OF BIC TIME

Ogden Fazelle Edwards
1933

A CRITICUE ON THE FILMAPILITY OF FACTLAIA.

A CHICAR ON ONE PILTRAPILITY OF PACTORIA

Thosis

constituted to the Faculty of Michigan State College of Agriculture and Ap died Science in partial fulfillment of the requirements for the degree of Faster of Science

Ogdon Frazollo Edwards
Juno, 1955.

7/21/48 G-

AUDINALIGATI

The writer desires to express his grateful acknowledgment of the able ascistance of Doctor W. L. Mallmann, Associate Professor of Lacteriology, under whom the work was carried out, and of other members of the Faculty of the legarinent of Ecoteriology and Systems.

Trables of College Ts

Title

Acknowledgment

- 1. Introduction
- II. distorical
- III. Esperimental
 - Attempts to produce 3 forms of bacteria by physical methods
 - B. Attempts to demonstrate the presence of Giorns in the bacteriophage filtrates of Salmonella pullorum and Stephylocogens agrees
 - C. The production of microcolonies of bacteria by physical influences
 - D. Studies on the filtration of bacteria
- IV. Summry and discussion
- V. Literature Cited

A Critique on the Filtrability of hacteria Introduction

In the commercial world a proposal must have an immediate inherent material value, whereas in pure science any scientific fact irrespective of its practical value is important. Prequently observations that apparently have no material worth, later become essential stepping stones to objectives of positive economic importance. The proof of the existence of filtrable stages in bacterial life cycles may be the basis of important economic discoveries in all phases of bacteriology.

In 1923 Löhnis and Smith presented a rather intricate life cycle for the Azotobacter which included a filtrable stage. They postulated the formation within the bacterial cells of gonidia of such size that they would pass through a Berkefeld filter candle. Lore recently Hauduroy, Madley, and Rendall have presented data on other organisms that appear to validate the findings of Löhnis and Smith. Further observations are necessary both as to proof of the existence of filtrable forms and of their relation to the non-filtrable bacteria, as the data at the present are extremely fragmentary and highly unorganized as to continuity.

lifatorion1

macteriologists are divided into two schools of thought concerning the emistence of life cycles in bacteria. The first consists of the followers of pleomorphism, the ability of the bacterial cell to present many varied features of structure and size; the second composed of those who believe in monomorphism, the fixity of the bacterial cell in only one form.

ragel1 (55) in 1877 presented the view that bacteria are extremely ploomorphic. He believed that all bacteria belonged to a single type of fission fungi, highly variable, greatly adaptable morphologically, fementatively, and biochemically. In the other hand, Cohn (11) in 1375 presented the theory of monomorphism with a classification of fission fungi based on the above characteristics. Noch agreed with John and was able to present enough proof to swing the pendulum of thought definitely to this view. Noch's teachings have dominated the trend of bacteriology until recently. During this period manifestations of dissociution were attributed to contamination, involution forms, and even to poor technic.

About 1911 the tide changed and from this time the concensus of opinion has gradually turned towards the opposite viewpoint. Jones (33) 1920 surmarized his former paper of 1913. He noticed that some Azotolaster possessed a complex life cycle. One observation was that the cells of these organises formed two types of

granules, a stainable and a non-stainable. The former were apparently reproductive bodies or ganidia. Then the mother cell disintegrated there granules were liberated, whereupon they grew into normal cells, reproduced indefinitely by binary fission, then each cell again formed gonidia and disintegrated thus completing the cycle. However, he stated that they were not filtrable and made no mention of the size of the colonics produced by the conidial forms.

Louris and Smith in a prelimin ry note (4)) 1916 showed that the life Mistory of the Azotobacter and other bacteria was very complex. In a later communication (41) 1923 they pointed out that the Azotobactor possessed seven distinct cell types. They reported that all types of bacterial reproductive or ans were found in these organisms, gonidia and gonidangia, zyjospores, arthrospores, microcysts, endospores and exospores. They stated that when the nuclear material was accompanied by scent amounts of other cell elements, gonidia were formed. They also stated that these conidia were in part filtrable or had ultranicroscopic particles associated with them which were capable of reproducing Azotobacter colonies after filtration. This paper is a classic on the dissociation of bacteria and is the basis of practically all work on dissociative chenomena.

and and larren (5.) in 1983 reported the isolation of a readily cultivable vibrio. They attributed the filtrability of this organism in part at least to its

motility.

manduroy (20) in 1917 presented a technic for the cultivation and production of visible organisms from the filtrates of filtrable forms of becteria. This process consisted essentially in placing one or two co. of the filtrate on a lectose golatin plate, incutating the seeded plate for 24 hours, washing the surface of the medium with storile broth, and transferring the washing to a sterile lactose golatin plate. This was repeated five or six times until fine, pin-point colories appeared. He stated that at this state it was possible to grow the filtrable forms in broth. This was the only method by which he was able to grow these forms.

Madley et al. (22) in 1931 were perhaps the first to menerate artificially and subsequently to cultivate in pure culture the filtrable virus-like state of any bacterial species. This filtrable or 3 form was produced during dissociative changes by rapid transfer and aging. The 3 forms were grown as pure cultures; their filtrability was acconstrated and by means of special technic, the rapid serial plate transfer of Handurey, they were recovered from the filtrate. The different reactions of the 3 forms were found to be different from the normal R or S type, but after suitable manipulation they reverted to the normal form. If forms for other organisms were also demonstrated.

Mendall (36) in 1931 reported a culture medium waich was lacking in protein digestion products. This medium

was capable of changing ordinary bacteria to primitive forms which were able to pass filters. These filtrable organisms were uncultivable in ordinary nodia but grow well in I medium.

Varney and Fronfenbrenner (66) in 1932 extended the observations of Fondall and demonstrated that the cause of the filtrability might be attributed to the suspended material cresent in K medium and adsorted by the filter. They noted that the organisms in the filtrate were equally cultivable in K or other media.

1.xperimental

(A)

Attempts to Produce G Forms of Lacteria by Physical Methods

1. The effect of rapid transferring and aging bacteria in different media

There exists in the literature much confusion as to the exact import carried by the term G form. Hadley et al. (22) in 1921 introduced this designation applying it to colonies, microscopic in size, produced by coccoid forms which were liltrable through various types of filters. Pruceimer and Sherman (7) in 1922 isolated organics which they called primitive bacteria uncultivable by ordinary methods. Other names further cloud the situation. In this paper the following terminology will be used.

- 1. G forms which consist of any organish in a form different from the normal and which will pass filters and produce colonies microscopic in size upon the application of rapid serial plate transfer or aging.
- 2. Filtrable forms which consist of any organism in the normal or changed form which will pass filters, and all produce colonies and have reactions normal for that organism upon the application of suitable technic.
- 3. M forms which consist of any organism which will not pass filters, but will produce colonies microscopic in size upon the application of suitable technic.

The nature of this study required the use of several controls in order to evaluate correctly the data obtained.

1. Control and method of filtration. The Lerkefeld filters were elemed before each filtration by passing through them under negative pressure 250 cc. of a solution of potassium permanganate (1 gram 2500, + 6.5 grams concentrated HCl + 1 liter of distilled water), 250 cc. of 1 per cent exalic seid solution, 500 cc. of het distilled water, and 500 cc. of cold distilled water. The filter was then connected to the accompanying flask, the outlets played with cotton, and the apparatus sterilized in the autoclave at 15 pounds steam pressure for 20 minutes. The Seitz filter pads were renewed after each filtration and the apparatus sterilized as above. Each filter was tested for its ability to retain Serratia marcescens after every 10 filtrations.

The pressure and time of filtration were adjusted to permit the filtrate to pass at the rate of one or two drops per second. For 20 cc., the amount generally filtered, the pressure was 160 to 200 mm. of Hg, and the time was three to five minutes. These methods were applied to all filtration studies.

2. Control of sterility of modia. The glassware was sterilized twice at 180°C. for 10 minutes or longer. The modia were propered in the usual manner and sterilized according to the standard procedure. Test tubes contained ing modia were placed at 27°C. for 48 hours, then at

room temperature for one week. All tubes showing growth were discarded. The ager plates were poured aseptically, incubated at 27°3, for 48 hours and at room temperature 24 hours before using; those showing contamination were discarded.

3. Control of test naterial. The E medium tubes seeded with the filtrates were controlled by duplicate filtrates placed in sterile cotton stoppered test tubes, in plain nutrient beef extract broth, or in differential media for the particular organism studied.

Rapid transferring and aging of bacteria under various conditions have been studied by several authors. Radley (23) 1931 observed that rapid transfer of Shigella dysenteriae in media which had slight inhibitory effects on this organism caused a change from the normal colony size to one which could only be seen with the aid of the microscope. He reported that 3 forms of Shig. dysenteriae arose 16 times during spontaneous or enforced dissociation of the S or the R forms of this organism. These cultures originated from both R and S types undergoing rapid transfer and aring in broth, with and without lithium chloride, in penercatin broth, from bacteriophage, and by animal injection.

The former methods will be considered in detail. Plain beef infusion broth, pH 6.8 to pH 7.8, was used for spontaneous dissociation. Twenty-five hundredths to 0.5 per cent lithium chloride was added to broth. pH 7.5 to pH 7.8, and 5 per cent pancreatin (Squibbs)

was likewise placed in broth, pH 6.8 to pH 7.8, for study-ing enforced dissociation. Both R and S type cultures underwent rapid transfer and aring in these media.

The technic of rapid transfer consisted essentially in transferring from one loop to several drops from tube to tube at 24 hour intervals. After 24 to 48 hours* inculation at 27%, the culture was placed on a sterile agur plate and smoored over the surface with a sterile rlass L-shaped rod. These seeded plates were incubated from 24 to 48 hours and differential colony plate counts mado. The studies in aring consisted in part in placing the organisms to be studied in the Verious media and making subgulture plates at intervals for differential colony counts. Hadley found that on about the seventh to tenth transfer microcolonies appeared in large numbers. sometimes preceded by a storile plate. These appearances were very regular in recurrence. With repeated transfer the colonies disappeared, returning again when further plantings were made. The cultural, morphological, and chomical reactions of the 3 colonies were obtained. These differed from the normal Shine dysenteriae reactions. The cultures were found to be filtrable and the filtrate under proper manipulation produced microcolenies or were true G forms.

nurox (54) 1931 obtained results with <u>Salmonella</u>

<u>aertryche</u> which confirmed Hadley's work. The technic

need closely followed that of the latter. At the

termination of the experiment six cultures of the G forms

of <u>Sal.</u> <u>aertrycke</u> were seeded on veal agar plates, sealed with adhesive tape, and placed in the ide box for five months. At the beginning of this period the cultures were microscopic in size, but after the period of eging only yellow, opaque colonies 2 to 5 mm. in diameter could be discovered. An explanation of this phenomenon will be offered later in this paper.

The effect of rapid transferring and a ding Shig. dysenterine in different modia. In an attempt to obtain d forms the influence of rapid transferring and aging a strain of Shir. Organization was tested in different media. The culture was obtained from Hadley of the University of Michigan. This strain was the one used by Hauley to obtain the G forms that he has reported (23) 1931. In order to slaulate the conditions under which his work was conducted the following media were scledted and prepared according to his recommendations: (1) Plain beef infusion broth. pli 7.8. (2) 0.25 per cent lithium chloride broth, pd 7.6, (3) 5 per cent pencreatin broth. pH 6.8. (4) 5 per cent pancreatin broth, pH 7.0. (5) plain beef infusion agar, and (6) lituus lactose agar (Difoo). A sufficient amount of each medium was made at one time for the entire experiment. before using each tube or plate of medium was insubated for storility as outlined previously.

Daily transfers were made in each of the foor troth media. All tules were incubated at \$7°U. After 45 hours' incubation each culture was streaked on litmus lactose

and plain beef infusion agar plates. The plates were incubated 43 hours at 27°J. for 5 to 10 days at room temperature and examined for colony formation at a magnification of 100 diameters.

The initial tube of each series was placed at room temperature, after the incubation period at 27°C., to determine the effect of aging. Every 24 hours each culture was streaked on litmus lactose and plain beef infusion ager. The plates were incubated and examined as outlined above. Although Shire dysenteries was aged for 50 days, and in spite of 50 rapid transfers in four different broth media, no effect of discociation was observed. The colonies present on each plate in the series were rough and opaque throughout the course of the experiment.

b. Spontaneous and enforced dissociation of bacteria by rapid transferring and aging. Although no G forms could be obtained from Shige dysenterias, the method of rapid transferring and aging was extended to other bacteria and to several other media. Seven organisms of different genera, both pathogenic and nonpathogenic, motile and normatile, pigment and nonpigment formers were selected: (1) Shigelia paradysenteriae, (2) Serratia indica, (3) Chromobacterium violaceum, (4) Escherichia coli, (5) Salmonelia pullorum, (6) Acrobacter acrogenes, and (7) Shigelia dysenteriae.

The media were prepared as outlined below: All media were sterilized in the autoclave at 15 pounds

steam pressure for 15 to 20 minutes and checked for sterility by incubating as described previously. The seven or maisus wore planted into each of the broth (1) Plain beef extract broth, pH 7.8. (2) plain veal infusion broth, pH 7.2. (3) 0.5 per cent lithium chloride broth. (4) 1.0 per cent lithium chloride broth. (5) 2.0 per cent lithium chloride broth (6) k medium (Difco), and (7) 0.007 per cent brilliant green broth. In addition a tube of each was used as a control on the absence of I for a from the media. The culture tubes together with the controls were incubated at 27%. for 24 hours. Daily transfers were made from each thie in each series. After 48 hours' incubation the cultures and controls were streaked on voul infusion agar plates that had been previously checked for sterility. The seeded plates were incubated at 27°C. for 45 hours. followed by 5 to 1) days at room temperature, and examined for colony formation at a magnification of 1 m dismeters. Colonies resembling 3 forms were subsultured to yeal infusion broth, incubated 40 hours at 27 %, and filtered through berkefeld N filters according to the touhule proviously outlined. The filtrates were studied for the presence of G forms.

To determine the effect of aging the initial tubes of each series were placed at room temperature after the incubation period at 27°C. At the intervals given in Tables 2, 4, 6, 3, 1), and 13 the material in each tube was streaked on yeal infusion agar plates previously

checked for sterility, and after insubstion at 37%. followed by room temperature, were examined for colony formation. The control tubes remained storile for the entire experiment. The plates producing microcolonies were incubated one week to observe any change in colony size. Lierocolonies which remained constant in size were carefully transferred under a magnification of 100 dimeters, to veal infusion broth, pg 7.0, and incubated at 27°3. for 43 hours. Broth cultures which showed faint. opalescent provth were filtered according to the method previously described. The filtrate was clear and colorless. The eq. amounts of the filtrate were placed in: (1) Youl influsion broth, pil 7.2. (2) I medium (Miroo). and (3) a sterile cotton stoppered test tube. tubes were incubated at 17°3, for 72 hours, followed by one week at room temperature, when they were streaked on yeal infusion agar plates. These were insubated at 37°3. for 43 hours, followed by one week at room temperature, and then examined at a magnification of 100 diameters for colony for action. No colonies were discovered on any of the gubculture plates; the media containing filtrates from the cultures forming microsologies remained sterile uncroscopically and microscopically. This demonstrated that these organisms were not filtratle. and for this reason the term G form could not be applied to any culture isolated by rapid transferring or a ing. Advording to the terminology outlines previously, the microcolonies formed were labeled it colonies.

- l. Dissociation in plain beef extract broth, pH 7.8. Plain beef extract broth was made in the usual manner, adjusted to pH 7.8 with F/1 habit, tubed in 10 cc. abounts, sterilized and seeded with the test organisms.
- a. Rapid Transfer. Data in Table 1 show that only three organisms produced M colonies, Shig. rara-dysenterine, Osch. coli. and Sal. pullorum. They appeared when 3 colonies were the predominating type.
- b. Aring. Pata in Table 2 show that only three organisms produced 2 colonies. Chrom. violaceum, asch. coli, and Sal. rulleron. With the exception of Chrom. violaceum in which the appearance of the 21 types was preceded by three sterile plates, they arose when 3 colonies were the precedingting type.
- 2. Spontaneous dissociation in veal infusion broth, pH 7.2. Veal infusion broth was prepared in the usual manner, checked for sterility by incubation, and seeded with the test organisms.
- a. Rapid transfer. Data in Table 3 show that four organises. Serv. indica. Shir. eyeentorise. Shron. violaceum. and Sal. pullorum. produced N type colonies. the first two when R colonies were the predominating type, the others when S colonies were in excess.
- b. Agint. Rata in Table 4 show that the production of M colonies in throm. violeceum and Sal. pullorum occurred then R colonies were predominant in the former, and when S colonies were in excess in the latter.

Table 1. Dissociation by Rapid Fransfer in Plain Beef Latract Broth, ph 7.8.

