

THE DETERMINATION

OF THE FRICTION FACTOR FOR NEW

6-INCH ALUMINUM TUBING AND

HEAD LOSS IN ELBOWS AND

SPRINKLER-PIPE COUPLERS

Thesis for the Degree of M. S.

MICHIGAN STATE COLLEGE

Alberto Daker

1950

This is to certify that the

thesis entitled

"The Determination of the Friction Factor For New 6-Inch Aluminum Tubing and Head Loss in Elbows and Sprinkler-Pipe Couplers"

presented by

Alberto Daker

has been accepted towards fulfillment of the requirements for

M. S. degree in Agricultural Engineering

Watte M. Carkton Major professor

Date Sept. 1 1950

THE DETERMINATION OF THE FRICTION FACTOR FOR NEW 6-INCH ALUMINUM TUBING AND HEAD LOSS IN ELBOWS AND SPRINKLER-PIPE COUPLERS

By

ALBERTO DAKER

A THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Agricultural Engineering
1950

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation of the kindly interest, valuable suggestions, and helpful advice received from Professor E. H. Kidder of the Agricultural Engineering Department during the course of this investigation.

He also wishes to express his appreciation to the following:

Instructor P. E. Schleusener of the Agricultural Engineering Department for many suggestions.

Instructor B. F. Cargill of the Agricultural Engineering Department for the pictures taken.

Perfection Sprinkler Company of Ann Arbor, Mich., for the use of their pipes and couplers in making this study.

Gorman Rupp Company, Mansfield, Ohio, for the use of their engine and pump in this experiment.

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	3
	1. Letter Symbols	3 4 5
	5. Minor Losses	10
III.	METHODS OF PROCEDURE	11
	1. Apparatus 2. Material Tested 3. Experimental Procedure 4. Sequence of Operation	11 17 19 22
IV.	PRESENTATION OF DATA	39
	 Evaluation of Exponents and Coefficients in the General Pipe Flow Equation Pipe Without Coupler Coupler Losses Loss Coefficient for Couplers Elbow Losses Loss Coefficient for Elbows 	39 44 46 47 49
Ý.	conclusions	52
VI.	SUMMARY	55
VII.	LITERATURE CITED	58

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	3
	1. Letter Symbols	3 4 5 9 10
III.	METHODS OF PROCEDURE	11
	1. Apparatus	11 17 19 22
IV.	PRESENTATION OF DATA	39
	 Evaluation of Exponents and Coefficients in the General Pipe Flow Equation Pipe Without Coupler Coupler Losses Loss Coefficient for Couplers Elbow Losses Loss Coefficient for Elbows 	39 44 46 47 49
Ý.	CONCLUSIONS	52
VI.	SUMMARY	55
VII.	LITERATURE CITED	58

LIST OF FIGURES AND TABLES

FIGURES:

		rage
1.	Friction loss in pipe	4
2.	General view of experimental installations	11
3.	Discharge pipe into hydraulic channel	12
4.	Use of hook the Cipolletti weir	13
5.	Water flowing over the Cipolletti weir	14
6.	Close up of piezometer tube with stop cock and manometer tube attachment fittings	15
7.	Carbon tetrachloride differential manometer and piezometer connections	17
8.	90-degree elbow (piezometers 7 and 8)	18
9.	180-degree elbow (piezometers 3 and 4)	18
10.	Coupler set with pipes forming a 6-degree horizontal deflection	20
11.	Sketch of layout of experiment	21
12.	Friction loss vs. flow rate in 17.53' of tubing, and head loss vs. flow rate in 20.16' of tubing with one coupler correctly aligned with second section of tubing	40
13.	Head loss vs. flow rate (20.16' length of tubing and one connecting coupler in position 1)	41
14.	Head loss vs. flow rate (20.16' length of tubing and one connecting coupler in position 2)	42
15.	Head loss vs. flow rate (20.16' length of tubing and one connecting coupler in position 3)	43
16.	Head loss vs. flow rate (90-degree and 180-degree elbows)	50

LIST OF FIGURES AND TABLES (Continued)

TABLES:

		Page
1.	General experimental data (Head loss in half inches as read on a CCl ₄ differential manometer)	23
2.	General experimental data (Head loss given in feet of water and in p.s.i.)	25
3.	Experimental data on couplers in position 1 (Head loss in half inches as read on a CCl ₄ differential manometer)	31
4.	Experimental data on couplers in position 1 (Head loss given in feet of water and in p.s.i.) .	. 32
5.	Experimental data on couplers in position 2 (Head loss in half inches as read on a CCl ₄ differential manometer)	34
6.	Experimental data on couplers in position 2 (Head loss given in feet of water and in p.s.i.) .	35
7.	Experimental data on couplers in position 3 (Head loss in half inches as read on a CCl differential manometer)	36
8.	Experimental data on couplers in position 3 (Head loss given in feet of water and in p.s.i.) .	37
9.	Loss of head per 100-foot length of six-inch aluminum tubing with and without couplers	45
LO.	Comparison of equations	46
L1.	Loss of head and loss coefficient for couplers	4 8
2.	Loss of head and loss coefficient for elbows	51

INTRODUCTION

Although sprinkler-irrigation has been practiced in parts of the United States for about fifty years, it was not until about 1930 that light weight pipe with quick-coupling for portable sprinkler systems came into use (1, p. 3).

Since 1942, when extruded aluminum tubing first became available, aluminum has been the dominant material used in manufacturing sprinkler-irrigation tubing and fittings (7, p. 5). That is the reason why the hydraulic characteristics of aluminum tubing, couplers, and bends is essential for the economic design of a portable-sprinkler system for the farm.

In these studies the friction factor was determined for 6-inch diameter of new aluminum tubing and the head loss coefficient determined for 6-inch diameter of coupler when the longitudinal pipe alignment was straight in all planes.

Since the head loss coefficient for couplers varies with varying degrees of poor alignment of connecting sections of tubing through the coupler, three different positions of connections were tested as follows: position 1 - coupler out of alignment in the vertical plane using the maximum amount of vertical displacement within the coupler; position 2 - tubing vertically displaced in the coupler as

in position 1 and in addition a three (3) degree deflection from true alignment through the coupler in the horizontal plane; position 3 - identical to position 2, except the angle of deflection was increased to six (6) degrees, the maximum allowed by the test coupling.

This experiment includes also the determination of the head loss coefficient for 90 and 180 degree elbows.

REVIEW OF LITERATURE

Letter symbols

To simplify the discussion and presentation of data, the following symbols will be used. They agree as closely as possible with those presented in hydraulic literature and are given in accordance with Le Conte (6, p. XI).

- A Area of pipe, square feet
- C General constant
- d Diameter of pipe, feet
- f Coefficient of friction (Darcy-Weisbach)
- g Acceleration of gravity (32.2 ft/sec^2)
- h Head loss in couplers, feet
- he Head loss in elbows, feet
- h, Head loss due to friction, feet
- h_{I.} Total head loss, feet
- K Coefficient of proportionality
- K_a Coefficient of proportionality for aluminum pipe
- K_c Loss coefficient for couplers
- Ke Loss coefficient for elbows
- K_L Loss coefficient in fittings
- L Length of pipe, feet
- m,n Exponential values
- N_R Reynolds number
- p Pressure, lbs/in²

- Q Rate of flow, cfs
- V Velocity, ft/sec
- w Unit weight, lbs/ft3
- z Difference in elevation, feet
- Density, 1b-sec²/ft⁴
- μ Viscosity, 1b-sec/ft²

The Bernoulli equation

Head loss in straight pipe flow is illustrated graphically in Fig. 1. Two lines designated respectively the hydraulic gradient and the energy gradient are shown (5, p.196).

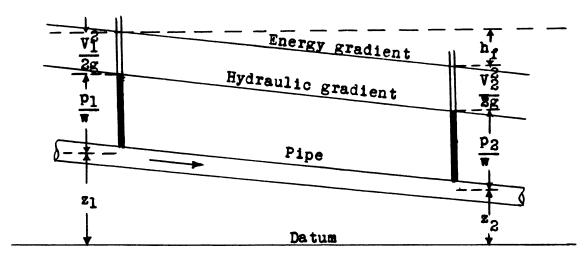


Fig.1 Frictional loss in pipe.

The Bernoulli equation between any two sections of a straight pipe (8, p. 181) as those shown in Fig. 1, is

$$\frac{V_1^2}{2g} + \frac{p_1}{w} + z_1 = \frac{V_2^2}{2g} + \frac{p_2}{w} + h_1 + z_2 + \dots$$
 (1)

Durand discusses total energy as being in the primary

and secondary forms (7, p. 4). The three primary forms, shown diagrammatically in Fig. 1, are:

- 1. Pressure energy or pressure head (p/w)
- 2. Kinetic energy or velocity head $(V^2/2g)$
- 3. Potential energy or gravity head (z)

The two secondary forms of energy are:

- 1. The internal energy or the kinetic energy of eddies and turbulence
- 2. Head energy

The three primary forms may be converted into each other and also into either of the two secondary forms; however, the secondary forms are not convertible into the principal forms of energy. The internal energy is inevitably converted into heat energy, which is dissipated and, therefore, unavailable from a mechanical standpoint in pipe flow. This loss of energy is incidental with the transfer of fluid in a pipe (7, p. 5).

The head loss hf (See Fig. 1) which occurs when an incompressible fluid flows between two sections of a straight pipe of uniform diameter is due to the viscous shear between fluid particles (8, p. 180).

Head lost by pipe friction

Certain general laws based upon observation and experiment appear to govern fluid friction in pipes and are ex-

		ı

pressed in all the generally accepted pipe formulae. These laws briefly stated are (5, p. 181):

- 1. Frictional loss in turbulent flow generally increases with the roughness of the pipe
- 2. Frictional loss is directly proportional to the area of the wetted surface, or to #dL
- 3. Frictional loss varies inversely as some power of the pipe diameter, or as $1/d^{x}$
- 4. Frictional loss varies as some power of the velocity, or as \boldsymbol{V}^{m}
- 5. Frictional loss varies as some power of the ratio of viscosity to density of the fluid, or as $(\mu/\rho)^r$

Combining these factors, a rational equation for head lost by pipe friction for any fluid can be written in the form:

$$h_{\mathbf{f}} = K' \times \pi dL \times 1/d^{\mathbf{x}} \times V^{\mathbf{m}} \qquad \text{(2)}$$

K' in the above formula is a combined roughness coefficient and proportionality factor. If n+1 is substituted for x, equation 2 can be written in the form:

$$h_{\mathbf{f}} = \left[\mathbf{K}' \, \pi / \mu / \rho \right]^{\mathbf{r}} \quad \underline{\mathbf{L}}_{\mathbf{n}} \quad \mathbf{V}^{\mathbf{m}} \qquad (3)$$

The effect of viscosity and density of water on loss of head at usual flow velocities is so small that it can be easily included in a general coefficient (5, p. 181). K being substituted for the quantity in brackets in equation 3,

the base formula for head loss in pipe flow can be written as:

$$h_{\mathbf{f}} = K \, \underline{L}_{\mathbf{d}} \mathbf{V}^{\mathbf{m}} \qquad (4)$$

Experiments show that the coefficient and exponents vary in value. For laminar flow, m is equal 1 and for turbulent flow its value ranges from 1.70 for smooth pipe to 2.0 or more for a rough pipe. Likewise n has a value of 2 for laminar flow and varies from 1.0 to 1.3 for turbulent flow (8, p. 181).

