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INTRODUCTION

The object of this thesis is to determine a criterion for the

calculation of the maximum value of beam deflection due to live load

which will not cause the plaster strain in tension, in an associated

ceiling or wall panel, to exceed a maximum value beyond which plaster

failure would result.

In the fifth edition of the Steel Construction Manual of AISC (3)
 

is the existing specification:

"Beams and girders supporting plastered ceilings

shall if practicable be so proportioned that the

maximum live load deflection will not exceed

1/360 of the span."

It seems that this blanket rule of thumb might be refined for designs

of greater precision if the value for the limiting strain were deter-

mined for various plasters; and if the relation between strain and

deflection were stated mathematically for representative conditions

of loading.

As far as could be determined by reference to the Industrial Arts
 

Index and the Engineering Index no articles are available on plaster
 

strain caused by beam deflection.

Plaster

The plasters used were those packaged by the U. S. Gypsum.Company.

Several types and mixtures were tested; basically they all contain

calcined gypsum. Plaster of paris is the pure form (2CaSO4 plus HZO).

Keenes cement, a hard finish plaster, is made by ndxing alum with the

calcined gypsum and recalcining.

-1...



The finishing lime plaster is made with hydrated lime, Ca(OH)2,

slaked and mixed with guaging plaster. In this case the development

of strength is a progressive process depending on the formation of

CaCO3 by 002 in the air."



THEORY

Plastered Beam
 

The maximm deflection (3) in a beam of length '1', under uniform

loading is:

beef38

where ‘5'13 the deflection; 'w' is the load per unit of length; “8'

is the modulus of elasticity, a constant for the material of the beam

within the proportional limit; and 'I' is the moment of inertia about

the horizontal axis ’of symmetry of the section called the neutral axis.

The moment of inertia (4) in Figure l is:

(2) I 2 bd3

'1'2

The maximum stress (4) in a homogeneous beam, as in Figure l, is:

(3) f : Me , the flexure formla,

I

 

where 'q" is the unit stress; 'M' is the mximum moment; and 'c' is

the distance from the neutral axis to the extreme fiber.

The amount of stress in any fiber is proportional to the distance

from the neutral axis as shown by the arrows in Figure 2. Therefore

the maximum stress occurs in the extreme'fiber. By Hookes law (4),

strain is directly proportional to stress:

(4) E:_u_;_ or egg;

6: E
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or combined with equation (3)

(5) €max : lunxc

BI

Thus the maximum strain denoted by‘e'also occurs in the extreme fiber.

In the case of) a plastered beam as shown in Figure 3, it is necessary

to consider the two materials acting together as an equivalent homo-

geneous section (Figure 4), where the ratio of the widths bl/b is dir-

ectly proportional to the ratio of the modulus of elasticity of

plaster to the modulus of elasticity of the beam; the thickness 't'

of the plaster remains unchanged.

 

So, b1 I Ep or bl = E ; b

b EB
E6 '

Let : " th b : bg b en 1 g .

EB

It will be shown that the value of 'I' of the transformed section

in Figure 4, differs from the value of 'I' of the beam section in

Figure l, but that the difference is very small and may be disregarded.

Also, an exact value for the distance from the neutral axis to the ex-

treme fiber '§" will be found. However, the value of '5." differs so

slightly from the value of d/2 + t (the 'c' distance in Figure 3.)

that this difference may also be disregarded.

The distance from the neutral axis to the extreme fiber of the

transformed section in Figure 4, is found by balancing the moments

of the areas about the neutral axis:



MQ+t-§) : bfiw'f)

2 2

bd2 y bdt - bdy - blty - bltz

2 "2 '

on+bmy =g£+be+
2

b 113.2

2

y : §§E_ + bdt + bgt?