	PAGE 12	Sh	18.	186		Se	Serr.			V.	hro	rom.	22			COL	Esch.	
464	12	100	55.	18	B	15	182	100	1	-	01	93	-	-	2	25	02 •	-
P		-	100		Ge	100			0	-				-	Day.		100	
10	H	01.	06		Ger	100			0	-			-	-	04	8	100	
1	H	03.	08		35	08	ි. ද		0	-			-	-	34		100	
-		08.	100	-	H	50	50	2	0	-				-	Side of the last	्	08	
2	121	087	04		2	90	09		0	-				-	See	30	04 .	e life
r	-	110	06	*	H	09	50	2	0	-				4	Sing	្ធ	09	0.4
P	H	OI.	06		H	90	. 09	1	0	-		0		-	A	09	09 1	9 4
r		110	06		H	50	50		0					-	Ste	00	02.	lina.
-	E	-	100		T I	्द	50		0	-				-	0	50	09.	100
1	F	-	OGI.	P Bew	H	09	500		0	-		9		-	Stag		100	9
r	E	-	100	Wew.	H		100		0						D.		100	
F	E	F.	100	Pew	H		100		0	-				-	2		100	
r	E	F.	100		H		100		0	-				-	d		1100	
r		-	000		11	-	13000	-	0	-	-	1	-	-	p		1700	1

B = Broth culture appearance
R = Rough colonies in per cent
S = Smooth colonies in per cent
R = Elerocolonies
H = Homogeneous clouding
G_k = Granular precipitate
P = Pellicle
C = Cleur
F = Floctulent precipitate

Smooth colonies in per cent

Tablo 1. Dissociation by Rapid Transfer in Flain Beof Extract Eroth, pd 7.8 (continued)

	1		-	1	-	•	-	+	1	+	-	-	+	h	H
	11,	•	•	•	1	•	•	1	•	•	•	•	•	•	•
10	ន	١,	٦,	۲,	Γ,	١,		Γ,	Γ,	۲.	١.	١.	١,	۲,	Γ.
Jontrol	-	-	-	-	L	-	-	-	-	-	-	-	-	-	-
, (O)	Ect.	•	8	•	•	3	•	•	•	8	٠	•		*	•
	ŝ	<u>.</u>	•	٠,	0	ر-	٠,	-	~)	رد	- ,	-,	7	٠,	7
• • •	-	-	•	•	-	-	-	_	_	_	•		_	_	
	• •	8	3	1	•	•	•	•	,	٠	•	•	•		
106	5	-	•		•	١.	•	-	-	•	•		•	١.	t.
Shig. dyser.teriae	_	•	•	•				•	•	_	-		-	Ľ	_
Sh1	Ç.,) (U	0 :1	001	[]	(()		. (1		ा	\odot	001	्	
6	-						-	-			-				
	-4	0	3	0	•	3	3		[]		5	ز	ြ	S	
						•			3					•	
8	-	-	-	-	-	-	-	•	-	-	ं	٠,		<u>ا</u>	
0 2	(3)	•			•	(3)	1	(3)	ري د		٦.	-	-1	្រ	7
eero ence			\mathcal{C}			۔ ت	ા			00			•	Γ,	Γ,
្ន	-	11	1	1	-1	-	-	-	-	-	-	-	-	-	-
·	2	- 77	:-:	`. ;	11	- 1	= 4	•	tryck pr. s	٢,	.24	Ċ,	2	đ	ય
						•	-	•				•	•	•	
	=:	•	•	•		•	C.1	0.3	,	1	13.	9	•	•	
	-	•	-	-	़	(;)	-	- (-	۱	-	•	-	-	
orum	S	1	-	ت ،	6	છ	1			•		7	्र	्र	H
37.	24	8	•			_	•			,			,	١,	Γ,
pa 1	-	-	-	F		14	-	-	-	-	-	-	-	-	F
	2		77.2	7	^ ;*	54	772	•		7	7.5	-14	~- .	-:	11
	•								T 8						
	13	7	63	7/2	4	m	c	4	3	б		11	12	13	14

B roth culture uppearance
 R Rough colonies in per cont
 S shoots colonies
 M rierocolonies
 M riero

Dissociation by aging in Plain Beef Extract Eroth, pd 7.8. Table 2.

• •		0)	101	50, 50,	JOS JOK	C. car	100 / 100		- 100	. O.	00	-
Esch.		1.	[, - , /		T - 1	T - 1	1 - 1	1 - 1	T	T	T - 1	ا ا
		,						(3.3)			7	A TOTAL
Threa.	S 2	-	100.			-					-	•
• • •		ا ان	- O	0	. 0	- O	- O	, O , -) h =	- n	0
S err. nd i ea	n 5		5) 63	6,7 6.3	- 1135	- 11	- 11 o	- 1138	- 13)	- 1200	- 11.0	100
36	8	, , ,	33	3	4.5			N.	A			; ;
Shir.	50	5		•		•	- 10°		• •	- 00		ر. ا
Speared .	- -	<u> </u>	T. 1	111	-		- 1	7	11 1		- 1	1, 1,
	110.X	62	Þ	k		14	7	:3 :3	23	77	0.4	(3)

 Eroth oulture appearance
 Rough colonies in per cent
 Smooth colonies in per cent

lorocolonica Loro checua clouding Pellicle

leur.

Flocenlent precipitate

Table 2. Dissociation by Aging in Plain Beef Estruct Broth, pl 7.8. (Continued)

Aero. Control '			11.100	0.1.0	H 100		. αw π - 100 - 0		J. Wo. 1.		
oran	14 - B - C	F	- 1001	100	100	- 1007	0 (A) 1 0	- 1001°	a.C.001.	1001	
Section 1	u Acu	-	17	4	4	10	14	13	253	27	

E = Eroth culture appearance

R = Routh colonies in per cent

S = Encoth colonies in per cent

E = Elerocolonies

R = Elerocolonies

A = Lese

Spontaneous Dissociation by Rapid Transfer in Yeal Infusion Eroth, pH 7.2. Table 3.

Day No. 125 Trained and the state of the process. Trained and the state of the process. Trained and the pro	3718		Serr.	eo at	٠ • •	Heeh	•1
200 200 200 200 200 200 200 200 200 200	pervio		11.0103	107ro	י ביוני ביוני	COTI	
99 99 6, 150 6, 150		7.7	.) C 3: (:			ž G	J.
0.00 0.00	. 1001		13.1	130			
99	1001 1		(i, 150)	ି ଓ 🎖	(°]	10	ें
(4.1) (4.1)	H 1 191		A 150	30 39		63 4 4	•
90 91 91 92 93 93 93 94 95 95 95 96 97 97 97 97 97 97 97 97 97 97	1.11.		6. 80, 20	()()	- 0	I I	0.3
(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	1.11.0		6, 1300	0.00	0	I	3
5.5 5.0 5.0 5.0 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	1 120		- 03 GO W	. 66	•	[- 3	3
5) 6, 80 80 8 5) 6, 100 5) 6, 100 6, 100 50 6, 100	1 113.0		Gr. 80 -	150		7	-
8 150 150 150 11 150 150 150 11 150 2 160 11 150 2 160 12 150 150 150 13 150 160 160 14 100 160 160	1 (13.)*		G. 80' 20's		100	1: 1	j.
H 19) G 109 H H 160 H 15) G H H 100 Z 105 H 160 G H H 100 Pew P 150 H 180 G 150 H 100 Pew P 150	n 1100	-	6, 1	• • • • • • • • • • • • • • • • • • •	100	2 - 1	00
11 13) 6, 100 31 100 6, 150 1 100 Pew P 130 31 100 6, 100 1	H 11:05	-	6.100		•	1 - 1	3
# 100 # 100 Pag P 150 # 100 6 100	1 1 1 D	-		1 1	- a(:(- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	.00
A=1.00 $G=10.0$ $A=10.0$ For $P=1.00$	1001 ji		5	11 - 11	- (C	I - 1	50.
1 100 H 100 H 100 H	4 130L		6. 100)	ap. Ge	: <i>:</i>	€
	1001		(i) - 10.))[]{]/	- ((93

B = Eroth enliure agnesimae
 E = Rongh colonies in per cent
 S = Smooth colonies in per cent
 E = Elerocolonies
 A = Grandlas
 C = Grandlar precipitate
 E = Politaie
 E = Politaie

Spontaneous Dissociation by Rapid Transfer in Veal Infusion Broth, pH 7.2 Table 3. Spi (Continued).

	111					8		4							STREET, SQUARE
07	63														ľ
Control	_	-	_	-	_			_	L		-			_	ļ.
COL	22	1													
0	-		-	-	-	-	-	-	-	-	-	-	-	-	ŀ
	Ŋ	0	0	0	0	0	0	0	0	0	0	0	0	0	ŀ
	-	-	-	-	-	2 61	. 10	- 10	1 60	- 10	- 22	-	-	-	ŀ
0	75				Pew	Bew	Few	E ew	110	Pew	0	9			
186	-	-		202	0							•	1	1	ŀ
60	62			26.3		,	•							*	l
Shig.	R	00	00	0	06	00	00	3	00	00	00	00	00	00	
63		7	T		-	CT.	1	L	I.	1	1	L	1	T a	ŀ
ಇ	m	treed cold	11	22		-	owed Cold	-	H	H	nd.	33	110	-	MANUAL PROPERTY.
	-	-	-	-		-	-	-	-	-			-	-	ŀ
		1	1					4	1				4		l
600	-	0		-	-	-	-	-	-	-		-	-	-	ŀ
enes	203						1					8			
roger	-	0	0	0	0	00	0	0	0	0	0	0	0	0	ŀ
Aer	25	10	10	100	1001	10	10	10	ा	10	10	10	10	10	į
8	8	-	F	100	25.0	30	200	100	350	12	100	1	100	38	ľ
											-	-			ľ
10	100							EEE	ny	NY.	D.Y	me			
								香田	Male	100	SAIR.	1			
ed		ं	0	0	20	30	50	909	50	00	30	0	00	0	l
115	67				-					H	T	Ĕ	T	Ĭ	ŀ
80	05	06	06	06	80	0%	09	50	50						-
pal	-			-	-	-		_	-			-	-	-	
52	23	1	113	113	:4	122	H	172	H	111	17	tri	H	111	ŀ
	-		-	-	-	-	-	-		-	-	-	-	-	
	Day	_	5/3	10	-	-		1	-	-	0		03	100	

B = Broth culture appearance
R = Routh colonies in per cent
S = Smooth colonies in per cent
M = Microcolonies
H = Homogeneous clouding
G_k = Granular precipitate
P = Pellicle
F = Flocculent
C = Clear

Spontaneous Dissociation by Aging in Veal Infusion Broth, pH 7.2. Table 4.

		-	-	r	r.	1.	-	-	-	r.	-	1	Ì
	22			1		1	1			1			ļ
بان	62	1001	106	504	50	00	50	00	00	-00	0	100	Ì
Esch,	_	1	_	L	L	L	L	L	F	Ħ	F	F	į
54 O	R		10	50	50	50	50	50	1			,	H
	-	-	-	-	-	-	-	-	-	-	-	-	ŀ
1 3	m	Sq	24	24	24	24	24	2	24	24	04	21	ŀ
	-	-	-	-	ew.	ew	MI	ew !	W	M	-	-	ŀ
-	355	1	,		0	9	Pew	e di	Few	Pem	1		
:12	57	Γ.	٦.	Γ.	٦.	٦.	1.			1	1	1	Ì
Chron			Ī.	r.	Ľ				L.		Ľ	L.	l
Chrom.	Ci	00	00	00	00	00	00	00	00	00	00	00	
Vi	-	17		F	1	1	1	11	1	1,	L	I.	1
	B	134	GEL	34	91	1	(Styl	E.	Sep	E T	Cal	134	ŀ
	-	-	-	-	-	-	-	-	-	-			ŀ
1 1	M	1	1	1		1		1				1	
-103	S			50	00	00	.00	.00	1001	.00	00	00	ŀ
Ica	68				17	1	1	1,	170	11	1	7	ļ
Se	H	00	00	50		,							
44		1	1	-	-								ŀ
	B	2	(Sty	3	P.	G.	64	O	0	O	0	0	
	•	-	-	-	-	-	-		-		-	-	ŀ
136	H	1			•	,		•			•		
9	S	00			10								ľ
18. enter		I.		1									
Sh	H		00	00	00	00	00	00	00	00	00	00	
128	-	-	1		1	-	7	1	1.1	-	1.	I.	
DBI	B	H	H	H	H	Ħ	Ħ	H	H	H	Ħ	H	
	-	-		-	-	-	-	-	-	-			
	Day	-	CZ	4	4	10	14	18	200	27	10	40	1

Broth culture appearance Rough colonies in per cent Smooth colonies in per cent Microcolonies 日本の別世中市り

Homogeneous clouding Pellicle

Flocculent

Table 4. Spontaneous Dissociation by Aging in Yeal Infusion Eroth, p.17.8 (Continued).

	- 1	- [-	-	-	-		-	-	-	.	-	-
	e 3		•	•	٠	•		•		•		•	•
Control	, , ,	-	•	١.	•	•	•	•	•	١.	•		
on t	\vdash	-	-	-	-		•		•	-	-	_	Ļ
છ		•	•	•	•	٠	•	•	•	•	•	8	*
	12	-,	-)	-,	2	")	٢,	ر.	-,	:)	·)	ر-	۲,
	 	-	-		-	-	-	_	-	-	-	-	-
6 0	. i	.'	•	•	•		-	•		•	•		
reg	က		•	•	ن			97	$0\\0\\$			•	•
eerogen	- }	Ξ.	Ö	0.	-						Ş	Ç) Q
a a a	_ }	7	<u>-</u>	Ţ	::3 -		_	•		1.	7		77.
	12		~~;	C4	74	74	೧4	C	đ.,	∵4	p4	24	24
						L.A.		614	220	-	-		
~						5	.j			Ì			
el.	;;;\		7	,	()	င်း	Ü	O	ိ		•	•	•
	-	5	0	-		-	-	-	-	-	-	-	•
nd		7	ري ا		•	•	'		_'	•	.*	•	•
	 	디	~;	77	****	'E			77	===	- 73	12	• •••
	-	٠	-		-		-	-	-	-	-	-	- (
	7.67	4	27	Þ	4	7	F	7	_1 G3	િ	:	4	ຜ

E = Broth culture appearance
R = Rough colonies in per cent
S = Smooth colonies in per cent
H = Hicrosolonies
R = Honogeneous clouding
P = Pellicle 直具の計画をあり

Clear

- 3. Enforced dissociation in 0.5 per cent lithium chloride broth. To veal infusion broth, prepared in the usual manner, was added LiCl q.s. to make a concentration of 0.5 per cent. The medium was sterilized in 10 cc. amounts and seeded with the test organisms.
- a. Rapid transfer. Data in Table 5 show that M type colonies were produced when S types were in excess in <u>Serr. indica</u>, and when R types prodominated in <u>Chrom. violaceum</u> and <u>Shig. dysenteriae</u>.
- b. Aging. Data in Table 6 show that 3 types and 3 types were equal in amount when M colonies arose in Serr. indica. and that 3 types predominated when M types appeared in Nach. coli and Cal. pullorum.
- 4. Inforced dissociation in 1.9 per cent lithium chloride broth. The medium was prepared as in part 5, except that the concentration of Mil was made 1.0 per cent.
- a. Rapid transfer. Data in Table 7 show that M types were obtained when S colonies predominated in Serr. indica and Sal. pullorum.
- b. aging. Data in Table 8 show that R and S types were equal in <u>Serr. indica</u>, and that S types predominated in <u>Sal. pullorum</u> when M colonies appeared.
- 5. Enforced dissociation in 2.0 per cent lithium chloride broth. The concentration of LiCl was made 2.0 per cent in veal infusion broth.
- colonies were produced in <u>Serr. indica</u> and <u>Bach. coli.</u>

Dissociation by Rapid Transfer in 0.5 per cent LiCl Broth. Chrom Esch. Shig. Table 5.

Rough colonies in per cent Broth culture appearance n の出耳四叉はほ

Smooth colonies in per cent 11

Homogeneous clouding Wicrocolonies II n

Flocculent 11

Table 5. Dissociation by Rapid Transfer in 0.5 per cent Liul Broth (Continued).

	pa	SI	Sal.				1	8	Aero.	Aero.	52			V S	Shi	129	* 100					Cor	Control	07	
200	m	CH.		100	1		m		01	10		M		-	B . R . S .	-	50	THE PERSON NAMED IN	-	10		L	100	H	ä
joint of	194	5	0.	50			24	-	00				-	Sty.	100		Γ.	1	-	0	-	Γ.		-	
-	Styre.	2	10	60		-	Stq	-	000	2	-		3		100	-	Γ.		-	0	F.	Γ.	ľ	F	1
-		C.	.0	్త		-	Sa		000		-			-	100	-	Γ.		-	0	F.	Γ.	ľ	1	1
		A.	40.	09		-	Sta	-	00		-		-	10	06	167	GW	0	-40	0	F.	Γ.		-	
2014	es.	23	.0	70		-	Clty	1	200		-		1		100	-	٦.		-	0	F.	١.		-	
		63	.0	04		-	Tr.	T.	000	1	-			-	100	.0			-	0	F.	۲.		-	
	-		-	00	*		Sq	1	00		-			-	100		Γ,		-	0	ľ.	١.		-	
			-	00	*	-	file		20	8			-	-	100		۲.	*	-	0	r.	Γ.		ŀ	
e de				00		-	Sa			100	8		1	-	100	L	١.		-	0	Ľ	Γ.		-	
			-	00	*	-	Sta	0		100	2			-	100		Γ.		-	0	r.	Γ.		F	۱
 -		1	-	00	*	-	Sq			100	-		i dig	-	100	L	٦.		-	0	r.	Γ.	1	ŀ	ŀ
100		,	-	00		-	Sq.		-	100	0		-		100		Γ.		-	0	r.	Γ.		F	ŀ
 -	-			00	1	•	19	-		100	-		1		100		٦.		-	Ь	Γ.	۲.		ŀ	
		1	F	00		-	3	L	-	5		-		-		-	ľ	I	ŀ	ŀ	L	Ì		ŀ	ì

B = Broth culture appearance
R = Routh colonies in per cent
S = Smooth colonies in per cent
M = Microcolonies
H = Honoreneous clouding
P = Pellicle
F = Flocenlent precipitate
C = Clear

Table 6. Dissociation by Aging in 0.5 per cent Liul Broth.

	-	0	0	0	0	O'F'ew	O'Few	O'Rew	0	- 0			100
Esch.	67	50, 50		9.0	OI.	01.	OI.	10	10	OI.	OI.	10	
800	24	1 5	2	0	-	-							
	B	Fig.	13	Diq.	Sea.	Sq	Gr.	GI.	100	54	Sca	0	
	M								Bew				
om.	E23	50	-										
Chre	E E	50	-			1001	100	1001	.06	100	100.	1001	1000
1	B	By	0	0	O	0	U	0	0	0	0	3	
•	a 177				Bear	AHB.	any						
T.T.	60				50	50	50	50	50.	501	50	50	2000
Serr	00	1001	1001	.100	50	50	.09	50	. 20	. 50	50	50	100
	m	H	H	H	H	Ħ	11	Н	Ħ	H	trest (134	1	6.5
800	· H												
102	62				500	.00	.00	.00	.00	.00	.00	.00	1
Shig.	01	1001	1001	1001	.09		-	-				-	
, para	8	H	H	H	H	H	H	175	H	H	H .	442	
	Day	1	o1	4	4	10	14	18	23	27	32	07	

Broth culture appearance

Rough colonies in per cent

Smooth colonies in per cent

Homogeneous clouding

Jear.

Table 6. Dissociation by Aging in 0.5 per cent Liul Broth. (Continued).

