\ HI WW 1 105 988 ”THS EFFECTS OF CYANEDE ON TRICKLENG FILTER MICROORGAMSMS Thesis for the Degree of M. S. MICHIGAN STATE COLLEGE Donald George Daus .1954 TH ES‘S This is to certify that the thesis entitled THE EFI’ECTS or CYANIDE N TRlChLII-IG FILTER l-ilCROOHGAItlSIfi presented bg Donald G. Dans has been accepted towards fulfillment of the requirements for ”a 6’. MS; degree in W Engineering Major professor Date May 27; l9f§h 0—169 EFFECTS OF CYANIDE ON TRICKLJNG FILTER MICROORGANISMS by DONALD GEORGE DADS tA THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER or semen IN CHEMICAL ENGINEERING Department of Chemical Engineering 1954 rHESIS ACKNOWLEDGEMENTS The author wishes to express his sincere thanks to Dr. 0. Fred Gurnham, under whose constant interest and thoughtful suggestions, the experimental work and the writing or this the sis were accomplished. He is also indebted to Dr. LL. Mallmann for suggestions on the media employed in the bacteriological phases of this investigation. , Much assistance was given by Mr. Charles K. Steams, graduate student. who worked on the same project. Grateful acknowledgement is due various members of the Bacteriology Department of Michigan State College, especially Miss Lisa Neu, who supplied cultures used in this investigation. The writer deeply appreciates the grant by the National Institutes of Health. since this financial support made the investigation possible. of” e r w L t‘Lg (1:3 TABLE OF CONTENTS Abstract........ .......................1 Introduction}...........................3 Survey of Previous Work.................# Experimental Procedure;................l3 Fig. 1 Schematic Flow Diagram....14 Fig. 2 Cyanide Feed and . Settling Tank................l5 Fig. 3 Overall View..............lS Fig. 4 Trickling Filters.........15 Presentation and Analysis of Results...18 Graph 1 BOD of Trickling Filter-Eff1uents.............19 Graph 2 Nitrates in Trickling Filter EffluentBOe e e e e e e ee .0020 Graph 3 Nitrites in Trickling Filter Effluents.............2l Graph.4 Effect of Shock load of Cyanide on Filter Effluent...22 Graph 5 Effect of Cyanide on Nitrite Production in EffluentsoeeeeeeeeeoefioeeeOeea Graph 6 Effect of Cyanide on Nitrite Production by Psuedomonas aeggginosa.......25 Graph 7 Effect of Cyanide on Nitrite Formation by Unadapted 23. W. . . . . 26 / Table 1 Toxicity Studies: Glucose Broth................28 Table 2 Toxicity Studies: _ Synthetic Broth..............29 Summary..................... ...........32 'Conclusions.............................34 Suggestions for Further Work............35 Bibliography............................37 Appendix I: Experimental Data..........40 Appendix 11: Analytical Methods......“..#8 ABSERACT Sodium cyanide in concentrations of 0.3 ppm (as ON) was applied to a pilot plant trickling filter. This was later increased to 1 ppm. A second trickling filter, operated in parallel, was used as a control. The 0.3 ppm concentration of CN did not seriously affect the BOD of the effluent, but a high nitrite concentration appeared in the effluent. The nitrites decreased after a week, falling below the control. Nitrates were also below those found in the control filter effluent". A CN concentration of 1 ppm retarded nitrite and nitrate formation and increased the BOD of the effluent. A shock load of 4 ppm CN also re suited in high nitrites. Nitrite and nitrate formation in the filter effluent is retarded by 40 ppm ON, especially in samples from the control filter. High cyanide concentrations (20 and 200 ppm) inhibited reduction of nitrate to nitrite by Psuedomonas aemginogg (both unadapted and previously adapted to 200 ppm cyanide); 2 ppm was slightly inhibitory, but 0.2 ppm had no apparent effect. The high concentrations caused a slight initial increase (followed by a decrease) in nitrites formed by the adapted strain. Laboratory toxicity studies using a glucose broth -1- -2- and a synthetic broth indicated that choice of medium is an important factor in demonstrating toxic effects. Most organisms tested were tolerant to 20 and 200 ppm ON on glucose broth. On the synthetic broth, consider- ably less resistance was shown. Only one organisn grew in contact with 200 ppm ON: Serratia marcescens; this occurred only in the presence of 1 ppm methylene blue. A cyanide tolerant strain of Streptomces M was isolated from sewage. The author believes that nitrite production is the result of emergency use of nitrate as an oxidizing agent by the exposed organisms. This action is also sensitive to cyanide, but the inhibition is much slower. INTRODUCTION Since dissolved cyanides are generally toxic to humans and to fish, it is in thepublic interests ‘to prevent discharge of cyanides to natural streams. Gaseous hydrogen cyanide, which is evolved on hydrolysis of cyanide salts and other cyanide compounds, is also very dangerous. Cyanide discharges arise from industrial wastes, such as spent plating liquors and gas works effluents, which, accidentally or deliberately, are dumped into streams or into municipal sewers. The damaged treatment plants fail to perform oxidation of the wastes and contain the cyanide in the effluent. Cyanides inhibit the biological oxidation of the sewage; thus the streams become overloaded with organics, which are both a nuisance and a potential public health hazard. These effects are probably more important than the toxiCity of the cyanide itself. In order to employ a biological cyanide disposal unit, or to operate a sewage treatment unit in the presence of cyanide contamination, the mechanisms involved must be more clearly understood. While many cyanide wastes contain the cyanides as, hmayy metal complexes, only simple cyanides were studied in this investigation. SURVEY OF PREVIOUS‘IORK The cyanide ion has two outstanding chemical characteristics: it is easily oxidized and it forms very stable metallic complexes. IMost of its biological activity can be explained on one or the other of these bases. Cyanide inhibition of cell respiration led Warburg to discovery of the cytochrome systems. These cytochromes have in common a heme (tetrapyrrole) nucleus and a heavy metal ion as prosthetic group. Inhibition is due to the formation of a complex between the cyanide and the enzyme's metallic ion, thus reducing its effectiveness. The toxicity of cyanides to mammals is due to inactivation of the blood hemoglobin (21); Since the cytochromes are frequently essential in hydrogen transport, repression of these enzymes will 'seriously hamper cell metabolism. Many other enzymes (1.9. the polyphenol oxidases) contain heavy metals as active groups and are thus likely to be cyanide-sensitive. The cytochrome oxidase system (”indophenol oxidase") is also inhibited by cyanides (45) (47»: ’ i ' -Not all enzymes are inhibited by cyanide. Urease is activated (25); as is the plant proteolytic enzyme (3-papain (24)% Some enzymes, as the dehydrogenases (47), are neither inhibited nor stimulated by the cyanide ion. .4. ~5v Few general statements can be made concerning the effects of cyanide on bacteria, as these are too diverse physiologically to be covered in a few sentences. In order to discuss these effects in an orderly fashion, the bacteria will be considered in families. Bacteria are generally classified in the class Schizomycetes of the sub-phylum Fungi. Most bacteria, as ordinarily conceived, belong to the order Eubacteriales. There are eleven families in this order. Of these, the following have representatives occurring in sewage and in biological treatment units (6)(48)t Nitrobacteriaceae, Psuedomonadaceae, Rhizobiaceae, Micrococcaceae, Achromo- bacteriaceae, Enterobacteriaceae, Bacteriaceae and Bacillaceae. The Nitrobacteriaceae are autotrophic. The chief genera found in trickling filters are Nitrosomonas and Nitrobacteg. Both have been reported to be inhibited by cyanide in concentrations of 2.5 x 10‘5 (37) and 5 x 10'6 molar (31) respectively. These are equivalent to 70 and 140 