812
THS

STRESS DISTRIBUTION AND ARCHES

THESIS POR THR DEGRMB OP B. S.
Wilho R. Keturi
1930

Trums
Stranis + Dtreses
cop.l

Curil engunewing Budges troogs

STRES DISTRIBUTICN ATD ATCHES

A Chesia Submittod to

The Paculty of

yICHIGAN STATB COLLJGE

01
AGRIOULTURS ARD APPLISD SCEENCS

By

Wilho R. Keturi
 Candidate for the Degree of Beahelor of Science

$$
\text { cop. } 1
$$

Cortides
1888
Introduction 2
Considerationa 2
Purpose 8
Analysis of Arches 8
Yodels 11
Oonstruction of Models 12
Polarizing 14
Statemont of Theory 18
Investigations 18
Conclusions 31
Bibliography 32

IFTRODUCTICN

oansiderethone

A conerete arch construeted in th Pixed ond is atatical2y indeterminate and is analysed by taking into account the clasticity of the matorial. The arch is marely a curvel bam following, gemarally in bridges, the eurve of a parabola, - Ilipse, segmental or a semicizole. The melection of a ourve In most cases is matter of economy.

In arahes of stones it is found that the line of pressuse pasces through the middle third to aroid the tendency of the Jointe to open. In the plain conarete arch the line of prese aus should also pass through the middle thisd, due to the piactic matorial ased in the arch. is there all al ways be some tension produced in the arch it is necessary that the arah be monolithia to withatand the tension and allow the line Of pressure to pass outside the middle third. bat due to the 10w atrength of concrete, seinforcing is used to pernits a greater variation of this line which is of $11 t \mathrm{tle}$ account theoretically since the direet compression in the aroin manily controls to suoh an extent that the allomble stress in the conerete permits of but a mall unit tonsile atress in the steel. If is obvious that the steel adds greatiy to the
roliability of the conatiotion and maxes possible higher working stress in the conorete than could properly be an ployed in the design of the plain conerete structure. The higher woxing etress producas a tilinner ring and lighter abutmants.

In considaring the action of any etructure under a. load whether it is staticalis determinate or indeterminate it 1s necessary that the geometrio requirementa imposed on the stimeture be fulfilled, aush as having constant apan length, ote. The 02 the components in any direction of all forces aeting on the whole strueture or ang part of the stroctuse be equal to sere, and the sum of the mosents of the whole structrase or any part be equal to sero. the ratio of stress to strain in the differontial parts of the struoture mast be so related to catiafy the propertion of the materlale. pugnas

The analysis of an aroh by the clastic theony consiste in the Iinding the thrust, shear, and bending moment at the crewn and at inturmediate sections in the arch ann or areh sib, and then finding the stresses resulting therefsom.

It in ovident that many materials of construction, especially conorete during the first fow months after fabrication do not follow the lawe upon which the theory of elastioity is mased. Some of the factors in the analysis vary, as the yield
of a stressed body with time and the ratio of stress to etraime For this need LaG. Stralub has proposed methods of analyais termed as the "theory of plasticity" and tho "prom poecd theory of elasticityen the methode provide a general etater ment of the displacements and deformation in etructares to If a greater rumber of properties of materials. whe invectigations made by Lof. Stranb are based on experiments of prom cise and accurate measuremints. The nev thoories are developed with the idea of supplemmenting the order of theory of clasticity.

Obvicusly, the new theopies tend to maike the old isadequate for strifing etresses in atatio ally indeteralmate atructures. may undoubtedy mare for a more solentific atudy of arohes and will oventmally result in bet ter cocomy in caving material, eto. The construction of arches by the oler theory has not been Insdequate but mas beck made by the uee OR reinforcement.

It is olear that the atrength of matarials of arohes and structures is mooh discussed. By graphicel methode the ines 02 thrusts can be shom for varioue loadings in arehes. The craphical mothode abow quite wocusmetely the distrimation of lade through the arches, but not ersothy. Dr. Coker's an perimental arrangement using polarised light for atress die-
sribution and dotamination by tho uce of sringiaront
 In ealluiold model arohem.

