PROJECTION OF 1980 RETAIL FOOD SALES IN MICHIGAN

Thesis for the Degree of M. S.

MICHIGAN STATE UNIVERSITY

Kenneth Delmar Duft

1964

LIBRARY
Michigan State
University

ABSTRACT

PROJECTION OF 1980 RETAIL FOOD SALES IN MICHIGAN

ру

Kenneth Delmar Duft

During the 1950 to 1962 period, the state of Michigan experienced over a 40 percent increase in the volume of retail food sales. However, some counties doubled their sales during this same period while others increased only slightly.

ALU AU

The problem, therefore, lies in the Michigan retail food industry's need to accurately project the potential gross food sales of a given geographical area (i.e., county) so as to recognize and make the necessary changes in their expansion plans. This need may arise due to the lack of necessary information, but more often can be attributed to the lack of knowledge about the socio-economic causal relationships affecting changes in the magnitude of an area's gross food sales.

Therefore, the basic objective of this study was to determine relationships and significance, if any, of economic and sociological factors in explaining variations in gross retail food sales over time by county, metropolitan area and state.

The secondary goal was then to formulate basic statistical procedures that would use these relationships to accurately project the potential retail food sales volume for a given area up to the year 1980.

The technique used to reach the objectives was that of statistical analysis and projection based on regression equations.

Multiple linear regression equations were used to determine what relationships, if any, did exist between county retail food sales (dependent variable) and various market characteristics such as population, income, etc. (independent variables). Variations in county and state retail food sales for the years 1951-62 were used. Eight independent variables were used in the first trial run. After each trial, those independent variables with high intercorrelation and/or a low degree of significance were eliminated. County population, per capita disposable income, and number of retail food stores per county were the three independent variables remaining after the third trial. Population was found to be of such great importance that it tended to hide the relationships of the other two variables. The dependent variable was then changed to per capita retail food sales, thereby leaving per capita disposable income and number of food stores as the independent variables. Retail food sales and per capita income were deflated by a food price index and consumer price index, respectively, to eliminate inflationary price fluctuations.

AU AU AU

Once the effects of these two independent variables had been determined, a simple curvilinear regression equation was used to project the expected value of these two variables into 1980 (time used as independent variable). These projected

 $\mathbf{r} = \mathbf{r}$ • • and the second of the second o $\mathcal{L}(\mathcal{L},\mathcal{L})$. For all $\mathcal{L}(\mathcal{L})$, $\mathcal{L}(\mathcal{L})$, $\mathcal{L}(\mathcal{L})$, $\mathcal{L}(\mathcal{L})$, $\mathcal{L}(\mathcal{L})$, $\mathcal{L}(\mathcal{L})$

values could then be inserted into the multiple linear equation for a given county and a projection of that county's per capita retail food sales calculated. Each county's population was then projected, using a geometric-linear expansion, so the per capita sales projection could be converted into total county projections. This entire process was conducted with five selected Michigan counties and the necessary data on the remaining 78 counties presented in the appendix.

On the basis of this research, the following conclusions can be drawn:

1) The major factor in determining the volume of a county's retail food sales is that county's population. However, variations in per capita deflated retail food sales are largely explained (R2 of .13 to .85) by per capita deflated disposable income and the number of retail food stores in the county. 2) The effect of the number of stores was negative for the majority of the counties. The magnitude of this effect was greatest in the northern counties and diminished as one moved down to the southeast counties where the coefficient was slightly positive. This phenomena is partially explained by the northern counties experiencing a huge decrease in the number of small rural stores, giving the few remaining large stores greater drawing power. However, the southeast counties experienced this sharp decrease in numbers of small stores prior to the observation period and therefore, the small increase in number of large stores slightly increased per capita sales due

to increased product availability, etc.

- 3) The state, as a whole, was found to have a positive income effect. Income was expected to exert a positive influence upon per capita food sales, however, 34 of the 83 counties produced negative coefficients. Additional study is needed to explain this unexpected phenomena. Findings showed the income elasticity of the demand for food to be lower in those counties with higher per capita income, therefore, being consistent with Engel's Law.
- 4) The significance, magnitude and direction of the effect the independent variables had on per capita retail food sales varied greatly throughout the state.
- 5) The projection technique used in this paper proved to be more practical, realistic, and applicable when compared to the normally used simple curvilinear projection over time.
- 6) Projections indicate a 150 percent increase in Michigan's gross retail food sales by 1980.

PROJECTION OF 1930 RETAIL FOOD SALES IN MICHIGAN

ũу

Fenneth Delmar Duft

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Agriculture Economics

9/2/64

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to the numerous people who assisted, advised and encouraged him throughout the duration of this study.

Acknowledgement is due:

Dr. L. Boger and the Department of Agriculture Economics in appreciation for their financial assistance, academic guidance and the use of various departmental facilities.

Dr. Lester V. Handerscheid, who gave advice and inspiration throughout the course of the study. His sincere and unselfish interest in students is an attribute that will not be forgotten.

Dr. Smith W. Greig, who gave important assistance and guidance in the development of the critical points of this paper.

Dr. Charles Slater, of the Department of Marketing, Transportation and Administration, whose consultation greatly helped in the interpretation of the test results.

Dr. John Thaden, consultant in Demography at M.S.U., whose advice greatly aided in the handling of population data.

Mr. W. A. Wharton, Research Director of the Michigan Department of Revenue, whose cooperation made possible the collection of much of the necessary information used throughout this study.

Miss Yvonne Salomin for her preparation of the first draft of this paper.

This author's wonderful wife, Sandra, without whose patience, understanding and encouragement, this study would have been a more trying task.

TABLE OF CONTENTS

CHAPTER		Pace
I.	Introduction	3 10 12 16
II.	Possible Fast Contributions to this Study	
III.	Justification and Explanation of Possible Significant Variables Dependent Variable	43
IV.	Chi-Square Test Analysis of Variance Choice of Statistical Test Time-Series Analysis Cross-Sectional Analysis	63 64 64 63 69
v.	Regression Equation	77 91 91 93 93 94
VI.	Presentation and Analysis of Coefficient Estimates Time Series Multiple Linear Regression Equation Cross Sectional Linear Regression Equation Simple Curvilinear Regression Equation Coefficient Estimate Index Number Projection Simple Curvilinear Projections of Retail Food Sales Population Projection Results Statistical Significance	98 108 112 114

(Table of Contents, Continued.....)

Garana a		T Berig
VII.	Projection Procedure	. 120 . 130
AUI.	Application of Projected Data	. 145 . 151 . 152 . 154
3% .	Reaching the Objectives	154 172 174
	Appendix A	101 101 194 193 210

LIST OF TABLES

TABLE		Fage
1.	Total Annual Michigan Gross Retail Food	
	Sales	. 2
2.	Number of Retail Food Stores in Michigan	-
	1951-62	. 3
3.	1951-62	, 4
4.	Michigan Population 1951-62	. 4
5.	Proportion of Tourists Who Visited Each	
	State Area	41
6•	Tourist's Expenditure by Areas Visited	42
7.	Annual Gross Retail Food Sales For Selected	
	Counties and State	. 57
8.	Population for Selected Counties and States	5-3
9.	Proportion Non-White Fopulation	59
10.	Fonulation Density	59
11.	Percent of Total Fogulation - Urban	60
12.	Number of Retail Food Stores	
13.	Per Capita Disposable Income	61
14.	Gross Retail Food Sales Per Food Store	
15.	Gross Retail Food Sales Per Person	90
16.	Time Series Equations	198
17.	Cross Sectional Equations	103
19.	Income level and Number of Food Store Simple	
	Projection Equations	113
19.	C.P.I. and F.P.I. Projection Equations	114
20.	C.F.I. and F.P.I. Projections	
21.	Gross Retail Food Sales Simple Projection	
	Equations	118
22.	Michigan Population Projections	120
23.	t - value Statistical Table	122
24.	Potential Retail Food Sales	
25.	Deflated Retail Food Sales	
26.	Income Elasticity	155
27.	Income Elasticity of the Demand for Food	155
28.	Percent of Per Capita Disposable Income	
-	Spent on Food	160

LIST OF FIGURES

FIGURE		D200
1.	Average Food Expenditure and Pisposable	
_	Income Per Capita	54
2.	Curvilinear Frojection as a Function of Time	7 3
₾.	Gross Retail Food Sales 1951-62 (Michigan)	E2
4.	Michigan Topulation 1951-62	€3
5.	% Non-white Fogulation 1951-62 (Fichigan)	£ 3
€.	Population Density 1951-62 (Michigan)	84
7.	% Urban Population 1951-62 (Michigan)	85
მ•	Number of Retail Food Stores 1951-62	
	(Michigan)	€:ઉ
9.	Fer Capita Disposable Income 1951-62	
	(Michigan)	£3
10.	Sales For Etore 1951-62 (Michigan)	83
11.	Annual Sales Volume Per Ferson 1951-62	
	(Michigan)	50
12.	Food Frice Index 1950-60	116
10.	Consumer Frice Index 1950x80	117
14.	Cross Section Equation (R2)	110
15.	Michigan Population Projections	171
16.	Berrien County Food Fales Projection	133
17.	Hissaukee County Food Sales I rojection	
18.	Ingham County Food Sales Projection	133
19.	Wayne County Food Sales Projection	133
2 0.	Daraga County Food Sales Projection	140
21.	State Food Sales Projection	141
22.	Percent of Total Food Sales Attributed to	
-	General Type of Food Store	143
23.	Break-Even Analysis, Economies to Scale	1.50
24.	Fercent of Fer Capita Income Spent on Food	

LIST OF MAPS

PAP	<u> </u>	<u>ece</u>
1.	Retropolitan Areas	, 15 , 76
3. 4.	(b.) Rumber of Food Stores	102
5.	(Ti) Lignificance of Number of Food Stores 1 and Per Cupita Disposable Income	
6.	Detroit Areas Counties	137

LIST OF APPENDICES

APPEND	<u>IX</u>	Page
A.	Michigan County and State Data on Gross Retail Food Sales, Number of Food Stores, Per Capita Disposable Income for 1951-62 and Population for 1951-80	175
B●	Time-Series Multiple Linear Regression Equation Results	163
C.	Cross-Section Multiple Linear Regression Equation Results	192
D.	Simple Curvilinear Regression Equation Results	194
$\hat{\mathbf{E}}_{iullet}$	Michigan Population Trends	205
F.	Michigan County Code Numbers	21.2

A PROJECTION OF 1980 RETAIL FOOD SALES IN MICHIGAN

CHAPTER I

INTRODUCTION

Retail food marketing occupies a very strategic position in the American economy. Its gross annual sales - currently over \$56 billion (nationally) - are greater than those of any other American industry. Approximately one-fifth of every dollar spent by American consumers is spent at a food store. The farming sector of our economy, as well as food processors, is greatly dependent on the retail food industry as a market outlet for their products.

Within the retail food industry, grocery retailing constitutes the most important segment. Nationwide, grocery stores accounted for 73 percent of all retail food stores and 87 percent of all retail food sales in 1961. And, grocery store sales are growing more rapidly than total food sales.

^{1.} Industry, " defined as a business which employs much labor and capital and is a distinct branch of trade i.e. comparison based on the dollar volume of annual retail sales of the manufactured product.

² Economic Report of the President, Government Printing Office, 1960, pp.18 (all such data are estimates for 1959 made by the Council of Economic Advisors).

Willard F. Mueller and Leon Garorian, Changes in the Market Structure of Grocery Retailing, Univ. of Wisc., Madison, 1961, pp.2.

This increasing importance of grocery store business relative to the entire retail food industry, is due primarily to its expansion into a wide offering of both food and non-food items.

Just as the retail food industry is of major importance to our nation's economy, it is also of major prominence
in the state of Michigan. The importance of the retail food
industry to Michigan's economy is second only to the massive
automobile industry. Between the years of 1951 and 1962,
gross retail food sales in Michigan increased from \$2.33 to
\$3.55 billion, or almost 50 percent.

Table 1. Total Annual Michigan Gross Retail Food Sales, 1951-62

		(\$00	0)	
1951	•	2,379,817	1957 -	3, 202, 872
		2,538,447	8 -	3, 264, 480
		2,703,329	9 -	3, 255, 889
		2,852,181	1960 -	3, 374, 681
		2,858,462		3, 337, 493
		3,104,606		3, 357, 808

This paper is devoted to a description, explanation, and projection of past, present and future changes within the Michigan retail food industry.

Economic Report of the President, p. 8.

RECENT STRUCTURAL CHANGES:

Despite the immense expansion of gross sales during that twelve year observation period, the number of establishments acting as outlets for food products continually decreased. The number of retail food stores in Kichigan decreased from 16,531 in 1951 to 11,572 in 1962 or 30 percent.

Table 2. Number of Retail Food Stores in Michigan 1951-62,

2 -	16,531 15,872 15,210	1957 - 13,781 8 - 13,529 9 - 13,017
5 •	14,548 14,292 14,037	1960 = 12,505 1 = 12,039 2 = 11,572

This illustrates how those stores remaining are experiencing a continued increase in gross sales per store. In 1960, 72 percent of the remaining food stores in Michigan were grocery stores and 74 percent of food sales were grocery store sales.

Following is a list of additional possible reasons for the increase in per store gross retail food sales:

1) Business captured by the large food stores from the smaller and usually less efficient food retailer. Table 3 shows how the large volume store has become more dominant.

2) Population increases, as shown in Table 4. (Increase in population density implied)

Table 3. Michigan Food Store Numbers by Sales Volume

	19	54	1959		1960		
Sales Volume (\$)	Number of Stores			Percent of Total	Number of Stores	Fercent of Total	
Up to 500,000	13,871	95, 35	12,505	92.92	11,374	90.82	
500,000 to 1 million	31 3	2.15	409	3.00	497	3. 83	
1 million and over	363	2, 50	5 55	4,08	662	5, 20	
Total	14,548	100.00	13,529	100.00	12,523	100,00	

Table 4. Michigan Population 1951-622.

(000))
1951 - 6,516.9	1957 - 7,387,8
2 - 6,662.1 3 - 6,809.2	8 - 7,532.9 9 - 7,678.1
4 - 6,952,3 5 - 7,097.5	1960 - 7,823.2 1 - 8,038.4
6 - 7,242.6	2 - 8, 265, 9

Retail Food Industry - Statistics on Population, Store Numbers and Sales, by State, County, and Metropolitan Areas,"
Michigan State University, Agriculture Economics Department,
June 10, 1963.

^{2.} United States Forulation Census of Michigan, U.S. Dept. of Commerce, 1960.

3) Changing food preparation and buying habits of the consumer, i.e., purchases of more costly prepared foods.

Using the classical example of the "T.V. Dinner," where the meal is prepared except for heating, we can easily see how the increased cost at the retail food store might produce indications of increased gross sales volume. Gone are the days when the housewife went to the live chicken market to pick out the bird, then take it home for plucking and evisceration. Gone are the days of washing and out of spinach, takeing the pail down to the milk store, waiting for the grocer to measure out the potatoes and applies from a barrel.

4) Addition of non-food items.

According to one national study, the average food store now stocks 13 out 21 major non-food or general merchandise lines. Health and beauty aids, housewares, and women's hosiery are the three leading lines (handled by over 90 percent of the food stores). In 1958, 5,20 percent of total sales in the average food store were derived from the sale of non-foods. In 1963 a study by home economists at Purdue

¹ Fact Book on United States Agriculture, U.S. Dept. of Agriculture, Office of Information, March 1963, pp.68-9.

^{2&}quot;Food Chains Put the Old General Store Back on the Map," Business Week, April 4, 1959, pp. 92-4, 99.

^{3&}quot;Facts in Grocery Distribution, " <u>Progressive Grocer</u>, 1959.

University showed that non-foods made up 20 percent of the supermarket purchases in Lafayette and Indianapolis, Indiana.

are little more than necessary by-products of a capitalistic society. Many, if not most food store operators feel that growth of their companies is an essential element in continued business success. One supermarket executive has argued — correctly in my opinion — that if business does not progress, it will retrogress, that it cannot stand still. The reason for this he argues, is that a store which is not growing finds it difficult to retain young and ambitious personnel, but even more important, an enthusiastic spirit is often nurtured by growth and such spirit is hard to generate in a static organization. ²

The recent growth in Michigan's retail food industry can also be attributed to the existing market conditions, i.e., competitive structure, profits, etc. Economic theory assumes that industry adjusts, grows, and also declines in order to increase or secure their profit position. Here we

¹ Fact Book on U.S. Agriculture, pp. 68-9.

²Ralph Cassidy Jr., Competition and Price Making in Food Retailing, University of California, Los Angeles, 1962, p. 43.

³ Told., p. 48.

shall cite several reasons associated with increased horizontal integration which seems to have a bearing on the situation in Michigan during 1951-62.

- Economies of Scale advantages such as specialized management, large scale procurement of supplies, and greater ease in obtaining equity and loan capital.
- Geographic Diversification integration over a large geographic area increases a firm's security or survival power, i.e., poor operating conditions in one area may be counterbalanced by more satisfactory ones elsewhere.
- Prestige -- management of large firms may desire to grow ever larger in order to enjoy the prestige associated with operating one of the state's largest firms.
- Market Power -- horisontal integration may proceed to the point where it results in a high degree of market concentration; allowing those larger firms to have some control of their selling and/or procurement policies.

In Michigan, as was true throughout our nation during this time period, the small sized retail food outlets were "squeezed" out of business by the large affiliated chains. So as to increase their competitive positions against the large organization, many of those remaining small outlets merged

¹ Beginning with Jan. 1963, Supermarket News.

together. There are several basic factors which made growth by merger preferable to growth through internal expansion.

Market Structure Considerations — since it may be extremely difficult to open a number of stores in a new market in a relatively short period, a firm desiring to expand has an important incentive to do so through the merger route.

Financial Considerations --- buying a going concern often is easier to finance than is internal growth on a comparable scale.

Tax Incentives - popular literature on mergers often cites
the tax structure as an important incentive for
mergers. Under certain conditions, an acquiring firm
gets not only the assets of another concern, but its
tax losses as well.

In the above discussion, I have presented some basic data in conjunction with a short explanation of recent changes within the Michigan retail food industry and its market structure. During this period of structural re-arrangement, progress has been made and must continue to be made. It has been shown that continued economic progress cannot be made within a static industry and, therefore, we must anticipate and prepare for many more changes in the future. This situation can best be described by quoting a statement from the

laThe Merger Movement in Retail Food Distribution, "
National Association of Retail Grocers, Chicago 1959, pp. 25-7.

conclusion of Ralph Cassidy's text, "Since no one knows definitely what will happen next, those engaged in business in this field must figuratively be 'on their toes'. This requires being mentally alert to change and flexible-minded regarding the form that such changes take. In short, those in this field must be willing and able to move with changing needs and conditions of those composing the market, because food buyers will be with us always, while the food store might in time be replaced by some other type of organization."

Therefore, as stated by Ralph Cassidy, the retail food industry must remain flexible and able to adjust its food distribution duties so as to meet the changing needs and composition of those composing the market. This leads us directly into the primary problem to be dealt with in this paper - that of accurately forecasting those areas of expansion and contraction to which the retail food industry must make its adjustments.

Recently Mr. Curt Kormblau, Director of Research of the Supermarket Institute, while speaking on the retail food industry's failure to accurately predict the potential sales volume of tentative food store sites, stated, "Mearly two out of every three new supermarkets (62 percent) are doing less business than predicted.... The difference between actual and estimated gross food sales is quite substantial; in many cases ranging from 54 percent below to 49 percent above. Due

¹ Cassidy, p. 274.

to heavy reliance being placed upon intuition and rules of thumb, decisions concerning future store expansion and site selection have been made on promotional differentiation rather than economic justifications.

Even though Mr. Kornblau was referring to national data, this same problem exists within the Michigan retail food industry.

IDENTIFICATION OF THE PROBLEMS

The problem, as found in other states as well as michigan, lies in the retail food industry's inability to accurately project the potential gross food sales of a given geographical area so as to make the appropriate adjustments in their future expansion plans. This inability may be due to the lack of necessary information, but more often can be attributed to the lack of knowledge about the socio-economic causal relationships affecting the magnitude of an area's gross food sales. Even for those few who have an understanding of the basic relationships involved in determining the volume of potential gross food sales, there seems to be a lack of ability to transpose this knowledge into workable, morningful, and accurate projections.

Cust Kornblau, Director of Research, Supermarket Institute, from a paper presented on Nov. 1, 1963 in the Kellogg Center, Michigan State University, East Lansing, Michigan, to a food marketing seminar.

A voluminous amount of information has been published concerning the optimal store location within a given town or city, however, most all such writings assume the area, county, and city have already been selected and the decision already made to build a new store. Thus, the main problem still remaining is that of analyzing the local environment factors in an attempt to locate these market characteristics normally contributing to the maximization of an area's expected profit potential. Little reyard, if any, is ever given to determining in what general area or county an additional outlet is most needed, either now or in the future. For example, a new retail food store may be experiencing 40 percent less business than anticipated. The store may exist in a city previously shown to have adequate sales potential and it may be located in an ideal area. The problem here may be:

- 1) Those investigating the sales potential of this locale failed to discover any trends indicating that the potential sales were likely to decline in the future, or
- 2) Those investigating failed to extend their study into an area any larger than the city itself and thus failed to discover an extremely low buying potential in the county or general area surrounding the city.