ppm CE. Rae and Rao have demonstrated that Nitrosomqggg fails to adapt to ammonia oxidation in the presence of cyanide ion. These organisms are chieflyresponsible for Iiitrite and nitrate formation on trickling filters and in .5011. There are several reports of cyanide inhibition of soil nitrification, including Lees (and Quastel (26) and item and Clark (44). l The Psuedomonadaceae are generally gram negative rods, and are frequently found in soils and water. One of the -5- most commonly encountered is Psuedomonas aeruginosa.'Work reported on this organism is conflicting: Quiroga and M0nte- words (36) report that five strains of Pg. aeruginosa produce HCN from amino acids. Mochtar (33) also noticed HCN pro- duction. - Barron and Friedeman (5). on the other hand, report that this organism is completely inhibited bdeCN. Acetobacter gylinum is reported by Cozic (13) to be cyanide-tolerant, but six other species are inhibited by 4 x 10"3 molar KCN (10,200 ppm CN). No reports on the effects of cyanide on Rhizobiaceae were discovered in this survey: Micrococcaceafi are gram positive spheres. Because of their shape, they present less surface to their sur- roundings and therefore would be more likely to be highly tolerant of cyanide. cocci Burnet (11) reports that gram positiveAare least sensitive to cyanide; Streptococcus tolerates 0.5% CN (5000 ppm). Sarcina $333; is reported to be cyanide tolerant (18). According to Braun (8), Staphyl ococci are more in- fluenced by the cyanide than are the Streptocooci under ‘aerobic conditions. (This agrees with Burnet's data: "Stagzlococcus amp" is inhibited completely by 0.04% an.) ’ ' The pathogenic cocci are reported by Sevas (39) to be stimulated by cyanides at 10,200 to 51,000 ppm.concentrations. -7- 0f the Achr0m0bacteriaceae, only data concerning Alcaligenes fecalis are reported. Barron and Friedeman (5) report inhibition; Mochtar (33) reports HCN production. The Enterobacteriaceae arelhighly fermentative gram negative rods‘,: which include such pathogens as Salmonella typhosa and Shigella dysenteriae. ' Escherichia4 391;, the bacteriologist' a favorite, is reported by Burnet to resist 0.1% (1000 ppm) 0N. However, Aubel, Rosenberg and Szulmajster (4) report that cell respiration is inhibited, except in the presence of pyruvate. Stickland (56) reported that 0.0001 M CN (2800 ppm) inhi‘tit s nitrate reduction. Dessy (14) reported that E. 29}; is killed by 10% NaCN‘ in six hours. Mochtar reported that Proteus produces HON. Burnet reported that Shigella does tolerate cyanide," while Salmonella typhosa does not. Braun and Kurman (9) reported that Shigella is less resistant under aerobic conditions. ‘ Salmonella paratyphosa tolerates 0.01% but not 0.1%, according to Bone. ‘ The Bacteriaceae are a 'miscellaneous" group; no general trend was noted. . Bacillaceae are the spore-forming bacteria. Nest investigations have been centered on Bacillus subtilis. As found by Boné (7). their spores survive five days in 0.1% CH while the vegetative cells are killed. These vegetative cells survive in 0.01% CN. Similar inhibition -8- ‘ is found by Hartree (22), who found parallel results with 5,7~dichloro-8-hydroxyquinoline, also a heavy metal complexing agent. Cyanides are not particularly toxic to bacteria. Southgate (41) reports more (total numbers) organisms in a sewage containing cyanide than in normal sewage. Burnet stated that all cyanide-tolerant organisms he found possesed peroxidase (sfiheme-oontaining enzyme), except Shigella. (Since hydrogen peroxide easily oxidizes cyanides igflyitgg, this may imply a mechanism for detoxification.) He believed that the major effect of the cyanide was to lower the redox potential of the system. Lbffler and Rigler (28) believed that ability to liberate hydrogen sulfide from cystein is highly correlated with cyanide resistance. 328 and HON both attack metal ions; tolerance for one would render tolerance for the other more likely. _ Molds have been reported resistant to cyanide. Dessy (14) reported that while 5. 29;; is killed in six hours, "molds” resist lOZINaCN for over one day. Tam and Clark (44) reported that soil fungi and actinomycetes are little (affected by calcium cyanide. Generally fungi are cyanide- ‘holerant. The chief interest seems to lie in demonstration <3f ability to use cyanide as a sole nitrogen source. Some work has been done on the toxicity of cyanide to yeasts. Heisel (30) reported that Hg(CN-)2 is more toxic than Ker which, in turn, is more toxic than NaCN. He stated that -9- long exposure to low cyanide concentrations causes a loss of fat in yeast cells. This is not demonstrated in yeast cells exposed to high concentrations of cyanide for a short interval. I Winzler (45) found that cyanides inhibit yeast res- piration by inhibiting cytochrome oxidase and combining with an (unspecified) enzyme system. Some work has been done with green algae. Nitella and Chlorella are among the genera reported to be cyanide- tolerant (38)(15). Some HON is produced by higher plants, but its function is unknown. ' " The toxicity of cyanide to mammals and fish is well recognized. I An organism has been isolated from the effluent from a trickling filter adapted to thiocyanate containing wastes by Happold and Key (20). They named it "Bacterium thig- exaggxidags". but it is not well characterized. Meyerson and Skupenko (32) reported finding thiocyanate in streams containing cyanide. (This may be a clue to the mechanism of cyanide destruction or detoxification.) The effects of cyanide on sewage and sewage treatment may be considered as the summation of the effects on the single organisms.p However, the populations involved in the disposal process are not well characterized. ludzack, Moore,.Krieger and Ruchhoft (29) have cone ducted a study on the effects of cyanide in sewage samples -10.. in the biological oxygen demand (BOD) test. They concluded that cyanide causes a lag in, or inhibition of, metabolism. but does not sterilize the sewage. Five percent inhibition was caused by 0.3 ppm CN. They further conclude that the chief disposal mechanism in natural streams is volatilization. There are two general methods 'of aerobic biological disposal: activated sludge process and the trickling filter method. Both employ a zoogleal mass of bacteria which oxidize the material; in the activated sludge process, the mass is not attached to any support. The earliest reported work on the activated sludge process was that of Wooldridge and Standfast: in 1937 (48). They found that 10“]! ON (200 ppm) or the vapor from solid KCN inhibited the bacterial actioh. In 1946, Nolte and Bandt (34) set up a miniature plant using a modification known as thefllagdeburg process and ‘butyrates or g-cresol as the organic substrate. The protozoa were shocked by 5 ppm KCN but later recovered. At 62 ppm, after adaptation, the effluent was free from cyanide and butyrate. If normal activated sludge is supplied in the re- cycle, 330 ppm KCN will not interfere with oxidation of the butyrate. (Evidently multiplication of the organisms is more Sensitive than their metabolism.) Similar results were noted when m—cre sol was .used as the substrate. In 1948, Lockett and Griffiths (29) noted that 1 ppm HON partially inhibited the oxidation process. HON was blown Off. in the aeration tank. -11- Coburn, in 1949, (12) found that 5 ppm caused a partial inhibition of oxidation by the activated sludge, but 20 ppm caused complete inhibition. This latter inhibition was over- come on removal of the cyanide. There is even less data on the trickling filter process. Pettet and Thomas, in 1948, (35) noted that less than 1 ppm HCN had no effect on the BOD of the effluent. (This disagrees with.lndzack'2§.