Unwin (9, p. 217) gives the following mean values for K, n, and m:

Surface	<u>K</u>	<u>n</u>	<u>m</u>
Wrought iron	.000351	1.210	1.75
Asphalted pipes	.000395	1.127	1.85
Riveted wrought iron	•000 4 05	1.390	1.87
New cast iron	.000334	1.168	1.95
Cleaned cast iron	.000378	1.168	2.00
Incrusted cast iron	.000685	1.160	2.00

Many empirical formulae have been proposed to represent the friction factor for smooth tubes over all or part of the range of Reynolds' Numbers. Practically all have been of the form $f = A + B/N_R^n$, the constant A, B, and n being adjusted to fit various sets of experimental results (3, p. 94). Blassius

(3, p. 94) published five such equations to cover the range of Reynolds Number from 2500 to 10^7 . Freeman arrived at the equation $f = 0.3597/N_R^{-261}$

as a result

of his experiments on hydraulic smooth pipes. This is in agreement with the work of Blassius (3, p. 87) who proposed the equation

 $f = 0.3164/N_R^{.25}$

from an

analyses of experimental data reaching to about N_R = 100,000.

Weston (11, p. 1) in reviewing experimental results in pipes, considered lead and brass tubing as being very smooth pipes. He proposed a formula based on his experiment for these kind of tubing. For tubing having interior sides similar to new cast iron pipes, he came to the conclusion that Darcy's formula was very well adapted.

The investigation carried on by Gibson (4, p. 207) indicates that if roughness of the surface of a galvanized iron pipe is taken as a unity, that of other surfaces is approximately as follows:

New uncoated cast iron	1.40
New asphalted cast iron	3.55
New wood stave pipes	5.65
Concrete pipe carefully hand-finished	1.50
Concrete pipe with ordinary finish	6.00
Rough concrete pipes	18.50

Results of experiments on friction losses in pipes of

various materials and diameters are commonly expressed by plotting the friction factor versus Reynolds Number. In the region of turbulent flow the results of this plot for hydraulically smooth pipe indicate that the pipe roughness when submerged in the boundary laminar film has no effect on the friction factor. However, as the thickness of the boundary laminar film decreases when the Reynolds Number increases, pipe, which may be hydraulically smooth for low values of the Reynolds Number may become rough as the Reynolds Number increases (10, p. 160).

The Darcy-Weisbach formula

A determination of K, m, and n is necessary for practical application of equation 4 to flow problems. Chezy stated that the head loss in the flow of water in conduits varied approximately as the square of the velocity. Darcy, Weisbach, and others, accepting Chezy's value of 2 for m, further modified equation 4 by proposing a value of 1 for n, and divided and multiplied by 2g (5, p. 182), so that

$$h_{f} = (K'' 2g) \frac{L}{d} \frac{v^2}{2g}$$

By substituting a so-called "friction factor" f for K'' 2g, the well-known pipe formula, called the Darcy-Weisbach formula, was obtained (5, p. 182):

$$h_{f} = f \frac{L}{d} \frac{V^{2}}{2g}$$
 (5)

This formula is of convenient form since it expresses

the loss of head in terms of the velocity head in the pipe. Moreover, it is dimensionally correct since f is a numerical factor, L/d is a ratio of lengths, and h_f and $\nabla^2/2g$ are both expressed in units of length (5, p. 182).

Minor losses

Whenever the velocity of a flowing stream is altered either in direction or in magnitude, such alteration sets up additional eddy currents and thus creates a loss of energy in excess of the usual pipe friction. The magnitude of this loss is proportional to the abruptness of the velocity change. It is customary to refer to such losses as minor losses because in a pipe line of considerable length the pipe friction itself may be so large that the value of these other losses may be relatively insignificant (2, p. 214).

It has been found that minor losses vary roughly as the square of the velocity, and they are commonly expressed by applying variable coefficients to the velocity head (5, p. 203). This led to the proposal of the basic equation:

$$\mathbf{h}_{\mathbf{L}} = \mathbf{K}_{\mathbf{L}} \ \frac{\mathbf{v}^2}{3\mathbf{g}}$$

in which K_L is the loss coefficient. Its value for a particular fitting can be determined only by experiment.

METHODS OF PROCEDURE

Apparatus

A gasoline engine driven centrifugal pump unit was operated to produce the required rates of flow. The water was drawn from a reservoir on the basement floor level and passed through the pump into the irrigation pipe line, then up to the first floor level to a hydraulic flume where the rate of flow was measured by a Cipolletti weir. The flow on passing through the Cipolletti weir returned to the basement reservoir (Fig. 2, 3, 4, and 5).

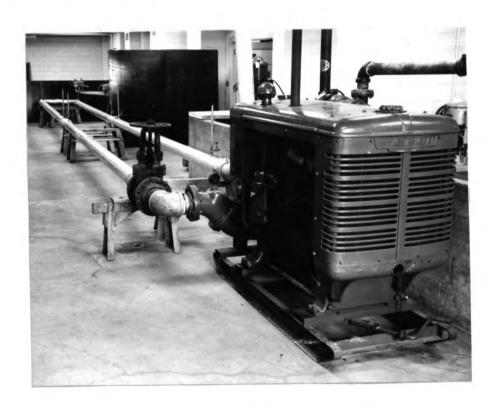


Fig. 2 General view of experimental installations.

Fig. 3 Discharge pipe into hydraulic channel.

Fig. 4 Use of hook gage to determine the discharge over the Cipolletti weir.

Fig. 5 Water flowing over the Cipolletti weir.

The several rates of discharge were obtained by regulating both the throttle of the engine and the gate valve that was placed between the pump and the first section of aluminum tubing. The rate of discharge for the weir is expressed by the equation $Q = 3.1025 \, \mathrm{H}^{1.42}$. The height was determined by the use of a hook gage at a point five feet upstream in the channel from the weir. The temperature of the water ranged between 60 and 65 degrees Fahrenheit.

Orifice openings 3/16 inches in diameter were made near the ends of each of the four 20-foot sections of 6-inch diameter aluminum tubing. A piezometer connection was made at each of these orifices (Fig. 6).

Fig. 6 Close-up of piezometer tube with stop cock and manometer tube attachment fittings.

Friction loss measurements in the tubing were replicated in triplicate for each rate of discharge. The head loss measurements through the couplers were duplicated for each rate of discharge. Single readings were made of the head loss

through one quarter turn elbow (90 degrees) and two quarter turn elbows that were paired to give a 180 degree change of direction of flow (Figs 8 and 9). Stop cocks were made a part of each piezometer so that the manometer connecting tubes could be coupled and uncoupled to a pair of piezometers at will (Fig. 6).

A differential manometer filled with carbon tetrachloride was used to determine pressure differences between
two piezometers (Fig. 7). The specific gravity of carbon
tetrachloride at 60 degrees Fahrenheit is 1.60. The difference in elevation of the two manometer columnes in half
inches was multiplied by the constant 0.025 to give the
equivalent reading in feet of water. To obtain the pressure
in pounds per square inch, the manometer reading in half
inches was multiplied by the factor 0.010825.

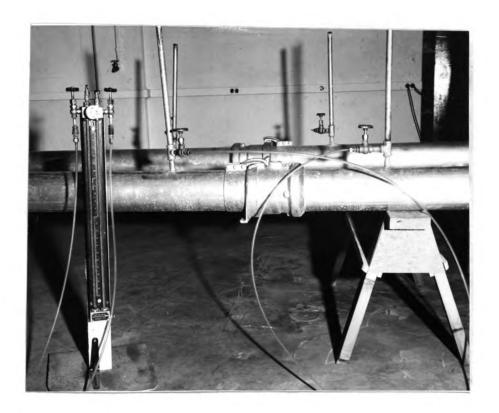


Fig. 7 Carbon tetrachloride differential manometer and piezometer connections.

Material tested

The materials tested were: new 20-foot length of ALCOA 63S-T6 extruded aluminum tubing, having a 6-inch outside diameter, 0.063 inch wall thickness, 5.874 inch inside diameter, and 0.1882 square foot cross sectional area; common couplers as shown in Fig. 7; 90 degree elbow; and 180 degree elbow (Figs. 8 and 9).

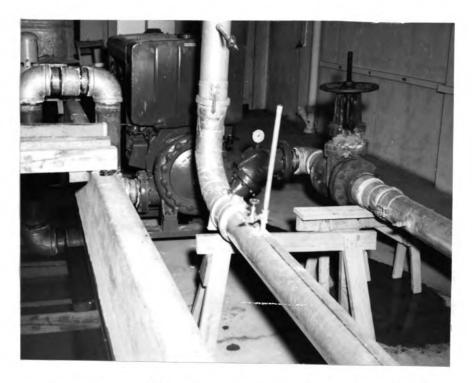


Fig. 8 90° elbow (piezometers 7 and 8)

Fig. 9 180° elbow (piezometers 3 and 4)

Experimental procedure

The purpose of the experiment was to determine the friction loss in pipe, the head loss in couplers, and the head loss in 90 and 180 degree elbows.

The experiment was divided into two parts. The first part was the determination of the friction losses in the tubing and the head losses in couplers when the longitudinal pipe alignment was straight in all planes.

The second part was the determination of the friction losses in couplers due to varying degrees of poor alignment of connecting sections of tubing through the coupling as follows: position 1 - coupler out of alignment in the vertical plane using the maximum amount of vertical displacement within the coupler; position 2 - tubing vertically displaced as in the coupler of position 1 and in addition a 3-degree deflection from true alignment through the coupler in the horizontal plane; position 3 - identical to position 2 except the angle of deflection was increased to 6 degrees, the maximum allowed by the test coupling (Fig. 10).

