ‘ f. .. o . " - n; '_ ' _, 1" 0 a 1 f4 ‘ 3", $.37 «222 .' "1' |'. - - I ’0... . :‘I :, 5.fp{r:7,. i o.‘ 0" ‘Jif - '1 gr',. .. I a '. In I ' "’O‘ff-J': ,I ,fl 1! J 2 Mama!) at; , .1, , , 324.- J -.' - . . {(3-2} "‘3' ‘J ' -‘-1‘I/K:3'{" g, 7’94 , é ififi?- .7: 1 3'ng .‘1',::‘ t Hfififli 1“: sun.» -. ~ 2? 1 5%? {tr-"u .f‘-. .' ‘57.? " '{4 ' '0 ,3, ' _" “ u .5 5 -'.I (frag. .227" u b g. 0 “‘1'. nu:- " I'D-I f. - 0, ~ 1‘ O‘ - .h 0 O . bf If xi 2% ’b ‘225 .0 .1 ,,',t , 3.. -' '4' '3’ v, _ 0:..v. . ¢ .. ‘2; .9. . a " a . . " . ‘J ~ X i .I ' fiJ“ ' _ f _-"-a b. a} r 7 A U , '\ “'1” 1:12.. NT!“ .431 I. ll‘4 41f .llall 20 The total weight of the truss is 89,892 pounds The weight acting on R1 is 46,631 Assumed weight acting on R1 is 46,350 This is close enough to be 0. K. The weight acting on R is 43,261 The assumed weight is 1,000 This is close enough to be 0. K. fikg 1,35. _4 71“.- .- -'- -ell..°-__‘. -4. 41,). _ w-§.-§.ol . - , , .. ., . . , .2 , . v . 1 , A v V f l . ,4: ,.' “. r”: .1.‘ .~ .,,_(- ', _ . . -. ~ . - - 211 DESIGN OF SUPPORT TRUSS , DUI to the fact that the truss supporting the floor acts with the action of a centinious bean it is necessary to design the two suppert trusses with different loadings. Allowing a lead of 250 pounds per foot for the truss, the lead was 15.7 kip per feet. It Idll be noted that this lead is taken as a uniform lead instead of a series of concentrated loads at three foot intervals. STRESS IN MEMBERS QBIAGONAL) 111 leads in kips Member Stress in Stress in truss A truss B Lle 110 104 Lg U5 298 “1298;3 L3 U4 502 £2502 L5 04 550 520 L6 U5 332 312 L7 U6 112 105 L7 U8 110 103 L8 U9 329 312 L10U9 362 338 LuU10 142 132 L11U12 80.5 78 L12U13 302 286 L13U'14 525 493 Member L15“..14 L16U 15 L16Ul7 L17U18 L18U19 L20U19 L211720 Llezz LzzUzs L25U24 L25U24 L26U25 L27U26 L27U28 L28U29 L30U29 L31‘130 L31U32 L32U33 L33U34 L35U34 L36U35 stvse L57U38 L38U39 L40U39 Stress in truss A 398 175 46.5 270 490 425 202 19.8 242 242 463 507 284 60.5 161 384 273 51 171 392 615 520 300 765 146 367 477 Stress in truss B 22 388 181 27 235 443 415 206 1.4 206 415 466 259 51 157 365 242 34 174 381 590 490 281 734 135 343 570 rl r J 9:! Ln} .IINDNK .JH , Member 41: L42 U41 L42 U43 1431144 14451144 L46 U45 147046 L46U47 L47U48 1481149 1501149 L511150 L521151 L521753 153%: 1551754 L56U55 L571356 L57U58 L58U59 L60U59 L61U60 L62U61 L63U62 L63U64 Stress in truss A 257 34 188 410 353 131 90.5 312 535 465 245 22.4 200 421 523 300 790 143 365 680 463 240 32.5 246 Stress in truss B 273 165 42.5 250 457 250 41 165 373 550 342 134 342 550 605 400 191 17 225 650 443 236 28.3 236 23 24 AS the truss chosen was 10 feet high and the pannels 10 feet long the stress in the diagonals was computed by deviding the shear