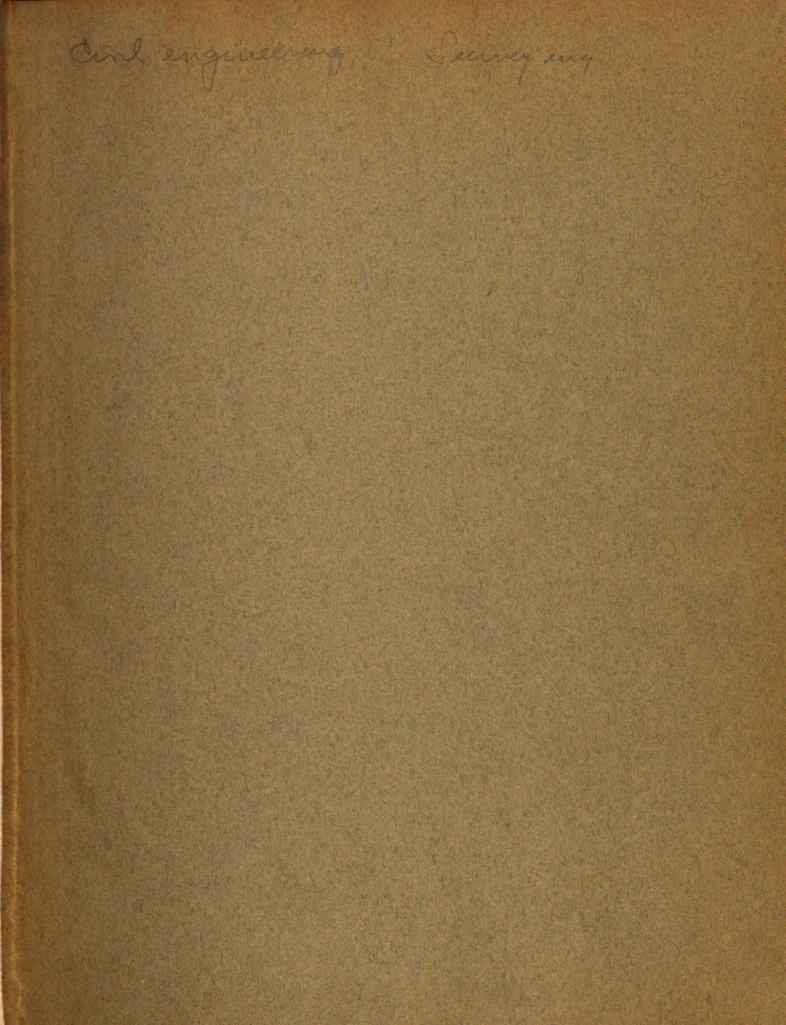


# AN EXPERIMENTAL INVESTIGATION OF BUILDING SITES


Thesis for the Degree of B. S. F. G. Dewell K. W. Zuidema 1936



Lop.1

Surveying

Title Building- peter



## An Experimental Investigation of

#### Building Sites

A Thesis Submitted to

#### The Faculty of

MICHIGAN STATE COLLEGE

of

AGRICULTURE AND APPLIED SCIENCE

By

F. G. Dewell

.

.

K. W. Zuidema

Candidates for the Degree of

Bachelor of Science

June 1936

#### THESIS

5041

.

103237

1

---

#### INDEX

|                               | Page       |
|-------------------------------|------------|
| Introduction                  | l          |
| Summary                       | 3          |
| History of Electrical Methods | 4          |
| Wenner Derivation             | 6          |
| Location of plots             | 10         |
| Method                        | 13         |
| Apparatus                     | 14         |
| Procedure                     | 17         |
| Line Electrode                | 19         |
| Data                          |            |
| Level notes                   | 21         |
| Plot #1                       | 22         |
| Plot #2                       | <b>2</b> 8 |
| Columnar sections             | 33         |
| Curves                        | 34         |
| Interpretation                | 37         |
| Conclusion                    | <b>3</b> 8 |
| Bibliography                  | 40         |

We take this opportunity to express our appreciation to Mr. Keck for his assistance and advice in the course of this investigation and to the Departments of Physics and Building & Grounds for the use of some of their equipment.

#### -INTRODUCTION-

The survey discussed in this paper was undertaken in the hope of adding a new tool to the Civil Engineering profession or perhaps, more properly, of developing an additional use for a recently acquired tool. Electrical methods of geophysical prospecting have been applied within the last few years to the solution of certain engineering problems in highway work and dam construction. The purpose of this survey was to determine the applicability of the resistivity method of geophysics to the investigation of the types of material to be encountered in excavation for building foundations. It was believed that if some procedure could be devised for the accurate determination of subsurface conditions by such a method that it would be of considerable benefit to the engineering profession. In addition it was hoped that some knowledge might be gained that would be useful to the science of geophysics.

The areas selected for the survey were proposed future building sites on the college campus, although the required depths of excavation for such buildings are so shallow as to make the value of such methods of investigation debatable. However, it was considered advisable to select actual building sites since that would be one of the necessary conditions under which the method would be used. It was expected that the method would be more applicable to large buildings requiring at least twenty feet or more of excavation since the

increase in cost and difficulty of securing samples by boring is a multiple of the increase in depth.

From a list of future building sites secured from the building and grounds department two were selected for investigation. These two were considered by the department to be probably among the first to be constructed. A second consideration in their selection was the difference in conditions presented, one being only a few feet higher than the river and the other about thirty five higher. One location was on the high point between Michigan Ave. and the river west of the College Hospital. This is the site of the proposed new dormitory for girls. The other location was on the south side of the river, west of the Armory road and south of the baseball field. It is planned to erect a fieldhouse on this site.

#### -SULMARY-

This report describes the results obtained in a survey of future campus building sites using electrical methods of geophysics. This is the first investigation, as far as is known to the authors, conducted for the purpose of applying geophysical methods to the determination of material to be encountered in shallow excavations. Geophysical methods have been applied to the investigation of subsurface conditions in highway and dam construction.

The four electrode method of Wenner was used with modified and improved type of equipment. The major improvement is the use of an auxiliary potential circuit to eliminate natural ground potentials. Current electrodes were designed which satisfy the assumption used in the derivation of Wenner's formula.

Results were checked with actual samples obtained by a soil auger. The effect of change in moisture content on resistivity readings was investigated.

Mathmatical analysis on the basis of a two layer problem was studied and found to be inadequate for the actual conditions.

Tables of the results obtained at each station are included with Columnar sections for each of the two plots surveyed and sample resistivity curves with an explanation of interpretation.

The investigation points the way to further work along the same line with this and also a second method.

#### HISTORY OF ELECTRICAL METHODS OF GEOPHYSICS

The first investigations in electrical methods of prospecting were begun by Conrad Schlumberger of Paris, Lundberg and Nathorst of Sweden and Harry Conklin of Missouri in 1912. Other investigators have been instrumental in futhering the development in increasing numbers. The first efforts were directed towards the determination of geologic structures particularly in the petroleum and mining fields.

In recent years several investigators have extended their activities into the field of Civil Engineering. The Schlumberger Electrical Prospecting Company of New York has conducted investigations of proposed dam sites, one of which is reported by I. R. Crosby in an article in Engineering and Contracting, Vol.68 . No. 10.

The U. S. Bureau of Public Roads reported the results of their studies of the application of earth resistivity methods to the problem of determining the volume of rock in highway excavations.# This report also gave a brief review of the results obtained in similar investigations by the Highway Department of Missouri.

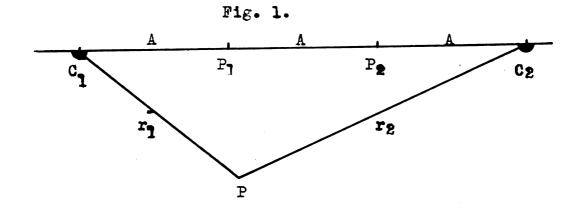
# Public Roads, Vol. 16, No. 4, June, 1935.

