

THE EFFECTS OF ISOMETRIC, ISOTONIC, AND ISOKINETIC TRAINING PROGRAMS UPON PUSH-UP ACHIEVEMENT IN HIGH SCHOOL BOYS

Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY FRANK LEE DEITRICK 1972

LIERARY
Michigan State
University

BINDING BY HOAG & SONS' BOOK BINDERY INC.

ABSTRACT

THE EFFECTS OF ISOMETRIC, ISOTONIC, AND ISOKINETIC TRAINING PROGRAMS UPON PUSH-UP ACHIEVEMENT IN HIGH SCHOOL BOYS

By

Frank Lee Deitrick

The purpose of the study was to examine the effects of isometric, isotonic, and isokinetic exercise under controlled conditions on the push-up achievement of high school boys. Since the isokinetic exerciser utilizes a constant rate, the effects of varying rates upon push-up performance was also examined. Twenty-eight subjects were randomly selected from those enrolled in a sixth hour physical education class at Sexton High School (Lansing, Michigan). The subjects were randomly assigned to four treatment groups--control, isometric, isotonic, and isokinetic. Each subject was pretested for the number of complete pushups which could be achieved at three different push-up rates. A pilot study determined the push-up rates that were used in the study. The hypothesis of the author was that there was no significant difference between the gain scores of the treatment groups. A five week training program was initiated with the control group attending the regular physical education class daily and the experimental groups training isometrically, isotonically, and isokinetically on the bench press exercise. Each experimental group trained three days a week and attended the regular physical education class the other two days. After the

training program, each subject was post-tested for the number of complete push-ups which could be achieved at the three push-up rates. The design of the study was a 4x3, 2-way Analysis of Variance of gain scores with unequal n. The results of the ANOVA of gain scores indicated there was a significant treatment effect at the .03 level, but neither the push-up rate effect nor the interactions were significant. However, in post hoc examination of the treatment effect, neither the Scheffé nor the less rigorous Duncan or Student Newman Keul multiple comparison tests could detect a significance at the .05 level between treatments. Thus, the conclusion of the study necessarily must be limited to the significant differences between the four treatment groups with no further definition.

THE EFFECTS OF ISOMETRIC, ISOTONIC, AND ISOKINETIC TRAINING PROGRAMS UPON PUSH-UP ACHIEVEMENT IN HIGH SCHOOL BOYS

Ву

Frank Lee Deitrick

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Health, Physical Education and Recreation

67.113

Dedication

To Katherine Mary and Tracy Mac Leod Deitrick

ACKNOWLEDGMENTS

The author wishes to express his appreciation to professors

Dr. Wayne Van Huss and Dr. William Heusner for their professional

assistance, to Thomas Gilliam for his guidance with the analysis, and
to John Collins whose physical education class was used in the research.

FOREWORD

This thesis is atypical from the conventional technique generally employed to report research data in a thesis format. The data are presented as they would appear in a professional science journal describing research.

This change provides a more concise, scientific presentation of the research. The author has found it advantageous to work within this framework; it is hoped the reader will as well.

Dr. Wayne Van Huss suggested and sanctioned this alternation from the conventional. This author encourages continuation of this format when appropriate.

TABLE OF CONTENTS

Chapter	Pa	ge
I	INTRODUCTION	1
		3
II	METHODS OF RESEARCH	4
		4
	9	4
		4
		5
	Testing Procedure	6
	Pilot	6
	Statistical Treatment	7
III	RESULTS	8
IV	SUMMARY, CONCLUSION, AND RECOMMENDATIONS	3
	Summary	3
	Conclusion	3
	Recommendations	4
BIBLIOGRAPH	Y	5
APPENDIXES.		8
	APPENDIX A: PILOT DATA	8
	APPENDIX B: TESTING DATA	
	APPENDIX C: TRAINING DATA	

LIST OF TABLES

Table		Page
1	Summary of Bastat and correlations within cells	. 8
2	Pretest and post-test mean values and mean changes in the treatment groups	. 10
3	Analysis of variance for treatments, push-up rates, and interactions	. 10
4	Table of mean gain scores for treatments, push-up rates, and interactions	. 12
A-1	Pilot data: reliability of testing procedure	. 19
A-2	Pilot data: standard deviation of push-ups and mean rate of a normal push-up	. 20
A-3	Pilot data: rate of isokinetic exerciser (Super Mini-Gym)	. 21
A-4	Pilot data: push-up rates and metronome settings	. 22
B-1	Testing data: pretest and post-test data	. 24
C-1	Training data: isometric group	. 27
C-2	Training data: isotonic group	. 28
C-3	Training data: isokinetic group	. 29

LIST OF FIGURES

Figure		Page
1	Mean difference by treatment groups	11
2	Mean difference by push-up rates	. 11

CHAPTER I

INTRODUCTION

Even though strength development methods have been practiced since earliest time, there is still disagreement among researchers as to the best method for strength development.

One of the systematic approaches to strength development was progressive resistance exercise or isotonics which loads a dynamically contracting muscle with weights or equivalent so that speed varies and resistance remains constant (as limited by gravity) over a full range of motion. It has been shown that isotonic training results in strength gains. Research has been undertaken comparing various combinations of resistance and repetitions to find the best approach for maximal strength improvement (3,22,23,27).