In order to avoid such errors, an entire state, area and

M. G. Gibbs. "How a Prominent Chain Picks its Store Locations," Printer's Ink. Vol. CXLI Nov. 10, 1947, pp. 103-9.

county must first be analyzed and all trends projected into the future (at least 10-15 years) before deciding if and where expansion (or contraction) is necessary for the retail food industry to meet the changing demands and market conditions.

Other related problems may be summarized as follows:

- 1) Lack of basic long run sales potential data projections, which are necessary for sound future planning by the Michigan retail food industry.
- 2) General lack of knowledge necessary to understand and interpret future trends and apply this data in a practical decision making situation.
- 3) Lack of area and county trend data, necessary in analyzing future potential sales changes within counties and necessary in food store expansion, contraction, re-location, etc. thereby implied.
- 4) Lack of true understanding of the effect income, market eaturation, population and other significant related variables may have on past, present, and future gross retail food sales.

DEFINITION OF TERMS:

Before continuing any further, it would be most beneficial to the reader to clearly define those terms that were used and/or will be used in this paper.

Supermarket - a highly departmentalized retail establishment,
dealing in foods and other merchandise, either wholly
owned or concession operated, with adequate parking

space, doing a minimum of \$500,000* business annually.

The grocery department, however, must be on a selfservice basis. 1

Metropolitan Area - A specific geographical area based on criteria presented in 1960 U.S. Census of Population and summarized in Sales Management. 2

Michigan has ten metropolitan areas (as classified by the U.S. Census criteria). The metropolitan area statistics used in this study, were aggregated from the county data presented in the 1960 U.S. Population Census of Michigan. Each metropolitan area consisted of the following county (or counties).

Metropolitan Area	Counties
Ann Arbor	Washtenav
Bay City	Bay
Detroit	Wayne, Oakland, Macomb
Flint	Genesee
Grand Rapids	Kent
Jackson	Jackson

^{*}Revised from \$250,000, annual sales in 1961 by the Supermarket Institute.

Robert L. Clodius and Darrell F. Fishup and R. Larry Kristyanson, "Procurement and Practices of a Selected Group of Dairy Processing Firms," Research Bulletin 193, University of Wisconsin, Jan. 1956, p. 2.

^{2&}quot;Metropolitan Area Summaries," Sales Management, June 10, 1962, pp. 593-5.

Metropolitan Area

1.

Counties

Kalamazoo

Kalamazoo

Lansing

Clinton, Eaton, Ingham

Husk egon

Muskegon

Saginaw

Saginaw

Map No. 1 locates these ten areas.

Food Store - The following were considered as food store establishments;

Grocery stores - with or without meats

Dairy Product stores - milk markets

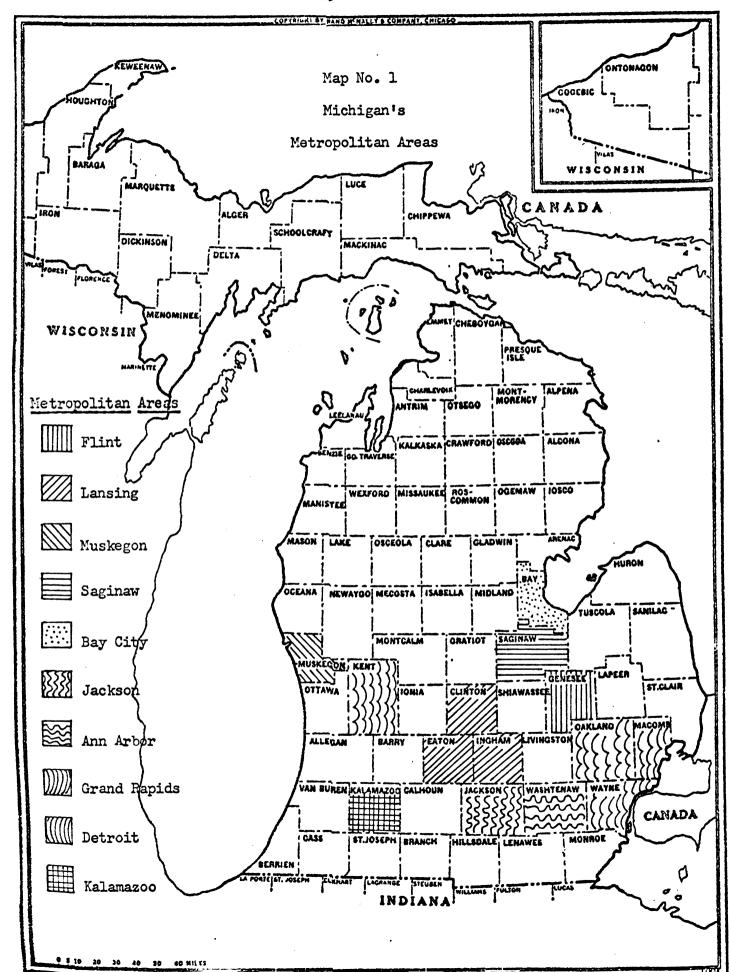
Fruit and Vegetable stores

Restaurants (family) *

Taverns, Clubs *

Miscellaneous - candy stores, bakeries, egg and poultry markets, delicatessen, other.

Store Complex - Refers to the complex of stores surrounding the proposed store location. When used in references to shopping centers, it connotes the complete range of stores within the individual shopping center.


When used in reference to unplanned sites, it refers to the retail stores located within one-third mile of the site. When used in reference to a small town,

^{10.5.} Business Census, U.S. Department of Commerce, 1949, 54, 58.

These categories are to be considered only when considering sales volume data; not included in numbers of stores.

	•			
			·	
		·		
	•			
·				

:

- it refers to all of the retail stores comprising the business district of the town.
- Isolated Retail Unit Retail food outlet existing with no
 other retail stores around it on what is often called
 a "free standing location."
- Market Concentration The extent to which sales in a particular market area are channeled through a certain
 firm or number of firms.
- Rural Pertaining to areas with no incorporated villages of 2,500 population or more.
- Market Saturation Measured by the number of retail outlets within a given geographical area.
- Tourist Day The period of one day spent by one tourist in a given area. 2
- Inter-correlation Simple statistical correlation between

 two or more of the independent variables of a regres
 sion equation.

BASIC OBJECTIVES:

1) To determine relationships and significance, if any, of economic and sociological factors in explaining variations in gross retail food sales over time by county, metropolitan area and state (Michigan).

U.S. Population Census.

²Reinhold, P. Wolff. "Estimating the Market Potential of a Floating Population," <u>Journal of Marketing</u>, July 1954, 19:12-17.

- 2) To determine significance of related factors in explaining variations in gross retail food sales among Michigan's eighty-three counties over the years 1951-62.
- 3) To formulate basic statistical procedures that would use the relationships determined in (1) and (2) to accurately project the potential food sales volume by county, metropolitan area and state (Michigan) up to the year 1980.
- 4) To predict the proportion of the projected gross annual sales volume which will be associated with different types of retail food stores, i.e., grocery store, dairy product store, restaurants, etc.
- 5) To derive, explain and analyze income elasticity for the demand for food in Michigan during the twelve year period under investigation.
- 6) To analyze results and convert projections into practical suggestions of how this data might be applied by the Michigan retail food industries in their future planning.

GENERAL HYPOTHESES.

The major hypothesis is: Once the significance of economical and sociological factors effecting gross retail food sales have been determined, statistical concepts such as multiple linear regression and simple curvilinear regression may be applied to accurately project into the future potential gross retail food sales by county, metropolitan area and state of Michigan. This statement, then, posits that accurate projections can be made, enabling the retail food

industry to evaluate and adjust their expansion plans on a scale larger than a single business district.

ing, the above hypothesis could well have been stated in the form: The effect socio-economic factors have on gross retail food sales cannot be determined and statistical techniques such as regression analysis cannot be applied to accurately project potential gross retail food sales for a given area. A null hypothesis such as this may seem more meaningful to the reader with a strong statistical background.

Some sub-hypotheses ares

- 1) The proportion of total gross retail food sales attributed to grocery stores will change only slightly in Michigan's near future.
- 2) Despite the enormous emphasis placed on the measurement of the income elasticity of the demand for food on the national and state basis, a much more detailed analysis is necessary before this national measurement can accurately be applied to an individual area as small as a county.
- 3) The relationships found between variable factors and gross retail food sales varies so greatly among the eighty-three Michigan counties that an individual county analysis must be conducted to obtain accurate and applicable results.

METHODS OF INVESTIGATION:

so far in this chapter, I have attempted to illustrate the importance of the retail food industry and formulate the

objectives and hypotheses of this paper.

In Chapter II of this paper, short summaries of previous studies conducted in the area of retail food market
potentials and other related subjects are presented. It is
hoped that these resumes provide background knowledge for a
better understanding of the reasoning and procedures used
later. Each resume contains the general purpose of the study,
a short description of procedures used, conclusions or
results, and an explanation of how this study's techniques or
results were applicable or helpful to the discussion of the
problem dealt with in this paper.

The first major problem that must be considered is the determination of which variables significantly effect the volume of gross retail food sales. Chapter III contains a discussion and explanation of the possible effects various factors may have on gross sales. Final selection of those factors to be used in the final statistical computations will be made on the basis of trial run statistical results and the findings of past studies in this particular area.

Following this comment on possible sales determinant factors, the techniques used to obtain the information necessary for a study of this nature will be discussed. Explanations will be given, when necessary, concerning the validity of the data accumulated and adjustments made to render the data more representative of a true situation.

chapter IV contains an enumeration of the possible statistical procedures which could be used in such an analysis. Included is a short explanation of the advantages and disadvantages of alternative methods, followed by a justification for the selection of the regression analysis technique. The basic procedures, and computations shall then be interpreted. For purposes of simplicity, this interpretation will not consist of a detailed analysis of the regression technique, but will explain only those concepts necessary for an understanding of the results derived.

cation of the accumulated data to the statistical routine.

Here it is shown how over a series of "trial runs," the insignificant variables (factors) were dropped, the intercorrelation and trend eliminated, and the final formula derived.

Assertions of expected results are made to form a basis for
later contradictions and illustrations of the heterogeneous
results among Michigan's counties.

In Chapter VI the results of the time series and cross sectional studies, using the multiple linear regression, are presented. Rather than burden the reader with results of the statistical tests of all eighty-three Michigan counties, five counties (representing geographical and demographical extremes) were selected. For the more avid reader, data on the other seventy-eight counties is available in the appendix of this paper.

The coefficient estimates from these same five selected counties are then analyzed so as to give the reader an idea of the basic procedure used without boring him with repetitive county analysis. County data is compared with the results of the state, as a whole, and additional comments made, concerning Michigan's ten metropolitan areas.

Following the presentation and interpretation of these results in Chapter VI, this information is then applied to a regression equation to form the actual retail food sales projections into the year 1980. Values of the independent variables are projected on the basis of simple curvilinear regressions, and these results applied to the multiple linear regression equations, producing the projected potential food sales volume by county, metropolitan area and state for 1980.

The use of these projections in decision making processes concerning location of and/or need for additional retail food outlets throughout the state of Michigan is illustrated in Chapter VIII. Next, the limitations of this type of study are recognized and discussed. Suggestions are made concerning adjustments that might eliminate many of the deficiencies.

An acceptance or rejection of the major and subhypotheses is made in Chapter IX. It also contains a summary
and concluding statement pertaining to the effectiveness and
applicability of this paper's results to the major problem as
stated in this chapter.

CHAPTER II

POSSIOL'S PAST CONTRIBUTIONS TO THIS STUDY

This chapter contains short resumes of studies previously conducted that are related to the problem dealt with in this paper. Many of these contributions will be referred to later to provide background for various statements.

Foundation Study

In 1954 Robert Ferber of the Department of Economics at the University of Illinois conducted a study to determine the causes of variation in retail sales between cities. Hr. Ferber hypothesized that factors influencing variations in retail sales to individual consumers are not likely to be the same as those which influence variations in retail sales between cities. His objective was to identify factors influencing variations in retail sales (food, general merchandise, apparel, etc.) between Illinois cities and to measure the relative importance of each in affecting total gross sales. The multivariate correlation statistical technique (multiple linear correlation) was used because it permitted identification of several pertinent variables at a time and also leads to a more precise estimate of the influence of any one variable by extracting its net influence from the interacting effects of other variables. The procedure was to advance a hypothesis regarding the factors that were thought to influence the

variable in question; translate these factors into corresponding variables; and then test by correlation analysis the effect, if any, of each of these variables on the dependent variable (gross sales). The results of this study provided a multiple coefficient of determination (R2) of .92 (.85 exclude ing Chicago), referring to the selected factors, ability to explain 92 percent of the variation in gross retail sales between cities. However, even .92 was smaller than the .95 derived while analyzing variations between individual consumers. Almost 92 percent of the variation in total retail sales was explained by the two variables of population and distance between cities. Computation of standardised regression coefficients revealed that population was by far the more important, having an influence on sales more than eight times as large as distance. Mr. Ferber then decided to eliminate the population factor which tended to conceal the presence of other significant variables. This was accomplished by dividing the dependent variable by population to derive per capita gross retail food sales. After this adjustment, results obtained indicated the following: a) contrary to the previous findings, income turned out to be highly significant in most instances (regression coefficient at .6 to .7), b) a high intercorrelation between income distribution and income per capita was discovered and thus it was decided to use only income per capita, c) distance remained an important variable, however, the magnitude of its effect on sales was

no longer high, and d) the number of retail stores in the city was an important determinant on per capita sales. These findings point to income, distance, and number of stores relative to population as major determining factors in the inter-city variation in per capita sales. Specifically with regard to retail food sales, the regression coefficients were as follows: $Y = 1.3^{os} + 0.0X_{10} \cdot .23 \times 1.3^{os} + .4X_{3}^{os}$ with a multiple correlation coefficient of determination (R^2) of .21 where:

- Y = Per Capita Retail Food Sales (\$) K = Distance (Mi.)
- X2 * Per Capita Disposable Income (\$)
- X = Number of Retail Food Stores
- ** * Statistically significant at .1 level of probability ** * Statistically significant at .05 level of probability

In his conclusion, Ferber states, "The evidence is therefore, fairly clear that the forces influencing intercity variations in per capita sales differ greatly, and that a more or less individualistic approach is needed in each case."

Ferber's study is applicable to this paper in the following areas:

1) Ferber recognized that an analysis must be conducted of areas larger than portions of a given city. Perber analyzed variations between cities, whereas, this paper carries it one step further by studying variations between counties and metropolitan areas.

Robert Ferber, "Variations in Retail Sales Between Cities," Bureau of Economic and Business Research, Department of Economics, University of Illinois, Journal of Marketing, Jan. 1958.

- 2) His objective was similar to one of the objectives of this paper. Mr. Ferber also used a statistical test similar to the one used in this paper.
- 3) Ferber's results showed a lower R² (explaining variations in total gross sales) between cities (.92) than between individual consumers (.95). From this relationship we might likewise expect a lower R² for metropolitan areas than counties and for counties than cities. As shown later in this paper, results from this study show this to be true.
- 4) While analyzing Michigan's data, I also found population to be such a great sales determinant that it had to be eliminated to reveal the significance of other variables.
- 5) Factors of per capita income and number of stores were also found to be significant in this inter-county study. The importance of the distance factor was shown by Ferber to be of decreasing importance when moving from intra to inter-city analysis. Assuming this trend continued, as the size of the area under analysis increased, distance was not considered to be an important factor in this inter-county study and such data were not even included in the trial runs. Ferber's equation, pertaining specifically to retail food sales, tends to justify this decision.
- 6) Statements in Ferber's conclusion that areas differ so greatly in their characteristics that an individual approach is needed in each case, seems to agree with the second sub-hypothesis of this paper.

Additional Determinants

In 1962 Mr. N. Osborn Walker conducted a study in the Chicago-Gary, Indiana area for the Jewel Tea Co. The objective of this study was to determine the facilities which will have to be added by the retail food industry to meet the market's requirements in 1990. Since the Jewel Tea Co. bases the dollar volume of their retail food sales on the growth of the population and the ability of the population to buy (income), the process was simply one of projecting these two factors into the year 1990. However, projections of income per capita were complicated by a strong increasing trend in the number of non-white residents of the area producing a downward effect on income levels. In other words, it was discovered that this trend toward a higher ratio of non-whites to whites, while increasing the number of people, will increase the food store potential at a slower rate. In the summary it was stated, "This study indicates that over the thirty year span from 1960 to 1990, the population of this area (Chicago-Gary) will increase 52 percent and that the food store potential gross sales will increase 43 percent. The 4 percent difference is due to the increasing ratio of non-white population with its lower buying power. "1

N. Osborne Walker. "A Study of Retail Food Store Facilities Which Will Need to be Constructed in Addition to 1960 Facilities, From 1960 to 1990 in the Chicago-Northwest Indiana Standard Consolidated Area Resulting from the Projected Increase in Population and the Changes in the Ratios of Non-White and White Segments in Certain Divisions of the Area."

Jewal Tea Co., Inc., May 28, 1962.

Osborne's study has made the following two contributions to this paper:

- 1) The fact that this study was made for a large retail food organization, illustrates that the industry is indeed anxious to obtain such long run projections. Also, the interest in what facilities will be needed strongly signifies that such projections will actually be used in decisions concerning future expansion plans.
- 2) It suggests that the percent non-white population is another factor worth considering in the projections of retail food sales volume.

Present Location Criteria

In January of 1960, an article appeared in the <u>Chain</u>
Store Age magazine entitled "Chains Reveal Rules of Thumb for
Choosing Store Locations." This article emphasizes the fact
that a large portion of the retail food industry still uses
"rule of thumb" considerations rather than empirical studies
to select locations of new outlets. Below are listed some of
the "rule of thumb" considerations used in choosing future
food store locations, as submitted by a group of large chain
store organizations.

- Does the location now have the needed population within a limited area?

Locations, Chain Store Age, Jan. 1960, pp. E33-E38.

- Are the road patterns or access routes adequate?
- Competition?
- Are anchor tenants being placed on the property to induce the greatest amount of traffic flow?
- Current volume of retail outlets in the area?
- Total number of existing square feet of food store space in the area?

It can easily be seen that no reference is made to what this area's characteristics might be like in the future. No interest was expressed about the location's potential sales volume. All of the rule of thumb considerations certainly do contribute to the success or failure of a retail food outlet, however, there is a sincere need for additional inquiries into the area's overall potential.

Views of Outside Interests

The retail food industry is not the only agency that should be interested in more accurate forecasts as to the success of failure of a proposed outlet. A great deal of outside financing often is necessary before a new outlet can be located and built. Thus lending agencies are looking for accurate information which might make their investments less risky. James W. Rouse, a mortgage banker in Baltimore, states that banker's in their role of financing a number of retail food outlets, have spent a great deal of time attempating to devise a method that would yield valid estimates of

the success or failure of a given outlet.

In Mr. Rouse's opinion, there are a number of weaknesses inherent in the previously used judgment approach.

First of all, there is no such think as a finite trading area
in an urban community. Secondly, the complex interplay of
competing retail food areas within a large urban area is beyoud accurate evaluation based on judgments, alone. Thirdly,
there seems to be evident in most such judgment-surveys an
unintentionally optimistic bias in estimating amounts of
purchases to be made at a new outlet. Often the end result
of these errors produces stores that are uneconomic for their
comers, tenants, and investors.

This article by Mr. Rouse serves only to re-emphasize that the retail food industry, both in Michigan and the nation, is in need of a valid statistical technique by which potential retail food sales volume can be projected in the future.

Along with financiers, realtors are also interested in the market potential of an area so that they might be able to more accurately appraise the true value of possible food store locations.

An article in the <u>Appraisal Journal</u> written by Leow W. Ellwood, illustrates their attempts to better visualize this problem. The following statements are typical of those characterizing the realtors, views towards estimating potential sales volume.

James W. Rouse. "Estimating Productivity for Flanned Regional Shopping Centers," <u>Urban Land</u>, Oct.1953, pp. 1-5.

- An estimate of potential volume for a proposed new food store must start with information as to the existing volume of business.
- An estimate of the potential volume of a proposed new food store must allow for the composite pull of all other competing retail districts.
- Since most shopping expeditions start from home, the optimum size of each retail outlet is usually governed by the number of homes to which it is more accessible than all other competitive retail districts.

Mr. Ellwoods concludes by saying that the problem of estimating the potential volume of a proposed new shopping center is one in which prime factors are: a) existing volume of trade, b) existing shopping facilities and c) accessibility of the proposed location to the population of the trade areas.

This study seems quite applicable to this paper since data on existing volume of retail food trade and number of existing retail food facilities were used as dependent and independent variables, respectively, in the multiple linear regression equations used in my statistical computations.

Even though Ellwood's work deals with one particular shopping area there is no reason to think this would not apply to an entire market such as an entire county. However, accessibility

Leon W. Ellwood. "Estimating Potential Volume of Proposed Shopping Centers," The Appraisal Journal, Oct.1954, pp. 581-587.

(distance) has previously been shown (Ferber's study) to have only limited significance when dealing with areas as large as counties.