 

blt + bd

substitute: b =bg , where g: E2

E

o
n

t = dk , where k = t/h

§ g bd2 + bkd2 t bgkzdz

'5 "'2 "
 

bgkd 1‘ bd

.. 2

y- gu+2k+s)
2 .

legk

 

The term gk2 in the numerator may be neglected since it is very

small compared to the other terms, so:

§=dfl(1+%@1o~:

lept

BB (1

This is the distance from the neutral axis of the transformed

section to the extreme fiber, that is:

and neglecting the term t/d Ep in the demonimator

E
B
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(6) ’czdft

z

The value of t/d lip will be very small. The modulus of elasticity

of plaster will nearlyEglways be much smaller than the modulus of elas-

ticity of the beam material. I? would be a large value for t/d occur—

ring when 1/2" of plaster is applied to a 5" beam.

The moment of inertia of the transformed section about its centroi-

dal axis is found by using the parallel axis theorem (4).

H
I

l
l

.. 2 3 s - kd 2
bd3 + bd Ei/Z {- kd - y] + b k d + bgkd[y __1

12" 12 2

very small

2 2

bd e bd<d Ham-1 1... bd.k “Nd-1:21—2 7 rrgr)‘ * 5 +31: 2

bd3 9 10d3 . 3 (1-2k)(gk) 2 + 93: . Sgk (1+? - eff

(
fl

  

   

T2— I'z" (1 + gk)‘ 12 Ti + ng

very small

12 12 1‘2 gk’eoo 12 112gkf .0.

very small

l
l 0
!

bd 1 Q» 3 k '

12 [ I f ng

Thus, the moment of inertia of the transformed section is

3 1: (it/d Ep

(7) 1?- bd 1: E“ .

n- We.
E

B

and disregarding the effect of plaster

1: bd

'T2'

-7-



When the value of 'Ep' approaches the value of 'EB', the value

of 'I' in equation (7) should be used. Since E2 is small, it is

assumed in the following computations that thebgoment of inertia of

the transformed section is equal to the moment of inertia of the beam.

The tensile strain for the transformed section is found by

combining equations (l),(5) and (6).

MM C

6m: :- 'E'I ' = 384 um4:12 j- t)

smax 57384 . WI! 5 13‘1‘1’f

EI

The maximum value of moment (4) for a beam with uniform loading

 

is:

(a) rm : W13

"s""'

30 Enrax : 5. 384XN12‘(d[2 it)

5x8 W13:

= 8.384.d(1+2t/d)

"1'? "4'6 '2'

(9) €- J.d.ss4(1+2t/d)= .d.24(1 2t/d)

~ m“ ‘T 1‘ s I I B— *

Similarly for a beam.under third point loading (4), (see Figure 11).

“max I Pl

3

(10) 8mm: = 23P13 .

648 E1 '~ .

(ll) emax 3 S . d . 108 (net/d)

I I' 73'

The family of curves in Figure 5 shows the manner in which 471

varies for the different values of d/l and t/d when the maximum strain

is taken as 0.0005.

-3-
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Plastered wall Panel
 

When a plastered wall panel is supported as in Figure 6, the de-

flection of the supporting beam at 'A' results in distortion of the

plastered wall panel. It is assumed that the support at 'B' in

Figure 6 does not deflect. The relation between the deflection of the

beam and the unit strain in the plaster is found as follows:

The unit strain, 0' , in the plaster is

(12) 5: 8‘

Where ‘8' is the deflection in the beam of 'A' in Figure 6 and

'L' is the length of the plaster panel. The shearing modulus of

elasticity, 'G', is the ratio of unit shearing stress 'Ss' to unit

strain, K .

(13) G: s ,or
f-

The panel is in a state of pure shear so the principle stresses

are:

(14) s0 = st = s

as shown by the stresses on elemental areas in Figure 7 and Figure B,

or the maximum unit strain is, from Hookes law,

(15) = s [- usc = s (1+v)=GS(1n

e t E ‘L’Fz‘fl F's—2

Where '3' is the modulus of elasticity in tension and‘fl'is

Poissons ratio. Since

-10-
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(16) E 3 2(1 4-4) G.

it follows that,

(17) 6 = 5/2L

01' _§_=2e.