A second systematic approach was isometrics which loads a muscle so that speed is zero and resistance is proportional to muscular capacity in static positions. It has also been shown that isometric training results in strength gains (4,14,21).

There have been studies that have shown both methods to significantly increase strength but with no significant difference between methods (24,25,28,29,30). However, there have also been contradicting studies comparing isometrics and isotonics. For example, Berger and Rapp showed that an isotonic program was more effective than an isometric program in improving the vertical jump (6). In contrasting effects of isotonic and isometric training on the vertical jump, Hannett found a

mean increase of 3.3 inches for his isometric group, and 2.6 inches for his isotonic group, and 1.4 inches for his control group. Improvements within each group were significant at the .05 level (26).

To complicate the already confusing field of strength development a new concept in strength development has been developed to challenge isotonics and isometrics called isokinetics or accommodating resistance exercise (ARE). In this program a muscle is loaded dynamically so that movement is at a fixed rate of speed and resistance is directly proportional to the magnitude of the input at every given point in the range of movement.

There have been recorded limitations which are inherent in both isotonic and isometric training programs (16). Clarke, for example, has described the variations in muscular force throughout a full range of motion resulting in sub-maximal loadings of the muscle (1).

The research completed thus far indicates that isokinetic programs will increase strength significantly. Thistle reported that after an eight week period of exercise involving sixty subjects, the experimental group using isokinetics showed an improvement of 35.4% in total work ability while the group using isotonic methods improved only 27.5% and the group using isometric contractions improved only 9.2%. The results in peak force ability were more remarkable with the isokinetic group improving 47.2%, the isotonic group 28.6%, and the isometric group 12.1% (20).

Berg, utilizing a ten-week isokinetic program, has recently reported an overall gain of 26% in strength (7). Hislop and Perrine have taken the position that isokinetic exercise permits greater demands to be placed on muscular performance than have heretofore been possible (11).

Isokinetic exercise has received enthusiastic responses from athletes, coaches, trainers, physical educators, and physical therapists (8,9,10,12,13,15,17,18,19). It is clear, however, that careful and complete evaluation of isokinetic programs is needed.

Statement of the Problem

To examine the effects of isometric, isotonic, and isokinetic exercise under controlled conditions on the push-up achievement of high school boys. As a secondary problem, since the isokinetic exerciser utilizes a constant rate, the effects of varying rates upon push-up performance will be investigated.

Limitations

This study was limited by the following factors.

- 1. The subjects knew they were part of a research study.
- 2. There was no control over diet, sleep, and other daily living habits.
 - 3. Nothing was known about past training programs of the subjects.
- 4. The motivation of the subjects during testing and training may have been lacking; however, encouragement was given daily to each group.
 - 5. The number of available subjects was small.
 - 6. The study was limited to five weeks of training.

CHAPTER II

METHODS OF RESEARCH

Design

The design of the study was a 4x3, 2-way Analysis of Variance.

			FACTOR A = TREATMENT				
1		Control	Isometric	Isotonic	Isokinetic		
FACTOR	Normal						
B = PUSH-UP RATE	Medium						
	Slow						

Subjects

Twenty-eight subjects were randomly selected from a sixth hour physical education class at Sexton High School (Lansing, Michigan).

There were no prerequisites for this class. The subjects were randomly assigned to four treatment groups. Due to absenteeism and personal injury, only twenty-three subjects were used in the final analysis.

Treatment Groups

The four treatment groups were defined as follows: Group A-Control, Group B-Isometric, Group C-Isotonic, Group D-Isokinetic. The study was conducted over a period of five weeks.

Training Procedure

The subjects of Group A (N=7), the control group, participated in the regular physical education class. During the study the physical education class had received instruction in golf and swimming. The writer asked these subjects not to become involved in any training programs that might involve the upper extremities.

The subjects of Group B (N=6), the isometric group, performed the bench press isometrically on a power rack at five different positions in the range of movement. These positions were approximately chest level, 90° of arm flexion, 115° of arm flexion, 140° of arm flexion, and 165° of arm flexion. Each subject was directed to sustain a 2/3 to maximum contraction for six seconds at each position in the range (4). The subjects trained three days a week. After their training session each subject returned to the regular physical education class.

The subjects of Group C (N=5), the isotonic group, performed three sets of eight repetitions in the bench press. The repetitions were performed at the same rate as the slow push-up rate. This rate was controlled by a metronome. DeLorme's progressive resistance program was followed in the training program. The first set consisted of 8 repetitions against one-half the subjects 8 repetition maximum (RM), the second set involved 8 repetitions with three-quarters of the 8 RM, and the final set of 8 repetitions was performed with the 8 RM (3). Whenever the subject progressed so that he could successfully complete all three sets of 8 repetitions, an additional 10 pounds of resistance was added and this new weight was then used as the 8 RM for subsequent training. The subjects trained three days a week. After their training session each subject returned to the regular physical education class.

The subjects of Group D (N=5), the isokinetic group, performed two sets of 8 repetitions at maximum resistance on an isokinetic exerciser, the Super Mini-Gym. 1 Two sets of 8 repetitions were performed in an attempt to equate the work in foot/lbs. in groups C and D. The subjects trained three days a week. After their training session each subject returned to the regular physical education class.

