DESIGN OF A TIMBER BRIDGE AT DELTA MILLS, MICHIGAN

Thesis for the Degree of B. S: MICHIGAN STATE COLLEGE
Eugene E. Dexter
1942

THESIS

$\therefore+5.1$
SUPPLEMENTARY
MATERIA
NBACKOFBOOK

$$
1
$$

Lesien of a Timber Prideo
at Delta :ills, :ichican
A 'Thesis rubnitted to
The Froculty of
HICUIGAIT - TATE COELEGE of

by
Jucene i. Dexter
Cnanilate for the Leree of
lachelor of science
June 1942

Table of Contents

Page
Introduction 1
Data and Specifications 4
Design of Floor System 4
Design of Stringers 8
Design of Floor Beams 11
Design of 60-f't. Fony Truss 14
C amber 17
Section and Details 17
Design of Split rings in joints and bolts 22
Design of abutments 24
Design of Wing Wall 29
lesign of piers 33
Design of End Bearings 35
Biblio raphy 37

Introduction

This thesis covers the complete drawings and design for a timber bridge on C-533 at Delta Mills, Michigan.

At the present time there is at the site a steel through truss bridge which was built by the R. D. Wheaton and Company of Chicago, Illinois in 1891.

Present Structure
The bridge was one of the best in this section of the state when it was built, but at the present time it has a load limit which inconviences the use of the road as a class A county road which it is. Also the bridge is to narrow for the present and future volume of traffic as it carries only one lane of traffic. It is my object in this thesis to design a bridge wide enough to carry the present and future
volume of traffic.

View Looking North
Several types of bridges vere investigated and at the time this was designed there was a war priority on steel and therefore I decided to design one of timber. Concrete was also considered but due to the amount of steel reinforcing and the cost of concrete as compared to timber it was deCided to be constructed of timber. Tlmber bridges at the
present tine are being recoenized as one of the foremost types in use in the west and have been experimented with a ereat extent. The Forest products Treating Compeny at Portland, Oregon has a method of treatine the timbers as they will last as long as steel if painted and cared for properly.

Specifications which were followed are General Specifications for Timber Eridges and Tresties by lilo S. Ketchum unless otherwise noted.

I wish to take this opportunity to thank lir. C. J. Hogue, in charge of Technical Service of the Rest Coast Lumberman's Assooiation for his valuable aid and advice in the preparation of this thesis.

Computations for $20^{\prime} x x^{\prime} O^{\prime} 4$ span timber Pride
Data. Live load
H-15 Io nd (Michigan State Highway Specification)

Dead load:
Impact $=\frac{50}{1+25}$ used throughout design.
Floor- I^{2} " Shect Asphalt, Granite chip rolled in 14 Ibs/sq.ft.

Douglas Fir 12% moisture air dried - 15lbs/sq.ft. Specifications:

General Specifications for Timber Irides by lilo S. Hetchum, except as noted.

Stresses:

Temperature:
No account las been taken to the temperature which hes very little effect on timber. Concrete as noted.

Design of laminated wood floor covered with 1% of sheet asphalt vi th granite chips rolled in.

Fig. I Laminated Floor

Dead Load
Asphalt
Found/sq.ft.

Laminated wood base 14

15
Total

Then, assume stringers spaced $2^{\prime}-6^{\prime \prime} C-C$

$$
\begin{aligned}
M & =1 / 14 W^{2} \\
& =1 / 14\left(29 \times 2.5^{2}\right) 12=155.35 \mathrm{in} \cdot-1 \mathrm{bs} .
\end{aligned}
$$

for maximum positive moment due to dend load. This moment occurs in the panel.

Next,

$$
\begin{aligned}
M= & -1 / 9.5: L^{2} \\
& =-1 / 9.5\left(29 \times 2.5^{2}\right) 12=-229 \text { in. }-1 \mathrm{bs} .
\end{aligned}
$$

for maximum nesative moment due to dead load. This moment oceurs at the first intermediate suprort from the end of the span.

Live Load: H-15
$M=1 / 5$ in

$$
=1 / 5 \times 12,000 \times 2.5 \times 12=500 \text { in. }-1 \mathrm{bs}
$$

for maximu positive monent due to whel loads. This moment occurs in tho anel.

Next,
$M=-1 / 7.7 \mathrm{PL}$

$$
=-1 / 7.7 \times 12,00 \times 2.5 \times 12=-325 \text { in. }-1 \mathrm{bs}
$$

for maximum neeative moment due to wheel loads. This moment occurs at the first intermediste support from the end of the span.

For the coefficient of impact

$$
C=\frac{50}{L 125}=\frac{50}{2.5125}=.392
$$

Then, for the maxiwum positive live-load moment and irpact,

$$
\begin{aligned}
& I=500 \text { in. }-1 \mathrm{bs} . \\
& I=190 \text { in. }-1 \mathrm{bs} . \quad(500 \times .392)
\end{aligned}
$$

Total $=696$ in. $-1 \mathrm{bs}_{\mathrm{s}}$
which occurs at the center of the end panel, end for the maximum necative monent and impact duc to wheel loads.

$$
\begin{aligned}
& I=-325 \text { in. }-1 \mathrm{bs}_{.} \\
& I=-128 \text { in. }-1 \mathrm{bs}_{.}(325 \times .392)
\end{aligned}
$$

Total $=-453$ in-lbs.
Which occurs at the first intermediate floor beam from the end of the span.

Distribution of illeel Loncis
A whecl load may be asruwed distributed by the asohint over a retangle with the sides btin parallel to the wheel axle and $2 h$ at richt angles to the wheel axle where $b=w i d h$ of wheel and $h=t n i c k n e s s$ of ashalt.