Fig. 10 Coupler set with pipes forming a 6-degree horizontal deflection.

For each test run, 11 manometer readings were made according to the following sequence (Fig. 11).

```
1st: Piez. 1-7 (Check)
           1-2 (Head loss in 2.63' of tubing with coupler)
2nd:
           1-3 ( "
                              20.16' "
3rd:
                             17.53' "
                                               only)
4th:
           2-3 ( "
                             180-degree elbow)
           3-4 ( "
5th:
                             17.53' of tubing only)
6th:
           4-5 ( "
```

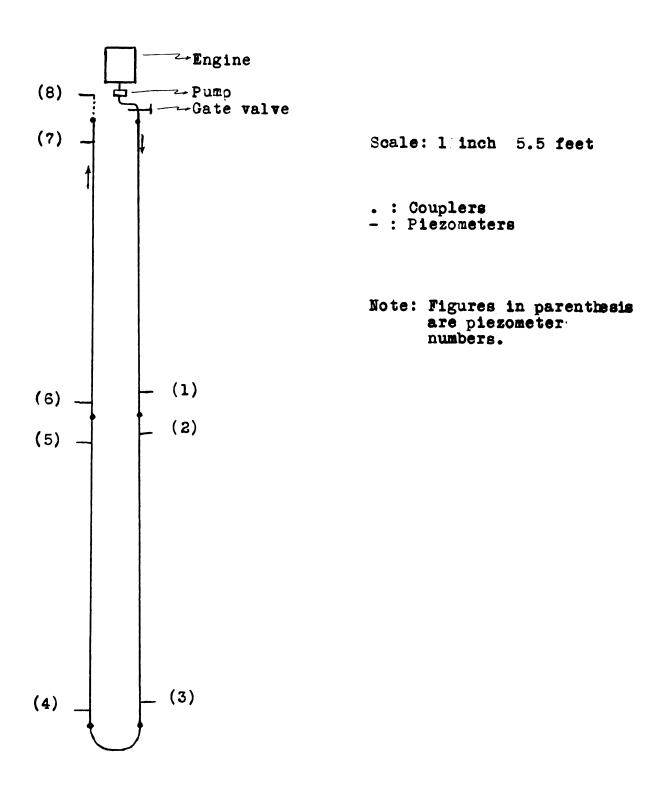


Fig. 11 Sketch of layout of experiment

7th: Piez. 4-6 (Head loss in 20.16' of tubing with coupler)
8th: " 5-6 (" " " 2.63' " " " ")
9th: " 5-7 (" " " 20.16' " " " ")
10th: " 6-7 (" " " 17.53' " " " ")
11th: " 7-8 (" " " 90-degree elbow)

These data are shown in Tables 1 and 2.

For the three different positions of tubing in the second part of the study, two manometer readings were made for each test run: between piezometers 1-2 and 5-6, to give the head loss in 2.63 feet of tubing and one coupler; and between piezometers 1-3 and 5-7 to give the head loss in 20.16 feet of tubing and one coupler (Tables 3, 4, 5, 6, 7, and 8).

Sequence of operation

The pumping unit was started and as soon as the engine had warned up sufficiently to give a reasonably steady running speed, and the rate of discharge through the Cipolletti weir had become reasonably constant the test data was collected in the following order: (1) measurement of rate of flow through the pipe system by means of the Cipolletti weir at the end of the hydraulic flume; (2) tabulation of the 11 manometer readings as indicated under Experimental Procedure; (3) redetermination of the rate of flow through the pipe system.

General Experimental Data (Head loss in half inches as read on a CCl_4 differential manometer. Table 1

	Disc	(cfs)	22	S	28	30	33		41	42	44	44	49	5	57	.632	68	74	75	79	.833	87	94	.01	1.058	60.
We	ight	(feet)	15	17	18	13	80		24	24	.254	56	~	88	Ō	.326	34	36	36	α	.396	41	43	45	.469	47
: Plezometer	7-8)	- ا	0.4	•	•	•	•	1.8	•	•		•	•	•	•	4.8	•	•	•	•	7.5	•	Ю.	ŭ	15.5	9
	4-9	•	0.7	•	•	•	•	1.5	•	•	•	•	•	•	•	3.6	•	•	•		7.0	•	0	o	11.8	o.
	2-4	1 •	0.8	•	•	•	•	1.9	•	•	•	•	•	3.3	•	4.9	•	•	•	8.0		0	1.9	3.1	14.0	5.1
	2-6	•	0.1	•	•	•	•	0.3	•	•	•	•	•	0.7	•	1.2	•	•	•	1.7		•	•	•	2	•
	4-6	•	0.8	•	•	•	•	0.0	•	•	•	•	•	3.8	•		•	•	•	•	8.4	o	۲	œ	13.9	4
		•	9.0	•	•	•	•	1.5	•	•	•	•	•	•	•	3.7	•	•	•	•	7.1	•	•	o	11.5	i
	4		6.0	•	•	•	•	1.8	•	•	•	•	•	•		10.1	Q	4	ຜູ	9	17.2	o,	0	Š	28.1	ċ
	2-3	•	0.7	•	•	•	•	1.9	•	•	•	•	•	•	•	3.5	•	•	•	•	6. 9	•	•	o	10.9	Q.
	I-3	•	8	•	•	•	•	2.3	•	•	•	•	•	•	•	4.6	•	•	•	•	8.8	0	-	8	13.6	ຜ
	2-I	0.1	•	0.2	0.5	۵. 0	0.3	o 8	0.3	0.3	0.4	0.5	•	•	•	1.3	1.3	•	•	•	•	1.9	•	•	2.4	•
	(I-1)	•	3.2	•	•			•	•	•	10.2	0	໙	4.	å	23.1		-	o.	~	41.7	44		£	= :	E
	(*)	N		4		Н	41	വ	35	24	ы	ω	42	ဖ	40	33	22	တ	I	39	22	43	7	26	34	10
Run	ON)	-	ભ	ю	4	လ	ဖ	7	ω	တ	10	11	15	13	14	15	16	17	18	19	80	21	22	23	24	છ

Table 1 (Concluded)

Run:					Pie	Zomete	ra:					M	7
No. (*)	(I=)	1-2	1-3	2-3	3-4	4-5		2-6	2-7	6-7	7-8)	Height	Disch
												D B	15
6 3	>44	•	6	3		3	6.	•	6	8	7.	49	.14
7 2	=	•	œ	4	S.	ີນ	<u>ф</u>	•	6	6.	6	51	22.22
8	=	•	0	•	8	2	i,	•	ċ	6	જ	53	.26
ഡ മ	E	•	જ	8	ä	œ	જ	•	3	φ	63	54	.31
7	r	4.7	24.6	O	43.3	19.1	24.5	4. 8	24.0	20.1	24.6	.559	1.358
רו	Ŧ	•	4.	. •	43.5	αĵ	S.		4.	0	4	55	.35
23	E	•	2	જ	4	•	.9	•	7	4	9	57	.40
3	=	•	6	3	E	ä	ω 0	•	a,	જ	8	(D	.44
4 1	=	•	i	4.	=	² Ω	0	•	0	3	6	S	.49
cv2	E	6.9		24.9	:	25.2	32.5	6.9	32.4	25.3	31.1	.607	1.516
œ.	ŧ	•	4	•	:	.9	သ	•	4.		υ.	61	. 55
7 1	=	•	4	8	=	8	Ω •	•	4.	7	av.	61	.55
.X	=	•	9	6	=	6	2	•	9	œ,	3	≈	.58
9	=	7.8	φ,	0	=	0	ģ	•	ф	0	4	63	.60
(C)	E	7.8	38.9	0	=		38.5	9.1	38.8	30.8	35.5	.634	1.624
41 20	ŧ	•	6	-	=	0	6	•	•	-4	.0	63	• 64
3	=	•	0	S	=		0	•	•		ဏ		67
43 14	=	8.8	42.4	33.5	=	32.3	43.0	9.8	43.8		40.2	99	. 7

(*) Order of experiment

General Experimental Data (Head loss given in feet of water and in p.s.1.). Table 2

6-7)	.00866 .00757 .00974 .01299	.01515 .01623 .01948 .02165	.02598 .02598 .02922 .03139	.05304 .05953 .06170 .06711	.09201 .10825 .11799 .12773
oupler) Piez (feet	.0200 .0175 .0225 .0300	.0350 .0375 .0450 .0500	0600 0600 0675 0625 0900	.1225 .1375 .1425 .1550	.2125 .2500 .2725 .2950
4-5 p.s.1.)	.00433 .00649 .00974 .00974	.01407 .01623 .01515 .01948	.01948 .02381 .02381 .03139	.04438 .04979 .04871 .06495	.08768 .09742 .10933 .12448
of pipe Piez. (feet	.0100 .0150 .0225 .0225	.0325 .0375 .0350 .0450	.0450 .0550 .0550 .0725	.1025 .1150 .1125 .1500	2050 2250 2525 2875 2950
17.53' 2-3 p.s.1.)	.00541 .00757 .01082 .01190	.01515 .02056 .02165 .02273	.02381 .02489 .02489 .03355	.04330 .04871 .04979 .06170	.08551 .09417 .11149 .11799
(Piez	.0125 .0175 .0250 .0275	.0350 .0475 .0500 .0525	.0550 .0575 .0575 .0775	.1000 .1125 .1150 .1425	.1975 .2175 .2575 .2725
5-6) p.s.1.)	.00108 .00108 .00216 .00108	.00216 .00324 .00324 .00433	.00433 .00649 .00757 .00974	.01515 .01623 .01623 .01840	.02165 .02381 .02489 .02706
with coup Piez. (feet	.0025 .0025 .0050 .0025	.0050 .0075 .0075 .0075	.0100 .0150 .0175 .0225	.0350 .0375 .0375 .0425	.0500 .0550 .0575 .0625
of pipe v . 1-2 p.s.1.)	.00108 .00108 .00216	.00324 .00324 .00324 .00324	.00541 .00757 .01082 .01190	.01472 .01515 .01623 .01723	.02056 .02273 .02598 .02598
2.63' (Plez. (feet	.0025 .0025 .0050	.0075 .0075 .0075 .0075	0125 0175 0250 0275 0325	.0325 .0350 .0375 .0400	.0475 .0525 .0600 .0600
Run No.	디	6 9 10	112 123 144 15	16 17 18 19	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 2 (Continued)

