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ABSTRACT

The two approaches to the problem of solving the algebraic and dif-

ferential equations describing systems are techniques such as the Laplace

transform, and time-domain techniques such as analog computer methods or

classical differential equation theory. This thesis demonstrates another

type of time-domain technique, numerical methods.

One of the major prdblems in the use of numerical methods is that

of accuracy. As an illustration of the technique of determining the ac-

curacy of a numerical method, a detailed error analysis of the Runge-Kutta

fourth order method is given. A second problem is that of determining

initial conditions in higher order systems. A numerical technique that

partially circumvents this problem is presented.

The ultimate goal of system study is design. Numerical methods can

be used effectively in system design. One such method that can be applied

to certain control system prOblems is presented along with an illustrative

example.
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I. INTRODUCTION

The development of the high-speed electronic computer has made

possible the practical use of numerical methods in system analysis. The

main objective of this thesis is to discuss the use of numerical methods

in the study of lumped-constant systems on the basis of the time-domain

solutions to the algebraic and differential equations describing these

systems.

Current methods of system analysis are usually based on the prOp- r

erties of transfer functions obtained by taking the Laplace transform of g

the differential equations describing the system. If the time-domain ?

solution of the equations is desired, it must be obtained by techniques

‘
Y
‘
?

-
:

i
n

such as partial fraction expansion. Since a partial fraction expansion

yields a sum of exponential time functions, a great deal of work is in-

volved in obtaining a plot of the system variables as a function of time.

Another common practice in system analysis is to obtain a set of

simultaneous differential equations which are equivalent to a block dia-

gram.by treating each s in the transfer functions as an operator repre-

senting the time derivative. The time-domain solution to these equations

is then obtained with an analog computer. Design is carried out by ob-

serving the effects of changing the system constants. If the number of

potentiometers which must be adJusted for each change of system constants

is not too large, the analog computer affords a rapid method of observing

system response.

Certain types of nonlinearity can be handled by analog computers with

such devices as servos and electronic multipliers, but techniques based

on the Laplace transform are limited to linear systems.
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Numerical techniques of solution have at least two characteristics

which make them useful in system analysis: (1) the time-domain solution

is obtained directly and it is comparatively easy to study the effects of

variations of the system parameters, and (2) nonlinear systems can be

analyzed.

The discussion of these numerical techniques is in four sections.

First a brief description of the equations that describe physical systems

is given. Next the numerical methods are presented. The application of

the numerical techniques to the solution of the system equations is pre-

sented, and finally a method of optimization based on successive analyses

is discussed.



II. THE EQUATIONS OF PHYSICAL SYSTEIV‘B

The problem of formulating the equations of physical systems has

been discussed at great length by several authors, for example Koenig

and Blackwell [5]. Only the results and steps which are influenced by

'tlre proposed use of numerical methods will be presented here. The nota-

ti on used follows that of Koenig and Blackwell.

There are three distinct sets of equations which describe the physical

systems under consideration. The first is the set of e-v+l circuit equa-

tions

BX=O
(2.1)

This set relates the across variables of the system. The second set con-

81 sts of v-l equations relating the system through variables and is called

the cut-set.

SY=O (2.2)

EQuations (2.1) and (2.2) together form a set of e independent equations

based on the topology or configuration of the system. Since there are 2e

Bygtem variables, e more independent equations are needed to obtain a

8Olution to the system.

The remaining e equations are the terminal equations which describe

“time components of the system. These equations in general are of the fol-

lowing form.

A11 A12 X1 = Al3 Alh Yl
(2.3)

A21 A22 Y2 A23 Ash X2

= t

X1 K1( ) (2.1+)

Y2 = K2(t)



h

where K1(t) and K2(t) are Specified time functions and the A are co-

id

efficient matrices. Xk and Yk are partitionings of X and Y of equations

(2.1) and (2.2). For linear systems the entries in the A matrices are

of the form

am 2 bnpn + bn-lpn-l + ...... + b0 (2.5)

where the bn are constants and pn:= dP/dtn. Normally n is two or less.

The numerical techniques described in section III permit more free-

dom in the form of the terminal equations. Specifically, the techniques

allow the bn to be functions of the system variables and of time. With

this freedom it is possible to describe nonlinear components by equations

in the form of equation (2.3).