F1E. 2 hheel Distribution
Since the wheel load is distributed as shown above the load vill be carried by,
$h=I^{\prime \prime}$ the minimum thickness of aspalt, therefore, worse case $Z=2 h=2 n$
this load is cairled by one plank ($2^{\prime \prime}$) but maybe assumed that It cariled by two planks due tie arrancoment and fartening of the laminated floor. The flooring is built in the field, the strips being spileed to each other with 20d. siles spaced about Ift. centers and tren toe-nailed into the stringer with one 200 . oulke for each plank crossing a strincer.

For the moment of inertia of two planks
toke $h=4+6 \div 2=5^{\prime \prime}$ everaice h of two planks

$$
\begin{aligned}
I & =1 / 12 \mathrm{bh}^{3} \\
& =1 / 12(4)(5)^{3}=\frac{500}{12}=41.7 \text { say } 42 \text { in. units }
\end{aligned}
$$

Then, for the fiber stress on two planks, when suprorting the entire woight of one wheel,
$f=\frac{10}{I}=\frac{(500)(2.5)}{42}=89.9$ say $30 \mathrm{lbs} / \mathrm{cq} . \mathrm{in}$.
Yhere $\mathrm{E}=$ maximum moment in inch-pounc plas impact, $\mathrm{y}=$ half the thickness of the plan!, and $I=m o m e n t$ of incrtia of the cross-scction of the planks. The allowable value of $f=2000$ as Eiven in specifications. Therefore, the wood base is safe.

(a) Rear heel at Center of Span

Fie. 3 (b) Noment Diagram
The maximun monent is equal to PL/4 where F denotes the effective load in pounds and L is the pancl lencth in fect. The panel lencth is lift., so that the front weol load will be in the adjacent ranel. Mis live-load moment must be increased for imact ond must thon be added to the doad-load moment $\mathrm{ML}^{2} / 8$.

Assume stringer $4^{\prime \prime} \times 8^{\prime \prime}-14^{\prime \prime}-6^{\prime \prime}$
Dead load

Asnumed wt. of etringer
6.5 lbs. cr.ft. or $2^{\prime-6 " ~ v i c o ~}$ wt.of floor 72.5 5 bs. or.ft.ocr $2^{\prime}-6^{\prime \prime}$ micie 79 ľs.eer.ft.ver $2^{\prime}-6^{\prime \prime}$ vicie
noment
Live lond $=\frac{1200 \times 12 \times 12}{4}=43,200 \mathrm{in} .-16 s$.

$$
\text { Impact }=43,200(.392)=16,520
$$

Dead load $=\frac{79 \times 12^{2} \times 12}{8}=17,064$
Total 77,194 in.-lbs.
say 77,200 in.-1bs.
Maximum Verticel Shear

Fig. 4

Fig. (5)
Live load
Impact

$$
1,200(.392)=
$$

Total Live
1,200 1bs. 470 1bs.

1, 670 Ibs. 79 2bs./ft/

$$
7: 12=
$$

Total lond

068 lbs
2,618 10s.

$$
\begin{aligned}
& \sum \mathrm{H}_{\mathrm{r}_{2}}=0 \\
& 910 \times 6=12 R_{1} \\
& r_{1}=474 \\
& \mathrm{~F}_{2} \times 2 \mathrm{Cl}-474=2164
\end{aligned}
$$

Allowable 400 lbe ./sq.in.

The Outer it ringer
The maximum loading of the stringer placed under the curb ordinarily is less than for the otter stringers, but this outside usually is made equally strong because of the hi ch impact stress to rich it nay be subjected of a truck should strike the curb.

Maximum Horizontal Shear

The maximum horizontal shear stress in a wood beam is calculated by means of the formula,

$$
H=\frac{3 \%}{40 h}=\frac{3(618)}{4(4(1)}=631 \mathrm{bs} \cdot / \mathrm{sq} \cdot \mathrm{in} .
$$

OK allovallc 120 lbs./sq.in.
For moment of inertia of the etrinecr

$$
\begin{aligned}
& I=\frac{1}{12} \mathrm{bh}^{3} \\
& =\frac{1}{12}(4)(8)^{3}=171 \text { in. units say } 170 \text { in. units }
\end{aligned}
$$

Then, for the fiver stress of the stringer

$$
f=\frac{1 Y}{I}=\frac{77,200(1)}{17 I}=1,805 \mathrm{lbs} . / \mathrm{sq} . \mathrm{in} .
$$

Use 4 " x " stringer

Floor Beom
7
The floor beam will be saced $12 \mathrm{c}-\mathrm{c}$. Lence, they must be ciesicnea for a live load equal to the full valve of the rear wheols of two trucks (Fie.7). The renctions of the Wheels C considerod as concentrated loads aplied to the top of the beam.

The dead load is to be considered as a uniformy distributed over the floor beam. This total dead load consists of one panel of the comblned beam and a,roximately $\frac{1}{2}$ of a panel load for an exterior beam, but I frefer to use the same weicht of a beam to allow for the posaibility of a hich i pact retress Cue to the heaving of the rondway anroach.

Naximum rament on roam
Span of Floor Bean = erer-3" Say $23^{\prime \prime}$

FiE. 8 Fosition of Loads for laximum koment
Dend Lond
Wt. of floor in innel $=69 \mathrm{lbs} . / \mathrm{sq} . \mathrm{ft}$.
$29(20)(12)=6,00015$.
h.t. of stringer in ranel $=0.5 \mathrm{lbs} . / \mathrm{in} . f \mathrm{f}^{2}$.
$6.5(14.6)(0)=454$ Ibs.
そt. of floor leam nssume $2-7^{\prime \prime} \times 24^{\prime \prime}=74 \mathrm{lbs} . / \mathrm{ft}$.
$74(a 3)=1,702$ lks.
Total dead load $=9$, 110 lbs.
Uniformly cistrikuted $=\frac{510}{6}=414 \mathrm{lbs} . / \mathrm{ft}$.
Live load impact

$$
12,00+12,00(.092)=12,470 \text { 16s. }
$$

$\sum M_{r l}=0$

$$
\begin{aligned}
& 4.75(12,470)+10.75(10,470)+13.75(12,470)+19.75(12,470) \\
& +414(20)(11.5)-25 \mathrm{~K}_{2}=0 \\
& E 9,200+154,60+171,200+240,000+95,200-23 \mathrm{R} 2 \\
& R_{2}=\frac{70,60}{20}=0,640 \mathrm{lbs} .
\end{aligned}
$$