Population and Reilly's Law

As early as 1949, people, such as Edna Douglas at lows State University, were interested in retail food sales potential estimation. Miss Douglas conducted a cross sectional analysis of a retail area by determining the location of the banks against which weredrawn checks deposited in a local bank by a group of local retail outlets. Despite many problems arising, i.e., some local people had checking accounts in a far distant town, and a tendency not to reveal accurately the comparative intensity of sales distribution between nearby and more distant communities, she was able to assert this conclusion: "One can conclude, therefore, that population density is less useful as a means of delineating trading areas than as a means of explaining why out of town customers are more plentiful from certain localities than from others and of providing a basis for measuring intensity of drawing nower. It was this statement that suggested consideration of population density as one of the possible significant determinant factors.

Edna Douglas. "Measuring the General Retail Food Trading Area - A Case Study: II", <u>Journal of Marketing</u>, July 1949, 14:46-60.

Miss Douglas also recognized such non-price factors as quality and quantity of merchandise; terms of sale, in-cluding such things as the return goods privilege, credit, certain services, guarantees, etc.; and selling methods, as well as buying habits and knowledge of the market situation to be determinant factors. The then rectifies this phenomena by stating that the size of retail area has been proven an adequate indirect measure of these non-price factors in retail selling.

As previously mentioned, market analysis on a strictly local basis has become highly developed. For example, once the decision has been made to construct a new retail food store in a given city or town, the process of analyzing this local market for the optimal store site has become fairly routine, thanks to the contributions of William J. Reilly, Eack in the early 1930's, Mr. Reilly began conducting inquiries in various Texas cities to determine a mathematical equation which might accurately describe the retail pulling power between two retail markets. From his work, Reilly developed his "Law of Retail Gravitation" which states:

"Two local markets attract trade from a third market in the vicinity of the breaking point approximately in direct proportion to the population of two markets and in iverse proportion to the squares of the distance from these two markets to the third market."

OR

Where: Ba = proportion of the trade from the third market attracted by market A

Bb = proportion attracted by market B

Pa = population of market A

Pb = population of market B

Da = distance from third market to market A

Db m distance from third market to market B1

Through the use of this formula, retailers could look at a city, measure population and distances between trading areas, and thereby accurately determine the area in which the drawing power of a proposed store would have an effect.

Other men like P. D. Converse at the University of Illimois immediately became interested in the validity of Reilly's Law and conducted further studies. Converse found that the law remained accurate only when considering a small trading area. As the distance between markets approached twenty or more miles, the formula became less valid, due to the over-emphasis of the population factor. Thus, when analyzing trade areas as large as a county, Converse suggested substituting an inertia factor for Db in the formulas 2

Ba Pa X Bb Pb Da

¹ William J. Reilly. The Law of Retail Gravitation. New York: William J. Reilly, 1931.

²p. D. Converse. "Mew Laws of Retail Gravitation,"

Journal of Marketing, Oct. 1949, 14:379-84.

Where: X = inertia factor of whatever magnitude it takes to make the formula valid.

The major deficiency in this approach recognized by Converse was the fact that inertia factors were highly subjective and varied in magnitude not only among various distances, but also between markets. Thus, this leaves no definite pattern proven applicable to market areas in general. This also seems to be the opinion of R. B. Reynolds following some lows tests.

As might be expected, results of tests like those of Terber's, have shown population to be a major factor in determining potential gross retail food sales. Likewise, population is most important in other areas of our economy. Despite this phenomena, it seems extremely alarming to this author that economists have in the past tended to dismiss their acknowledgement of our nation's population trends by passing on these problems to demographers. The prominent economist, Eilton Friedman, admits to this occurrence by saying, "Population, it was said, depends primarily on a host of non-economic considerations which are not within our (economists) competence or field of interest. Only recently, have economists renewed their interest in population theory and have become again concerned with reintegrating the theory of population with economic theory — a development that is to

R. B. Reynolds. "A Test of the Laws of Retail Gravitation," Journal of Marketing, Jan. 1953, 17:273-77.

be encouraged." Less justification than this is needed to approve the use of the population factor in this study.

Income and Engel's Law

Income levels, however, unlike population have always been maintained as an integral part in economic writings, since much literature is available on income's effecton consumer's expenditures on food, I shall attempt to only mention writings of particular interest to this paper.

Income effect on the habits of individual consumer's actions at the market can best be illustrated in these statements:

- First, low income housewives have a slightly greater tendency than those with higher incomes to respond to a hypothetical general food price level change and a corresponding
 hypothetical income change as though they are synonymous.
- Second, the consumer with a higher income has a greater tendency than those with lower incomes to follow habit patterns in purchasing food. 2

A true economist dare not discuss income's effect on food purchases without recognizing Engel's law. In 1857,

¹milton Friedman, <u>Price Theory</u>, University of Chicago, 1962, p. 203.

Warren J. Bilkey. The Basic Relationships in Congumer Expenditure Behavior, Harvard Studies in Marketing Farm Products, Cambridge, Mass., Number 4-H, Oct. 1951, pp. 33-45.

of income in Belgium and Saxony. His data showed a consistent—
ly higher percentage of total expanditures going for food coin—
cident with lower average incomes per family. He concluded,
"The poorer a family, the greater the proportion of total out—
go that must be used for food." It is to be noted that
Engal's analysis was confined to one period in time. Because
of this, many economists have tended to discount the validity
of Engel's law when attempting to apply it to a dynamic
mituation. Marguerite C. Burk attempted to test the validity
of Engel's Law in a static vs. dynamic situation and arrived at the conclusion
that Engel's Law probably applies reasonably well to all the

relationships of average income and food expenditures through periods in which no substantial changes take place in population patterns, distribution of income, manner of living, and marketing practices. That is to say, it applies under conditions that are relatively static.... 2

Marguerite C. Burk's study is extremely relevant to this paper since both static (cross-sectional) and dynamic (time series) analysis are conducted on income and food

Translated from page 26 - DIE LESENSKOSTEN BELGISHER ARBEITER - FAMILIEN FRUMER UND JETZT - ERMITTELT AUS FAMILIEM - EMUSINATSRECHNUNGEN., Inst. Internati. Statistical Bulletin 9: 1-124, 111, 1895.

Marguerite C. Burk. "A Study of Recent Relationships Between Income and Food Expenditures." U.S.D.A., Agriculture Frontic Research III, No. 3, July 1951.

expenditures data. This will make possible the testing of the existence and validity of Engel's Law within the state of Michigan under both static and dynamic conditions.

Marguerite C. Burk has written many other articles on income-food relationships. Major findings of these articles may be summarized as follows:

- 1) The effect of real income on quantity of food consumed has changed only slightly in the last 20 years.
- 2) The level of use of food market services has risen significantly with much of the change occurring in 1939-41 and 1945-47.
- 3) This change in level of food market services resulted in higher postwar levels of market value of all food consumed and therefore, of dollar value food expenditures in relation to income elasticities for the food value measures.
- 4) Analysis of survey data shows that major increases in the demand for commercially produced food and for food marketing services in relation to income have come primarily among farm and rural non-farm households and lower income urban households.
- 5) Increases in average consumption of food from all sources resulted from higher incomes whereas the use of food marketing services has exceeded expectations based on income-market service relationships in prewar years.

Marguerite C. Burk. "Some Analysis of Income-Food Relationships." <u>Journal of the American Statistical Association</u>, 53:284, Dec. 1958, pp. 905-927.

expenditures data. This will make possible the testing of the existence and validity of Engel's Law within the state of Michigan under both static and dynamic conditions.

Marguerite C. Burk has written many other articles on income-food relationships. Major findings of these articles may be summarized as follows:

- 1) The effect of real income on quantity of food consumed has changed only slightly in the last 20 years.
- 2) The level of use of food market services has risen significantly with much of the change occurring in 1939-41 and 1945-47.
- 3) This change in level of food market services resulted in higher postwar levels of market value of all food consumed and therefore, of dollar value food expenditures in relation to income elasticities for the food value measures.
- 4) Analysis of survey data shows that major increases in the demand for commercially produced food and for food market—ing services in relation to income have come primarily among farm and rural non-farm households and lower income urban households.
- 5) Increases in average consumption of food from all sources resulted from higher incomes whereas the use of food marketing services has exceeded expectations based on income-market service relationships in prewary years.

Marguerite C. Burk. "Some Analysis of Income-Food Relationships," <u>Journal of the American Statistical Association</u>, 53:284, Dec. 1958, pp. 905-927.

Another study, testing the sensitivity of expenditure to income changes used as a coefficient the average percent change in expenditure per one percent change in disposable per capita income, holding constant the effect of trend.

The results are as follows:

	Expenditure	Sensitivity Coefficient
I.	Total consumption expenditures	. 55
II.	Durable goods	
	boats and pleasure aircraft	3.10
	radios, phonographs	2.50
	new automobiles	2.00
	(of 22 durable goods groups, only	
	2 showed coefficients which are	
	less than 1.0 and for the majority	
	of them, the sensitivity measure	
	was 1.40 or higher)	
III.	Non-durable goods	
	food purchased for on premise	
	dining	1.60
	food purchased for off premise	
	consumption	-95
	shoes	.6)
T.7	Services	4 2
	bus fares	.7 3
		6)
	automobile insurance payments	•
	tel ephone	• <u>40</u>
	gamoline	• 30
	electricity	• 20

In general, therefore, the durable goods were found to be above average in sensitivity, the non-durables - average, and the services - below average, 1

¹ Clement Winston and Mabel A. Smith. "Income Sensitivity of Consumption Expenditure," <u>Survey of Current</u> <u>Duringes</u>, January 1950, pp. 17-20.

Tourist Effect

Before proceeding into Chapter III and a more detailed inquiry of possible determinant variables, a short discussion is necessary concerning a characteristic of Michigan which is different from that of the average state. This characteristic requires that certain adjustments be made when analyzing the northern portion of this state. The northern one-half of Michigan is characterized by a large influx of summer tourists, The small resident population (relative to the annual tourist population) of this area only tends to add to the inaccuracy of food sales data as it applies to a given county. For example, the data on "annual gross retail food sales per person" will be an overestimate of the true value. This occurs because total gross retail food sales data includes purchases made by the transient population, whereas population data include only permanent residents of the area. Thus, to render these data more accurate, they should be deflated by a "tourist index" - which with existing information is relatively ummen surable.

Accurate marketing appraisal is statistically difficult in northern Michigan since the tourist patterns are geographically and functionally mingled with the resident populace.

^{*}Total Annual Retail Food Sales

Sales per Person_{tij} Total Population_{tij} ** Annual retail Food

t ** time, years (i) ** 1951-62, j ** counties (1-83).

The yearly buying power of a floating population is in many respects different from that of the resident populace. For instance, the vacationers in a tourist area usually spend more than the resident on the same level of income and his spending goes into different items of consumption.

In general, one may assume that annual tourist days, multiplied by mean daily spending will yield the figure of aggregate buying power of the floating population. However, in many areas the mean spending is likely to be subject to large seasonal fluctuations. Eince the data used in this paper is all of an annual nature, seasonal fluctuations will not be evident.

Also the consumption of the floating population, especially travelers, is different from that of the resident or permanent population. With respect to retail food sales for instance, it is understandable that a tourist group is likely to buy less food in grocery stores but spend more in restaurants than the resident population.

A recent study done in Michigan by the Bureau of Dusiness and Economic Research of Michigan State University produced the following data which aid in describing the extent of tourism in Michigan.

Even though the number of tourists visiting the upper peninsula is not the largest of any state area, the effect of

Reinhold, P. Wolff. "Estimating the Market Potential of a Floating Population," <u>Journal of Marketing</u>, July 1954, 19:12-17.

Table	5.	Propo	rtion of	Tourists	Who Visit	ed Eac	h Sta	te Area
			(%	of Respon	ndents)			
Destin			15	25	35		45	55
Opper	Pen	le .						
Wester	m							
Easte	m							
Detro	lt_							
	E	stimat	ed total	food pur	chases by (touris	ts in	the
upper	pen	insula	i					
	1	962		\$32,3	48 ,475. 00 ²			
touri	sa 1	s much	greater	because	of the ext	remely	smal	1
reside	ent	popula	tion, re	lative to	the other	three	stat	e areas.
	T	able 6	illustr	rates that	those tou:	rists	visit	ing the
north	ern	portio	n of the	state te	nd to spend	d more	mone	y and
there	by 1	ncreas	e their	effects.				
Econor	l mic	Michig Resear	an Touri ch, Mich	st Survey igan Stat	1957, Bur	eau of	Bu si	ness and

^{2&}quot;Tourism Trends," The Michigan Economic Record, Vol. 6, No. 2, Bureau of Business and Economic Research, Michigan State Univ., Feb. 1964.

Table 6. Tourist's Expenditure by Areas Visited.

	Median Expenditure
Area	Median Expenditure
Upper Pen.	\$179.08 (before the Mackinac bridge)
Western	176.79
Rastom	155.72
Detroit	136,18

¹ Michigan Tourist Survey 1957.

CHAPTER III

JUSTIFICATION AND EXPLANATION OF POSSIBLE SIGNIFICANT VARIABLES

DEFENDENT VARIABLE.

Throughout all the statistical analysis, gross retail food sales data is used as the dependent variable. The first portion of statistical analysis represents an attempt to determine which factors are significant determinants of the volume of gross retail food sales. The time series study will determine the importance of these selected factors in explaining variations in gross retail food sales by country over the twelve consecutive years. The cross-sectional study will determine the importance of these factors in explaining variations by year among counties.

In the final analysis and projection, the estimated potential retail food sales for the state and counties are calculated. It is hoped that the technique used in this paper will prove reliable enough so that the estimates may be used, with confidence, by the Michigan retail food industry in their plans for future expansion and new store locations. Since these estimates will be mostly on a county basis, they can suggest only the general areas of the state having increasing (or decreasing) opportunities and normally cannot be used in the market analysis of an area as small as a city. An exception to this would be in cities such as Detroit or Lansing where a large portion of a county's buying power is

located within the city. Even though all gross sales data is in the form of Collar volume, it is assumed that the industry will be able to convert this dollar value into data referring to the additional store facilities that will be required in the future to adequately handle this increased (or decreased) demand for food products.

INDEPENDENT VARIABLES:

A large number of factors have been mentioned as effecting the food sales of an area. It would be virtually impossible to discuss each factor mentioned as a possible food sales determinant. Instead, only those factors found to be significant in other studies of this nature will be discussed. Following the accumulation of Michigan data on these variables, numerous trial sums were conducted. By the use of regression analysis, it was determined which of the independent variables were significant in Michigan and which to eliminate.

<u>Population</u>: As was so clearly illustrated in Ferber's study, population is of the greatest importance in determining the gross food sales volume of a given area. Its importance is well expressed in the statement, "The wonderful thing about food from our point of view is that everybody uses it - and uses it only once." This food retailer's statement illustrates the unique type of built-in obsolescence that food

¹ Food That Isn't Food, Life Magazine, June 2, 1961, p. 9.

products possess. Its utility is not of a long lasting nature, and once consumed, can never be done so again. As unique as this quality may seen, it serves to partially explain why population is so closely related to retail food sales.

Americans consume about 1500 lbs. of food per capita per annum, which reportedly has varied little in amount over a considerable span of years. Food, unlike some other consumer products, is an absolute requirement for human existence; hence the selling job for the generic product is not an overly difficult one. Moreover, food is needed not just once in a while, as is the case of most commodities, but at frequent and regular intervals. One of the characteristics of food items, therefore, is that they are procured on a repeat-purchase basis. 2

Thus, the relationship between food sales and population, alone, is partially physical rather than economic. The relationship is direct and positive in nature, indicating that an increase in the population will, out of physical necessity, produce increased food sales.

¹ Concentration and Integration in Retailing, Staff
Report to the Federal Trade Commission - Economic Inquiry into
Food Marketing, Part I. Govt. Printing Office, Washington,
D.C., Jan. 1962, p. 32.

²Cassidy, p. 3.

Even within the general population criteria other characteristics such as distribution, percent non-white, etc. are found to have an effect on food sales. For example, changes in population composition and family size have been shown to have an effect on the income elasticity and demand for food. In a study by Robert Herman, it was shown how the per family income elasticity for the demand for food increased from .68 to .92 as the size of family increased from 2 to 6 people. In forecasting the demand for food, Herman suggested that one should recognize that larger families are more responsive to income changes than a smaller family. Other population characteristics such as education level, ethnic background, religion, etc. were found to produce no significant differences in food expenditures per capita when income and family size were controlled.

Percent Non-White Population: Walker's study of the Chicago-Gray market area revealed the importance of another phase of population composition. In this study, the increasing percent

Robert Omer Herrman. "An Investigation of Differences in Income Elasticities of Demand for Food in Households of Differing Size and Composition," Michigan State University, 1961, p. 63.

Thomas Neil Moss. "Some Relationships of Selected Socio-Economic Factors to Food Consumption and Expenditures," Michigan State University, 1952, pp. 140-41.

non-white population was found to exert a downward influence on potential gross retail food sales of the area. Other available information on the effects of race on food expenditures seems to indicate that the influence of this factor may be declining. What differences do exist, between white and non-white consumption behavior, tend to disappear as the income level of the non-white is increased. Negro families were found to save more at the same level of current income than did white families and Negro households were larger than the white households in most cases. Average expenditure for food was found to be generally larger in white than in Negro households at a given income level, the difference being greatest at lower income levels.

No extensive information on none-white buying habits in the state of Michigan could be found. However, some basic assumptions can be made:

1) Difference in non-white food purchasing behavior can be largely attributed to income levels, rather than tests or

Willard W. Cochrane, and Carolyn S. Bell. The Economics of Consumption, New York: McGraw Hill, 1956, pp. 199-201.

²U.s. Department of Agriculture, <u>Food Consumption of Households in the U.S.</u>, Report No. 1; Washington, U.S. Printing Office, 1956, p. 190.

University of Pennsylvania, Study of Consumer Expenditures, Incomes and Savings, Vol. III, tabulated by the Bureau of Labor Statistics for the Wharton School of Finance and Commerce, 1956, pp. 138-140.

preference disparity, and

2) Regardless of the attributing factor, a trend toward a higher percent non-white population will have a deflationary effect on an area's potential retail food sales, with this effect decreasing over time as non-white's incomes rise.

Rural-Urban Population Distribution: Another factor highly related to population composition is the rural-urban distribution. Michigan county population varies from being 100 percent rural in the northern counties such as Missaukee and Baraga to over 90 percent urban as in Wayne county. Due to this heavy concentration of this state's population in the southern most counties, it may be described as an urbanized state with slightly less than 75 percent of the state's total population living in urban areas in 1960.

differ from that of urban dwellers for various reasons.

First, the rural family will tend to eat a larger quantity of food as well as more high calorie foods. This is attributed to the greater amount of physical exertion required in the daily routine of the rural resident, compared to the urbanite. Secondly, the rural family will eat a larger proportion of home-grown foods. A lower proportion of a family stotal food consumption is purchased at a store and this might cause retail food sales data to be an underestimate of true consumption. Thirdly, income level is also interrelated to this

factor, in that rural residents generally have a lower annual income level, thereby inducing them to buy more of the lower priced food products.

Generally speaking, then, one could say that a steady decline in the percent rural residents, as Michigan has experienced in recent years, would have an inflationary effect on future potential food sales in an area. This trend is not only characteristic of the state of Michigan, but of the whole nation.

Population Density: The last population characteristic, to be considered as a possible food sales determinant, is population density. The word density refers to the inhabitants per square mile. Population density can be considered an indirect measure of the distance factor mentioned in Ferber's study. For example, when analyzing a county such as Wayne, one finds a population density of 4,392 persons per square mile, (1960) This indicates that on the average, a new food outlet would have a population of over 4,000 within a one-half mile radius. The factor of distance would then be of little importance since a large portion of the store's customers will live within walking distance of the store. However, now looking at the population density of a county like Keweenaw is only 4.4 persons per square mile. Here a store's mere existence may depend on the whole county's population, who may have to travel twenty miles or more just to reach the store.

A complicating factor in this analysis is the recent construction of huge shopping centers. Traditionally, firms choose locations on a basis of independently made decisions, but some firms now prefer to locate along with other non-competing stores in a shopping center, thus obtaining the advantage resulting from the drawing power of several merchandising institutions rather than just one. It appears that the attraction of any individual store within a shopping area is enhanced by the fact that other stores providing a range of different products or services surround it. Thus, it is often postulated that in the case of a shopping center or retail cluster the combination of stores possesses an attraction to the customer that is greater than any of the stores, taken individually and thereby exerts an additional influence to that of an area's population density.

Food Store Numbers (and size): The next factor to be considered is the number of retail food outlets in a given area. Food store numbers considered an indirect measure of market concentration, saturation, and competition. Bernard LaLonde conducted a Michigan study to determine the importance of store size or store complex on per shopper sales. Store complex was considered to be the number of outlets in the

Cassidy, p. 89.

Bernard Joseph LaLonde. "Differential in Supermarket Drawing Power and Per Capita Sales by Store Complex and Store Size." Michigan State University, 1961, p. 119.

local market area studied. Store size was measured by the number of products offered for sale per store. Results of LaLonde's study indicated:

- 1) Store complex was an important influence in determining the drawing power and per shopper sales of the food stores.
- 2) store size was not an important variable in determining per shopper sales, and
- 3) there existed distinct and significant patterns of per shopper sales which could be isolated and quantitatively analyzed as a basis for future location discussion.

Some additional conclusions were:

- 1) As the product offering increased, drawing power increased, but per shopper sales decreased.
- 2) influence of store complex on per shopper sales became greater as the distance from the survey store increased, and
- 3) there was no systematic and reliable connection between store size and per shopper sales from which any economic discussion could be based.