Using the methods discussed in [5], it is possible to combine equa-

tions (2.1) through (2.h) to obtain a reduced set of algebraic and differ-

ential equations which must be solved simultaneously.

If a block diagram of a system is available, a set of differential

equations describing the system can be obtained by treating each s in the

transfer function as a derivative operator. Example (2.1) demonstrates

this method.
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k(l+Tos)(l+TlS) ‘13 1 Vi: 1/1;v 55L

. ’ 2 ’(1+5.7 Tos)(l lOOTls) 1+T28 l+Tms+Tm Tea

"6 I T38 | A

‘\ I 1+T38 l I\

\ V8

V

k3(l + b.75'rhs) 45 kit» I 1‘

l + The I |

.002 <1: < 1 T = .026 k = 1.83
l e v

T=.03 T=.2 x=.209

‘3 m 3 (2.6)

O < T3 < 005 To = 00h? kh = 1.9

0 < Th < .39 _ k = 10,000

2 _ 2
(k + leO+ T1]p + kTO Tlp )v2—(1+5.TI'Op+lOOT1p+-570T0Tlp )v3

v = (1 + T2p)vu

3

T317“ = (1 + T3p)v6

(1 + Tmp + Tm'repem'i9 = vh/kv (2.7)

v5 = kh¢9

(1 + Tup)v8 = k3(l + M75 '13,,er5

v7 = v6 + v8

V2 = V1 - V7

d



v.

I’.

I!»

.5“

 



III. NUMERICAL METHODS OF SOLVING ALGEBRAIC AND

ORDINARY DIFFERENTIAL EQUATIONS

This section of the thesis is devoted to a discussion of methods of

solving the algebraic and differential equations described in the previous

section. In any discussion of numerical methods, some mention should be

made of existence and accuracy of solutions. For most of the methods

discussed, treatments of error analysis are given in references [2], [3],

and [6], and will not be repeated here. In the case of the Runge-Kutta

fourth order formula a detailed error analysis will be given.

There are numerous methods available for Obtaining the solutions to

simultaneous algebraic equations [1, 2, 3, 6]. The method used in a given

problem depends on the number of equations to be solved and the required

degree of accuracy.

One of the simplest methods to code for a digital computer is the

Gauss reduction method. This method consists of upper triangularizing

the matrix A of equation (3.1).

AX = c (3.1)

This triangularization is accomplished by dividing the first equation by

the main diagonal coefficient and.then eliminating the first variable from

the succeeding equations. This process is repeated on each equation. The

solution is then obtained by a back substitution beginning with the last

equation of the modified system of equations. Although.this method is

simple to code, it is susceptible to round-off errors particularly when

the number of equations is large.

A procedure for reducing the effects of round-off error on the solu-

tion of algebraic equations is shown in equations (3.2) and (3.h). Let

X1 be the values calculated in the preceding method.

6
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AX = c f .2)

Subtracting (3.1) from (3.2) gives

A(xi - x) = c1 - c (3.3)

A51 = C1 - c (3.h)

where 51 is the error in X1. Solving equation (3.h) would yield the 51

if there were no round-off errors. Since there generally are round-off

errors, the calculated 5 are only approximate. This process may be re-
1

peated to attempt to obtain better values of'X although there is no
i

assurance that the process will converge. The Crout modification of the

Gauss reduction is well adapted to this procedure as pointed out by

Hildebrand [2].

The previous methods are applicable only to linear equations. Methods

which can be used to solve both linear and nonlinear algebraic equations

generally make use of an iterative technique, (see for example, Householder

[3])-

Suppose the coefficients of A in equation (3.1) are a function of x.

To solve this equation using an iterative technique, it is written in the

form

X = F(X) (3.5)

The iterative scheme is then defined by

x1”1 = rank) (3.6)

In general, F(xk) can be written from equation (3.1) in several different

forms. The convergence of the iterative process depends not only on the

form used, but also on the initial value of Xk.

Another method that can be used to solve sets of nonlinear algebraic

equations is apparent when equation (3.1) is written as
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r1(x) = o 1 = 1, 2, 3, ..... n (3.7)

Define the function M(X) as

n

m(x) = z |f1(x)| (3.8)

i=1

Clearly M is always greater than or equal to zero and will be equal to

zero only when the vector X is a solution to (3.7). Therefore the solu-

tion to (3.7) can be obtained by finding the vector X for which the func-

tion M(X) is an absolute minimum. Further comments on the process of

minimization will be given in section V.