§;.) Increasing the cyanide to 2 ppm had little effect on BOD but nitrate formation was retarded. An increase to 4 ppm resulted in an increased BOD in the effluent, as also did 10 ppm. After the filter was in contact with these concentrations for a time, the abnormalities dissappeared and the cyanides were more-or- less completely destroyed. when the cyanide was increased to 30 ppm, nitrification was completely destroyed. About two months were required for adaptation. Then, total nitrogen in the effluent was greater than in the control. The'Water Pollution Research Board (Great Britain) published some work on cyanide toxicity in their 1951 annual report (1). They stated that 1 ppm had little effect on the son of the effluent but that the permanganate oxygen demand had increased. Nitrification was initially inhibited; In 1952. this group reported (2) that 50-10025 of the cyanide fed to the filter could be included in the ammonia, Initrites and nitrates in the effluent. an adaptation, ‘ cyanide in copper, zlnc and cadmium complexes were also -12- almost completely destroyed. This was not the case for the iron and nickel complexes. . These studies do not agree closely on details, but owing to the possibility of different flora on the filters and different materials in the sewage, this is not unexpected. To generalize, the BOD value is less sensitive to cyanide than chemical oxidation values. Nitrate formation is inhibited. The cyanides are eventually destroyed on the filter, if continuous exposure is provided. EXPERIMENTAL.PROCEDURE Two pilot-plant trickling filters, two feet in diameter and with a rock depth of six feet were set up in parallel, complete with separate settling tanks ( 70 gallons capacity), recirculation pumps and constant-head tanks. These units are located in a special building on the grounds of the East lensing municipal sewage disposal plant. Each filter has a capacity of 600 gallons per day, when operated at a recycle ratio of six to one. Figure 1 is a schematic flow diagram of the system. Figures 2 to 4 are photographs of these units; Figure 3 is an overall view of the pilot-plant. The sewage, free from industrial wastes, is obtained . from the primary settling basin in the East lensing plant. Control of flow rates is obtained by using orifices installed below constant-head tanks. A fan and ducts are installed to remove contaminated air from the room. After the filters had matured, one "was exposed to a continuous feed of 0.3 ppm (as GR) sodium cyanide. The feed unit was essentially a supply bottle inverted over a .funnel, with a stopcock to regulate flow rates. (See Figure 2.) Cyanide concentrations in the sewage were varied by changing the concentration of cyanide in the feed solution. It was necessary to use distilled water in these solutions to avoid precipitation of the cyanides. After four weeks, the cyanide was increased to 1 ppm. -13- t . callu'ia‘si.v..l.lmis..>i' It. .’-. ‘00" :‘l:l").’:t '1'.... .(i‘ i...n'.--'.u'.!.i D'.’ b. II‘VI":I' . nv‘wll Il.l\r.||l. 051' ¥’.IIIDI 1": .r i weaned o» h and.“ wean-em nngsm nopaah.llthu daemonalodadmho sewnmac . . JE- EI} [Pl EdmwéHn. 30AM OHdeamum H chewak “fir"‘iV'T-‘r doom pndpmdoo - _ . hopawm Honpdoo Figure 2 CIANIDE REED AND SETTLING TANK Figure 3 OVERALL VIEW Figure 4 TRICKLING FILTERS -16- Sampleswere taken daily: at the bases of the filters ("effluent"); at the recirculation pump intake ("influent") and at the constant-head tank proportioning the raw sewage. (To retard clogging of orifices, a.gcragn is inserted above this tank.) Daily duplicate determinations of biological oxygen 1 demand. ' . (BOD) and single determinations of oxygen consumed by dichromate (DOC) by Shaw‘s method (40), nitrates (phenoldisulfonic acid-method) (3); and nitrites were performed. Nitrates and nitrites were determined I colorimetricadly, employing a Coleman Model 9 Nephlo—Colorimeter. (See Appendix II for calibration curves.) In addition, formaldehyde determinations by chromo-' tropic acid (10) and by condensation with phenylhydrazine (43) and cyanide determinations by Prussian blue formation, by picric acid reduction, and by ferric thiocyanate formation were also made. Calibration curves for these analyses are included in Appendix II. At the end of the pilot-plant investigation, the control filter was subjected to a shock load of 4 ppm cyanide by adding the necessary amount of cyanide solution directly to the settling tank. Nitrite production was followed in this ‘test. Toxicity studies, using pure cultures of organisms reported from sewage and trickling filters (6)(48), were made in the laboratory, both on a synthetic medium and on glucosl ‘broth. The organisms were obtained from various members of the Bacteriology Department. Organisms employed were: -17- Aerobacter.aerogene§, Alcaligcggg fecalis, Qhromobactegygg amethystinum, Escherichia 321i, Proteus vu1garis, Psueso- .mgngg aeruging§§,l§§. fluorescens, Salmonella typhosa, Serratia marcescens, "Staphylococcus auregs ” ( Micrococcus pyrogenes var. agreus), and ;1§treptococcg§ liggifaciegs. Isolation and identification of cyanide-tolerant organisms from sewage and trickling filter effluent was attempted. The procedures outlined in Bergey's manual (6) were followed. - The effect of cyanide on nitrite production in the filter effluent under aerobic conditions was also in- vestigated in the laboratory. Fifty-milliliter portions of the effluents from each filter were exposed to 40 ppm ON in sterile BOO-ml. Erlémeyer flasks loosely stoppered with cotton. ‘fianples were withdrawn aseptically; nitrites were determined colorimetrically as" in. routine analysis. The temperature was 22thC. I Similar experiments were performed on two strains of fig. aeruginosa, one not previously exposed to cyanide, the other adapted to 200 ppm GN. Diluted 48 hr. cultures were added to 100 ml. of a sterile medium consisting of physiological saline plus 0.1%.glucose and 0.1%.potassbmm nitrate. These organisms were added aseptically to the flasks together with various concentrations of cyanide (0.2, 2, 20 and 200 ppm). Nitrite concentrations after various time intervals were determined. A.temperature of 20°C was maintained during these tests in an air incubator. PRESENTATION AND ANAEYSIS OF RESULTS - ‘ 9 g a. . Graph 1 shows the effect of low concentrations of cyanide on the BOD of the trickling filter effluent. Cyanide in a concentration of 0.3 ppm was not particularly detrimental to the effluent quality, but addition of 1 ppm ON resulted in a marked tendency for higher BOD values. The mean BOD of the control filter effluent was 14 ppm oxygen, with a standard deviation of 1.6 ppm. A similar plot of dichromate oxygen consumed showed a scatter which.was difficult to interpret. The effluent from the control filter had a mean of 43 ppm oxygen, with a standard deviation of 29 ppm. A correlation between BOD and DOC is included in Appendix II. Graph 2 shows that 0.3 ppn.cyanide partially inhibited nitrate formation, and that 1 ppm caused even more marked inhibition. Neither concentration inhibited nitrate formation completely. The mean nitrate concentration in effluent from the control filter was 3.1 ppm (as N). The standard deviation was 1.6 ppm. . — Graph 3 shows the concentration of nitrites in the filter effluents. Immediately after addition of 0.3 ppm ON, very high.nitrites were noted. After a week, the nitrite concentration decreased below that of the control. After the cyanide was increased to 1 ppm, the low nitrite an 18- -19-. . ‘. WV. . noudfiu 3:3“ H9330 x a .. . . .. . IO . . o . . . .1. . . . . . .. . «3% EB Gaga Mo #5 .33 ..... ..... Ir 7: tillers-4 w_1 mar-mm -. - .2 on .m- o. m - on .3 2 a. o- m . . 4. it erPIP FLL’VLL» ? r r >)L+LFL E ralblrirb ILIL rb FPbLbb'P *hv p — p Pllbl 1 i #4 1100 nonwsmpm mmH.o mafia mm0.0 u 1 0H . I. I m. MH “(UH no.0 00.0 ms ma 00.0 00.0 mH 6H no.0 NN.0 WH MH no.0 $0.0 0H 0H “0.0 00.0 #H m m0.0 00.0 NH m 50.0 00.0 0H m 00.0 no.0 0a 0 @0e0 0He0 NH W Hwhgd. 20 Egg H rdW.;41. 