Run	2.63	of	with c	dno		17.53	of pla	o oN) e	oupler)	-
No	뒶	. 1-2	Plez	. 5-6)	(Piez	. 2-3	-	4-5	Piez	(4-9)
	(feet	p.s.1.)	(feet	p.s.1.)	(feet	p.s.1.)	(feet	p.s.1.)	(feet	p.s.1.)
	75	324	77	335	37	461	42	7483	Ľ	C C
	097	C	092	0400	20	602	2 6 7 6	5000	\circ	ر ک بر
28	.1050	.04546	.1025	.04438	.4075	.17644	27	1851	O	9 6
	2	စ	15	497	55	970	57	1980	O	2045
	17	508	80	519	92	2132	.4775	N I	. 5025	.21758
	1200	0519	מננ	0487	46	27.54	67	2004	70.50	a
		1 6	1	- (- i	H (5	4	`	9
	37	595	30	82	55	403	12	219	4	35
	47	663	35	84	87	543	35	316	മ	40
	65	4	57	.06819	.6050	.26196		565	ന	5
35	.1725	.07469		46	22	69	.6300	.27279	.6325	.27387
	.1800	79	85	801	37	760	വ	846	62	868
	88	0	Ω Ω	801	12	944	Н	074	80	944
	87	822	192	833	35	182	4	225	12	085
39	.1950	.08443	197	.08551	.7675	.33232	.7575	.32799	.7525	.32583
40	വ	876	8	.08768	72	344		312	70	334
٦	C/	ORGG	205	088	77	366	67	32	ď.	39
10	0000	90200	0000	0000	で よ の の の	3474B	707	24000	1000 1000	7567
2 !	0012	3 (1	3 (3 1	ዞ (- (5 6) -	3 () (
43	S	959	32	ဘ	37	929	04		62	73

Table 2 (Continued)

MIG	20.	16 fee	el Ci	pe wit	no	1		31 bo	W.B			
MON	(Fiez.		7	! −ઉ	Fiez.	5-7	(Flez.	3-4	اجہ اج≒	7-8)	Reight	101
	e e	(1.8.d	99	တ	96	p.s.1)	69	တ	9	p.s.1)	e	(cf
, <u>-</u>	_	06	ر در	7.	C.	60	07	600	000	0.3	14	ာ
เณ	C	008	000	089	<u>2</u>	000	200 200 200	000	010	0.4	<u> </u>	100
1 13	033	012	020	122	27	011	N 13 N 13	010	012	005	7	١Δ.
4) ⊹Ω	<u> </u>	(A) (A)	014	. O.	14	200	7	5	90	α I =	0 0 0 0 0 0 0
ودا	.0400	.0173	.0375	.0162	.0350	.0151	0050.	.0129	.0200	.0086	.196	306
Ó	34	19	42	18	37	16	37	016	027	11	0	33
2	5.	024	3	021	47	020	045	010	037	016	C/3	3B
മ	60	25 25	050	r Z	$\frac{5}{2}$	023	65	029	045	019	4	41
G	.0625	.0270	.0550	.0238	0090	.0259	.0800	.0346	.0575	.0248		.426
70	.\?	22	60	္သ	ŝ	028	90	038	090	025		44
	•	Ų		Ç	(,	' <u>'</u>	;	((Ċ	•	•
	O :	() ()	0	N.	2 ;	<u>ن</u> د	Ω	000	000	о 11/2 10/1	0	4
	_	22	77	3	72	37	2	048	077	33	22	94
	.0850	.0368	.0800	.0343		.0357	4	.0627		.0368		51
	\mathfrak{D}	36	<u>6</u>	3.5	<u>С</u> (7)	40	89	077	100	54	Ó	^
15	.1150	49	17	50		$\tilde{\omega}$	cs.	9	120	51	.326	
	0	C	, 17	C (4	ك	0		: :	6	ŗ	_	C
	S S	(X C.	ဂ္ဂ	à	C	α	<u>`</u>	CCT	T 4 7	70	4	n O
	၁	64	45	0:50	9	77	62	56	165	071	ပ	74
	$\frac{n}{cc}$	ô6	62	2	2	23	90	164	167	072	ď	S
13	Н	.0768	.1950	.0844	0	.0866	.4125	.1786	.1775	.0768	.383	. 793
20	220	\odot	10	<u>O</u> 6	. 2150	933	0	186	187	081	\circ	$\mathcal{O}_{\mathcal{S}}$
	./.	60	57	14	67	15	9	14	47	0.7	~~	87
	0 0 0 0	90	275	6	45	a a	75	240	325	740	4	94
	2 5 5 0 5 0	4 ° €	200	15.5	0.0	4 1	7 2 2	044	370	163	45.	50
7 c 5 4	3400	. 147°	3475	1504	.3500	. 1515	. 70%5	3041	3875	1677	.469	1.058
	9.5	17.	2 2	6.5	77	163	$\tilde{2}$	324	400	173	47	60
	•	1	?	}))))	! ! }			I	

Table 2 (Concluded)

MIG	20	16 fee	t of pi	90	0	er		10	OWS		9	Į.
NO N	┝┥	5	162	4-6	1/10		16	4	pie	7-8)	181	
	O	p.s.i)	Φ	[02]	ம	p.s.1))	(feet	മ	(feet	p.s.1)	fee	(cfs)
	00	8	17	90	15	9	808	343	45	192	49	.14
27	4725	.2045	.4800	.2078	4775	.2067	.8800	.3810	48	.2089	.519	1.222
	15	33 33 33 33 33 33	ς; δ	28	83	226	957	14	52	239	53	.26
	62	243	70	46	77	250	.03	46	97	54	54	.31
20	15	266	12	Ġ	00	59	60	73	S	266	55	.35
	20	69	20	71	02	60	0	2	612	265	55	.35
	687	297	80	92	77	293	71.1	7.48	72	291	57	.40
	740	320	722	12	705	305	=	=	700	303	(D	. 44
	.7750	ŭ	767		7	330	=	=	737	.3193	539	1.498
33	807	349	.8125		810		=	=	2	336	Ó	.51
	870	376	677	6.4	9 55 55	70	F	ŧ	S S S S	357	6	ان ان
32	8575	3712	8825	.3821	8950	3767	=	=	.8125	.3518	.616	1.558
	2220	399	930	S S	907	392	=	=	832	360	62	. 53
	ひの	413	9	15	957	14	E	=	870	376	63	.60
	72	421	62	16	70	S	=	=	87	84		9
	č	L	ב ב	į	Ċ		:	:	L) (9	e e
	ないが	S S	\ \ \ \ \	Z.	333	3	=	Ė	Ġ.	0	O.	• 04
	0		00.	55	1,015	.4584	=	:	.9525	.4124	.649	
43	90		1.075	.4654	08	2	=	=	00	35	Ó	•

Table 3 Experimental data on couplers in position 1 (Head losses in half inches as read on a CCl4 differential manometer).

Ru	n:		Piezor	neters:		We	ir:
(No.	*)	(1-2	1-3	5-6	5-7)	(Height	Disch.)
-						(feet)	(cfs)
1	3	0.6	2.4	0.7	2.6	• 265	.471
2	14	1.0	3.0	0.9	3.1	.278	.504
3	7	1.1	3.4	1.0	3.3	.292	.540
4	22	1.1	3.8	1.1	3.7	.3 06	.577
5	8	1.1	3.9	1.2	3.8	•306	.577
6	23	1.2	4.2	1.3	4.1	.314	.599
7	21	1.3	4.4	1.3	4.5	.322	.621
8	15	1.4	4.6	1.4	4.7	.331	.645
9	28	1.5	5.3	1.4	5.2	.343	.679
10	1	1.6	6.0	1.5	5.9	.356	.716
11	24	1.7	6.4	1.6	6.5	.370	.756
12	16	1.8	711	1.8	7.0	.382	.791
13	4	1.9	8.8	2.0	8.9	.390	.815
14	9	2.0	9.4	2.0	9.3	.397	.835
15	6	2.3	11.2	2.2	11.5	.409	.872
16	32	2.3	11.9	2.4	12.1	.416	.893
17	13	2.5	12.5	2.4	12.9	.425	.931
18	2 9	2.6	13.8	2.6	13.7	.434	.948
19	2	2.7	14.7	2.7	14.3	.445	.983
20	10	2.9	14.8	2.7	14.2	.446	•986
21	25	2.9	15.5	3.0	15.4	.457	1.020
22	20	3.0	16.1	3.1	15.9	.470	1.062
23	5	3.3	16.4	3.3	16.3	.482	1.100
24	30	3.7	18.2	3.8	18.5	.496	1.146
25	33	4.3	21.3	4.2	20.9	.509	1.189
26	10	A 17	27 5	4 0	24. 2		
26	19	4.7	23.5	4.8	23.2	.521	1.233
2 7 28	11 26	5.1	23.9	5.0	23.7	.524	1.239
		5.4	24.3 25.1	5.3 5.8	24. 8 25. 5	.53 5	1.276
29	12	5.8				•550 555	1.328
30	17	6.0	25.6	5.8	25.7	. 555	1.345
31	34	6.8	28.5	6.7	28.7	.572	1.404
32	27	7.9	31.2	7.5	30. 8	.587	1.456
33	35	8.5	34.9	8.3	35.0	.611	1.541
34	31	9.0	38.0	9.2	38.3	.625	1.592
3 5	18	9 .9	41.1	10.1	41.9	.63 6	1.631

^{*} Order of experiment

Table 4 Experimental data on couplers in position 1 (Head losses given in feet of water and in lb./in2).