B = Eroth culture appearance
R = Rough colonies in per cent
S = Shooth colonies in per cent
C = Terocolonies
I = homogeneous clouding
P = Pellicle
S = Lloceulent precipitate
C = Clear

Table 7. Dissociation by Rapid Trunsfer in 1.0 per cent LiGl Broth.

-	000	S	194 \$ Day	ig.	44	. 98		44	Serr.	r. Ro	0			. 1	Chrom.	hro	ou.	. 5			6	Sech.	4	
	B		A Price	co	-	-01	23	-	R	00	-	M	m		H	(1)	-	M		n	1 18	-	53	25
	0	-	100		-		trail of	- 3	00				0			ľ				Sa.	100	0		
	H	-	100			-	red to a	-	90	1			0	-			-	1	-	Sia,	110	.0		
	F		100		-		H	-	90	10	0		0	-				*		Se ₄	110	.0		
	H	-	80	20		-	Cu	-	80	10	-	10	0	-	2				-	Sig.	110	-0		
	H	-	60	40	-	-	1	-	50				0	-			-	•		Sep	110	.0		
	F	-	50	50	-		H	-	50	50	-		0		1	ľ		•	-	6	170	100		
	F	-		100	-	١,	H	-	50	50	-		0					•		Sta	T.	0		
	H	-		COL			22	-	50	56	3. 19	ew.	0	-					-	Shi	9		50	
	F	-		100	-	-	H	-	10	96	36	100	2	-						34		-	00	
	F	1		100	-	1.	H	-	10	36	30	610	0	-				BI	3.	Seq			00	
	H	-		100			H	-		100	E .	MO	0	-				17.0	8 MG	Sta			00	1
	H	-		100	-		1	-		100	30	MO	9	-		L		•		City			00	
	E	-		100	-		H	-		100	30		0	-				•		Site		-	00	
	1	1		100	-	-	13	-		1	-	-	-	-	-	-	-			178			COC	1

= Eroth culture appearance = Rough colonies in per cent

Smooth colonies in per cent 日日日日日日日

[|] ierocolonies

Homogeneous clouding Pellicle

Flocculent precipitate

Table 7. Dissociation by Hapid Transfer in 1.0 per cent Lill Broth (Continued).

sl.	• •	serogenes	- 1		Shig.	180		Control	1
0/2		. H .	N	23	* R * S	186	13	N . S	No.
		.1001		411	001.	-	0		-
100		1001		H	1		0		
1001	O.	.1001.		O	001		5		-
50	d	.1001		04	100 Few	Wew!	5		-
1001	2	1001		م	00		5	-	-
1001	Cu .	.100.		p.	1001	-	5		-
1001	d	.1001		d	100.		5		1
100	Your P	80, 80	- 10	0,	1001	-	5	*	-
100	Pen P	100		24	.1001	-	5	-	-
00	Pew P	. 100	- 10	24	100.	-	5		-
	500	100		a	1001	-	5	-	-
	3 .00T	100	-	2	1001	-	0		-
.007	ew' 2	100	-	24	100.	-	5		-
1001	0	11/1/1	1	9	12001	-	-	-	-

Broth culture appearance Rough colonies in per cent Smooth colonies in per cent 四年の二日であり

Monogeneous clouding

Floceulent precipitate Pellicle

Dissociation by Aging in 1.0 per cent Liul Broth. Table 8.

-	larg still				1,000		-			-			-
Esch.	-	-	-	_	fier a		-		-		_	Γ.	L
	00	00		ुु	00	00	00	8	0	00	0	8	S
	-	0	-0	0	F	F	F	-	-	-	-	F	
E S	Part part	Š	100	50					1	1			
	e co						-		•		8		0
hrom.	10												
		-	-	-	-	-		-	-	-			-
	60										1		1
	•	-			-	-	٠	-		-		•	-
010	EST.	*				*			*	•			1
	(3)	0	.,		-			-				Ξ,	
	-				-								
	107			Few	any	any	12.77	uny	MA			2	
Serr.					200	1/1/2	366	118.6	366				-
	673		10	50	03	50	50	ु	50	09	50	50	-
		0	-0	0	500	0	50	503	0	.0	009	.0	
	200	10	6	50	2	50	r)	5	2	5	0	5	C
	20	1		-			2		104	1		1	
nterise	20						1						
	-	-	-	-	0	0	0	0	-0	.0	0	0	-
	53	*			5	10	53	5	53	B	0	3	ľ
118	-	000	30	00	30	200	500	50	00	50	200	00	200
Sh	-	L	L	L				_					-
BE	sn	0	H	H	H	H	H	122	11	Total	11	225	13
	-		-	-	-	-	-	-	-	-	-	-	-
	837	1	03	4	-	0	4	3	20	27	22	40	1

= Broth culture appearance = Routh colonies in per cent = Shooth colonies in per cent = Literocolonies = Honogeneous clouding 四年の日日りを

Clear Flocoulent precipitate

Table 8. Dissociation by Aging in 1.0 per cent Liul Broth (Continued).

B = Broth culture appearance
R = Rough colonies in per cent
S = Smooth colonies in per cent
M = Microcolonies
H = Homogeneous clouding
F = Flocculent precipitate
C = Clear

Dissociation by Rapid Transfer in 2.0 per cent LiCl Broth. Table 9.

senterio	130		974 02	indice.			122	Þ	Chr	Chrom.	-10	2			10 p	Esch GO 11	.1 6	
	F 1	0	-		L		0	-	I.		H		1	L	50	-	200	
		H	6	0. 10	-		9	-	Γ.		ŀ		-	L	100	-	09	1
	1	Trans.	9	0, 40,			0	L	Γ.		H		-	L	50	L	100	
			. 60	-			0	L		1	-		-	L.	98	L	08	
	-	222	9 .	3, 40		en	0	-			-			L.	50	L	50	
	-	II.	- 2	0. 50	1 0	- MO	9		Γ.		-			[5	L	50	
	*	tod to	9 .	3, 50	Bill (MIN.	0				-				100	L		Few
		12	Pel	Wew Pen	. His	THE STATE	0	L			-			L	50	L	50	10
	-	77	Per.	ned,	366	ny	0				-			L	I	L	06	10
	•	17	.Fer	He He	1,000	HIN'S	0				-					L	000	Per
		H	100	HOE LOR	Bild F	INT	0				-		-	Sec.		-	000	200
		H	Fer	T'Few	Side	'VAL	0	L	1.		-					-	00	
		Tip.		100			0				-					F	000	
	*	I	-	1900		1		L	-	-	ŀ	-		ľ		2		Department

Broth culture appearance Rough colonies in per cent **当年の祖廷からが**

Smooth colonies in per cent

Microcolonies

Homoreneous clouding Pellicle Clear

Flocoulent precipitate

Table 9. Dissociation by Rapid Transfer in 2.0 per cent Liul Broth (Continued).

		210	38	1.	5		in.	15.	et)	SEC.	Rero.	900		• •	-0	dysen	Shiente	161.	92			14	00	Control	0,	
Day	-	1	E		52		-	E	-	R 8		50	M	-	E	-	-	00		200	=	-	ದಿದ	02		27
1	-	0	10	10		r.	-	24	-	100		Γ.		2	20	110	0		-		0	-	1			2
1	-	13	L	-		ľ.	Γ.	Sq		100		١.			Sag.			1			0					
-	-	-	L	-	1	L		12	-	100	-	Γ.		-	0	P.F.C	0.00	2	-		0					
1	-	10	L	-		L	Γ.	The	-	100				-	0	10	0				0	-			-	
1	1	0	Ľ	-		L	1	3	-	100	-			-	0	100	0			١.	0					1
1	-	6	L	-		L	1.	2	-	100		Γ.	1	-	0	100	0		-		0		1		1	2
1	1	0	L	-	1		1	Se	1	100	-			-	0	OI.	0				3	-			1.	8
1	-	0	L	-		-	1	124	-	្ល	L	50		-	0	110	0				0	-	ŧ		1.	1
1	-	0	L	-				124	-	10	L	006		-	0	10	00	1			0	-				
	-	0	L	-			1	(H	-		1	00		-	0	oT.	.00				0	-				
1	1	0	L	-		-	ľ.	2	-		1	00		-	0	110	100				0	-			•	1
1	-	0	L	-		-	1.	Ta.	-		-	00	1	-	0	110	-00		-		0	-			1.	2
1	-	1	L	-		-		120	-		-	00		-	0	110	00	1			3	-				
1	1		-	ŀ	-	-	-	-	1		1	0	-	-		100		-			-	-			-	ŀ

<sup>B = Broth culture appearance
R = Rough colonies in per cent
S = Smooth colonies in per cent
E = Microcolonies
H = Homogeneous clouding
P = Pellicle
C = Clear
E = Floceulent precipitate</sup>

Smooth colonies in per cent

- b. Aging. Data in Table 10 show L types appeared when it types predominated in Serr. indica.
- 6. Dissociation in K medium (Difco). A 2.0 per cent suspension of powdered K medium (Difco) was made in distilled water, sterilized, checked for sterility, and seeded with the test organisms.
- a. Rayid transfer. Data in Table 11 show that M types appeared when R types predominated in <u>Shrom</u>.

 violacewa, and when S types predominated in <u>Sale rallorum</u>.
 - b. Aging. Io H types were produced.
- 7. Tissociation in brilliant green broth. Frilliant green broth was prepared by adding peptone. 13 grams and meat extract. 50 grams to 1 liter of distilled water. This suspension was heated until dissolved, adjusted to pl 7.0, autoclaved for one-half hour, filtered, and to it was added 7 cc. of a 1.) per cent solution of brilliant green. The medium was tubed and sterilized.
- a. Hapid transfer. Data in Table 12 show that H types were obtained when 8 types were precominant in Sel. pullorum.
- b. Aging. Late in Table 13 show that he types were obtained when S colonies were precomment in <u>Sch. coli</u> and Sal. pullorus.

Didougeion:

Seven different species of bacteria were transferred dally into seven different media and the appearance.

persistence, and disappearance of C colories noted.

Table 10. Dissociation by Aging in 2.0 per cent Lici Lroth

Serr 100 100 100 100 100 100 100 1

⁼ Broth oulture appearance = Rough colonies in per cent 日日の日日日の日

Smooth colonies in per cent

[:] ierocolonies

Homogeneous clouding Pellicle

Clear

Table 10. Dissociation by Azing in 2.0 per cent Liul iroth (Continued).

		381.	Ē		Acro.	۳ داد		Control	[0]
Lay	1				_	2	<u> </u>		-
	- ',	00	•	:4	9.	•	- ()		•
ઢ	•	•	•	. 7	1:0	•	- -,		•
ų.	• ?	- 1	· (C		- 01	•	• ;	-	•
4	٠ ٦).	, I	1001	•	ر.		•
C))	• 1	• 0	7.4	100	•	• •		•
7	• •	- 1	. O.		100	•	,	•	•
(S)	- -)	- 1	- 0%	, (cct	•	:)	-	•
33	- -)	• 11		F	100.	•	ر. د	•	•
27	٠ ٦	- 1).).	1.7	1001	•	- 7	•	
25	٠ ,	• 1.)()		100.	•	ر:	•	•
(·Þ))	- 1	· 0:	7	100	•	٠ ر-	-	•
5.0			1:1	2.	000	ŀ	•	Ľ	•

Eroth culture appointing
 Fough coloules in per cent
 Smooth coloules in per cent
 A flarocolonios
 A foucomeous clouding
 Clear
 Clear
 Thecoulent precipitate

Dissociation by Rapid Trunsfer in C.O per cent Electra (Fifeo). Table 11.

릐		धर्म	Serr.			ទី	Chron.	• • •			Each.	
υl	en terita	ŀ	11,0103			TOTAL A	m:00:31	-		ချ		
	•				:2		::3		-	- 	· ;	1
	•	1	- (•	1.7	10.3	•	•	1 77	5.	603	
	•	.		•	<u>;</u> ;	1.00	•	•	• •	(7	်	,
		11] [10)	•	-	7.7	्र	ر د	•
	•	3	1	•	1	$_{1}()I_{1}$,	•	.17	្ល	CS S	•
_	•		1,0	-		COL	•	•	Ι,	G	်င္	•
	•	3	S .	•		1	•	ļ,	=:	S	Ca	•
-	•	A	. 3 10.		1	100	•	•	-	•	100	•
-	•		50, 50,		11	C_{1}	•	•		ļ,		•
<u>(1</u>	•	3	50 50	• (. 1	(G:7)		7.11	.	3	103	•
•	•	17		•	E	Max	[A.]	.1.	• • •	,	7	•
	•		10:	-	ĸ	i.ed	6.1	3333	- ;	•	1 10	•
		17	10.) <u> </u>	: :	100	•	1	1 1	1	1.00 1.00	٠
			. 100	•	y-a-4 , 1-2	1001	•	-	1	•	100	•
	•	-)(1,).	::	1001	•	•		•		•

E = proth oulture appearance
R = South colonies in per cent
S = Sacoth colonies in per cent
E = lerocolonies
H = Homo enecus clouding

Eulphole sneeds ower -

Table 11. Dissociation by Eapid Transfer in 5.0 per cent K Kedium (Difoc) (Jonsinued).

## ## ## ## ## ## ## ## ## ## ## ## ##		, <u>.</u> .	531.		्या <u>।</u>	oro.	• •	7	म् ।			၁	Control	r4
H	Þ	-	計		100		ł		170	-	-	-	S	1
2 10.9 1 90 10 1 10.0 1 10.	1		PO To		-		t.	-	100	-	7	-	•	
H 90 10 H 100 H 80 20 H 100 H 100 H 100 H 100 H 100 H 200 H 100		- 	1 / 1	•				75	5		,		•	•
1		- 1	1) 9,	•	5	1			100	-	כי		•	•
		-	13 50	ļ,		r	,	1.	1		•	-	•	,
1 1.0 1 1.00 1 1.50 1 200 1 80 20 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00		-	C9 C3	ļ,	3		ļ,	:==	1.50	-		-	•	•
1 100 1 100 1 100 1 200 1 100 1		<u> </u>	23 83	ļ.	-	_		::	130	,	"		•	•
1 100 1 200 1 200 1 200 1 200 1 100 1 100 1 100 1 100 1 100	1		0,1	•			•	7	P Q				•	,
1 00 20 1 10 10 10 10 10 10 10 10 10 10 10 10			COL	•	(T ::		•	-	COL	-	,	_	•	•
any 60 Yew 		7	100		्र		,	- 1	1.1.1	-	-			•
i ew ii ii		-		any	ii B	L	Ì,	7.1	10,	-	,	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- ;	(()	/\\ 0 .	- 1	1001	•		100) -	-	•	•
100 x			. 100	•	11	()(]	•	11.	100	-	د.	-	•	•
The state of the s		٠ : :	100	-	- 1 F	1001	•	1.	1.0	-	•	_	•	•
	۱.,	-	100	•		O(T	•	1;	100	-	,	-	•	,

<sup>B = Eroth culture appearance
R = Rough colonies in per cent
S = Smooth colonies in per cent
M = Elarocolonies
H = Homogeneous clouding
P = Pellicle
C = Clear</sup>

Dissociation by Rupid Transfer in 0.007 per cont Erilliant Green Proth Table 12.

1	- • •		-	-	_	-	-	-	L	_	L	_	_	_	_	L
		-:		•	•				٠	ŀ			•	•		
	انہ			8		ļ.	ļ.	ļ,	1.	T.	ļ.	T.	ļ.	T.	t.	١.
	reon.		-	-	t.	t.	ŀ.	ŀ.	t.	ŀ.	١.	! .	! .	- .	ŀ.	-
•	•	F	-	-	-	-	-	F	F	-	-	-	-	-	-	-
			-	[]	,	-	[-	P	[2	'	,	,		ပ
		ة الم	•	•	•	ŀ	ŀ	Ŀ	ŀ	ŀ	•	•	•	'	•	•
	Chrom.	.: -:	10	•		,	,	۲.	Γ.		•	•		•	•	•
	5			•	•	•		t.	•	•	•	•	•	•	•	•
			<u>-</u>	-	٠ د	-	- ,	- ,	-,	-	-	-	• •	•	- (-
-			-	-	-	_	-	-	-	_	-		-	•	-	-
	. •			•))	•	•	•	•	•	•	-	-	-	•
	Serr.	ខ្លួ	·	•	(.]	ા ,	•	•	•	•	•	8	•	•	9	•
	m	17:01 C2))	100	ς. Σ•	C)	$\mathbf{C} \cap \mathbf{I}$	100	100	100			7			
		- 37	-	:	- 1	7.7	11.	1.	11	• •	-	-	-	-	-	- 11
ł			-	-	-	-	•	•	-		-	-	-	-	-	-
	1	, 1. 1. 16		-	•	•	-				-	-	-	-	-	-
	-	3 5	01.	.'	•			•		•	•	.'	_'	.'	_'	_'
	ော်	2 7 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		•	•	•	•	•		•	٠	•	•	•	•	•
	Shis	ŭ	73	2	2	-2	->	ر- د-	၁	73	7)	->	->	-,	7)	->
t						-			-	-	-		-	-	-	-
1		Day		23	3	4	IJ	9	-	Φ	<u>ب</u>	2		22	7	듸

単数単数11</l

Eroth oulsure appearance Rough colonies in per cent Smooth colonies in per cent Licrocolonies

Jour

Flocculent precipitate

Dissociation by Rupid Transfer in 0.007 per cont brilliant Green Proth Table 12.

	- ·	1	100		-					1.	1.					
-	Sop.			7,			- 2	3	- 3	2					- 7	
	chron.	11000101	100	-		-	-	-	-							
	H		×	2	13 C	101	,	3	7	? _ • • •) 	0) - • •	· • • •	7	2
	Serr	-	100	10:11 77	1 (C) 1 TT	(B - F	100I H	1001	id 11001	-3 - 100	1 1 1	1 1 1 1	4 11.53		1001	001
	Shig.	3	100										-			
	* ************************************	Day .	2 - 1	- つ - 2	3 6	4 . 3 .	5 - 3	9 C	1 O 1 6		- n - n	10 ·	77	12 ,	, o .	14

毎年の注意ので

Eroth oulsure appearance Rough colonies in par cent

Smooth colonies in per cent alerocolories

Jour

Ploceulent precipitate

Table 12. Dissociation by Rapid Transfer in 0.007 per cent Erilliant Green Eroth (Continued).

