l . ‘- .~‘.. b I. II. - tr... - - - “I .. C O . I.‘|.O|l . OOI 1 Or ‘ v. ....v.u. H w I. . - ‘ ‘ - ‘ul :v.‘.(, n o".t )n‘v-|,4tw..\.-.Vot¢‘.lkfll'u ltmiru.ll~. .- ‘v. .IH O O u--. IVI -.¢.I n“ . . . '. n . _ . .‘ §§3.EQ§IN‘I.%§1.1Q.I 12349... .0. a u to \ . I72...) . {0.1! \ -. . \ . . o . . . Uul a-.. .. o L! . . l-l. ‘ -.r 3 a.-. ‘.ro. .‘ | Ir |l~ .’ I‘d An Analysis of a Continuous Beam Bridge A Thesis Submitted to The Faculty of MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE by M. L. Deimling Candidate for the Degree of Bachelor of Science June 1949 ACKNOWLEDGEMENT I wish to acknowledge my appreciation for the assistance given to me by Mr. Takashi Nakamuraawithout which this Thesis might never have been written. $318981 INDEX I Abbreviations & Symbols used in Thesis II Allowable Stresses III Introduction IV Design of Railing A Specifications B Bolts C Straps D Railing Channels E Railing Posts V Design of Sidewalk & Curbs A Specifications B Loading C Reinforcing Steel VI Design of Floor Slab A;Specifications B Loading C Reinforcing Steel VII Design of Diaphragm A Specifications B‘Design VIII Design of Girder A Specifications E Maximum Moments B Moment Distribution F Design of Girder C Reactions D Influence Diagrams IX Conclusions N105 OH CD 0 I. ABBREVIATIONS AND SYEBOLS USED IN THESIS - Michigan State Highway Department A.A.S.H.0.- American Association of State Highway Officials # .. sq.“ inc- ft.- fJ - f0 - f5 - pounds square inch foot area Moment of Inertia, Section.Modulus EXtreme fiber distance Base dimension Height II. ALLOWABLE STRESSES 3,000 #/sq. in. .4.£g #/sq. in. 18,000 #/sq. in. Loading - H20-516-44 p.s. p.s. u v p. Art. Lft. W‘ L. b I R - i. - f. 10 .867 .4 209 #/sq . in . $®q.ft. bond stress unit shear page article lineal feet summation less than per v- 60 #/sq. in.; u- 150 #/sq. in. with no special anchorage v- 90 #/sq. in.; u-300 #/sq. in. with special anchorage Shear- 13,500 p.s.i. for power driven rivets Shear- 10,000 p.s.i. for unfinished bolts Piles- 20 tons/sq. ft. supported. III. INTRODUCTION This thesis was primarily written to increase my own knowledge, to crystalize half formed ideas, to better understand the work of the designer, and most of all, to integrate many of our individual courses such as reinforced concrete, indeterminate structures, and contracts. Upon completion of this thesis I understood much better how these courses related to and depended upon one another. Secondarily, this thesis was written to check the design of the superstructure of the Michigan State Highway Depart- ment bridge B1 of 32-23-13 on which I was an inspector last summer. The bridge is a 3—span continuous I-beam bridge having two end spans of 42 feet each and a center span of 57 feet, giving a total length of 141 feet. This bridge is located in Sebewaing, Michigan over the Sebewaing River on highway 51. The abutments and paers are supported by 12" H 74# bearing piles. The clear