Dr. doiser " photroel antic mithod afroide moans ar disuct manouparont of otrous in mamber of oolluloid. whit means has bean uged to arrantage in the meohanical lineo 808 -tandard sast pleces, cenrs. tec. Deo to our orudo arrangeo mante and lack of that wo unable to got quantitative round se but a study of the atressoct can be had axd tho infosmation ceincd from these polarigatlon tants arford a betfur soncoption of a

Amivilanofroher

Tho analyel of arohes by the elastio theory mathod in tion most common and will be briosly en\$11node a comorete aroh with fixed onds 10 otatioally indotorminatoc Tho analyise conslats in findinf thi thrust, chear and moment at the crows and intermediats poinis. wher are tise minnown at ach apperi axd thres uninowns for the doflecti ans of the arch maing Ax in ald. at tho supperte. tha manitude. the diroction and the point of aypleation are the flrat throe unicnowns and are Qetormined by tha primiplo of statios. The other throo eonsis t of the di sglacerent horizontale vortical will angulare the horisontal is the chase that occurs in tho pan lunth and is comsed by $\Delta x=0$. The vartioal ta the relative displaceront of
one end to the other ond is denoted by $\Delta y=0$ and the angra1 lar displecement is that which takes plece at the two onde Where the angle betwean the tangents to the arch axis remaine unchanged and 18 denoted by $\Delta K=O$.

The method of procedure followed in the arch-ring design as given by Holl is an follows

1. Ascume a thickness of arch ring at the erom and seringing.
2. h_{8} out the curve assumed for tine introdos.
3. Lay eut a curve for the extrodoe to give as nearly as possible the assumedring thickness at the apringinge
4. Draw arch axis between the extrodos and introdos.
5. Divide the areh axis into an even number of diFisions such that the ratio S / I is constant for all.
6. Compute the dead and live locde.
7. Compate He, To and mo at the crown for the different conditions of loeding.
8. Dram the force polygone for the difforent conditions of loading and the corresponding equilibrive polygonas or line of pressare.
9. Determise the thrustis, sheari, bending momento and ecentric distances at the center of the S / I division of the arch ring for the different conditions of loading.
10. Couprute therast and momont for variation in trape rature.
11. Oumpate thruat and momente for zib-chortom1ng.
12. Combine the thrasts, abeary, and moments due to the diffarent condition of louling Whth the thruats, ahears, momente due to temperature and rib-ahorteality.
13. Comprite the maximum atreases -o compression in the oonerete and tension in the atoed dre to the thrate and mements.
no attenpt is here mede to develop formaleo dedreced in textbooks. zme equations are the seme as those given by noel.
 wet in the areh theory. the matorial coradeoret is retro foroed conerote. the formalae apply to curved bewns with a sediue of corvature large compared to the depth. ene asol is assumed with one an fixed.
the angular change at the crown as sopresented by Figure

Figure 2

Ffores 2 shom the came bending with the components of deflcotion given, mamoly, the horigontal and rertical move ments. Fexisontel movemente $=\Delta I-\sum_{i}^{B} H_{B_{0} I}$ Fortical movmont e $\Delta y=-\sum_{i}^{S} \frac{H_{0} I}{}$

Tisuse 2

Eryintorstinvitamerre and Moment

Firue 3 representa eymatrical areh out at the orom to ahow the acting forees at the half aceticm.