Market concentration can be measured in one of the following three ways:

- 1) Volume of sales accounted for by various numbers of stores,
- 2) number of persons served per store, or
- 3) number of stores.

¹LaLonde, pp. 139-40.

Market concentration becomes quite important when the industry is evaluating an area (city, counties, or state) for future expansion.

In addition to size of the area, population growth affects the degree of concentration. Rapidly growing areas attract new entrants and hence make it more difficult for existing firms to expand their share of the market. There is a tendency for sales concentration in the retail food industry to be highest in the smaller markets. This reflects the fact that chains which are relatively unimportant nationally, often are very important in their local markets.

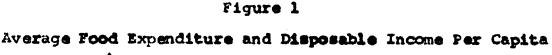
while the quantity of grocery items available at retail food locations at any one time normally is of little significance, the number of food stores is a significant factor which can often have a severe effect on both price and non-price competition. Relative fewness encourages concerted behavior, even in the absence of collusion, with the result that such industries behave less competitively than when numbers are larger.

Income Lavel: The relationship between income and food expenditure has been expressed by economists both in the form of income-expenditure elasticities of demand for food and as Engel curves representing food expenditures at various levels of income.

¹Mueller and Garoian, p. 33.

Income-expanditure elasticity is defined as the ratio of the percentage change in expenditure to the percentage change in income and is expressed mathematically as:

$$\frac{\partial Y}{\partial X} \cdot \frac{X}{Y}$$


Where: Y = food expenditure X = income

The Engel curve for total food expenditure is related to the above since the slope of the Engel curve, $\frac{dY}{dX}$, is part of the mathematical expression of income elasticity, however, it must be remembered that the original law applied to a static condition and not to changes in income levels over time.

Feople like Robert Ferber, Marguerite C. Burk and George R. Rockwell have long been presenting empirical proof of the relationship between income and food expenditures. Ferber found the relationship to exist only after the interacting influence of other variables (population) had been ranoved. Likewise, Marguerite C. Burk made some important discoveries about the changes in the income elasticity of demand for food over the past few years. The following diagram will best describe this change.

Wold, Herman, and Jureen Lars. Demand Analysis, (New York: John Wiley and Sons, 1953) p. 98.

²Ferber, p. 303.

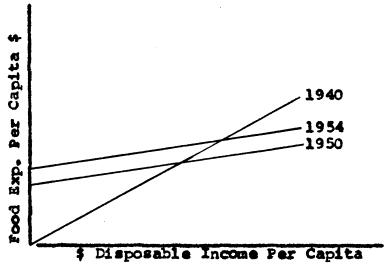


Figure 1 illustrates that during the period of 194050 the line became more elastic, however, beginning in the
1950's the whole line began to shift upwards due to increased
use of prepared foods of higher costs. At a given income,
changes beginning in the 1950's would indicate a trend towards
a slightly more inelastic income demand for food products.

George R. Rockwell contributed to this general discussion by stating, "The percentage change in consumption per person in relation to the percentage change in income per person, or income elasticity, is considerably different for various kinds of food. There are also wide variations in the income elasticities in low-, medium-, and high-income households."

Burk, p. 89.

²George R. Rockwell, Jr. <u>Income and Household Sizes</u>
<u>Their Effects on Food Consumption</u>, Market Research Division,
U.S.D.A., Report No. 340, Feb. 1961, p. iv.

In general, one may say that rising incomes have a positive effect on gross retail food sales, the extent of which varies greatly between areas and type of food purchased.

Frice Level: Assuming the reader has the economic knowledge of the basic product price-demand relationship, little explanation is necessary to describe this relationship between the food pricelevel and food purchases. For purposes of this study, consumer food prices are assumed to be constant for all counties during time periods of less than one year. Price changes over periods of one year or longer will be taken into account by the use of a food price index discussed later.

ACCUMULATION OF DATA:

Gross Retail Food Sales - raw data on the dollar volume of snnual retail food sales is not published either by county or metropolitan area. However, the state of Michigan levies a 4 percent sales tax on all items sold in food stores and this information (tax receipts data) is published by county

There is hereby levied upon and there shall be collected from all persons engaged in the business of making sales at retail, as hereinbefore defined, an annual tax for the privilege of engaging in such business equal to 4% of the gross proceeds thereof, plus the penalty and interest when applicable as hereinafter provided, less deductions allowed in sections 4 and 4a. - first paragraph of Section 2, of the Michigan Sales Tax Act, Act 167, P.A. 1933, as amended.

in the Annual Report-Michigan Department of Revenue.

Sales tax data was collected from this report for the years 1951-52 and converted into gross retail food sales by the following computations:

1951-60: (X + 3) - 100 = 2

1961: $\sum (x + 60.46\%) = 7 \cdot 100 + \sum (x + 33.52\%) = 7.100 = 2^{-1}$ 1962: $(x + 4) \cdot 100 = 2$

Where: X = total retail food sales tax
Z = total gross retail food taxable sales

Approximately ten percent of the food store sales are non-food items. This would indicate that the derived data is not a truly accurate indication of food sales. However, Mr. W.A. Wharton² stated that approximately ten percent of total food sales were not included in the food sales tax data because these products were sold from places other than those classified as food stores, i.e., gas stations, drug stores, department stores, etc. The ten percent loss and ten percent missallocation then tend to offset each other, leaving the derived data "moderately accurate." Gross retail food sales

Prior to Jan. 1, 1961 the sales tax law read "3%".
During 1961, often called the "dirty year" by tax analysts,
60.40% of annual food sales were taxed at 3% and the remainder
at 4%.

Research Director of the Michigan Department of Revenue.

Considered by W_aA_a Wharton to be $\stackrel{+}{=}$ 2% of true food sales for a given area.

data was thereby accumulated for the state of Michigan and its 03 counties for the twelve year period of 1951-62.

Table 7. Annual Gross Retail Food Sales for Selected Counties and State*.

			(\$000)			
	Earagua	Missauk ee	Berrien	Ingham	Wayne	State
1951	1,805	895	47,337	66, 378	1030,466	2379,817
1953	1,937	1,114	53,966	76,776	1160,301	2703,329
1953	1,861	1,194	54,501	79,201	1168,600	2050,462
1953	2,204	1,595	63,109	91,939	1151,002 ·	3254,430
1900	2,307	1,563	69,119	95,163	1021,462	2357,508
1962	2,506	1,338	63,178	99,239	1016,891	2057,903

Forelation - population data for the state of Michigan and its 83 counties are available in the U.S. Census of Michigan Population, however, this data is only published at the beginning of every decade 1940, 1950, 1960, etc. Data for the intermembers years was obtained from Sales Management's "Annual Europy of Buying Power," published in July of each year.

As shown in table 8, Michigan's population has been increasing at approximately 2.23 percent per year, considerably above the average increase of 1.83 percent recorded for the nation as a whole.

^{*}Data derived from sales tax data - information for remaining 70 counties can be found in Appendix A.

Table 8. For	ulation for	Selected	Countles	and	State*.
--------------	-------------	----------	----------	-----	---------

	Daraga	Missaukee	(000) Berrien	Ingham	Wayne	State
1951	7.943	7.391	119,1	176,9	2458.3	6516.9
1953	7.7771	7.256	126.0	184.4	2504.5	6809.
1955	7.594	7.121	132.8	192.1	2550.8	7097.
1958	7.323	6.919	143.0	203.6	2020.1	7532.9
1960	7.151	6.784	149.9	211.3	2666,3	7823.
1962	6.934	6.661	168.8	220.8	2717.2	8205.9

percent Non-White Population - slightly less than ten percent of Michigan's population is non-white. This proportion has been growing steadily at about .22 percent per year. Over one-half of the non-white population in the northern most part of the state consists of Indiana, while Negroes are present in the south's non-white population. Moving from north to south and from west to east, the percent non-white population increases.

Table 9 illustrates how the percent non-white population is increasing in the southern counties while it is decreasing in some of the northern ones.

Forulation Density - generally speaking, population density is decreasing in the northern counties of Michigan and increasing in the southern counties.

^{*}Additional information in Appendix A.

Table 9. Proportion Non-White Population.

	(Percent of Total)									
40	Bazaga	Missaukee	Berrien	Ingham	Wayne	State				
1951	5,76	.57	6,45	2,19	14,52	7,33				
1953	5.28	.51	6.95	2.57	15.76	7.79				
1955	4,80	.45	7.45	2.95	17.00	8, 25				
1958	4.08	• 36	8, 20	3,52	18.86	8,94				
1960	3,60	• 30	8.70	3,90	20,10	9,40				
1962	3.12	∠24	9.13	4.07	21.19	9.80				

Table 10. Population Density.

	(Persons/Square Mile)								
	Baraga	Missauk ee	Berrien	Ingham	Wayne	State			
1951	8,80	13.08	205, 39	316,26	4049,97	114.25			
1953	8,60	12,84	217.17	329.98	4126,11	119.35			
1955	8,40	12.60	228,95	343.70	4202.25	124.45			
1958	8.10	12,24	246,62	364, 28	4316.46	132,10			
1960	7.90	12.00	258,40	378.00	4392,60	137,20			
1962	7.70	11.76	270.18	391.72	4468,74	142.30			

Rural-Urban Fopulation Distribution - southern Michigan counties are slowly becoming more urbanized, however, many of the northern counties still have no incorporated village large enough to be considered an urban area.

Table 11. Percent of Total Population - Urban.

Baraga	Missaukee	Berrien	Ingham	Wayne	State
0	0	50,23	78.68	96,96	70.97
0	0	50.09	79,44	97.08	72,05
0	0	49.95	80.20	97.20	72.05
0	0	49.74	81.34	97.38	72.86
0	0	49.60	82.10	97.50	73,40
0	0	49.46	82.86	97.62	73,94
	0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 50.23 0 0 50.09 0 0 49.95 0 0 49.74 0 0 49.60	0 0 50,23 78,68 0 0 50,09 79,44 0 0 49,95 80,20 0 0 49,74 81,34 0 0 49,60 82,10	0 0 50.23 78.68 96.96 0 0 50.09 79.44 97.08 0 0 49.95 80.20 97.20 0 0 49.74 81.34 97.38 0 0 49.60 82.10 97.50

Number of Food Stores - during the twelve year period of 1951-62, every county in Michigan experienced a decrease in the number of retail food outlets. This information was extracted from the U.S. Business Census. Data for the inter-census years were derived by linear interpolation. It must be noted, however, that a decrease in the number of facilities is often misleading since those outlets remaining have generally in-creased in size.

Table 12. Number of Retail Food Stores*.

	Baraga	Missauk ee	Berrien	Ingham	Wayne	State
1951	18	23	321	351	6495	16531
1953	16	19	299	322	5959	15210
1955	14	18	292	30 3	5522	14292
1958	14	19	265	291	5010	1 3529
1960	12	18	247	270	4552	12505
1962	11	17	230	251	4110	11572

^{*}Additional information in Appendix A.

Income Levels - income data was also extracted from the "Annual Survey of Buying Power" published each July by Sales Management. This magazine arrived at these levels by taking a survey of each county using mail questionnaires and personal interviews. I chose per capita disposable income (total earned income less taxes) believing it to be the best indication of funds available for food purchases.

Table 13. Per Capita Disposable Income.

	Baraga	Missaukee	Berrien	Ingham	Wayne	State
1951	1486	9 38	1517	1799	1408	1610
1953	870	879	1439	1837	113	1641
1955	967	974	1571	2028	1212	1815
1958	113	1154	1635	2026	1322	1810
1960	1202	1251	1838	2374	1434	2224
1962	1232	1182	1963	21.40	1512	2000

Now that I have listed, explained, and illustrated those factors which are to be considered as possible determinant variables, I shall present a short description of the statistical tests available to determine which of these factors are significantly important in Michigan. Chapter IV will examine the alternatives available and describe the statistical technique finally chosen.

CHAPTER IV

POSSIBLE STATISTICAL PROCEDURES

Now that consideration, of these variables mentioned in Chapter II, has been justified, statistical tests will be used to determine which of these factors, if any, has a measurable effect on the volume of gross retail food sales at a specific time within the state of Michigan. It must be noted, however, that the selection of a given variable, shown to have a significant effect in Michigan, does not indicate that this same factor will have a similar effect in other areas or under different situations.

In general, statistical analysis involves the testing of a hypothesis, which for purposes of this first procedure shall bes X_i has no effect on gross retail food sales of a given area. The purpose of the statistical test is to accept or reject the (null) hypothesis, and to do so while minimizing the loss function.

¹L = ~ P1 C1+ BP2C2

L = total expected loss

probability of Type I error (rejection of bull hypothesis when its true)

B = probability of Type II error (acceptance
of null hypothesis when its false)

P₁ prior probability that null hypothesis is true

P2 prior probability that null hypothesis is fake and alternative true

C, e cost of Type I error

C1 cost of Type II error

The following section presents a short discussion of the commonly used statistical test procedures.

Chi-Square Test: Probably the simplest technique which is used to determine the dependency between X, and gross food sales is the chi-square test. The basic procedure involves testing the dependency between one independent and one dependent variable. This test can be applied when data for both variables are qualitative in nature. 1 Since the data obtained in this study are all quantitative, the use of the chi-square test would be an unnecessary simplification. Just as the chi-square test uses the slightest amount of intricate data and detail in its procedure, likewise, the results are of only the slightest value relative to those of the following two statistical tests. The chi-square test does establish the relationship, if any, between a dependent and independent variable, however, it provides no numerical measurement of this relationship nor does it provide any empirical data from which projections can be made. 2 Also, analysis of an area as small as a county, would require survey data from various

L. V. Manderscheid. "An Introduction to Statistical Testing," Agriculture Economists Mimeo 867 - revised, Feb. 1964, pp. 6-8.

²Frederick E. Croxton and Dudley J. Cowden. <u>Applied General Statistics</u>, Prentice-Hall, Inc., Englewood Cliffs, N.J., April 1956, pp. 681-693.

areas within the county. Thus, the information presently available would only allow for a state analysis, with county data serving as observations within the state.

Analysis of Variance: The hypothesis generally tested in the analysis of variance technique is the equality between the means of several groups of data, each effected by a different degree of influence of an independent variable. An individual county analysis is possible within the scope of this analysis, however, just as is the case with the chi-square test, data from various areas within the county at a given time would be necessary. However, if observations were made over aperiod of time, this would not be necessary.

The analysis of variance requires that at the least the dependent variable be quantitative in nature. Just as the analysis of variance requires a more detailed procedure than does the chi-square test, it also provides more precise results. Nevertheless, this test also provides no numerical measure of the relationship between variables, nor does it exhibit any basis from which projections could be made.

Regression Analysis: While the first two statistical techniques discussed were useful in the testing of hypothesis,

Dixon, Wilfreid J., and Frank J. Massey Jr., Introduction to Statistical Analysis, 2nd Ed. McGraw-Hill Book Company Inc., New York, 1957, pp. 146-152.

they are of extremely limited value when estimating the effects of independent variables on a dependent variable. However, the regression analysis technique is especially suited to this type of computation. The typical form of the regression equation is:

 $Y = 4 + B_1 X_1 + B_2 X_2 + \dots + B_n X_n + u$

Where: Y = observation of a dependent variable a factor which is effected by the independent variables in the equation.

X_i= (1 = 1,..n) = observation on independent
variable of associated independent variable factor(s) which effects the dependent
ent variable, but is not effected by it.

u = observation of the random error term.

If we now assume that all values of u observed are independent random variables, we then obtain the following estimating equations $\hat{Y} = a + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$

Where: \hat{Y} = estimation or calculated value of Y; a and b are estimates of \prec and β

Additional results may be obtained from the normal regression analysis test. 1 Some of the other information obtained include the multiple correlation coefficient (R),

¹Kiel, D.F., and W.L. Ruble. "Formulae Used in CORE Routine," A.E.S. Program Description 12, Oct.15, 1963, pp.4-9, Michigan State University Computer Laboratory.

the standard error of estimate (Sy.x), standard error of coefficients (Sb₁), t-value for testing if the b₁ is different from zero (TB), residuals (\overline{u}_t) and coefficients of multiple determination (\mathbb{R}^2) along with others, where:

 $R^2 = \frac{SSR}{TSSAM}$ SSR = sum of squares explained by regression TSSAM TSSAM total sum of squares after mean

 R^2 corrected for degrees of freedom = $R^2 = 1 - N - 1 + (1 - R^2)$

N = number of observations

 \tilde{R}^2 is often preferred to R^2 since \tilde{R}^2 gives the exact split of the variance of Y, into explained and unexplained variance whereas R^2 splits the sum of squares.

 $R = \sqrt{R^2}$

R corrected for degrees of freedom = \overline{R} = $\sqrt{R^2}$

Sy.x = \s2

s2 = estimated variance of disturbance = ssz df

ask = sums of squares of error

$$Sb_i = \sqrt{sb_i^2} = \sqrt{c_i \cdot s^2}$$

c₁ = 1 th element of the inverse of the sums of squares

T3 = tb = b, Y = true value of dependent variable

 $\ddot{\mathbf{u}}_{\mathbf{t}} = \mathbf{Y}_{\mathbf{t}} - \ddot{\mathbf{Y}}_{\mathbf{t}}$ $\hat{\mathbf{Y}} = \mathbf{estimated}$ value of dependent variable

This author will not attempt to explain the calculations involved in the typical regression routine since detailed explanations of this routine are readily available. Also,

Kiel, D.F., and W. Ruble. "Calculation of Multiple Regressions, Use of CORE Routine," A.E.S. Program Description 4, Sept. 30, 1963, Michigan State University Computer Laboratory.

the availability of computer services makes an understanding of the calculation technique unnecessary.

As can be readily noted, the regression analysis technique involves much more intricate calculations than either the chi-square or analysis of variance tests. It also provides more detailed results from which a more complete analysis can be made. It makes it possible to numerically measure the magnitude of the effect an independent variable has upon a dependent variable as well as enabling the user to make projections on the assumption that those relationships detected will remain constant over time. Also, the TB value associated with each independent variable may be compared with the t-value of the t statistical table and, given degrees of freedom (N-k-1, where N = observations and k = parameters), it can be determined whether or not that particular variable is statistically significant in its effect on the dependent variable. For example, if Tob, > t-value, given degrees of freedom and & level, then the variable is accepted as being statistically significant. 1

However, this term "significant" must not be misinterpreted. Statistical significance may well have a completeely different connotation from that of economic significance.

lesting the significance of the hypothesis that variable (s), Xi has zero effect on the dependent variable, (Using a one-tailed test).

For example, the arbitrary use of .35 level of ∞ may have no economic meaning if the difference in retail food sales is only \$100 per county. Likewise, many factors may be economically significant and yet show a TB toolow to qualify as being statistically significant. For this reason, factors were selected, for their importance as a determinant factor, on the basis of the "most" significant (size of TB) rather than using the TB \leq t-value criteria.

Choice of Statistical Test:

In summary, the regression analysis procedure was chosen over those of chi-square and analysis of various for the following reasons:

- 1) Data on both dependent and independent variables are quantitative in nature and thus, can most effectively be analyzed by the regression technique.
- 2) It provides numerical measurements of the relationships between the variables and enables determination of those factors which are "most" significant.
- 3) It enables the user to formulate projections.
- 4) Provides adequate results from which a better overall analysis can be made as compared to the other alternative methods.
- 5) It allows for individual county analysis, using available information, and illustrates the heterogeneity between counties.

6) Numerical measurements aid in the economic interpretation of the relationships that may exist.

Recression Procedures Used in this Paper:

Time Series Analysis

The first regression equation to be used in this study is called the time series multiple linear regression equation. Where a dependent variable is influenced not only by a single independent variable, as in the relation of Y to X_1 , but also by two or more independent variables, this relation can be represented symbolically by the following multiple linear regression equations 2

Y = a + b₁x₁+b₂x₂+ + b_nx_n+ u

Where: Y = the dependent variable

x₁,x₂,...,x_n = independent variables

As previously stated, the first objective to be reached in this study is to determine which of the factors, if any, described in Chapter III, have an appreciable effect

The term "multiple" is added to indicate that it explains Y in terms of two or more independent variables x, x, x, ... The coefficients b, and b, are termed net regression coefficients. The term "net" is used to indicate that they show the relation of Y to x, and x, respectively, excluding the associated influences of the other independent variable or variables.

²Fox, Karl A, and Ezekiel Mordecai. Methods of Correlation and Regression Analysis. John Wiley & Sons, Inc., New York, 1959, p. 152.

on the gross retail food sales of a county, metropolitan area, or the entire state of Michigan. The multiple linear regression formula will be used to accomplish this task in the following way.

First, it has already been mentioned that the dependent variable of this particular equation is the gross retail food sales of a given area. Since the first test shall be a time series study, the annual volume of retail food sales in "County A" for the twelve year period of 1951-62 becomes the values of Y in the equation. Likewise, the data on the independent variables previously discussed (population, income, food stores, etc.) becomes the values of X_1, x_2, \dots, x_n . The equation for County A then looks like: $Y = a+b_1x_1+b_2x_2+\dots+b_nx_n$.

Where: Y = annual gross retail food sales 1951-62 for County A

 $x_1, x_2, \dots, x_n = \text{income}, \text{population}, \text{ etc. } 1951-$ 62 for County A.