#### GENERAL

Electrical methods of geophysics may be divided into three classes, the Self Potential, Applied Potential and Resistivity Method. The basic principle of all of these methods is the determination of subsurface material by the study of an electrical field, either natural or applied. The variations in the electrical characteristics of different earth materials result in disturbances of the electrical field and a study of these disturbances makes it possible to deduce subsurface conditions.

The Potential methods have a more restricted field than the resistivity method, being particularly applicable to the mining field. The survey described in this report was conducted by means of earth resistivity measurements which will be described in detail.

The method used is a modification of that developed by Gish and Rooney, based on the theory worked out by Wenner of the U. S. Bureau of Standards.


The apparatus used consists of a source of current, supplied by batteries, four electrodes supplying contact to the ground, a milliammeter, potentiometer, wire and other appurtenances to complete the circuit.

The following proof of Wenners' formula by Dr. L. V. King of McGill University is taken from a textbook, 'Applied Geophysics', by Eve and Keys.

In Fig. 1, C1 and C2 are electrodes supplying current to the ground.  $P_1$  and  $P_2$  are potential electrodes spaced so that  $C_1P_1=P_1P_2=P_2C_2=A$ .

Let V be the potential at any point due to current flow between C<sub>1</sub> and C<sub>2</sub>.

V must satisfy  $\nabla^2 V = 0$  in an indefinitely extended homogeneous medium.



At a point P distant  $r_1$  and  $r_2$  from electrodes of small dimensions (compared to  $r_1$  and  $r_2$ ) a solution of  $\nabla^2 V=0$  is

where A and B are constants.

The surface of the semi-infinite plane is easily seen to be everywhere at right angles to the equipotential surfaces. Consider electrode  $C_1$  to be a small hemisphere; then if p is the specific resistance, the normal current flow is  $-\frac{1}{p}\frac{\partial V}{\partial n}$ , so that outflow of current from  $C_1$  is  $I = \int_{p}^{1} \frac{\partial V}{\partial n} dS$  over the electrode.

Neglect the term  $\frac{B}{r_{p}}$  and write dS=r<sup>2</sup>dw, where w is a solid angle, then

$$I = -\frac{1}{p} \int \frac{\partial}{\partial r} \frac{A}{r} r^2 dw = \frac{A}{p} 2 \pi.$$

Hence  $A = \frac{pI}{2\pi}$  and by symmetry  $B = -\frac{pI}{2\pi}$ . Thus at any point

$$V = \frac{pI}{2} \left( \frac{1}{r_1} - \frac{1}{r_2} \right).$$

If  $P_1$  and  $P_2$  be electrodes so that  $C_1P_1=P_1P_2=P_2C_2=A$ ,

$$V_{p} = \frac{pI}{2\pi} \left( \frac{1}{A} - \frac{1}{2A} \right) ,$$

$$V_{q} = \frac{pI}{2\pi} \left( \frac{1}{2A} - \frac{1}{A} \right) ,$$

$$V_{p} - V_{q} = \frac{pI}{2\pi} \frac{1}{A} ,$$

which is Wenner's formula.

This formula is used in the form  $p = \frac{2TAV}{I}$ , where p is the resistivity, A is the electrode spacing, V is the potential and I is the current supplied. This gives the average resistivity to the depth A, the electrode spacing.

This formula is based on the assumption of a homogeneous layer of infinite extent. When this is not the case the value obtained is an average resistivity of the material. Interpretation of the results involves the use of certain emperical rules rather than a strict mathmatical analysis, which is possible in the solution of a

two layer problem, since in practice, earth presents a problem of many layers.

The most general method of interpretation is by plotting the average resistivity values obtained against depth. In passing from a layer of one resistivity to another a break or change of slope will appear in the curve. The sign and magnitude of this break will depend upon the relation of the resistivities of the two layers. The depth at which this change of slope occurs will be the approximate depth of the boundary. The prominence of this break in the curve will depend also upon the thickness of the new bed and its depth. Thus a ten foot bed with a resistivity twice that of the overlying material will have the same effect as a much thicker bed at greater depths.

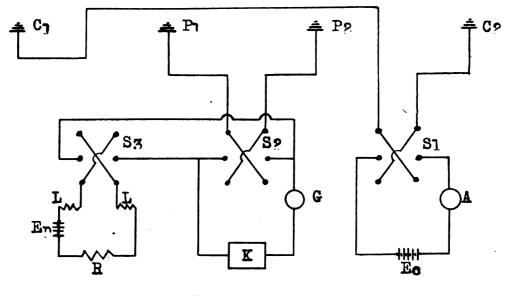
The resistivity of sands, sandstones and other dense rocks is generally much higher than that of clays, shales, etc. Thus a layer of sand underlying clay will produce a sharp rise in the resistivity curve, while the reverse condition will cause a drop in the curve. However, local conditions may affect the resistivity of a given material from one area to another so that definite values of resistivity for the various types of material cannot be established within limits sufficiently close to render accurate quantitative determinations without additional information. This additional information can be secured

by boring to obtain actual samples of the material encountered below the surface in the area to be surveyed. The results from the test hole can then be correlated with the resistivity curve obtained at the same point and the information then applied to other resistivity readings taken in the area.

The problem involved in resistivity surveys for the determination of geologic structures is, however, somewhat different from that considered in this report. It consists usually of working to some definite formation which is persistent over the area in question and is of such a nature as to constitute a good electrical marker. The chief requisites of a marker are that the bed be of considerable thickness and possess a value of resistivity differing by a ratio of five or more from the overlying formations. A sandstone formation overlain by shales constitutes such an electrical marker. The depth to this marker is obtained by readings taken at a large number of points in the region covered and then a contour map is constructed which reveals the conformation of the strata.

The survey discussed in this report is concerned with material which is essentially surface soils in which a greater lateral variation is encountered than in rock formations. Consequently it represents a somewhat different problem which necessitates some modification of the interpretations if not entirely new methods of attack.

The plots selected, Fig. 2, were first measured out 150 feet square and stakes set at each corner and the midpoints. A series of levels were then run to obtain the elevation of the plots. Plot No. 1, the site of the girls dormitory, was more uneven than plot No. 2, the field house site, so elevations were taken at each of the staked points.


#### APPARATUS

The instruments used were those developed by Keck and Dove as a modification of the original Gish-Rooney instruments. The electrical circuit is shown in Fig. 3.

The purpose of each of the parts of the circuit may be more readily understood if the difficulties to be overcome in making earth resistivity measurements are first described. Natural currents are present in practically all parts of the earth which are generally quite variable. Stray currents from power lines are also of frequent occurence. A more serious difficulty is that of polarization at the electrodes.

When two iron stakes are placed in the ground, a galvanic action due to the acids in the soil is set up. This creates a difference in potential between the two electrodes. These effects result in a potential reading commonly termed "ground potential" which must be eliminated from the final readings. Leakage in the instruments or

#### Electrical Circuit.





| C1 C2      | - Current electrodes               |
|------------|------------------------------------|
| P1 P2      | - Potential electrodes             |
| Sl         | - Current reversing switch         |
| <b>S</b> 2 | - Potential " "                    |
| S3         | - Bucking circuit reversing switch |
| A          | - Milliammeter                     |
| K          | - Potentiometer                    |
| G          | - Galvanometer                     |
| LL         | - Grid leak resistors              |
| R          | - Variable resistor                |
| Ec         | - Power Batteries                  |
| Eυ         | - Buoking "                        |

wires is another source of error. Other effects which apply only to alternating current methods are induction between current and potential circuits and the skin effect due to high frequency currents.