by 0.707. See computation sketch in the back of this thesis for location of the nonbers. DESIGN OF DIAGONALS The design was chosen to be of built up "I" beam.type the "I" being composed of 4 angles and a single web plate. A tensile stress of 16,000 pounds per square inch was allowed. It will be noted that all web plates are 15" wide. This is necessary due to the fact that the lower chord is of this width and in order to secure aducate fastening at the joints it is essential that the "I" beam be of this width also. The process of design is as follows:-- Stress 1 16,000 3 Sq. in. of steel required. By means of a steel handbool suitable sections were chosen. Truss A Truss B Member .Angles Plate Angles Plate L1 U2 3 x 2% x-% %- 3 x 2% x i % L2 U3 3%— x 3% x 3/8 2 32 x 52- x 3/8 3/8 L3 U4 4 x 4 x 5/8 5/4 4 x 4 x 5/8 3/4 L5 U4 4 x 4 x 5/8 3/4 4 x 4 x 5/8 3/4 L6 U5 3 x 22— x 8/8 2 3 x 22- x 3/8 1/4 L7 U6 3 x 2% x i i 3 x 2% x i 2 L7 U8 3 x 2 x3/8 2 3 x 22 x 3/8 L8U9 33:22:5/8 2 sleé-xs/s 2 L10U9 4 x 3 x 5/8 3/8 4 x s x 5/8 3/8 L11U10 3 x é-x-fi % 3 x 2% x i % L111112 3x2212 2%: 33:22.12— 71- L12U13 4x313/8 :2 33:22:2- 2— 25 Truss A Truss B Member Angles Plate Angles Plate L13U14 4x412- 1 4x4x2— 1 L15U14 4:31:2- 3/4 4131-373- 3/4 L16U15 3 x 22 x 3/8 2 3 x 22 x 3/8 2 L16U17 3 x 2% I 4' 2 3 I 2% I 4 3 1171118 312212- 2- 3122x3/8 2 L18U19 4 x 4 x 2' 1 4 x 4 x 3/8 1 L20U19 4 x 4 x 3/3 7/8 4 x 4 x 3/5 7/8 LZIUZO 3 x 22 x 3/8 3/8 3 x 22 x 3/8 3/8 LmQZ 3x22x2 2 3:22x2 2 L22U23 3 z 22 x 2 3/8 3 x 22 x 3/8 3/3 L23U24 4 x 4 x 2- 1 4 x 3 x 5/8 5/8 L25024 4 x 3 x 5/8 1 4 x 3 x 5/8 1 L263,5 3 x 22 x 2 2 3 x 22 x-2 2 L27U25 3122-12 i 3122142 2— L27U28 3 x 2- x 2 3/8 3 x 22- x 2 3/8 L28U29 32': 32 x 3/8 7/8 182x: 32 x 3/3 7/3 L30U29 3 x 22 x 2' 2 s x 22 x 2- 3/8 L31030 3 I 2%"I 2 2 3 x 22 x 2 2 L31U32 3 x 2% I 71' 3/8 3 x 22 x 2 3/8 Lszgs3 32 x 32 x 3/3 7/3 32 x 32 x 3/8 7/5 L33034 4 x 4 x 5/8 3/4 4 x 4 x 5/5 3/4 L55U34 4 x 4 x 5/8 1 4 x 4 x-2 1 L36U35 4 x 3 x 3/5 5/8 4 x 3 x 3/5 5/8 L37U36 6 x 4 x 3/4 1 3/3 6 x 4 x 3/4 1 3/5 %Wm 31%x2 2 3x%x2 2 1138339 32-x 32 x 3/8 7/8 32 x 32 x 3/5 3/4 26 Truss A Truss B Member Angles Plate Angles Plate L40339 4x4x2 1 6x4x5/8 1 1.41140 3x22x2 3/8 3x22x2 3/8 L42U41 3 x 22 x 2 2 3 x 22 x 2 3/8 L42U43 3 x 22- x 2 3/8 3 x 22- x 2 2 L45U44 3122::2 1 3x 2x3/8 2 L45U44 4x3x2 5/8 4x412 1 L46U45 3 x 22 x 3— 2 3 x 22 x 2 3/8 @27346 3 x 22 x 2 2 L46U47 3 x 22 x 2 2 L47U48 3 x 22 x 2 5/8 3 x 22 x 2 3/8 L48U49 4 x 4 x 5/8 1 3 x 22- x 3/8 2- L50U49 4x4x2— l 414x5/8 1 L51U5o 3 x 22 x 2 3/8 3 x 22 x 2 3/4 L52051 3:223:22 2 3:22-3:22 2 L52U53 3 x 22 x 3/8 3/6 4: 4 x 3/8 5/8 L53U54 513212 3/4 61412- 1 L55U54 4 x 4 x 5/8 1 6 x 4 x 5/8 1 L56U55 3 x 22 x 2 5/8 3 x 22 x 2 1 L5IfU56 6 x 4 x 3/4 1 3/8 3 x 22 x 2 3/8 L57U56 33‘ 2X2 2 3x22X2 2 L58U59 4 x 3 x 2 5/8 3 x 22 x 2 3/8 L60U59 6 z 4 x 5/8 1 3/8 6 x 4 x 3/4 1 leUso 6 x 4 x 2 5/8 6 1 4 x 2 5/8 1,62361 3 x 22 x 2 3/8 3 x 22 x 2 3/8 L63U62 3x22x2 2 3x22x2 2 L53U54 3 x 22 x 2 3/8 3 x 22 x 2 3/8 . - $.53.