Once the data is arranged in the above manner, it is subjected to trial run calculations. Results of this trial run should show the percent of variation in Y over the twelve year period that is explained by x_1, x_2, \dots, x_n , (R^2) , the magnitude and direction of the effect on Y of each x_1, x_2, \dots, x_n , (b_1, b_2, \dots, b_n) , the level of significance of each independent variable (TBb₁, TBb₂, ..., TBb_n), and a great deal of additional information not of particular interest in this study.

Those variables with low levels of significance or high intercorrelation are then dropped and the calculations again made.

Eventually, an accurate equation is found showing the magnitude, significance, and percent of variation in Y explained
by those variables selected. This process was completed for
each of Michigan's 83 counties and the state for the twelve
year period.

The following diagram may aid in the reader's understanding of the difference between the time-series analysis, just described, and the cross section analysis, soon to be discussed.

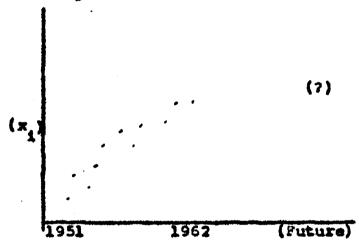
	County #1	County #2	<u> </u>	<u>.</u>	Ŀ	County \$3	State
1951	(#FS) (Per Cap.Income) (Retail Food Sales)						
3							
_4	,						
5							
- 6		ì					
77							
8							
9							
1960							
1							
2						2.3	

The time series analysis involves the calculation of 84 multiple linear regression equations, one for each of the COLUMNS of data. The cross-section analysis, however, involves

the calculation of 12 equations, one for each of the ROWS of data.

Cross Sectional Analysis

Next, a cross-sectional study is conducted. The statistical procedure is much the same, except each equation represents variation in food sales between counties for a given year, rather than variations over a time period (12 years) for a given county. Whereas the time series equations were used to describe changes in gross retail food sales over time for each county, the cross-section equations now describe variations between counties for any given year between 1951-62. The variables used were those found important in the time series analysis.


Simple Curvilinear Regression Equation

Once the significant factors have been determined, one major step remains before projections can be made. By assuming those relationships found in the multiple linear regression equations will remain constant over time, estimated values of x_1, x_2, \dots, x_n for a future year may be placed into the equations and an estimated value of Y, for that year, calculated. However, the accuracy of this estimated or projected Y depends not only on the accuracy of the equation, but also on the accuracy of the estimated values of x_1, x_2, \dots , x_n entered in the calculations. Therefore, the major step now being considered, is the accuracy of the projected values

of the selected independent variables.

Since the causes behind the value of a given independent variable is not of particular interest, these recessary projections need only be made as a function of time. For example, Figure 2 illustrates the situation now faced.

Figure 2
Curvilinear Projection as a Function of Time

Various techniques are available for estimating the value of x_i in a future time period. Freehand, moving average, or least squares trend lines may be drawn through the given values of x_i and extended outward toward the future year of interest. However, more accurate trend lines may often be obtained by using a simple curvilinear regression equation as shown:

$$x = a + b_1 x_1 + b_2 x_1^2$$

Where: Y = selected independent variable (x₁ in Figure 2)

$$x_1 = time$$

over freehand and other methods when there is a logical basis for expecting a certain type of relation to hold. When there is a logical basis for using a given formula, the constants of the equation serve as an explanation of the nature of the relationship. In most other cases, the mathematical curve is no more reliable than the other methods.

The above equation is calculated for each of the selected variables for each of the 83 counties. Results of these calculations will be similar to those of the multiple linear regression. Once a, b, and b, have been determined, the values for the specific future year is incorporated into the simple curvilinear equation and an accurate estimate of the value of s_1, s_2, \ldots, s_n is derived and these values then placed into the multiple linear equation to obtain the potential retail food sales of a given county in a given year. In the following chapters, this entire process will be illustrated in detail for five selected counties, and a more detailed understanding thereby derived.

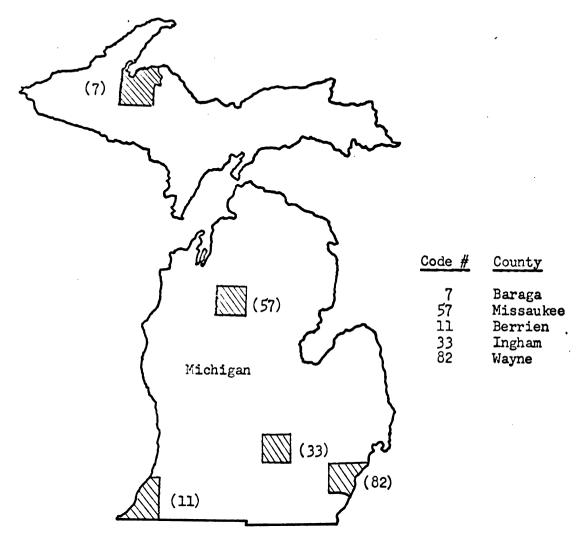
¹ Fox and Ezekiel, p. 109.

CHAPTER V

SELECTION OF SIGNIFICANT VARIABLES AND FINAL REGRESSION EQUATION

As stated in the previous chapter, the important variables are selected on the basis of test results using multiple linear equations in a series of trial run calculations. This chapter explains the procedure used to select the final variables and regression equation.

County Selection


Rather than conduct an experiment involving all of Michigan \$33 counties, five counties were selected to represent most of the various types of counties found in the state. These five counties could then be carefully analyzed and the resulting variables used in equations for the other 78 counties.

Map #2 illustrates the location of the five selected counties.

Darrigg - This county is representative of the counties in the Upper Peninsula. Its residents are primarily rural dwellers with low incomes. The county is very sparsely populated and has a large tourist influx during the summer months.

Eissaukee - This county is typical of counties in the northern portion of the Lower Peninsula. Here, also, most of the people are rural residents receiving a low income from their

Map #2
Selected Counties

farming or logging enterprise. It has a relatively high summer tourist population.

Berrien - This county was selected to represent the southwestern portion of the state. Here the population is more dense, incomes are higher and the rural-urban population is about equally distributed. Inchan - This county represents central Michigan and is characterized by a high per capita income, fairly heavy population density and a high percent urban population.

Navne - This county represents southeastern Michigan. It is the most heavily populated county in the state, it has a high percent non-white population and almost all of its residents live in urban communities.

The above five counties represent statewide variations in geographical location, population, population density, percent rural—urban population distribution, income level, percent non-white population, etc. By analyzing these typical counties, it is easier for the reader to establish limits within which the discussion will remain valid. Even though only the five selected counties will be discussed in detail, regression equation results for all counties are presented in the appendix so that the reader, specifically interested in one of the remaining 78 counties, can perform an analysis similar to the one discussed in this paper, on any particular county or group of counties. Throughout the remainder of this paper, the discussion shall pertain directly to the five selected counties, metropolitan areas, and the state as a whole.

Trial Run fil:

The first calculation used the following equation.

$$Y = a + b_1 x_1 + b_2 x_2 + \cdots + b_9 x_9 + u$$
Where: $Y = (X_{11})_{100}$

The above equation shows how almost all factors mentioned in Chapter III were considered in the first trial run.

Use of Index

Before continuing, the use of the food price and the consumer price indexes must be explained and justified.

An index is most often defined as a numerical device used to compare the magnitudes of two or more related factors. To be more precise, the indexes in this equation were used to deflate the existing values of gross sales and income so as to remove effects of changing price levels. Since all sales data are presented in terms of dollar value, currently existing in the year represented, any projection of this data into the future would be extremely misleading when compared to

present price levels. Before the past, present and future sales volume data can accurately represent the physical volume implied, the inflationary effects of price rises must be eliminated. Likewise, income levels must be adjusted so as to depict its true purchasing power.

To accomplish this adjustment, a food price index was used to deflate the price of food and a consumer price index was used to render income levels more representative of its true purchasing power.

The consumer price index, derived from the Bureau of Labor Statistics is a statistical measure of changes in prices of the goods and services bought by consumers. It measures only changes in prices; it tells nothing about changes in the kinds and amounts of goods and services consumers buy, or the total amount spent for living, or the differences in living costs in different places. It uses the "market basket approach" in determining what products are priced. The index market basket is an estimate of the goods and services bought by the consumer to use, replace and add to their possessions to keep up their level of living of a given base year. Since this index represents the changes in the price level of consumer's market basket, it then becomes an indicator of that consumer's purchasing power as compared to a base year.

¹Wirtz, Willard W. "The Consumer Frice Index," U.S.D.L., Bureau of Labor Statistics, January 1959, p. 1.

The food price index is a measure of the price changes of only the food products within the market basket. It then provides a numerical measure of the food price changes over time and enables one to eliminate the inflationary portion of gross sales, leaving data more representative of actual physical volume of food compared to a base period.

Index Assumptions

Despite almost constant revision, these indexes are not exact measurements. They are subject to the many kinds of limitations that are always present in statistical calculations. In the language of the statistician, these limitations are called "errors." This should not be interpreted to mean that they are mistakes, and, for purposes of this study, the indexes are assumed to be accurate.

Also, assuming that all areas of Michigan are equally affected by any national inflation (or deflation), the two national indexes were applied to each county's data. So as to make this uniform as well as applicable to the time period being studied, both indexes were adjusted to the base year of

¹ Volume still reflects the increase in food sales value due to increased services in product.

ZaC.P.I. Food Field Reporter, February 3, 1964, p. 22.

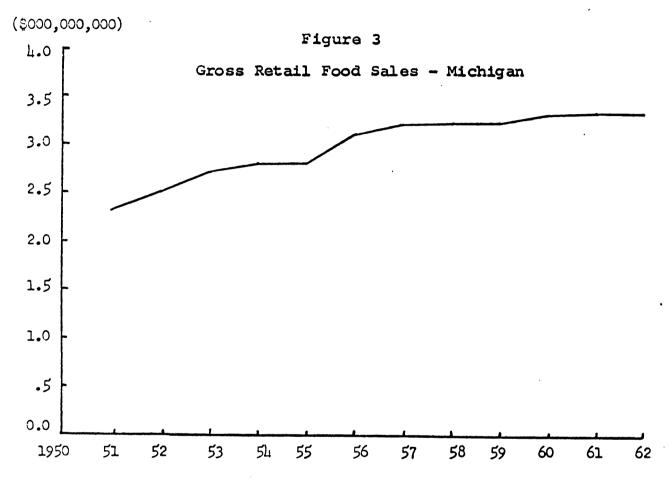
Vaughan, Olive E. "An appraisal of the B.L.S. Consumer Price Index, " Journal of Marketing, October 1953, 18: 1 33-45.

1950. Below are listed the values used for each year 1951-

FOOD PRICE INDEX			COMSUMER	PRICE :	INDEX (I	ncome I	ndex)	
YEAR	INDEX	YEAR	THUEX	YEAR	INDEX	YEAR	TUDEX	
1950 1951	100.0	1957 1958	114.1 118.9	1950 1951	100.0	1957 1953	117.0	
1952	113,3	1959	117.0	1952	110.4	1959	121.1	
1953 1954	111.6	1960 1961	119.7	1953 1954	111.2	1960	123.0	
1955 1956	109.7	1962	730*8	1955 1956	111.3	1962	126.7	

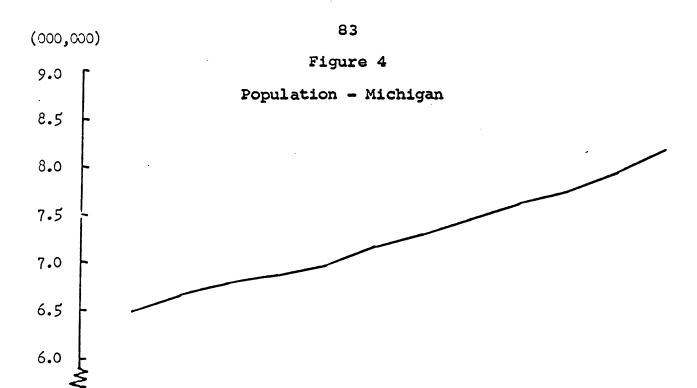
Impacted Results

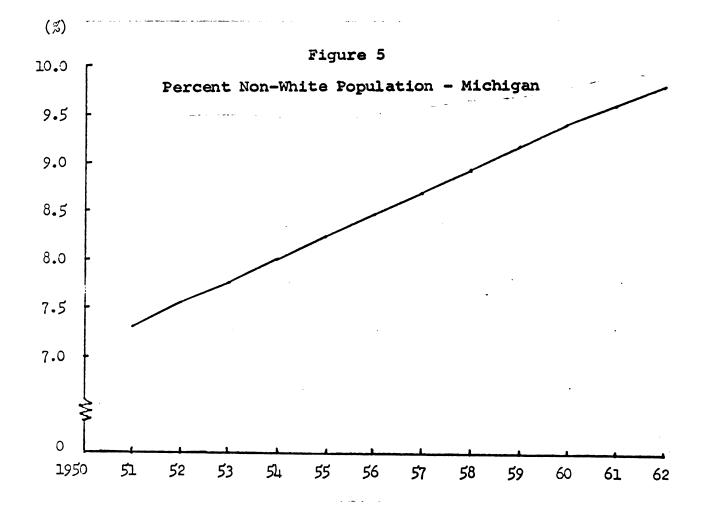
Before discussing the test results of trial run #1, it might be helpful to illustrate the factor trends in the various counties and mention some relationships that might be expected to show up in the results.

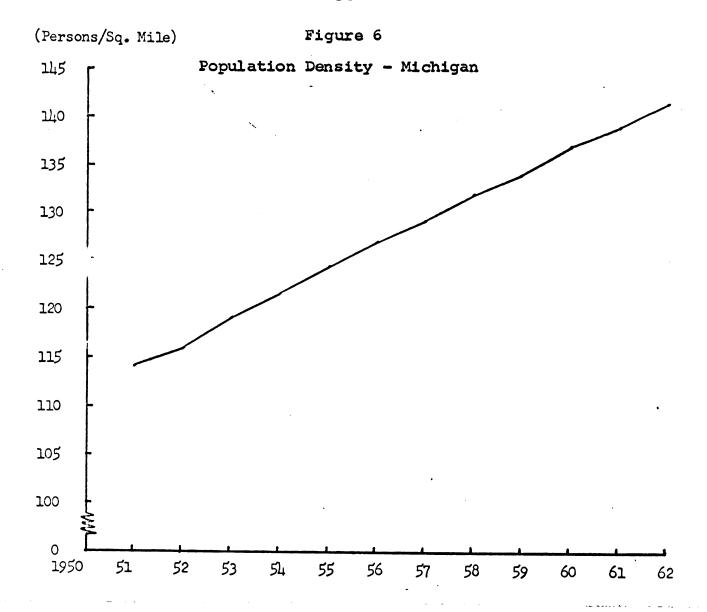

Retail Food Sales - Table 7, in Chapter III, shows how gross rotail food sales increased in each county during the twelve year period; Ingham county leading with almost a 50 percent increase. There is a noticeable drop in 1955 which may be attributed to a sharp national recession in the early part of that year. Also, there is a noticeable leveling-off of the increase during the more recent years. Figure 3 illustrates the trend for the state as a whole.

Fogulation - Tables 8-11 in Chapter III illustrate the trends in the population characteristics of the various counties.

Figure4 illustrates the state trend. Fotice the regularity of this increase along with the slight upward-bending tendency.

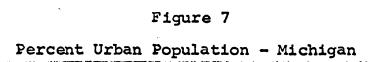

This phenomena is certainly expected, when considering the

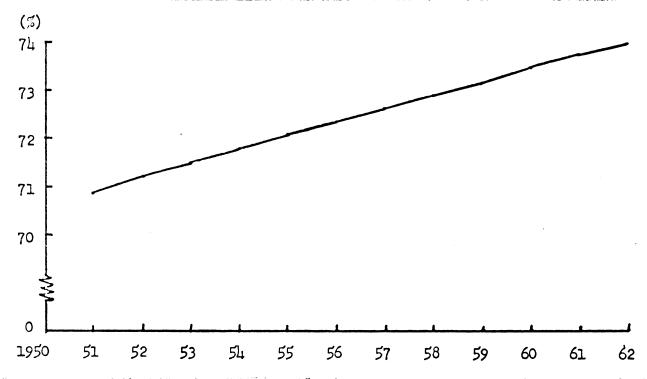

geometric expansion concept of the Malthusian Theory. It is expected that the population data would have a positive effect on gross retail food sales.



Percent Non-White - Figure 5 shows a distinctive increase in the percent non-white population. As explained in the Jewel Tea study, it would be expected that this factor would have a slightly negative effect on gross retail sales.

Population Density - Likewise, Figure 6 shows a fairly constant increase in the population density of Michigan and this is expected to have a positive influence on gross retail food sales, since, as was previously discussed, increased population density indicates an increase in the size of the local market.

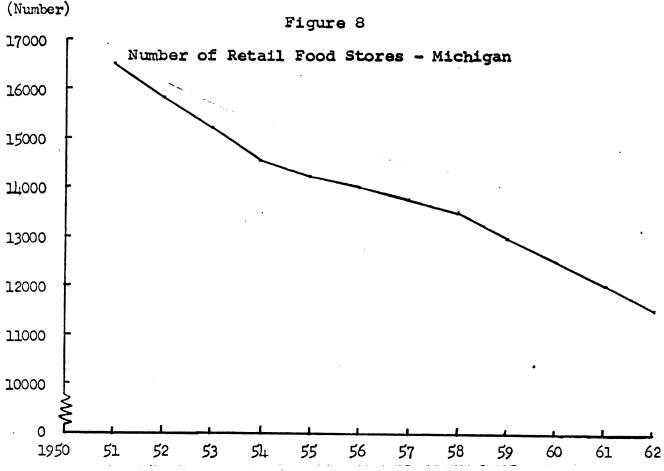




Percent Urban Population - Figure 7 shows almost a linear increase in the percent urban residents. However, this increase can be expected to taper off slightly in the near future.

Nevertheless, it is expected that increased percent urban residents will produce a positive effect on gross sales.

Number of Food Stores - No estimate of the effect can be made here since past studies and economic reasoning differ in their resulting effects. While general marketing theory might


indicate that an increase in food store numbers would slightly increase total food sales, past studies in this area show a negative effect. Additional information will be given later in this paper to illustrate whether the trend shown in Figure 8 produces a positive or negative effect on gross retail food sales. Table 12, in Chapter III, shows a general decrease in store numbers for each of the five selected counties.

Additional Population Characteristic - Among the most dramatic

Beegle, Allen J., Phadtare, Hambir, and John F. Thayden. "Michigan Population 1960, Selected Characteristics and Changes," Department of Sociology and Anthropology, Special Bulletin 438, Agricultural Experiment Station, Michigan State University, E. Lansing, Michigan, p. 7.

changes in Michigan population is its growing centralization.

Twenty-three counties account for no more than one-third of one percent of the total population. Wayne, Oakland, and Macomb counties, combined, on the other hand, account for nearly one-half of the state total. Approximately one-fourth

(22) of the counties have no urban population, that is, no place having as many as 2,500 people. At the other extreme, approximately one-fourth (23) of the counties are more than half urban.

Population growth or decline is a result of a combination of the balance of births and deaths and of selective migration. Differences in rates of change between county

units in a state, for instance, are more likely to be due to the effects of migration than the effects of natural increase. Elgliteen counties actually experienced losses in their total populations between 1950 and 1960.

Due to the expected importance of the effect of population on retail food sales, additional population maps are presented in Appendix & to simplify the reader's understanding of Michigan's population composition and trends.

Income - Figure 9 shows a general increase in per capita dispossible income and this also would be expected to exert a positive influence on gross sales. Table 13, in Chapter III, illustrates how the income level is lower for the northern county residents.

sales per store - sales per store was included in the trial run al as a measure of market concentration. The greater the degree of market concentration (percent of area sales handled by one store), the smaller the potential food sales expected. Also, any market which is highly concentrated generally provides a strong entry barrier to any prospective retail outlet. Table 14 and Figure 10 illustrate the present trend, which is expected to have a negative effect.