Testing Procedure

Each subject was tested for the number of complete push-ups which could be achieved at three different push-up rates—normal, medium, and slow—determined from a pilot study. A complete push-up was defined as one where the subject performed a push-up maintaining the given rate with his back straight, head level, hands approximately shoulder width, and chest touching a block eight centimeters in height on the floor. Each subject was pretested and post—tested for the number of complete push—ups which could be achieved at the three push—up rates. The rate of each push—up was controlled by a metronome. The test order was randomly assigned to each subject with a five minute interval for recovery.

Pilot

Prior to beginning the actual collection of data, a pilot study was undertaken to determine:

- 1. The variability of the data from which the sample size could be determined.
 - 2. The reliability of testing procedures.

Super Mini-Gym, Indicator Model No. 250, Mgr. Mini-Gym, Inc., Box 266, Independence, Missouri 64051.

- 3. The push-up rates.
- 4. The potential administrative problems connected with the testing and training of the subjects.

The results of the pilot study were as follows:

- 1. The standard deviation of the available sample was 6.42. Based on this information and an α =.05, β =.10, a necessary and sufficient n was determined to be 6 per treatment group (2).
- 2. The reliability of the testing procedures was r=0.925 for the normal rate and r=0.738 for the slow rate.
- 3. The normal push-up rate was determined to be 58.06 cm per second, the slow push-up rate was 24.58 cm per second, and the medium push-up rate was 41.32 cm per second. The slow rate was the rate of the isokinetic exerciser. The medium rate was midway between the normal and slow rates. From this information the metronome settings were normal-90, medium-64, and slow-38 beats per minute. In the testing procedure two beats constituted one complete push-up.
- 4. The height of the block used in the testing was changed from five centimeters in the pilot study to eight centimeters in the actual study.

Statistical Treatment

A preliminary analysis of the correlation between cells was performed to determine if the assumptions could be met for Analysis of Variance. Since the assumptions were met the final analysis was a 4x3, 2-way ANOVA of gain scores with unequal n.

CHAPTER III

RESULTS

There was a question about the appropriate analysis for the data, Analysis of Variance or Analysis of Covariance. In Table 1 are the results of a preliminary investigation into the standard deviations, skewness, kurtosis, and correlations of the original data. As a result, it was decided that the appropriate analysis was an ANOVA of gain scores with unequal n.

Table 1. Summary of Bastat and correlations within cells

			Treatments						
		Cont	rol	Isometric		Isotonic		Isokinetic	
		Pre- test	Post- test	Pre- test	Post- test	Pre- test	Post- test	Pre- test	Post- test
	Mean	18.7	18.7	17.8	18.3	14.0	18.0	17.6	21.2
	Standard deviation	7.3	6.9	5.0	5.7	6.1	6.7	8.2	6.9
LemroN	Skewness ·	0.001	0.113	0.747	0.053	-0.256	0.576	0.360	-0.305
Ž	Kurtosis	1.708	1.577	2.827	2.444	2.372	2.013	2.503	2.319
	Correlation		211		6595		241		9592
	Mean	17.3	16.7	18.7	19.3	15.8	18.0	15.6	18.6
	Standard deviation	5.5	5.5	6.4	6.0	7.7	4.1	4.9	5.3
Medium	Skewness	0.390	0.801	0.094	-0.879	0.251	0.000	-0.068	-0.330
Me	Kurtosis	1.812	1.839	1.751	2.489	1.641	1.527	1.934	1.989
	Correlation	.8	8410		5800	.7	281		, 8790

			Con	tro1	Treatments Isometric Isotonic			Isokinetic		
			Pre- test	Post- test	Pre- test	Post- test		Post- test		Post- test
		Mean	14.3	14.7	16.8	15.7	14.8	17.8	12.8	15.2
Rate		Standard deviation	4.8	6.3	5.0	6.2	6.4	7.8	2.7	3.5
	Slow	Skewness	0.428	0.534	-0.863	0.884	-0.201	0.566	0.670	1.074
Push-up	S	Kurtosis	3.105	2.010	2.824	3.146	1.745	1.637	2.310	2.524
Pus		Correlation		3425	•	6564		3370		123

The findings of the study indicated an overall treatment effect significant at the .03 level, but there was no significance in the overall push-up rate effect or in any of the interactions between treatment and push-up rates, Table 3.

In post hoc examination of the treatment effects, neither the Scheffé nor the less rigorous Duncan or Student Newman Keul multiple comparison tests could detect a significance at the .05 level between the treatments. Table 4 summarizes the results of the mean gain scores for the treatments, push-up rates, and interactions.

Table 2 summarizes the pretest and post-test means for each treatment and push-up rate. In Figures 1 and 2 the mean differences between the pretest and post-test means are presented.