E fia $=3(12,470)+3(12,470)+(414)(10.75)\left(\frac{10.75}{2}\right)-12.25(30,640)$
37,400+112,0 $0+23,900-376,000=202,700 \mathrm{ft} .-1 \mathrm{bs}$.
Total lond $=59,390 \mathrm{lbs}$. use $14 " \mathrm{x} \times 4 \mathrm{for}$ f 3 ft .span
Load for haximum Sherr

Fig. 9 rosition of Loads for laximu Shenr
$\Sigma H_{r l}=C$

$$
\begin{aligned}
= & 3(12,470)+9(12,470)+12(1 \div, 470)+18(10,470)-23\left(R_{2}\right) \\
& +414(23)\left(\frac{33}{2}\right)=0 \\
& 37,400+112,000+149,500+2,4,0,0+10,950=23 R_{2} \\
& R_{2}=\frac{53 \div, 350}{33}=23,40016 s . \\
& R_{1}=59,390-23,400=35,9001 \mathrm{lbs} .
\end{aligned}
$$

Maximum Shear

$$
\begin{gathered}
\mathrm{S}_{\mathrm{s}}=\frac{\mathrm{F}}{\mathrm{~A}}=\frac{25,090}{2(7)(24)}=1071 \mathrm{bs.} / \mathrm{sc}_{\mathrm{i}} . \text { in. } \\
\text { Allowable } 401 \mathrm{bs.} / \mathrm{sa.in}
\end{gathered}
$$

siaximum lorizontel shear

$$
\mathrm{H}=\frac{3 \mathrm{~h}}{4(\mathrm{~b})(\mathrm{h})}=\frac{2(5,5(0)}{4(14)(i 4)}=1271 \mathrm{ks} / \mathrm{sq.in}
$$

Slifhtly lich but o.k. locause this formula indicates Ereater atresces in a wood lear thin are usually present, Particularly idth moving or concentrated loads near a support For moment of inertia of the bean

$$
\begin{aligned}
I & =1 / 12 \mathrm{bh}^{3} \\
& =1 / 12(14)(\therefore 4)^{3}=16,128 \text { inches }
\end{aligned}
$$

Then, for the fiber stress of the berm

$$
\begin{aligned}
& f=\frac{p V}{I}=\frac{202,700(12)(3.5)}{1 U, 128}=506 \text { Ibs./5q.in. } \\
& \text { O.K. Allowatle } f=2,0,0 \text { lbs./sq.in. }
\end{aligned}
$$

Use 2-7" x $24^{\prime \prime}$ beam

Lesiun of a uo-ft. iony-Truss

The rordwa is to be 2cft. wide. The truss vill be 12: - $0^{\prime \prime}$ deep at mid-span and on^{\prime} - $\mathrm{c}^{\prime \prime}$ at the hip, and there rilll ke a 5 anels of 12 - on cach. The live load vill be H-15 loading.

Dead-Load Stresses
"t. of fluor per ft. $=750$ lbs.
per font of truss for the dead load on each trues due to the floor system.

Assume vit. of timber in one truss $=0,0.0 \mathrm{lbs}$.
and per foot of truss we lave
$\frac{6,000}{60}=10016 s$.
An additioial $10 \mathrm{lbs} . / \mathrm{ft}$. 1 s added for wit. of fastenines
Tren, the total wt. per foot of truse 18
$100+10=110$ 16s.
then total dead vit. per foot for $\frac{1}{z}$ tise reidee
$110+750=860$ 1bs.
The total dead wt. per panel is
$800 \times 12=10,320103$.
Live -load Stresses
The equivalent H-l5 loading rhovn in (Fig.l0) will be used.

Fig. 10
The maximum load on the trass will occur when the loading is in the position shown in HiE. 11.

Taking moments about E (Hic .ll)
$\frac{(40 \times 2) 12.25}{2.05}=520 \mathrm{Ibs}$.
for the maxima uniform live load per foot of truss. Then, for the panel load,

$$
P=520 \times 12=6,2401 \mathrm{bs}
$$

AGain, taking moments about B

$$
\mathrm{F}^{1}=\frac{(2 \times 15,500) 12.05}{22.5}=14,6981 \mathrm{bs} . \mathrm{Say} 14,700 \mathrm{lbs}
$$

For the panel load due to the concentration to be used in Cietermining moment on trass. In the same $\cdots \cdots \cdots$.

Pl $=\frac{(2 \times 1,950) 12.25}{25.5}=21,231$ lbs. Dy 21,250 lbs.
for the panel load due to the concentration to be used in determining, sher on the truss.

Tract is added to the live and read load stress and the total nancy lond is zoe, E"O lbs. Ir means of method of joints"
the following: stress table vas ret up
Stress Toile

Fig. 12
The truss is small and a short son therefore no windLoad stresses wore taken into account.

The carber is calculated on the basis of 3 1actes rise of bottom chord at center-line tle csuber curve to be arobolic.