14%. r. CH E08: ~00 V mopHasz maspmuomsoa open Table 4 Trickling Filter Effluent After Shock Load of 44p0m annide Elapsed time Nitrites (minutes) (P9111 N) -40 0.03 -20 0.036 0 0.033 10 0.058 20 0.062 40 0.066 60 0.066 80 0.051 100 0.040 200 0.030 220 0.028 (days) (ppm M 1 0.24 2 0.28 3 0.17 6 0.19 7 . ‘ 0.08 8 0.17 9 0.06 10 0.16 11 0.07 13 ' 0.06 14 0.044 15 0.036 -43- - :wlmnu 0003000 Sam 0: «N Houpqoo “H ._ w}: d m m HH NdH mmpmanz 0.H 0.H 0.H 0.H 0 H0:.o m.H mm.o m.N w :H H NdH mw:.o :0.H mm.o m.a N.0 MH H mNH 000.0 00.0 00.0 00.0 0.0 0H N 00H 000.0 H0m.0 H0.0 00.0 0.0 0H m 00 000.0 000.0 00.0 00.0 0.0 0 m 00 om.o 00H.o Nm.o mH.o m.N m N am 00H.0 00H.0 0H.0 0H.0 0.H 0 m 00 mHN.o NHN.o NN.o NN.o N.o m.H H m 00.0 00.0 00.0 00.0 00.0 0.0 0.0 H 00.0 mo.o wo.o wo.o 0 «H0 0H0 o 00Hq0mo 89m m.o o» dwmomxm hHmSOHbmnm um g m.: N.o m.m NH NdH 00000000 0.H 0.H 0.H 0.H 0 Hm.0 00.H 00.0 0.0 0 0H N 00H Aw 000.0 00.0 00.0 H.H N.0 0H H 0NH .4 000.0 H0.0 00.0 00.0 0.0 .«H 0 00H . 00H.0 00.0 00.0 00.0 0.0 0H 0 00 HmH.o mdm.o 0N.o 0m.o 0.: m N on dH.o wma.o mH.o 0N.o m.N m N Hm miH.o HOH.o mH.o mH.o m.H 3 N 0N 00H.o mmH.o mH.o 0H.o N.o m.a a m 0H.0 00.0 0H.0 00.0 00.0 0.0 0.0 H NH.o NH.o NH.o NH.o 0 Adv AHV 0 1mm 89: CA 693 A125 A233 «2005 «0.533 0 :JW. N H dubosmm 000A madaob oEdHob mafia mouwnpaz_0opownpoo mopwppfiz H000900000>m H0009 oamfidm dommdam oqummo on anamomkm msoa>mum oz fid mmnmsammmngmpHfim 0H 000000000 opHup z -umeno¢00 w OHQGB '45- Hliects of (halide on Kit-rite Formation ' Huada ted Psuedomonas aemginosa. Time elapsed Cyanide Concent rations 0. .. A: “g (hours) 0 punL 0.2; Dog _2 ppm 20 ppm 200 pop; Nit-rites (ppm No : 0 0.0 0.0 0.0 0.0 0.0 0.5 0.088 0.016 0.014 0.022 0.036 1.5 0.006 -0.0 0.014 0.022 0.032 2.5 0.0 0.020 0.008 0.008 0.042 4.0 0.022 0.027 0.025 0.029 0.037 6.0 0.007 0.012 0.029 0.016 0.046 7-5 0.012 0.023 0.027 0.017 0.046 9.0 0.029: 0.030 0.034 0.027 0.10 11.5 0.09 0.823 0.017 0.014 0.028 12.0 0.125 0.25 0.022 0.014 0.012 12.5 0.25 0.42 0.034 0.022 0.042 13.0 0.28 0.41 0.022 0.008 0.010 13.5 0.43 0.56 0.056 0.012 0.025 14.0 0.48 0.61 0.115 0.022 0.034 14.5 0.54 0.74 0.056 0.018 0.034 15.0 0.74 0.89 0.070 0.018 00036 15.5 0.90 1.10 0.067 0.022 0.044 16.0 0.92 1.18 0.089 0.082 0.031 16.5 1.05 1.34 0.095 0.034 0.036 17.0 1.20 1.55 0.11 0.022 0.046 2205 0.24 0.022 0.019 23.5 0.34 0.020 0.020 24.5 ‘ 0.45 0.018 0.015 25.5 0.52 0.034 0.036 Innoculum: 7.44 x 107 cells Temperature : 20°C ' Medium: Physiological saline with 0.125 K1403 and 0.1;9 glucose -45- Table 2 Effects of Cyanide on Eitrite Production Ex Previqugly-Adanted Psuedomonas aeruginosa Time yanide Concentrations Elapsed 9 ppm. 0,; ppm 2_ppm 20 ppm (hours) Nitrites (pmeN) O 0.0 0.0 0.0 0.0 0.0 0.5 0.016 0.012 0.020 0.075 0.0 6 1.5 0.020 0.014 0.010 0.050 0.086 2.5 0.020 0.016 0.020 0.014 0.080 4.0 0.022 0.018 0.018 0.023 0.062 6.0 0.022 0.012 0.016 0.013 0.050 7.5 0.015 0.015 0.014 0.023 0.053 9.0 0.022 0.024 0.028 0.029 0.068 11.5 0.042 0.010 0.024 0.018 0.064 12.0 0.006 0.0 0.014 0.010 0.052 12.5 0.036 0.030 0.030 0.021 0.070 13.0 0.010 0.007 0.008 0.008 0.054 13.5 0.027 0.033 0.016 0.012 0.056 14.0 0.055 0.080 0.020 0.016 0.059 14.5 0.10 0.082 0.023 0.028 0.073 15.0 0.16 0.20 0.029 0.018 0.038 15.5 0.29 0.30 0.060 0.025 0.050 16.0 0.37 0.39 0.062 0.025 0.026 16.5 0.45 0.61 0.080 0.042 0.059 17.0 0.60 0.79 0.10 0.030 0.048 22.5 0.022 0.033 23.5 0.025 0.031 24.5 0.70 0.040 0.029 25.5 0.050 0.035 Temperature: 20°C Innocuium: 6.75 x 107 cells Characteristics of Czanide-Tolerant Organism Isolated From Sewage Morphological Mycelium: Conidia formed in chains I'iuch branching, small elongated cells Colonies: White on.Nutrient agar, potato plug. calcflum malate agar, Kligler's iron agar, starch agar. Flakzey white on surface ”of nutrient broth Physioloaical Aerobic Reduces nitrates to nitrites Peptonizes litmus milk Actively proteolytic, liquifies gelatin Catalase positive Survives three sucessive transfers on synthetic medium (agar), with 200 ppm GN as the sole nitrogen source. Isolated on synthetic agar in the presence of 200 ppm CN. Characteristics fit best those of Streptomyces a1§g§,wBergey's (6) page 934. . —.. . .c-Mm. ‘! l' ' s APPENDIX II ANALYTICAL METHODS General Discussion............49 Correlation of BOD and DOC....50 ' Calibration Curves: ' Nitrites................254 Nitrates.................55 Cyanide as Thiocyanate...56 Cyanide: c Picric Acid ReductionS? Cyanide as Prussian Blue.58 Formaldehyde 'Freeuooo.o059 Total Formaldehyde.......60 -48- ‘ W'.'.l. .- q' '. ... g. ANALYTICAL METHODS Routine analyses of BOD, nitrites and nitrates were perfprmed according to the procedures outlined in Standard Methods (3). The nitrite procedure was slightly modified to give greater accuracy at low concentrations: the sample is diluted to 20 m1. instead of 50 ml. before colorimetric comparison. Shaw's method for DOC was chosen because of the relative speed and simplicity of the procedure. The analytical results showed too much scatter to be useful. .A graph showing the correlation between BOD and DOC is included. The correlation is poor. There is no significant difference between the results from the treated and the control filters. This can probably be attributed to the poor precision of the determination. It isalso difficult to obtain a suitable analytical procedure for cyanide. There are two common general procedures for cyanide determination: titration and colorimetry. Titrimetric procedures include (1) titration with silver nitrate and various indicatoro(liebig method), and (2) titration with divalent nickel. Colorimetric procedures include (1) formation of the .49- mCQMZM u C. .2430 .Z k U) -51- iron thiocyanate complex, (2) reduction of picrate to igggpurpurate, and (3) formation of Prussian blue. A fourth method is available: formation of a blue color with pyridine~pyrazalone reagent, but the reagents are so unstable as to render the method useless for occasional determinations. . a Thiocyanate complexes, using the procedure recommended by Standard Methods, are formed along with an appreciable quantity of colloidal sulfur. Filtration of the reaction mixture is difficult and can be a source of appreciable i error. To increase the method's accuracy in low cyanide concentrations, the procedure outlined in Standard Methods was modified: final dilution to 25 ml. instead of 50 ml. Picric acid reduction can be employed where a distilled sample, free of volatile, readily oxidized organic compounds is available. The procedure used was that of Finkel'stein (16). Since almost any reducing agent interfere, the method is unsuited for direct use on sewage samples. If numerous determinations are desired, the initial .distillation generAlly recommended should be avoided, if possible}‘ Prussian blue, formed after evaporation of the sample and resuspended for colorimetric comparison is usable for colorimetric analysis at concentrations of 10 ppm CN or higher. Extremely large (over 100 ml.) samples are required for lower concentrations. Variation in particle size of the Prussian blue reduces the accuracy of this -52- of this method. For this investigation, the procedure of Friel and Fleet (17) was employed, diluting the sample to 5 ml. before comparison. Titration with silver 2. nitrate is not feasible in the presence of chlorides, commonly present in sewage. Simple acidification and distillation is not adequate, unless the chlorides are previously removed. Removal can “i be accomplished bit is tedious. ; Titration of cyanide with.nickei, using dimethyl- glyoxime as an indicator was unsucessful, due to the ‘firhfl I _ sluggishness of the nickel-glyoxime reaction. Further diffuculty was encountered in that cyanide areduced the sensitivity of the dimethylglyoxime, possibly by forming uncolored condensation products. Addition of excess nickel and back titration with "versene" (diaminoethylene-tetra—acetic'acid) is feasible if a suitable indicator can be found. Mureoxide (ammonium purpurate) is suitable (23), but is relatively expensive for routine analysis. Titration of the cyanide directly by. nickel in the presence of excess ammonia was attempted. There are several disadvantages: the end point is weak and the fumes are irritating to the analyst. The cyanide complex is more stable than the nickel ammine. Ammonia might be used as an external indicator, but this also is cumbersome. Conductimetric titration with nickel or with.nictel and versene may besuitable. -53- Cyanohydrin formation was also considered as a means for estimation of cyanide. Excess formaldehyde , is added; the excess free formaldehyde is determined by the method of Tanenbaum and Brisker (43). Under conditions for formaldehyde determination, the cyano- hydrin seemed to be quantitatively decomposed. This was almost instantaneous. Calibration curves for all the colorimetric methods mentioned were prepared. These are included in this Q “9' I LA. ' ‘ - appendix. A second formaldehyde determination is ' included: formation of a colored condensation product with chromotropic acid (10); .1. .0'. 