- - Ali Inn-3 3i. 27 STRESS AND DESIGN OF THE VERTICAL MEMBERS The vertical members are stressed in compression so they are therefore designed as columns. The best section to use was found to be a column.built up of two plates and four angles. The angles were turned in to give aditional bearing area for the column to rest on. The column is held apart and braced by lattice work at 45 degree pitch. In the design of the columns the formula ‘§_ : 16,000 - 50 1/& was used. The following table was compiled from.the computations. Truss A Truss B mmmber Stress of Stress of .Angles Plate Angles Plate truss A truss B L1 U1 76.5 73.5 22x22x2 10x2 22:22-12. 1012 L2 02 235.5 120.5 22 x 22 x 3/6 10 x 2 22 x 22 z 2 10 x 2 L3 U3 626.0 330 6 x 6 x 3/6 16 x 7/6 3 x 3 x 3/6 12 x 5/ L4 U4 942 882 6 x 6 x 3/4 16 x 7/6 6 x 6 x 3/4 16 x 7/6 L5U5 363 363 32:32:5/81212 32:32:5/612x2 L6U5 232 221 22x22x2 1013/8 22:22:22 1013/8 L7U7 157 147 22122x3/810x2 22:22:210352 L8U8 235 143 31322 1013/82212213/81012: L9U9 646 606 626::2 16x3/4616x2— 16x5,6j LloU 10 257 239 3 x 3 x 2:- 12 x 3/6 3 x 3 x 3/6 12 x 3/6 J- L11311 157 147 22x 22:: 3/6 10 x 2 22 x 22 x 3/3 10 x 2 28 “ —l_——- .— r‘x“ "' 1 Truss A Truss B Member 18:21:21 18:35:61; Angles Plate Angles Plate L12312 214 202 31: 312 3212 3; 323/8 12 2 L13U13 371 349 32 x 32 x 5/6 12 x 2 32 x 32 x 5/8 12 2 L14U14 609 771 6 x 6 x 3/4 16 x 3/4 6 x 6 x 3/4 16 3/4 115015 261 275 32 x 32 x 2 10 x 3/6 32 x 32 x 2 10 3/3 L16U16 157 147 22 x 22 x 3/6 10 x 2 22 x 22 x 3/6 10 2 1.17317 190 166 2 x 22 x 2 12 x 3/6 22 x 22 x 3/6 12 3/6 L18U18 347 313 32 x 32 x 2 12 x 1/2 3 x 3 x 3/6 12 5/8 L19U19 604 753 6 x 6 x 3/4 16 x 7/6 6 x 6 x 3/4 16 3/4 1.20320 300 293 32 x 32 x 3/6 12 x 2 32 x 32 x 3/6 12 2. L21U21 157 147 22 x 22 x 3/6 10 x 2 22 x 22 x 3/6 10 2 L22U22 171 146 22 x 22 x 2 10 x 3/6 22 x 22 x 3/6 10 2 123323 326 293 32 x 32 x 5/6 10 x 5/6 3 x 3 x 2 10 2 124324 642 770 6 x 6 x 3/4 16 x 7/6 6 x 6 x 5/8 16 7/6 325325 357 330 3 x 3 x 2 12 x 5/6 3 x 3 x 3/6 12 5/6 326026 200 163 22 x 22 x 3/6 10 x 3/6 22 x 22 x .2. 10 211. 127%., 157 147 147 22 x 22 x 3/6 10 x 2 22 x 22 x 3/6 10 2 L28U28 271 256 32 x 32 x 3/6 10 x 2 3 x 3 x 3/6 10 2 129329 621 705 6 x 6 x 5/6 16 x 2 6 x 6 x 5/8 16 3/4 130330 193 161 3 x 3 x 2 30:: 2 3 x 3 x 2 10 2 33,1331 157 147 22 x 22 x 3/6 10 x 2 22 x 22 x 3/6 10 2 1.32332 276 270 3 x 3 x 2 12 x 3/8 3 x 3 x 2 12 3/6 L33U53 435 417 4 x 4 x 5/6 12 x 5/6 4 z 4 x 5/6 12 2 L34U34 860 610 6 x 6 x 3/4 16 x 7/6 6 x 6 x 3/4 16 3/4 L35U35 366 346 4 x 4 x 3/6 12 x 5/6 4 x 4 x 3/6 12 5/6 IH—I I. . -.