Leakage is eliminated by the use of well insulated wires and care in the prevention of dampness in the instrument case. The current and potential circuits should also be kept as widely separated as possible.

The effect of ground potential was eliminated by Gish-Rooney method with a double commutation system. This devise reverses the direct current from the batteries at about thirty times per second as it is applied to the ground. The leads to the meters are so arranged that the current is always in the same direction. This, in effect, introduces a reversed direct current to the ground. This method usually eliminates the ground potentials but involves the use of a correction factor due to the shape of the wave. This correction factor must be determined experimentally.

The system devised by Keck and Dove uses a simple direct current and eliminates the double commutator. Ground potentials are balanced by an opposing potential supplied by an auxiliary circuit. This auxiliary circuit, which they have termed the bucking circuit, is shunted across the potential leads. It embodies a power source, one or more "B" batteries, two resisters of the grid leak type, and a variable resister. Rough adjustments are obtained by varying the auxiliary voltage applied and by

using grid leaks of different capacities while exact adjustment is secured with the variable resister which has a range of about 50 ohms.

This method enables the operator to balance out the ground potential immediately before each reading, constituting an accurate control particularly when the ground potential shifts slightly which is often the case. It also eliminates the necessity of a correction factor for the wave form.

The instruments are mounted in a plywood cabinet with hard rubber insulation. The reversing switches are mounted on the stand which carries the batteries and instruments and provides a convenient working table in the field. The wires are carried on four reels mounted in the stand with slip rings making constant contact between the electrodes and the reversing switches.

In the derivation of Wenner's formula, the current electrodes were considered as being hemispheres; this gives the proper distribution of the current so that the lines of equal potential form surfaces of concentric hemispheres.

When the exploration is to go to great depths is not necessary to have hemispherical electrodes but rather a straight rod may be used. This is possible due to the great difference in the length of the electrode and the depth of the exploration. For these depths it is not important to know the near surface conditions so the ununiformity of the potential lines may be neglected.

In this experiment the depth was so shallow that it was necessary to actually get the correct distribution of potential lines, thus necessitating the use of hemispherical electrodes. It was impossible to actually get metal hemispheres so it was necessary to devise something that would give the same results.

Two steel plates approximately six inches in diameter and one half inch thick and three and one half feet of quarter inch tool steel were obtained.

A three sixteenth inch hole was drilled in the center of each plate and six others evenly spaced on a four inch circle about this center. The rod was cut into twelve 'two and three quarters inch pieces and two three and one half inch pieces. One end of each piece was sharpened and the other end cut and shaped so as to form a tight fit in the holes in the plate. The three and one half inch pins were placed in the center holes and the two and three quarter inch pins in the outside holes. The pins were securley fastened by riveting the end which protruded thru the plate.

This arrangement gave the same effect as a solid hemisphere and made it possible to easily make a good contact with the ground.

It is not necessary to have hemispherical potential electrodes since they are just to get the difference in potential between two points. Nevertheless, it was thought that by using a series of short pins closely spaced, the

potential lines would be intercepted as close to the surface as possible at a particular point and with a good contact.

To accomplish this end, two ten inch, one quarter inch square brass bars were drilled with one eighth inch holes spaced at one and one half inch. One eighth inch steel pins, four and one half inches long, were sharpened on one end and the other end inserted in the holes in the bar and securely fastened with sodder. However, after a few trials using these electrodes and single three eighth inch straight rods, it was found that by inserting the single rods into the ground the same distance each time the same results were obtained and the single rods were more convenient to handle.

The field work proceeds in the following manner.

The instruments are taken to a point at which a reading is desired and connections made from the instrument to the reversing switches and batteries. The electrodes are then placed in the ground at the proper spacing for the first reading. In this case the increment of depth was taken as three feet and the first setting of electrodes was at one and one half and four and one half feet each side of the center. The line along which the electrodes are set should be selected so as to be as nearly level as possible.

The potential circuit is then closed by the pushbutton to the galvanometer and the ground potential measured by the potentiometer to determine the magnitude of bucking potential required. Contact is then made to the auxiliary batteries so that an opposing potential is applied and the circuit resistances adjusted until the galvanometer reads zero. The current circuit is then closed and the galvanometer again brought to zero with the potentiometer controls. The value of current and potential are then read on the milliammeter and potentiometer. By means of the reversing switches . one or more readings are taken with the current flowing in both directions. The average of these several readings are used in computing the resistivity, thus compensating for instrumental inaccuracies.

The taking of readings in this manner is continued with the electrode spacing increasing by the chosen incre-

ment until the desired depth is reached. Thus, values of the average resistivity to each depth are obtained for the station taken. The instruments are then moved to the next station and the procedure repeated.

In this survey borings were made at several of the stations in order to secure samples for the correlation of readings. At two different stations which were taken near the beginning of the survey, readings were taken again three weeks later. Samples were obtained for each station at the same time the readings were taken and the moisture content determined. This was done to determine the effect of change in moisture content upon the resistivity readings.

An attempt was made to apply a different method in obtaining the resistivity readings but insufficient work was done to make it possible to arrive at any definite conclusions. This method will be but briefly described and left with the suggestion that an investigation of its possibilities should be worthwhile.

This system, which might properly be termed the line electrode method, is a further development of the single electrode probe described by Eve and Zeys.#

The current is applied to the earth by means of two stationary electrodes one of which is formed by a wire twice as long as the depth to be investigated, connected to the ground by pins at equal intervals. The other electrode may

# Applied Geophysics, Pg. 121.

be placed anywhere at a distance at least ten times the depth of the probe. The pins composing the line electrode are set so as to have nearly equal contact in order that the distribution of current may be uniform. This is accomplished with a resistance meter or by applying the same potential between each pin and the far electrode and adjusting the pin until the current flow is the same for each.

Readings are then taken along a line at right angles to the line electrode with convenient increments. The instruments used and the method of reading are the same as in the Wenner method except for the manner of changing the electrodes.

Fig. 4 shows a section perpendicular to the line electrode.

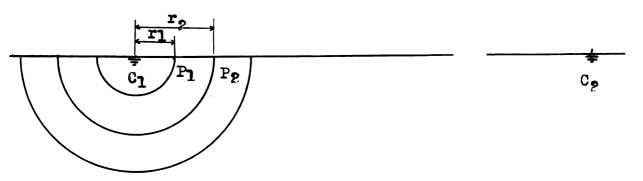



Fig. 4.

 $P_1$  and  $P_2$  are the potential electrodes and the resistivity obtained is that of a cylindrical shell of radii  $r_1$ and  $r_2$ .

The formula is 
$$p = \frac{\pi}{\log r} = \frac{\pi}{1}$$
 where E is the potential  $r_1$ 

across  $P_1$  and  $P_2$  and I is the current per unit length of the electrode.

The derivation of this formula is very simple.

Assume an infinitesimal shell dr whose areaper unit length will be wr: then from Ohm's Law

$$R = \frac{E}{I} \quad \text{and} \quad R = p \quad \frac{1}{a}$$

$$R = \int dR = \frac{p}{\pi} \int_{T}^{\frac{p}{dr}} \frac{dr}{r} = \frac{p}{\pi} (\log r_{2} - \log r_{1}) = \frac{p}{\pi} \log \frac{r_{2}}{r_{1}}$$

$$\frac{p \log \frac{r_{2}}{r_{1}}}{\pi} = \frac{E}{I} \quad \text{and}$$

$$p = \frac{\pi}{\log \frac{r_{2}}{r_{1}}} I$$

It is obvious that the effect of the surface material is less on the deeper readings than in the Wenner method since it is a smaller percentage of the total volume. Therefore it would seem that this method should be particularly valued in a region where the resistivity of the surface material is very high. Also the distribution of current is the same for all readings taken at the same station.