$v o=\frac{\sum\left(m_{R}-m_{B}\right) x}{2 \sum x^{2}}$
$v_{0}=\frac{\sum\left(m_{n_{1}}+m_{R}\right)-2 H_{0} \Sigma y}{m_{i} i_{2}}$

The manes of the thrust, whear, and momont being found from the abore equations, the moment of any aection of the left cantilever is 1 - $\mathrm{H}_{0}+\mathrm{Hay}+\mathrm{Fax}-m_{\mathrm{L}}$ and, at any section to the right cantilover.

$$
\mathbf{M}=x_{0}+H_{0} y-V_{0}=u_{R}
$$

2tmontione

$$
\begin{aligned}
& \text { He }: \frac{1}{8} \cdot \frac{\operatorname{tctp} 2 \ln 30}{2\left[\operatorname{zh} \sum y^{2}-\left(\sum y\right)^{2}\right]}
\end{aligned}
$$

The banding moment at any point is

$$
\mathbf{M}=\mathrm{H}_{0}+\mathrm{HOS}
$$

$$
\text { He }=\frac{-I}{8} \cdot \frac{01 \sum_{h}}{2\left[\operatorname{m} \Sigma 8^{2}-(\Sigma y)^{8}\right]}
$$

ani for Memparature strasan

$\mathrm{M}-\frac{\mathrm{Ha}_{0} \sum \mathrm{~K}}{\mathrm{Mm}}$

$M=20+B C y$

yOD2IS

Opnitruction of the Yedole

So far, an analytical method is given by wioh the archea are designed. The knowledge of the exieting conditions of etrese distribution is still rague and so to eupplement this, three typical asches were made of tranoparent material for the parpese seoing the existing conditiont in the loaded arohes. At this point recourse is made to experiment with polarised iight. Suoh experiment: wore made with the eliptical, parobolic and the dircular arch.

The arehes were cut from a rough pieoe of celluloid plate. The plate was sandpapered with three grades of sandpaper to moothness. the ghape of the arehes were first made on ordinary paper and then pasted on to the plate from the three modela were cut off with a coping saw. The rough surfaces were amoothened and the arches poliahed, first on the canvas and them on broade cloth for the Iinishing touches. Supports wer made of wood and spandrel walls vere constructed over the arohea as showi in the pietures. The loading from the walls were concentrated to five points equi-distant from each other. This was done by soldering tinulead to the shape of a lump at each point of concentration to atrip of tin that was nailed to the ourved surface of the wail. These points were then sormped to size
such that from each point an equal load would be distributrde The accuragy of loading from these points is difficult to deturmine. However, the points are filed by comparing the base produced by polarized light.

Various other diffioulties are oncountered wich make compating the axaet strosses in this ase practically lmposible. One difficulty encountered is the sizes of the arches. They are as follows:

Innbolla

span	5 inches
rise	$2-1 / 2$ inches

thicknose	
at erown	$3 / 8$ inches
epringing	$3 / 4$ inch

R12ipticel

span	$8-1 / 2$ inches
rise	$1-2 / 2$ inches
thlckness	
et ereme	$1 / 2$ inch
springing	$1 / 2$ inoh

Alreniar

syan	$6-1 / 2$ inches
Fise	$25 / 8$ inches
thickness	
at erown	$1 / 3$ inom
springing	$2 / 3$ inoh

2he thicioses of the materini in all is about $1 / 4$ inch. Shis hows immodiatoly that the arohes. even though small. are exaggerated greatly in thickness. $g 0$ the atrains shown by the polarized 11ght will also be groatly exaggaratod through an area that might other wise show a rariation in the lines of stressen where ons line would coincide with another and balanoing the results to com extont and parhaps leaving no stress at the partionlar point. Another thing that ontors arohos and is not mom in the models is the reinforoing which in itself takes up etress. Eowerer. this experiment will holy to visualise what reppen inside the aroh. While in the construction another diffloulty arose but was remodied. It mas noticed that initial stresses vere produced at certain spots such as, for instanoe. at the springing 1ine. Beoh of the arohes had these indtial etresses at that ond of the arch. Prom this was inferred that the original plate from whion the arohes were out an initial stress wan produced. It may be possible that in tha course of construetion that some parts were wnequally balaneed by temporaw tore hoat, hence causing a stress in anch a portion. The stresses wore eliminated by placing the collaloid models in wator of rising temperature to point near the plastie stage of the miterial or near 180 degrees. The models were allowed to 0001 in this water for a period of some fire or six hours, thereby Vringing the matorlal slowly back to its nomal atato learing praco

tically $n 0$ atraing in the matorials.