L



EXPERINENT

The plaster test bars were made up in a form.as shown in Figure

9. The nominal size of each bar was 1“ x 3" x 24". Three sets of

forms were used so that three similar bars could be made at one time.

Nine different mixtures of three bars each were made. The pro-

portioning of the mixtures was that recommended by the Gypsum Com-

pany (5).

As soon as the plaster had set enough to be sufficiently firm

the bars were removed from the forms and stored so that air could

circulate freely on all sides for uniform drying.

Small holes on the surface of the bars were patched with plaster

of paris to reduce the concentration of stress at thoeapoints.

When the bars were thoroughly dry, usually about one week, after

forming, they were submitted to a bending test on the apparatus shown

in Figure 10. The supports at 'A' and ”A'" were placed 8' apart, or

approximately at the third points of the bar. The load applied at 'B'

was divided evenly between 'C' and 'C". With this arrangement the

bar was subjected to a constant moment between the two supports as

shown in the diagram in Figure 11. It is believed (1) that the break-

ing stress in a test of this kind on brittle material is less than

center loading due to the break always occurring at a weaker section.

The weight of the bar was so small in comparison with the applied

loads that the weight was neglected in the calculations of stress and

strain.



 
 

Loading Disgra-

u
l
fi

 

loeent Diagram

Figure 11
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In the testing machine the loads were applied gradually and read-

ings of deflection were made by means of diai guages, 'D’ and 'D" in

Figure 10. From.these values and the careful measurement of dimensions

of each bar, values were calculated for the modulus of elasticity,

maximum.tensile stress.and maximum strain in each bar. Average values

of these quantities are tabulated in Table I, and the stress strain

curves are shown in Figure 12.

The modulus of elasticity was calculated as follows: The ex—

pression for maximum deflection under third point loading is;

Jmex: 23P13 or §_5__vn__§_

648 El 1296EI

Where P is the load at one end and W’is the total load applied

at'B'in.Figure 10. From that equation:

E = 23m")

I1296 maxf_f

 

The value of the length, '1', was 23.82 Smax was the sum of the two

guage readings for any one load.

The moment of inertia, 'I', was calculatedfor each bar using:

I = bd3

12

where 'b' was the width of the bar,.nominally 3", and 'd' is the

height of the bar, nomdnally 1". There were minor differences

between the dimensions of different bars due to variable shrinkage in

the plaster and perhaps some swelling of the wood in the forms.

-15-
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TABLE I

 

 

Nflx Average Average .Average Average Average

specific E x 10b Max. max. Max.

Wtefi/in3 (tension) in

 

Cement plaster

neat 0.0542 1.37 513 0.0435 0.000375

Cement plaster

sand 1:2 by wt 0.0653 1.58 625 0.0446 0.000395

Finishing lime

plaster 0.0373 0.33 118 0.0417 0.00359

Cement plaster

vermiculite

1:1 by vol. 0.0325 0.37 129 0.0711 0.00350

Average for graph Figure 13 0.0037

WOod fibered

plaster neat 0.0511 1.25 612 0.0542 0.000498

Keenes cement

hard 0.0580 1.40 827 0.0637 0.000590

Average for graph Figure 15 0.000544

Plaster of paris 0.0475 1.02 777 0.0887 0.000760

Guaging plaster 0.0528 1.19 885 0.0868 0.000728

Moulding plaster 0.0479 1.24 905 0.0830 0.000731

Average for graph Figure 13 0.00074
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Tensile stress was calculated from the flexure formula, I 3 Pic ,

I

 

where 'ii' was the mimm moment due to the given load, "17':

.11 3 V! x 7.9 or M 3 W 0 3.95

2

c = d/2

and 'I' is the same value as before a constant for each bar. The value

of strain was the ratio of the stress to the modulus of elasticity.