~»'uar-:rgm' - . --—- H j.|.'.’lllul.f . .fl.. . , II .41ta'tk.§.nkfllhfl|«v .MH uni. . .i. s 29 Truss A Truss B Membef Srvess Stress Angles Plate Eagles truss A truss B L36U36 211 199 3x3x2 1022 3231.2. 1537637 157 147 22 x 22 x 3/6 10 x 2 22 x 22 x2 1138038 260 242 22 x 22 x 3/6 12 x 2 22 x 22 x 2 239039 755 700 6 x 6 x 5/6 16 x 7/8 6 x 6 x 2 L40U40 336 411 32 x 3—1— x 3/6 lex‘é/B 4 x 4 x 5/6 L41U41 161 264 22 x 2~ x 2 10 x 3/6 3 x 3 x 2 L42U42 157 147 2 x 22 x 3/6 10 x 2 22 x 22 x 3/6 143043 290 177 4 x 4 x 3/6 12 x 3/6 3 x 3 x 3/6 144%,} 690 647 6 x 6 x 2 16 x 7/6 6 x 6 x 2 @5345 250 223 3 x 3 x 2 10 x 5/6 3 x 3 x 3/6 9:61:46 157 169 22 x 22 x 3/6 10 x 2 22 x 22 x 3/6 L47U47 221 147 3 x 3 x 3/6 10 x 3/6 22 x 22 x 3/6 L48U48 376 264 32 x 32 x 5/6 12 x 2 4 x 4 x 3/6 1491149 665 610 6 x 6 x 3/4 16 x 7/6 6 x 6 x 3/4 L50U50 330 369 3 x 3 x 2 12 x 2 32 x 32 x 5/6 L51U51 173 242 22 x 2—1- x 3/6 12 x 2 22 x 22 x 2 1152052 157 147 22 x 22 x 3/6 10 x 2 22 x 22 x 3/6 L53U55 296 369 3 x 3 x 2 10 x 2 32 x 32 x 5/8 L54U54 925 665 6 x 6 x 7/6 16 x 7/6 6 x 6 x 7/6 L55U55 370 429 32 x 32 x 5/6 12 x 2 32 x 32 x 5/6 L56U56 157 147 2 x 22 x 3/6 10 x 2 22 x 22 x 3/6 L57U57 256 169 3 x 3 x 3/6 10 x 2 22 x 22 x 3/6 Member L59‘359 L6OU6O L61U61 L62U62 L63U63 L64U64 Stress truss A truss B 899 484 320 180 157 625 Stiess 767 461 314 167 147 590 truss A Angles Plate 6x6x7/6 18x3/4 32x32x2 14x3/4 32 x 32 x-2 10 1'2 22x22x2 10x3/8 22 x 22'x 3/6 10 x 2 4 x 4 x 5/6 16 x 7/8 The above listed stresses are in kips. STRESSEB IN THE UPPER CHORD MEMBERS 30 TnmsB Angles Plate 6x615/8 18x 32 x 32 x-2 14 x 32 x 32 x-é 10 x 22 x 22 x 2- 10 x 22 x 22 x 3/6 10 x 4x4x5/6 16:: The upper chord members are stressed in tension throughout the entire truss. jOifltBe The stress was oamputed by the method of The following table gives the stresses in all upper chord members. 21mmber U1 U2 U2 U3 Stress in truss A in kips ..9 .. 76:6 313 315 79 O 57 271 in kips O I 7326 264 295 74 0 0 73 92 59 257 Stress in truss B 1.4“! ru - Fain-L L214 . 2 .ZJJ-R-‘_ ‘ ' 1' ‘- . -£‘.-I_."".I‘r-'_‘I{"."' t " maul-r! ma' 'l "J’OJV‘E'. I“ HnI-CEY t'l'i -" rrr‘w EFF—IL”: I.“ ‘ I'lefm mllial'u f'H-Z" ‘T‘l‘. {—7 2 251- ‘w‘ -_u.\. 31 ‘ member Stress in truss A Stress in truss B in kips in kips U1.U15 124 128 U15U16 0 ‘ 0 U16U17 0 0 U17U13 33 19 U18U19 223 165 019020 243 146 U20‘121 0 0 U21‘122 0 0 U22U23 14 1 11231124 185 147 024025 243 219 U25U26 43 32 02602., 0 0 027028 0 0 U28U29 114 111 U29U30 36 24 U301331 ° 0 031332 0 0 U32U33 121 123 033034 399 393 034035 265 251 U35U36 ' 54 52 U3211137 0 0 U37U38 0 0 U U 103 95 38 39 member U39U40 U401’41 U411342 U42U43 U43U44 U44U45 U45U46 U46U47 U47U48 