Sal. Horum	aerogenes	. Shig.	98	Control	• •
3 - 2		B 3	8 · M	8 . 8	-
.001	H 50' 50'	. 100,	0		
.100.	. H '100' - '		0 .		1
- 1001.	1 100 - 1 ·		-		t.
. 90'Few	1 100 ·		0	-	t.
- 1001	H 100.		0		1
. 100	. H 10, 90,		0 - 1		1
001	. H . 20' 80'		0		t.
O. 80 Few	. 100 H		0	1	1
0. 80'Few	. H 100.		0	1	1
. 100 Few	H . 100.		0		-
001.	H 100		0	-	-
. 100	- 1001 - N		0		1
. 1001.	100.		000		1
1001	1001		Service and Service	outhorisessessification-con-	distriction

Froth culture appearance Rough colonies in per cent

Smooth colonies in per cent

dicrocolonies

Homogeneous clouding

clear

Flocoulent precipitate

Dissociation by Aging in 0.007 per cent Frilliant Green Broth Table 13.

• •	3						100	Ben'	em'				
Esch.	03	100	1001	OOL	1001	1001	1001	1001	100	1001	OOL	1001	11/1/11
m10	R			8		9							-
le d	a)	17	O.	0	0	5	0	5	0	0	3	0	
				-	-	-		-	-			-	-
.10	-				-	L.	ľ		-			ŀ	
rom	573	O.											
VIOL	R												
. ^	2		0	0	0	0	0	0	0	0	0	0	1 17
••	-												-
7. 00 00				.00	50.	00	.00	00		.00	.00	.00	100
Seri	R &	.007	1001	109	500	501	50'	50	20.	50,	109	50.	2 103
		17	Н	0	9	0	0	0	9	0	0	0	(8)
'ise'	=				100	100	1001	100.	100	1001	1001	1001	1001
Shig.	62	COL				1			1				
d y	R												-
pare	ω.	5	0	0	9	0	0	0	0	0	0	0	8 67
	Z	-	*						•			-	-
	Day	1	03	9	6	10	14	18	50	23	63	40	25

Broth culture appearance

Rough colonies in per cent Smooth colonies in per cent 四年の田田の日本

Licrocolonies Homogeneous clouding Pellicle

Clear

Flocenlent precipitate

Table 13. Dissociation by Aging in 0.007 per cent Brilliant Green Broth (Continued).

BD BD	-	p	02	Sal.				Beroga	Aer	nes	<i>g</i>				3	E E	Control		
· ART	P	+	H	65		1	B	527	-	82	H	-	n	-	os		E/2	2004	200
San		-	50	500		-	H	100	.0		Ľ	-	9	-					
Je.	2	-	100				H	100	-6			-	0	-		-			
p-		-		100		1	121	100	-6				0	-					
	T	1		100		-	Ħ	100	00		L	-	0	-					
ger.		-		100	Si.	Me	H	1 5	00	50	L	-	0	-					
-		-		100	P. Ma	177	H		-	00		1	O	-					
g		1		1100	P lifen	100	tot	1.0				-	0	-					
-				100	. Hier	27	H	10	3.			-	0	-	2				
9-	L	-		100			H	100	0.0			1	0	-		-			
	H			100			H	10	.0		L		0	-		-			
	-	-		100	L		net net	10	.0			-	0	-		-			
	L	1		1100		-	H	170	10		L	-	1.1	-					

B = Broth culture appearance
R = Rough colonies in per cent
S = Smcoth colonies in per cent
M = Microcolonie;
d = Homo_encous clouding
C = Clear

It was observed that in most cases h colonies appeared on the plates made from the fourth to sixth transfer tube, persisted through five to seven transfers and then disappeared. They also appeared effor 10 days using and disappeared from the fifth to 50th day of aging.

experiments by Madley on spontaneous and enforced dissociation of <u>Shire dysenterine</u> by rapid transfer and aging, and confirmed by hurox with <u>Male sertrodice</u>, was not observed either with <u>Shire dysenterine</u> or other organisms. Home of the media produced if types in all of the cultures; weal infusion broth itself spontaneously gave rise to more cases of H colonies than any of the special enforcing media. These colonies occurred haphasardly, and no relationship between the presence of R or 3 colonies, the type of media, the variations in the characteristics of the organisms, or the technic and the appearance of H colonies could be discovered.

Tepresentative colonies selected at random and filtered as outlined previously did not pass herkefold. N filters. For this reason the writer did not feel fustified in applying the term C form to any of the microcolonies obtained by rapid transfer or aging.

2. Attempts to obtain pure cultures of 3 types by serial dilution.

Although rapid transfer and aging of pure cultures, as indicated previously, in various media produced micro-colonies which resembled 6 types very closely they were

not filtrable. Several authors, Hadley et al. (25)
1931, Varney and bronfenbrenner (66) 1952, and Linsser
(70) 1932 stated that a true G culture must be filtrable.
The data obtained in the experiments on pure cultures
indicated that these forms were not present or associated
with the organisms studied and could not be demonstrated
by rapid transfer or aging. Consequently a different
method, script dilution, was employed on material known to
contain several different types of organisms in naturally
occurring substances, milk, sewage, etc.

by Erneckner and Sherman (7) 1932 who reported a high incidence of primitive forms of bacteria in many naturally occurring substances, milk, soil, sewage, etc. They were able to obtain these forms in pure culture by serial dilutions, 1×10^{-13} cc. and higher, obtaining growth by special methods as rapid serial plate transfer. They did not conclude that these forms were filtrable, but they did state that they would not grow under ordinary cultural methods. In a study of milk from normal cows they demonstrated that primitive types of bacteria occurred in larger numbers than the ordinary type of organisms. This was shown by obtaining growth of primitive forms from high dilutions of the material studied, 1×10^{-8} cc. and higher, although the usual forms of bacteria could not be isolated

Six samples of sewage and four samples of skim milk were used for the test raterial. Dextrose beef infusion broth was tubed in 9.0 cc. amounts, storilized in the

autoclave at 15 pounds steam pressure for 20 minutes. and checked for sterility by incubating before using. one co. of the sample was placed in tube 1, this tube was carefully shaken, and 1.0 co. of the mixture transferred to tube 2 with a sterile pipette and continued until the 20th transfer had been made giving a series of dilutions from 0.1 cc. to 1 x 1) ± 20 cc. of the original sample. Duplicate dilution series were run on each sample and on a control tube for each batch of media. One set of dilutions was placed at 25°C. the other at 27°C. for 72 hours. All tubes showing growth at the expiration of this period were discarded; the remainder were incubated at 25°C. for three weeks, after which they were streaked on dextrose beef infusion eger. In each series the lowest dilution tube that had not shown growth at the end of the preliminary incubation period was examined by the rapid serial plate transfer method of Hadley (23) 1931. At the time the samples were diluted they were also filtered fractionally through a herkefold P candle. To difference could be shown between the samples incubated at 25°J. for the entire period and those receiving preliminary treatment at 37°C. The material treated with rapid serial plate transfer did not show growth macroscopically or microscopically. Data in Table 14 show that no growth was obtained on subgulture plates at the end of three weeks at 25°J. from tubes which did not show growth after 72 hours at 37°d. This did not disprove the presence of G types in the materials studied, but merely showed that they were not present in the samples in greater numbers

Table 14. Growth Obtained on Suboulture Plates from Serial Pilution Tubes of Sewage and Skim Lilk.

Material	•		D11	ution	- 1	x 10 ^{-x}
	-1	-2	•	•	-5	•
Severe	. +	• •	•	• •		- 1
Seva -e	+	+	; + 	•	+	
Sewage	. +	+	+			•
Sewage	+	+	+			•
Sewage	. +	+	+		+	•
Sewage		+	+	•	•	•
Skim Lilk	+	+	+		+	-
Skim ! ilk	. +	+			-	•
Skim Lilk	• •	+	+	•	-	•
ekin hilk	• •	+	. +	. +	-	•
Jontrol	•	•	! •	•	•	•

^{• =} Growth obtained in dilution tubes after preliminary incubation at 25°C. or 27°C. for 72 hours

^{- =} No growth obtained by rapid serial place transfer or on streak subculture places of the material after final incubation at 25°C. for 2 weeks.

than the usual bacteria. The at empt to Commutate the presence of G types in any concentration in the sample by the methods of fractional filtration (ave negative results as shown in Table 15. The organisms present in the sample did not pass the filter until the fourth to eighth fraction, and were the usual types found in milk or sevage. Either filtrable forms or G forms would have passed in the first or second fraction and according to brucelmer and Chernen (7) 1900 and Fadley et al. (13, 1901 would have had different characteristics from the organisms actually obtained.

Liscussion of Section A. .

1. Attornts were made to enforce the production of G forms from spontaneous and enforced dissociations by rapid transfer and aging of seven different microop anions in various modia. A rough strain of thing dysomiorico was aged for 60 days and carried through 60 daily transfors. We evidences of dissociation were noted in any of the four nedia used. The regularity noted by Ladley with which 6 forms occurred in thir, expenteries was not observed in any of the seven ergenisms studied in any of the redia. To relationships could be established between the haphazardnose of the amearance of nicrocolenies and the type of modia, the characteristics of the organism, or the state of discountion. A perently those results confirmed those oftained by Fadley et al. (23) 1931 and Furex (34) 1901; but when representative microcolonies were transformed to veal infusion broth and filtered, they did not

Growth in Fractional Filtrates of Sewage and Skim Lilk. Table 15.

		T
Listerial	* Filtrate Fraction (10 es. in enount)	•
	1 2 3 4 5 6 7 8 9 10 11 12 12 14	15
\$ @! \@\ .		•
Segare		+
Seware		-
3072.0		-
307838		-
30Wa~e		-
Srin Filk		+
Skto Mik		- +
Skim Pilk	. + . + . + . + . + . + . + . + . + . +	
Sktm 111k		+

+ = Growth obtained in filtrate fraction and in subgultures

- - No growth obtained in filtrate fruction and in subenitures

		•	

pass Forkefeld II filters. Focause these microcoloules were not filtrable, the term I colonies rather than G form was applied.

2. The technic of serial dilution reported by Fruedmer and Therman (7) 1933 was applied to six samples of sevage and four samples of skin milk. No C forms or https://documentated.com/or samples which were also filtered fractionally. The organisms recovered were the usual types present in sevage or in skin milk.

If forms of bacteria rather than G types were domenstrated in organisms undergoing dissociation and in two natural substances, sewage and skim milk. Attempts to Demonstrate the Presence of C Terms in the Dectorioghage Filtrates of <u>Felmonolla pullorum</u> and <u>Starbylococcus aureus</u>

bacteriophage filtrates of various organisms is still a matter of controversy. Varney and) renfeatrement (66) in 1902 were unable to obtain 6 forms from 23 strains of bacteriophage filtrates studied. Hadley et al. (23) in 1901 reported the presence and isolation of a 6 form from <u>Shire</u>, <u>dysenteries</u> bacteriophage filtrate. In the literature may be found other references either affirming or denying the presence of these forms in the bacteriophage filtrates of various organisms. Lowever, it seems unnecessary to eith these references at this time. In view of those conflicting reports it was thought expedient to make further studies on the bacteriophage filtrates

1. Attempts to demonstrate G forms by rapid sorial plate transfer of the bacterioshale filtrate of Sel.

pullerum aged in K medium

The materials used in those studies consisted of sorial filtrates obtained from 50 transfers of a bacterio-phage on <u>Inl. pullows</u>. The filtrate in each case was added in amounts of 0.1 cc. and 1.0 cc. in duplicate, to plain nutrient meat extract broth, pH 7.7, to which <u>Inl. pullows</u> had previously been added. After 24 hours' incubation at 37°C., the tubes showing the greatest lytic

nction were filtered through Soitz filters. This transfer was repeated daily using the freshly obtained becteriophare filtrate. At the time each of the above transfers vere made, 1.0 cc. portions of the filtrate were laced in K modium and plated on liver infusion a ar plates. The K median was prepared from fresh hog intestines according to the method recommended by sendall (38) 1931. A 5.0 per cent suspension was rade in Tyrode solution and tubod in 10 cc. amounts. The tabes were autoclayed at 15 pounds atom pressure for 20 minutes and incubated to check storility. The K medium tube and the liver infusion agor plate were used as controls to check the sterility of the besteriophage filtrate at the time of its proparation. The broth culture containing tal. cultorm and the bacteriophase filtrate was filtered by diluting it with 20 cc. of storilo physiological salt solution and filtering under a negative pressure of 100 to 100 rm. of hg. The time of filtration was loss than three minutes.

It the time the bacteriochege filtrate was planted in K modium, 8 to 10 cc. of the filtrate was also placed in a sterile cotton stoppered test tube. These 60 tules constituted the material for stedying the effect of rapid sorial plate transfer on bacteriophage filtrates aged in K modium.

Inrodiately after proporting, these tubes were incubated at 37°C. for 72 hours, then at room temperature until the completion of the experiment. In the studies rade on these filtrates, the ones aged in K medium will be designated as series a and the others as series b. All tubes

were storile merescopically at the time the rapid serial plate transfer nothed was applied to each take of both series, which represented periods of a ing from 1 to 50 days. The procedure consisted in placing 1.0 cc. of the raterial in each tube of sories a and b on a sterile veal infusion approplate which had been checked for sterility. The filtrate was proved ever the surface of the agar with a storilo L-shaped glass rod. After incubating the seeded plates at 37°C. for 24 hours they were examined at a reguification of 100 diameters for the presence of colonies: the surface of the agar was then was ed with 2.0 cc. of storile veal infusion broth. one co. of this washing was transforred to a storile yeal infusion after plate. This procedure was reported until the colonies appeared. Those were fished and planted in sterile voal infusion broth for further study and identification. where no growth could be discovered the scries was continued for at least 16 transfors.

Pata in Table 16 show that growth could be obtained from only 16 of 60 macroscopically sterile filtrates to which rapid serial plate transfers had been applied. If K medium enhances the growth of 6 forms, colonies should be obtained from filtrates aged in K medium a shorter period of time than from the corresponding filtrates aged alone. This, however, was not the case, indeed no regularity of appearance was noted in either series a or b, thus the occurrence of colonies on the rapid serial plates from filtrates aged alone and in K medium must be

Table 16. Growth Obtained by Rapid Serial Plate Transfer of Sal. pullorum Aged in K Medium.

	Kumber'	Growth obtained by	serial plate transfer
nmber '	of		
	days '	K medium + filtrate	' Filtrate alone
Burney 1	aged '	Beries a	' Series b
1	30	•	-
2 '	29	•	-
3	28	•	-
4	27	•	•
5 '	26	•	-
6 '	25	•	
7 1	24	•	•
8 '	23	•	-
9 '	22	•	
10	21	+	•
11	20		•
12	19 '	*	
13	18		The second second
14	17	+	•
15	16	•	12.00
16	15	*	+
17	14		100 to 10
18	13	*	
19	12	•	was revision or this end ends
20	11	+	•
21	10	•	O A SECURE OF THE SECURE OF
22	9	•	•
23	8		THE RESERVE THE PARTY AND ADDRESS OF THE PARTY
24	7	4	
25	6	•	
26	5	*	
27	4	+	Community of Community Community
28	3	*	
30	2		control and the second second

- + Growth obtained by rapid serial plate transfer
- - No growth obtained by rapid serial plate transfer

nttributed to other factors than aging. It is mereover not dependent on the medium used. Data in Table 17 slow that there were three rain types of colonies recovered:

Typo 1 was a translucent, colorloss colony measuring about one nm. in diameter, consisting of about rods which one Gram negative. These were probably filtrable forms of mal_nellogum and pessed the filter in either the normal form or in one which quickly reverted to the normal, because they were recovered on the first transfer from the tubes of series a, aged 5 and 11 days, and from the tubes of series b, aged 15 and 14 days.

tennsheant, colorless colonies, reasuring from 0.01 mm.
to 0.1 mm. in diameter at the end of the inculation period at 37°C. The organisms were minute from positive cocci.
These were very similar to the G types described by liadley of al. (23) 1931 and harem (34) 1931 but after standing one or two weeks at room temperature the colonies became yellow and opaque, measuring 2 to 4 mm. in diameter, consisting of cocci, in the arrest count of tetrada which were from positive. These organisms resembled those of the tenus invested and were probably introduced from the air during the rapid script plating technic.

Type 5 formed spreading, white, and opecue celenies. The organisms centered control endescores. These organisms were unidentified and were prehably either air contaminants or were present on the star plate before it was seeded with the filtrate, but due to their slow (rowth did not appear until after the plate had been inculated several

Culture Types Obtained by Rugid Serial Plate Pransfer of Lactorhoge Filtrates of Sal. Enllerna aged in K Medium. Cable 17.

dulture Hunber	Growth on Berial plate trans- fer number	Dismoter of coloury in massefter incubates ing	na Brasilia 1. Voolt	Color of colory after 1 week at room	Grum stain and shape of organism	Tyre end remerks
109	ઢ	0.01-0.05	2.0	yellow	+ 00001	2 Seroina
143	27	0.01-0.1	೧೯೪	701103	+ 00031	S Spelle
100	2) • I		vollog	+ cocc1	2 Secoura
17 b		0.1	ી•ઈ	colorless	■ FOas	1 de le pullorem
13.2	ų V	0, UI	2.0	ામાં દેલ	+ 1°Od8	amaior baces c
130			0.5	coloriess	- rods	1 3al. pallorum
13b	2	0.01	3.0	yellov	+ coset	2 Sureina
स् (द		0.01	0.6	coloriess	■ 3ºod B	l seleration
11p	4 P	2.01	0.0	yellog	+ cocc1	ង ខេត្តទៅនេង
Eda	3	0.1	3.0	rellow	+ conei	2 Samoina
Lob V	2	3.1	: S.S	rellow	+ cocc1	ergoan g
540	4 4	1.60	0.0	yellog	+ cocc +	grypars g
2010	3	0.1	4.7	white	+ 1'OùB	ascant sacra e
£ 3a	· I	10.1	ા. દ	colorioss	- rods	1 Sal. pullorum
27a	3	, 10°C	5.0	white	+ rode	3 epore tores
23.53	6		0.4	11/15/10	60000	State of the Carte of

Culture marber - Iumeral refers to filtrate number, letter to series of Table 16.

days longer than the period used for checking sterility.