0000 '0. 0... .0" 10 0.01.010 ‘00. . . .010 '00 ‘0 0'1 0'10 10 9 " 01 .150 0.1 009' 0401' 0.0 0 .'1 00 0.0 0'01 0..010 '.0. .. 0 .10 o 1.0 .0100 0 10 '10 '04 9.0.10. 0'0 0 . .0 00 '0'! '00 .10 '00.. 00 1 .... 001 . .00. 0. Y 0. 00010 011 0 0' 00 0.0 0 . . .00. 010.0 0.1. 0. Y 00.0 00 HHH. 0 .0 0 0 0 0 009 '0'0 000 00' 0 0 0 00010 1.0 0 '0 0100' 0 1.0 010 O 0 O 0 O 04 '10. 00 0 o '0' ' 0 0 0.0 00 '1? 0 ' v.0 0 Y 01 '10 I. 00. 0 O 0 0' 000 0' 0 0 00 0 . 00 . 0.0 0 0 ' 0 0'4 0'0 0 0 0 e 0 0 00 ' 0 l 011 000 '1 '0? '00 '0 01' 0'0 01H!“ 0 010 ' .0 04 000. '0 .0 0 10" 0.0 0 00 0. 'L 0110. 0001 000 u 00 .04 0.. 4.00 00.0 . 4 0. ..0 . 0. '.1 01 . .1 . 0 0 0'0 0 0 ..1 .0 '0.0 000. ... . . .111 '0" f'» 001" 0 "0 00 0 0 .019. 0 01.0 0" 4' 0 0"0 0'0 010 0" "‘1‘ 0 00'0 00 £1.10 0 0‘ ' .' 0 . 0.' . n . 0 10 1. 0 01 0 00 1 0000 00 '00 00001 0 0 1"0 '0 010.10 00 ' 'o 0 010.' 0 0 0 01.00 00 '0 0.00 '0 0.10101 0.0 100 'HIO 00 0010 01000 0'. 010100 0.9.00 0010 00100 0. 0 00 e r '00 '01010 010 0 01"10 000 0 0 0 .0100 0. .10 0'00 0.00 0 o "r 0 '0 ' A 0 0. '0'0 1.0 00.0 r1 010 1 00010 0.0 001'... 00.n0, 00110 01... 01.0 0100 0 . " ' '0 0 1' -101 o-.. 00 '10 0.00." 0'00 . 0 . 0'01. 0 V0 0' 0011. 1'10 .0... .000 .100 7'0 0'0 0'10 0 0 ' '00 00 '4 t 0' '1010 0.?40 >100 '000 0.. 0.01'10 '10 00 001010 '10" '0 .1000 110. e... '00 0' 0 .0 '0 0100 .0010 1' '00 0. 0.0 01 00 .01 ... 0.0 0014 '0 r10 .901? 00100 0.00. 0...0. .1.. .' 00. .0.. ...0 '.0 "' .0.0. .' 0 v. .1010 01’ Y 01.0 a 01110. 0.0.10.0 0100 .00 'V1 01. 0 0 .0. 0.110. ..0. 00 1.1.0 100 0 ' I 0" »"0 .010 10100 0100 '010 0 0101 0 0'10 .0.0' .1. '1' 0 ..'. 010'0. 00 .' 0 'c'. .0 $0 +10 00 0 0 0 01000 0 . 0100 .'0 01'0 .0100 .0? 100001910.0 .0. .100 ..- 0. 01. 01010 0 f 0' 0 ' 0 00 .0 ... 00. 101.1 .00 a .10. 00 .1 .0' 00'0 0 01". .010 '11 00 01' 0 0910' 0. . .0. .00. .4 '0'0 v0.0. 01. .0? 00'0 0.000 . 00.10 1 0 0 . 01010 01 000 4 0010 0010. 1 0 010 .1105 '0 .0 "0 0" 0'0 .0 0'0. ..0'0. 1'0 00.1.0. 0 0 0 .w10 1'0 '00 '10 0'0 0 0'.00. 0 .00 0'01. 00 . 0'0. ' .L. 000. '01 0 00110 10.0 . 0 .00? .c0. '0 .10 «1010 0 0100 04' 0.10 0.00 00 0.00 0.00 .00 010.010 0 .o 00 0 0 .000. 0.10 10010 ' .0' 0 . 00 00 0.00 .01.. 000.1 " v 0.' 000 ' 011 . 0'0 '1' 00 .10 0100 .0 0 0010 00 00.0 4 010.1 000 0'01. 0.0 0 ..0' a 0' .000 00 0 0101010 0000. 0'00 0". 0'0 0' 00.0 . 0" ‘."0. 004 ' '00.' '0 0 '01 0.0.1 .0. 000 10. 00 0 '00 0010 00 .0 01' .0101. 0.10 '4. 0 0 000. 4110. ' 0..' n '10 0 .000... 0 0190 014' .0 4" u .0' 100 "0 00100 ' 00011 10.1 '0 .0 v' 0.0 01* ' 0 .01010 '0 0010 0'00 00 11' '01. 0 r 0 .001.1 1100 0.1'.. .0 '. 000101 0.00. .0..0 '00. .0. 0'0. 10 ..'. 0.' 1'0 00 10 1.. I 0 '1' 1'0 0 0 00 0 ' . u '10.. 1101' '10 0 '1000 00'. T0010 .' .0..0 10. 004.0 .. 1.0.. 00.0 100 s 0. .. '0'? .0?0 .0 0 00 ..0 0.1.10 0 .0 ' 0 '01? 0010 010 0.100 '0 10 0 ' 0'0. 0 '0 9'0 0000 0 014." 10?.1 091.1 000 .0'1 0v.0 010.. 0000 00 00'. 100' 10100 .010 '. 1 00 0'0. ' 0010 0 0 '01. 010 00 '00 '00 .701 '10 .0 v 0 0' 0 0 '10. .0. '10 0'0. 001' 1'0 p'vl 00 10 0 0'0 0' 0 0 .0 v .1 001? 0 . 0..0' .r1.9.0.00 .9' 0 0 '000 0'01 101 010.0 0' 1' 000' '000 01'. 7'} 0 0100 000 ." or" 0'0. '0' 0000 0'00 '00 001.0101 0.10. 0 .0 O0 0" 0110 .0 0.01.0 010 '0 0 11V ,_0 0 0 0'0 '0 0000 uo1' ..00 10' "00 00 400 0' 0 '10... 0 0101' 0000 0'00 '0 "00 00' '0 '.0 0.1.0 001010 0 10. 0 0 00 0 0 0 010 1 00.01. '0 . '0. I . ' 0 . . 0. 0 0 0 .0. 1101' 001' 0" 0.0 0 0 . 0 9.. '01010 1.0 001.0 0 0"0 . 010.0 ' . r. 0 0 '0 0014 .0190 0401' 0'00 .1 10.0.0 00. 000 0.0 0.0 I 100 01004 '010 0 0 0.400011 1 0010 0.00 v1.1 0'0. 0. 10.0. 101 10 0101' 00 o ' V01. 1'0 P0010 .0 .07. . "0' 0000 .0 010. 0.0... t ' 00 .0. '10 0 0001' 0'00 '0. "'0 000.. 0.00 0 . '00 '00 00 0f 0.0110 0.0. 0+ 0 .0'1' 01. 000 1 .V00 '01.' 1'00 010 . 0 . 0000 01 .1 '10 1'10 010 00 01101 0 .1 0.0 '0 1 01. 90 0100 0.001. 00 00 001' ' .0 0 u '1 '0 0000 0 010 01'. 0101' 00 '100 .0110 0 01-0 00 0 00.0 V 10.. .v. 000. 0.10 0 010 000 0 .0 0 '01. 00. 1'0 0.. .00 . ' 00.40 0 '0. . 0 00.1.0 01'00 0 0 0010 10101010 0 '0 0 . 1.00 0.0 00 0 01". 0 .1.. 0100 .0'0 0 1 .0. . 0... 1.00. ' 7.0 0.. ..' 00.0 0110 1010' 00 0" 0. «'00 ..01 0 .010 . 0 00 0. .0 00 .0. . 010 0010' 1 . . ..'0 0 0000 010' 0 0 0,0 00 090 O'.L 10 00'. ' 01 00100 . '410 0.00 010 '001 ...1 0.010 001' 0 1 00 0 0 0.0100 .0.'. 0 0010. 1' 0... 0 1'0 0 0.. 01000 '0 1 '01. .e'. 01 00... . o 0 ..0 ... 0'19 01. 001 0 101 .10. 010 ..0 4.0.0 . 110 . . 04 .o.. '00 0.1. ”H .00. .0.V ..0 0 .. 1'00 1. 0.0. 0 011. 01 0.0 01' 00.. ... . . '04 1'10 .. 000 0 .0100 010 4 010. 1 000. .'f10 0 .0 0 -1000 0".0 0 '0-0 '0 0 .0 0' .0 0 0 00 1. . 01020 '.'00 0' 1100. 0010.. '0 4441. >0. 1.0' .01. 11 01.010 0'0 010 0 .0.0 00 011.. 0. .1 . '000 0101. 01010 '0 001' 0140' 0 0 0. 000 0.00 0.0.0 .' 1.". 00' 0 '01' J .0 0 001' 00'. 0.00 0100.0 .0 00. .00. 0. '01' "0 .1090 0 041 . 0' 'o..0 0. 0f'10 '.0 .00 .0 0 10 '0 . 0. ' '0 . . . . _ . . . 0 .. . .. .<. .. . .n. 0 v. .... . .1. .00. 0.. 0 0... . . 00.01 0 0 1 0'. 00 ' 0 00.0 0 0 000' 0". 010 o 1 .11. 00.01? .0. 0'00. 010.0 0.000 0000 . 10-. '01.. ..._ .._. .. .0 .0.. r ' .0 '0 01 0 00 '000 01' 0 0. 0 000410 1' 700 .0. 000. 00. 0.010 0. 101 000 .' II. '.0 0 r. '1'. 00. '0 00 10 001'0 V. . v10 0 0 0 0'1. ' 00 . .0 0.-.. 000.9 00010 .5010 00 01‘ 0. .00 .0. .110 .1' 9'.01 .0100 .0' 0.0.10. 0... 100 0000 0010 011 0' 7'0 0'0 '10 0 0 f0 00 00.? 04. 0 0 . 101010 00.010 0..- 00 010 .'00 0.. 01". 00.0 00.. ..10 '0 1 I 0 11' '0 '0 0000 0.. 0'0 ..0 0.9 . .000 r 000 0. 01" Q 7'19 010). ‘00 '0. '10 0010' 1' 010100 0 '0 010. 0». 00 I '00 '00! 0100 0 D 00 000 00,010 000.0 0. .0000 0.... 00. 0 '0 '0 0100 '0 0100.. 000. 100' '00' 00' 010' 0" ' 00" '40 '000 00 1'0 0.0 101000 00. 000. 010 10 00 0.0 . t 1 001'. .0.' .010. 04.01. 00.010 00" 01. '0 000.0 .000 0.0'0 010 0010 0.'. 0.00 100. ..0.0 V. .. 0 . .'0 <00 0.0 10' 0110 00 010 0.0. .00.. "0 0.0 010'0 '01. 0'».0 0.1.. 0." 00 00.10 0 0 010 0.100 ..01.. 1.1.0 14 4100.0 01.0 .0. . 00 0.11 0100 .07 00... 0.1141 .. 110 o 0 0.1. 0 0.11 10.0 .100 .1 00. 0. .0 1. .010 0 .0 .0'0 411'. .0Iv 0. 001 000 01010 '01- 1010 0.!0 .'0 000' 000 >0 0 V0.. 01100 00.0 .1000 '00' 0 '10 0 '10 000 .0 0 ... 10.0 v .10 '0 0'0 0 .00 010.00 11. 0 ..0 010.1 . 0 .11... .01.. 0.0 .00. --.0 1 0+0 0' 1. 0 000 ... 1 .0 0 0.0' 0, a... 9001' 00.. '0. . 0 0 0 .1.. 0. 10 001010. .1.. 1.100 . 0'0 r0 '..0 .o. 01 000 000 0 .00 ' 00|0 17 0101 0'11k. .4... 0v0 0.. '10 0 0 ' r00 00.0 .0 00 0 01.' 000' ' 0.0.0 01 '00 10 0 0 00 .V '0 010 00 .... 001'. 0'.0 '1 01.. 00.00 00010 0 0.0 0 010 '0 1. 0 .0101 01" '10 .0. .000 .000 .00 '000 00 0 a. 1 10 0 .. 0.0 -o .000.-. 1. 010 0010 01'. 010100 00.10 " P10 00 0' 1 '~ 00. 00'. 1' 00' 00. '1 0100. 0.00 .0 90101' ' ' 0 01001 0 00 '0 u. 00 .0 01 0'0 0.0 0-0 010.00 000010 0 *'1l "0 01010.10 0'00 000 '10.. 10. 01 . '0' 010 ' "' 0 ’1'4 010 00 1'0 11" 0.0. 01. v 0 010 101019! 0' 000' 0 0 0 010 0 .0" 011 .o .010? a. 10-00 00. .1... 0000 0.0 100 .0 .000 .0 ' '10 .V'. . 0.0 . P. .0 0 1 01000 00' '10 0 0 0 .0 0 0 '10. .0.. r .01' V10.0 '0. ' 0010.01 '100 .0 00 10 01k 0 k '0. 0 010 0101' 0.. ...0.0 .001 1' '0. 700' 0 000.0 .110 1'0. 0000 001010 .0... 