Sales Per Person - This factor was included in the trial run to act as an indicator of the trend in per capita food expenditures. Naturally, an increase in food sales per person would have a positive effect on total food sales. Table 15

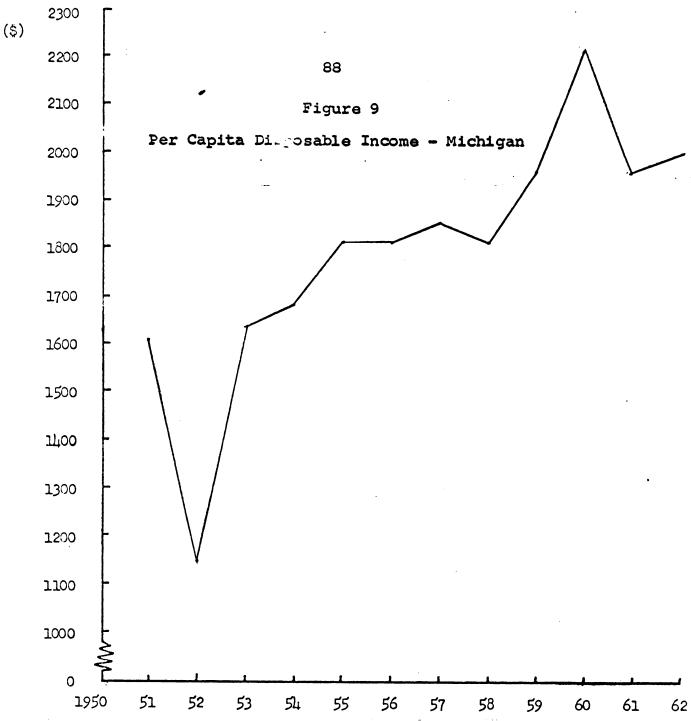
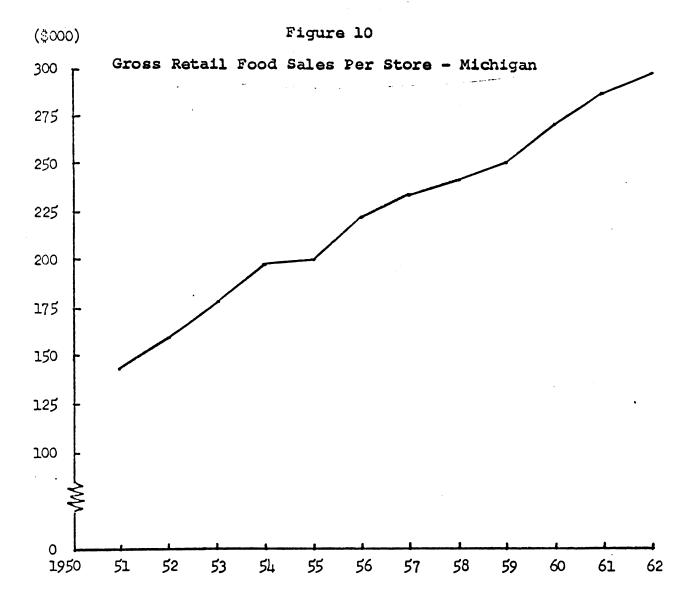



Table 14. Gross Retail Food Sales Per Store.

	Baraga	Missaukee	(\$000) Be rrien	Ingham	Wayne	State
1951	93.9	59.8	109.3	141.5	109.1	143.9
1953	105.7	63.4	129.9	168.5	127.3	177.7
1955	117.5	67.0	150.5	195.5	145.5	200.0
1958	135.2	72.4	181.4	236.0	172.8	241.3
1960	147.0	76.0	202.0	236.0	191.0	269.9
1962	158.8	79.6	222.6	290.0	209.2	290.2

and Figure 11 show an increase in per capita food expenditures. Note, however, that this data does not necessarily indicate an increase in the quantity of food consumed, but may be the result of increasing food prices and/or increased purchase of the higher priced foods.

Table 15. Gross Retail Food Sales Per Person.

(\$)											
	Baraga	Missaukee	Berrien	Ingham	Wayne	State					
1951	206.40	168.30	279.90	268.60	276.60	365.00					
1953	217.20	174.90	291.70	283.80	287.80	397.00					
1955	228.00	181.50	30 3.50	299.00	299.00	403.00					
1958	244.20	191.40	321.20	321.80	315.80	433.00					
1960	255.00	198.00	333.00	337.00	327.00	431.00					
1962	265.80	204.60	344.80	352.20	338.20	406.00					
1962	265.80	204.60	344.80	352.20	338.20	406.					

Figure 11 (\$) Annual Sales Volume Per Person - Michigan

In summary, the previous discussion found the possible determinant factors to exhibit the following:

Factor	Trend 1951-62	Expected Effect1
Population	Up	*
% Non-white Popul	ation Up	40
Population Densit		+
% Urban Population		•
# Food Stores	Down	7
Per Capital Incom	e Up	+
Sales per Store	Up	***
Sales per Person	υp	•

MULTIPLE LINEAR REGRESSION ANALYSIS

Results: Trial Run #1

Now that the components of the possible regression equation have been discussed, the actual test can be conducted and further progress made towards the final selection of variables.

In trial run #1, as expected, negative coefficients (b_1) were found for the following variables: Non-White Population (x_6) ; sales Volume Per Store (x_2) . Although not anticipated, a negative coefficient was also found for the factor, number of food stores (x_8) . The remaining variables were preceded by positive coefficients, indicating a positive effect on gross retail food sales, as was expected. However, the magnitude and the significance of each factor could not be accurately measured with the use of the test results. This was because of the extremely high degree of intercorrelation

¹⁺ Increase in factor value increases gross retail

⁻ Increase in factor value decreases gross retail food sales.

between some of the variables, causing the existence of a singular matrix, which is mathematically unusable in this type of calculation. High degrees of intercorrelation were found between the following sets or groups of variables, indicating the formula's inability to accurately attribute an effect on Y to either of two or more factors.

Group	Factor	Intercorrelation
ı	<pre>(x₆) % Non-White Population (x₇) % Urban Population (x₁) Population Density (x₉) Pepulation</pre>	•99 5- •999
II	(x ₅) Per Family Income (Deflat (x ₄) Per Capita Income (.990-,993

In Group I, all five counties and the state showed high intercorrelations between population and the three population composition characteristics. This is not unusual since population data, alone, directly affects the values of the three components. Thus, it was decided to drop the three population characteristic variables from the equation and use only population.

In Group II, per family and per capita income were also found to be high intercorrelated. This, also, was not totally unexpected since average family size within the state does not vary greatly over time. Thus, per family income was also dropped from the equation, leaving per capita income.

Following the above adjustments the equation now reads as follows:

$$x = a + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_8 x_8 + b_9 x_9 + u_2$$

This equation was then used in the calculations of trial run #2.

Results: Trial Run #2

As in trial run #1, the following two groups of variables were found to be highly intercorrelated:

Group	Factor	Intercorrelation
I	(x_0) Sales Volume Per Store (x_0) Number of Food Stores	.993997
11	(x_3) Sales Volume Per Person (x_9) Population	.99,-,993

Again, Groups I and II were more or less expected since sales volume per store was directly related to the number of stores and sales volume per person was directly related to population. Thus, both sales volume per store and per capita were eliminated, leaving the following equation to be calculated in trial run #3.

$$Y = a + b_4x_4 + b_8x_8 + b_9x_9 + u_3$$

Remitte Trial Run #3

The results of trial run #3 were similar to those in Ferber's study, where population (x_g) was found to be of such great importance, both in magnitude and in significance, that it completely concealed any relationships that might have existed between Y and per capita income (x_g) and/or number of food stores (x_g) .

As previously mentioned, the relationship between population and food sales is primarily a bio-physical one, which contributes extremely little to any economic discussion

that might be of interest in this paper. Therefore, following the procedure of Ferber, the population factor is recognized as being of primary importance and adjustments are made so that other relationship can appear. This adjustment simply involves dividing population (x_g) into gross retail food sales per person, previously coded as x_g .

The equation them appears as follows for the fourth trial run.

$$x_3 = a + b_4 x_4 + b_8 x_8 + u_4$$
Where: $x_3 = Y =$ gross retail food sales per person x_9
 x_4 , $x_9 =$ as listed under Trial Run #1

Results: Trial Run #4

The results from trial run #4 were much more conclusive sive showing no major trend interference and only a nominal amount of intercorrelation. Both factors (x_4, x_8) were found to have an effect on gross retail food sales per person. However, the magnitude, direction and significance of this effect differed between the five counties and the state. The results, as are shown in Chapter VI, were considered valid enough to suggest use of the following equation for all 83 counties:

100 •
$$\left(\frac{x_1}{x_3}\right)_{zq}$$
 = $a_z + b_1 x_4 + b_2 \left\{100 \cdot \left(\frac{x_5}{x_6}\right)_{zq}\right\} + u_{zq}$

where: x = gross retail food sales (previously x₁₁)
x = food price index (previously x₁₂)
x = population (previously x₁₁)
x = number of food stores (previously x₀)
x = per capita disposable income (previously x₁₃)
x = consumer price index (previously x₁₄)
x = counties no. 1-83 and state
x = years 1951-62

Each equation explained the variations in per capita gross retail food sales by county over the twelve year period.

Cross Section Analysis:

Since the reader may also be interested in variations between counties as well as between years, a cross sectional analysis was also conducted and a similar multiple linear regression equation was used. However, in this computation, the values of the variables applied to each county for a given year, rather than to each year for a given county, as in the time series. In this case, the variations studied are those between counties rather than over time.

This computation produced an equation for each of the twelve years on which data was available. Each equation explains variations in per capita retail food sales among the 83 counties for each year 1951-62.

The numerical results of both the time series and cross sectional studies are presented and interpreted in Chapter VI.

FROJECTION MCDEL FOR EXPLANATORY FACTORS

Coefficients, alone, are not adequate information for making projections. Also necessary, are estimates of the independent variable. By assuming the relationship found in the time series analysis to remain constant over time, the estimated gross sales can easily be calculated for each county if, and only if, accurate projected values of the independent variables are included in the computation. Thus, the values of the two selected independent variables must now be accurately projected into the future. Since the existence of factors affecting the values of the two independent variables is not of particular interest in this paper, extrapolation of the values using time as the determinant factor, some quite Sufficient. Figure 2 in Chapter IV will illustrate this technique; the objective being to compute an equation capable of accurately projecting the value of an independent variable to a given year. The following two simple curvilinear equations were computed for each of the 83 counties and the state, as a whole.

$$x_4 = a_1 + b_{41}x_T + b_{42}x_T^2$$

 $x_5 = a_2 + b_{51}x_T + b_{52}x_T^2$

There: x_4 = number of food stores x_5 = per capita disposable income x_T = year (time) 1951 = "51", etc.

Numerical results of these equations and their interpretation can be found in Chapter VI. A projected county population is also necessary before the projected per capita sales volume can be transformed
into projected total county gross retail food sales. However,
simple geometric extrapolation will be used for this rather
than a regression equation. The geometric expansion was
found by Dr. Thaden, Demographer at Michigan State University,
to be sufficiently accurate. Further discussion on this
topic will be found in Chapter VII.

CHAPTER VI

PRESENTATION AND ANALYSIS OF COLFFICIENT ESTIMATES

Time Series Hultiple Linear Regression Equation:

Presented below are the time series calculation results for the five selected counties and the state as a whole. Note the variations in the results between counties. Acomplete analysis of all equations is presented following each table.

Equation used:

$$100\left(\frac{x_1}{x_3}\right) = a+b_1 x_4 + b_2 \left\{100 \left(\frac{x_5}{x_6}\right) + u_4\right\}$$

Table 16. Time Series Equations.

		(x ₄ x ₅)						9 a.f.		
County	Code #	Inter. Corr.	F ²	•	b ,	b ₂	TBb ₁	_{7.3} p3		
Earaga	7	.1318	. 855	406,3353	-13,9206	.0385	-8,1305	1.7557		
Berrien	11	-,8133	.132	652.4422	3563	1263	-1.7063	1.8967		
Inghem	33	4726	. 351	335,8499	2604	.0675	-1.5495	1,3432		
Missauke	57	.1054	.828	68,4942	-7.4910	.2578	-2,9356	6,4352		
Wayne	82	1455	. 293	122.7371	.0097	.12 96	1,2331	2,3992		
State	84	 597	•053	250,5149	•0016	•0553	.3705	1.4349		

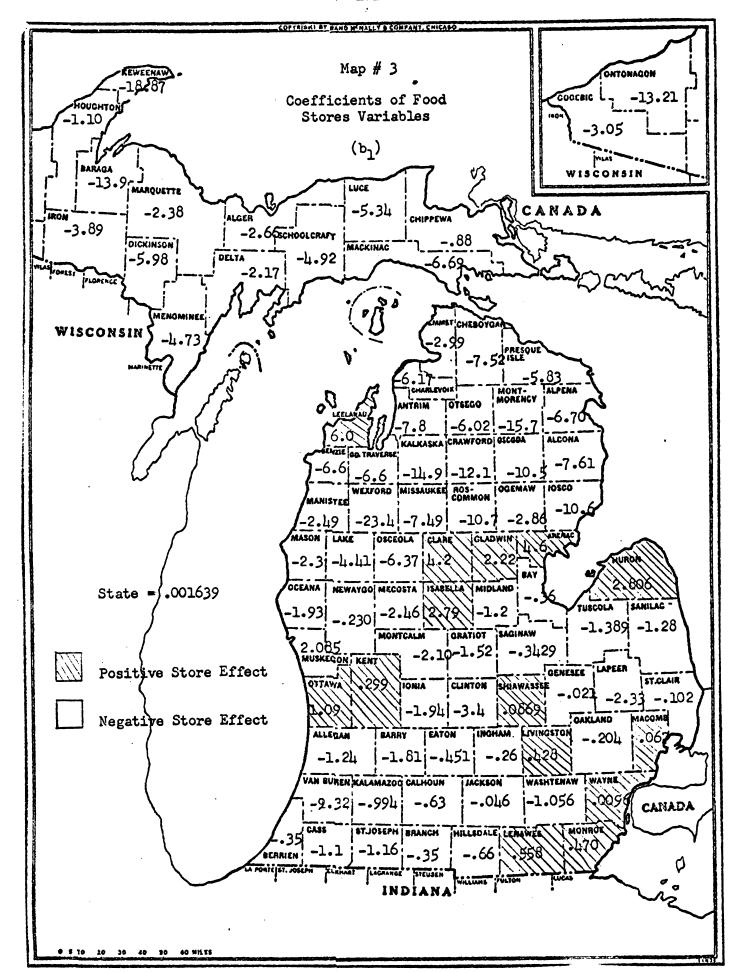
Inter-correlation varied among the five selected counties from a high of .81 in Berrien to a low of .10 in Missaukee County. Generally speaking, only Berrien County had a high enough intercorrelation so that no accurate estimate could be made as to the relative effect each independent variable had upon per capita deflated gross retail food sales. The state, as a whole, had an intercorrelation of .60 indicating a tendency for the analysis of the state to be less reliable than an analysis of an individual county within the state.

 R^2 or \overline{R}^2 represent the percent of variation in food sales that was "explained by" the two independent variables. Table 16 shows Baraga to have the high \overline{R}^2 with .85 and Berrien County the low with .13. Again, the state analysis shows poorer results (\overline{R}^2 = .05) than that of individual counties.

Map 2 shows the county results of the entire state. Generally, there are great variations in \mathbb{R}^2 throughout the state, with the only noticeable pattern being in the north-western portion of the lower peninsula, where a high \mathbb{R}^2 is evident. Other than this, no relationship is shown between geographical location, population, income, etc.

 $^{1\}pi^2 = R^2$ adjusted for the degrees of freedom.

^{2&}quot;Explained by" is used rather than "caused by" since only economic phenomena can actually "cause" these variations.



The "a" (Table 16) represents a constant in each equation and its value indicates little other than the intercept of the regression line on the Y or vertical axis.

The "b₁" (Table 16) represents the dollar magnitude of the change in a county's total defleted per capita retail food sales associated with a one unit change in that county's number of food stores, assuming all other independent variables are constant. Table 16 shows variations in b₁ from -13. (decrease of \$13.) in Baraga to .009 (increase of \$.009) in Wayne County. The state, as a whole, shows a slightly positive effect. Map 3 shows a distinct pattern of b₁.

coefficient is prominent in the northern portions of the state and the positive effect more noticeable in the southern counties. Also, the negative effect is much larger in the most northern counties, and decreases in magnitude when moveing southward. This negative coefficient indicates that as store numbers decrease, per capita retail food sales increase, while other variables are contant. For example, in Baraga County, as the number of food stores in the county decreases by one, annual per capita deflated retail food sales increase by \$13.90. However, in a southern county like Wayne, an increase in per capita food sales is partially explained by an increase in the number of food stores available.

An explanation of this pattern may be as follows:
First, those food stores going out of business in the northern

part of the state are the small outlets (country stores) located in rural areas. Those stores remaining in operation, tend to be located in the more heavily populated areas of the county. These stores can still be found in the shopping district of the small town (less than 2,500 people). Many have moved into a new shopping center which may serve the entire county's population. Regardless, those remaining outlets can he found in an area surrounded by other retail establishments so they might take advantage of the increased drawing power. Therefore, county residents can travel to one major retail trading area and purchase many different types of retail goods. Such an area certainly possesses a larger amount of drawing power compared to country stores. This would coincide with the findings of Bernard Joseph LaLonde, previously mentioned, where the existence of a shopping center store complex had a positive influence on drawing power and per customer sales.

Second, those stores remaining are generally the large sized outlets able to exhibit or stock a much greater number of food products. Normally, as the availability of diversified food products increases, so does the per capita food sales.

Second, those stores remaining are generally the large sized outlets able to exhibit or stock a much greater number

LaLonde, p. 120.

of food products. Normally, as the availability of diversifiel food products increases, so does the per capita food sales.

Third, the northern counties are not only experiencing a decrease in the number of food stores, but also an increase in the amount of annual tourism. Tourism is a factor not included in the computation of "b₁" and therefore produces a bias due to this omitted variable. Since an increase in tourism normally would cause a rise in food sales, this trend tourism increased tourism in the northern counties would tend to inflate the effect now attributed to a decreasing number of food stores. Therefore, the "b₁" in the northern counties would tend to be larger compared to the southern counties.

Fourth, in the southern part of the state it is much more heavily populated and the existence of large modern shop—ping centers are more common. In general, the small country store had been eliminated prior to the observation period of 1951-62. The small positive effect found in some of these southern counties may then be attributed to the greater availability of more expensive prepared foods and other food products. This suggests that the "store effect" will be positive in more counties in the future as more areas advance to the present status of the southeastern Michigan counties.

The small positive effect derived from the state, as a whole, is attributed to the heavy weight, placed by a county such as Wayne on the state data. For example, 50 percent of

the state's total retail food sales occur in the Detroit metropolitan erea, consisting of the three counties - Camland, Wayne, and Macomb; two of which have a positive b, coefficient.

The "b," represents the magnitude of change in deflated per capita food sales attributed to a one unit change in deflated per capita disposable income, assuming other independent variables are constant. For example, in Missaukee County, an increase of \$1. in deflated per capita disposable income would increase deflated per capita food sales by \$.25, assuming other variables are constant. Table 16 shows bo varying from .25 in Missaukes to -.12 in Berrien County. One would normally expect to find a positive relationship between income and food sales since an increase in income level makes possible an increased spending on all items, including food products. While analyzing the state, as a whole, a positive coefficient (.05) was found. Normally this would be universally applied to each and every segment of the state. However, as Hap 4 so explicitly illustrates, this practice would seem to be in error. When analyzing the state on a county by county basis, one finds not only variations in the magnitude of the coefficient, but also in the direction of the effect. For example, Map 4 shows that 34 of the 83 counties have negative rather than positive coefficients.

These negative coefficients vary from -.003 to -.126.

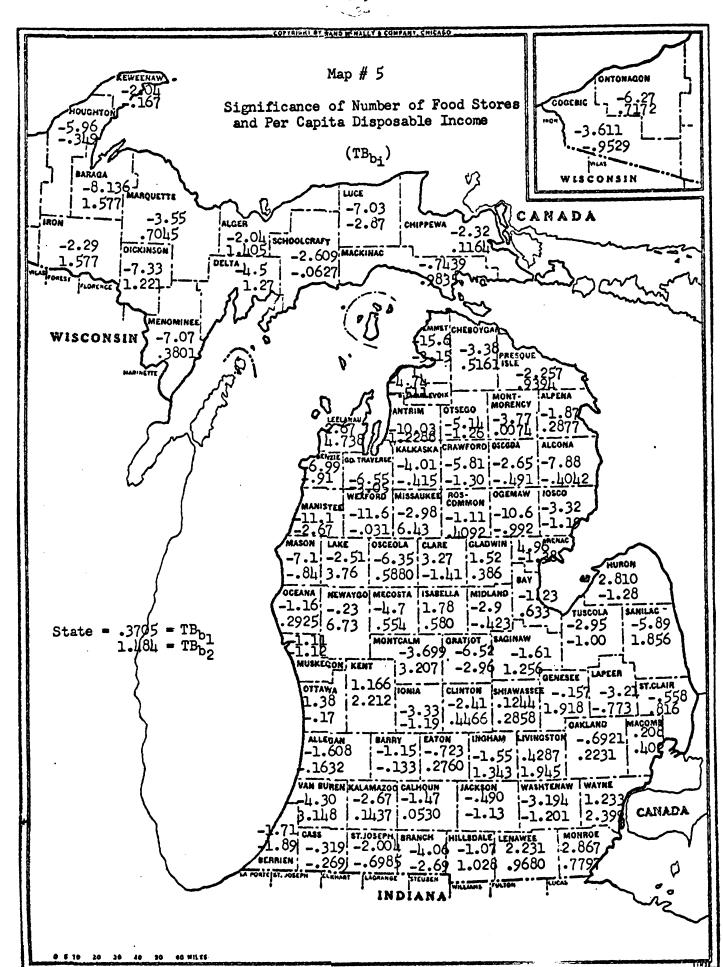
Those counties showing negative relationships seem to be evenly located throughout the state with no noticeable pattern.

areas of the state an increase in per capita food sales would be attributed to a decreasing per capita income level. One possible explanation may be that as income levels increase, the people decide to purchase a high cost durable good such as a new car or a house. The subsequent loan repayments then reduce the portion of income previously used for food purchases. It is my opinion that this phenomena may be applicable to a small portion of a county's population, however, its effect would be too small to alter the direction of an entire county. It is therefore obvious that additional study is needed in this area.

significance of the two independent variables. As previously stated, these two independent variables were selected as being the two variables "most" significant rather than whether or not they were "statistically" significant. I Nevertheless, it may be of some value to compare the «levels, at which the variables are statistically significant, among counties.