Sections and ietails

'Ho end rost as tic larest force acting upon it, thereFore deaikn for $L_{0} U_{1}(F i \in \cdot l 2)$ and use this design for whole Of top chord.

$$
\begin{array}{rlrl}
K & =.641 \sqrt{\frac{E}{C}} & C=1.406 \\
& =.641 \sqrt{\frac{1.6 \times 10^{6}}{1.406}} & I=1.6 \times 10^{6} \\
& =21.2 & &
\end{array}
$$

Aowme the top chord to ke built up of 3 timers so the resistane to bonding is incrensed wich is necosary due to the fact the top chord is in conversion. It is also built up for construction prposes. Ascume it to be made of a main keam $6^{\prime \prime} x$ fi" $^{\prime \prime} 1$ th a $\mathcal{S}^{\prime \prime} \times 14^{\prime \prime}$ tirber fartencd to the two Sides of the main beam (rie.13).

F1๕. 13
Fatio 1/d were $1=$ Epen in inches nud $d=$ leos cimension in vidth in laches.

$$
\mathrm{d}=\frac{6+14}{2}=10^{\prime \prime}
$$

$$
1 / \bar{\alpha}=\frac{174}{10}=17.4
$$

iror built u_{p} columns with a san betwcen eleven times the leert dimension and K tires the least dimension ere c]. 2 .ntermediate columns. They depend for streneth on a combination of crushing strencth and resistance to lateral bucklinge

Ose the foilowing concition in design for trie colln.
Then connectors in midilc timber are placed at n distance of I/ 20 from the ends of this timber.

$$
\begin{aligned}
K_{3} & =K \times 1,752 \\
& =21.2 \times 1,732 \\
& =36.8
\end{aligned}
$$

$P / A=$ maximum load per u it of cross-sectional area.
$P / A=C\left[1-1 / 3\left(\frac{L}{K_{3} Q^{2}}\right)^{4}\right]$
$P / A=1,406\left[1-1 / 3\left(\frac{174}{i 6.8 \times 10)}{ }^{4}\right]\right.$
$\mathrm{P} / \mathrm{A}=1,466 \quad(.983)$
$P / A=1,440 \mathrm{lbs} . / \mathrm{sq} .1 \mathrm{n}$. allowable
Cross-sectionsl Area of end post

$$
\begin{array}{r}
3.5 \times 14 \times 2=98 \\
6 \times 6=36
\end{array}
$$

134 sq.in.

$$
\mathrm{P} / \mathrm{A}=\frac{90,390}{134}=674 \mathrm{lbs} / \mathrm{sq} \cdot \mathrm{in} . \quad \text { O.K. allowable } \quad \begin{array}{r}
10,440 \\
10 \mathrm{~s} \cdot / \mathrm{sq} . \mathrm{in} .
\end{array}
$$

The maximum load wich tie column cen corry witheut buokinge

$$
\begin{aligned}
& I_{1}=\frac{6 \pi(6)^{3}}{12}=108 \mathrm{in.4} \\
& I_{2}=\frac{.5 \pi(14)^{3}}{12}=801 \mathrm{in.}
\end{aligned}
$$

$$
\begin{aligned}
& I=103+01=003 \mathrm{in} .4 \\
& \text { Pcr }=\frac{\pi^{2} \mathrm{EI}}{4 L^{2}}=\frac{9.06 \times 1.6 \times 10^{6} \times 909}{4(14.6) \frac{1}{2}}
\end{aligned}
$$

Pcr $=121,0,0 \mathrm{lbs} .0 . \mathrm{K}$. since the load is $30,300 \mathrm{lbs}$. Derlection

$$
\begin{aligned}
\delta & =\frac{11^{2}}{2 E I} \\
& =\frac{90,390 \times(14.5)^{2} \times 111}{2\left(1.6 \times 10^{6}\right)(66 G)} \\
& =.939 \mathrm{nch}
\end{aligned}
$$

Diáonels
The diaconals shall be rectanjular solid colums all of the same cimensions, therefore desien for the larcest stresses in the members which would be $U_{1} L_{2}$ (Fig.l2) for compreseIon and $U_{1} L_{2}$ (F1E. 12) for tension. The size as umed will te $G^{\prime \prime}$ vide for c nstruction purposes and $10^{\prime \prime}$ deen for strongth.

$$
\begin{aligned}
& 1 / \mathrm{d}=\frac{193}{6}=33 \\
& K=3 \mathrm{me}=1.2
\end{aligned}
$$

Long: ($1 /$ d racios equel to or wenter than"K")

$$
\begin{aligned}
& P / A=\frac{.274 \mathrm{E}}{(1 / \mathrm{d})^{2}}=\frac{.274 \times 1.6 \times 10^{6}}{1089} \\
& \mathrm{P} / \mathrm{A}=403 \mathrm{lbs} . / \mathrm{sq.in} . \text { a.ilowable }
\end{aligned}
$$

Cross-sectionnl Area

$$
6 \times 10=60 \mathrm{sq} \cdot \mathrm{in} .
$$

P/A 19,000 = $317 \mathrm{Ibs./sin}$.
O.K. allowable $403 \mathrm{lbs./sq.in}$.

The maximum load which the column con carry without buckling.

$$
I=\frac{6 \times(10)^{3}}{12}=50 \text { in. } 4
$$

Pcr $=\frac{\pi^{2} I}{412}=\frac{9.86 \times 1.6 \times 10^{6} \times 50}{4(16.5) \times\left(1 t^{1}\right)}$
50, 以 lbs. O.K. since the lond is 19,00 Ibs.
Deflection

$$
\begin{aligned}
\delta & =\frac{7^{2}}{2 E I} \\
& =\frac{10,00 \times(16.5)^{2} \times 141}{2 \times 1.6106 \times 50} \\
& =.47 \text { inch }
\end{aligned}
$$

por direct tension the same values ns for extreme fiber stress In rending is used.

$$
\begin{aligned}
& \text { Cross-sectionnl area } \\
& 6 \times 10=60 \mathrm{sq} \text {. inclies } \\
& P / A=\frac{14,270}{60}=2331 \mathrm{Br} . / \mathrm{sq} \cdot \mathrm{in} . \\
& \text { O.K. nllowable 2,0 C Ibs./sa.in. }
\end{aligned}
$$

Verticols
The verticols shall ke a kuilt up column for constraction purposes. The desicn will be for the vertical $\|_{1} I_{1}$ Which has the lareest load of any verticel. Jhe crosssection arsumed vill be a $4^{n} \times 12 z^{\prime \prime}$ main timber with a $4^{n} x$ 14" timber fastened to the two $4^{\prime \prime}$ sides of the main column. (F1导•14)

Fig. 14

Since tre verticals are raray in direct tenoion the same values as for extreme f'ber stress in bending vill te used.