000' 00 '1.0 .0? .0100 000V 10. '01 .11 .00 .0'0 .0. 11. .1... 0000 .11 .10...- 01 '101' v '1. . '1. .010 01... 0 I0 '0010 '.0 0. 0'0 0. .0.. 010. '00 0.100 010 0 0'0 ..0 ...0 1...0 0.0 . 0.0 00 0 0" 0. 00 01" 0100 .0. 0.010. r0 10.0 01. 0 . ..10 0... 0.0 0 '000. 000 . .. 0 . .0. '0 . 00 .0' 001010 .0 001" '1010 '00 1'0 0'00 01.00 0 00 . v v .1. 00 '0 0.0 ' 0100 00 0 0. .0100 0 It 0 V00 0100 0'. 0.0 0. 010 '0. .10. .. ..0 01100 00' 0. r .10 00 0 . .1.». 0.1 .00. .11. o .11 c. .. 0101'- 0' 1 0.. 0 '0 10, .010 '. 0". 00 01.. '010 00010 .1. ..0 0 ' 0'10 0010.0 0.00 0010' 1..- '00 00. 01 00- .1011 0'-.. 0 .1 1. 0 00.1.0 0 000 0' ' 0 0'01 0.0 0 0011 .1 I '00 1| «'0 0... 1.1 .10 1000 0.0.0 .10.? 0.11 . .1" 0.110 11700 1'0 0 ' r11 0 0, 1010 00'0 100 10'. 1000 0 0.. 00 0.00 01... 101.0 0 00.1 10. -0100 010 L410 1001' 100 .0001'. 00010 0010 0. '0 0 'l'& 010 ."0 11.0 001001 04'00 11.0.0011. .1.0H110... .... 1'0 0'0. 00. 10. 0.. 100.. o'00 010? 10.. 00 10.00 .000401'0... 01 '0 '0' 0000 0.0 0 0 11.1 0 101 .110 0' 101.1 0'.. ..'0 00 '0.' 0' 0 v.. 0.0 .1 ...0 110.01 0.10 000 00. 0. .v'!.. .'00 0" 0% 01'. 0.1 '0 ' .0' 01'. 0001. .01' 0.... 0110 01.0.0 1 1 '0'10 00 . 0 ..11 0. . 1'. 0 .1 1 a 00 ' . 1. .. «cur . u 0 0.00 . . 011' 0 .v'v. .. . .0.1' 1 0 0' 0 0'7 100.0. 0 1. '10' 0. ...0.0 .1. .0..010.00 .010. 1. .01 '01.. 0 010010 '0 0100 "'1 0 .00.. 000 010 010 '0'..01'1. .0.101.1. 0.1. .0... 0101.0 0.10 '0'7 '000 1. 10 '0.0 .0 0 .'.. .010 '1000 00"0... .00 .00. 010.0 '01'10 1.0 1. 0 0 1. '0'. 010 '00 '0 ..'0.0 .001. 0-00 .. 11010 i .. .011 010.0 0.... .. . ,1.. . 001001 0.1.. 0010 '01.. 001. 091. 0... ...0 .0 1 .11. 01.10 0". .1. 0'0. 0. 0000 0010 '00. 00100 00.0 ..0 . 0 0. ... .0 .1 1101' -00 e . ..'0 .0. 0.- 1... 00 0 '.. 110. ...010 01. .oo 11'. 0. ..0. .1.. .0 .0. 0.. . 0.010 1 01.1. 0'. .0.' 00 0 .1. .000 0'10 0. ..1 0010 . 0 .. . v 1 01100 11' 10110 0 . 0100f ..' -.. .0 ' 0. '00 0000 '010 0000 '. . 000.0 .00.. .000 110 Y... 1 0 00100 0 0'. 00 000 r.» ' 0'0. U.u.'h H1H0'HI .101 - 1 .' 1v.1 ..1v1 . . ”1'1. 0. 101010 1.0- ..11 11.00.1010 .100. 0 . 0 - 11110 .10 0 0 01010 '00 00. .01' .00 0 o 101 - .011 .1 - .10- -.11 .1-. .110 11.. .10. -110 ..0.1 .11 ..00 -10. 0..00 0 000 1' . u . ..00 0 00 00. 4 '0 ..0. 1 11 1.1. 1 111 . . . .1. 1 - . - 1 0 0 . 0.. '0 '14 'L. 9.0 0 V 0 0'00 .1. . 1 ' 1 v 1111 v .1 '1 .. 1 0.- . 1..1 00.. 1. 00. . 0.'.. . .0 110 0' 11 0 O. 01.0 0. I r 0.0. 0 110 00 1 '00 1'00. 00 .000 0 ' ' 0110 10I 000' '10. 0 0 0 '.'1'0 .1 . 11 1..1 .-.1 . . 1... . .70. .1. . ... 1. . .1.. 01-. u. . ..- . '1 10.. ... .1.0 -.0 _ -1 0 '00 . . 11.-. ... .0 .. 00.0 0 . . . 11000.0 1. v . .1.- '11 11 -.10 :0. 1- 11.1 . .0 0.. .... 01.... .. .... r. 0.. ...+... 0000 0 0.0 41? 00 .00 '00. 1 1 .0 1 010.. 0. 1 111 . 1 01 10 0 v1 . .1. 1 u . 0 . .1 . 11' H1. 11. 101.1 . 011. ..011.0 ... 1 .00.-. ... 0.0 00.0 ..00 00'0 I 0 0'0 00 O .0 .1 .0 1...1 ... 10 1 .. .0 1. .-1 - . 0.. .0.0 .01 - '1'01010 . 10.0 «.1 000 .0.. u '0 000.4 ". .‘0'1' 0 0 10 .00. .1.' 01 n .0 0 ..'1. . ..L. '4 00'. .0. .0. 0 '7'0 00 I '01 0 0 '0... .0 00" 0,0 0.0.. 00, '9 '6 ..00 '00. O 0 0. 'VICI. '*‘ . 00'0 . #001. .0 ' O . . o. 0.. 0 '0 v 0.0 .90 .0 .«0.0 01010 400.0 1' ’0 _ 0,00 0 00" ' 10'0 .. 10.9 0 _ 9 0 0.0 0 0 .7'" 400 0 0|. 0 0 a 0 .1... . I..- 0. .40.. L00 .0 0 .01. .. 010 I 0. .... ..0 .1. 10 0.. 0 0 o 0 0. . 0 . . .r. .v..- . .0. 01 . 0.... .. 9. 1. 0 00 I . 01' 010 J .0 41 '000 '00 0.4.00 .00 0* I; e '0 '0‘ .0 0o 0 f I .0 , 0 1.000 0101 0.19 .'0. 0000..0b. I . 0 0’ 0 10. 0 V . 0 0 .0- I I 0100 z 0010 a 00 V00 00 '0 0 . v .. 0' ' ' 0 0. 0. .1. 0 0 01f 0 Ole" [I ,0 0.010 e. .0100 I0 .09 019'. ‘1’. ‘0 V0.0. V94 .1. x: 1.. . e . .1.. II. 0 0 ‘0'? ..t.0.0>o 00100 .0010 0'90 0'00 0‘1 '0. 0010 .0 0 /.10 -00 . .1. 4/ In 1 I1: I 10'. .ro'nl.0.00.10'1 ‘7‘. .6 -,,—-.’--. .A. » .— —-...- 1.0111l0' 1 inll '11 0100'." . -5 . ..101' w; . 1411 14 1| 1|. 1‘11 11 1 H1 1 0. I 1 1 I 11 1 1 11 A ..1 11l 1 .1 .0 . m . . . 0 . o - . m , p , . A _ , _ p 0 , .. . . , . _ . . . . , . . . . . . . .w1 0 1 ,. .1 *1.01.. ....f... ... 11.10 '01 0' 0, ..0... + li.101,.0 1. .01 0. . 1 . 0 . . 1 . 0 .- . -. . _ c . . . _ . , .. . .N . -* . ., . , . - . . o + . . . . 1. r 1 . . . , .. ..1. . _ .0'0 L1 1'41 . . ,. I141 111 10 11... . . ' _ . 0 .0 _ . . . o . . 1.». 1.. w. 1 , . W . . .. - .. . . , . .. . - .. . -. m u . - ¢. . . . . o - 1,, 0.. _ . . . . . . . . w ,. 0 .. - , .A. . * . 01 . v 1... . -1 W.. I 0. 0 *1 0r .1. .11. . 10- I. .. . ...1 .111 .010110'01'11 .,.11"1IO . . 1,1 . #fi . . .. . , v. .. a. 0 .1, . . w , . . ... L. H M ;._. . .1.-$33,“... . _ , ,- . . .. . .. . . . u . , w . . . 11.1. 11 ...fi.. 11. .14 11-11011. 1v. .11'11010..,111110.111T1.1.1-141,1.101.1..1 {$.11 v ,1 4 .1 11 111‘ . . .. o 1 o. . . . . . . . . .4 .n 0 ~ . c _ . ,. ., . 1 'L . . . .. ..*. ... q ., . . H . H .. - _ . v . . 0 . . .. .0.. w . . . . . . . . . . ,. o , . ... . 0 .. . . . - . -- , 1-.....- ,1 -..--.Liff- . -1.-1..--..1 -- 1:. - f 2.1-. .-.-.1 ...--I ._ ., .w ,. ..,. -,, w .-..- ,q —...,..* .y- ... , . m . . , , o. . .. . . v... . 0 .... . . -. ... .0’ . a M .. c, . . _ . - .0, . .. .. o. , .,. 0|..' 1 4 1 1 1 1 111 H {.1 1,111 114 11., L . . . , ..... -. . . .. . .. . .... . . . v , _ ,, H . .. ..h. , .. .., —. ... ..-........,, .,.--... _ . . A“ . h . v .4. .. . . .. 1 ... . . . “,. “-..... ...-#1 .«.,. M. a , .- ,. -. _ . . 0 . . ....0 ... . ..0...,‘ 0.1.1.0. . . v I . 11.. '1+10.111. -.11 1110fi110. 0w1'0 ".1'1 .-.11' .1011W1'0..40.l1 .f- 0.4100010+.0'.'010..Lh1"'.w01'0.'+l1 ”x. 1“ . . M . .. . .- .. .. . ... 0. . . . .. . - ..11 -.- 0 1 , . .LW. 1 . - , ,. _- -.~ . 0 1 . ... , A ,...0.“. ... . n .. . . . .. . . .. ... -.. .0.. .1. _—, . . -,1.. . . ... . . 00 h . . , .. ... h . . , 0 p .. . a .1. . 1. 1. 17.0 1'. . 4 11 111. w A .1 W 0 01 1 w 1 1 L. 1 '1011. 0111— . . .. . .. . . -, . ,v 4. . . 1. + . . .— ,. 1 . ... .0 .. .0. 0 1 . 4. .. . , h .w. .- . -. .- . .. , u h, 0, . . ..H .- . . U . .... .. .. 0 . ~ , . . . . . .. . . . ... .- .. . .. .. . . . _ . 1-11W I 9 a o . 01 0.1 00000 0,.1' 11 0 . Av. .10.«111'- 0 01 1 11.1100I11 .001."1§ 101.f0 '11 9'.+ .Mv'.01 | . . . . ' . .., . . .,. 1 . . m .. w ... a e . ‘ . . . . .H. ... . , . . . ... . . . ._ . ,_. .. . .. y .. .- .. . . ....... . a 0. a ., . .v .. . *0 o. 0 . v H 0 0 . 0 . . ., _ . . .. .. . . _ “1111 . H . 0 0 '1 P .r 1“ .r 1101». 11 . 1 .. 4 4 114 '1 _ Q . .... .. . ... . . . ... ~ . . , o 1 . .— . , . . . .- . . 0.. . a .0 .. 0. w .0 0 .o 0 ...0. _ . . . 0 .H . . . 1 . 1 ., a h u . . , . m . .. . * . 0 . V . . 1. , o . . . -. . - . . 1 .. .0 .- . a . . . . . o. - 4 . 5.- 101 . «1 .1 . -11-.111.+ 1.1.00 -..Av1111.1011.010. 110. . 111.. 0' 111101111. .10..0-4-10.h.$100.111011+ 0 ,0.-.1Y 1- r . 1 0.1 711. . 0n... 1 . ‘ . . . . . u . . .o . ... . .. .. o. 0 . . - . - , . , . _ _ . ..... . , . M - M _,4 , . - .. fl a , . ~ . ,. “ , ... . . ,. . . . . . - . 0 1 11110 1111.. .,'0 '10 11'041101'1'0101'110101110i1 0 0 1' 1'1 1 a 10 11L'1ll0010111 r .1r11 1111 1.1 1. 0 . . .... a- ... g . . ., . . n ,. . ...u .0 . .. ._ . 4 .. . d , . .. 1| , . ., . . .. . . .0 -, ,0 .. . - . . . . . .0 . a ...,. o w o ~ .0 .M 0 1.0 . 0111 .w-1101 1 '1 '1 . 1.10.011 V.101 .11. - .1111 '01 V01 10: 11' .... T'01 .0.00.1.01 110100 111001 0,. 0 # . ,. ..... q. 1,.1M . . .. o 0 . . “,1- . .. ~ . . . w _. .. .. . . . ... o . , ,. H u. ..‘1. ~ . . _ 1 W . r. . _ ,, . . 0... . .p .. -. .-. 0.1 ”1+ 0 r w W11 1.11 H r 1” . r , . . .. . .fl . . . .. . p . _ , - . ., - . . a . . . . p . a ..fi. 0 ~ A 0 , + a 0 . .11---. . .2111- «...-1- f- - ----,1. ...-I-.-- :F. , m . . .. .. _, . . _ ..fi . J . .. u. . - w , . V . . , n - . . f . , H .. , . 1' 11.,p111'1 ,1.'_111H.."..':. 0111' .101. 0" 01...- 1- 1010101411 110101.1H1'11011 1.1 . .-..111'4f10111'11. 1h , 0 . . u .. . . . _ , , . e . _. .~ . h w . . . . .. .. 1 . . . . 1 -, ,0--1-1..0|1.1..~.1 ....111+-l. .- 01 , .1 . 1 o 1 .u . n ,. .. o . s w n . - ,. , . , . . . _ .. .- . . . . 1 . . M . . ._ u , . . 111.011'.1|+'1H . m1 '1" 1+ .... A 7.0".."LT'1'1'111 . _ . , _ ,. , . . . . . . . r . ~ . 