With the exception of the four cultures in type 1. the enganisms recovered did not revert to fel. pullers. The agod filtrates themselves were lytic for belamillorum, wille filtrates of the organism recovered by rapid perial plate transfer were not. All of the colonies of type 2 and 3 obtained closely resembled 6 colonies upon their first an coronce and during subsecrent rapid serial plate transfer. but upon standing at room temperature for one to two weeks their appearance was reatly changed and ordinary types of colonies arese from the rierocolonies. Thon these T colony forms of ordinary bacteria arose it vas difficult to differentiate them from the G colonies described by feeley (28) in 1981. The repid script plate transfer technic was auspected of having been the source of the colonies obtained from the filtrates. For this reason a clock experiment was planned which oliminated this factor.

2. Attompts to demonstrate G forms by subculture plate technic in K medium bacteriophage filtrates of tal.

In part 1 the presence of colonies rescalling G
forms, as demonstrated by rapid serial plate transfer
in the besteriophage filtrates of tal. millower seed in
K medium, was studied. Part 2 demonstrates the absence
of G forms in the K radium lecteriophage filtrate of tal.
mullower when the influence of the rapid serial plate

transfer method was eliminated. The propagation of the filtrates was similar to that outlined proviously. To duplicate series of K medium and plain nutrient boef extract broth, pli 7.7, tubos, proviously seeded with inl. millomm, was ad od bacteriophago filtrate in amounts of 0.1 and 1.0 cc. Also 1.0 cc. of the filtrate of each of the 4 series was added to starile plain nutrient boof extract broth, pH 7.7, sterile K medium (Difco), a storile cotton stoppered test tube, a glass sealed empule, and a veal infusion afor plate checked for sterility by incubation. These cultures served as a control of the sterility of the incteriorists filtrate at the time of filtration. The first three mentioned also furnished the raterial for the experiment. After 24 hours' incubation at 37°C. the K medium and plain broth tules containing the bacterioshage filtrate and fal. millorum vore filtered through Forkefeld N candles and Seitz filters proviously checked for their ability to retain forr. rerececens. A total of 10 transfers were rade. The K medium and control tubes containing both Lorkofold and Loitz filtrates remained free from meroscopic changes for six months; thus we may assume that neither ordinary contamination nor fal. pullower was present in the filtrate at the time of filtration or subsequently.

As mentioned above, the results of part 1 indicated that the rapid serial plate transfer method might be susceptible to contamination. For this reason a variation in treatment of the filtrates was made. In place of using

the rapid sorial plate transfer method, subculture plates were nade at intervals of four wooks from each of the tubes of the four series of the becteriophage filtrates aged in K medium and of the controls. Those plates were examined for growth after being incubated for 43 hours at 37°C, and again after standing two weeks at 25°C. No growth was obtained on any of the subculture plates rade either from the K medium or the controls. Although in part 1 cultures aged for a similar period showed growth when the retied of rapid serial plate transfer was applied. These data indicate that colonies rescabiling 6 types may appear from the extremeous sources of contamination in-herent in the rapid serial plate transfer technic.

5. Attempts to demonstrate C forms in the bacteriophage filtrates of Staph. surcus

The raterial for this experiment was obtained from 10 daily transfers of the bacterionhage of <u>stanh. aurous</u>. Factoriophage filtrate in amounts of 0.1 and 1.0 cc. was ad od to plain nutrient beef extract broth, pl. 7.7, previously seeded with <u>Stanh. aurous</u>. One cc. amounts of the filtrate were placed in sterile K nedium (Difce), sterile cetten steppered test tubes, and en sterile veal infusion after plates. After 24 hours incubation at 37°C, the tubes containing bacteriophage and <u>Stanh. aurous</u> showing the greatest lytic action were filtered and the filtrate treated as above. This was repeated 10 times. The filtrate in sterile K medium and in the cetten step, eved test tubes (centrel) was incubated at 37°C.

for 72 hours then at room temperature until the completion of the experiment. No visible growth had appeared in either series during an incubation period of six menths. At intervals of four weeks subculture plates were rade, which were incubated for 43 hours at 37°C. followed by one week at 25°C. No growth was obtained from the subculture plates of either series.

Surmary of Soction B.

- 1. Factoriophage filtrates of Evanh. rurous and Sal. nullower aged in K modium together with controls in plain nutrient beef extract troth, pH 7.7, and in cotton stoppered test tubes were studied for the presence of G forms.
- 2. Organisms forming microcolonics (% types)
 rescribling G forms were obtained by using rapid sorial
 plate transfer technic on the bacteriophage of <u>Sol.</u>

 <u>millerum</u> aged in K medium. These upon aging were shown
 to be slow growing air contaminants.
- 3. The presence of G forms in the bacteriophage filtrates of <u>Eal. pullorum</u> or <u>Etaph. narous</u> could not be demonstrated by subculturing portions of the filtrate, aged in K medium or in controls, on storile veal infusion agar plates at intervals of four weeks.
- 4. It was shown that rapid sorial plate transfor must be applied with caution and be carefully controlled for accurate results.

The Production of Microcolonies of Bacteria by Physical Influences

1. The effect of temperature on colony size.

Hadley (23) in 1931 advised that plates containing inoculum of the G types of organisms should be incubated for 1 to 13 days at 37°3, before examination for the formation of 3 colonies. The cultures with which he worked possess an optimum temperature of 37°3, as do the cultures in Sections A and B of this paper. Erueckner and Sherman (7) 1922 reported the isolation of 6 or primitive forms of bacteria by a method of dilution. They advised that the tubes be incubated for 72 hours at 37°3, and then placed at 25°3, for two weeks before they were plated.

and structure of bacteria grown at other than their optimum temperature, lo cultures were selected for study that were obtained from experiments on the bacteriophage of Sal. pullorum. Five cultures of the G forms of Sal. aertrycke obtained from Lurox (54) 1931 and 1 culture of Aero, aero-enes dissociated on 0.25 per cent lithium chloride yeal infusion broth. These cultures were planted into yeal infusion broth, incubated 24 hours at 37°C, and streaked on yeal infusion and lithus lactose agar plates. These plates were incubated for 72 hours at 37°C, followed by two weeks at 25°C. The average diameter of the

colorios of each culture was ressured at the end of 72 hours and at the end of the two weeks inculation period. The data in Table 13 show that there is a murked difference in the colony size before and after the incubation period at room temperature. Leveral of the organisms very closely resemble <u>inreina lutea</u>. All of the colonies at the ond of the inculation at 37°C. resembled G forms in size and structure but wore greatly changed at the end of room temporature incubation. Duplicate plates incubated only at room tomperature showed normal size colonies at the end of 73 hours. This suggested the use of a pure culture of Sar. lutea in an offert to cotermine the effect of temperature on colony formation, because it is a slow growing organism with an optimum temperature of approximately 25°C. plates were streaked lith a 24 hour culture of this organism. One was incubated at 37°C. for 72 hours and at room temperature for 14 days; the other was incubated at room temporature for 17 days. The results are ; iven in Table 19. It can be soon that similar results were obtained with a pure culture of her. lutea as with several of the suspected G forms from various sources. Eactoria under adverse temperature conditions may produce micro- or N colonies. This experiment offers an explanation of the phonomena observed with G cultures of Purox page 10.

2. The influence of rapid sorial plating on colony size. Two cultures were selected, <u>terr</u>. <u>indica</u> having an optimum temperature of 25°C. Then these organisms are grown under their optimum temperature requirements they

Table 18. The Effect of Temperature on the Structure and Size of Colonies.

Culture Number	Broth 24 hours		meters	Gram stai	n' Organism
		72 hours	14 days 25°0.		1
10a	clear	*0.01-0.05	2 mm.	+ cocci	
14a	clear	0.01-0.1	2 ma.	+ 00001	7
16b	clear	0.01	2 mm.	+ 00001	The state of the s
176	cloudy	0.1	2 mm.	- rods	'Sal. pullorum'
18a	clear	0.01	2 mm.	+ rods	
18b	cloudy	0.1	2 mm.	- rods	'Sal. pullorum'
195	clear	0.01	2 200.	+ 00001	1
20a	cloudy	0.1	a mm.	- rods	'Sal. pullorum'
216	clear	0.01	3 mm.	+ cocci	
236	clear	0.01	3 mm.	+ cocci	
24a	clear	0.01	3 mm.	+ cocc1	
266	clear	0.1	3 mm.	+ rods	
268	cloudy	0.1	2 mm.	- rods	'Sal. pullorum'
278		0.01	2 mm.	+ rods	
28a		0.01	2 mm.	+ rods	
17p	clear	0.01-0.1	2 nm.	+ cocci	to the state of the
18p	clear	0.01-0.1	2 mm.	+ 00001	
19p	dlear	0.01-0.1	2 mm.	+ 00001	1
20p	clear	0.01-0.1	2 mm.	+ cocci	
21p	clear	0.01-0.1	2 mm.	+ 00001	1
22p	clear	0.01-0.1	2 mm.	+ cocci	
23p	clear	0.01-0.1	2 mm.	+ cocci	

Table 19. The Effect of Temperature on the Jolony Size of Sar. lutea.

Plate 1				Plate 2		マ・
broth	Colony die 72 hours 27°C.		24 hour broth culture	72 hours	meter afte 14 days 22°J.	<u>-</u> ;
	less than	3 ma.	olear	2.5 mm.	S em.	•

form ap regimately the same size colonies, about 1 to 3 rm. in diamotor. To protocol consisted in running serial plate transfers on each culture at 37°C. and at 25°C. To cultures were planted into plain boof extract broth. Uno co. of the latter was placed on a sterile vonl infusion afor plate efter 24 hours incubation and smeared with a sterile L-shaped glass rod. The plates were incubated for 24 hours and exemined for colony formation. They were then washed with 5.0 cc. of storile veal infusion broth and the waskings were diluted 1 to 10,000. One co. of the dilution was placed on a sterilo voal infusion agar plate, and smoored tith an L-shaped glass red. This was repeated 12 times. Enr. lutes formed microcolonies at 37°C., and normal types at room temperature. Form, indica formed normal size colonies at room temperature and at 37°C., but after the second transfer the colonies at 25°C. lost their pigment forming properties. Data in Table 20 show that rapid serial transfer an arontly has little effect on colony size except when temperature is also a factor. The important application lies in the fact that in the sorial plate transfer of Handurey (26) 1927 and Hadley (33) 1931 plates are incubated at 57°C. for lutea in particular and other air contaminants in general having an optimum temperature of 25°C, under the conditions of this technic are liable to form ricrocolonies which may be easily confused with the true G type.

Table 20. The Influence of Rapid Serial Plate Transfer on Colony Size.

Day of trunsfer	Serr. indica 27°0. E5°0.	<u>Sar. lutea</u> 37°C. 25°C.
1	2 mm. (red) 2 mm. (red)	M (O.Olma) Sam.
2	2 mi. (red) 2 mi. (colorles	s) !! (0.01 mm) 3 mm.
3	2 mm. (red) 2 mm. (colorles	s) H (0.01 mm) 3 mm.
4	2 mm. (red) 2 mm. (colorles	s) L (0.01 mm) 3 mm.
5	2 mm. (red) 2 mm. (colorles	s) E (0.01 mm) 2 mm.
6	2 mm. (red) 2 mm. (colorles	s) M (0.01 mm) 1 mm.
7	2 mm. (red) 2 mm. (colorles	s) M (0.01 mm) 1 mm.
8	2 mm. (red) 2 mm. (colorles	s) H (0.01 mm) 1 :m.
9	2 mm. (red) 2 mm. (colorles	s) M (0.01 mm) 1 ma.
10	2 mm. (red) 2 mm. (colorles	al E (0.01 mm) 1 mm.
	2 mm. (red) 2 mm. (colorles	s) 11 (0.01 run) 1 ram.
12	2 mm. (red) 2 mm. (colorles	e) M (0.01 mm) 1 mm.

- 3. The effect of selective plating on colony size. A culture of form, indica was planted in plain boof extract broth and in 0.25 per cent lithium chloride veal infusion broth. These tubes were incubated 24 hours at 37°C. and streaked on sterile litrus lectose and veal infusion afor plates with a straight needle. The plates vore incubated 34 hours at 37°C. and exemined at a magnification of 100 diameters; the largest and the smallest colonies were transferred to plain beef extract broth and to 0.25 per cont lithium chloride yeal infusion broth. These tubes were incubated 24 hours and restreated. This process was receated 12 times. Observations were made on the colony size and structure throughout the experiment. lata in Table 21 show that the only characteristic tendoncy is toward a modian size of colony. Cultures which produced a greater number of colonies of 0.1 mm. when picked to broth and streaked on erar plates may about a majority of 3.0 mm. colonies. The same effect holds true if a colony of 5.0 mm. is picked from a plate containing a muximum of this size: there the tendency is towards the scallor colony size. There was no apparent permanent effect on colony size produced by selective plating.
- 4. Comparison of sorial plating transfor and sorial test tube transfer. The filtrates of the bacteriophage of the 21st and 63rd transfers of Sal. millerum from in bacteriophage were planted in 1.0 cc. amounts in K medium and in veal infusion broth. Together with the filtrates, they were incubated for 72 hours at 37°C. At the end of

Table 21. The Influence of Selective Plating on Colony Size.

Date or	T C transfer			Plated	uo	- 1		
	OROSOT BY IST	220.003	O CLUST	`	16.9/	Tarreston	011 0 2.7	
restary and				いひよう	2.7			
	Plain broth	, ,	1101 D	broth	Flan	Proth	1.1.1	croth
				Ort-in	1 8120			
	large sanl	11.	lare	ET36.11	1 re	Cit 25.11	18.1.6	I Sug
			Colony	atze on	lates 1	ii cra.		
•								
6/15/1932	3.0		3.0	0.1	5.0	. 1.0	83	. 0.1
0/10/1552	1.0	ಿ. 3	2.0 '	0.8	1.0	0.2	22	3
6/89/19.2	0.0	0	0,1	S.O	1.0	1.0	-	J.
0/23/103	0.1 2	0	1.0	0.5	8.0	0.1	g)	T.
6/:://15.2	೧ ೮	2.0	£•0 •	2.0	S.O.	1.0	Ļ	J.
6/86/19.8	1.0	0	1.0	1.0	1.0	1.0	Ţ	J.C
6/28/12, 2	0.8	0	1.1	0.3	0.1	() ()	·0	7.
6/2 /15.53	2. T	S 0	0.0	(3.1 ·	2.00	, 1°.	લ	्रा
7/7/1930	. C. C.	- 1	1 ، ن	\$ - 0 - 5	0.6	ુ છ	C2	C.I
7/0/15.2	ं ः १	ι.;	ા '	5.0	1• ∪ •	. 0 •3	Ţ	2.3
7/11/100	1.0 1	0	; ਹ•ੜ	ີ. ປຸ	8.0	1.0	ಎ	2.0
7/15/15:2	0.0	-	S.O.	7.07	0.1			

this time they showed no growth visible to the naked eye.

one cc. of the material in each tube, K medium, veal infusion broth, and the filtrate, were placed on a sterile veal infusion star plate and smeared with a sterile Leshaped class rod. After 24 hours, incubation the surface of the star plate was covered with 2.0 cc. of the sterile veal infusion broth. This was retated carefully to max theroughly, one cc. of the washing being transferred to snother sterile veal infusion star plate and the process repeated until growth appeared or until 11 transfers had been made.

At the seme time 1.0 cc. of K medium, of veal infusion broth, and of the filtrate was placed on sterile veal infusion ager slants. These were rotated carefully and incubated 24 hours at 37°C. Two cc. of sterile voal infusion broth was added to each tube. One co. was transforred to a sterile veal infusion agar plate and 1.0 cc. to a sterile weal infusion agar slant. The tube and plate were incubated 04 hours at 37°C. At the end of this time the broth was added to the tube and the plate inspected for colonies. Each day a new series was also started. Any colonies discovered on the plates were planted on K medium and into voal infusion broth. Part of the tubes were placed at room temperature and the remainder at 27°C. At the end of three days incubation they were streaked on storile yeal infusion afar plates and incurred at the respective temperatures. At the end of 43 hours microcolonies were found on the plates incubated at 57°C. while duplicate plates at room temporature showed yellow,

pignonted colonies 2 to 4 mm. in diemeter. These colonies were composed of Gram positive coesi occurring in tetrads, and were obtained only from the rapid serial plate transfers and not from the test tube series which remained stories throughout the experiment. The results are given in Table 21. This experiment does not prove that true 6 forms can not be obtained by test tube transfers, but that this method is not so susceptible to extraneous contamination as the rapid serial plate transfer method.

Summary of Section C.

- 1. Adverse temperature conditions were shown to favor the production of microcolonies.
- 2. Rapid serial plating had little effect on colony size when considered alone, but when temperature was also a factor, the production of microcolonies was favored.
- 2. belective plating was shown to have little effect on colony size.
- 4. Sorial tost tube transfer was shown to be free from many of the difficulties inherent in the rapid sorial plate transfer nethed.

Table 22. Comparison of the Rapid Serial Plate
Transfer and Jest Tube Transfer Methods.

Transfer number	Rapid Serial Plate transfer	Rapid Test Tube transfer series 1 to 10
1		
2		•
3	•	
4	Film	
5	rilm	•
6	film	
7	11	
8	1.0 1.1.	
9	transfers discontinue	ed -
10		
11		•
12		
13		
14	1	

^{- =} no growth

M = microcolonies

(D)

Studios on the Filtration of Pactoria

The removal of bacteria by passing the suspending 11quid through a membrane or structure impermeable to the ordinary forms of microorganisms is of value in preparing water and other liquids for human consumption, in sterilizing thermolabile substances, purifying filtrable virusos, and in preparing vaccines, toxins, etc. however, the literature is replote with references which indicate that in many instances there may be failure of numerous types of filters to prevent the passage of microorganisms, and/the difficulties which are encountered in their use. Hosse (31) 1356 confirmed by Plague (60) 1856 stated that cley and asbestos filters retained microorganisms, proventing direct transmission, but that they allowed the organisms to grow through the peres permitting indirect transmission. v. Somerch (15) 1902 presented photomicrographs of stained sections of filters which should the course of the bacteria between the pore walls.