2einetring

4 simple box is used for experimental arrangmente that contains the source of 11ght and the roflectors. 4 fow rowe of blue inoanduscont lomps placed above a diffuning sarem seflectim plane pelarised light at a black miprer. The infrer is set at 45° to tho diffusive serocm ar to the merisontal. Fron this mirror the plano polarised light is passed through the transparont model to an analyser and to the oye of the observer. The amalyser is mother black nirror set at 48 degroes to the vortical. the inace that appears on the analyer appeare colored according to the strainod conditlons in the aroh. An motralnci part mill appoar blaok and -ther parts appear in Clffercat tinted colore according to the amount and kind of atrain, whother the strain is tencion or comprosEien. Shis arrangement is moch simpler than that uecd by Dro Ooter in his experimate.

Irguse 4

Statement of the Theory

Light, according to physies, is an olectromagnetic disturbance. The ilght waves travel in all directions. plane polarised light travels only in one direction in one plane. It may be clearly anderatood as passing through a narrow silt, lmarsing with a single boam. If another plane containing a similar elit is placed in tha beam of light coming from the first plane and is made parallel to it, it will then allow the same beam to pass through without interference, bat if the second plane is placed parpendioular to the pirst 1t will allow no light to pass through. The coloring offect produced in the models may bs understood as rotating the second plane 90 degrees, bing black when the slits ars at right angles and passing through the colors until it coincides with the beam and giving the white ray of light.

Plane stress in a homogeneous medium produces no color, as the iscoming rays of polarised light coincide with tha lines of stress.

q-stress

All eystens of plame stress lie in one plane and are represented by double syetem of curves intersecting at right angles at all points. Those lines may be called Prinoipal stress Lines and are denoted by p and q. There is also a three dimensional stress but in our study we consider only plane atress. Tangent at every point on tha line shows direction of the principal stress.

As atated by Dr. Coker, "Light is thought of as being separated into two polarized components with vibrations at right angles and the direction of the vibrations coinciding with the prineipal stress. If principal stresses are unequal one of the vibrations is retarded with ruapeot to the othor; this relative retardation belne proportional to the principal atress difference at the point considered." Mathematically expressed:

$$
o(p-a) t
$$

when

```
pmone principal strese
    q* other principal atress
    tm thioknoss of speciman
    c* optical constant for maturial used
```

The colors produced in the spacimen may be an order of colors 05 a series of colors. $1 s p$ and q differ more and more this series
of colors produed may pass through more than one order. and as the relative shift of different colors becomes greater, there is a consequent diming of colors. The wite results froma supar position of all colors of equal intensity. a p and q increase ($y-q$) colors pass through definite series. In colluloid when $p-q=0$ paqubleck. With thedifference increasing the colors follow in this order: straw, orange, rad, blue, graen, and again etraw, orange, red, blue, green, etc. In cellaloid these colors represent a certain strese for each color. Whan the amount of stress for each color is found that color will stand for that stress in celluloid of any shape and form, excopt whese the model might be of such a shape as round and the colors becom too consuend.
-• $\because=\cdots \quad \therefore \quad-$

-

ITHSSIG:TICNS

Abstract

Thas far, a method of arch analysis has boen given and a atatement of the theory of photomelasticity. A knowledge of the magnitude of the loadings and deflections is pequired for the epproximate computations of the magnitude of stress in the various points of the arch. as mentioned before, we are mable to make quantitative measurements and oup time does not permit, so conclusions are dram by inspecting the color fringes. it might be rell to state two mathods used in determining stresses. The simplest but less accurate method is the comparison of colors known In a stressed specimen to the specimen in question. Tha other method is the eompensation method.

Various photographs were taken of the arch when placed in the polarised light. The photographs ware taken Ifth Eastman Kodak Company' panchromatic cut films. The film diffors from ordinary film in that it will show a greator contrast of colors. The printing was done on contrast paper. The photographs show mande of unlform darkness and brightness in the arch and has this disadrantage, that black does not rupresent the same stressi nel ther does gray nor white.