As in the case of algebraic equations there are many numerical

methods available for Obtaining the solutions of simultaneous ordinary

differential equations [2, 3, 6]. Before these methods are discussed,

several remarks on the form of the differential equations and the exist-

ence of their solutions are necessary.

The differential equations describing physical systems are generally

a set of nth order simultaneous differential equations. Since n is usu-

ally greater than one and since many of the numerical methods are appli-

cable only to systems of first order equations, it is convenient to reduce

the nth order system to a system of first order equations. The following

example illustrates this procedure.

Example 3.1

Reduce the nth order differential equation (3.9) to a system of

n first order equations.

n . n-l

any( )+ an_ly + --..- + 30y + f(y.y .o---.y( ).t)=0 (3.9)

y1(0)=k1 i = O, l, 00000, 11"]. (3e10)
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Let y = 21

y" = 22 = ZI

3 (3-11)

.(n-l)_ .

y( ) - 2n-1 2n-2

n .

y - zn-l

Then the n first order equations obtained from (3.10) are

anzn-l = 'an-lzn-l - an-2zn-2 -°°'°°-alzl

-8.Oy -f(y,zl,22,.....,zn-l,t) (3012)

21 = z1+l i = 1, 2, .0000, n.2

y = 21

The initial conditions of the variables in (3.12) are

Z (0):}: 1:0, 1, 2, eeeee, n-2

1+1 1+1 (3.13)

y(0) = k0

The procedure illustrated can be applied to a system of higher order

equations to yield the set of first order equations

Ax' = 0(x, t) (3.1h)

X(to) = K (3.15)

To solve equation (3.1s) using the techniques to be described later, it

is necessary to write (3.1h) in the form

x’ = F(X, t) (3.16)

This requires that A be nonsingular. Further discussion of this problem

will be given in the next section.

Once the set of differential equations (3.16) and the initial condi-

tions (3.15) are established, the question of the existence of a unique
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solution must be considered. This is necessary since numerical methods

will give an answer whether a solution exists or not and because the con-

ditions required for existence play an important role in the error analy-

sis of the numerical methods. A complete discussion and proof of the

following theorem.can be found in Ince [h].

Theorem:

Given a system of ordinary differential equations (3.16) and a set

of initial conditions (3.15), there exists a unique set of continuous

solutions which assume the values specified by (3.15) when t = to and

satisfies the differential equation (3.16) in a region defined by

It - tol 5 d provided the following conditions are met:

a) F(X, t) is single valued and continuous in all its arguments

in a domain D defined by

lt - tol‘g a

(3.17)

lx - X(to)| 5 B

where if Y = (yiJ) then [Y] = (ly1J|).

b) - n -

|r(x, t) - F(x, t)| < ( 2 c Ix - x l) = 000 (3.18)
i i 1

i=1

where the x1 are the arguments of F in the domain D.

c) if M.is the greatest upper bound of F in D then

d = min (a, biJ/ M). (3-19)

This theorem gives a set of sufficient conditions for the existence

of unique continuous solutions to the differential equations. The condi-

tion of inequality (3.18) is known as a Lipschitz condition and will be

used in the error analysis of the Runge-Kutta method.

Once the existence of a solution to a given set of differential equa—

tions is assured, there are two distinct types of numerical methods which
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may be used. One type is based on a Taylor series approximation and the

other on quadrature formulas. In the following discussion X1 represents

the vector X when t = t1. The quantities h, t1,

t1 = t0 + ih (3.20)

and t0 are related by

An example of a method based on quadrature formulas is Milne's method.

This method involves two separate formulas, a predictor (3.21) based on

Q2“ and a corrector (3.22) based on Q22, (see Kunz [6]).