An excellent discussion of the history and technic of filtration is given by Faudurey (27) 1929. He mentions some of the following filters.

The Pastour-Chamberland filter composed of dense biscuit percelain was the first one prepared which was more or less impermeable to bacteria. Fulloch and Grav (3) 1906 stated that these filters retained beer improscons during five days continuous filtration, but that they allow

indirect transmission of bacteria.

Forkofold filters made of missel, who produced in three graded pore sizes, N (normal), V (coarse), and W (fine). Bullech et al. (9) 1900 stated that they permit bacteria, Morthella typhi and Min. Granteriae, to pass in 50 per cent of the instances studied.

Voro produced in the United States during the World Ter because of the difficulty of obtaining the latter.

Litters have also been rade from inerganic substances other than siliceous material, e.g., plaster of Paris, etc.

Collection sees, pardment membranes, and collected jolly filters have likewise been constructed. The chief disactions, is the difficulty of preventing contamination due to air leaks.

There have been many theories advanced as to the reason why bacteria are retained by filters or permitted to pass. These may be classified in four groups:

1. Proporties of the filter, 2. Proporties of the organism, 3. Proporties of the medium of suspension, and 4. The technic of filtration.

- 1. Proportios of the filter.
- n. The clostrical charge of the filter. There exists between the filter and the surrounding liquid an electrical field, the Felcheltz-Leub layer. Fuel and Fueld (52) 1924, Eliava and Suarez (14) 1927 stated that

collodion membranes possessed a positive electric charge whon an acid substance was filtered and a negative potential with an alkaline mixture. Framer (37) 1927 found that filters of siliceous earth were negatively charged and did mass cortain organisms. By making filtors with plastor of Paris, a calcium sulfate and calcium carbonate mixture, the charge became positive and the filter rotained the organisms filtrable through the silicous earth filters. A noutral filter did not retain any of the substances filtered. Framer (32) 1929 reported the construction of an emphoteric filter, that is one capable of removing both positively and negatively charged colloids and particles. Dis was made by adding a water insolublo, thermostable basic material, DeO, carrying a positive charge to the silicoous material in the filter. To staged that this would retain the virus of tehacco mosaic, lactoriophage, and filtrable bacteria.

- b. The method of testing the filter. Probisher (21) 1928 found that testing filters by air pressure was in-adequate. Filters tested by this method allowed organisms to pass.
- c. Adsorption. Eliava and Sucrez (14) 1927 reported that adsorption played an important part in the ultrafiltration of bacteriophage through collection membranes. The first 50 cc. contained no becteriophage; later fractions contained the lytic agent with the same titer as the residue. They reported rore adsorption in a positive suspension than

in a negative. Fudd (63) 1927 reported that adsorption played an important part in filtration. Larlam and Formes (39) 1930 reported that becteriophage was adsorbed to the protein fraction.

- d. Fechenical retention. Fudd (51) 1993 reported that mechanical retention due to organisms being caught among the porce of the filter assisted in their removal from the suspension.
- e. Fore size. Fued (51) 1923 reported that <u>Vilvio</u> percolong did not filter through Lorkefold N filter candles under a pressure of 0.0 to 76.0 cm. of Hg but did through Ferkefold V filter candles.
- 2. Properties of the organism. (udd (53) 1027 found size, notility, and floxibility to be very important in the filtrability or retention of organisms.
 - 3. Properties of the modium of suspension.
- a. Fydrogen ion concentration. Larkum and Sermos (39) 1930 reported that becteriophage was removed by Fundler and Seitz filters from suspensions at pli 4.5 to 5.0 and pli 9.0 to 10.0, by plaster of Paris filters at pli 7.0, but passed at pli 4.5 to 5.0.
- b. K modium. Mondall (36) 1931, Varney and Pronfon-bronner (66) 1932 reported that cultures in K modium passed more quickly and in larger amounts them in ordinary culture modia. A similar effect was obtained by morely suspending the organisms in K modium. They claimed that this was not due to fat, but to adsorbed proteins.
 - 4. The technic of filtration. The time, pressure,

volume filtered, and manipulation of the process of filtration is very important. Frobisher (21) 1928 attributes ultrabacteria or filtrable forms to poor filters, technical error, or imperfect autoclaving. Eliava and Suarez (14) 1928, Eronfenbrenner and Fuckenfuss (6) 1927, Fudd (53) 1927, and other authors reported retention of bacteria followed by passage as volume filtered was increased. Others have reported passage of bacteria with increased pressure.

the method and conditions of filtration used in filtering a particular organism to permit a complete interpretation of their results. Thus we discover in the literature conflicting reports on the filtrability of various organisms visible through the microscope in their classical morphological state. In many instances we may assume that due to one or more of the reasons proviously outlined that passage of viable bacteria was accomplished. Among the organisms reported as being filtrable or having filtrable forms associated with them are:

B. cereus
B. dinhtheriae
B. fusiformis
B. of Johne's disease
C. of Schweinseuche
B. pestis
C. tuberculosis

Mellon (46) 1921
Hellon (47) 1926
Morin and Valtis (49) 1926
Lourens (42)(43) 1907
Burnet (10) 1926
Fontes (19) 1910, Valtis (65)
1924, Durand (13) 1924, Durand
and Vaudremer (12) 1924, Arloing
and Dufort (3) 1925, Veber (68)
1926
Almquist (1) 1911, Friedberger
and Meissner (20) 1923, Haudurey
(24)(25) 1924, & Herelle and

Andervont and Simon (2) 1924

B. typhosus

Fruduroy (29) 1925, Pojgin (17) **1**925 Piplococcus reningitidis Hort (32) 1917 Homani (50) 1919 <u>Lontosnira istorcides</u> Rovy and Emps (59) 1906, Froinl and Finghorn (5) 1906, Ricolle bolrochota rocurrentis and Plane (57) 1914, Wohlbach (69) **191**5 Spirochota olusa and Wohlbach (69) 1915 bifloma trootecoccis from hosonov (61) 1934, Evans (16) oncominitis 1923 Follon (45) 1920 Stroptothr1x Izar (34) 1921, d'Horolle (28) B. coli 1992, Hauduroy (24)(25) 1924, Tomasolli (64) 1923 d'horelle (20) 1922, Eauduroy (24)(25) 1924, d'Ferelle and B. dysontorine Shira. Hornor, and His hauduroy (29) 1925, hadley (23) 1931 d'Porelle (50) 1926 R. mostis btarivlococous albus and d'herelle and Hauduroy (29) 1925 RUPCHS Eventuation tuberculosis Fonds (4) 1923, Vellon and Jost (48) 1924, Bollis (56) 1926, Possi (62) 1928, Scenny (63) 1923, Vasiliu and Irminoiu (87) 1926 B. protons X19 lojgin (17) 1924

The filtrations reported in this paper may be divided into two classifications, those in which small amounts of material were used and those involving larger amounts.

1. Filtrations of arounts involving less than 40 cc. of ratorial. The conditions under which the raterials were filtered is very important. Two types of filters were used: Perkefeld V (corpse), N (normal), and W (fine) and Seitz. The Perkefeld filters (2 1/2 inches by 3/4 inch) were tested for cracks and leaks under air pressure. Filters satisfactory by this test were cleaned as proviously

outlined. The fittings were applied to the filter flash and the entire apparatus tested again. It was then sterilized and tested as outlined on page 7.

times with sterile physiological salt solution, placed in the filter asoptically, and filtered under conditions of temperature and pressure, such that one to two drops of filtrate passed per second. The filtrate was collected in sterile test tubes, inserted in the filter flask (Plate 1), which were removed and incubated at 37°C. for 43 to 72 hours, at 25°C. for one week or longer, and the rapid sorial plate transfer or the streak subculture plate method was applied. The series of filtrations reported extended ever a period of approximately 12 menths, consisting in tests on a number of different methods of proparation.

A. Filtration of Sal. pullorum and Stack. aurous grown in the presence of bacteriophage

Defly filtrations of Sal. millorum grown in the presence of bacteriophage were made through Seitz filters. The filtrates were placed in sterile K medium and sterile cotton step ered test tubes. After suitable periods of aging the rapid serial plate transfer methods were used; on another series of filtrations of Sal. millorum and Stable sureus bacteriophage streak plate subcultures were used.

Data in Table 23 show that in 40 filtrations where the method of rapid serial plate transfer was applied a

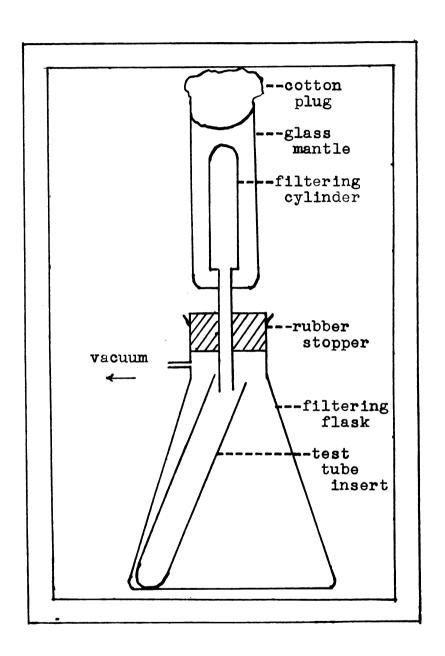


Plate 1. Apparatus for collecting small amounts of filtrate. (1/2)

Growth Recovered from the Lactertophage Mitrutes of Sul. pullerun. Table 22.

	-	
	contwiliation	0
n c	10.00	
Cultures recovered on anbonliuro plates	um contamitation Sal millorum contamination inedium'filtrate's medium'	0
.e.co	Lin.	
ures r benltn	rillorum o'il mediu	લ
n1t	10	• •
ວ	Sal.	લ
	, mu	
pid	contamination	4
ra	te t	• •
recovered by rapid 1 plate transfer	oone filtro	1Q
over a te	um,	
B rec	rum med1	Q 3
Cultures seria	1110 te 1	
Cul.	Sal. pi	OZ
84	• •	
Fumber of		40

filtrable form of <u>Scl. pullorum</u> was recovered in 4 instances and contemination in 12 instances, also that where streak plate subcultures were used no conteminating organisms were recovered. In a similar series of <u>Stark. nurous</u> filtrations like results were obtained. A discussion of the forms obtained was presented in <u>Section</u> B - Attempts to demonstrate the presence of G forms in the bacteriophage filtrates of <u>Sal. pullerum</u> and <u>Stark.</u> nurous.

B. Filtration or organisms recovered by rapid serial plate transfer from filtrates of <u>Sal. pullorum</u> grown in bacteriophage

The 16 organisms obtained in part 1 (including organisms shown to be contaminations), together with 5 cultures of the G forms of Sal. aertrycle obtained from Imrox, and 4 H cultures of Acro, acrorones dissociated on 0.25 per cent lithium chloride Veal influsion broth, were planted into voal infusion broth, and insubated 24 hours at 37°C. The cultures were diluted with 24 cc. of sterile physiological salt solution and filtered through Seitz filtors. The filtrates were placed in sterile K medium, voal infusion broth, and sterile cotton stoppored tost tubes. After suitable periods of incubation rapid serial plate transfers were applied. Data obtained showed that of 25 cultures filtered over 80 per cent of the filtrates remained sterile. After the methods of remid sorial plate transfor were applied, cultures were recovered from each filtrate after the first to fifth transfers. The Gram

stain and the sugar reactions of the cultures recovered were different from these filtered in each case. After a period of 16 menths aging at reem temperature, these organisms have not yet recovered the Gram stain or sugar reactions of the original organisms filtered. It is probable that these organisms represented contaminations and were the result of the rapid serial plate technic because they were not obtained on the streak plate subsculture plates.

C. The effect of K redium on the filtrability of Each. coli

Each. coli was planted into 20 cc. of K medium and plain boof extract broth; these tubes were incubated 24 hours at 37°C. The same filters, Forkefold N. V. and W. and Boitz, were used for each filtration series. They were cleaned, tested for air leaks, and sterilized, as given before, after each filtration. The following series of filtrations were made:

- a. A tube of sterile K modium followed by a plain boof extract broth culture
- b. A K modium calture
- a K modium culture
- d. A plain boof extract broth culture
- e. A suspension in physiological salt solution
- f. A susponsion in K modium

One cc. of the filtrates was placed in K medium, plain beef extract broth, lectose beef extract broth, a

soulod ampule, and a storile cotton stoppored test tuke.

No cultures of Ecch. coli were recovered from any of the
six filtration series. Apparently K medium does not enhance
the filtrability of Esch. coli in amounts less than 40 cc.

D. Filtration of combined cultures of Each. coli and Earr. indien.

cultures of Each, coli and Ear, indica were planted to separate tubes of modia. After 24 hours incubation at 37°C, these were combined, diluted to 40 cc. with sterile physiological selt solution, and filtered through a borkefold it candle. The filtrate was placed in duplicate in lastese beef extract broth, plain boof extract broth, sterile cotton stoppered test tubes, and on dextrese boof extract ager.

Data in Table 24 show that Borr, indica was retained when both organisms were grown in plain beef extract broth, was filtrable when Esch, coli was grown in K medium, and when both were grown in K medium. Esch, coli was retained in all three cases.

E. Filtration of miscollaneous cultures

Cultures were selected at random from the collection of stock cultures used for class work in elementary factoriology. These were planted into K medium (Difce) and plain boof extract broth, incubated at 57°C. for 24 hours, diluted with 20 cc. of storile physiological salt solution, and filtered through Perkefeld H and Seltz filters according to the procedure proviously outlined.

Table 24. Filtration of Combined Cultures of Each. coli and Serr. indica.

Each, coli		in	Pressure in mm. of Hg	Esch. coll	Ser.indica
Plain broth	Plain broth	4	-160		
K medium	Plain broth	15	-260		
K medium	K medium	10	-3 00		

Volume filtered 40 co.

The filtrates were placed in plain beef extract broth, K medium (Difco), lactose beef extract broth, scaled expulse, sterile cotton steppered test tubes and dextrose boof extract agar plates. These were incubated for 43 to 72 hours at 37°C., for two weeks at 25°C. and streak plate submillares were rade. Growth due to contemination was present in 3.0 per cont of the 300 filtrations made on stock cultures. The per cont growth resulting from filtrations in this experiment was considerably less than that reported by Probisher (21) 1920. The latter was able to obtain as high as 40 per cont growth from filtrates of bacteriophage of sterile broth and approximately 20 per cent from filtrates passed through air tested filters.

Summary of filtrations using small amounts of susponding modium.

- 1. A total of 493 filtrations were made using less than 40 cc. of suspending medium. Growth was obtained by the technic of rapid serial plate transfer or strock plate subculture from approximately 3.0 per cent of the filtrates. The cultures recovered from these filtrates consisted of ofther filtrable forms or E colonies.
- 2. True G forms were not recovered from the filtrates of cultures suspended in less than 40 cc. of material.
- 3. K medium was about to onhance the filtrability of Sorr. indica in the presence of Each. coli.
- 4. Refiltration of the forms recovered gave only sterile filtrates.

2. Fractional filtration of amounts involving more than 40 cc. of material

Fulloch et al. (3) 1993, Rudd (53) 1997, Fronfenbrenner and Euckenfuss (6) 1997, and Hadley et al. (23) 1931 used fractional filtration in investigations of the filtrability of microorganisms. As this method of filtering offers slightly more difficulties in manipulation it should have advantages which the ordinary method does not peasess. Fractional filtration makes it possible to compare the filtrability of identical or different microorganisms under the same or varied conditions, especially with reference to a determination of the moment of passage of the organism.

atructed from glass water stills, Liobig's condensors, (Plate 2). A ring of glass was removed from the middle of the outer jacket, the central core was cut transversely, and made one inch scorter than the jacket. The filter was placed in a one-hole rubber stopper and fitted to the outer jacket so that the outlet projected into the central core. The small end of the jacket was inserted into one end of a six inch section of heavy vacuum rubber tubing, to the other end was fastened a sterile media tubing shield, hellmann (44) 1931. A clamp was placed in the middle of the tubing. The inner jacket was calibrated to coliver 10 cc. and the apparatus cleaned and sterilized. To show that the apparatus excluded all sources of extranocus contamination, 400 cc. of sterile plain boof extract broth

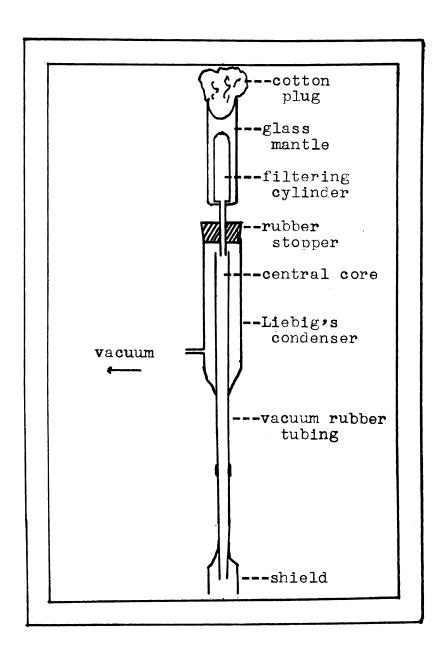


Plate 2. Apparatus used for fractional filtration. (1/4)

was filtered in 10 cc. amounts (barometric pressure 100 nm. Ite, time of filtration of each fraction 1 to 2 minutes). Tese fractions were incubated at 37°C. for three days and at room temperature for two months. No growth appeared in any of the fractions.

A. Effect of subculturing filtrate fractions

Frontonbrenner and Cuckonfuss (6) 1927 reported that so few bacteria massed the filter peres that the entire fraction had to be incubated in order to demonstrate viable organisms. A filtration was made to determine whether this phonomonon could be observed using 10 cc. filtrate fractions of a plain beef extract broth culture of Roch. coli. The culture was planted into 200 cc. of plain boof extract broth, pil 7.0. This was incubated 24 hours at 57°C. and filtered fractionally through a Forkefold N filter. The 10 cc. fractions were incubated in toto, and at the end of one week the raterial in each tube was stronked on oosin-mothylone blue eyer plates, from which typical colonies were transferred to lactose beef extract broth. The lactose tubes showing gas formation were planted into Kosor's sodium citrate redium and checked for Each. coli. Table 25 shows that Each, coli was recovered from the eighth to twelfth fraction inclusive.