Table 23, also in this chapter, provides the t-values from which the statistical significance may be determined. For example, both independent variables are statistically significant for Missaukee County at .02 level of «, but only at

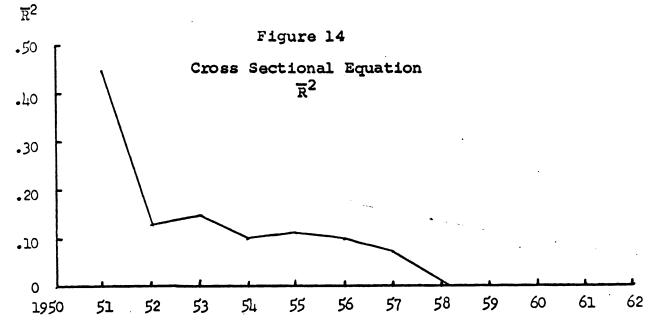
Istatistical significance refers to the rejection of the hypothesis that the variables have zero effect on retail food sales.


the .20 level of χ for Berrien County. Again, it is noticed that both variables are generally not as significant for the state as they are for an individual county. Map 5 illustrates how the value of T3 and T3 may vary among the 83 counties. Again, there is no noticeable pattern in these values.

Cross Sectional Multiple Linear Regression Equations

The computation of variations in retail food sales among all 83 counties for a given year produced the following results. The same form of equation used in time series calculations was applied to the cross section analysis.

Table 17. Cross Sectional Equations.


Year	Inter	. 0		•	3	TBb1 CFTBb2		
	COTY.	Ā ²	a	ь1	b ₂	⁶ 1	⁵ 2	
1951	.3302	.457	46.0735	.0034	.1827	.4447	7.6035	
1952	• 3733	,130	201,1552	.0139	.0716	1.3986	2.7216	
1953	.4504	.157	196,8754	.0108	.0907	.9742	3,1438	
1954	.4604	.105	230,1527	.0147	.0671	1.1974	2, 2341	
1955	.432 0	.111	221.9548	.0130	.0694	1.0368	2.4299	
1956	.4370	.107	236,4623	.0140	.0745	1.0070	2.3009	
1957	.4319	.073	253.0069	.0153	•0585	1.1175	1.3037	
1959	.4603	•008	114,4194	-0191	.0062	1.3581	.1 693	
1959	.4557	003	341.6622	.0192	0113	1.2950	~. 33 1. 3	
1950	.4651	014	333.5122	.0142	+0027	.7696	.0754	
1961	. 3851	003	310.6831	.0154	.0120	.9177	.3307	
1952	. 3319	011	359.1792	.0156	0302	.8886	 8669	

The cross sectional analysis was conducted to determine what effect, if any, the number of food stores and per capita income level had on variations of gross sales among counties in a given year. Therefore, any discussion must be based on years rather than individual counties.

Intercorrelation over the 12-year period remained fairly constant, ranging from a low of .33 in 1951 to a high of .48 in 1956.

 $\overline{\mathbb{R}}^2$ followed a distinct trend over the 12-year period. In 1951, over 45% of the variation in gross sales between counties was explained by the two independent variables. However, immediately after the year 1951, $\overline{\mathbb{R}}^2$ decreased to .13 and then slowly continued downward until after 1957 the two independent variables were found to explain little or none of the gross food sales among Michigan's counties. Figure 14 shows how after 1957 the equation loses all its ability to explain variations in the dependent variable.

No explanation of this trend is readily available. Nowever, it may be attributed to:

- 1) An insignificant difference in per capita food sales among counties for a given year.
- 2) an insignificant difference in the number of food stores of per capita income among counties for a given year.
- 2) The two independent variables have no effect on the variation in gross food sales between counties during the 1957-62 period.
- 4) A combination of 1, 2, or 3, above.
- 5) Unknown factors.

Data used prove numbers 1 and 2 to be untrue in this particular study. Therefore, either number 3 is true and/or there are other factors, still unknown, which do effect these variations. Regardless, results for the years following 1957 must be interpreted as an explicit inability of the two independent variables to explain variations in gross sales among counties.

Table 17 shows both b₁ and b₂ to be positive throughout the 1951-57 period. The major fact worth noting, with regard to these results, is a positive b₂ which is also less than 1.0 and therefore, illustrates that Engel's haw does, indeed, hold true in Michigan under "static" conditions. For example, in 1951, a "b₂" of .19 indicates that people in County A,

¹ Static refers to changes during a 1-year period since data used are average over a year.

receiving a \$1. higher per capita disposable income than the people in County B, will spend \$.18 more on per capita food expanditures than those people in County B. Therefore, if the people in both counties were originally spending 30% of their disposable income on food, the higher income people in County A now spend a lower percent of their income on food than do the people in County B. In essence, Engel's Law would, indeed, apply to the state of Michigan under static conditions.

The and The vary among the years 1951-57, however, deflated per capita disposable income is more significant than the number of food stores in each of the seven years.

Simple Curvilinear Regression Equation Coefficient Estimates:

The following two equations were used to project the values of the two independent variables, number of food stores (π_A) and per capita disposable income (π_S) .

Is
$$x_4 = a_1 + b_{41} x_T + b_{42} x_T^2$$

II: $x_5 = a_2 + b_{51} x_T + b_{52} x_T^2$

In the simple projection of the values of the independent variables, Table 18 shows a \mathbb{R}^2 ranging from .239 (per capita income) for Baraga County to .996 (number of food stores) for Wayna County. Generally, \mathbb{R}^{2} 's were .600 or higher, indicating that changes in number of food stores or income levels tend to move in close approximation with time.

T ble 19. Simple Curvilinear Projection Equation for Income Level and Number of Food Stores.

County	Vari- able*	Ē ²	a	^b 1	_p 3	9	TE _b
Darega	I	.834	91,5339	-2.1880	.0144	<u> </u>	.7175
	II	. 239	28520.9570	-995.1213	8.9850	-1.8413	1.8798
Derrien	I	.992	940,4102	-15,8832	.0720	-2. 6013	1.0661
	II	•959	13472,2333	-468.7750	4.5762	-4.0137	4,4347
Ingham	I	.965	1215.9961	-24.5228	.1456	-1.4349	.9632
	II	.742	-11537,7656	437,3574	-3,4815	1.5132	-1.3616
Missaukes	I	• 368	151.6450	-4.5118	•0 389	-1.4173	1.3486
	II	•733	74.1602	-,7 050	. 32.74	0031	.1565
Wayne	I	.996	21504.5313	-367.6108	1.4143	-2.4553	1.0634
	II	.643	-18676.9609	702.7620	-5.9161	2.3164	-2.2043
State	I	.617	-13335,5469	495.2266	3,8446	.9782	- , 8589
	II	.965	249.1592	-6,4433	.0722	-1.7624	2,2323

^{*}I= number of food stores

IIm per capita disposable income

Since time was used as the independent variable in these equations, the magnitude of b or b presents little information for economic discussion.

Again, the reader will notice a great deal of variation in ${\rm Ta}_{\bf b_1}$ among the five selected counties and the state.

Index Number Projection:

in order that the projected food sales and income level data could be properly deflated, both the food price (P.P.I.) and the consumer price index (C.P.I.) had to also be projected into a given year.

Equations used:

Both F.P.I. and C.P.I. projections are applied to each of the 83 counties and the state.

Table 19. F.F.I. and C.F.I. Index Projection Equations.

Index	₹ ²		b ₁ b ₂		732 AZ		
Anoga			-		b1	<u></u>	
IRI (F.P.I.)	.766	418.3032	-11.7335	.1122	-2.0039	2,1652	
I/ (C.P.I.)	. 96 5	249.1592	6,4439	.0722	-1.7624	2.2323	

Generally speaking, all of the equation results presented in Table 19 indicate that the projection lines fairly necurately depict the trends of both indexes over time. The results of projections are presented in Table 20, Figure 12 and Figure 13. The reader should not fail to note the use of 1950 as the base period. Therefore, all food sales and income data are deflated to reflect changes in both the physical volume of food and the real purchasing power of per capita income as compared to relationships existing in 1950.

Table 20. C.P.I. & F.P.I. Index Projections.

F.P.I.	C.P.I.
1950 - 100.0	1950 - 100.0
1951 - 111.3	1951 - 108.0
1952 - 113,3	1952 - 110.4
1953 - 111.6	1953 - 111.2
1954 - 111.3	1954 - 111.7
1955 - 109.7	1955 - 111.3
1956 - 110.5	1956 - 113.0
1957 + 114.1	1957 - 117,0
1953 ~ 118,9	1958 - 120.2
1959 - 117.0	1959 - 121.1
1960 - 118.3	1960 - 123.0
1961 - 119,7	1961 - 124.3
1962 + 120.8	1962 - 126.7
1965 - 128.8	1965 + 134.5
1970 - 145.7	1970 - 150.9
1975 + 168,3	1975 - 170.9
1980 - 196.4	1980 - 194.4

Simple Curvilinear Projection of Retail Food Saless

In order to compare the composite method of projection, used in this paper, with the simple projection over time, the following equation was also calculated.

Figure 12 Food Price Index Projections

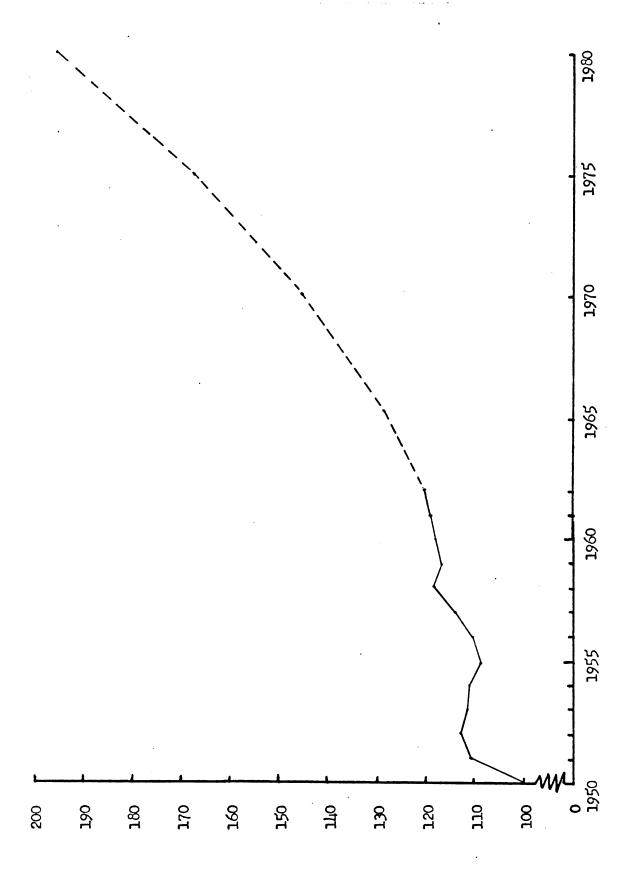


Figure 12 Food Price Index Projections

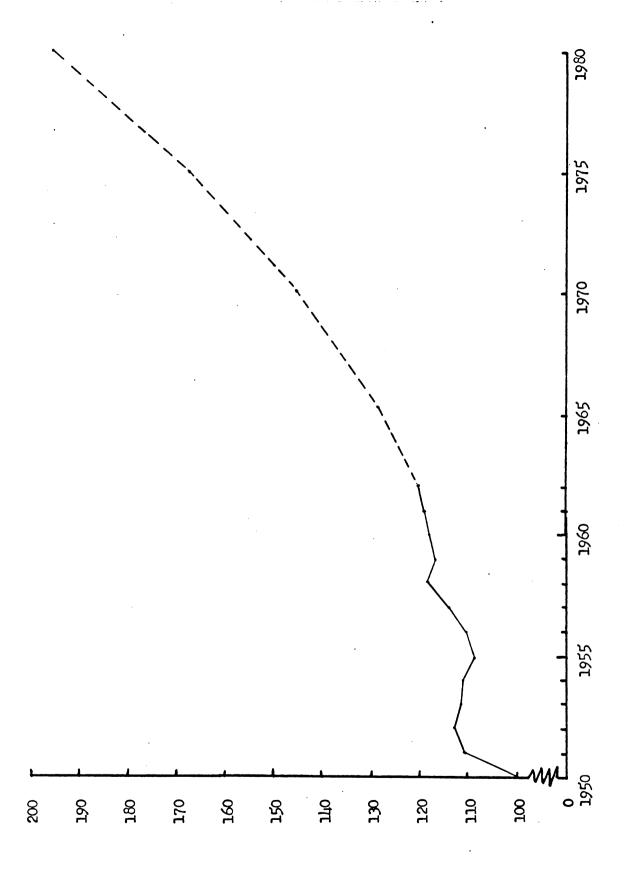


Figure 12
Food Price Index Projections

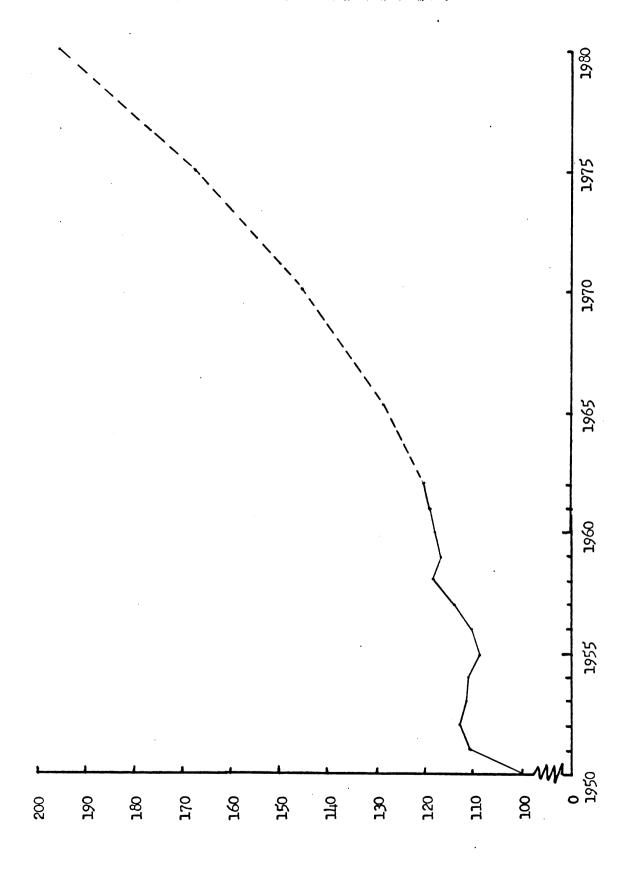


Figure 13
Consumer Price Index Projections

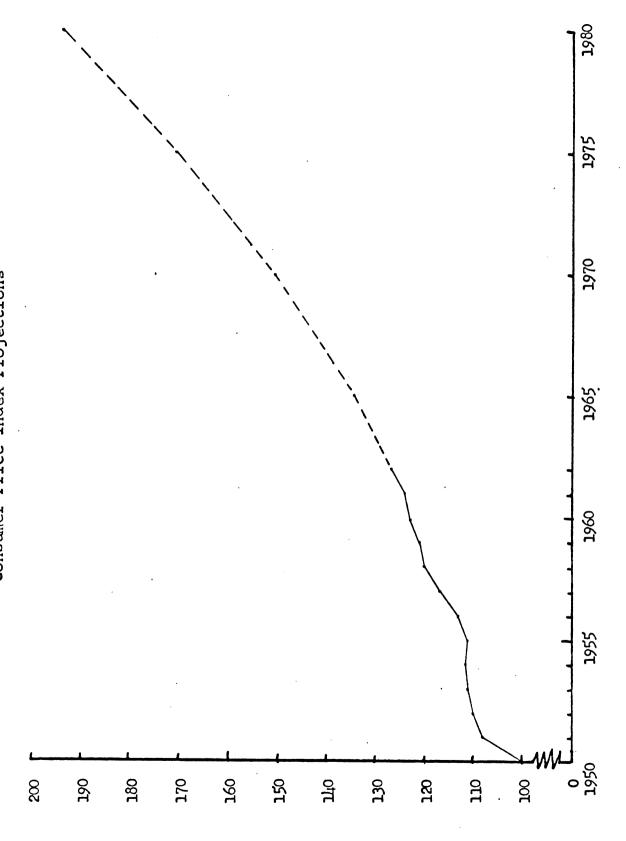


Table 21. Simple Curvilinear Projection Equation for Gross Retail Food Sales.

County	Code #	Ē2		b ₁	p ³	Tilb,	d.f. TBb2
Baraga	7	.915	14191976.	494919,	4959,1	2,1867	2.4768
Berrien	11	.967	-215834368.	7772672.	-51066.3	1.8806	-1.3967
Ingham	33	.980	-519491480.	18515328.	-1 37645,8	3,9166	-3,2914
Missauk ee	57	.815	-19472356.	688394.4	-5653,9	2.5201	-2.3398
Wayne*	62	•898	-1 3042.	490,8	~4,2	6,6530	-6,4513
State*	84	•999	6728224.	-1 32784.	2530.5	-2.1 576	4.6478

^{*}Food sales data had been reduced by (\$000,000)

Data in Table 21 was used to compare the Composite method of projection of food sales used in this paper with the emmonly used simple curvilinear projection technique. This simple projection technique is often used to project data using time as the independent variable and making no effort to determine what factors effect these changes over time. This method was first used in this paper to project the values of the independent variables later used in the Composite method. Again, data in Table 21, tend to indicate that the projection lines fit quite well to the food sales data of the 12-year period. However, this projection cannot be judged until it is compared with the

Composite method being tested in this paper.

Population Projection Results:

In order to convert per capita data into total per county projections, the county population was also projected, using a simple geometric linear expansion. The results are shown in Table 22.

A simple curvilinear regression equation was not used to project the county and state population data to the year 1930. Following a discussion with Dr. John F. Thaden, a demographer at Michigan State University, it was decided not to use a regression equation since the exponential term, generally used, would tend to increase population data beyond reasonable limits. The well-known geometric tendence of population growth makes this type projection seem more reasonable with the population variable than with the other variables.

Geometric Linear Projection - This procedure involves the calculation of each county's average annual percent increase (or decrease) in population over the 12 year period 1951-62.

Projections are made using the following equations:

Population_{1,1963} md₁. Population_{1,1962} Population_{1,1964} md₁. Population_{1,1963}

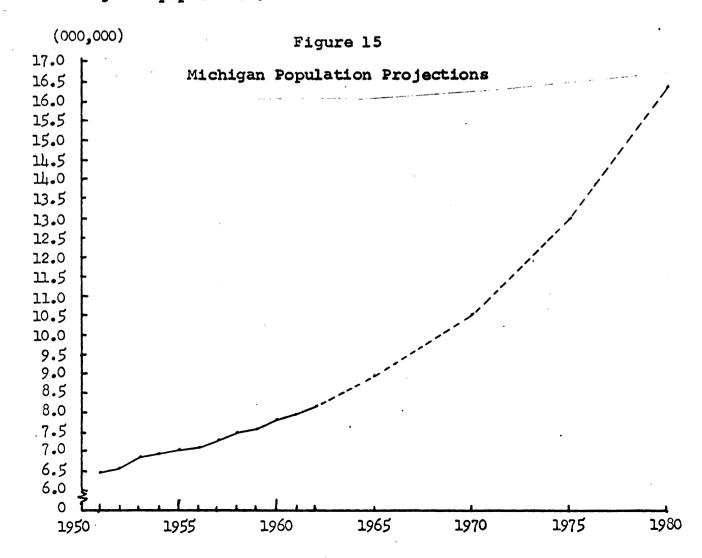
Population, 1930 =d. Fopulation, 1979

Table 22. Michigan County Population.

			(000)		
Year	Baraga	Berrien	Ingham	Missaukee	Wayne	State
1951	7.943	119.1	176.8	7.391	2458.3	6516.9
1952	7.860	122.5	180.6	7,323	2481.4	6662.1
1953	7.771	126.0	197.4	7.256	2504.5	6809.2
1954	7.633	129,4	188.3	7.188	2527,7	6952.3
1955	7.594	132.8	192.1	7.121	2550.8	7097.5
1956	7.505	136,2	195.9	7.054	2573.9	7243,6
1957	7.417	139,6	199.8	6.986	2596.9	7387.8
1958	7.328	143.0	203.6	6.919	2620.1	7532.9
1959	7.240	146.4	207.5	6,851	2643,2	7678.1
1960	7.151	149,9	211,3	6.784	2666,3	7823,2
1961	7.072	154.3	215.9	6.722	2691.6	80 38,4
1962	6,994	158.8	220.8	6,661	2717.2	8265.9
1965	6,764	173,3	235.8	6,482	2795,3	9033.9
1970	6.398	200.4	263,2	6.193	29 30 . 7	10693.8
1975	6.061	231.8	298.7	5.917	3072.6	13016.6
1930	5,723	268.0	327.8	5,653	3221.2	16435,4

Where: 1 = counties #1-83

d = average annual percent increase (or decrease)
in population


The major advantage of this technique is that it represents the true geometric tendency of population growth while

also taking into consideration those counties decreasing in population.

Its major disadvantage is that it does not explicitly take into account the effect of in- and out-migration on a county's population growth and also assumes that those counties losing population, do so in geometric fashion - which is not necessarily so.