distance of the roadway is 38'-0" curb to curb. Continuous girder bridges are best proportioned when the interior spans are from 1.3 to 1.4 times the length of the end spans. The interior span of this bridge is 1.36 times the end spans and therefore is of good design in this respect. During the spring thaws, ice had been piling and Jamming on the old bridge causing a hazard to the structure by backing up water like a dam thereby causing undue pressure. The piers of this bridge were designed as ice breakers by slanting the upstream ends about 6 feet at water level and protecting this slanted pier nose with 6"x6"x%" steel angles. It was thus hoped that the ice flows would break up on these and flow under the bridge without stress or strain to the bridge. All the above mentioned conditions were taken into consideration both in the analysis and design of the bridge. IV. DESIGN OF THE RAILINGS Roadway railings shall be designed to resist a lateral horizontal force of 150#/lineal ft. together with a simul- taneous vertical force of 100#/lineal ft. applied at the top of the railing. When curbs are 10" or less in height, the lower rails shall be designed to resist a lateral hori- zontal force of 300#/lineal ft. M.S.H.D. Spec. Art.35 p.14 RAILINGS: (The bottom rail carries the maximum load and will be investigated first; if it proves satisfactory, the top rail will be also). 1. Bolts 3/4"? in single shear. Capacity=(3.l4)(3/8)2(10,000)=4,420# Load =(300)(7.874)42 =1,310# Factor of Safety: 4,420;1,310=338% 2. Straps: Shear Capacityfl1 3/4 ' 13/16)(5/8)(10,000)=5,860# Load: (Using 50#/Lft. as the dead weight of the railing). L4 300% 50#l:/ 304% Load=(304)(7.874)=1.330# Factor of Safety=586041330=4.41 Bolts control as they have the minimum capacity. 3. Bending Moment in Strap: Distance of strap load application from post is 2" f =Mo/I = M/z (where z = bh2/6 ) f = 1 10 2 6 = 8,200 p08 01. h°r° (Lg25)(1.)§)2 f _ P 110 2 6 :3830p.s.i. vert. 1.75 . 25 ’ ftotal = 12,030 p.s.i. actual fallow.= 18,000 p.s.i. allowable 0.K. Safety factor 3 1.5 Bending Moment is controlling factor. 4. Railing Channels: 0.44" -—————+>- l - (Only the two side { I B. channels will be used nx i “’ I ‘1 g and if they give enough ' . stren th it won't be “S r:"""‘ l 8 ’ . 2.26" 5520:?“ __1 N 0.44 necessary to add the . top channel). Railing Channels a. Length=(7.874) + (2x 1 5/8) = 7.60 ft. 12 b. M = w12 = (300)(1.60)2(12) 2 26,100 in.1bs. —S_ 8 c. A: (2)(1.46) = 2.92 sq. in. c = 2.5 e = 2.06" I8 = 2x.25 = 0.50" Ae2 - I8 = 12.89 1n.3 I (l2.é9) 18,000 p.s.i. allowable Q) 'p-I . . "5 H II N Factor of safety 3 356% (without top channel). 5 oifiafliae Peale; Ia" I ._I 71‘— H— Li L~——L—a4 Bending Moments: 00 f a. 150(7.874‘+ 1.333) 32 300(z.874 + 1.3331i5 Total B.M. o = 16"; a: 9%" AS 4>x 3/4 "¢ bars 4 2 3.88 sq.in. 1.76 nfc : 0.40 f8 + nfc (1 - k/3 )= a -0.06 ' 0.03 «— 0.03 0.03 -0.02 -0.01 -—- 2.68 -2 .68 -2 .67 2.67 1.2138”: 30? ,Mpa =_7'37 . [.504 .496] ”:96 .504“) 1‘ 7.37 k ) ~3.71. -3.66 ——»— -3.66 I 1.82 «_— 1.82 1.84 -0 .92 -0 .90 —>— -0 .90 0.45 +— 0.45 0.45 -0.23 -0.22 —- -0.22 E 0.11 «— 0.11 0.11 4 -0.06 -0.05 —-——>— -0.05 ‘ 0.02 «.