6:};

E



DISCUSSION

The family of curves in Figure 5 represents the variation in

the limiting allowable ratio of beam deflection to beam length, 3/1,

as the depth to length ratio of the beam, d/l, changes when the

plaster strain is assumedto be 0.0005. The third variable is the

ratio of plaster thickness to the beam depth, t/d. Each of the five

curves represents a different value of that ratio. The dashed line

is, 6/1 I _1_ , or the specified maximum value of 5/1.

The grigi: in Figure 5 shows that the depth to length ratio is

equally as important as the deflection to length ratio, because as

the 'd/l' ratio increasés the limiting allowable ' 5/1' decreases.

From the herding tests conducted on the plaster bars the average

naxinmm values of strain were calculated (see Table I).

Using these values the three curves in Figure 13 were plotted.

The t/d ratio is taken as 0.06 because that is the average t/d ratio

used previously and the variation between the different values of t/d

was snall (Figure 5). The values of émax are those found experi-

mentally. 0f the nine types of plaster tested there seemed to be

three groupings for 6, shown averaged in Table I. These values were

low compared with a value of 0.0013 for plaster of paris in Properties
 

of Engineering Material, (2).
 

It is evident from these two graphs Figure 5 and Figure 13, that

the limiting value of ' 8/1' is dependent upon the value of d/l and

the value of mximum plaster strain; and is affected, though in a

lesser degree, by the thickness of the plaster.

-20-
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18 Relation of deflection-length to depth-length ratiolights
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In equation (9) where

€max ‘5 Sm §x24 (1+2 t/d)

5

it is seen that the maxim allowable deflection is inversely propor-

tional to the maximum value of plaster strain and to the depth of the

beam and directly proportional to the square of the length; thus,
I
I

N H

M8m

6:1an

where k
 

"5111 y. 2 why

The mxinnlm allowable deflection to length ratio, J/l, my be

found by using the graph in Figure 14, if the value of maximum plaster

strain is known and the depth to length ratio, d/l, of the beam may

be calculated. The value for 'd/l' is found on the abscissa and its

ordinate is followed until it meets the curve of the desired plaster

strain. The vertical coordinate of this point is the naximum allow-

able deflection to length ratio for that beam.

Comparing the “/1 values found by using equation (9) with the

allowable naximum ratio of for average values of plaster strain
.3.
360

it is seen that ' 5 -'-' 1 ' exceeds the allowable maximm of

T 3%

equation (9) as values of d/l increase; though for the lower values

of d/l the value of A71 might be considerably greater than

:5.1:

T350

Though a 5/1 of 1 has been considered "safe", actually

the maximm live load deflection for which the beam is designed my

-22..
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never be attained; also the action of the lath, especially metal

lath may strengthen the beam.and so reduce deflection; and in the

plastered ceiling, failure in the plaster may produce a fine crack

or series of cracks which does not constitute failure of the ceiling

because they are so small.

Equation (17), Smax :ZémaL shows that in the case of a

plaster panel the actual amount of the deflection of the supporting

beam.is critical when the ratio of the deflection to the length of

the plastered panel equals twice the maximum.allonable strain in the

plaster.



COIICLTTSIONS

The foregoing tests and discussion seem to support the followirg

conclusions:

(1) The limiting value of deflection in a beam under a uniform

(2)

live load which supports a plastered ceiling is:

2

Sum "" k .3...—

émx‘ d

Where '1' is the length of the beam; 'd' is the depth of

the beam, emx is the maximum unit strain in the plastered

ceiling; and 'k' I 5 orQ186 when t/d is
A

2M1 1» 2 t/d)

taken as .06 .

The limiting value of deflection in beam which supports on

end of a plaster panel at its midpoint when the other sup-

port of the panel is fixed is:

Smx: ZémL

Where 'L' is the length of the panel, ' Gm' is the maximm

unit strain in the plastered panel.



(1)

(2)

(3)

(4)

(5)
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