U46U49 U49U50 U501351 U51U52 U5 21353 U53‘154 U541755 U55U56 U56U57 . U57U58 U58U59 U59U60 UGOU61 U61U62 U621363 U63U64 Stress in truss A in kips 205 24 O 0 133 93 64 285 209 66 141 269 56 101 520 193 23 Stress in truss B in kips 381 117 O O 30 205 29 117 197 56 242 417 135 12 501 187 20 32 33 EESIGN OF THE UPPER CHORD MEMBERS In the design of the upper chord members it was necessary to take the fact that they are to provide bearing surfaci for the floor support trusses into account. For this reason they designed of a single web plate and 4 angles. In order to have a uniform depth upper chord the minimun and maximum depth of angle were required to be the same, the only variation being in the thickness of the angle. It will be noted that the members are designed from support to support instead of for each pannel. The design is for the maximum stress occuring in that span and is so designed because of the expense of welding at each pannel point. Span Thickness of angle Thickness of angle Plate A Plate B in truss A in truss B U1 U4 3/8" 3/8" 5/8" 1/2" U4 09 3/8" 3/8" 5/8" 5/6" 09 U14 1/2" 1/2" 3/8" 3/6" 111le19 3/8" 3/8” 3/8" 3/8" U19‘124 3/8" 3/8" 3/8# 3/8" U24U29 1/2" 3/8" 3/8" 3/8" U29034 5/3" 5/9" 5/8" 5/8" [1541159 3/8" 3/8" 1/2" 1/2" U39U44 3/8" 5/8" 3/8" 5/8" U441749 3/8" 3/8" . 1/2" 3/8" 11491154 3/8" 3/8" 3/8" 3/6" U54U59 3/8" 5/8" 1/2" 5/8" U59U64 5/8" 5/6" 5/8" 5/8" All angles are 32': 32 All plates are 152" wide. pl'ffl‘firr-IIII-HI-l 'I . -r .. -1 -__ ____ ___‘_ __ ___ __ ___ _____ ___ STRESSES IN THE LOWER CHORD MEMBERS Member Stress in truss A Stress in truss B :. in kips in kips E L1 L2 78°5 73.5 L L2 L3 313 263 : L5 L4 705 640 ; L4 L5 706 663 1 L5 L6 315 295 L6 L7 79 74 L7 L8 76 73 L8 L9 310 293 L9 L10 357 331 L101.11 100 92 L11L12 57 55 L12L13 271 257 L131'14 542 605 L141615 405 403 L15L16 124 126 L16L17 53 19 L17L18 22° 185 116119 567 493 L191'20 443 439 L20L21 143 145 L21L22 14 1 L22L23 165 147 L L 513 440 23 24 Mbmber L2.L25 L25L26 L26L27 L27L28 L28L29 L29L30 L301431 L31132 L32L33 L33L34 L34L35 L35L36 L36L37 L37L38 L36L39 L39L40 L40L41 L41L42 L42L43 L43L44 L44L45 L45L46 L46L47 L47L46 L48L49 L491‘50 Stress in truss A in kips 600 243 43 114 385 229 36 121 399 834 633 265 54 103 363 543 205 24 133 423 343 93 64 285 663 519 35 Stress in truss B in kips 549 219 36 111 369 195 24 123 393 810 597 251 52 95 337 782 381 117 30 207 528 205 29 117 381 721 :1... .11 ”1 A D 11"II'IL VIII member Stress in truss A Stress in truss B in kips in kips L50L51 189 337 L51L52 16 , 95 L52253 141 242 L53L54 439 631 L54L55 639 846 L55L56 269 417 L56L57 56 135 L57L58 101 12 L58L59 359 171 L59L60 520 501 L6OL61 193 167 L61L62 23 2° L62L63 ' 174 167 326163 OF THE LOWER CHORD MEMBERS The lower chord members