Run	2.63	feet of pip	e with co	upler
No.	(Piez.	1-2	Piez	
ло.	(feet	p.s.1.)	(feet	p.s.i.)
1 2 3 4 5	.0150 .0250 .0275 .0275 .0275	.006495 .010825 .011907 .011907	.0175 .0225 .0250 .0275 .0300	.007577 .009742 .010825 .011907 .012990
6 7 8 9	.0300 .0325 .0350 .0375 .0400	.012990 .014072 .015155 .016223 .017320	.0325 .0325 .0350 .0350 .0375	.014072 .014072 .015155 .015155 .016223
11 12 13 14 15	.0425 .0450 .0475 .0500 .0575	.018402 .019485 .020567 .021650 .024897	.0400 .0450 .0500 .0500 .0550	.017320 .019485 .021650 .021650
16 17 18 19 20	.0575 .0625 .0650 .0675 .0725	.024897 .027062 .028145 .029227 .031392	.0600 .0600 .0650 .0675	.025980 .025980 .028145 .029227 .029227
21 22 23 24 25	.0725 .0750 .0825 .0925 .1075	.031392 .032475 .035722 .040052 .046547	.0750 .0775 .0825 .0950 .1050	.032475 .033557 .035722 .041135 .045465
26 27 28 29 30	.1175 .1275 .1350 .1450 .1500	.050877 .055207 .058455 .062785 .064950	.1200 .1250 .1325 .1450 .1450	.051960 .054125 .057372 .062785
31 32 33 34 35	.1700 .1975 .2125 .2250 .2475	.073610 .085517 .092012 .097425 .107167	.1675 .1875 .2075 .2400 .2525	.072527 .081187 .089847 .099590 .109332

Table 4 (Concluded)

Run	(20.1	6' of pip	e with c	oupler)		(Weir)	
		z.1-3		2.5-7)	(Height	Disc	harge)
No.	(feet	p.s.i.)		p.s.i.)	feet	(cfs	g.p.m.)
1	.0600	.025980	.0650	.028145	.265	.47064	211.237
2	.0750	.032475	.0775	.033557	.278	.50384	226.138
3	.0850	.036805	.0825	.035722	.292	.54014	242.431
4	•0950	.041135	.0925	.040052	.306	.57675	258.862
5	•0975	.042217	.0950	.041135	.306	.57675	258.862
6	.1050	.045465	.1025	.044382	.314	.59878	268.750
7	.1100	.047630	.1125	.048712	.322	.62081	278.638
8	.1150	.049795	.1175	.050877	.331	.64532	289.638
9	.1325	.057372	.1300	.056290	.343	.67882	304.674
. 10	.1500	.064950	.1475	.063867	.356	.71574	321.245
11	.1600	.069280	.1625	.070362	.370	.75607	339.346
12	.1775	.076857	.1750	.07577 5	.382	.79113	3 55.082
13	.2200	.095260	.2225	.096342	.390	.81471	3 65.666
14	.2350	.101755	.2325	.100672	.397	.83550	374.997
15	.2800	.121240	.2875	.124487	.409	.87180	391.289
16	.2975	.128817	.3025	.130982	.416	.89287	400.755
17	.3125	.135312	.3225	.139642	.425	.92051	413.152
18	.3450	.149385	.3425	.148302	.434	.94843	425.683
19	.3675	.159127	• 3 575	.154797	.446	.98566	442.393
20	.3700	.160210	•35 50	.153715	.446	.98566	442.393
21	.3875	.167787	.3850	.166705	.457	1.02041	457.990
22	.4 025	.174282	.3 975	.172117	.470	1.06167	476.509
23	.4100	.177530	.4075	.176447	.482	1.10076	494.054
24	.4550	.197015	.4625	.200262		1.14637	514.525
25	.5325	. 23 0572	.5225	.226242	.509	1.18918	533.739
26	.5875	.254387	.5800	.251140	.521	1.23262	553.236
27	.5975	.258717	.5925	.256552	.524	1.23913	556.158
28	.6075	.263047	.6200	.268460	.535	1.27636	572.888
29	.6275	.271707	.6375	.276037	. 5 5 0	1.32755	595.844
30	.6400	.277120	.6425	.278202	•55 5	1.34462	603.505
31	.7125	.308512	.7175	.310677	.572	1.40357	629.964
32	.7800	.337740	.7700	.333410		1.45600	653.496
33	.8725	.377792	.8750	.378875		1.54101	691.651
34	.9500	.411350	.9575	.414597		1.59158	714.348
3 5	1.0275	.444907	1.0475	.453567	.636	1.63160	732.311

Table 5 Experimental data on couplers in position 2 (Head losses in half inches as read on a CCl₄ differential manometer).

Run	:		Piezom			We:	ir:
No.	*)	(1-2	1-3	5-6	5-7)	Height	Disch)
						(feet)	(cfs)
1	3	0.8	2.7	0.7	2.7	.265	.471
2 3	15	1.0	3.9	0.9	3.6	.284	.519
3	11	1.2	5.1	1.2	4.9	.306	.577
4	19	1.3	6.3	1.4	6.4	.329	.640
5	8	1.5	7.2	1.5	7.1	.351	.701
6	ı	1.8	7.5	1.7	7.3	. 356	.716
7	22	2.0	8.3	1.9	8.4	.372	.762
8	4	2.3	9.1	2.2	9.2	.390	.815
9	12	2.4	11.9	2.4	12.0	.406	.863
0	6	2.5	12.2	2.4	11.9	.409	.872
1	16	2.6	13.5	2.7	13.2	.426	.924
2	7	2.7	14.1	2.8	13.9	.435	•951
3	20	2.8	14.0	2.8	14.3	.437	.959
4	2	3.1	14.5	3.0	14.5	.445	•98 3
5	5	3.5	16.3	3.5	16.6	.482	1.101
6	23	3.7	17.5	3.9	17.3	.491	1.130
7	13	4.9	21.8	5.0	22.2	.512	1.200
8	9	5.6	24.5	5 .5	24.2	.523	1.236
9	17	6.7	28.4	6.6	28.1	• 5 45	1.341
0	21	7.6	31.2	7.8	31.4	. 563	1.372
1	14	8.5	34.5	8.5	34.5	. 586	1.453
2	18	9.8	39.0	9.9	38.7	.604	1.517
3	10	10.6	40.1	10.8	39.7	.620	1.574

^{*} Order of experiment

(Head loss given in feet Experimental data on couplers in position 2 of water and in p.s.i.). Table 6

Pun	ဖြ	edid jo	with	oupler		of pipe	with c	oupler		11
No.	(Fiez (feet	- 1- 0 : 8	Pie feet	5-6 p.s.	(Fie	D.S	Fiez feet	5-7 p.s.		\Box
Н	20	08	017	07	067	029	067	0 2 9	28	~
¢/3	.0250	.0108	0020.	.0086	.0975	.0422	0060.	.0389	\mathfrak{Q}	5
: :3	030	012	OBU	122	127	042	122	053	30	2
4	いな	14	35	15	157	068	160	069	Q	64
വ	037	016	037	16	80	077	177	076	\mathcal{C}_{2}	
စ		19	042	189	87	91	182	7.9	Ω	
2	050	다	47	02	07	89	10	060	~	9
တ	.0575	.0248	0	.0238	23		23	0	30	81
ത	9	ζΣ C Σ	090	30	297	23	300	129	\supset	86
10	S.	027	ó	Ω	05	152	97		40	.871
	0 0 0	α	0675	S	7.7		77	376	C,	○
	2 0) () (3 % 3 C	ر کا () 	2 C		1 6	کا 3
	200	いな	00/0.) (5)	5 5 5 6 7 5 6 7 5 6 7 6 7 6 7 6 7 6 7 6 7	3 2	いったり	よいい	ι 4 3 κ	21 6
	000		\circ	0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 7 0 0 0	1 50	2 C	1 C	4 4) a
۲ ر <u>.</u>	0875	.0378	.0875	.0378	4075	1764	4150	1796	482	1.100
))	•)) I)]	1	
	92	40	97	42	437	189	432	187	\circ	.12
17	.1225	.0530	.1025	.0541	.5450	.2359	. 5550	.2403	.512	1.200
	40	9	137	<u>ე</u>	612	265	605	261	W	33
	67	072	165	7	710	02	05	304	4	.34
20	<u>6</u>	9 5	95	84	80	337	785	5 0	9	.57
	2.12	36	212	092	8 6 2	73	862	73	59	.45
	245	106	47	C 2	975	422	867	418	0	.51
23.23	.2650	.1147	.2700	1169	1,002	.4340	. 9925	.4297	.620	1.573

Table 7 Experimental data on couplers in position 3 (Head losses in half inches as read on a CCl₄ differential manometer).

Ru	1:		Piezom	eters:		Wei	r:
(No.	*)	(1-2	1-3	5-6	5-7)	(Height	Disch)
						(feet)	(cfs)
1	3	1.0	2.9	0.9	2.8	.265	.471
2.	18	1.2	4.2	1.1	4.1	.296	.5 51
3	12.	1.4	5.6	1.5	5 .7	.3 29	.640
4	1	1.6	7.3	1.7	7.4	.356	.716
5	7	1.8	7.4	1.8	7.4	.360	.727
6	16	1.8	7.5	1.9	7.6	.362	.733
7	4	2.4	9.4	2.4	9.5	.390	.815
8	9	2.6	10.3	2.7	10.1	.403	.853
9	6	2.7	12.4	2.8	12.7	.4 09	.872
10	19	2.9	13.4	3.0	13.3	.422	.911
11	13	3.2	14.5	3.2	14.5	.436	.9 5 5
12	2	3.4	15.2	3.3	15.0	.445	.983
13	21.	3.4	15.5	3.4	15.4	.447	•989
14	5	4.1	17.5	4.0	17.1	.482	1.100
15	8	4.5	18.9	4.4	18.5	.4 8 8	1.120
16	14	5.1	20.8	5.0	20.5	.505	1.177
17	20	5.7	23.2	5.8	23.1	.522	1.233
18	10	6.2	25.6	6 .3	25.5	.538	1.285
19	15	7.4	29.0	7.2	28.8	.557	1.351
20	17	8.4	32.4	8.0	32.5	.579	1.428
21	22	9.3	36.2	9.1	35.0	.596	1.488
22	11	11.2	39.5	11.0	38.9	.613	1.548

^{*} Order of experiment

(Head loss given in feet Experimental data on couplers in position 3 of water and in p.s.i.). Table 8

Run	2.631	of pipe	with c	oupler	20.16	of pipe	with co	oupler	We	ir
No.	됩	1-2	Piez	5-6	E,	1-3	Piez	17	ight	Dis
	feet	D.S.I.	feet	D.S.1.)	(feet	D.S.I.	(feet	D.S.1.	(feet)	(cfs)
Н	25	10	022	600	72	31	70	30	ဖ	7
Q	30	12	27	11	05	45	102	44	\circ	വ
ю	.0350	.0151	.0375	.0162	.1450	9090	.1425	.0617	.329	.640
4	40	17	42	18	85	92	85	8	Ŋ	\mathbf{H}
2	45	130	4. Ū	19	85	80	85	80	Ó	Q
ဖ	45	6	47	20	87	081	90	80	9	10
7	0090	.0259	0090	.0259	.2350	1017	.2375	.1028	.390	.814
ထ	65	28	67	029	57	11	252	109	40	Ŋ
თ	67	83	70	030	ñ	134	17	37	0	~
10	072	31	75	32	35	45	332	143	Q	91
	80	34	80	34	62	156	62	56	3	വ
12	.0850	.0368	.0825	.0357	.3800	1645	.3750	.1623	.445	. 982
	085	36	85	36	87	167	85	99	4	∞
	020	44	8	43	37	189	477	85	∞	2
15	12	48	10	47	72	04	62	8	ω	.12
16	27	ເນ	25	54	20	225	12	221	0	.17
17	.1425	.0617	.1450	.0627	. 5800	.2511	.5775	.2500	.522	1.232
18	55	စ	57	68	40	77	37	276	3	288
19	85	∞	80	11	25	13	20	1	S	.35
20	S	တ	8	86	2	20	12	51	~	.42
	32	66	27	O.		3918	97	88	Ō	• 48
22	.2800	.1212	.2750	119		27	0	.4210	.613	1.548

For the second part of the study where the degree of alignment of two sections of tubing through a coupling was varied, a complete set of runs at different rates of discharge was made for one position; then the tubing was shifted to the next position and another series of measurement made at various rates of discharge.