_ uh . . _n,.

xn+1 - xn_3 + 3 (2xn_2-xn_l+s>.n) (3.21)

_ .2 . . .
xn+1 — Xn-l + 3 (xml + hxn + xn+1) (3.22)

Assuming X _1, and Xn are given, the predictor (3.21) is
n-3’ Xn-2’ Xn

used to calculate an estimate of Xn+ This estimate is then used in the1.

corrector (3.22) to obtain a better value of Xn+ . The corrector may be
1

applied several times to the new value of Xn+ to yield better values of

l

X . These formulas have accuracies comparable with the Runge-Kutta

n+1

formulas and have the advantage that only one evaluation of F(X, t),

equation (3.16), is necessary for each evaluation of the predictor and

corrector formulas. Furthermore, if h is small enough, only one appli-

cation of the corrector will be necessary.

The Milne formulas have the disadvantage of requiring four starting

values of X. To obtain these starting values an alternate method such as

the Runge-Khtta method must be used. This alternate method must also be

used if it becomes necessary to reduce h at some point in the calculation

to decrease truncation error. Since the Milne method actually requires

two methods to be coded and stored in a digital computer, it is not prac-

tical in many situations.
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A method which requires only the initial conditions (3.15) for

starting values is the Runge-Kutta fourth order approximation. Although

this method does not require several starting values, it has the dis-

advantage that the function F(X, t) must he evaluated four times in

calculating Xn+1 from Xn' The fact that only one set of formulas is

required makes the Bunge-Kutta method more practical in most situations.

A common Runge-Kutta fourth order scheme is given by the following equa-

tions.

Xi+l - x1 = AX1 (3.23)

, - l I II 00' IV

nxi — B (A xi + 2A xi + 2A xi + A x1) (3.2s)

n xi ; h F(Xi, t1) (3.25)

u”x = h F(X + 9: x t + 9) (3 26)
i i. 2 i’ i 2 ‘

A”’X =hF<X .211, t +2) (327)
i 1 2 i’ i 2 °

AIYX = h F(X + A”’x t + h) (3 28)
i i i’ i ‘

As an example of the procedure used in determining the accuracy of

a numerical method, a detailed error analysis will be given. In the fol-

lowing equations a bar over a quantity indicates that it differs from the

correct value due to some type of error, (e.g., round-off error).

The Bunge-Kutta formula is an approximation to a Taylor series.

Assume that the solution to the differential equation, x(t), can he ex-

panded in a convergent Taylor series around the point ti‘

_ . ..h2 ...h3 (Iv) h“

x1+1 ‘ Xi ' Xih + X1 5! + X1 ‘3: + Xi H: + Ri (3°29)

(v) 31.5.. (IV) ., 3 :15
R1 — x (Zi”i)5: - F (hi,.1 5: (3.30)

where 21 is in the interval (xi,xi+l) and 11 is in the interval (t1,ti+l).



13

If equations (3.25) through (3.28) are expanded in Taylor series

and substituted into (3.2a), Axi will agree exactly with the right hand

III.

side of (3.29) through terms involving F . Therefore the nxi defined

by (3.2h) differs from the true value of AXi in (3.23) by an amount

TV
- I

¢1 = R1 + % (2R" + 4R"' L p I (3031)

"', and RIV are higher order terms in the expansions ofwhere R", R

equations (3.26) through (3.28) and are of the form

5

R“ = %, F(IV)(Z, 1) (3.32)

where Z and 1 are in the apprOpriate sub-intervals of (Xi’ti;xi+l’ti+l)°

¢i is called the truncation error.

In general the arguments used to compute the An of equations (3.25)

through (3.28) are in error, with the result that the An are in error as

indicated by the following equations.

a Xi = h F(Xi, ti) (3.33)

FXahF(i+9-:X tel) (3311)
i i. 2 i’ i 2 '

's"""'x = a so? + 9—13 x t + 9-) (3 35)
i i 2 i’ i 2 °

21721 = h F0?i + A”’ xi, t1 + h) {3-36)

Note that the errors in each A (as indicated by the bar) are due only to

errors in the arguments of F and not to errors in calculating F itself.

Let 51 be defined by the following equations.

__ _ 1 I .or .III IV

51 — Ax1 - Ax1 —z(bi + 2bi + 2o1 + 51 ) (3,37)

I D >
3

a p
.

)
3

1 - i 1
(3.38)

bi = h”x - A"x (3.39)



bi =A Xi-A x1 (3.140)

Iv _ Iv IV
61 — A x1 - A xi - (3.h1)

Using the Lipschitz condition (3.18), a bound can be placed on 61.