The effect of subculturing the filtrate to other modia at the time of filtration was demonstrated as follows. Each, coli was transferred to 200 cc. of plain beef extract broth, incubated 24 hours at 27°C., and filtered through the same filter as was used in the provious experiment.

Table 25. Growth Obtained from Fractions
Incubated in Toto.

Fraction of 10 cc.	<u>Esch. coli recovered from plain</u> broth filtrates
11	•
2	1
3	
4	1
5	
6	1
7	
8	1
9	, 1
10	· · · · · · · · · · · · · · · · · · ·
11	, 1
12	•

Time of filtration of each fraction = 3 minutes
Filtration pressure = =200 mm. Hg

the ce. of each 10 ce. fraction was transferred inmediately after filtering to plain beef extract broth, K medium, lectose beef extract broth, a scaled ampule, to plain beef extract agar plates, and the remaining portion of the filtrate to a sterile cetter stoppered test tube. These were incubated 40 hours at 37°C, and for two weeks at 25°C. Into in Table 26 show that hach, coli was recovered from the eighth to twolfth fraction inclusive. Thus little or no difference in the growth appearing from the filtrates could be shown whether the fraction was incubated in its entirety or by subcultures in various media.

There was no apparent macroscopic difference in the appearance of the fraction at the moment of collection nor in the manner in which it came through the filter. It was impossible to tell which fraction would remain sterile and which would later show growth.

B. Effect of K medium on the filtrability of Macha-

Kondall (36) 1931 reported that K medium enhanced the filtrability of microorganisms. Prenfenbrenner and Pueltenfuss (6) 1927 reported that organisms grown in K medium passed the filter more quickly and in larger amounts than those grown in plain beef extract broth, also that subcultures grow more quickly in K medium than in plain beef extract broth. We have already drown that this is not necessarily true when small amounts of material are filtered. The following series of experiments were planned to demonstrate the presence or absence of this effect when

Table 26. Growth Obtained from Subcultured Filtrate Fractions.

Fraction	. Bech	. coli	recovere	d efter	1 week 1	neubation in
						colonies on plain agar
1					•	0
2		•				0
3	<u>. </u>				•	O
4						O
5				,	•	()
6					40	Ů
7	'	•	•	,		0
8					+	Q
9		,	,		•	3
10	•	•	·		•	8
11	+	,	+	,	+	20
12	•	•	•	1 , 1	*	45

larger emounts of material were filtered fractionally.

To show whether or not K medium has an effect on the filtrobility of a deroomanism. Esch. coli was plented in 200 cc. each of K modium and plain beef extract broth. Those were inculated 48 hours et 57°C. end filtered through a Reglected ii filter. The fractions were collected asentically in 5.0 cc. amounts and incubated at 37°C. for 72 hours. Extreme difficulty was experienced in filtering the K medium. The time for each fraction increased rapidly as did also the air pressure necessary. In both cases the rate of filtration did not exceed one drop per second nor fall less than one drop in 10 seconds. He air bubbles more appropriate. The appearance of the filtration was normal. The point at which the organisms passed could not be foretold at the time the filtration was completed. Whe data presented in Teble 27 show that bach, coli grown in K modium passed the filter after 25 cc. of natorial had been filtered, however, growth was delayed for one wook. Organisms which passed after 55 cc. had been filtered grew out in 49 hours. Organisms grown in plain beef extract broth did not pass until 80 cc. had been filtered. It is thus apparent that K modium does have a marked effect on the filtrability of this organism. In order to demonstrate whether this effect is due to a change produced in the organism itself or to the more physical presence of the K medium, (rowth was transferred from plain boof extract ever slants to K medium until a suspension of the same turbidity as in the provious experiment

Table 27. Comparative Filtrability of Esch. colf Grown in Plain beef Extract Broth and in K Medium.

Fraction		of	Pre	Pressure	Esch	0011	recovered from	
of 5 ag.	1212	tration n ma.	the true	•00	Plain broth	ltrate	1 um	filtrate
8	P.B.	jes-	X.M.	P.B.	The same of the sa		A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN	1
I	2	03	9	120	Contract of the contract of th		9	0
6/2	23	9	111	120		S .	***	
60	63	9 .	116	.20			-	
4	63	12	-24	120	Charles - proper and the same appropriate to the same and	Contract to contract the contract to the contr		
5	2	14	040	.20			***	+
9	23	122	.30	120	The contract of the contract o	Anthro energy description and a second		+
4	20	184	40	120	-	CONTRACTOR		+
8	20	. 50	140	.20				+
6	23	. 25	40	.20			-	+
10	23	45	\$40	.20			0	+
11	20		174	.20				+
12	20		24.	120				+
13	203		174	.20				+
14	20			120			-	AND
15	20			.20			-	Addressed Continues and Continues
16	23	1	-	160	The second secon	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	STREET, STREET

F.B. = plein broth
K. M. = K medium
+ = recovered
- = not recovered

was obtained. This suspension was filtered fractionally and the filtrate placed in the various media in 1.0 cc. amounts. Data presented in Table 23 show that <u>Each. coli</u> passed the filter when 55 cc. of meterial had been filtered, this was about half way between the amount for plain be featract broth culture and K medium culture. The effect was not so marked when K medium was morely present as when <u>Each. coli</u> was actually grown in the material.

C. Attempts to determine the factors responsible for the effect of K medium on the filtrability of <u>Mach. coli.</u>

The next experiments were designed to determine if possible what factor present in K medium would have the effect of increasing the filtrability of organisms especially with reference to <u>Fact. coli.</u> In order to eliminate the filter elegring due to gross particulate material a 48 hour culture was filtered through sterile absorbent cotten, then fractionally through a Ferkefeld N filter. The filtrate was incubated in 5.0 cc. fractions. Data presented in Table 29 show that the clumps present in K medium neither increase nor escrease markedly the filtrability of Each. coli. To eliminate the possibility of the physical properties of the K medium and to establish the fact that the soluble or filtrabile portions of this substance had an effect on the filtrability of the organism two companion experiments were attempted.

Table 28. Fractional Filtration of Each. coli

Fraction		1		2	from the fi	recovered ltrates of
of 5 cc.	T	В.Р.	T	B.P.	Plain broth	i medium suspension
1	3	20	2	5	7	-
2	3	20	2	5	1	•
3	3	20	2	10	1 .	•
4	1 3	20	2	10		49
5	3	20	2	15	1 . 1	**
6	* 3	20	. 3	15		6
7	3	20	3	15		•
8	1 3	20	3	15		•
9	1 3	20	3	15		•
10	' 3	20	4	15	1 - 1	
11	3	20	5	20		+
12	3	20	5	20	- 1	+
13	3	20	7			
14	3	20	1	garroussus residences	-	4.1
15	3	20	1			
16	. 3	20	1		, , ,	

T - Time in minutes
B.P. - Barometric pressure in centimeters

Table 29. Effect of Clumps of K Ledium on Filtrability of Each. coli.

	/	1		2	Beh.	coli rec	overed	
Fraction of	Ţ	B.P.	T	B.P.		d with ton	not clear	red otton
5 00.			,	_	48 hours	week'	48 hours	l Week
1	1	5	2	5			•	-
2	1	7	5	11			•	•
3	1	10	8	16				
4	2	20	12	24	-		•	
5	3	20	14	40			-	•
6	3	30	12	30			•	
7	5	40	27	40			•	
8	20	40	50	40	•			•
9	30	40	25	40	•	+		•

T - Time in minutes

b.P. - Baromotric pressure in centimoters

Two hungred cc. of sterile K medium was filtered through a storile Forkefold N filter. This was followed by a 24 hour culture of Tsch. coli in plain beef extract broth. The data in Table 30 show that although the organisms passed more quickly than when plain beof extract broth cultures are filtered alone, it did not compare with the filtration of a culture grown in K modium. The K medium filtrate from the above experiment was collected in a sterilo conteiner and seeded with Each. coli. incubated for 24 hours and filtered fractionally. If any difference is noted in the filtrability of the organisms under these conditions, it must be due to a single factor, that is, a change produced in the organism itself by soluble, or at least filtrable, portions of K medium. Data in Table 31 show that the clumps of insoluble material have no effect on increasing the filtrability of Each. coli. Indood, the organisms grown in the storile filtrate of K modium passed the filter more quickly than those grown in uncleared K medium.

D. Fractional filtration of combined cultures of Esch. coli and Sorr. indica.

Esch. coli and Sorr. indica were selected to show
the effect of the presence of another organism on the
filtrability of bacteria. One hundred cc. of plain beef
extract broth was seeded with Esch. coli and a like amount
with Sorr. indica. After being incubated at 37°C. for
24 hours the cultures were combined and filtered fractionally.

Table 30. Effect of Clossing Filter with Storile K Medium on Filtration of Each. coli.

Fre	etio	n.			1				2	' Esch	. coli	recov	ered	1
5	of	;	T	;	D. P.	•	7		B. P.		broth one	K me		
		:	-	:		:		:	-ovm-regul	1 24 hours	48 hours	24 hours	48 hour	1
	1		3		20		2		5					
	2	T	3	T	20	\$	2	F	5	-	-			7
	3	-	3	1	20	1	2	T	10					1
	4	1	3	1	20	3	2	-	10		-			1
	5	7	3	7	20	T	2	7	15				-	
_	6	7	3	-	20	Ŧ	3	T	15		* **	**		7
	7	1	3	T	20	-	3	1	15		1		•	
-	8	-	3	*	20	1	3	1	15		-			
	9	T	3	Ŧ	20	T	3	T	15	-				
_1	.0	1	3	-	20	1	4	T	15					7
1	1	1	3	-	20	*	5	T	20			•		
	2	1	3	-	20	F	5	1	20			+	+	7
1	3	-	3	1	20		5	1	40					1
1	4	3	3	1	20	1		T		2 00	1		1	7
_1	5	-	3	T	20	T		1			-			7
1	6	4	3	\$	20	8		\$		0 4	* *	1		1

T - Time in minutes

B.P. - Barometric pressure in centimeters

Table 31. Filtration of asch. coli Grown in allered Sterile E Medium.

rection	7 !	B.P.	l Es	ch. col	recove	red fro	7
of 3 cc.	1	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	broth	medium	lactose	empule	a er
1	2	5			*	·	0
2	2	10		•	+	•	15
3	4	10	,	•	, 		460
4	5	10	•			+	5 29
5	5	10	•	•	•	•	584
6	8	80	+	• +	+	+	645
7	10	<u> </u>	• • •	•	+	• •	786
8	15	30	+	+	+	+	892
9	20	30	1 1 +	1 +	, ! +	+	904
10	50	74	•	•	,	• +	1310

T - Time in minutes

B.P. - Barometric pressure in contineters

The following combinations were filtered. (1) Both grown in plain beef extract broth, (2) Both coll in E medium, Sorr. indica in plain boof extract broth, (3) Both in E medium.

Data in Table 32 show that in combination (1) Each.

coll passed in the minth fraction, Serv. indica was retained; (2) __seb. coll was retained, Sorv. indica passed in the fifth fraction; (3) Both organisms passed in the third fraction.

Sorr. indica was probably more filtrable than Each. coll. K modium was shown to enhance the filtrability of both organisms, however, its more presence was sufficient to cause the passage of Sorr. indica, while Soch. coll had to be grown therein, in order to effect the passage. The passage of Each. coll in the minth fraction (1) was probably not significant for the fact that it was beyond the range of the other combinations.

E. The effect of aging Esch. coli in K medium.

A culture of Ecc. coli grown in k medium at room tomporature for 43 days showed no apparent change in filtrability from a 24 hour culture. The data in Table 33 show that the enganisms passed the filters in direct ratic to the graded pere size of the particular filter used. Seitz filters were slown to retain the organisms for the longest period of time.

In Table 34 is given a summation of the various experiments on the effect of K medium on the filtrability of Each. coli. These data show that a soluble or filtrable

Table 52. Fractional Filtration of Combined Cultures of Esch. coll and Serre indica.

rech. colf	Serr indica grown in	Time in minntos elapsed until	Pressure in rm. of lig.	Volume of each fraction	Volume Pecovered of each fraction Sech. coli	Pecovered in fraction No. Esch. coll Serr. indica
Plain broth	Plain broth ' Plain broth	69	-260	10 00	6	
K medium	Plain broth	67	400	10 00		ور
K medium	. K modium	. 53	-160	10 00.	8	8

Table 33. Comparative Filtrations of a 45 Lay vid Lach. coli Culture in Elicatum Phrough Allters Possossing Different Pore Size.

-	†	th.	t	-	t	t	1	1			1		1
Filter	Soitz	Jrowth		•				•	•	•	•	•	+
		,	F	ŝ	ा	01	L		ा		1		or C
		-	-	•	 _	-	-		-	-	٦	-	-
		1		• 50	25	3	် ၁	ာ -	် ၁	္ပ	3	3	?3 -
		Grouth Prection		~	હ	ာ	ţ	ဌ	·ɔ	- 6	အ	j,	10
	herkefeld :	141/	-	•	ŀ		-	-	-	-	-	-	$ \cdot $
		(ro		•	•	\$	•	•	•		+	•	•
		. ₹		ස -	k)	37	12	13	15	15	15	15	15
		•		ස	າຄ] []	: ::3	25	40	∵.	14	74	114
		011		-		-	- 1	7	7	6.	6.	4.4	
		Groath Paston		,- 1	લ	:3	Þ	5	Ç	4	θ	6	07
			-	•	-	_	-		-	-	-	-	-
		ro:		•		,	•		•	٠	+	+	+
		3	-	-	-	-	-	-	-	-	-	-	-
	==	7.4		લ	ા]	5	:: ::	91	ા	15
		•	r	•	-			-			-		7
				ည	15	15	£3	3.	40	(も	0.37	CV	6
		ton		_									
		10.47		H	ಯ	દ્ય	Þ	IJ	·J	4	ສ	G	?
	Serkefold V			-	-	-	-	-	-		-	-	
		Grouth		ŧ	•	•	•	+	+	ŧ	+	•	٠
				-	١.						-	_	
					ľ	KV3	C3	(3)	3	0	15	15	12
		•	Γ	2	5	3		_			,	-	
		3.				H	15	ડર	છ	.,	ં ?	3	4
		11	H	-	-	-	-	H		-	-		1
		raction		7	2	53	Þ	જ	Ç	7	В	6	0
		.I.J											П

+ = Leon. coll recovered

E.P. - Daron trio prossure in centraters

^{- -} Lo growth

T = Time in minutes

Table 34. Fractional Filtration of Esch. coli.

Table number		Moment of passage in co.
25	Plain broth filtrate fraction inqubated in toto	80
26	Plain broth filtrate fraction subcultured	80
27	K meding (grown in)	25
23	K medium (suspended in)	55
29	R modium (eleared through cotton)	40
30	Filter clorged with sterile I medium followed by a plain troth culture	55
31	Grown in K medium previous- ly filtered through a Lerkefeld P filter	10

substance present in the redium affects the filtrobility of the organism. From an examination of this table it is apparent that there is present in K medium a soluble, or filtrable, substance which has a marked effect on the filtrability of Esch. coli. Table 31. The more presence of K medium will cause this effect to a lessor extent as shown by Tables 23 and 30. The gross particles present in the suspension inhibit the filtrability, Tables 23, 29 and 30. The effect on the organism may be sufficient to everement this inhibition. Table 27 or 23.

Survery of Section D.

- 1. In a series of approximately 500 filtrations involving amounts less than 40 cc. (rowth was obtained in three per cont of all cases.
 - 2. Refiltration pave sterile filtrates.
- 5. K medium enhanced the filtrability of Serrandica in the presence of Mach. coli.
- 4. The effect of K medium on the filtrability of Each. coli was shown by a series of fractional filtrations.
- 5. A soluble or filtrable portion of K medium was shown to onlance the filtrability of <u>Esch.</u> coli.
- 6. The solid, gross, particulate material inhibited this effect.
- 7. Aging of Each. coli in K modium before filtration had no effect on the filtrability of the organism.

Survery and Discussion

(A)

- 1. Attorbats wore made to produce G forms by apontaneous and enforced dissociation of various bactoria undergoing rapid transfer and aging in a series of redia. Noth organisms and media were selected so that there was presented a wide variation of factors; pll of medium, concentration of lithium chloride, dye, characteristics of or anisms, etc. In many cases colonies which here a striking repemblance to the G colonies reported by Ladley were discovered on plates seeded with cultures in the various stages of rapid transfer. These colonies generally appeared after the fourth or sixth transfer. Fecause the organisms forming the microcolonies could not be demonstrated es being filtrable, they were labelled A colonies according to the terminology introduced in this paper. The H colonies formed during the stores of dissociation of the various organisms did not ap ear with the regularity noted by Hadley or Furox. The data did not show any relationship between the production of H colonies and any of the various factors considered. There sooms to be indications that the appearance of H colonies in dissociative phononena ray be due to an inherent characteristic of the organism. ration than to external influences which may not be strong enough to break down the sturdy mechanism which controls the dissociation of the bacterial cell.
- 2. The tochnic of sorial dilution and fractional filtration was applied to a series of six samples of severe

and four samples of skim malk. The report of irrectmor and Sherman that primitive forms were present in wilk in vastly greater numbers than were ordinary bacteria was not confirmed. No M colonies or filtrable forms were discovered. The number of samples studied was not large enough to justify conclusions as to the occurrence of primitive forms of bacteria in milk, however, there is a suggestion that many of the organisms recovered may be contamination resulting from the very delicate toolnic employed, that is, rapid serial plate transfer.

(B)

and Stark. sureus were studied by rapid serial plate transfors and by streak plate subcultures for the presence of 6 forms. The filtrates were aged in sterile cotton stoppered test tubes and in K medium. It colonies resculding 6 colonies were obtained by the rapid serial plate transfor method from 16 of the 60 filtrates. There was no regularity as to their appearance. Three rain types were found, two of which were air contaminants. Then streak plate subcultures were used no colonies were recovered. The data suggest that K medium in this particular instance had no effect on the production of 6 colonies from the filtrates of bacteriochage. There is also an indication that rapid sorial plate transfer is responsible in many cases for the production of 6 and similar forms of bacteria.