If there was a small difference in discharge readings, an average between the first and the second measurements was considered. If the difference was great, the run was discarded.

For the three different positions the head losses were, at the beginning, determined for each rate of discharge, that is, the pipes had to move to give each one of the different positions for each discharge. Later it was noted that the best was to determine the head loss in each position, varying the discharge. This was done and Tables 3, 4, 5, 6, 7, and 8 give the results.

PRESENTATION OF DATA

Evaluation of exponents and coefficients in the general pipe flow equation.

The general equation for friction loss in tubing is:

$$h_{f} = K_{a} \, \, \underline{L}_{d^{n}} V^{m}$$

It may be modified and written in the forms: $h_f = KQ^m$ for fiction loss in pipe; $h_L = KQ^m$ for the head loss in pipe and couplers; $h_c = KQ^m$ for the head loss in couplers; and $h_c = KQ^m$ for the head loss in elbows.

By plotting experimental values of h_f , h_L , h_c , and h_e against corresponding values of Q on logarithimic paper, the value of the exponent m and the coefficient K is determined. The slope of the line is m, and K is the intercept at Q = 1. h_f and h_L used in these plottings were the average of friction losses and head losses found in experiment.

These values of h_1 and h_L were determined from Figs. 12, 13, 14, and 15, and are given as follows on the base of losses per 100-foot length of tubing.

^(*) See explanations on p. 19.

Fig. 12 Friction loss vs. flow rate in 17.53' length of tubing, and head loss vs. flow rate in 20.16' length of tubing with one coupler correctly aligned with the second section of tubing.

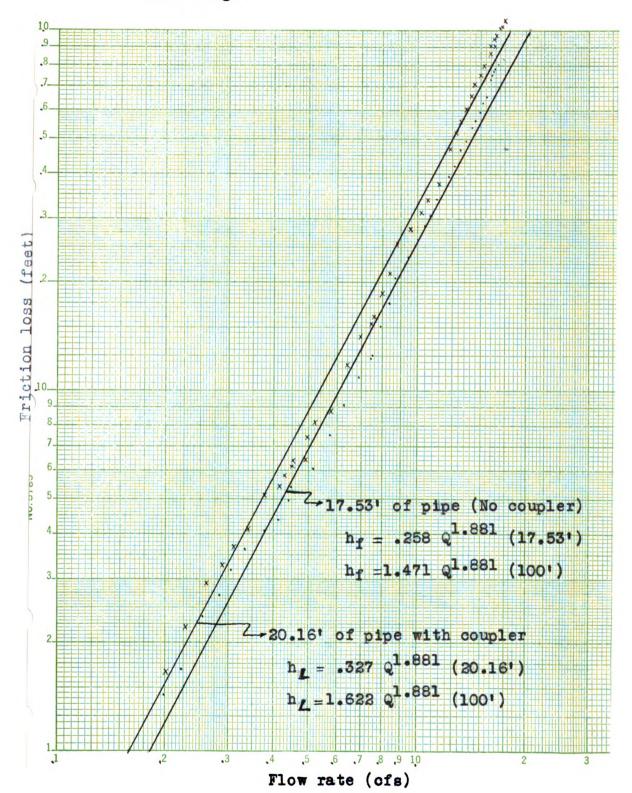


Fig. 13 Head loss vs. flow rate (20.16-foot length of tubing and one connecting coupler in position 1).

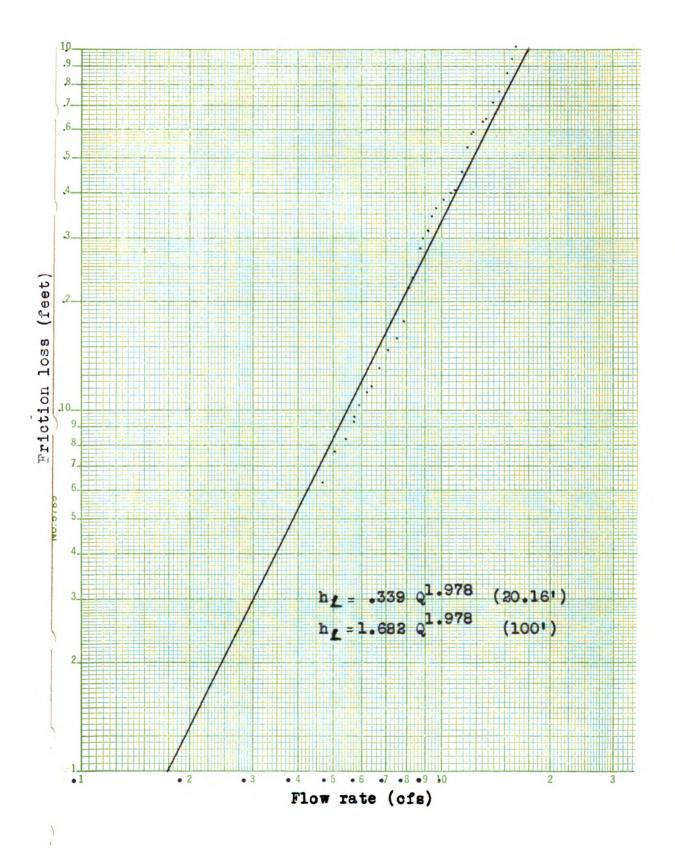


Fig. 14 Head loss vs. flow rate (20.16-foot length of tubing and one connecting coupler in position 2).

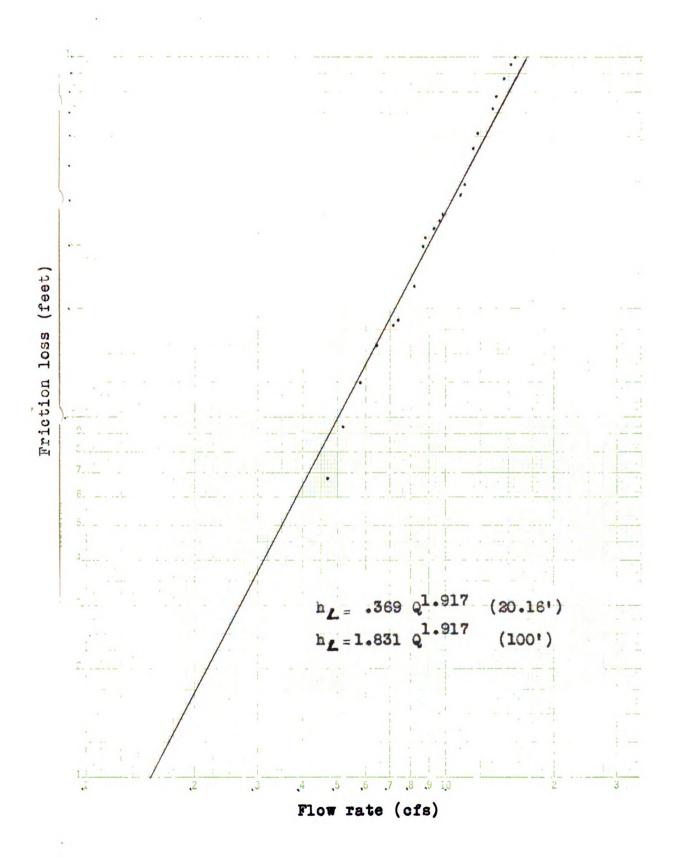
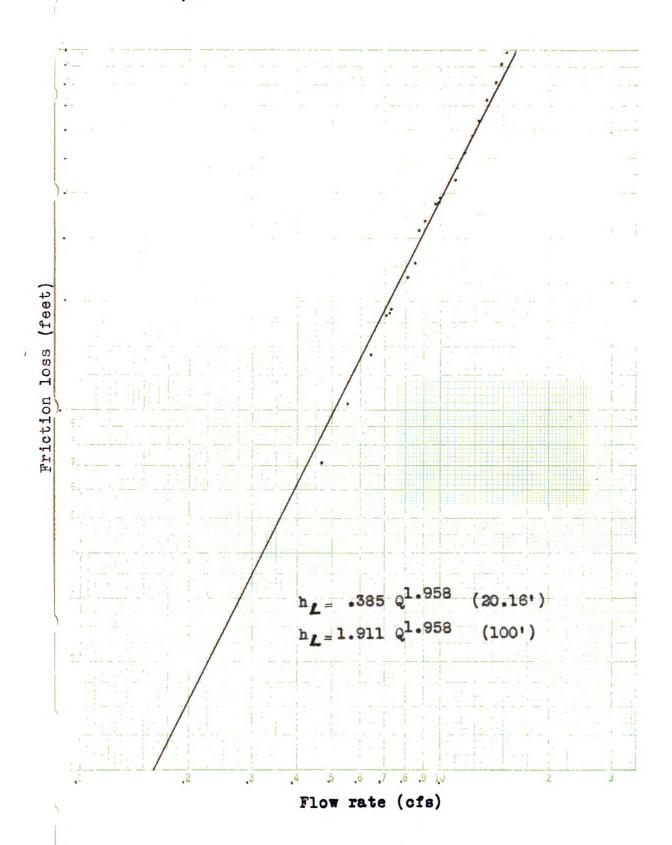



Fig. 15 Head loss vs. flow rate (20.16-foot length of tubing and one connecting coupler in position 3).