The firet photograph, IIgure 7, was taken of the param bolic arch, inserted in the instrument with a aixtean pound weight hanging out on an arm as in Pigure 6 .

Pigure 6

The loading was attempted in such a manner that it would be concentrated equally at each of the pive pointse However. this was not accomplishod. A rough estimate of the loading shows that our loads are somewhat more than the proportional loads genarally used.

From the photograph in Figure 7 it will te noticod that the maximum shear occurs at the points of application. The atress produced in the arch is mainly a compression atress. With the varying crosesection the compression also varles. The compression stress is disturbed at each of the five pointe where there is a concentration of stress. The maximum load at these points reveals that there is a reversel of stress and the spots In the aroh are apots of high stress concentration. The stress is revarsed into a tension atress so that at the botom of the arch at each point. to the form of the curved band, tension is produced, baing maximum whin directiy beneath the point. The amount of tension then follows the curve to a minimumand changes over to a cormprasion stress. It may ie illustrated as follows,

with tension on the inside of the arch and compression in the arch and outside as shown in Figure 8.

It can readily be infarred that at these points, stress concentration becomes serious due to the alternating stress. Due to stress reversals, as in this case, a crack may start which gradually spreads and produces fallure. Between the points the compression stress seeks a higher level producing tensi on near the lower surface. At the base of the arch on both ends another spot of high stress coneentration is found. Here we find no reversal of stress but the same compression stress highly concentrated in a band appearing black in the photograph. The band is parallel to the base.

Figure 10

Figure 11 shows this up wall. The losiling is all from one point at the crown. The black band shades off into the dafy binds showing clearly at tho bese a maximum stress for a chort distance and distributed more or less evenly. In Pigure 11 the reversal of stress is displayed over a greater area and reveals a sounder proof of what has elready bean sald of alternatine atresses.

In order to get a better concaption of the colors in theif relative magnitudes of stress a table of colors devised by R.F. Band in his experimentamight be nsod. The table is made 1 rom colluloid gars tests mairing most thinge equal. Xr. Band, in his tests, used an orilnary black and uhite 111 m having an orthochromstic amision. So we may safoly use the table with probably only a little variation, at leat, not a very graat differance.

TABLAGCRCCLCA3

ander	Oolor	Blacix and mite Shade 28 on Photograch	Band Nos	Stress or Strese Difference ($p-q$) In pounds per guare imp
2	Black	Black	0	0
	Straw	Grey		0-2
	Orange	ulte		$x-8$
	Red	arey		$\mathrm{y}-8$
	Dasic greom	Black	1	ete.
	Light green	Grey		

The three arches described mere aubjected to the same load conditions and vary mach the same atress display was prom Auced. So then, the sam load was tried from one point, the center point at the orown. This, as already described, shows in more dutail the reversal of stress. The isooclinic lines are more pronounced showing the series of orters of colors. The etrain evidently being greatest near the center line of the aroh and lessening towards both edges until it becomes zeso.
gen third trial was made by subjecting the load over the first point which sesmed to eive some marked resulte, Figure 120 The load was distributed into the arch from three points to the createst amount, the first, the second or the point at the crown, and the third point. The stresses at the first point act rather poculiarly from what has alroady beon soen. A greater amount of
tension near the base epposite the point is produced. The approximete compression condition is shown in Figure 13 in the same manner as before.

Figure 12

Figure 13

The figure also reveal: that the load when orar the first point pulls down on the other two points therefore causing tencion in the apandrel wall. from the first to the second and third points. The same condition seomed to hold true for the other two arehes. In the arch Viry iltile tension is found (as nearly as one can toll from inspection). at the first point there is vary little if any tonsion. Tonsion at the crom and ond point is produced as 11lustratod in Figure 13. Another noticeable thing to taice into account is the way atress bohares thrount that hall of the aroh. Between the first and second points the sull widh of the arch is atressed to about an equal amount and does not follow the common rele of the pressure linc passing through the middle trird. Fortanately the stress is all compression so that if the cross-section 1s isotropic the pressure exerted will deform the arch at all pointa on the cross-section equally or nearly so. Then, if used In actual practice, the matarial used would be designed for high alippage resiatance. From the second point to the crom compression passes through th, middle tinird.