In the work done in this survey, considerable difficulty was encountered in obtaining uniform contact at the pins of the line electrode. Considering the shallow depths involved it was deemed inadvisable to permit the pins to penetrate very deeply. More investigation is indicated to perfect the technique in the use of this method.

LEVEL NOTES

#### Plot No.1

| Point       | <b>+</b> S | H.I.   | <b>-</b> S | Elev.           |
|-------------|------------|--------|------------|-----------------|
| B.M.        | 9.72       | 867.73 |            | 858 <b>.01</b>  |
| T.Pl        |            |        | 4.51       | 863.22          |
|             | 4.97       | 868.19 |            |                 |
| A <b>-1</b> |            |        | 10.61      | 8 <b>64.3</b> 8 |
| <b>A-2</b>  |            |        | 5.87       | 862.32          |
| A-3         |            |        | 3.81       | 864.38          |
| B <b>-1</b> |            |        | 8.19       | 860.00          |
| B-2         |            |        | 4.73       | 863.46          |
| B-3         |            |        | 4.23       | 863.96          |
| <b>G-1</b>  |            |        | 10.68      | 857.51          |
| G-2         |            |        | 6.56       | 861.63          |
| Q-3         |            |        | 5.49       | 863.96          |
|             |            |        |            |                 |

#### Plot No.2

| B.M.                  | 0.30 | 858.31 |               | 858 <b>.01</b> |
|-----------------------|------|--------|---------------|----------------|
| <b>1.</b> P.1         | 1.61 | 847.77 | <b>12.1</b> 5 | 846.16         |
| <b>T.</b> P.2         | 0.03 | 836.82 | 10.98         | 836.79         |
| River<br>(surface)    |      |        | 12.10         | 824.72         |
| (suriade)             |      |        | 7.09          | 829.73         |
| Plot No.2<br>(center) |      |        |               |                |

FLOT No.1

. .

#### DATA

A-1

| Depth<br>ft. | Current<br>amps. | Potential<br>volts. | Resistivity<br>ohms/cu.ft. |
|--------------|------------------|---------------------|----------------------------|
| 3            | .0830            | .7060               | 160                        |
| 6            | •0638            | •2250               | 153                        |
| 9            | •0694            | .1717               | 140                        |
| 12           | •0900            | .1766               | 148                        |
| 15           | •0599            | •1084               | 170                        |
| 18           | •063 <b>7</b>    | .1053               | 187                        |
| 21           | • <b>07</b> 80   | .1223               | 207                        |
| 24           | •0778            | .1171               | 227                        |
| 27           | •0860            | .1265               | 249                        |
| 30           | •0600            | •0843               | 265                        |

A-2

| Depth<br>fl. | Current<br>amps. | Potential<br>volts. | Resistivity<br>ohms/cu.ft. |
|--------------|------------------|---------------------|----------------------------|
| 3            | •0850            | •5785               | 128                        |
| 6            | •0940            | •2980               | 119                        |
| 9            | •0859            | .1975               | 130                        |
| 12           | •0534            | •0958               | 134                        |
| 15           | •0500            | • <b>07</b> 83      | <b>1</b> 48                |
| 18           | •0480            | •0677               | <b>1</b> 60                |
| 21           | •0550            | •0700               | 168                        |
| 24           | •0720            | •0859               | 180                        |
| 27           | •0706            | •0880               | 211                        |
| 30           | •0740            | .0812               | 207                        |

.

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/cu.ft. |
|--------------|------------------|--------------------|----------------------------|
| 3            | •0410            | •2854              | 131                        |
| 6            | .0416            | •1456              | 132                        |
| 9            | .0410            | •1034              | 143                        |
| 12           | •0485            | •0930              | 149                        |
| 15           | •045 <b>1</b>    | •0776              | 162                        |
| 18           | •0420            | •0635              | 171                        |
| 21           | •0480            | •06 <b>77</b>      | 183                        |
| 24           | •0410            | •0510              | 188                        |
| 27           | •0383            | •0441              | 196                        |
| 30           | (ra              | in)                |                            |

### G-1

| Depth<br>ft. | Current<br>amps.       | Potential<br>volts | Resistivity<br>ohms/cu.ft. |
|--------------|------------------------|--------------------|----------------------------|
| 3            | •0800                  | •4979              | 117                        |
| 6            | •0680                  | .2319              | 128                        |
| 9            | •0785                  | .1970              | 142                        |
| 12           | .0717                  | <b>.15</b> 88      | <b>16</b> 8                |
| 15           | •0589                  | .1223              | 196                        |
| 18           | •0757                  | <b>.14</b> 85      | 223                        |
| 21           | •0649                  | <b>.</b> 1246      | 253                        |
| 24           | •0629                  | .1175              | 282                        |
| 27           | •0642                  | •1154              | 305                        |
| 30           | •0533                  | •0941              | 333                        |
| 80           | •0543                  | .0575              | 533                        |
| 90           | •0899                  | <b>0849</b>        | 535                        |
| 100          | • <b>0</b> 89 <b>3</b> | •0769              | 533                        |

£3

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/cu.ft. |
|--------------|------------------|--------------------|----------------------------|
| 3            | •0640            | •5874              | 173                        |
| 6            | .0610            | .2714              | 168                        |
| 9            | .0613            | .1743              | 161                        |
| 12           | •0604            | •1339              | 167                        |
| 15           | •0697            | .1260              | 171                        |
| 18           | •0658            | .1065              | 183                        |
| 21           | •0532            | •0783              | 194                        |
| 24           | .0624            | •0878              | 212                        |
| 27           | •0520            | .0708              | 230                        |
| 30           | •0600            | .0760              | 238                        |

G-3

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/cu.ft. |
|--------------|------------------|--------------------|----------------------------|
| 3            | .0620            | .4915              | 149                        |
| 6            | •0570            | •1940              | 129                        |
| 9            | •0690            | <b>.1</b> 558      | 128                        |
| 12           | •0590            | .1035              | 132                        |
| 15           | •0493            | •0762              | 146                        |
| 18           | •0430            | •0592              | 155                        |
| 21           | •0480            | •0625              | 172                        |
| 24           | •0475            | •0601              | 191                        |
| 27           | •0540            | •0658              | 210                        |
| 30           | •0600            | •0720              | 226                        |

G-2

#### D**-1**

#### Trial 1

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/cu.ft. | % Moisture |
|--------------|------------------|--------------------|----------------------------|------------|
| 3            | •2840            | 1.5465             | 103                        | 21.65      |
| 6            | •2673            | .8515              | 120                        | 18.95      |
| 9            | •2050            | •5513              | 152                        | 16.65      |
| 12           | •2035            | •4350              | 161                        | 11.29      |
| 15           | • 2050           | •3892              | 178                        |            |
| 18           | •0935            | •1564              | 189                        | 9•48       |
| 21           | •0705            | .1110              | 208                        |            |
| 24           | •0940            | •1415              | 227                        |            |
| 27           | •0860            | .1278              | 252                        |            |
| 30           | • <b>07</b> 30   | <b>.104</b> 98     | 271                        |            |

Trial 2

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/cu.ft. | % Moisture |
|--------------|------------------|--------------------|----------------------------|------------|
| 3            | •0639            | •3232              | 95                         | 17.90      |
| 6            | •0625            | •2014              | 121                        | 12.70      |
| 9            | •0495            | •1163              | 133                        | 17.00      |
| 12           | •0430            | •0858              | 150                        | 21.25      |
| 15           | •0463            | •0803              | 163                        | 18.10      |
| 18           | •0975            | <b>.1</b> 608      | 186                        | 10.57      |
| 21           | •0983            | •1496              | 201                        |            |
| 24           | •0505            | •0743              | <b>2</b> 22                |            |
| 27           | •0390            | •0540              | 235                        |            |
| 30           | • <b>02</b> 85   | •038 <b>7</b>      | 256                        |            |