(C)

The production of M colonies, which circlate the appearance of G colonies, by various physical influences, temperature, rapid serial plating, and selective plating was studied. The data show that bacteria having an optimum temperature of approximately 25°C, may form M colonies if grown at higher temperatures. This is of special importance because the technic for demonstrating G forms requires the incubating of plates at 27°C. Meither rapid serial plate transfer nor selective plating were shown to have marked of sets on the production of G forms or M forms of becteria. Data obtained when rapid serial plate and test tube transfers were run coincidently showed that the former was very susceptible to centamination. It is suggested that the serial test tube transfer be substituted because of its comparative freedom from contamination.

(D)

A review of some of the filters with their disadvantages and faults which have been used for removing
bacteria from suspensions and a discussion of the theories
of filtration are presented. As reminately 500 filtrations
were made using less than 40 cc. of suspension. The report
of Probisher was not confirmed. Only three per cent growth
was obtained from these filtrations consisting of Sal.

pullerum and Stark, sureus grown in the presence of
bacteriochego, organisms grown in Knedium, combined cultures

Problem edli and fore, indica and miscollaneous cultures. Problem has reported as high as 40 per cont growth in filtrates of becteriophage or of storile broth. The data indicate that under proper conditions and controls, and where the capacity of the filter is not exceeded, storile filtrates may be expected in practically all cases. Refiltrations of the organisms recovered (three per cont of the total filtered) gave sterile filtrates.

A study of fractional filtration was made with special reference to determining the effect that K medium exerts on the filtrability of Mach. coli. It was demonstrated that there is present in K medium a soluble or filtrable fraction which increases the filtrability of Each. coli to a marked extent, while the gross particulate matter has a slight inhibitory effect. Similar results were shown whether the filtrates were incubated in toto or in subcultures. No particular medium was demonstrated as possessing the ability to decrease the period of time necessary for the appearance of growth. In many cases one to three weeks elapsed before macroscopic growth appeared in filtrates or before it could be demonstrated by streak plate subculture methods. It is well known that in many cases single cells obtained by the verious simple cell technics require periods of one or more weeks for mouth. To suggest that, as was demonstrated by the data presented in Section D, only one or two organisms may pass the filter. There would then be present in the

filtrate conditions, except for the excess of suspending modium, essentially the same as found in single cell technic and the extended time period would be expected. This is very likely the condition in the earlier fractions where growth is delayed, while in later fractions where greater numbers pass through the filter peres growth is obtained in 24 to 48 hours. This is demonstrated by the data of many of the fractional filtrations. A 43 day old culture of Esch. coli and a 24 hour culture pessessed identical filtrability properties.

Constantly but hadmazardly throughout the experiments presented there have been observed microcolonies. Bees were similar in size, appearance, and behavior to the G colonies reported by hadley and others. There was also a striking similarity in the morphology of the organisms. Löbnis and Smith montioned that genidia were microscopic granulos formed by bacterial colls in one stage of their reproductive cycle. The conidiancia upon disintegration released the genidia which then grew into nerral size colls. Other authors postulate that from the conidia were produced colonies microscopie in size. G colonies, which after suitable technic would form normal colonies coincident with the formation of the normal cells. In the literature may be found scattered references stating that the gonidia are filtrable but no mention is made as to the size of colonies formed from them. Thus microscopic demonstration of the granules, proof of their filtrability, and ability

to form normal colls rather than size of colony is the criterion for 6 types. Kendell reported filtrable forms but did not give evidence of the presence of genidia.

Thus in literature ruch confusion as to the terminology exists, and the difficulty of determining precisely with what particular phase or phenomenon the author is concerned is apparent. Here exact descriptions and definitions of the terms applied would clarify the situation and with this intention we again offer a terminology which it is hoped will aid rather than add to the confusion.

- 1. G colonies formed from organisms in the gonidiangle phase, possessing filtrable couldin, which upon the application of suitable technic will produce colonies ricroscopic in size. The various reactions of the culture are different from the normal form.
- 2. Filtrable forms organisms sapable of passing filters under carefully controlled conditions but which revert so quickly to the normal form that colonies microscopic in size are not produced.
- 3. If colonies organisms normal in form which produce colonies microscopic in size due to the influences of adverse physical conditions.

Literature Cited

- 1. Alaquist, E. Studien über filtrierbare Formen in Typhuskulturen. Cent. f. hakt. I. 0. 60, 167, (1911).
- 2. Andervont, d. and J. E. Simon. On the origin of so called pellucid areas which develop on agar cultures of certain spore-bearing bacteria. Am. Jr. Hyg. 4. 286. (1924).
- 3. Arloin: F. end A. Dufourt. Contribution a l'étude des formes filtrantes du Bacille tuberculeux. Compt. Rend. Hebd. Soc. de Biol. 93, 165, (1925).
- 4. Bonis, V. Sulla esistenza di forme filtrabili del virus tubercolare e sulla trasmissione transplacentare di tali forme dalla madreal figlio. Ricerche sperimentali, kin. Ned. Ses. II Gior. Tisiol. 3, 33 (The existence of filtrable forms of tubercular virus and the transplacental transmission of such forms from the mother to child. Experimental Study. Liol. Abst. 4, 4914. (1928).
- 5. Breinl, A. and A. Kinghorn. An experimental study of the parasite of tick fever (Spirocheta duttoni), Hemoir AAI, Liverpool School of Tropical Legicine 23, 2, (1906) (Inoted from Hadley, 22).
- 6. Bronfonbrenner, J. and P. Nuckenfuss. On the filtrability of bacteria. Proc. Soc. Expt. 1 101. and Mod. 24, 271. (1927).
- 7. Frueckner, H. J. and J. M. Shorman. Primitive or filtrable forms of bacteria and their occurrence in aseptic milk. Jr. Inf. Dis. 61, 1, (1912).
- 8. Bulloch, W. and J. A. Craw. On a new porcelain filter. Jr. of Epp. 6, 408, (1906).
- 9. Bulloch, W., J. Craw, and E. E. Atkin. On the relative efficacy of Doulton, Ferkefeld, or Fromlow filters. Jr. of Hyg. 8, 63, (1908).
- 10. Eurnet. Et. Sur la recherche de formes filtruntes des hactéries. Compt. Rend. Hebd. Soc. de Fiol. 95. 1142, (1926).
- 11. John, F. Beitrage zur Biologie der Pflanzen. Breslau (1875) (Quoted from Hadley, 22).

- 12. Purand, H. and A. Vandremer. Retour an type classique du Encille tuberculoux filtre, après passage par le peritoine du Jobaye. Jongt. Rend. Hebd. Hoc. de Eiol. 90, 916, (1924).
- 13. Furand, A. Pouvoir pathogène du Lacille tuberonleux filtré. Compt. Rend. Hebd. Noc. de . iol. 91, 11, (1924).
- 14. Eliava, J. and E. Suarez. Au sujet de l'ultrafiltration du corpuscle Eactériophage. Josept. Eend. Hebd. Soc. de Liol. 95, 463, (1927).
- 15. v. Hamarch. Über Aleinste Eaktorien und das Durchwachsen von Filtern. Jent. f. Eakt. I. O. 32. 561. (1902).
- 16. Evans, Alice. Studies on the etiology of opidemic encephalitis. I. The streptococus. L. S. P. h. A. Pub. Scalth Rep. 41, 1895, (1926) (quoted from Hadley, 22).
- 17. rejgin. Promislava. Sur les variations brusques du Proteus Há₁₉ survenues sous l'influence de l'agent lytique anti-Há₁₉ et leur rapport avec les souches isolées des Johnses infectés avec le virus de pussage du typhus exanthématique. Jongt. Rend. Rebd. Soc. de biol. 90, 1100, (1924).
- 18. Fejgin, bronislawa. Sur los cultures secondaires du Bacillo typhique isole des organes des Colayes infectés avec le virus de la fièvre typhoide. Compt. Rend. Hebd. Soc. de biol. 92. 153., (1988).
- 19. Pontes. Studien über Tuberculose. Ann. de l'Inst. Oswaldo Gruz 2. 2. (1919) (quoted from Radley, 22).
- 20. Friedborger, E. and Bertrud Meissner. Eur Pathogenese der experimentelle Syphus Infektion des Leerschveinchen. Klin. Mchnschr. 2. 450. (1923) (Quoted from Hadley, 22).
- 21. Probisher, Martin Jr. On the action of bacteriophage in producing filtrable forms and mutations of bacteria. Jr. Inf. Dis. 42, 461, (1988).
- 22. Hadley, P. Microtic dissociation The instability of bacterial species with special reference to active dissociation and transmissible autolysis. Jr. Inf. Dis. 40. 1. (1927).
- 23. Hadley, P., Edna Bolves, and John Klimek. The filtrable forms of bacteria. I. A filtrable stage in the life history of the Shiga bacillus. Jr. Inf. Dis. 48, 1, (1931).

- 24. Hauduroy, P. Los oultures scoondaires après filtration dans le phénonène de d'Esrelle. Compt. Lend. Hebd. Soc. de Liol. 91, 1209, (1924).
- 25. Hauduroy. P. Les cultures secondaires après filtration dans le phénonène de d'ierelle. Coupt. Lend. Hobd. Bos. de Biol. 91, 1825. (1924).
- 26. Haudaroy, P. Bechniques de cultures des formes filtrantes invisibles des microbes visibles. Compt. Rend. Bebd. Boo. de Fiol. 97, 1892. (1927).
- 27. Handuroy, P. Les ultravirus et les formes filtrantes des microbes. Lasson and Cie, Lüiteurs, Paris, Prance (1929).
- 28. d'Herelle, F. The bacteriophago: Its role in immunity (Prenslation) (1922) (Quoted from Hadley, 22).
- 29. d'Herelle. P. and P. Hauduroy. Sur les caractères des symbioses "Eactérie-Hactériophage". Jompt. Rend. Hebd. Boc. de Biol. 93, 1288, (1925).
- 30. d'Herelle, F. The bacteriophage and its rehavior (Translation) (1926) (quoted from Hadley 22).
- 31. Hesse. Deutsche med. Wochenschrift, p. 71. (1885) (noted from Lulloch. 3. and J. Craw. 8).
- 32. Nort. E. C. The menin-ococcus of Leichselbaum. Brit. Hed. Jr. 2, 377, (1917).
- 23. Jones, Dan H. Further studies on the growth cycle of Azotobacter. Jr. Eagt. 5, 225, (1927).
- 34. Izar, G. Sui considetti batteriofagi. ...c. Gioomia disci. nat. in Cattina (1921) (Quoted from Hadley, 22).
- 25. Kendall, A. I. Observations upon the filterability of bacteria, including a filterable organism obtained from cases of influenza. Science 74, 129, (1931).
- 26. Kendall, A. I. The James A. Patter Lecture in Eacteriology, July 22, 1931. Forthwestern Univ. Bul. 32, (1931).
- 37. Kramer, 3. P. Bacterial filters. Jr. Inf. Tis. 40. 343. (1927).
- 38. Eramer, S. P. Bacterial filters. Science 68, 88, (1928).

- 29. Larkum, N. W. and Hargaret Semmos. Filtration of bacteriophage. Jr. East. 19, 213, (1930).
- 40. Löhnis, F. and F. R. Smith. Life cycles of the bacteria (Preliminary communication). Jr. of Agr. Research 6, 675, (1916).
- 41. Lohnis, F. and N. R. Smith. Studies upon the life cycles of the bacteria. Part II. Life history of the Azotobacter. Jr. of Agr. Research 23, 401, (1923).
- 42. Lourens, L. Untersuchungen über die Filtrierbarkeit der Schweinepestbacillen. Sent. F. Bakt. I. 0. 44. 420. (1907).
- 43. Lourens. L. Untersuchungen über die Filtrierbarkeit der Schweinepestbacillen. Jent. f. Bakt. I. 0. 44, 504. (1907).
- 44. Malkaam, W. L. A device for the aseptic distribution of culture media. Am. Jr. Pub. Health 21, 288, (1931).
- 45. Mellon, R. R. Life cycles of the bacteria and their possible relation to pathology. Am. Jr. Red. Sci. 159, 874, (1920). (quoted from Hadley, 22).
- 46. Mellon, R. R. Further studies on the diphtheroids. Jr. Med. Res. 42, 111, (1921).
- 47. Fellon, B. R. Studies in microbic heredity.
 VIII. The infectivity and virulence of a filtrable phase in the life history of B. fusifornie and related organisms. Jr. Euct. 12, 279, (1926).
- 48. Mellon, R. R. and Elizabeth Jost. Observations on the filtrability of H. tabercalosis. Proc. Soc. Expt. Biol. and Med. 24, 742, (1927).
- 49. Forin, H. and J. Valtis. Sur la filtration du bacille de Johne a travers les bougies Chamberland Ls. Compt. Rend. Hebd. Soc. de Biol. 94, 29, (1926).
- 50. Mudd. S. and S. Warren. A readily cultivable vibrio filterable through borkefeld V candles. Vibrio percolens (new species). Jr. Bact. 8, 447, (1923).
- 51. Mudd. S. The penetration of bacteria through capillary spaces. Potility and size as influencing filterability through berkefold filters. Jr. Bact. 8. 459. (1923).

- 52. Mudd. S. and Emily Mudd. The penetration of bacteria through capillary spaces. III. Transport through Berkefeld filters by electrocadosmotic streaming. Jr. Bact. 9, 151. (1924).
- 53. Hudd, S. An improved arrangement for bacteriaretaining filters. Proc. Soc. Expt. Liol. and Hed. 25. 60. (1927).
- 54. hurox, G. Filtrable bacteria. Unpublished data... (1921).
- 55. Rageli, C. v. Untersuchungen über die niedere Pilze und ihren Beziehung zu den Infoktionskrankheiten und der Gesundheitspflege (1877) (Quoted from Hadley, 22).
- 56. Relia. P. Les elements filtrables de l'ultravirus tuberculeux dans les urincs de sujets atteints de tuberculose renale. Compt. Rend. Hebd. Soc. de Fiol. 96. 21. (1927).
- 57. Ficolic. Ch. and C. Blanc. Etudes sur la fièvre recurrent. Arch. de l'Inst. (Tunis) 14, 105. (1914) (Quoted from Hadley, 22).
- 53. Foguchi, H. Etiology of yellow fever: V. Cultivation, morphology, virulence and biological properties of <u>Leptospira icteroides</u>. Jr. Expt. Led. 20, 13, (1919).
- 59. kovy. F. C. and R. E. Knapp. Studies on <u>Spirillum</u> oberneieri and related organisms. Jr. Inf. Dis. 3, 291, (1906).
- 60. Plagge, On filters (historical). Versamml. d. Baturf. u. Aerzte zu Lerlin. P. 353, (1886) (quoted from Eulloch. W. and J. Craw. 8).
- 61. Rosenow, E. G. Streptogoggi in relation to the etiology of epidemic encephalitis: Experimental results in 81 cases. Jr. Inf. Dis. 24, 329, (1924) (quoted from Hadley, 22).
- 62. Rossi. Paul. L'ultra-virus tuberculoux peut exister dans le lait provenant d'une manelle tuberculeuse. Compt. Rend. de l'Acad. des Sci. 186, 1867, (1928).
- 63. Sweany, H. G. The filtrability of the tubercle bacillus. Am. Rev. Inberculosis 17, 77, (1928) (Quoted from Hadley, 22).

- 64. Tomaselli, J. Jontributo allo studio del batteriofarge. (1923) (Quoted from Hadley, 22).
- 65. Valtis, J. Sur la filtrabilite du Bacille tuberculeux à travers les bougies Chamberland. Ann. de l'Inst. Pasteur 38, 453, (1924).
- 66. Varney, P. L. and J. Fronfenbrenner. Effects of K mealth on filterability of bacteria. Proc. Soc. Expt. Eiol. and Fed. 29, 804, (1932).
- 67. Vasiliu, Titu, and Ch. Iriminoiu. Sur la filtrabilité des Bacilles tuberculoux des produits lymphogranulomateux. Compt. Rend. Hebd. Soc. de Biol. 94. 1311. (1926).
- 68. Veber, T. Sur la filtration du Bucille tuborculeux du liquide de pneumothorax artificiel sur bougie Chamberland L. Compt. Rond. Hebd. Soc. de Eiol. 94. 8. (1926).
- 69. Wohlbach, S. H. On the filtrability and biology of the spirochaetes. Am. Jr. Trop. Pis. 2, 494, (1915).
- 7). Linsser, Rans. On postulates of proof in problems of the becterial life cycle. Science 75, 257, (1932).

A dritique on the Filtrability of hacteria.

(Abatract)

The term H colony was introduced to distinguish between colonies closely rescalling the G types, reported by hadley, except for filtrability, which were produced haphazardly by rapid transfer and a ing 7 species of microorganisms in 7 different hedis, and the true G type. No relationship could be established between the appearance of the h colonies and the pH of the media, concentration of chemical (LiGL), dye, characteristics of the organism, or the state of dissociation.

The serial dilution method of Frueckner and Sherman did not demonstrate the presence of primitive forms or G types in sewage or skim milk.

The appearance of a colonies from the bacteriophage filtrates of Salmonella pullorum and tempelosocous aureus upon the application of the rapid serial plate transfer method of Haudurey was not dependent upon the factor of a ing but apparently upon the method of technic itself. Similar series of bacterioph se filtrates to which streak subculture plates were applied remained sterile.

Adverse temperature conditions were shown to favor the production of M types. Rapid scrial plating, selective plating, had no effect upon the production of M types.

An historical review of filtration and the factors influencing filtration were presented.

It was shown that when amounts 1 as than 40 cc. were filtered through berkefeld filters (2 1/2 x 3/4 inch) sterile filtrates were obtained in 97 per cent of 500 filtrations.

The method of fractional filtration was applied to the study of the effect of E medium on the filtrability of Esch. coli. A filtrable or soluble portion of E medium was shown to enhance the filtrability of this organism.

The following terminology was used to differentiate the three forms of or anisms commonly encountered in filtrations. 1. G colonies - formed from organisms in the positiongia phase, possessing filtrable gonidia, which upon the application of suitable technic will produce colonies microscopic in size. The various reactions of the culture are different from the normal

form. 2. Filtrable forms - or maisms capable of passing filters under carefully controlled conditions but which revert so quickly to the normal form that colonies microscopic in size are not produced. 3. If colonies - organises normal in form which produce colonies / icroscopic in size due to the influences of adverse physical conditions.

DEC 21 1948

JUL 13 1949

W. 1884