From the results it can be concluded that significant differences exist between treatments. Neither a rate effect nor any significant interactions were observed. Although on the basis of the mean values, an attractive explanation appeared probable in the differences between the Control-Isometric Groups and the Isotonic-Isokinetic Groups on the basis of the post hoc tests such an explanation was not legitimate. It

Table 2. Pretest and post-test mean values and mean changes in the treatment groups

Groups	Pretest Means	Post-test Means	Mean Changes
Control			
Normal	18.7	18.7	0.0
Medium	17.3	16.7	-0.6
Slow	14.3	14.7	0.4
Isometric			
Normal	17.8	18.3	0.5
Medium	$18.6\overline{6}$	$19.3\overline{3}$	0.7
Slow	$16.83\overline{3}$	$15.6\overline{6}$	-1.2
Isotonic			
Normal	14.0	18.0	4.0
Medium	15.8	18.0	2.2
Slow	14.8	17.8	3.0
Isokinetic	•		
Normal	17.6	21.2	3.6
Medium	15.6	18.6	3.0
Slow	12.8	15.2	2.4

Table 3. Analysis of variance for treatments, push-up rates, and interactions

Source	Sum Squares	df	Mean Square	F	P
Treatment effect	158.72	3	52.91	3.16	.03
Push-up rate effect	9.44	2	4.72	0.28	.76
Treatment X push-up rate	19.50	6	3.25	0.19	.98
Error	954.30	5 7	16.74		
Total	1140.61	68			

Figure 1

Mean Difference by Treatment Groups

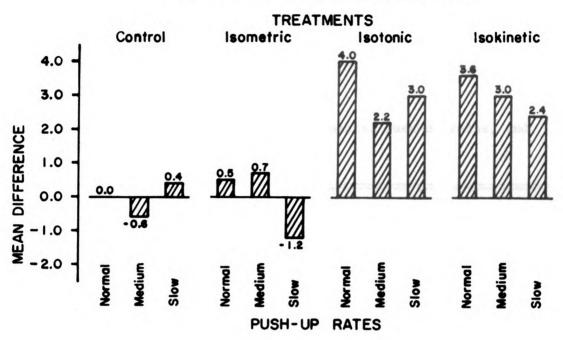
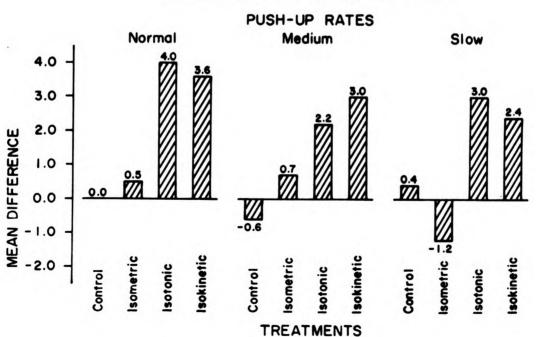



Figure 2

Mean Difference by Push-Up Rates

was also attractive to hypothesize a summing effect in the data from the different rates but again there is no statistical significance to support this position. Thus, the conclusion of the study necessarily must be limited to the significant differences between the four groups with no further definition.

Table 4. Table of mean gain scores for treatments, push-up rates, and interactions

		Control	FACTOR A Isometric	- TREATMENT	T Isokinetic	Overall mean values by push-up rate
FACTOR B = PUSH-UP RATE	1	0.0000	0.5000 0.6667	4.0000 2.2000	3.6000 3.0000	1.8246 1.1234
FAC	Slow	0.4286	-1.1667	3.0000	2.4000	0.9651
mean	rall n values treat- ts	-0.0476	0.0000	3.0667	3.0000	1.3044