,

#### D-2

#### Trial 1

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/cu.ft. | Moisture<br>% |
|--------------|------------------|--------------------|----------------------------|---------------|
| 3            | •0646            | •4297              | 125                        | 20.90         |
| 6            | •0620            | .2267              | 138                        | 15.00         |
| 9            | •0610            | •1581              | 147                        | 15.50         |
| 12           | •0710            | •1523              | 162                        | 16.50         |
| 15           | •0862            | •1591              | 174                        | 17.60         |
| 18           | •0676            | .1101              | 185                        | 20.30         |
| 21           | • <b>07</b> 88   | .1177              | 197                        | 9.10          |
| 24           | •0801            | .1120              | 211                        | 12.80         |
| 27           | • <b>0</b> 695   | •0941              | <b>23</b> 0                | 8.70          |
| 30           | •0620            | .0817              | <b>2</b> 42                |               |

Trial 2

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/cu.ft. | Moisture<br>% |
|--------------|------------------|--------------------|----------------------------|---------------|
| 3            | •0677            | •393 <b>7</b>      | 110                        | 7.85          |
| 6            | •0763            | •2424              | 120                        | 7.90          |
| 9            | • <b>07</b> 80   | ,1808              | 131                        | 8.00          |
| 12           | • <b>07</b> 68   | •1445              | 142                        | 8.15          |
| 15           | •0835            | •1400              | 158                        | 8.00          |
| 18           | •0858            | •1293              | 171                        | 7.95          |
| 21           | •0875            | .1222              | 184                        |               |
| 24           | • <b>04</b> 85   | •0640              | 199                        |               |
| 27           | •0495            | •06 <b>37</b>      | 218                        |               |
| 30           | •0405            | •0497              | 231                        |               |

. •

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/cu.ft. |
|--------------|------------------|--------------------|----------------------------|
| 3            | •0660            | <b>.</b> 8294      | 237                        |
| 6            | •0680            | • 3229             | 178                        |
| 9            | •0639            | •1881              | 167                        |
| 12           | •0500            | •1085              | 164                        |
| 15           | •0478            | •0777              | 153                        |
| 18           | •0580            | •0812              | 158                        |
| 21           | •0574            | •0709              | 163                        |
| 24           | •0583            | •068 <b>2</b>      | 176                        |
| 27           | •0555            | •0623              | 190                        |
| 30           | •0575            | •0622              | 204                        |

.

ŀ

ì

.

· ·

· · ·

. .

· · ·

. .

•

Plot No. 2

. •

A-1

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/cu.ft. |
|--------------|------------------|--------------------|----------------------------|
| 3            | •0614            | •7920              | 243                        |
| 6            | •0643            | •4461              | 262                        |
| 9            | •0681            | •3109              | <b>2</b> 58                |
| 12           | •0661            | •2324              | 265                        |
| 15           | •0597            | .1700              | 269                        |
| 18           | •0570            | .1371              | 272                        |
| 21           | •0555            | •1118              | <b>2</b> 66                |
| 24           | •0449            | •0778              | 261                        |
| 27           | •0535            | •0785              | 249                        |
| 30           | •05 <b>20</b>    | •0660              | 239                        |

**A-2** 

,

| 3  | •0609         | •9256                 | 286                 |
|----|---------------|-----------------------|---------------------|
| 6  | •0540         | • <b>44</b> 66        | 311                 |
| 9  | •049 <b>7</b> | •2467                 | <b>2</b> 8 <b>1</b> |
| 12 | •0608         | .2150                 | 267                 |
| 15 | •066 <b>1</b> | <b>.1</b> 88 <b>7</b> | <b>2</b> 68         |
| 18 | •0619         | •1451                 | 266                 |
| 21 | •06 <b>25</b> | .1238                 | 262                 |
| 24 | •0614         | .1070                 | 262                 |
| 27 | •0649         | •0980                 | 256                 |
| 80 | •0697         | •0924                 | 250                 |

## · •

# . . .

- · ·
  - · · · ·
- · ·
- •
  - • • •
  - . **.**

- · · ·
  - · ·
  - •
- . . •

  - .

| Depth<br>ft. | Current<br>amps. | Potential<br>volts    | Resistivity<br>ohms/cu.ft. |
|--------------|------------------|-----------------------|----------------------------|
| 3            | •0764            | 1.1660                | <b>2</b> 88                |
| 6            | •0789            | • 5629                | <b>2</b> 69                |
| 9            | •0 <b>73</b> 5   | • 3288                | 263                        |
| 12           | •0832            | •2783                 | 252                        |
| 15           | •085 <b>2</b>    | •2346                 | <b>2</b> 60                |
| 18           | •0740            | •1695                 | 259                        |
| 21           | •0772            | <b>,15</b> 0 <b>4</b> | <b>2</b> 57                |
| 24           | •06 <b>59</b>    | .1157                 | <b>264</b>                 |
| 27           | •0750            | .1131                 | 257                        |
| 30           | •0725            | •0968                 | 252                        |

B**-1** 

1

| 3  | •0875 | 1.0180         | 220         |
|----|-------|----------------|-------------|
| 6  | •0830 | • 5764         | 261         |
| 9  | •0900 | •4139          | 260         |
| 12 | •0840 | •2767          | 249         |
| 15 | •0760 | •1903          | <b>2</b> 36 |
| 18 | •0850 | .1693          | <b>2</b> 30 |
| 21 | •0780 | •1360          | . 230       |
| 24 | •0830 | .1270          | 231         |
| 27 | •0830 | •1131          | 231         |
| 30 | •0800 | •09 <b>7</b> 8 | 231         |

## . .

:

· ·

•

- •
- . .
  - . •
- · •
- .
  - ,
- · ·
- · ·
  - · •

- •
- · •
- · .
  - .
- - •
  - ••
- • · .
- · •

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/fu.ft. |
|--------------|------------------|--------------------|----------------------------|
| 3            | •0581            | •7660              | <b>24</b> 8                |
| 6            | •0654            | •4296              | 247                        |
| 9            | •0675            | .3116              | <b>2</b> 60                |
| 12           | •0640            | .2196              | <b>2</b> 58                |
| 15           | • <b>063</b> 8   | .1731              | 256                        |
| 18           | •0794            | •1769              | 252                        |
| 21           | •0778            | •1486              | 252                        |
| 24           | •0698            | •1094              | 237                        |
| 27           | •0 <b>7</b> 39   | .1007              | 231                        |
| 30           | • <b>07</b> 66   | •0949              | <b>£</b> 33                |
|              |                  |                    |                            |

B-3

| 3  | •0270 | • 5309         | 176 |
|----|-------|----------------|-----|
| 6  | •0645 | •3248          | 190 |
| 9  | •0600 | • <b>2</b> 186 | 207 |
| 12 | •0660 | •1970          | 225 |
| 15 | •0645 | .1760          | 257 |
| 18 | •0625 | <b>,14</b> 96  | 271 |
| 21 | •0670 | .1415          | 279 |
| 24 | •0665 | .1267          | 287 |
| 27 | •0605 | •1054          | 296 |
| 30 | •0600 | •0930          | 293 |

•

.

| Depth<br>ft. | Current<br>amps. | Potential<br>volts | Resistivity<br>ohms/cu.ft. |
|--------------|------------------|--------------------|----------------------------|
| 3            | •0540            | •7143              | 249                        |
| 6            | •0508            | •3423              | 254                        |
| 9            | •0515            | .2172              | 239                        |
| 12           | •0596            | .1976              | 250                        |
| 15           | •0560            | .1506              | 254                        |
| 18           | •0553            | .1310              | 268                        |
| 21           | •05 <b>27</b>    | .1117              | 279                        |
| 24           | •0520            | • <b>09</b> 89     | <b>2</b> 87                |
| 27           | •0479            | •0848              | 300                        |
| 30           | •0503            | .0813              | 304                        |

•

C-2

| 3  | •0758 | <b>•844</b> 8 | 206         |
|----|-------|---------------|-------------|
| 6  | •0619 | •3575         | <b>21</b> 8 |
| 9  | •0598 | . 2449        | 231         |
| 12 | •0619 | .1995         | 243         |
| 15 | •0568 | .16 <b>16</b> | 268         |
| 18 | .0672 | •1680         | <b>2</b> 84 |
| 21 | •0660 | .1473         | 295         |
| 24 | •0741 | .1479         | <b>302</b>  |
| 27 | •0790 | .1423         | 306         |
| 30 | .0740 | .1193         | 304         |

· ·

.