> Cross-rectionsl area is
$2 \times 4 \times 14=112$

$$
4 \times 12 \%=50
$$

Total $=162 \mathrm{sq} \cdot$ inches

Lower Chord
The lwer chord slall te assumed as mace of $2-4^{\prime \prime} \times 10^{n}$ benns $6^{\prime \prime}$ apart to allow for constmaction at joints. since the 1 wer chord is always in cirect tension it vill bc designed ra the verticals wore. The desion will be for $L_{o} L_{1}$ which ras the larcest stress.

Cross eectional area is
$2 \times 4 \times 10=8039$. inches
$\mathrm{r} / \mathrm{A}=\frac{75,900}{0}=950 \mathrm{Ibs} / \mathrm{sq.in}$.
O.F. since allowable ls 2,0 O lbr./sq.in.

A toncue made of $1-6^{\prime \prime} x$ 12" $x 5^{\prime}$ timber $\mathfrak{r a z}$ used at joint L_{0} for construction. Also a $1-6^{\prime \prime} \times 1^{\prime \prime} \times 4^{\prime}$ timber whs used as o splice block in the kottom chord. Four foot was to allow for conectors.

Lue to the truse boing low and of short span no rind stress will be calculated but a knee brace will be ploce at joints $L_{1} L_{2}$ and L_{3} runnine from the joint to the floor beam at a 45 oncle.

Lesjen of eplit rincs in joints and bolts.
Bolt holc shall ko af a cineter eritting kolts to be ariven ersily. Binlmum s neing is iow times the bolt
 the bolt diameter. The end marjin should be five ties the bolt diameter in tension and :ur tives in corressione the edze marsin in tension or compession should be, it leart one and one half times the bolt diamoter. arcin nearert the echee toward wifle tho load is acting is to be at lenct four times the bolt dineter.

Joint L2
cheres to diaconels
Ancle of load to roin of dia,onal is zEO. Allowable
load in pounds rer connector and bolt at ancle of 350.5512
S. I. load is $37,3 \leq 0$ lbs.
$8 \times 5,512 \quad 46,096$ value of $8-4^{\prime \prime} S R^{\prime} 8$ 。
 each bolt. All bolts are sacca according to specifications steted.

Vertical to chords
Ancle of 1 ad to erain of chords is 000
S.R. lyad 1a 13,670
$4 \times 4,675$ 18,700 value of four $4^{\prime \prime} \therefore$.R.'s
Recults: use 4-4" SoR. with $3 / 4^{\prime \prime} \times 28^{\prime \prime}$ bolt. The $3 / 4^{\prime \prime} \mathrm{x}$ 28" bolt carries 5-4" S.R.'s; 2 between vertical and chord, 2 between diajonel and chord, and one botweon tho kneebrace and vertical.

The rest of the joints were diesioncd by tie sa"c method with the followine resalts:

Joint LJ
knd josi to botion chord tonjue
12-4" S.R.'s vilh 3/4" x l4?" bolts

Eottom chord toneue to bottom chord
12-4" S.R.'s vith $5 / 4^{\prime \prime} \times 14^{?}$ " bolts
2-2]" S.R.1s with $5 / 3^{\prime \prime} \times 14{ }_{2}^{?}{ }^{n}$ bolts
Joint Ll
Fotion chord to vertical
4-4" S.la.'s vith $8 / 4 " \times 27^{\prime \prime}$ bolts
2-4" S.R. .ice belt between lneebrace and vertical.
Joint U_{1}
Between chord nad vertical
8 - L" S.R.'s vith 3/4" x 2:" bolts
Fetwoen chord and diegonal
4-4" S.R.'s on $: 3 / 4^{n} \times 2{ }^{\prime \prime}$ bolts ebove
2 - $2^{1} " \mathrm{~S}$.R.'s vith $5 / 8^{\prime \prime} \times 22^{\prime \prime}$ bolts
Joint J_{2}
Between chord aid vertical
3-4" S.R.'s rith E/4" x $2="$ bolts
Eetreen chord and ciajonal
4-4"S.R.'s on 3/4" x 2 " " bolts above
$2-2$ " S.R.'s rith $5 / 8^{\prime \prime} \times 2 \times$ bolts
Center line bottom chord solice

on the to a ord and the verticols that aro made up of three tirabers, connectors vill le used as a means of farteninc. In all verticals and chords five connectors is sufficient, except tic verticn betveen foint $L_{1} U_{1}$ cne $L_{4} U_{4}$ in which thiree is sufficient.

The fl ir beams will also be fortened by means of connectors. Uaing the meti od above it was cetermined that lo-5/8" x 29" bolte with $2-2{ }^{\prime \prime}$ Sor.'s to erch bolt. Wue to the fact that the floor beam fasten to the vertical 2 " rincs had to be used. The standard wolher mace by the timber Lngineering Compary is used under all bolts thr uibhot the whole structure. At joints there are end bearing of wood on wood. When wod nembers are squared and butted and to end, the end tends to bed themselves into each other and the meximum etreneth will bo less than the co pressive etrencth of clear wood. The amsunt of envoduent vill vary with the percontace of surmer wond and for ractical purpose it is not safe to count on more tran 75 of tho compressive ctress for clear wood. mere such ed are butted use a loce of 16 enu e cilvanized sheet iron. The se boarine plates between top chori sements to be placed in the field in a sowout thru the joint made vith a finishing hand saw.