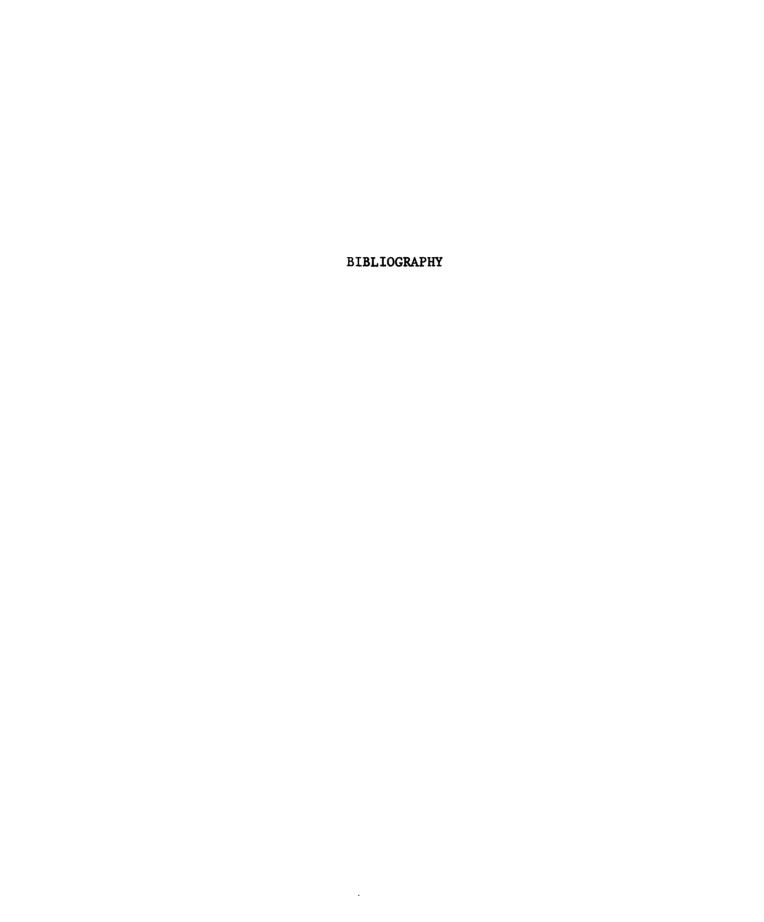
CHAPTER IV

SUMMARY, CONCLUSION, AND RECOMMENDATIONS

Summary

The purpose of the study was to examine the effects of isometric, isotonic, and isokinetic exercise under controlled conditions on the push-up achievement of high school boys. Since the isokinetic exerciser utilizes a constant rate, the effects of varying rates upon push-up performance was also examined.

Twenty-eight subjects were randomly selected from those enrolled in a sixth hour physical education class at Sexton High School (Lansing, Michigan). The subjects were randomly assigned to four treatment groups—control, isometric, isotonic, and isokinetic. Each subject was pretested for the number of complete push—up which could be achieved. Following a five week training program, each subject was post—tested for the number of complete push—ups which could be achieved. The design of the study was a 4x3, 2—way Analysis of Variance of gain scores with unequal n.


Conclusion

Within the limitations of the study, there was a significant treatment effect at the .03 level, but neither the push-up rate effect nor the interactions were significant. However, in post hoc examination of the treatment effects, neither the Scheffé nor the less rigorous Duncan or Student Newman Keul multiple comparison tests could detect a significance at the .05 level between treatments. Thus, the conclusion of the study necessarily must be limited to the significant differences between the four treatment groups with no further definition.

Recommendations

Upon conclusion of the study the following considerations are recommended:

- 1. Increase the length of the study to ten weeks.
- 2. Increase the number of subjects to be used in the study.
- 3. Attempt to equate the training programs between experimental groups.
- 4. Attempt to control the motivation of the subjects while training and testing. This control is particularly important in the isometric and isokinetic groups.

BIBLIOGRAPHY

Books

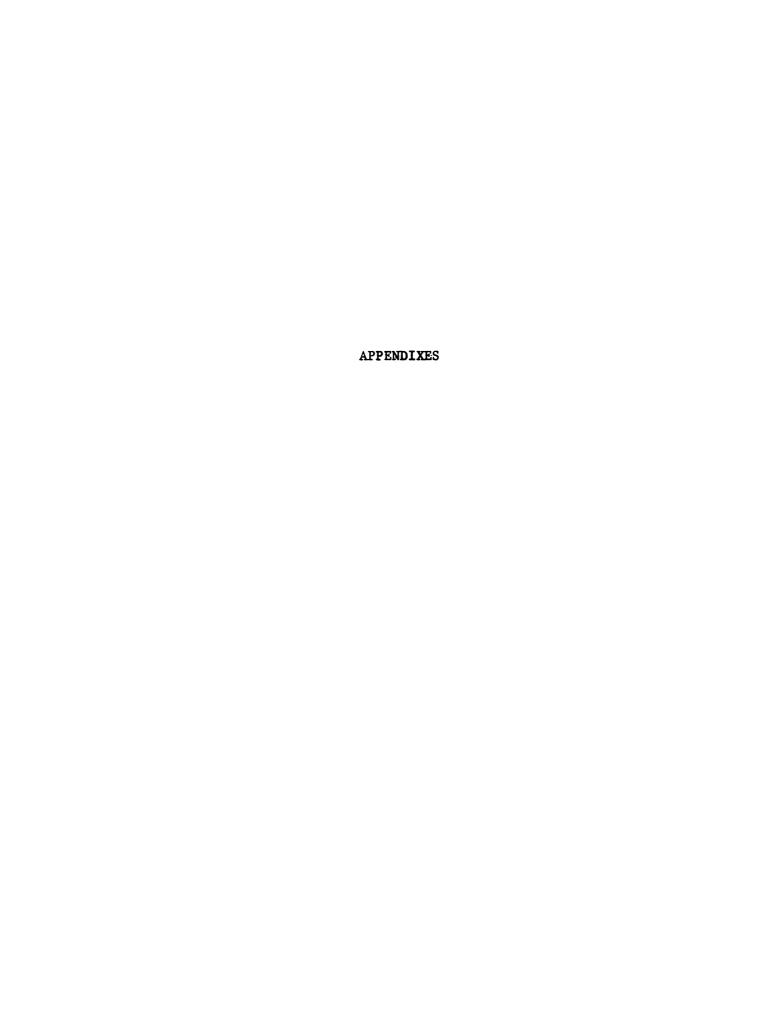
- 1. Clarke, H. H. Muscular Strength and Endurance. Englewood Cliffs: Prentice-Hall, Inc., 1966.
- 2. Cohen, J. Statistical Power Analysis for the Behavioral Sciences. New York: Academic Press, 1969.
- 3. DeLorme, T. L. and A. L. Watkins. *Progressive Resistance Exercise*.

 New York: Appleton-Century-Crofts, Inc., 1951.
- 4. Hettinger, T. Physiology of Strength. Springfield, Illinois: Charles C. Thomas, 1961.
- 5. Leighton, J. R. Progressive Weight Training. New York: Roland Press Co., 1961.