— 0.02 0.03 49.221 .29191. ——~> ) 2.44 -2.44 -2.43 2.43 T391312! Mbc, =__"7 046. Mcb ’3 1.99 ft .-kips r-e-v \\ h.- i L 5047796) I .496 .5047 L -7.46 1.99 3.76 3.70 -—-»~ 3.70 -2 .83 +— -2 .83 -2 .86 1.43 1.40 —-—.— 1.40 -0.69 +— -0.69 -0.71 0.35 0.34 ——.- 0.34 —0.17 «— -0.17 -0.17 0.09. 0.08 _._, 0.08 -0.04 .1.— -0.04 -0.04 0.02 0.02 —->- 0.02 5.65 -5.65 -0.01 -0.01 3.79 -3 .79 {with _= 19, Mbc {78:43, Mcb =_ 4.22 ft.-ki;i _ F504 .496j F496 .5041 f , -8.43 4.22 4.24 4.19 ——> 4.19 -4 .17 «— -4 .17 .4 .24 2.10 2.07 -——> 2.07 -1 .03 _._—— -1 .03 -1 .04 0.52 0.51 _.- 0.51 1 -0.25 _._— -0.25 -0.26 0.13 0.12 —-— 0.12 -0 .06 «— -0 .06 -0 .06 0.03 0.03 _._. 0.03 -0.01 -0.02 7.02 -7.02 5.62 -5.62 _At 82:: 28 059 Mbc :3 '4'ch 8 -7 .13 ?t°-kj:-Es 33M“— " M*—-————-————.~1 _faa.___- #W114 3 ~59 2.63 0.66 I i 5 i I g 0.16 ' 0 .04 0.01 7 ~09 I 1 __ r7932] 1 0495 ;5_Q_4:1_-,_i“__ __ [—3.13 7 013 1 3 .54 ——+- 3 .54 -5 .28 *——- -5 .28 -5 .39 2 .63 ——*— 2 .63 -1 .31 -< —— -1 .31 -1 .32 0 .65 ——*~ 0 .65 -0 .32 +— -0 .32 -0 .33 0 .16 -—-———~- 0 .16 ‘ -0 .08 4— -0 .08 -O .08 0 .04 ——>- 0 .04 -0 .02 -<~———— -0.02 -0.02 0.01 -7 .09 7 .14 -7 .14 4.62. ”487. 1.1-"Z. o 12” 1.32 (f ‘D I R = 067 R6: 013 Rfi‘ .064 9. Va=.670k (4 - k vb- .394 "1.09, ,2.Ql 1121' ' Rae.437 Rb;.563 35:.092 van-.437k v5=.655k “—2414 2,98 12.478 ”L? 1) £1 Ra=.365 Rbp.635 Rb;.094 - k va=.365k vb-.729 0‘ 2.3.01.1.) 2'43 -1,44 C _ I Ra: 0228 RE: 0772 Rb":+ 0086 k 1 k va-.228 Vb-.858 5.65 —St§ 2'J °£ -) (- l 1 T RaB- .134- Rb”: .134- E8: .821 vba.955k . , ' 1.61 .7.C/Z.f"19_~_ / _ .. 1: Va“- 0134 *1 l) * Rail-.167 lib-3.167 1153.690 Va" .167k Vb8 '857k 7.07 £7.09 38.9.5. ' I T Raf-.170 R5=.l70 Rfi=.500 va=-.17ok vb=.670k 0 1‘) C ~> Rcl=-0064 R0,,3-0043 Rd: 0043 k _, k veg- .107 Va. 0043 -114" z. bl ‘3 6 1° Ref-.092 Rd=-.062 Rd=.062 k _, k v0.“ .154 Vd- 0062 -166 2'08 0 13 (l 1 chzofi4 Rd=-.O64 Rd-.064 k .. k Vet-.158 Vd-.O64 —z.44 1.44 O 1 Rc'="0086 Rd=" 0058 Rd'goOSB vc--.144k vd=.058k 3.74) -369 )0 Rd=0179 RC": 0090 Rd=-0090 Vc=.269k vac-.090k 5,67— 4.64 0 (‘f 1) Rd=o310 1363.134 Rdfl- .134 . k g- k Va .444 V'C1 .134 7.14 .41/4 0 Rc’= 0500 RC": 0170 Rde- 0170 vc=.670k van-.170k .n _. . .... . . I! u.. . t . .. _ .. . . n I . .. I v . I . . r . , . ..-.(.. 4 .o. . .. fl. x..lb . _ ~ .. . . . .. ... . u u .. . . 3".I 0. . ., . . . c. I 3. . ,. . . . . .. . a . .. .. . ... .. 141.94! ..... .. .. .... 1.; t . . . . o . I}. .u ! v . .-. u... ... . n. .. . ... . . . ..I v I. . o u. . . A I. .. u C . 1. . ... . l .u s . . . 1 . . ...r . r. u .4 v ..u I a 1 r}.- n h. n .‘ ..- . v ‘ u .A .4 O ‘ I u . l . I u . IV \I o u a .. L... - . . O b . .0 xx. ... x If... . n . r9. .0 . h . .....k... u c. . .d. . ..I “‘7‘: l v. .o . ..l... a h... I. A... ...: I a.» J I. . . ..Q) I l..4r . ..KI . \ \s . Q I. . I . .. ..tl‘h 1' i! .. .lfll it n a .” ‘0‘. u . 