0 - . 0 _ . 1 . 11. .0. . 0..s 0 1 .1. ,0- 01 o. .0001)- 0 A 01.11 I 10 1| _ . .. . , _, . . - . . . .. . . . 0 . . . ¢ . . - w . . . .. 0 . .. . . , . , . - Q1 ,. ' 0 1+1 01' 0 101+. . 01010101.! 101. '0 '11 0'11 1 W'i'illu? "" .01 .010 0 .1100 0' '01..”"011'1 '00 . 11' 1110101 '1 - . .. . . A . . . g , . . . .. 4 0 . — . .r W I . 0 o , ,,. H . .. u 1., . _ 1 0 .. .Q '1 9 . 1 1. 0 I. 0 1110 . 0 . .1 1 1 .+ .0 0 1. . I10 01 1 0 ' 1|“ 1. o 0 0 . . . a .. N . . , v - . - .. . . . o . ~11 . ... . 0,,.. 0 . .. .- . . . . - .0 0 1 <1 0, 1 J11 111+ 1,051 . 011.11 — 0 . 0 , . .. w ., n. ,. __ . , m w,. .. u L . H . . . . ._ u. . .. 01 "101 111..-.0101" 011 . 1. 'I. '1110 . .11, 101‘ .0 . . .1 . s M . . _. 0 ,_ . .. A , u ' . , . . . H . I,- . . t w . .. . . . .. . . . , . . .. , . . . - u . g . < , o «11" 1 1 1L. '1. 0- k Y0 110 01" 01 ' 1.101011110113110. 10 + 0 111011 1. 1 01 1;. V . 1 '1'! 4 .1101 . 0 111111001 .1111. 1' 01 101' .11 1 . . v . . . ... A . . . v 0 . . . . . , 0 . H _ 1. . . H. . W . .y .0 k . m p. _ a. ...0 .1411.... I 0 ..I*.' 1 0 1v ..-- .1. d 1.11..'0| 11I '0 0101.1 10 1 01 1111 “.100 ' 0 0 h 10 1 , '0 1 . H . ._ . . . . . .. . _ . . . . w . . ... . . a . . . , .. . . . . . — . ~ H U . , . * ., - . ,. 0 . . . + . . , 111'1 - . . . .q . 1.... . ...... 11..” . w ...-y 1 '01'0"0.L.."".10"'0L . , . , . . . .. 4 _ . . .H . 1 H ._ u .- . H _ . , . , ._, -.. a ..H M - . . _ H u . n ,. . . . _ F . .. .--.- ,1..- ,. 71.1... ....-...._ ...-g. ::.. ...-.. -- , -., ... f .H ... , _ . _ . . , . . . , . . -. L . . , . . . . . .. . . A _ . o . . , . . . . . . * . . . a . 1 h , , . . . w , . 0 . . . . u . . F .-. . , v p 1%, 1 1 1 01111 ,W -11 111 111M111l 111 110' 111.41'011'1'10'11 vl.1'0 1.4, 1 0'1 ..1 0.1 1 F ~ v , H . . _ . 0 fi . . 1 . . . . 1' 1M1 1-001001 Av 707.0 1 0100010 101111 1"!1.‘01011f010|01.f110|1010101'l 110 I 10.00 i . , , . H1 . . n . . . , 1 _ . . 011' 1011011111 .0100.1. 011.- .0' . , . , . . , - . _ ., - _ , ,H , . . . . , 1 w .. , . _ i -. - . - 1 . _. ..., . , . v . _- . . _. w . , , . . , , . . . , . . . . 1 1 . -. ..-...1 1 .11 1.0.11. 1 . . 1 . . 4 . . . .. . . a . , «1 .11.. . v. 1 n a , v . _ . . . . . - H n , . .A, . L . , .. . _ o. -A‘+;A . . .9’. ‘0 vd I|T. - ncanzn QBNOM: 8. 20. UJm U .I I < 4 . I . . v . . o . n . . .. , F . V . 4 F . . . F F . F V F . . F . . . a . V .. .. A F F. . V I I ..... F II. I II I F F I I n o I I w . I .L . II n I F I I . a b V 4 . . . _ .fi _ V I F . . F . . . . ... F V F 4 V < n F . V . - . F v , . . . . F v < . . _ 1 QQIII ‘II -9 IIIOILIIYIIII'I Iifi‘lfifiinlfifiitfi4I. r )1 I’...VIIIIII~|"||I‘I]|I IIIfiIII firI fl I L ..ltfi).fi1..l'! Ii? I’IIOI I IVIIIIIIfiIIIF. I‘IIII’IA’ I III, I... III— IOIIII 'I If I‘d. 0 III . . . . . .. F . . . a. _ . . . . . . . h F F . . .V V . F F . . . . . . . . — V I V . . IF . . F . . _ F . . F , ...r . n V . V a _ . . . F . . _ . I I . . I a I I II. V I I II I III V . I . V I .4 _ I I V. .II I I. I I » II V I I I w I I l I I . H . . . . _ H V _ .V . a I , . w . F . F . F . . . . _ 4 . . . . . . . . n F V . O r . . v V . F II III4_. IV I |I.II IVIIIIII .fiYIII lfiVVIIIIIIIII Fr 'II rilanfiI.Ifi|LloIIlILrII IlIItlQIltfil VI'IIfiIOIIIOI IIATII VIIIQILI ..Vfin‘fiIYICI L 1'01 I‘IIV?IIIIfiI|rQ I vInIIIOIOIo IlfiIIo II‘IIIIFFV‘I IlfiIIIIJIwIII I I fin IOIIII It I {I II? I I F II . V . .V .V . V. V. . V _ .V . _ . . , . _ . _ F V . V . . _ V _ h V u . . . . . V. V . . a I > . . . . . . F . . . m m .. . F F . < F. . VF . . . _ . . . . u . . a F F . F .q I I I . . II .I I . IV. ..... .F I . .¢.I F . III: . .F In «I A. . I 4:. IWLIIT. III. III. I I I IVII I» .. _ F .F I . . . 4 V . .. ._ . V . 4 V I . . . _ 4 . A .. — . .o F V . F . Q .’ I . _ . _ V. . .. WI _ . . F .. F . I F ..... . F I I . F F F _. ”0 ~ . V o .F . V v . . . . . . . lnIIfiIIIVIlIIIIII II 4. I0 Al IIIIIIUIIIIII ILIIII flII IJIIII IIII V I I I I I L IIIII Ilinlillj . OnoleIIII IIIrfiIII F . F . . . , . . . 4. . .F .. .V ... . F 40 _ . . . . V . I 4 . a VI . _ F V 5 . F . . I .04. . . I . .VH I a F I . . . _ . u . . . n I v ...n - . a F V. I. .n . . . - -- V .II. II II. IIIIT II.-. . ...... I; II . 31.. I..I.II r. 4.V IIIIf.-IJ.I.II IIIIIw .-III.I-IFI -Ir IIV+-I.LI.I-.I I.I . .I-.- V F II-I.V I I V . . . . IF H a. .. V F $ I . . . 7. F ‘ . . I . V. I .V . F. . .F. . I . . . ... . . F . F .. . V ..F. . IV I A . . . . . . . a V V o n n . o I. VIVVy‘. :“7 l -l 1 I - I ‘ I V l 'I I T “3 .I. IJIIID IIIIIIYIOIIII fIfitII'II.‘_ IfiIIII I .Irnl'p $71-..- 1 F a . HID V .. _. .. I . . . . V . . . V . u‘ I . F. . _ u . . . V . FV V V . 4 V I . .... . _ c I o I . I I I‘II a VI I I I QIv I II Y ‘ VI t Ii v I IIVOltl II .II II .Lf- I. L .I II] D I n n c I I I 1 I . .I _. n .F . . . y . V V . . V V . 4 l T F—F+-o¢-o 9 ¢ ~FFF FF 0 I F I . V 2 l I b 0 fi . - 6 I F. l A | l 4 I l I .t .V Ql 1| III ifin} ‘ifiz L--—. -4 .F.—. 0-F.- I I . V I V 5 n - . I V. .-V-... -.V.—...,” .. ..I ...- -- . . . F-¢F-_F-F-F.. V II I 0 I V d . f I . .F . I .F o . F F '3 . I . . I. IIIVwVII ”III -I I ..L -.F I-I .... IF F 1-7.- .I I II.” II,.I..h . I I - I I. .FIVII. T’. . . . . F .. V. V. . I h V I n I _ F 4 I I. w . * . F VI .. F F . o. . F H . . I . . F . F F v. .. . I .V . .. F I... ._ . . I II I II VIII I5 III II TI". {It tIfiIIfiIIflIIII‘IIIIIffiIIIOJOI' IIIIIfilIIIIt IIIfiIIIIII UfilIIffiIII‘ITfiVfiLIIV 'VIIIJVIIIIIPIIIIIIIIIIVILI V IOI'I IOII 1.1.90 ilfiIIIIIVI AV. .IIIIVII ..VV VIII‘IIIIIIAVIII'IO III V+J I. . . F . . . . ... I. . .. F ‘ I.F . . I u I .a I r . . F I F . V. » . . .0. 9 F . . . o .o I I I. I o h ~ 0 . ,9 F , . V . . V .— 4 . . . V. . _ F . I I I I If I”! .IIIm V1I||I In A” I I fl II”. «I In .4 r I ”I n I. III._ IA VIIIIIIV. F.I. .» (I 4 . I II In».V .. ... I » . . V. .H ...... ., .V ..V . H “ +J .. ..m V . u w g F H V n . V VII“. .... H .... n 4 gr . .VV q . V I ’I‘r.‘ I? II. II kw {IL N ‘fi‘. IL it :41 O‘ I 'LflIJ j. ifi‘lfilfi lkln III I) IIIIIfi lolIfink.I|Inf.l vfi00|IOII .Ivfilwl IIIIIII' ... V .V.. .fV...a .\.I. . - V ..V. . . W .V _ . .V V 4 ~ I V. I. ‘ w .5 F 4 9 . V... _ F . . V . w .. V . . . V . I I . . o . _ . F I IIIIII. FIII.II I IIII I IV I IIV L III I I IOIIII. I F 4 ..I II . 8 . . .. .. V . % FI . p . F 4 * . . ... F > . .. A u I . . . V. 0 . _ . O 5 . . m . V . 1. , w M V . .H V V m . O V a I”: I - III| 5|! IIfiIliI'IIIIL :‘ILI‘II‘II'I IAFIIIOI 1 VIII?» It'll II IIIIII'IIQI+.I1|yrIIIOIIIIL~IIII|IOfiIIIIfiI.h. HII \YlfiI «III .I00 I IJII I fl IMIIILTI IN .T I I n p h _. . o . V V. a . .5 V . . M H n a . 0 . . .V F . t .. V V I n . .V . . _ w . F I I p o . I. v ‘ a J V # III. I . II," .. III III- III, I V .I I II . #V I *2 ..z.. r -I-.. I” . . II F .L. I I . .. I I V . . . 9 . . . _ . . F .n V .V I F V . V . H _ . H V . . . . . . _ . . . . V n ‘l I‘ll/‘It'- Ll. Yr? . *4 M IV . . .V . I 1 I I I O L.; Q I 9 l I . .V . .V III! II. I IOV II II ..I I v . . u+ V : . o .- W _ h . H . Fr u... . . n .V F V . LI I! II -- .1 “HI . IIIIIIIVIII II».-. I .IIIstIIIIIIFiII- IV-.--,VI-.-+I_II_;.II..I. . I V . . . ....V. VV . . .. B . . h F H F . V . . _ . F .4 . V. F . F . F I _. IV II a I IVV .I'II III AT? II _9VI II II I IIFI I I .. .III I’IIQYOYIIAI _ _, F ” 1. . m. _ .7 F . . o F I. . . . n . . I . V . . . F F V. . “VIII! I'Iltil. .I k I... If flii #II r “r VII I . V V . c F . . . . V V n _. I . . . . . . F _ F . F . H , . . . F .r F _ n.IJ.V .V Il~.. .IIIII m 0' .I I III. fl I Ifi I I5 I]; . . _ V . . . _ _ . . . . F .V F 4 . o .. . I . I F u" I . VI ' II! o I o.|' IVIPV l .InIIQnIIl. I rI! V IIIIIIfiIO VW 0‘ {fl V I1 6 IIhIIIO ‘LvIVfilfiII .'IIIII filtII Il.‘ L I‘ll I . . . c . I4 . V _ F V. m v V. ; V.V V. . . ,V . F . V .. $8? F .b . . I V s n F F F _. ,.V _ v . F V . . . ..VIIIIII IIIlt|II|nIIIII LVIIIIPIII IF blII M n _ a .f A .....V “I V I _. F o, . I. .. n V F b 0 V. 09 III? I w v F I . . . F _ V. . . I I III II I IIIIIo YIInIIOIIIIIIIToIfiI I I IIIIII. III I V . II 4 . .II — _ _ . F F H I - ... V V H -. w _ V F . F W V a .-.-... "'"W .