Periodicals

- 6. Berger, R. A. and D. Rapp. "Effects of Dynamic and Static Training on Vertical Jumping Ability," Research Quarterly, 34:419-429, December, 1963.
- 7. "Changing Concepts in a Changing World of Sports," Amateur Athlete, September, 1970, pp. 37-38.
- 8. Chu, D. A. and G. Smith. "Isokinetic Exercise: Controlled Speed and Accommodating Resistance," The Journal of the National Athletic Trainers Association, 6:23-24, Spring, 1971.
- 9. Councilman, J. "Isokinetic Exercise: A New Concept in Strength Building," Swimming World, 10:60-61, November, 1969.
- 10. Hinson, M. and J. Rosentswieg. "Comparing the Three Best Ways of Developing Strength," Scholastic Coach, 41:34, March, 1972.
- 11. Hislop, H. and J. Perrine. "The Isokinetic Concept of Exercise,"

 Physical Therapy, 47:114-117, February, 1967.
- 12. Lay, P. A. "Isokinetic Contractions: A New Concept of Accommodating Resistive Exercise," *The Athletics Coach*, 4:33, June, 1970.


- 13. Lossau, P. "New Adapted PE Program," The Trapeze, November 19, 1971, p. 6.
- 14. Muller, E. A. "The Regulation of Muscular Strength," Journal of the Association for Physical and Mental Rehabilitation, 11:41-47, March-April, 1957.
- 15. Moffroid, M. and others. "A Study of Isokinetic Exercise,"

 Physical Therapy, 49:735-747, July, 1969.
- 16. Perrine, J. "Isokinetic Exercise and Mechanical Energy Potentials of Muscle," Journal of Health, Physical Education, and Recreation, 39:40-44, May, 1968.
- 17. Settino, H. L. and J. Disanza. "Developing Hitting and Throwing Strength Through Isokinetics," Coach and Athlete, 33:14, February, 1971.
- 18. Spackman, R. "A New Approach to Strength Building," Athletic Journal, 51:70-71, January, 1971.
- 19. "Stubborn Machine Helps Retain Muscles," Medical World News, September 23, 1966, p. 70.
- 20. Thistle, H. G. and others. "Isokinetic Contraction: A New Concept of Resistive Exercise," Archives of Physical Medicine and Rehabilitation, 48:279-282, June, 1967.
- 21. Vander Hoff, E. R. and others. "Effects of Muscle Strength and Endurance Development on Blood Flow," Journal of Applied Physiology, 16:873-877, September, 1961.

Unpublished Materials

- 22. Barney, V. S. "A Comparison of DeLorme's Techniques of Progressive Resistance Exercise with a Modified Technique." Unpublished Doctor's dissertation, Brigham Young University, 1956.
- 23. Berger, R. A. "The Effects of Varied Weight Training Programs on Strength and Endurance." Unpublished Doctor's dissertation, University of Illinois, 1960.
- 24. Bergeron, P. "The Effects of Static Strength Training at Various Positions and Dynamic Strength Training Through a Full Range of Motion on Strength, Speed of Movement, and Power." Unpublished Doctor's dissertation, Louisiana State University, 1966.
- 25. Grouwinkle, G. "A Comparison of the Effect of Isotonic Exercise and Isometric Exercise on Speed of Arm Movement and on Arm Strength." Unpublished Master's thesis, State University of Iowa. 1964.

- 26. Hannett, J. L. "The Effects of an Isometric Training Program and a Weight Training Program on the Vertical Jump, Dynamic Strength, Static Strength, and Thigh Girth in Male College Students." Unpublished Master's thesis, Michigan State University, 1964.
- 27. Hoffman, J. A. "A Comparison of the Effects of Two Programs of Weight Training on Explosive Force." Unpublished Master's thesis, South Dakota State College, 1959.
- 28. Kruse, R. D. "The Effects of Varying Frequencies of Training Sessions upon Strength of Elbow Flexor Muscle Groups."
 Unpublished Doctor's dissertation, Springfield College, 1956.
- 29. McCall, G. "The Ipsilateral and Contralateral Effects of Isotonic versus Isometric Unilateral Training." Unpublished Master's thesis, Long Beach State College, 1963.
- 30. Ward, P. E. "The Effects of Isometric and Isotonic Exercises on Strength, Endurance, and Anthropometric Measurements."
 Unpublished Master's thesis, University of Washington, 1963.