· ·

. .

· ·

· · ·

.

· · ·

. .

- · ·

• •

•

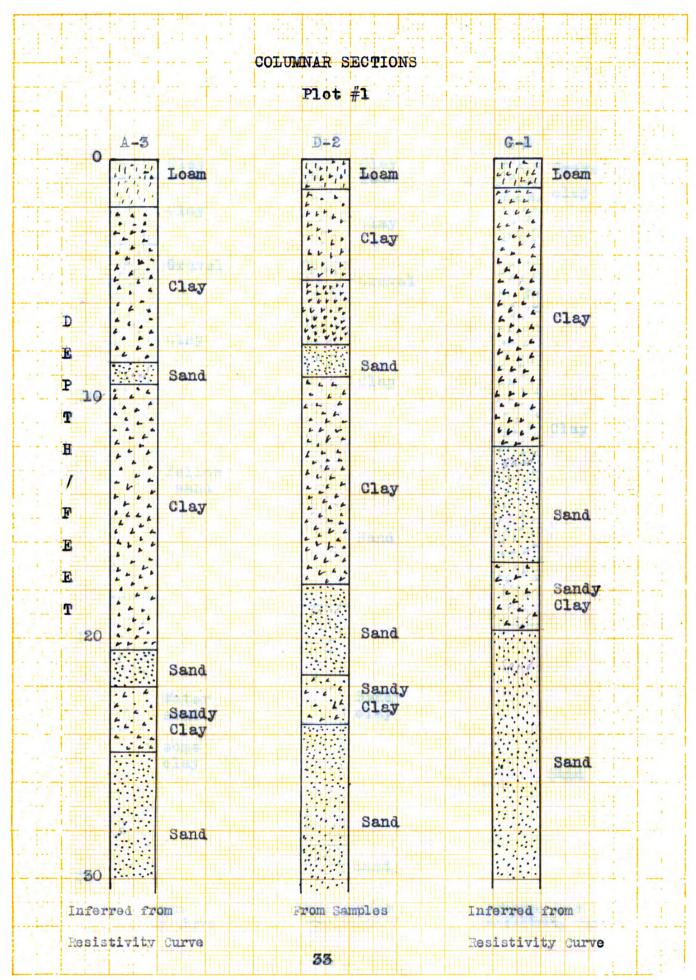
.

| Depth<br>ft. | Current<br>amps. | Potential<br>volts. | Resistivity<br>ohms/cu.ft. |
|--------------|------------------|---------------------|----------------------------|
| 3            | .0512            | 1.0823              | 399                        |
| 6            | •0460            | •4449               | 373                        |
| 9            | •0611            | •3228               | 299                        |
| 12           | .0816            | <b>.</b> 2854       | 264                        |
| 15           | .0878            | •2364               | 248                        |
| 18           | •0818            | •1750               | 242                        |
| 21           | •0974            | .1775               | 241                        |
| 24           | •0550            | •0882               | 241                        |
| 27           | •0424            | •0607               | 243                        |
| 30           | •065 <b>7</b>    | •08 <b>12</b>       | 233                        |

.

•

,

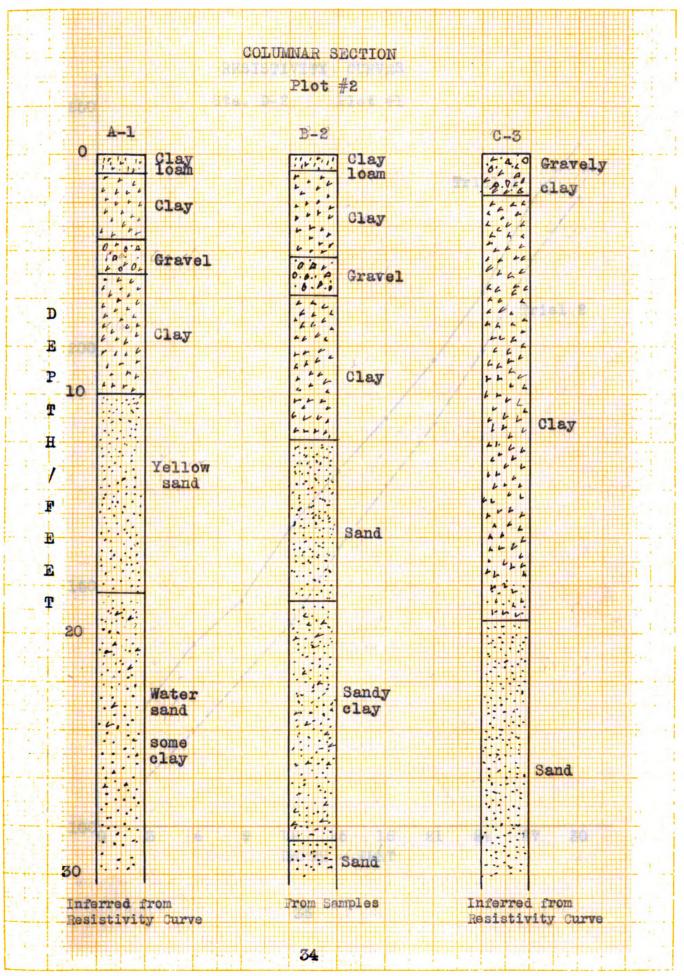

.

. . •

. -

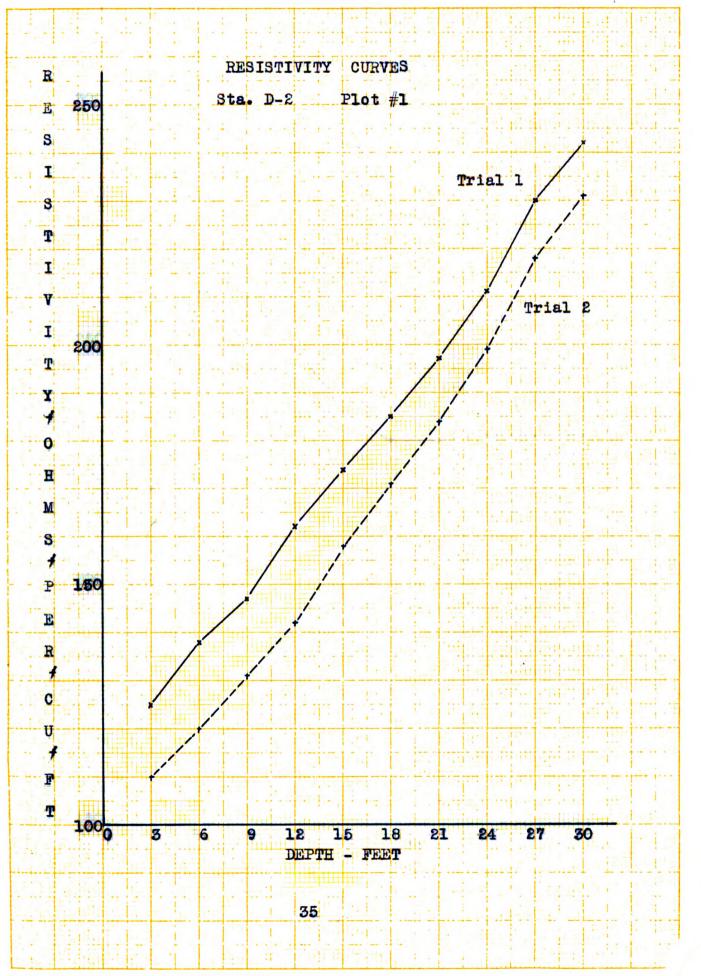
• .