51 < h c(zi) (3.u2)

where 21 is in the interval (xi, x1+1). Note that 51 is zero lf xi is

exact and if there is no computation or round-off error in the evaluation

of (3.2h) through (3.28).

In general, each A in equations (3.21;) through (3.28) will also be

in error as a result of round-off and other computation errors. Let this

error in each An be symbolized by “n and the round-off error made in eval-

uating (3.2h) by no, then the resulting error in AXi is called n1 and is

defined in (3.h3).

III

"1 = q: + %(n£ + 2q£' + 2q1 + qgv) (3.h3)

Notice that the error in Aux1 due to n:‘1 is included in 5:.

The total error in computing the (i + l)8t point from the 1th point

is given by

Xi+l - Xi = AX1 + E1 (3.hh)

where ,

E1 ‘__\_ ¢i + 51 + 111 (3.115)

Although E1 represents the upper bound of the error, the actual error will

rarely approach this figure.



IV. APPLYING NUMERICAL TECHNIQUES TO SYSTEM.ANALYSIS

Using the numerical methods discussed in section III, it is possible

to solve the system of equations presented in section I. If the equa-

tions are all algebraic or all differential, there is very little to do

except choose the appropriate numerical method and solve them.

In the case of mixed algebraic and differential equations several

more problems must be solved before the solution can be obtained. In

particular, the prdblem of solving for X' mentioned in connection with

(3.16) must be resolved. The question of initial conditions in mixed and

in pure differential systems must also be considered.

The problem of mixed systems and of solving for X' can be illustrated

best by preparing (2.7) for numerical solution.

Example h.l

The first step is to reduce the second order differential equa-

tions to first order equations. Equation (2.7) then can be written as

the first order system (h.1).

k(To+Tl)pv2 + kToTlp2 -(lOOT1+5.7TO)pv3 -570T6T1p3 = -kv2 -v3

pv2 = 0‘2

p"3‘0‘3

T2th = v3 -vu

T3pvh -T3pv6 = v6 (h.l)

Tmpdg + TmTeps9 = vh/kv -59

15
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It is impossible to solve for the derivative terms in (h.l). One

procedure for bringing up the rank of the differential equations is to

differentiate the algebraic equations and possibly some of the differen-

tial equations. The resulting system is then reduced to a system of first

order equations in which it is possible to solve for the derivative terms.

By eliminating v from the algebraic equations and then taking the

7

second derivative of the remaining algebraic equations and the first

derivative of the fourth, fifth, and eighth differential equations, a new

system of mixed second and first order equations is obtained. When this

system is reduced to a system of first order equations, it is possible to

solve for the derivative terms. The result is shown in (h.2).

p69 = Vh/(TmFekv) -(a9 + TmP9)/(TmTe)

12% =- 69

p"5 " as

p"8 = 0‘8

pas = (l/ThM-aa + k3a5 + b.75k3Th(pa5)i

Wu = an ((4-2)

111" = (1/T2)((13 " ab)

”6 = 0‘6

Pas = (1/T3)l-a6 + T3(pau)]

p"2 ‘ C7‘2

102 = Pevl "(w8) “(1116)

1"’3 = “3

1123 = -{1/(570T0T1)]{-kv2 'k(To*’r1)°‘2 + v

+(5.7To +lOOT1)a3 -kToTl(pO£2) ]

3
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It should be noted that the derivative terms appearing on the right

side of some of the equations can be written in terms of the variables.

For coding and computation purposes it is easier to use the equations as

shown in (h.2) since terms common to several equations are emphasized.

Probably the most difficult problem connected with solving the dif-

ferential equations describing a system.is determining the required initial

conditions. The only reason for analyzing a system on the basis of the

differential equations is to determine the response of the system to tran-

sients. If the steady state characteristics are desired, the system will

be described by algebraic equations. In the case of a.c. systems the al-

gebraic equations will have complex coefficients. These equations can be

solved by the methods of section III. The Crout method can be used to

solve systems of equations with complex coefficients [2].

Since it is generally very difficult to determine the correct initial

conditions of the variables for a given driving function, the following

method of attack is useful. The "steady state" values of the variables

are determined by algebraic means. The driving functions are then approx-

imated by functions whose derivatives permit the use of the "steady state"

initial conditions. For example, the driving function v in (h.2) would
1

need to have a differentiable first derivative and a second derivative

equal to zero for t equal to zero.