APPENDIX A

PILOT DATA

Table A-1. Pilot data: reliability of testing procedure

Subject	<u>Push-u</u> Order Tests Given	Pretest Testing Normal	Rates Slow	Push-up Order Tests Given	Post-tes Testing Normal	-
Edy	slow - nor	11	13	slow - nor	10	9
Farmer	nor - slow	30	18	slow - nor	27	23
Garner	slow - nor	17	13	nor - slow	17	11
Goodenow	slow - nor	15	14	nor - slow	13	10
Jackson	nor - slow	31	17	nor - slow	35	17
Jordon	slow - nor	15	11	slow - nor	15	12
Monahan	slow - nor	27	21	slow - nor	22	18
Phillips	nor - slow	25	14	slow - nor	20	17
Ruhno	nor - slow	25	10	slow - nor	20	11
Satterlee	slow - nor	17	12	nor - slow	14	13

Testing Rates: normal - 120 beats per minute

slow - 38 beats per minute

Results

- 1. $r_{normal} = .925$
- 2. $r_{slow} = .738$

Table A-2. Pilot data: standard deviation of push-ups and mean rate of a normal push-up

Subject	Number of Push-ups	Arm Length in Centimeters	Time for 10 Repe- tions in Seconds
Edy	11	44	16.5
Farmer	30	46	13.6
Garner	17	49	13.2
Goodenow	15	46	18.0
Jackson	31	45	14.9
Jordon	15	48	12.0
Monahan	27	44	12.8
Phillips	25	50	14.3
Ruhno	25	46	12.2
Satterlee	17	50	16.5

Results

- 1. Standard deviation = 6.42
- 2. Mean arm length = 46.8
- 3. Mean time for 1 repetition = 1.44 sec.
- 4. Mean distance moved on 1 repetition = 93.6-10=83.6 cm
- 5. Rate of normal push-up = 58.06 cm per sec

Table A-3. Pilot data: rate of isokinetic exerciser (Super Mini-Gym)

Actual Resistance in Pounds	Resistance Reading on Super Mini-Gym	Time in Seconds to Move 100 cm for each trial
50	125	4.6, 4.5, 4.5, 4.5, 4.4
100	225	4.2, 4.1, 4.1, 4.0, 3.9
150	325	4.1, 4.0, 4.0, 3.9, 3.8
200	425	4.0, 4.0, 3.9, 3.9, 3.8
250	above the Mini- Gym scale	4.0, 3.9, 3.8

Results

- 1. Mean time to move 100 cm = 4.068 sec
- 2. Rate of Super Mini-Gym = 24.58 cm per sec

Table A-4. Pilot data: push-up rates and metronome settings

1. Push-up Rates

Normal - 58.06 cm per sec

Medium - 41.32 cm per sec

Slow - 24.58 cm per sec

2. Distance moved on each repetition = 77.6 cm

Mean distance moved - block height (8 cm)

3. Time for each push-up rate repetition

Normal - 1.34 sec

Medium - 1.88 sec

Slow - 3.16 sec

4. Metronome settings for push-up rates

Normal - 90 beats per minute

Medium - 64 beats per minute

Slow - 38 beats per minute

APPENDIX B TESTING DATA

Table B-1. Testing data: pretest and post-test data

Control Group	<u>Push-u</u> Order		ing R	atec	<u>Push-up</u> Order		-test ing R				
Subjects	Tests Given		Med		Tests Given			Slow			
											
Fay	NMS	24	20	16	SMN	22	24	11			
Ellis	MNS	17	26	15	NSM	26	25	21			
Guyselman	MNS	9	15	12	SMN	10	14	12			
P. Johnson	SNM	29	22	23	NSM	28	16	25			
Loggins	NMS	11	12	7	MSN	12	13	7			
Philo	NSM	24	11	14	SMN	15	12	16			
Stalker	MSN	17	15	13	SNM	18	13	11			
Isometric Group Push-up Pretest					Push-up Post-test						
					Push-up	Post	-test	_			
	Order	Test	ing R		Order	Test	ing R	ates			
Subjects	•			Slow			ing R				
Subjects Crouch	Order	Test	ing R		Order	Test	ing R	ates			
	Order Tests Given	Test	ing R Med	Slow	Order Tests Given	Test Nor	ing R Med	Slow			
Crouch	Order Tests Given NMS	Test Nor	ing R Med	Slow 8	Order Tests Given MNS	Test Nor	ing R Med	Slow			
Crouch Davis*	Order Tests Given NMS NSM	Test Nor 9	ing R Med 10	8 9	Order Tests Given MNS MNS	Test Nor	ing R Med 9	Slow 8			
Crouch Davis* Eberly	Order Tests Given NMS NSM SMN	Test Nor 9 22 20	10 11 16	8 9 22	Order Tests Given MNS MNS MSN	Test Nor 10 15	Med 9 25	8 13			
Crouch Davis* Eberly Eschbach	Order Tests Given NMS NSM SMN	Test Nor 9 22 20 17	10 11 16 15	8 9 22 17	Order Tests Given MNS MNS MSN NMS	10 15 18	9 25	8 13			

Push-up Test Rates

N - normal

M - medium

S - slow

^{*}Subject not used in final analysis as he did not finish study.

Table B-1 (cont'd.)