Abutments

Botr abutments vill be of tre came desin due to the fact they ere tie came kelght and rame loadinge

The load on tho abutment due to dead and live load and impact per truss is $19 \%, 900$. This load will be consicered
to be cilstributed for 10 ft . along the wall. $\frac{192,900}{10}=19,290$ /ft.
Design of ctilever wall assume base $=.7 \mathrm{~h}$

$$
\text { tot }=6 \mathrm{~b}
$$

$b=.7 \times 20=14 "$
toe dist. $=.36 \times 14=51$

The surcharge due to the live
load on the fill will be taken
as $6^{\prime \prime}$
earth Pressure

$$
\begin{aligned}
& C \theta=\frac{\mathrm{mh}^{2}}{2} \\
& =-27 \quad \frac{10}{2}(50)^{2} \\
& =5,40 \mathrm{lbs} \cdot / \mathrm{lin} . \mathrm{ft}
\end{aligned}
$$

net $1 / 3$ up frow bottom or 6.5 ft .
wit. of earth
(7.7×18) $100=13,060$ lbs.
wt. of base slab
$(2.6 \mathrm{c} \times 5) 150+(1.65 \times 7.7) 150=3,9101 \mathrm{bs}$.
wt. of stem
(1.3×19.53) $150=3,764 \mathrm{lbs}$.

lionent of forces of bnce end eerth

εR toe $=0$
$(13,60+5,7010+010+10,60) \overline{\mathrm{x}}=15,60(10.15)+\%, 010$ $(7)+19,20(5 .(4)+0,7 \cup 4(5.64) \quad \leq, 24 \overline{\mathrm{X}}=200,176$ $\overline{\mathbf{x}}=7.30 \mathrm{ft}$. from toe to $50,30 \mathrm{lbs}$. resultant. Resultant of Larth prescure and woiclit hit base at

$$
\begin{aligned}
& \frac{\bar{Y}}{7,30}=\frac{5,400}{4,8} \\
& \bar{Y}=.97 \mathrm{ft} \text {. } \\
& \text { 7.30-.97 = 6.33ft. } \\
& \text { eccentricity }=7-6.3 \%=.67 \mathrm{ft} \text {. } \\
& \text { Soll Pressure } \\
& S P=\frac{P}{b}\left(1 \pm \frac{6 e}{b}\right)
\end{aligned}
$$

sliding $\quad f=.4$

Stem
Linth ressure

$$
\begin{aligned}
& =.27 \frac{100 \times(10)^{2}}{2}=1,370 \mathrm{lbs} . \\
& \text { act } 1 / 3 \text { up or } 6 \mathrm{ft} .
\end{aligned}
$$

Encing roment

$$
\therefore, 370 \times 6=20,20 \mathrm{ft} .1 \mathrm{bs} .
$$

use 3,00 lbe concrete

$$
\begin{aligned}
& f(=1,010 \\
& f 3=20, \ldots 0 \\
& n=12 \\
& K=164 \\
& \pi=100-1251 b r . / \cos \text { in. } \\
& \text { P = .C.C94 } \\
& V=50-60 \text { Ibs./sa.in. } \\
& d=\sqrt{\frac{M}{b k}}=\sqrt{\frac{06, \frac{x 12}{12 \times 164}}{2}} \\
& d=12.6^{\prime \prime} \text { use } 2.9^{\prime \prime} \text { of protection over bors } \\
& \text { therefore } D=15.5^{\prime \prime} \text { Say 15.5" } \\
& A s=P \text { Ld }=.004 \times 12 \times 12.5 \\
& =1.51 \text { sq.in. } \\
& \text { Use } 7 / 8 \text { in round rodin } 4 \frac{1}{2} \text { inches } \\
& A s=1.00 \text { 3q.in. } \\
& \text { Bond }=\frac{V}{\sum 0 \text { jd }}=\frac{4,370}{(\pi, 30 \times 12) 77} \overline{8.512 .5} \\
& =40.5 \mathrm{Ibs} . / \mathrm{In} \text {. } 0 . \mathrm{K} \text {. }
\end{aligned}
$$

Unit near

$$
v=\frac{v}{\mathrm{bjd}}=\frac{4,370}{1 \overline{2 \times 7} / 8} \bar{x} \sqrt{2} \cdot 5=33.2 \mathrm{Ibs} / \mathrm{c} \cdot \ln \cdot 0 . \mathrm{K}_{\bullet}
$$

Temperature chances
Temperature steal to kop the val from cracking on surface to cree for stresses due to temperature chances. Stecl ratio of temperature . 33 or . $\%$ of area of concrete. Face 2.3 on front face and $1 / 3$ on back.
$12 \times 12.5=150$
$150 \times .003=.45 \mathrm{sq.in}$. of temoraturo stoel/ft.
front $=1 / 2$ square rod 6 inches
back $=1 / 2$ ecuare rod 12 inches
Toe Design

$x=4,520-\left(\frac{1,520-2,260}{12}\right) 5=2,5701 \mathrm{bs}$.
$\sum: W A=\frac{5,570 \times 5^{2}}{2}+\frac{950}{2}(5)\left(\frac{5}{3}-2.5(5)(150) 2.66\right.$ Max B.M. $=44,660$ ft. lbs.