In order to approximate discontinuous functions such as step func-

tions, the rise and fall times of the approximating functions are made

short with respect to the system response times. For example, the poly-

nomial (h.3) may be used to approximate the leading edge of a step func-

tion when the first and second derivatives must be zero at the beginning

and end of the leading edge.
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 ( 1 (t5 tlth t§t3 ) (o) (u sVt)-§'§-—-2-+ 3 a+v .4.)

where v(0) is the initial value of v, t1 is the length of the leading

5

edge, and t1 a is the height of the step. This technique will be used

\

in solving (4.2) in connection with section V.

If the system‘being studied has nonlinear elements, then F(X, t) in

equation (3.16) will have coefficients which are functions of one or more

of the variables. The only difference this will make in the numerical

treatment is that at each evaluation of F(X, t), the appropriate values

of the coefficients must be determined on the basis of the values of the

system variables .

In the case of the Runge-Kutta method, the errors caused by nonlinear

coefficients appear in (3.25) through (3.28). For example, in computing

Avai, the value of x which must be used in determining the values of the

1’0

x Since x + A”'x
i' i i

l’ the coefficients computed on the

coefficients is Xi + A generally is not the cor-

rect value of X at ti + h, namelyux1+

basis of X1 + A"'Xi may be in error. This error is included in 51 of

equation (3.h5). This error can be minimized by using small values of’h

since the nonlinear coefficients are more nearly constant over small

changes in the variables. The coefficients must be single-valued func-

tions of the system variables.

In the case of algebraic equations with nonlinear coefficients, more

than one solution may be possible. Since an iterative or a minimizing

technique must be used, the solution obtained will depend on the starting

point of the iteration or minimization. For certain starting points it

may not be possible to Obtain a solution. This problem will be discussed

more in section V.
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The methods of computing the values of nonlinear coefficients are

also of some interest. If the exact functional relationship is known,

it should be used since it will yield the greatest accuracy. For many

components the relationship will be Specified by curves. In this case

some sort of approximation must be used {2, 3, 6, 7]. One method would

be to store values from the curves and interpolate between them. A more

practical solution from the standpoint of computer memory requirements

is to obtain an approximating polynomial. In general a least squares

polynomial will be used. In theory, polynomials can be obtained to

approximate functions of any number of variables, but it becomes in-

creasingly difficult to obtain sufficient accuracy as the number of

variables is increased. The only satisfactory way of determining whether

a given polynomial gives the required accuracy is to check the true value

with the value produced by the polynomial at several points in the op-

erating region.



V. OPTIMIZATION BASED ON SUCCESSIVE ANALYSES

In the preceding sections the methods of obtaining a numerical solu-

tion to the differential equations describing systems have been outlined.

In this section a.method of finding values of system constants which

give a better system response will be presented.

Specifically, the values of system constants are desired which will

give a specified response to a given input. For instance, in Example

2.1, the values of'Tl, T and Th which give the minimum1rise time of3:

(39 for a step function applied to vl might be desired. The technique

used in this type of problem is to define a function, which is a measure

of the deviation of the actual system performance from the desired per-

formance, and minimize this function with respect to the system constants.

This is the same type of process suggested for obtaining the solution to

the nonlinear algebraic equation (3.7).

A typical form of a deviation function is

w(x1) yi) t1) lxi - y1| (5‘1)

where w(xi, yi, ti) is a weighting function greater than zero, x5- is the

value of the output variable at ti’ yi is the desired value of x at ti,

and the ck are the variable system constants. The weighting function

can be used to give greater emphasis to certain types of deviations, such

as overshoot. The summation on 1 running from 1 to n corresponds to a

solution of the differential equations from t=O to t=nh. Since D is al-

ways positive, it has a lower bound.

There are several ways of minimizing D(ck) with respect to the ck,

given starting values of the ck. One technique is to repeatedly change

each ck by an amount equal to the negative of the k component of the unit

20



21

gradient vecto. of D as defined by

 

 

 

Ac : _ 850

k ack (5.2)

( El ‘81) 2 1/2

i=0 “.1

  

The minimization is considered complete when the magnitude of the grad-

ient of D is less than a given amount. This method has two shortcomings:

(1) a great deal of computation is required to determine the components

of the gradient vector, and (2) a saddle point in the function D will

cause the gradient of D to be zero.