Isotonic Group		Push-up Pretest Push-up Post-te Order Testing Rates Order Testing									
Subjects	Tests Given				Tests Given	Nor		Slow			
Brown*	MSN	12	12	9	NSM	12	11	12			
Glisson	MSN	16	26	20	SNM	21	21	29			
B. Johnson*	SMN	23	25	24	MNS	28	18	17			
Kirvan	SNM	13	11	12	NMS	16	18	11			
Lintemuth	MSN	5	7	6	MNS	11	15	12			
Reemsnyder	SNM	14	14	14	SMN	14	13	14			
Sinko	MSN	22	21	22	MSN	28	23	23			
Isokinetic Gro	•				Push-up						
Isokinetic Gro	up <u>Push-u</u> Order Tests Giv e n			ates Slow	Push-up Order Tests Given		ing R				
	Order	Test	ing R		Order	Test	ing R	ates			
Subjects	Order Tests Given	Test	ing R Med	Slow	Order Tests Given	Test	ing R Med	Slow			
SubjectsFoster*	Order Tests Given NMS	Test Nor	ing R Med	Slow 13	Order Tests Given MSN	Test Nor	ing R Med	Slow			
Subjects Foster* Gaffee	Order Tests Given NMS NMS	Test Nor	ing R Med 19 22	13 17	Order Tests Given MSN MNS	Test Nor 16 24	ing R Med 20 25	Slow 13 21			
Subjects Foster* Gaffee Magee	Order Tests Given NMS NMS MNS	Test Nor 15 17	ing R Med 19 22	13 17 10	Order Tests Given MSN MNS SNM	Test Nor 16 24 11	ing R Med 20 25	13 21 13			
Subjects Foster* Gaffee Magee Redburn	Order Tests Given NMS NMS MNS NMS	Test Nor 15 17 7 30	19 22 9	13 17 10 13	Order Tests Given MSN MNS SNM SMN	Test Nor 16 24 11 30	ing R Med 20 25 11 21	13 21 13			

Push-up Test Rates

N - normal

M - medium

S - slow

^{*}Subject not used in final analysis as he did not finish study.

APPENDIX C

TRAINING DATA

Table C-1. Training data: isometric group

	May						<u>Da</u>	te				June			
Subjects	8	10	12	15	17	19	22	24	26	29	31	2	5	7	8
Crouch	✓	√	√	✓	✓	✓	✓	✓	✓	✓	✓	✓	√ -	✓	√
Davis	✓	✓	√				✓								
Eberly	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Eschbach	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Griffin	✓	✓	√	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓
Kuhn	✓	√	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	✓
Tremblay	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

 $[\]checkmark$ - performed isometric exercises for that date.

Table C-2. Training data: isotonic group

	M						Da	Date				: :			
Subjects	8	10	12	15	17	19	22	24	26	29	31	3 une	2	7	œ
Brown	* * * * * * * * * * * * * * * * * * *	* 40-8	8	8				000					000		000
	75-8	8-09	∞	∞				- ∞					, ∞		· ∞
	100-0	80-1	m	5				3					4		4
Glisson	20-8	55-8	8 ⁴ 09	∞	8 65-8	œ	œ		70-8	œ	œ	œ	œ	œ	œ
	75-8	82.5-8	8-06	œ	97.5-8	œ	œ	8 1	105-8	∞	∞	∞	∞	∞	∞
	100-8	110-8 120-7	120-7	∞	130-6	7	9		140-5	ო	7	က	9	7	7
R. Johnson	50-8	40-8	45-8										55-8	8-09	œ
	75-8	8-09	67.5-8	75-8								~	82.5-8	8-06	∞
	100-1	80-8	8-06									, 7	110-8	120-3	5
Kirvan	50-8	35-8	40-8	œ	∞	œ	œ	80		45-8	œ	œ	œ		50-8
	75-4	52.5-8	8-09	∞	∞	œ	œ	œ	œ	67.5-8	œ	œ	œ		75-8
	100-0	70-8	80-5	9	9	2	9	2		90-5	2	7	9	80	100-2
Lintemuth	20-8	40-8	45-8		55-8	œ	œ	œ	œ	œ	œ	œ		8-09	œ
	75-8	8-09	67.5-8	75-8	82.5-8	œ	œ	œ	∞	œ	œ	∞	∞	8-06	∞
	100-2	80-8	90-8 1	100-8	110-1	က	2	9	7	H	4	5		120-3	7
Reemsnyder	20-8	40-8	45-8	50-8		55-8	œ	œ	œ	∞	œ	œ		8-09	œ
•	75-8	8-09	67.5-8		ω ω	2.5-8	œ	∞	œ	∞	œ	œ	∞	8-06	∞
	100-1	80-8	90-8 1	100-7		110-4	7	ო	က	4	2	9		120-5	7
Sinko	20-8	œ	œ	55-8		œ		8-09		65-8	œ	œ	œ	∞	œ
	75-8	∞	∞	82.5-8	œ	œ	œ	8-06	∞	97.5-8	œ	∞	∞	∞	œ
	100-7	7	∞	110-7		7		.20-6		130-6	7	4	2	2	4
Sets: 1st-1/2	/2 8 RM	2nd	2nd-3/4 8	₩.	3rd-8	8 RM	l d	increase	10	s punod					

** Repetitions per set

Table C-3. Training data: isokinetic group

	.,					<u>]</u>	Date				_			
Subjects	May 8 10	12	15	17	19	22	24	26	29	31	June 2	5	7	8
Foster		*175 180						160 180						
Gaffee	155 185 175 190													
Magee	135 130 120 150													
Redburn	250 275 270 260													
Ward	210 250 235 250				_									
Woods	130 150 150 175													
Zillizitt	175 180 170 175													

^{*}Reading on Super Mini-Gym Exerciser.

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 03070 9988