Feces ry to satisfy mong the following
$d=25^{\prime \prime}$
$D=2 \Omega^{\prime \prime}$
$A==0.094 \times 25 \times 12=2.82$ sq. inches
Use $7 / 8^{\prime \prime}$ round bars 2.5 inches 2.89 sq.incles
Bond
$\mu=\frac{44,600}{(2.75) \frac{12}{2.5}(7 / 8) 25}=120 \quad 0 . \mathrm{K}$.
Hell Design
7.7^{\prime}

$18 \times 100+1 \times 150=1,9501 \mathrm{bs}$.
$X=2,260+\left(\frac{4,52,0-2.260}{12}\right) 7.7=3,723$
$\sum M_{A}=2,260 \times 7.7 \times \frac{7.7}{2}+\frac{1,403}{2} \times 7.7 \times \frac{7.7}{3}-1,950 \times 7.7 \times$ $\frac{7.7}{2}=23,800 \mathrm{ft}$. Lbs.
$d=17^{\prime \prime}$ neceserrer for clear
$\mathrm{D}=17+3=20$ inches
$\mathrm{As}=.94 \times 12 \times 17=1.92$

$V=3,00(7.7)-1,950(7.7)$
$V=8,100$
Unit chore

$$
v=\frac{0,100}{12 \times 7 / 3 \times 17}=500 \mathrm{~K}
$$

Bond

$$
\mu=\frac{8,100}{2.75\left(\frac{10}{3 \%}\right) \times 7 / 8 \times 17}=580 \mathrm{~K}
$$

Surcharge anglo 16040^{\prime}
$C \theta=.31$
$p=01 \frac{100 \times 10^{2}}{2}=3,060^{\prime}$
Horizontal force of $P=3800$ \#

base $=.7 \mathrm{~h}$
7. $x 16=11.2^{1}$ Say 11.5 ft .

Toe distance $=\frac{b}{3}=\frac{11.5}{3}=3.8 \mathrm{ft}$.
$P V=505$
wt. of earth includine stem
$(7.7 \times 14.67) 100=11,300 \mathrm{lbs}$.
t. of bese slab
(1.3 x 1.5) $150=2,301 \mathrm{lbs}$.
\sum ntoe $=0$
$(11,50+2,300) \bar{\psi}=(11,300) 7.65+2,300(5.75)$ $\bar{\psi}=7.3 \mathrm{ft}$. from tow to $13,60 \mathrm{lbs}$.
 result:nt $\frac{\bar{y}}{51 / 3}=\frac{3,80}{13,60}$
$\bar{Y}=1.49$ pt. were R hits base
$7.34-1.49=5.851$
Eesentricity $=5.75-5.85=.1 \mathrm{ft}$.
Soil pressure

$$
P=\frac{13,600}{11.5}\left[\left(1 \pm\left(\frac{6 x .1}{11.5}\right)\right]=\begin{array}{cc}
1,130 & 1 \mathrm{bs} . / \mathrm{sq} . \mathrm{ft} . \\
1,120 & . .
\end{array}\right.
$$

sildinc

$$
f=.4
$$

factor of safety $=\frac{13,60 \times .4}{3,860}=1.43$
Stem

$$
\begin{aligned}
\mathrm{K}_{\cdot} \mathrm{F}_{\bullet} & =.31 \frac{100(142 / 3)^{2}}{2} \\
& =3,330
\end{aligned}
$$

$\mathrm{H}=3,330 \times .958=3,190 \mathrm{lbs}$.
acts 4.19 ft . up
$B M=3,190(4.09)=15,600$

$$
\begin{gathered}
d=\sqrt{\frac{15,600}{164}}=\sqrt{05}=9.75 \text { say } 10^{\prime \prime} \\
D=13^{\prime \prime}
\end{gathered}
$$

$A s=p b d$

Bond

$$
\begin{aligned}
& =\frac{3_{2} 0}{2.36 \times \frac{12}{4.5} \times 7 / 8 \times 10} \\
& =690 . K
\end{aligned}
$$

Unit Shear $=\frac{3,80}{12 x^{\prime} 7 / 8 x 10}$

$$
=36.50 . \mathrm{K}
$$

Temperature Steel

$$
\begin{aligned}
x & =1190-\frac{(1190-1120)}{11.5} 3.8 \\
& =1167
\end{aligned}
$$

$\Sigma M a=\frac{1167 \times 3.8}{2}+23 \times \frac{3.8}{2} \times \frac{2(3.8)}{2}-\frac{20(E .8)^{2}}{2}$

$$
\begin{aligned}
& \text { B. } M_{\bullet}=7,110 \\
& d=\sqrt{\frac{7,110}{164}}=6.6^{\prime \prime} \quad D=10^{\prime \prime}
\end{aligned}
$$

$$
\text { Say } 7 "
$$

$$
\begin{aligned}
& =.0094 \times 12 \times 10=1.13 \mathrm{sq.in} .
\end{aligned}
$$

As $=.0094(7)(12)=.79 \mathrm{sq.in}$.

$$
\text { use ?" }<3^{\prime \prime}=.79
$$

Shear $=173 \times 3.3-8.8(200)=3,710$
Unit lear

$$
=\frac{3710}{12 \times 7 / 8 \times 7}=510 . \mathrm{K} .
$$

Bond $=\frac{3,710}{1.5 \times \frac{12}{3} \times 7 / 3 \times 7}=10.0 . \mathrm{K}$.
Riel design

$$
x=1120+\frac{(1190-1120)}{11.5} \times 4.88=1150
$$

$$
15.17 \times 100+.833 \times 150=1642
$$

$\Sigma \mathrm{Ma}=0$

$$
-1642(4.08)(2.44)+1120(4.8)(2.44)+\frac{50}{2}(4.83)(2.44)
$$

$=6,030$ tension in to of footing

$$
d=\sqrt{\frac{60.30}{164}}=6.05 \text { Say } 7 \prime
$$

$$
D=10^{\prime \prime}
$$

$$
\begin{gathered}
\text { As }=.004 \times 7 \times 12=.79 \text { sion } \\
\text { Use } \times 3^{\prime \prime}=.79 \mathrm{sq} \cdot \mathrm{in} .
\end{gathered}
$$

Shear

$$
=1135 \times 4.03-1642 \times 4.33=2,460
$$

Unit shear

$$
v=\frac{160}{16 \times 7 / 8 \times 7}=350 . \mathrm{K} .
$$

Bond

$$
\mu=\frac{0460}{1.07 \times \frac{12 \times 7}{3}} / \sqrt{6 \times 7}=6.50 . K
$$

fiers
 allowable ressure on the footines con be 9,0 lbs./sq.ft. The tyje shown below will be used.