The average value of the exponent m to the nearest hundreth is 1.92, and it is used to recalculate the value of K in the five equations above:

Pipe without coupler
$$h_{f} = 1.500 \ Q^{1.92}$$
 (1)

Pipe with well set coupler
$$h_{L} = 1.649 \ Q^{1.92}$$
 (2)

Pipe with coupler in position 1 ...
$$h_L = 1.662 Q^{1.92}$$
 (3)

Pipe with coupler in position 2 ...
$$h_L = 1.836 Q^{1.92}$$
 (4)

Pipe with coupler in position 3 ...
$$h_L = 1.885 Q^{1.92}$$
 (5)

These equations (1 through 5) were used for calculating the values of $h_{\tilde{I}}$ and $h_{\tilde{L}}$ for the various flow rates as shown in Table 9.

Pipe without coupler

Its equation for the friction factor in tubing as based on the form $h_f = KQ^m$, was found to be $h_f = 1.471 \ Q^{1.881}$. To solve for the expression $h_f = K_a \ \underline{L} \ V^m \ d^n$ it is necessary to assume a value for n, as it is impossible to determine its value when only one diameter is tested.

The value of n is assumed to be 1.14 to compare the result with those found by Olson (7, p. 17). K_a can be evaluated as follows:

$$h_{f} = KQ^{m} = KA^{m}V^{m} = K_{a} \frac{L}{d^{n}}V^{m}$$

$$K_{a} = \frac{Kd^{n}A^{m}}{L} = \frac{1.471(.4895)^{1.14} (.1882)^{1.881}}{100} = .000281$$

Table 9 Loss of head per 100-foot length of six inches aluminum tubing with and without couplers.

Dis	ch.	he	and hi	Values:		
(cfs	gom)	(1)	(2)	(3)	(4)	(5)
•	4 =	07.00	03.00	01.00	0000	000#
.1	45	.0180	.0198	.0199	.0220	.0227
.2	90	•0683	.0750	.0756	.0835	.0858
.3	13 5	.1486	.1634	.1647	.181 9	.1868
.4	180	.2583	.2839	.2862	.3161	.3246
•5	2 25	.3964	.4358	.4393	.4852	.4982
.6	270	.5626	.6185	.6234	.6887	.7071
.7	315	.7563	.8314	.8380	.9257	.9504
.8	360	.9774	1.074	1.083	1.196	1.228
.9	404	1.225	1.347	1.358	1.500	1.540
1.0	449	1.500	1.649	1.662	1.836	1.885
1.1	4 94	1.800	1.978	1.994	2.203	2.262
1.2	53 9	2.127	2.338	2.357	2.603	2.672
1.3	58 4	2.481	2.727	2.748	3.037	3.117
1.4	629	2.860	3.144	3.169	3.501	3.594
1.5	67 4	3.264	3.588	3.616	3.995	4.102
2.0	0. 2			00020		
1.6	719	3. 697	4.065	4.096	4.526	4.646
1.7	764	4.155	4.567	4.603	5.086	5.221
1.8	80 9	4.635	5.095	5.135	5.673	5.824
1.9	85 3	5.145	5.6 5 6	5.700	6.297	6.465
2.0	898	5.670	6.233	6.282	6.940	7.125
		= 5 - 5 - 5				

- (1) $h_f = 1.500 Q^{1.92}$ (Pipe without coupler)
- (2) $h_{L} = 1.649 Q^{1.92}$ (Pipe with well set coupler)
- (3) $h_{L} = 1.662 Q^{1.92}$ (Pipe with coupler in position 1)
- (4) $h_{L} = 1.836 Q^{1.92}$ (Pipe with coupler in position 2)
- (5) $h_L = 1.885 Q^{1.92}$ (Pipe with coupler in position 3)

So,
$$h_f = .000281 \frac{L}{d^{1.14}} v^{1.881} \dots (6)$$

To compare the above equation with Olson's equation (7, p. 17) for $h_f = .000330$ L $V^{1.78}$ and with values of $\frac{1}{d^{1.14}}$

hf given by the Aluminum Company of America's general table,
Table No. 10 was developed on the basis of 100-foot length of
tubing for purposes of comparison.

$$h_f = .000281 \frac{100}{(.4895)^{1.14}} v^{1.381} = .0635 v^{1.881} \dots (7)$$

$$h_{f} = .000330 \frac{100}{(.4895)^{1.14}} v^{1.78} = .0747 v^{1.78} ... (Olson)$$

Table 10 Comparison of equations (Loss of head per 100-foot length of six inches aluminum tubing without coupler)

Vel. Di		v1.881	v l.78	Equ(7)	Olson	ALC OA
(ft/sec)	(cfs)			(feet)	(feet)	(feet)
1	.188	1.00	1.00	.063	.074	.070
2	.376	3.68	3.44	.234	.257	.250
3	.565	7.90	7.08	.503	.528	.510
4 5	.7 5 3	13.6	11.8	.865	.881	.850
5	.942	20.6	17.6	1.31	1.31	1.27
6	1.13	28.9	24.4	1.83	1.82	1.74
7	1.32	39.0	32.1	2.48	2.39	2.28
8	1.50	49.9	40.3	3.16	3.02	2.88
9	1.69	62.0	50.1	3.94	3.73	3.62
10	1.88	76.0	60.0	4.82	4.48	4.38

Coupler losses

The head loss in couplers was determined by subtracting

the friction loss in 17.53-foot length of tubing from the head loss in 20.16-foot length of tubing and coupler. To accomplish this the equation $h_f = KQ^m$ for 100-foot length of tubing was subtracted from the equation $h_L = KQ^m$ for 100-foot length of tubing and couplers:

 $h_f = 1.500 Q^{1.92}$; for 100 feet of tubing (5 couplers), $h_c = h_L - h_f$, so:

Well set coupler (*)...... h_c = .149 $Q^{1.92}$ Coupler in position 1 (*) ... h_c = .162 $Q^{1.92}$ Coupler in position 2 (*) ... h_c = .336 $Q^{1.92}$ Coupler in position 3 (*) ... h_c = .385 $Q^{1.92}$

For each coupler the equation will be:

Well set coupler (*) $h_c = .0298 \text{ Q}^{1.92}$ (8) Coupler in position 1 (*) ... $h_c = .0324 \text{ Q}^{1.92}$ (9) Coupler in position 2 (*) ... $h_c = .0672 \text{ Q}^{1.92}$ (10) Coupler in position 3 (*) ... $h_c = .0770 \text{ Q}^{1.92}$ (11)

Table 11 gives values of $h_{\mbox{\scriptsize c}}$ determined from the above equations for several flow rates.

Loss coefficient for couplers

The determination of the loss coefficient K_c for couplers in the equation for head loss in fittings, $h_c = K_c \frac{V^2}{2g}$, can be done as follows:

(*) See explanations on page 19.

Loss of head $h_{\mbox{\scriptsize c}}$ and loss coefficient $K_{\mbox{\scriptsize c}}$ for couplers. Table 11

Di	SC.1;		bc v	lues			>	alues:	
1 1	gran)	(8)			(11)	(12)	13)		(15)
۲.		003	003	008	600	81	88	.184	1
લ	0 6	.00135	.00147	.00305	.00350	.0772	.0840	.1745	.1995
53	3	0029	032	066	0076	074	91	391.	93
4.		1900	055	0117	0132	073	07B	.167	α) Φ)
က်	W	078	085	0177	203	71	078	.162	8
φ.	~	111	121	252	288	20	77	.159	30
. 7	315	.01502	.01633	.03388	.03882	.0599	.0760	.1577	.1807
	ō	194	0211	437	501	009	ુ 2	.156	20
	Ó	243	264	549	6≅9	69	74	.154	27
1.0	4	0298	324	672	770	67	73	ಗಾ ಬ	75
•	0	357	598	806	924	67	73	.152	74
•	Û	422	459	952	091	066	72	.150	72
1.3	584	.04928	.05358	.11114	.12735	.0665	.0723	.1500	.1718
•	Q	568	617	281	14 68	699	71	.149	20
•	2	648	202	462	675	065	77	.148	δ. D
•		734	798	656	999	065	7.1	.147	. 0
1.7	764	.08254	.08974	.18314	.21329	.0651	.0709	.1469	.1683
•	\circ	036	0997	076	379	064	02	.146	67
•	Ω	1022	111	304	041	064	040	.145	99
•	\mathfrak{S}	120	1224	2540	2910	064	69	.144	රා
		(8)	h, = ,0298	G		0	908	(Well set)	
		(6)	c = .032	21.9	; (13)	c = .073	i.	ositi	1)
		(10)	0	, ,		= .15		(Fosition	2)
		(11)	0 = 0	0.1.9		c = .175	0	osi	3)

$$h_c = K_c \frac{v^2}{2g} = KQ^{1.92}$$
 .. $K_c = \frac{v^2}{v^2} KQ^{1.92} = \frac{2gA^2}{Q^2} KQ^{1.92}$

$$K_c = 64.4 \text{ (.1882)}^2 \text{ KQ}^{-.08} = 2.281 \text{KQ}^{-.08}$$
. So, for:

Well set coupler
$$K_c = .0679 Q^{-.08}$$
 (12)

Coupler in position 1
$$K_{c} = .0739 Q^{-.08}$$
 (13)

Coupler in position 2
$$K_{c} = .153 \quad Q^{-.08}$$
 (14)

Coupler in position 3
$$K_c = .176 Q^{-.08}$$
 (15)

Table 11 gives values of $K_{\mathbf{C}}$ obtained from the above equations.

Elbow losses

Experimental values of h_e and corresponding values of Q were plotted on logarithmic paper (Fig. 16) to give the coefficient K and the exponent m of the equation $h_e = KQ^m$. The equations become:

For 90-degree elbow (piez. 7-8) ...
$$h_{e} = .315 Q^{2.25}$$
 (16)

For 180-degree elbow (piez. 3-4) ...
$$h_{e} = .600 Q^{2.25}$$
 (17)

Table 12 gives values of h_e for several flow rates according to equations (16) and (17).

Loss coefficient for elbows

As it was determined for couplers, Ke value is:

$$h_e = K_e \frac{v^2}{2g} = KQ^{2.25}$$
 $K_e = 2.281 KQ^{.25}$ so

Fig. 16 Head loss vs. flow rate (90-degree and 180-degree elbows).