'u‘l r bk a.“ 0' xp. Q .1|Ictv:rl.'lfl.l\ t. o. . . . t . . 0 ... ‘.l . I I‘ n v .. . a V r. . .~ . ..n. . ... . .. . . ...n .9. I. - Dy!- .... Lawn. .. . . . .. / o . O I . LN4L~V\.$-1NO.N I... o\om_....¢ .cswx u .CfioCkJ.) UZwbwwww ”Prop! _. ...?wa¢-. ...ng u Ewcéi 48., 2,3 3...,» . .32.}.-.Jfldql .. Awmmmmgmow . harm). mow “mi .. Loxvymv\.$.x 0.mQ.N u .N\ $0.? « +CoEoCb 160..» v3... 51%}... ...Zx n 03.3%.; .30" 7.52: too... 130 if: ...... 0mm. JD Eta: . Imdlfil .. HCivvnW ...:pucva .3.\¥ .NN.‘ .’ x ..N.\P x..NMQ..Y .- kw.) hum—o .J’U MWVOJ mUWD fCfiuUOJ 9.6L.r.xum‘fi. n¢¢ \J.W..O.NI £12 ..m/I A®..s.m+¢o.umm,vl 9... + . Q72: .... 3.. ... quwQUOI/ 0C5)» .XUS floicodxmw.‘ $0.? + M .ll'll'"ll‘ INJEV - mdflhmflmmm h,.oUMerMwIHr|Igw9mlE «.0.» «EA 3153qu \1 .32 x . :5ng J.) Uzwvwwww “.1st .xflfiMH I... 3.. m .V .\. m ... u :1...\...... .vum .. .. -131.” ... 333 m3...» as; .Eorz JJ N\o.~m .. u HIV .vSI u m».».2...§..:.~.vu.rto£J.O ...... . . (rift! 44> O m m. . II... J D xv r ... 15.3w... OGN n/.};.unN\ 0am .. "(cw/UGO.» C10L+-Ju?fll 3. 5.0-31 .32 0mm .. .. no. .~.\.+ 19%.«3- my + u hm, . fixf ¢e...:.v+ .. TC... 1001/ vch .522 m E r5222 mow, uzj 523:5 J9 EV .52 .j 2.4:... ....P bv1~m\€wiomv. ... ammvamb ..4..._u\ mmd+ :51 x . .. ..uldelfi. u @OMVFNM. u .mEH as .Sobrsod/A. quswvfiojmm, + .I. «\ovo.” I .EoEJJ $0m+ u r5460.» c..UL+.4.:>._: fivtuzwévwi .69. ......N... mt u mm. 3...: u 6.32.4.0 $5; n A? .S + «s... 35+ fifCUa 4W1 Ohm. fl .J.D .. rcmfi—VOI- UCUJ .XGE "afiflvflufl ,IZQmW: mo .5...sz Hm --...zugoi K0“. ME; 55%;: ASH. ENE.“ [himgsu g“. ‘[ lF'IIII‘\ wfamac,0 wuZwDJuZH BEAM FLEXURE L.L.M0m.=(-243)+(-144)= 387 ft.-k1ps = 4,644,000 in.-lbs. I = 4461 1n.4, c = 29.82/2 = 14.91", rmax= Mc/I rmax.(4,644,ooo x 14.91) / 4461 = 15,550 p.s.i. actual (18,000 p.s.i. allowable, beam 0.K. in flexure.) FLANGE BUCKLING flange width = b = O.872”ft. L 3 19 ft. f8 = 22E500 - 22,500 :- '1+L ,I'lOOb 1+ 19 100x0.72 rs = 17,800 p.s.i. actual (18,000 p.s.i. allowable. 0.K.) VERTICAL BUCKLING AT REACTION rs - R . 203000 = 8,900 p.s.i. (a-+ d74ft 11 + 29. 2 .5 actual (18,000 p.s.i. allowable. 0.K.) DIAGONAL WEB BUCKLING h/t a 28.3"/0.548" = 51.6 > 50 a = 15,000 - 100 h/t = 9,840 p.s.i. actual 8 (11,000 p.s.i. allowable. 0.K.) VERTICAL WEB CRIMPLING AT REACTION r8 = R where k = flange thickness = 0.760" (a + kit f8 3 20,000 = 14,000 p.s.i. actual l +.700.5 (18,000 p.s.i. allowable. 0.K.) IX. CONCLUSIONS The superstructure of this bridge was very well designed both for stress and architectural beauty. It is neither over—designed nor under-designed, but designed closely to the allowable specification stress limits. This means that the design costs and material costs have been kept to a minimum. It was a pleasure to work with the Michigan State Highway Department's plans and specifications. 1.11 H1JAN S1HTEUN1VERSIT( Ll BIAR 11111 111111. ll