-y—A._. .v V ..V. .A er'... A ‘ AI .. ‘l c A . c . V _ . L V . u _ V . H V . A . A . _ .A . . V “A . A. > o. — o _ L . . . A m _ . V M u .V . . J . 1| . . A v 1.1% . . 0 0A . A! AA u..~ . .A A H V 9V A V A V a L . L L . L . . . . . V . “ +V . V _ V w . A M A A V. . Va. . _ . p . W A . _ . . . . A A A . V «V A . V . _ H . . A . .V » . V . V . A V . . . V . o . . .H A . V .. 0 V m A .-V.-.-V..1.!..I. ..Vx--:li..V...}-i-Vlel1113.3-I! . IL}: V V A V V V LVV L A 4 1 #1-..- 51:13 . . . . . V AI V A . A A A . . . V . A m . .. Aom . . L. V M . — A V. . 0 a V~ . ~V A A V . A V A V ~ V A 1 A V .V V A A .. oV . A . . ... a . A . A. V. V .c A h . V . V ~V A . . . . . .-. A ‘1‘. A .. A .1. .31. ..AA .A--- ..o... AAA-$A||17..A A) ...; . A. .A. . 7..-». | IA... A- t - -s. AAAA .o- . .a A . V . . . I . y V. Va. . . V .+. _ V . .V. V A .. V V V V. V V. A. . — M V V . . . . H A o A A o A . fl V . _ A . . . r . Vv A . ... V Lfi . V . o . V . . .. p A. . V+ . . w A V . . n _ a .A . V ..V. V,. _ Va V V . ._ V . p . . [ I I Q .71 ‘I‘ ..b‘lQ.LfiI'lIC . LV. I‘ll AI”. '0‘ .IQIA‘ A LYfilrl'QI-\.+lvlo"uy"i|j .ll'lv'lurl': tifllc‘V IfntQIIAQr i ‘0‘) 'VI‘AIII Al APO"..- OAT I 0.... ‘ NIIIIIIIQ .AOIAII‘IAVl.“ A AI'L‘I l IIOI ii IAA I A .0. V *AtvuA CIA! A lAlv‘ All ..A V. w- . A_ AI .A A a A V. .. . .. _ V . . .V V V. . . . V V . A . . . V. V . . . . V A _ A p .H . V V .V A. w L . _ A Vv . . A V n V A u a . u a. .u . . V“ — . . . A . a .. vA « . V * . A V a V. V . . . .— A . . .. VV . V .. . b . A . . AA A AA... A AALAIA. lvl ..... .?!AA. ..AA. A A. V VvA A IV. .l. v AAA. AAV A595. A Av|.A.QAA ..‘u.& .A. A AAA- V . V A ..v. I vVIr‘. A . ... o . .+ . u H L . n n . .V . .» AL . A. A . . 4 n A”. . . I . a .v > . V ~ .. V A. . A A . . . _ . V. . A ' . Q . . A o r .. Y. . p . o A V . _ . V . . . VV. _ A V A _ it _ A «V1 r W 4r VI ( W 1‘ AW 1.1 *1 a} 14 r Lr ? 1 IIAIIAVIIUAPIIVAIIA- V- A V m . V H W 7 M. f r... U. .V .7 V. ...”. VV . . .V V _ V V . V \ . A 4 AA 5 v . A V AV — .A . V A A A A. o A o A . A . V . .V . A . . . . . . V . V V. V . V .. A . V m. .V V. . . . . . - v 0.. _A A W .VA VA...69A AA‘+’A ..4 A- A 0!. o. A A.” A AIV>1u r. v 9. .4- .DL rVVv V AA ..VI..- IVAr."-A+!LAOAA AQI'A- H“ 0.0- OI‘H '9 V vAA... AIIAA :A*§ . AAA.) .{OA V ... A A r}: A A A .1 A V . V . . a A A AA A . A V V A V V... V A . . A o.. A A. . . . . . V .p . VA . A _ . ..H . v .... V~. H V. .. ..V.. + A. V w . V V a . . . a .A AAA n h A +V v ~ A _ V ¢. A... .I. A. ..V.. V.V A V . . A . . . .V AAA ... . A A A V . .V A A . V v V . . . A. V. . A A A s . A 4 ’ QIYIIVO .lfv‘dl’lAr 4 A All IHOI'OAVOIIIIAV it qulg'o‘.’ JV r r A } 5|“ 5|“! IIOAIOI?AIIIA? VIOIAIQIA f-‘ IA. 1.,‘AIJlIxAA'ioAPAAI L A AA A 11A T. A A} Ar V. . +.. A . V mV .V I V V. ..V. “V V A A A V . AA. fl V 0. V V . A . . V 7.:-. ..V. A A. . o. . VV. A A. . A VA, .A .. pAA .V 9 . . A o . V A . .m w .... . AL. n A A... . . * V. ~..~ 4.. ..L . .AOAA.. * A M _ . V . V . .u. A A . . . .. .A V ... A ...V.. . V.- VV . >A . . v n V. H A A A V VI. AA..1vo.+u A rAAoIVV . AAA... ...! AVL.I A.v”. A LAIA.‘56.9V . AIAIMIAAIAPQIXA’L. A... AACAMA. 1+..AA9 l A . + .I V. A . A . .. . - V . .. V . H. .A A. ¢ A. F * . . .. . . * .Vv .. . a V r A A . L V A A. V V. ... A A . . m .V— . ~ A . . A. .A ... . . .V A. .. . . .9 . .A V. n A . . .n . V .V A . . . V V . A A _ . . Va V . . V _ V I Vii. 71’ij . J A-r fl ‘ W r A1! D .r th r 1+ I !A4lA\III( {I N V a V .A . . . M d . . A.— o . A V V . _ V . . ..V. . V V V a . V V V V V . L n V h V . . . V V ..L . V 0 . A .. V .Avv AA. .AA A A of .AA. VA... Al. LA! ... IA- A1Ib||¢l .. o I! . o .A A A a 4.V # . . V V_. . 4A . _ m . .. . . . _ V H m w .. A. . A A u 4 A + L n . m A .. . V. V ..A a . A A A A . . A n 0 A A V ”A. . V A .V . V o_ . h c I r. J o I DA Av‘ IE VIA I I A F A A 0A D.IAIVIVYII‘I PLV All], On! .I"?! loL’ I I A 1.? 14‘ A . . H A . _ V . L. u A a . . H V . V . .V A A n V . . . .L A A V. . A . . ... fl _ m A “V I . a A v - V A. V. V, r qAIoAA JIAAA v 1...:on A‘xrAV .. .1‘A&.A,1A AVOV 9.5 t- .H. a . . V L V. V L. V. V V V V . .V . . L . . o . _ V. .. A fi.. _ 5 V A A v V. _ A .. uh . n . m . c L- A . . «V A. in-‘ VAOAI.\‘- V J I» 7 V I!” 10 l 1.!!! 1...!!! -AOIA IIA‘A V H. 1.1.x 4. .V V V V V V . fl. . V V V L . V.” V L . . V L V _ . V. n V V . t. V A. A .. . V . . . . . A V . A V . o . .V . A P _ . V... V .. VHV- -.V.. .---..V..&VV . . l1}. + . l. V .V ....... A .. ...V 4.--: . .-u. - - . . w . . . V. .VV a L . . I A . A A. . . V A A .A.>A . A . V“ VV 0 A . 5 V . _ . . . V V V V V V I. V . _ V . . . . . . .. .V . .. . ._ II .p Y: ._A ?' | 0|. AVItAOIQ'AVIOAOIl’IAOIALrPAAIIDAYAII'IAK VIAIIIAL luvllv v,’lV|+I0VAI.' 1'4. 01.0 ACKA +1.1. AAAV I}..- .AAQIIA f LYO‘QOAOIV1. 1AIV n _ m V . . V L . V n . . V _ V I . _ . . . .V V. . V _ L . g .. . . V V v1 V _ V V V V . . . . V V V _ L V . . 4 Av ‘0 4A-! _ V AAOQ AVV VulbllVAKAAAOA . ll 5: 4| V A t! V V. .+ . .‘ ... . A . L n V . L ..V. V .V V . . V V V V H _ H .0 . . .a . O _ u . _ V . V . _. V. . V V V . V . H . . .V V. .H A . h . F U I‘. .".Y.. J? r tLl» 1 . 'fi 1% . _ L} r!» .AAEI'II I-‘i‘l4l&1¢l-li".i L _ . V . o . . L w V V V L . . H V _ . L V V .V V . V . . . . . A V V . . V . V _ . V . V . W V V V _ . . V V y. A V V. . . .1.. A.. AA--.» 11». A. 121* .A ..+V . A w -i. .Tv-t..-oAA~..Vu A .V. -. ... . .rv AA. .. . . . V V. V .V . V . . V V A . m . A L V _ L V . A . M V . V“ a A V V V . . . . V V . . .V _ V. V n u A I -fi- Ill-A1“Atl’ AFAII‘OIAAltlJVYAIUIO.II..Il.‘IIA--..AIOI'- Tl‘.’..AFAVA;‘ u ’lllvlvlu'.#lfllll. A0 IAA'I.r11| -1.}; AJIVIfVLorll.A-V At IAVIJAI. .VAV" AI‘A AAAAMAO {All 0 IA? ‘ u V . A V . Ao . V V . . a . V . V . w V AV . . A . . A. L . V A . . o . o .. . m V . V A. . . . ¢ . .. V . A u .. ......L --. .‘yvV.. -IAA 4.v A..A. ..-! --A V.V .V ...- *..V-.. 15» ..Av IAA+ .0.A.v.uw;. A. -V VI. VA A ... 1V - . V- -13 Ar V . V A. . . . V A A . . L V . . . 4 L . AA . . H V V V . . .. _ . _ . V A . A . L A A A .. . . V. V. A . . A . . . A V > V . . .V V. P . . V . V . V V ‘1‘ L AW ? < Adr > ’ 4 Fl. AP A‘¥|»Y!.tlla|llv‘" A‘Al AIQAA ‘l‘luw A I. V L V . . V .. . V . V . .. V m V A . V V L . A w A V A V. . . A .. n A . A. . . V . V . . .V _. V . . A * . . o . u . A V. . o . . . V H. . *. .VA. . V . . . A V a . V A A vAV .. A in AA. A A Vt! . AVA. +Av AAA A AAAA .+ .A.§A-.AVI In .AAA.VA1 o AAA.-. LA.AI‘»IA '0'4 I «I ¢A 1V AI. v V. VAA AA A AIQCAA.»V .I A A A AA.» . . .A . . . A . . V . V o A . . . A..AV.AA a .. AV AV A~ V. A A . .A V V . V A . m . A A . . AA. . n A .V.. V. . .1 AV . V . A V . _ V U a . . . .M . u A ..L.. m . . . M .V A ._ A. L . . . V _ V A . . V V . V o . A A V A . h . . 1!- V.. AA. v I A ---VVAAAW.O 0".{TAIAV Volt!!! 4 AI} Iofillo.019'ilp {If I'Ao .V-..‘|.HAAIIAI.HIVVAII. VIAIAI AAII‘IQIO'A'A1!.AIVI.IvII1¢L.QAIi 011.13-} A’Alo. YAAAiAA I.‘ .0 IIAVA- .A... o! 0.. ’ A- V4. | . 4 V V V .ufld . V on? V .5 ad 3 V . V L . A . A A . A _ o . V u V L V V _ .Hn Vow” . H a V V “a v V V . .r H. V b L .V V . . A .. L A . . .AA A . . A L . . v V . A ..-V. .. A V. V. .v.-Avo .91.-.t .1”: 6.LI.AL.1.O. to»- V- AILVAAf -.tvr.-vA .iAAAA-AAV -H. (V.4'AH.A L w v. A . V V A A "A . L . V A . AVA v o . . V. w w u b . o ..A o n w. 0.. V .VAV . 4 M A . V V V .A . .. A .A V .V V r . . V . . m A V V A 4 A .H a .9 1 . _ .. V P V” A P A A v c H! A. D r u A ... . V . . M V L . . .. AV.V. V. A N. A V. . . u. ”T 5 V A. . N . A“ V L 3 . . .V . ' . A. . A . . V A V . . . V L .V. a V V I. . a V V .0 V L L . V A V, A IV 1. .4. IA; A A. A Al. ‘4 A AAIA.‘ AAVAAAAA in. AA . VIA.AA .. AA IA .iA .1.. ..V . V AA- . _ V. * . . . [4 V. . A H. a V“ A .. V V V V _ . . _. . . V V w , V V V . u n. . H V V . V L V. .A V?V I. U. IAL \ALVIA ‘Alol‘4 [14(0V0'4 .IITAv-"T... I:1..’A¢-§IO.VIIIC+|'AIOOVO "l A A‘AI [1991’ ’I . 9AA} ..IIIA'V A . L V . . V L . V ... {1. V ”I" A. iAttrA . I. ....A OVT Qtlvft. A . .V . . V A. . V . V m 0 V d k . V, . m u H . , A A . 7 ........ «‘91..¢ou . W * . wm-w-w 1.. 6 . . o o . I 1'...» 1‘“ o -l O. L . I!» '1 o-—-‘-~¢o VV I! ‘Cr. ul— MICHIGAN STATE UNIVER ITY L S IBRARIES 3 1293 (LO'IO 8964