An alternative scheme which requires less computation and will not

be troubled by saddle points, is minimization on one variable at a time.

In this method c is increased by an amount A and D is computed. If D

l

is smaller, cl is increased by 2A and so forth. If c1+A increases D,

then c -A is tried. When no further reduction of D can be obtained by
l

changing c1, the process is repeated with each of the other variables.

After this process is completed, A can be reduced and the minimization

continued. The computation is terminated when no further reduction of

D is possible using values of A greater than a given amount.

In general, a finite minimization process can not yield a true mini-

mum. Consider the problem of’minimizing the function shown in Figure 5.1

with respect to x.

f(x)
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It can be seen that if the starting point was greater than x3 a relative

minimum would be found near x , and if the process started with x less

than x1, a value near x0 would be indicated as the minimum. Since the

minimization is of necessity a finite process, x0 would be found for a

minimum, in the absence of computation and round-off errors, only if x0

happened to be one of the points at which f(x) was evaluated.

In the case of solving algebraic equations, the minimum of the func-

tion (3.8) is known to be zero if a solution exists. In the case of a

1
I
!

deviation function for improving system.performance, the minimum.will not i

usually be known. Therefore the only statement that can be made about a a

set of system constants found by this process is that they are the best

 set that can be obtained using this process and the given starting values. a

Different starting values or a different order of minimization (in the

case of the one variable at a time technique) could yield a different

minimum.

As an example of this technique, the system of Example 2.1 was opti-

mized to give minimum rise time of 69 to the step function inv1 which

results in a 1% change in the output variable, 09. The system was Opti-

mized with respect to the constants T1 3,

was approximated using polynomial (h.3) with t

, T and Th’ The step function

1 = .05. The D function

was defined as

.6 ,

D = (125.5 - )2 at. (5.3)
f; 9‘9

The Runge-Kutta method was used with h = .001 from t=0 to t= .l and h=

.0025 for t greater than .1. The starting values of T1’ T3, and.Tu and

the corresponding solution of 59 are shown in Figure 5.2. The result of

the optimization and the new solution of 939 is shown in Figure 5.3. The
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initial conditions of the variables and the values of the variables for

t greater than 1.5 are shown in Table 5.1.

Table 5.1

Initial conditions: Values for t > 1.5

$9 = 12ho25 69 = o 69 = 125.5 39 = 0

v1 = 19.3622. oz2 = 0 v1 = 1.9.8591 (12 = 0

v2 = .022738 013 = 0 v2 = .022967 (13 = 0

v3 = 227.378 on = 0 v3 = 229.665 on = 0

vb = 227.378 oz5 = 0 vi; = 229.665 (15 = 0

v5 = 236.075 0‘6 = 0 v5 = 238.145 016 = o

v6=0 (18:0 v6=0 018:0

v8 = h9.3397 v8 : us.836l



h.-s‘

 
 

 



VI . CONCLUSION

A few additional comments on the practicality of this method of

analysis are in order. One rather obvious disadvantage is the difficulty

of studying the stability properties of a system using time domain analy-

sis. For linear systems, stability can be studied by computing the

eigenvalues of F, equation (3.16), although the computation is difficult.

The other major problem connected with numerical methods in the

time domain is that of machine time and coding time. In all but a few

1’
!

cases, these methods will have to be carried out using a floating point :

scheme since the scaling difficulties in a problem of this size prohibit

the use of the faster fixed point operations. Even so, running time is
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not completely unreasonable. For example, the solution to the fourteen

simultaneous equations (h.2) was obtained at the rate of about thirty

points per minute using a floating point routine with an add time of

approximately two milliseconds.

The most serious problem is that of coding time. For numerical

methods to be used effectively, general programs must be written that

can perform a certain type of analysis on any one of a given class of

systems. For example, a program was written in connection with this

thesis which will perform the optimization discussed in section V with

respect to any number of system constants. The only thing the programmer

must provide is a routine to calculate F(X, t), equation ( 3.16), and the

appropriate initial conditions and other required constants. The tech-

niques are almost useless unless these general programs are written

since coding time for a problem of this kind is at least several days.

25
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