•

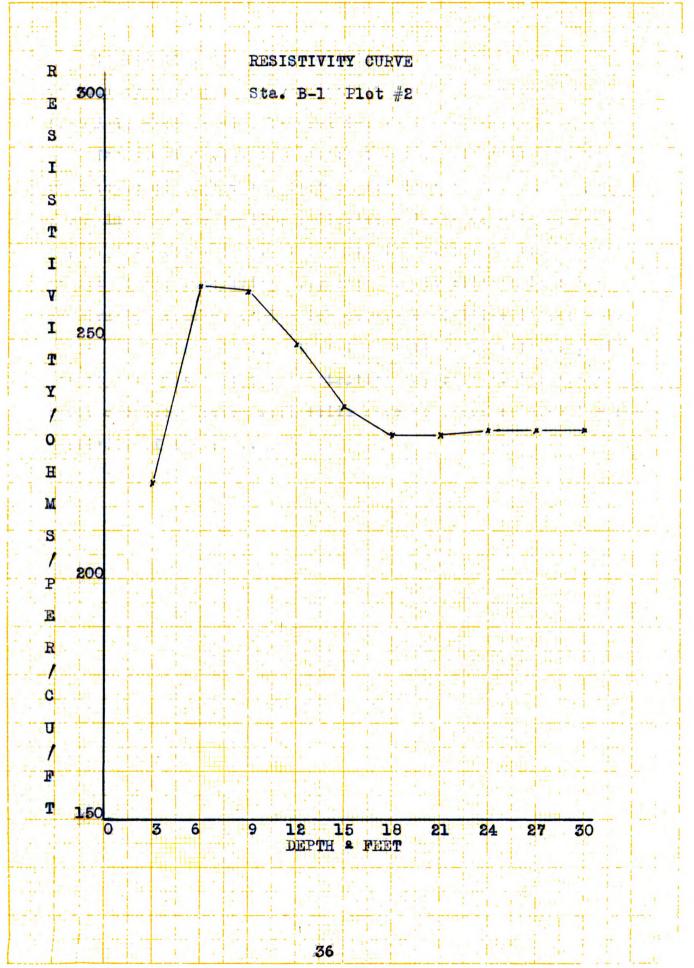





25 A.


• • • •

i i




No. T-290-F. THE H COLE CO., COLUMBUS, OHIO.

. ţ. 



## · · · ·



No. 1-296-F. THE H COLE CO., COLUMBUS, OHIO.

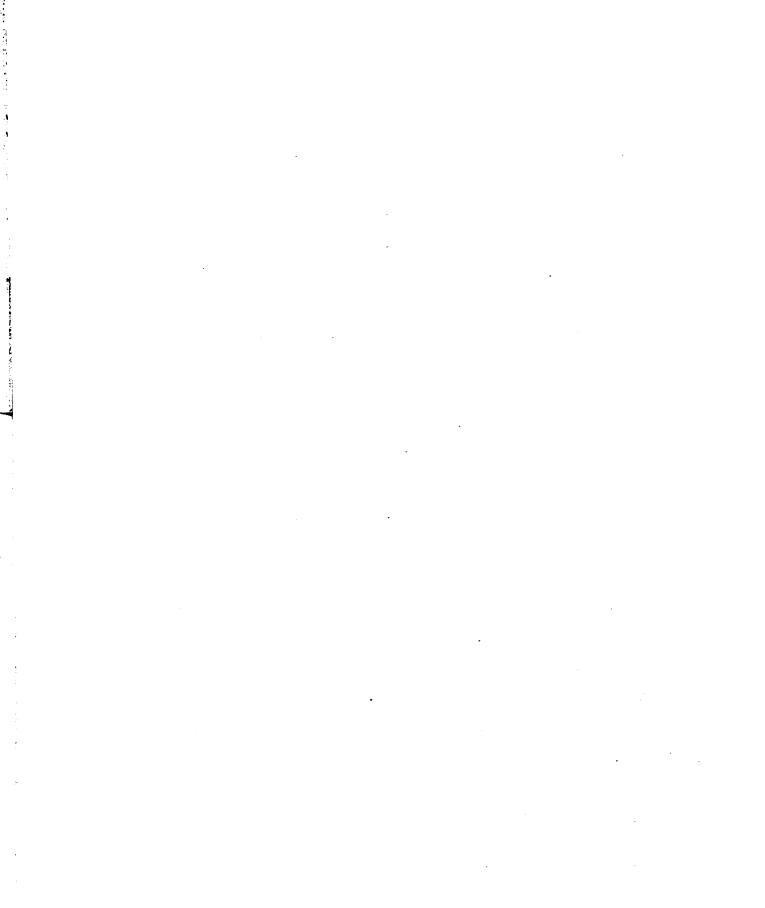
.

Interpretation of the resistivity readings may be explained by taking a representative curve. The curve for station B-1. plot #2 will be used for that purpose.

The decided rise from depth three to six feet is caused by a layer of high resistivity. The fact that this rise is shown in only one reading indicates a layer of only one and one half to three feet. The curve then drops rapidly as the effect of the underlying clay enters. At fifteen feet the penetration reaches sand which causes a positive increase in slope. The flat slope, rather than a rise, from there on is due to the fact that the penetration has reached the water table and accumulated soil acids have somewhat reduced the resistivity of the sand.

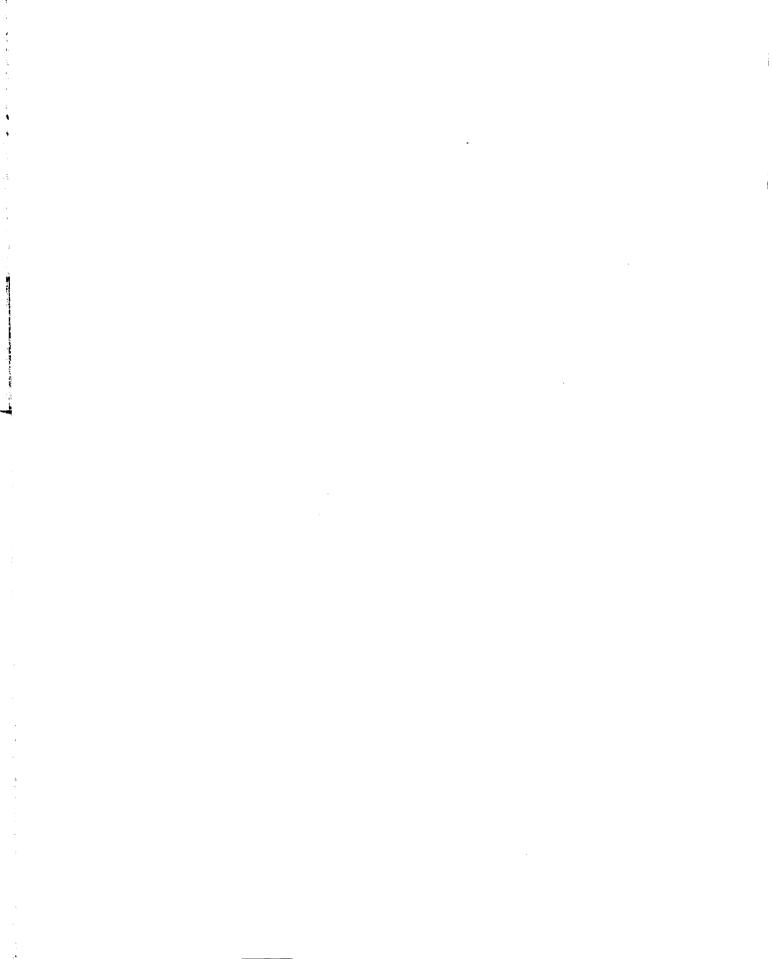
, **,** . E-Advancements and the . . ٢

### -CONCLUSIONS-


Upon completion of this experiment the following conclusions, based on the results of the survey, were derived.