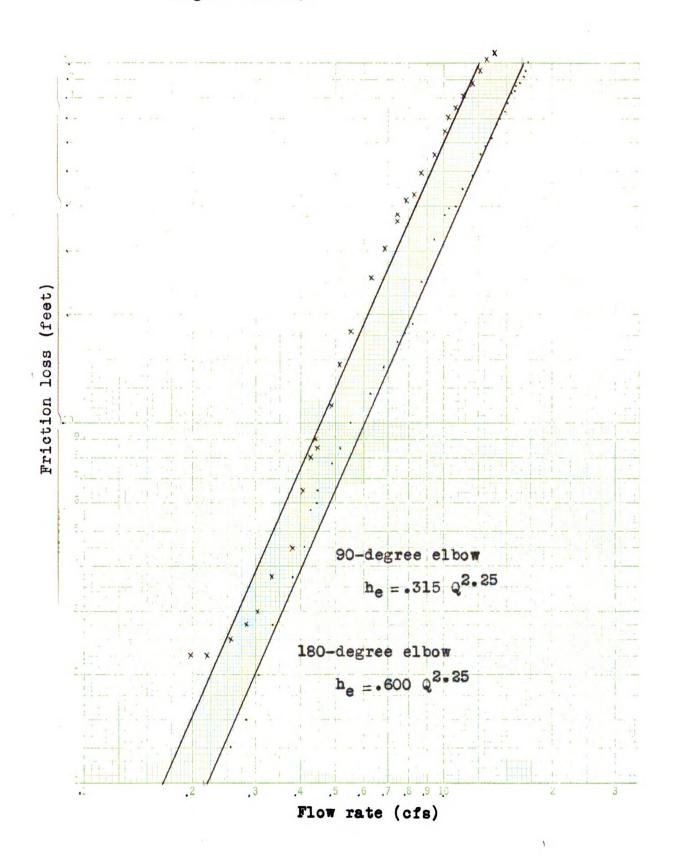
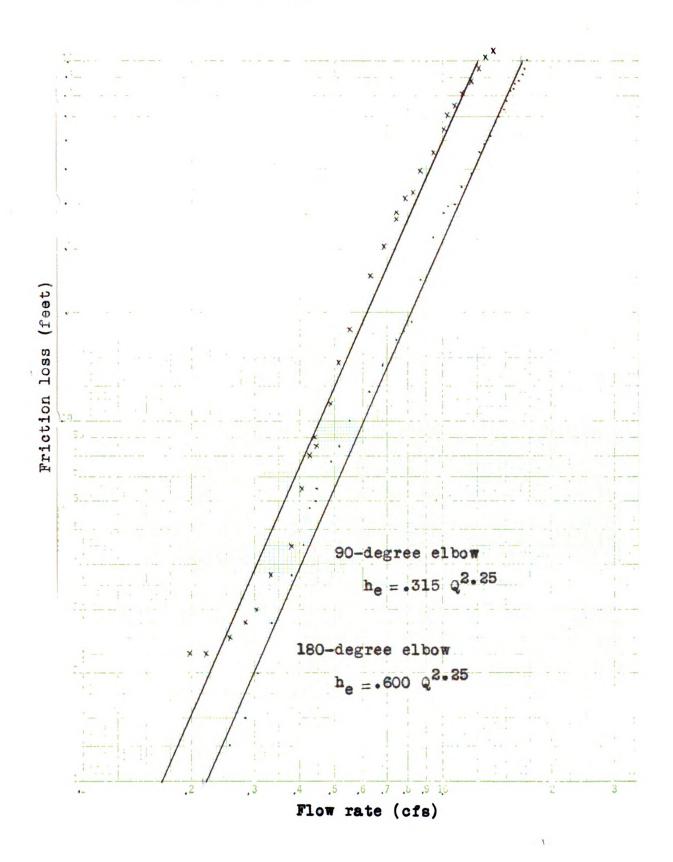



Fig. 16 Head loss vs. flow rate (90-degree and 180-degree elbows).

For 90 -degree elbow (piez. 7-8) ...
$$K_e = .718 \text{ Q} \cdot .25$$
 (18)
For 180-degree elbow (piez. 3-4) ... $K_e = 1.368 \text{ Q} \cdot .25$ (19)

Table 12 gives values for K_e according to equations (18) and (19).

Table 12 Loss of head he and loss coefficient Ke for elbows.

Ī	Disch.	900	1800	900	1800
(cfs	gpm)	n _e	hе	Кe	K
		(feet)	(feet)		
.1	45 90	.00177	.00337 .01605	.4041 .4805	.7696 .9152
.3	135 180	.02098	.03996	.5318 .5712	1.013
.5	225	.06621	.12612	.6041	1.151
.6 .7	270 315	.0997 .1411	.1900 .2689	.6 322 .6572	1.203 1.251
.8 .9	360 404	.1906 .2485	.3631 .4733	.6795 .6998	1.294
1.0	4 49	.3150	.6000	.7185	1.368
1.1	494 539	.3902 .4750	.7434 .9048	.7355 .7524	1.401 1.433
1.3	58 4 629	.5685 .6709	1.083 1.278	.7673 .7807	1.462
1.5	674	.7843	1.494	.7950	1.514
1.6 1.7 1.8	719 764 809	.9072 1.039 1.181	1.728 1.980 2.250	.80 83 .8203 .8 31 5	1.540 1.563 1.584
1.9 2.0	8 53 898	1.335 1.499	2.544 2.856	.8 43 8 .8549	1.607 1.628

CONCLUSIONS

l. The friction factor determined for new six-inch diameter aluminum tubing is in agreement with that presented in the literature for smooth tubing. Its equation for 100-foot length of tubing h_f = 1.471 $Q^{1.881}$ if written in the form of the general equation of pipe flow becomes:

$$h_{f} = .000281 L v^{1.881}$$

This equation is based on the result of experiments on only one size diameter and so its practical value is limited.

2. The friction loss in 100-foot length of six-inch diameter aluminum tubing, plus the head loss in couplers set at 20-foot intervals (5 couplers in 100 feet) can be expressed by the following equations:

3. The head loss in each coupler can be written:

4. The loss coefficient K_c for couplers in the equation $h_c = K_c \frac{V^2}{2g}$ was determined as being:

5. The head loss in 90-degree and in 180-degree elbows can be expressed:

For 90-degree elbow (Piezometers 7-8).. $h_e = .315 Q^{2.25}$ For 180-degree elbow (Piezometers 3-4). $h_e = .600 Q^{2.25}$

6. The loss coefficient Ke for elbows was determined

and its value is:

For 90-degree elbow (Piezometers 7-8). $K_e = .718 Q^{.25}$ For 180-degree elbow (Piezometers 3-4). $K_e = 1.368 Q^{.25}$

SUMMARY

- l. Extruded aluminum tubing and couplers have been used extensively in portable sprinkler-irrigation systems in recent years. Recognizing the need for further research on the hydraulic characteristics of aluminum tubing, couplers, and elbows, the Perfection Sprinkler Company of Ann Arbor, Mich., made available to the Agricultural Engineering Department the 6-inch diameter of new aluminum pipe, couplers, and elbows used in this experiment. Investigations were made in the Spring of 1950 in the Hydraulic Laboratory of the Agricultural Engineering Department of Michigan State College.
- 2. The experiment was divided into two parts. The first part was the determination of the friction losses in the tubing and the head losses in couplers when the longitudinal pipe alignment was straight in all planes. The second part was the determination of the friction losses in couplers due to varying degrees of poor alignment of connecting sections of tubing through the coupling as follows: position 1 coupler out of alignment in the vertical plane using the maximum amount of vertical displacement within the coupler; position 2 tubing vertically displaced as in the coupler of position 1 and in addition a three (3) degree deflection from true alignment through the coupler in the horizontal plane; position 3 identical to position 2 except the

angle of deflection was increased to six (6) degrees, the maximum allowed by the test coupling.

The experiment includes also the determination of the head losses in 90-degree and in 180-degree elbows.

- 3. A differential manometer filled with carbon tetrachloride was used to determine the pressure differences between two piezometers. The piezometers were set in such a way as to give the friction loss in pipe, the head loss in couplers, the head loss in couplers and pipe, and the head loss in elbows. The rate of flow was measured by a Cipolletti weir.
- 4. Results of investigations on friction loss in pipe and head loss in couplers when the longitudinal pipe alignment was straight in all planes are in good agreement with those presented in literature for smooth tubing and sprinkler-pipe couplers.
- 5. Results of experiments with couplers out of alignment in the vertical plane by using the maximum amount of vertical displacement within the coupler (position 1) gave only a slightly higher value for the head loss coefficient as compared with the head loss coefficient for coupler when the longitudinal pipe alignment was straight in all planes. The same occurred when the head loss coefficient for 3-degree horizontal displacement (position 2) is compared with that for 6-degree deflection from true alignment (position 3).

However, the 3-degree deflection (position 2) gave a relatively much greater value for the head loss coefficient as compared with that in position 1.

6. The loss coefficient value for the 180-degree elbow was found to be almost twice as great as the loss for the 90-degree elbow.

LITERATURE CITED

- 1. Christiansen, J. E. Irrigation by Sprinkling. California
 Agr. Exp. Sta. Bul 670. 1942.
- 2. Daugherty, R. L. Hydraulics. 4th ed. New York: McGraw Hill Book Co., 1937.
- 3. Freeman, J. R. Experiments upon the Flow of Water in Pipes and Pipe Fittings. New York: American Society of Mechanical Engineers, 1941.
- 4. Gibson, A. H. Hydraulics and its Applications. 4th ed. New York: Constable and Company Ltd., 1930
- 5. King, H. W., Wisler, C. O., and Woodburn, J. G. Hydraulics.

 5th ed. New York; John Wiley and Sons, Inc., 1948.
- 6. Le Conte, J. N. Hydraulics. 1st ed. New York: McGraw Hill Book Co., Inc., 1926.
- 7. Olson, H. M. The Determination of the Friction Factor for New and Used Aluminum Tubing and Head Loss in Sprinkler-Pipe Couplers. Thesis. Utah State A.C., 1950.
- 8. Russel, G. E. Hydraulics. 5th ed. New York: Henry Host and Co., 1948.
- 9. Unwin, W. C. A Treatise on Hydraulics. 1st ed. London:
 Adam and Charles Black, 1907.
- 10. Vennard, J. K. Elementary Fluid Mechanics. 2nd ed. New York: John Wiley & Sons, 1947.
- 11. Weston, E. B. Loss of Head Due to Friction of Water in Pipes. 3rd ed. New York: D. Van Nostrand Co., 1903.

ROOM USE ONLY Ar 23 '53

MR 19 54