The cap is arsumed to be $3^{\prime}-O^{\prime \prime}$ wide nid $I^{\prime \prime}$ - $0^{\prime \prime}$ thick. Consider the main slioft to be $2^{\prime}-6^{\prime \prime}$ trick. The base will be assumed to be $6^{\prime}-0^{\prime \prime}$ ride, $2^{\prime}-0^{\prime \prime}$ tilick and 28' - 6^{n} lone. The portion that suasorts tre stringers vil 1 be assumod to be 20' $-6^{\prime \prime} 1$ ne and $1^{\prime}-6^{\prime \prime}$ wide with the a cap 20' - 6^{n} long, $2^{\prime}-0^{\prime \prime}$ vide and $1^{\prime}-0^{\prime \prime}$ trick.

Total wt. of pier
Base

$$
23.5 \times 6 \times 2 \times 150=51,30,1 \mathrm{bs}
$$

Shaft

$$
20.5 \times 2.5 \times 17.6 \times 150=175,001 \mathrm{bs}
$$

Cap

$$
3 \times 1 \times 27 \times 150=18,150 \quad 1 \mathrm{bs}
$$

Uwer shaft

$$
20.5 \times 1.5 \times 2.92 \times 150=12,450 \quad 1 \mathrm{bs}
$$

Cap

$$
\begin{aligned}
20.5 \times 2 \times 1 \times 150 & =6,150 \quad 1 \mathrm{bs} . \\
\text { Total } & =253,050 \quad \text { lbs. }
\end{aligned}
$$

For ice fressure (ossuming the ice to be 20 inches tlick)
$20 \times 20 \times 20=120,0001 \mathrm{bs}$.
For maxinum (irect lond on the bott m of the base
$253,050+192,900 \times 2=643,350 \mathrm{lbs}$.
Dividine this by the area of the base

$$
\frac{64,550}{65 \times 6}=3,76010
$$

for undform pressure over tie base. Next, teke moments about point e on bese of ice rescure.
$120,0.0 \times 12=1,440,00 \mathrm{ft} .1 \mathrm{bs}$.
for the romont tue to this load tending to overturn the pier.
The moment of inertia of the bottom curface of the base.
$1 / 12 \times 6 \times(23.6)^{3}=11,700 \mathrm{ft}$. units
Then,

$$
f=\frac{1,40,000 \times 14.25}{11,760}=1,75 \mathrm{lbs}
$$

for the positive pres pure per squrre foot at e aid the negative pressure per square foot at a on the bace due to ice rescure. Adaing this to the uviform load.

$$
\begin{aligned}
& e=3760+1755=5515 \\
& a=3760-1755=2005
\end{aligned}
$$

Next, consider traction (FiE. 15). The traction forco will be
$2 \times 40,00 \times 0.1=0,000 \mathrm{Ibs}$.
Takinc moments about the bottom of the base
$8,00 \times 26.92=215,360 \mathrm{ft} . / 1 \mathrm{bs}$.
for the maximum moment due to traction.
For moments of interia of tho bottom surface of the fouting about axis K

$$
=1 / 12 \times 20.5 \times 6^{3}=513 \mathrm{ft} \text {. units }
$$

Then

$$
f=\frac{215,3 t j 0 \times 3}{513}=12601 \mathrm{bs} / \mathrm{sq} \cdot \mathrm{ft}
$$

for the maximum pressure on the footine die to traction. Adding this to the 5515 Ibs. obtaincd due to dend wt. and ice prescure
$5515+1260=6,775$ 1bs.
for the total maximun pressure per square foot on the footings. $0 . K$. since allowable ascumed was 9,00 lbs.

For the moment on the footing alone section CC (Fig.l5)
$[(6775 \times 7 / 4) 7 / 8-(300 \times 7 / 4) 7 / 8] 12=119,0:$ in. -1 bs .
Taking $d=21^{\prime \prime}, \quad j=0.87$

$$
F=\frac{119,000}{21 \times \cdot 87}=6,520 \mathrm{lbs}
$$

Then, for the stecl required in the bottom of the base
$6520 \div 16,000=.407$
Use $5 / 8^{\prime \prime} \phi$ Var $9^{\prime \prime}=.41$ Find Eearincs
The eximaion of each sian rill be ajproximately . 018 of a foot wich will ke taken ky the timker soan itself.
'herefore, botli cris of each span will Le cociarely rontened b.. moans of n lince arranconont.
 woment on each: in

14 $x 40,25=60,880$ in.-lbs. O.K. allomakle 05,000 in./Ibs.

Shenr on rin
$4.91 \times 4,000=210,00 \mathrm{lbs}$. allowable; actuel $96,4500 . \mathrm{K}$.
Bearince area on mosonary
$90,450 \div 60=100 \mathrm{sq} \cdot$ inches
Uso $10^{\prime \prime} \times 16^{\prime \prime}=160 \mathrm{sq}$. inclies

Eiblioeraphy
Timber Design and Construction-Henry S. Jacoby and Roland P. Davi:

Theory of hodern Steel Structures-Linton E. Grinter
Wood Structural Design Data-Vol. 1-National Lumber Manufacturers Association

Hichway Structures of Douglas Fir-west Coast Lumberman's Association

Douglas Fir Use Book-West Coest Lumberman's Association
Highway Eridges-John Eaward Kirkhan
Design of Highway Eridgee-tilo S. Ketchum