The method as outlined may be used for shallow depths with a moderate degree of accuracy. For depths less than twenty or twenty five feet in clay, sand or other material free from gravel, more definite information can be secured with a soil auger in approximately the same length of time. For depths greater than twenty five feet, the electrical method has a distinct advantage over the use of a soil auger in that the boring is occasionally hampered by rocks and the auger is awkward to handle.

A reduction in moisture content within the limits observed has the effect of lowering the resistivity curve without appreciably changing the slope. This does not interfere with the interpretation of results thus obviating the necessity of moisture determinations for a survey.


In surveys in areas of glacial drift, such as was encountered in this survey, there is considerable lateral variation in soil materials which must be considered in the interpretation of resistivity readings.

Care must be exercised in the handling and use of the equipment. Electrodes should be inserted in the ground the same distance for every reading and good contacts must be assured. The immediate area should be free from loose pieces of bare wire and any other metal condutors. It was found that the use of a metal tape, in contact with the ground,



affected the readings to an appreciable amount.

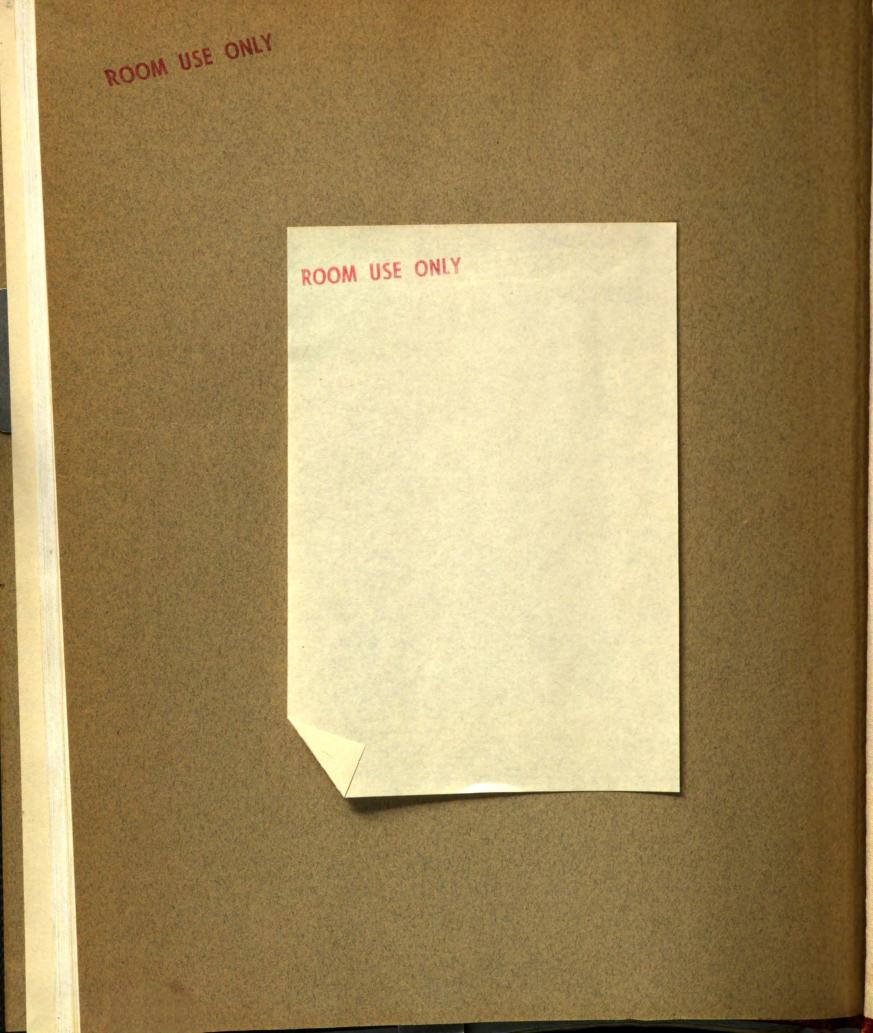
For future research in this field, it is suggested that the Line Electrode Method, which has been briefly described in this paper, be thoroughly investigated. Further determination of moisture changes should be obtained over a much longer period of time and for a greater variation in conditions. The variation of weather conditions and length of time in this survey was not sufficient to arrive at any positive or complete conclusions. Readings should be taken with various increments to determine the change in resistivity curves, if any.

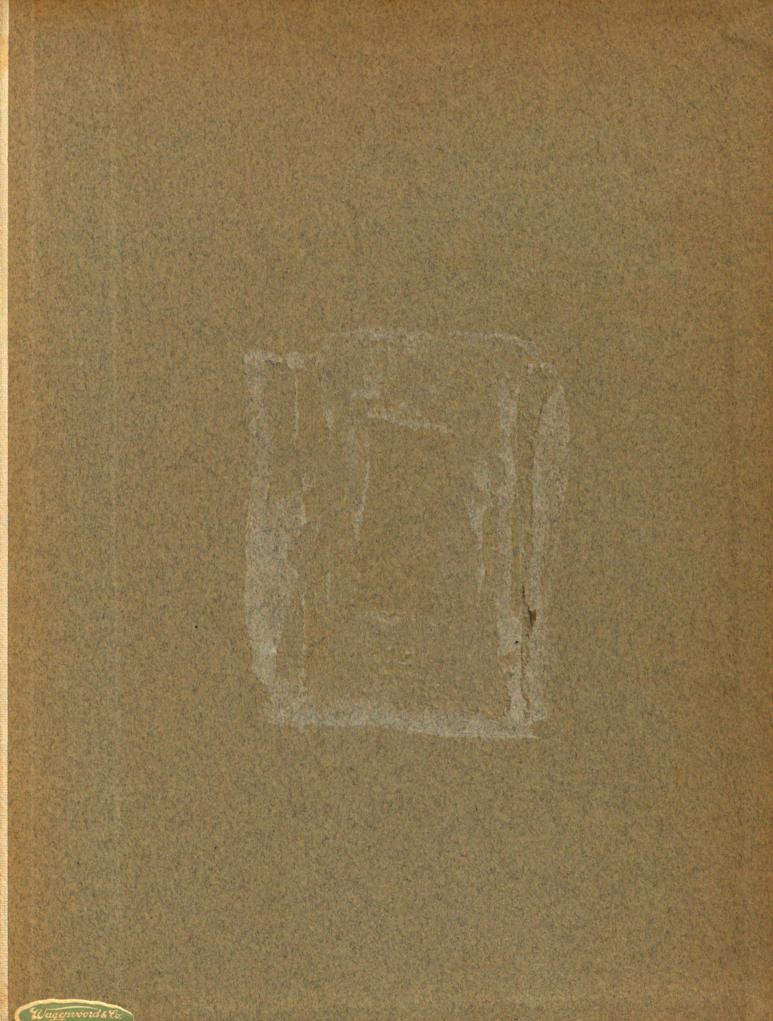


### BIBLIOGRAPHY

¥.

A CONTRACTOR OF THE OWNER OWNE


-


•

Eve and Keys - Applied Geophysics Eng. and Contracting - Vol. 68, No. 3 Public Roads - Vol. 16, No. 4 Comp. Air Mag. - Vol. 39, No. 3 Jakosky and Wilson - A.I.M.E. Tech. Pub. 515 Transactions - A.I.M.E. - Vol. 110

ý

; ;; ;