are all in compression. It is essential that they all have the same depth in order that . a even bearing area is furnished for the floats. A depth of 23 inches was found to be the best suited for this truss. The angles used were 4" x !" varying in thickness only. All members were designed using the formula I : 16,000 - 50 1/3 4 K. The design is for spans ef:more than one pannel due to the high cost of welding at each pannel point. In each case the member is designed for the maximum stress in the span. x .AI‘..1m d J. .. A , ’2 r{,.. u. v.3... 1 .u . . , A 7 119 v...- . ‘4'.l .... . v I ('3... all stay“. 4.1!}.1 lung}; ..thrfl. \ 6,139.2. As ”.1 . A EEK! 37 The following table was made of the results of the design ubmber Angle thickness Plate thickness Angle thick- ,Plate thick- - truss A truss A ness truss B ness truss B L1 L7 3/8" 7/8" 5/6 " 5/8" L7 L11 3/8" 5/8" 3/8" 5/8" L11L16 1/2" 5/8" 1/2" 5/8" L16L21 1/2" 5/8" 3/8" 3/6" L21L27 1/2" 5/8" 3/8" 5/8" L27L31 3/8" 5/8" 3/8" 5/8" L31L37 5/8" 1 1/2" 1" 3.57142 _ 3/8" 1" 3/8" 5/8" L43L‘a 3/8" 5/8" 3/8" 5/8" L46L52 1/2" 3/4" 3/8" 5/ " L52L57 1/2" 3/4" 1/2" 3/4" L5.,L64 5/8" 5/8" 5/8" 5/8" a L The members are designed a columns with the angles turned in in order that welding surface may be privided for the gusset plates. Lattice work bracing in used it being at a 45 degree pitch. These members rest upon shoes that are welded to the top of the float assembly. No bracing is required between the lower chords of the different trusses as they are rigidly braced at the . top and the floats are also rigidly braced at the bottom. fillll ..okqmmh. _. . a... 4 H442... ‘ «.4..? . 2...... . . .. .. . .. KP: wwkmnw o.oo N »v. 4.... ~ . .. ”Mn... “N“ A Q so a .. . .4\ m.»~..... . . - ..V.....~s\.x02\:,..n. .«sbc. ”we... Ahfbnwxfi! 44... .‘.J% s;.axf- Hm-.. .3 . Na \n..w ....l . J . f wm - <4 .3 o E \ D C B A . . \ . . n .L‘ JI—V . Va“ 4’ E 1.82 .‘\ 5 A5 . 1 ‘ I. “I A PILLS I 4 . .. 1. 2 ma \ . m ‘ ‘ O .‘1.L w)... _l.l. DJ... L... . 1 w... A T . ..4 1 . .. . . .v 3.14. W! . r L L 1 .1 1 _ _. , a , -. _ _ . ,e L .. . p. Q .J ..U Q ”U .-v . 7.. .1... . . n . T . we . m a. 0 C . .._ _ .. .. - n 1. n I. a w. n v A. ..4 , .v . 1.. . U r. J ...J . A «Z4... , ’ ’ 1. (\ . \ . f 4 . -9 9 J 9 9 9 9 9 9 9 9 ,// M; // m J . . l .4U A..- h. h U .3 out n.” r... l . 1'. . . 47..., z . l 1 1 l I 1 1... 1 1.1 1 _ u . A . B c ‘V' '4. -“) A J—J 4 L D - 1,".’::" - 1 L... 4‘“ I ~ L LAY' 14-L ’IV 7‘ H 4,, \_l 7 Wu 1 k L , l .f/‘ifl _ l LszrEl Fa. r . a t . ..m .4». s ‘ o u ’- D . O Q“ l I I I | O . ‘ A . I a o H I-..r w . I. L! A .III I... ll K .14. II I ' In. [I 3......12: . .1. 3.2%.... . -- .- MICHIGAN STATE llfl Ill Hill R ITY LIBR WIN III! INHIIIIIWS 0 L 3 2J 3 1293 03 We 0 7