The inventigations so far soen to tell us that all the arches tend to eot in the same manner. The loads are distributed in very much the sa:: manner and in each case follow through
the midile thirde dhere the logd is from ona end the sume rule holds true. Thase coaclusions virify tie graphical methods for proscura lines. One thing, so far not mentioned and found in each trial, is the manner in which tho load applied acts in the arch. At each point ths lina of shear acts pare pendicular to the arch axis. This is equally true of the case where the load is arplied from th: end. Tha load appiled to the arch from and diroction acts normal to the arch axise

In the last trial a anlform load orer a part of the arch was tried which did not worix out suecessfully, Pigure 14. The uniform load seams to distribute the strasses quite evanly producing no alternations. The straing follow the curve of the arch sym metrically. Thay are not as strong or distinct near the introdos in the apper hall of the arch as they are through the middle and nearer the extrodox. Near the base they spread out onding in the width of the arch. It would sem plausible to say that prace tically no tension 18 produced in an arch where tho spandrel wall covers the entire arch at all points. Tin load is not distribated qta single p oint or emall area but over a greater area. The aotion of a load over a sandrel wall of this nature may the 111 ugtrated as in Pigure 25. The ame may be shown in Figare 16 with a load from one end. Here the tendency could be for the asch to act somewhat like the one in Figare 12.

Figure 14

Figure 15
Figure 16

The comprasion and tension lines halp to visualise the amount of stresses. If quantitative results at this time were possible the exact amount of comprassion and tension could be computed. However, knowledge of the manner in which etresses are distributed has bean gained. The photomelastic method also gires complete information of the properties of materlals. Localised stresses are $V 35 y$ complicated and without the use of this method and becomes practioally imposaible to colve. 111 this leads us to believe that in deaign of most any kind the photoelastio method is a great ald.

Experiment with models indicate etress differences ($p-q$) In material and the shear is proportional to this stress. The chear atrese can be determined for most any body capable of boing represented by models. Where fallure in likely to coent the location can easily be determinod. "Since breakdown of the structure showe itself by a clouding of the color bands," states Dr. Coker, "and the ultimate formation of a blacik patch In the ovar-atressed area which on the removal of the load shows Its presence by its persistence when etress intensity has been carried far enough to breaic dom the internal atruoture var much. 1 emall overatrese experionced the removal of the lond causes these places to appear as white patohese"
orviousiy, a clear picture of stress distribution is a
quick means of determining whether a pailure is due to faulty material or poor design.
"It is well known that conerete is weaker in tension than compression and can be strengthtened by reinforcing bars," states Mr. Baud. "To do this the direction and magnitude of the tension at all points of the structure must be known. This is preeisely the information gained from the polarization tests. This would be too expensive to follow exactly the lines of stress show but an approximation as to shape and location is usually made."

Beam showing principal stress direction.

corchusicns

I.

111 Porees applied to an arch act perpendicular to the arch axis.

> II॰

Leads acting on an arch through arch ribs give rise to tensions a peversal of stress may occur or a high concene tration of atress.

B1BLIOG3ITEI

O.A. Hool - Relnforced Concrete Construction, Volume 3
R.F. Baud - Study of Stresses by Leans of Polarized Light and Transparenoies, Proce Bng. Soc. W. Pae. Vol. 44, IO. 6, July 1928.
H.B. Yaris - Stress Analysis, Optical Soc. of Ame, Volume 15. HO. 4. Oetober 1927
3.G. Coker - Sress Analysis by Polarisation, Gen. Rlec. Review, Jenuary 1921
L.G.Straub - Plastic Fiow In Concrete Arches. Proc.Am. Soc.C.E., Jan. 1930

ROOM USE ONLY