Dr. Thaden suggested the use of the Geometric Linear projection, assuming its accuracy to be sufficient for the purpose of this particular project.

Figure 15 illustrates this geometric expansion in Michigan's population.

Statistical Significance:

In analyzing the importance of the TB_{b1} values presented in all the equations, the following table is given so that statistical significance can be measured at various levels of probability.

Note: Regression coefficient is statistically significant if $t(\frac{1}{2}\alpha$, $df) < TB_{b_1} > t(\frac{1}{2}\alpha$, df)

Table 23. (two-tailed) t-value Statistical Table.

d. F. X	3, 250	2,821	.05 2,262	1.833	1,383	.603	
					1,294		

Here, again, it is purposely pointed out that the term "statistically significant" is often confused with regard to the context in which they are found. Likewise, the selection of an &level, at which the significance is tested, may also be misleading. For example, by selecting a .05 level for & . one is spacifying that he wants only a five percent chance of rejecting a factor as having a significant effect on the dependent variable, when in fact, it does (committing a Type I error). This selection cannot be arbitrary, but must be made in due respect to the probability of a Type II error and minimization of the expected loss function.

CHAPTER VII

PROJECTION PROCEDURE

Now that coefficient estimates have been presented and explained, the final step remaining is the use of the results in the actual projection of potential gross retail food sales. So as not to burden the reader with a complicated description of the projection procedure, one county has been selected (Berrien) to be used in a sample demonstration. A complete and detailed projection of potential gross retail food sales in 1965 will be made for Berrien County and each step will be discussed so that the reader will understand the procedure as well as the correct use of the estimates presented in Chapter VI.

Potential Gross Retail Food Sales - Berrien County 1965 Step 1: Projected Food Price Index 1965

The first step is the calculation of the estimated food price index for this year. This involves the use of the simple curvilinear equation and the test results presented in Table 19 of Chapter VI. Since this index will be applied to all counties, the subscript "i" represents counties 1-83 and state for the year 1965.

$$x_{FFI} = a_1 + b_{11}x_T + b_{21}x_T^2$$
 $(x_{FFI} = x_2)$
 $x_{FFI} = a_1 + b_{11}x_T + b_{21}x_T^2$ $(x_{FFI} = x_2)$

- = 419.3032 11.7335(65) = .1122(4225)
- = 418.3032 762.6775 + 474.0450
- **= 129.6707**

Step 2: Projected Consumer Frice Index

This step is similar to Step 1 in that it involves the calculation of an estimated index number for the year 1905. Here, also, the index number is applied to all 83 counties and thereby need not be calculated for each individual county. Test results are also found in Table 19 and results of the calculations of both food price and consumer price index for the years 1965, 70, 75 and 80 are found in Table 20.

$$X_{CPI} = a_2 + b_{12}X_T + b_{22}X_T^2$$
 $(X_{CPI}) = x_6$
 $CPI_{1,1965} = 249.1592 - 6.4433X_T + .0722X_T^2$

$$= 249.1592 - 6.4438(65) + .0722(4225)$$

$$= 249.1592 - 418.8470 + 305.0450$$

$$= 135.3572$$

Step 3: Projected Number of Food Stores in Berrien County
1965

Test results from Table 18 are now used to estimate the number of food stores (x_4) that will exist in Berrien County (Code Number 11) in 1965. In this equation x_4 is the dependent variable, however, once the estimated value is determined, it will then be used as one of the two selected independent variables of the multiple linear projection equation.

$$x_{42q} = a_1 + b_{12q} x_{T2q} + b_{22q} x_{T2q}^2$$
 s = county #

#FS_{11,1965} = 940,4102 - 15,8832
$$x_T$$
 + .0720 x_T^2
= 940,4102 - 15,8832(65) + .0720(4225)
= 940,4102 - 1032,4080 + 304,2000
= 212,2022

Step 4: Frojected Per Capita Disposable Income in Berrien
County 1965

Here, also, a simple curvilinear equation is used to determine the estimated per capita disposable income (x_5) in Berrien County in 1965. Test results presented in Table 18 are used to calculate this estimate which later becomes part of the second independent variable of the multiple linear projection equation.

$$x_{5zq} = a_2 + b_{1zq}x_{Tzq} + b_{2zq}x_{Tzq}^2$$

$$PCDI_{11,1965} = 13472,2383 - 468,7750x_T + 4,5762x_T^2$$

$$= 13472,2383 - 468,7750(65) + 4,5762(4225)$$

$$= 13472,2383 = 30470,3750 + 19334,4450$$

$$= $2336,31$$

Step 5: Projected Deflated Per Capita Disposable Income in Berrien County 1965

Before this estimated value of per capita disposable income (x_5) can be used as an independent variable in the final projection equation, it must be deflated by the estimated consumer price index in 1965 to render it more representative of its true purchasing power (as compared to the base period 1950).

DPCDI11,1965 =
$$\left(\frac{x_5}{x_6}\right)$$
100

$$\frac{\text{PCDI}_{11,1965}}{\text{CPI}_{1,1965}} = \left(\frac{\text{PCDI}_{11,1965}}{\text{CPI}_{1,1965}}\right) 100$$

$$= \left(\frac{32336}{135}\right) 100$$

$$= $1.730.$$

Step 6: Projected Deflated Per Capita Gross Retail Food Sales in Berrien County 1965

Now that steps 3, 4, and 5 have been completed, the estimated values of the two independent variables (#FS_{11,1965} and DPCDI_{11,1965}) can be placed into the multiple linear projection equation and the potential deflated per capita gross retail food sales $\left\{100 \left(\frac{x_1}{x_2}\right)\right\}$ determined for Berrien County in 1965. The $\left(\frac{x_1}{x_2}\right)$ coefficients for this calculation are found in Table 16.

100
$$\frac{x_1}{x_2}$$
 $x_2 = a + b_1 x_4 x_4 x_4 + b_2 x_4 (100 ($\frac{x_5}{x_6}$) x_2
100 $\frac{3}{x_2}$ 11,1965 = $a + b_1 \# F s_{11,1965} + b_2 DPCDI_{11,1965}$
DPGGRFS_11,1965 = $a + b_1 \# F s_{11,1965} + b_2 DPCDI_{11,1965}$
= 652,4422 - .3563 $\# F s_{11,1965} - 1268DFCDI_{11,1965}$
= 652,4422 - .3563(212) - .1268(1730)
= 652,4422 - 75,5356 - 219,3640
= $357,5426$

Step 7: Projected Per Capita Gross Retail Food Sales in Berrien County 1965

If the reader is particularly interested in the nondeflated value of potential per capita gross retail food sales, the following procedure is followed.

PGGRES11,1965 - DPGGRES11,1965 PPI1,1965

- **= 357.5426 129.6707**
- = \$460.53

Step 8: Projected Deflated Total Gross Retail Food Sales in Berrien County 1965

This step involves the transformation of potential deflated per capita gross retail food sales (DPGGRFS_{11,1965}) into potential deflated total gross retail food sales for Berrien County in 1965 (DTGRFS_{11,1965}). This is a rather simple process in which the per capita datum is multiplied by the estimated 1965 Berrien County population (E.Pop._{11,1965}) to derive the total county potential. The population estimation procedure was described in Chapter VI and projection results of the five selected counties and remaining 78 counties can be found in Table 22 (Chapter VI) and Appendix A, respectively.

DTGRFS11,1965 = DPGGRFS11,1965 * E.Pop-11,1965

- **\$357.54 173311**
- **=** \$61965614.94
- Step 9: Projected Total Gross Retail Food Sales in Berrien
 County 1965

Again, just as in step 7, the deflated data can be changed to a non-deflated estimate by using the following procedure.

TGRPS11,1965 - DTGRPS11,1965 FPI1,1965 - \$61965614.94 - 129.6707

= \$79935642.06

The above nine steps shall hereby be referred to as the Composite Method of Determining Potential Retail Food Sales. This method can now be compared with a previously used and commonly accepted method. The method, to be compared with the Composite Method, is the simple curvilinear projection of food sales over time. This equation is of the commonly used forms

$$x_{rs} = a + b_1 x_r + b_2 x_r^2$$

The results of the calculations of data on the five selected counties are shown in Table 21. Although this method does not take into account the effects of any independent variables, as does the Composite Method, it is the only technique common—ly used in making projections of this nature. Therefore, this technique shall also be used to project potential deflated and non-deflated total gross retail food sales for Berrien County in 1965, and the results compared with those of the Composite Method.

Step 10: Simple Projected Value of Gross Retail Food Sales
in Berrien County 1965

$$X_{FS} = a + b_1 X_T + b_2 X_T^2$$
 $SPYGRES_{11,1965} = *215834368. + 7772672.X_T - 51066.3125X_T^2$
 $= -215834368. + 7772672.(65) - 51066.3125(4225)$
 $= -215834368. + 505223680. - 215755170.$
 $= $73634142.$

Step 11: Simple Projected Value of Gross Retail Food Sales in Berrien County 1965 (deflated)

Just as in the Composite Method, this datum is now deflated by the food price index so that it will be more representative of the true physical volume of food involved, as compared to a base year of 1960.

\$57169000

Step 12: Comparison of Composite and Simple Curvilinear Regression Results

This step can best be accomplished by plotting the results of both methods and then deciding which is more acceptable. This method is used later in this chapter.

Discussion of Projection Procedure

All twelve steps, previously described, are now repeated for the years 1970, 75 and 80. This must then be again repeated for each of the remaining 82 counties and the state as a whole. For the reader who is interested in one

specific county, the data necessary to complete the twelve step projection procedure is located as follows:

Projected FPI values = Table 20 Chapter VI

Projected CPI values - Table 20 Chapter VI Simple Curvilinear Regression Equation Coefficients for:

- (x_A) No. of Food Stores

 Appendix D
- (x₅) Disposable Per Capita Income Appendix D
- $(X_{p,q})$ Compared Method of Gross
 - Sales Projection

* Appendix D

Multiple Linear Regression Equation Coefficients for:

Final Projection Equation

(Composite Method)

- Appendix B

For purposes of this paper, the potential deflated and non-deflated retail food sales were only calculated for the five selected counties. Nevertheless, this provides sufficient information so that the Composite Method may now be compared with the simple curvilinear regression method and its relative value thereby determined.

County Discussion

Table 24 presents the projections of the deflated and non-deflated retail food sales for the five selected counties and state as a whole, derived from the Composite Projection Method. The deflated data is probably of more value to the food industry since it eliminates the misleading effect of price rises.

Table 24. Potential Retail Food Sales.

	(\$000) 					
	Baraga	Missauke			Wayne	State
1965						
Non-deflated Deflated	2,757 2,137	1,582 1,226	79,936 61,966	116,812 90,552	1,269,323 993,971	3,018,329 2,339,78
1970						
Non-deflated Deflated	3,325 2,278	1,564	96,272 65,940	142,551 97,633	1,197,340 820,596	4,039,980
1975						
Non-deflated Deflated	3,954 2,354	1,377 819	115,649 68,839	173,195 103,092	1,016,899 605,297	5,663,773 3,371,29
1980						
Non-deflated Deflated	4,635 2,365	961 491	137,645	211,372 107,843		8,311,06 4,240,33

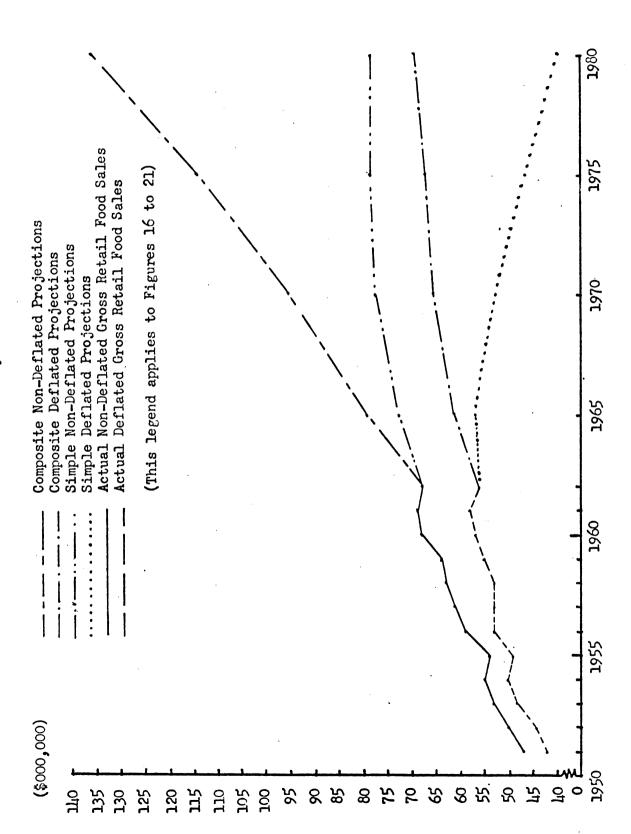
Table 24 shows a projected decrease in potential gross retail food sales for Missaukee and Wayne counties, while Baraga, Berrien, and Ingham counties are shown to have an increasing potential retail food sales. There is also a large increase indicated in the state's potential. These Composite Projection results will now be compared with the simple curvilinear projections to show which technique proves to be most rational.

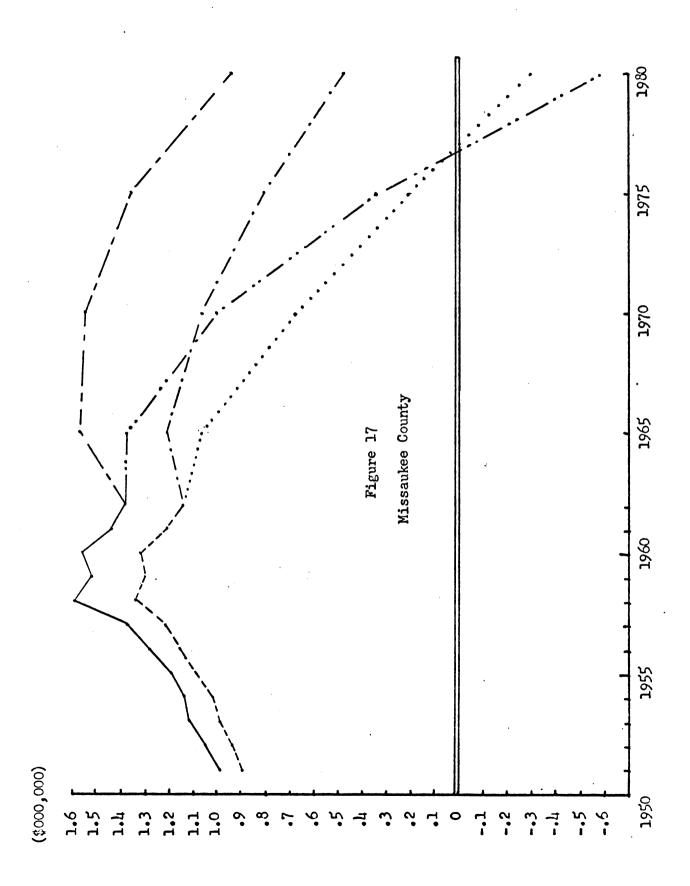
Berrien County - Figure 10 shows non-deflated gross retail food sales increasing over 50 percent between the years of 1962 and 1980. However, note how misleading this becomes when the inflationary effect of prices is removed. The deflated

potential seems to be leveling off, whereas the non-deflated potential continues to rise rather rapidly.

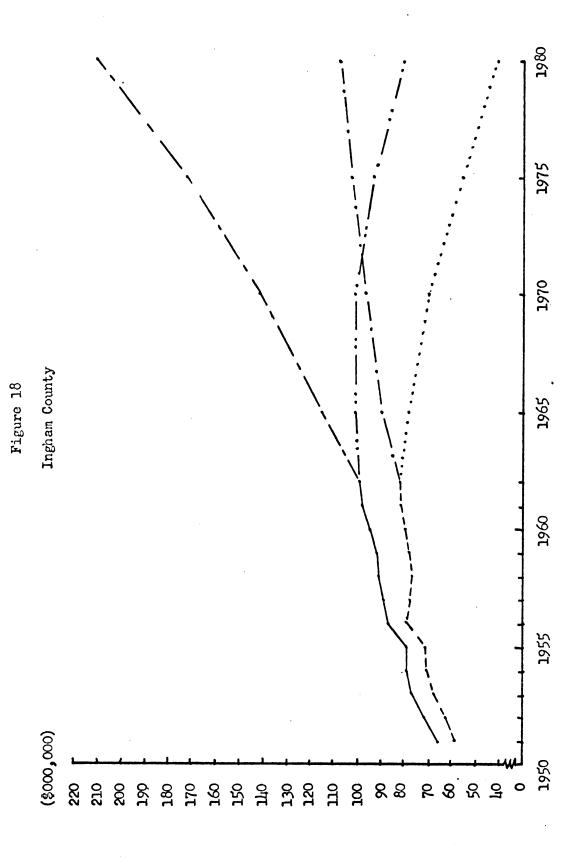
The simple curvilinear projection method shows nondeflated potential food sales leveling off at slightly less
than 80 million dollars and deflated sales decreasing after
1965.

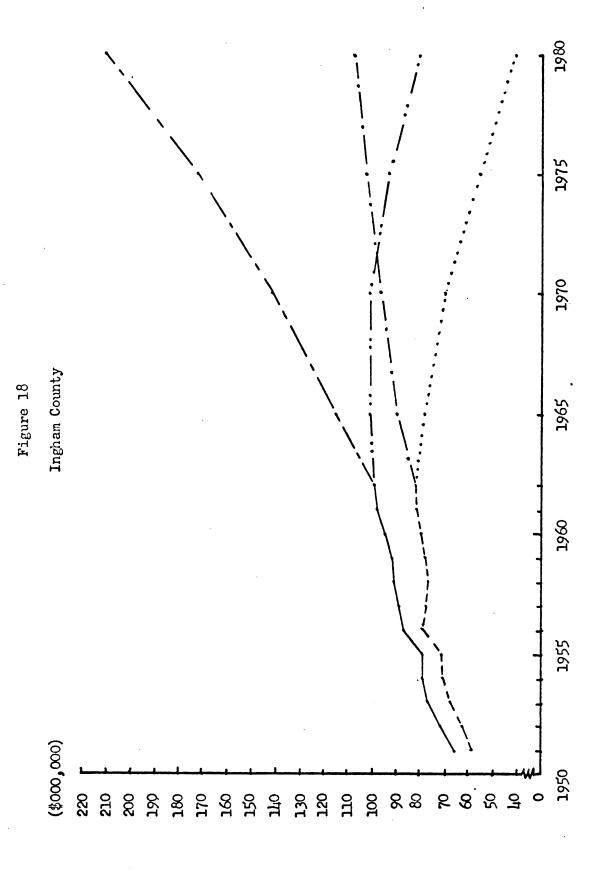
Since Berrien County is located in the southern portion of the state where population is continually increasing, one would expect food sales to increase in the future both in dollar value and physical volume. Therefore, the Composite Method seems to be more reasonable in its projection.


Missaukee County - In Figure 17, both methods show a general decrease in potential retail food sales. This decrease in future sales volume is not totally unexpected. Missaukee is a rural county with low per capita income level and a declining population in the twelve years of the observation period. However, again the Composite projection seems to be more realistic since the projected decrease is not as extensive as the simple curvilinear projection which is so inaccurate that it projects an impossible negative volume of sales for the years after 1975.

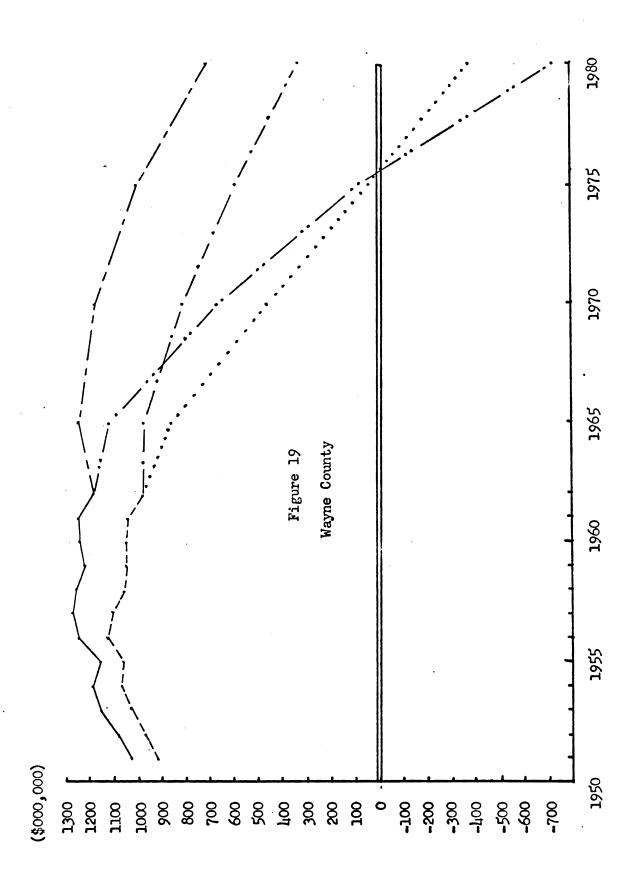

Ingham County - Figure 18 shows a distinctive difference between the two projection techniques. This difference proves
to be a strong endorsement for the use of the Composite method.

Ingham County has not only had a continuously growing


Figure 16

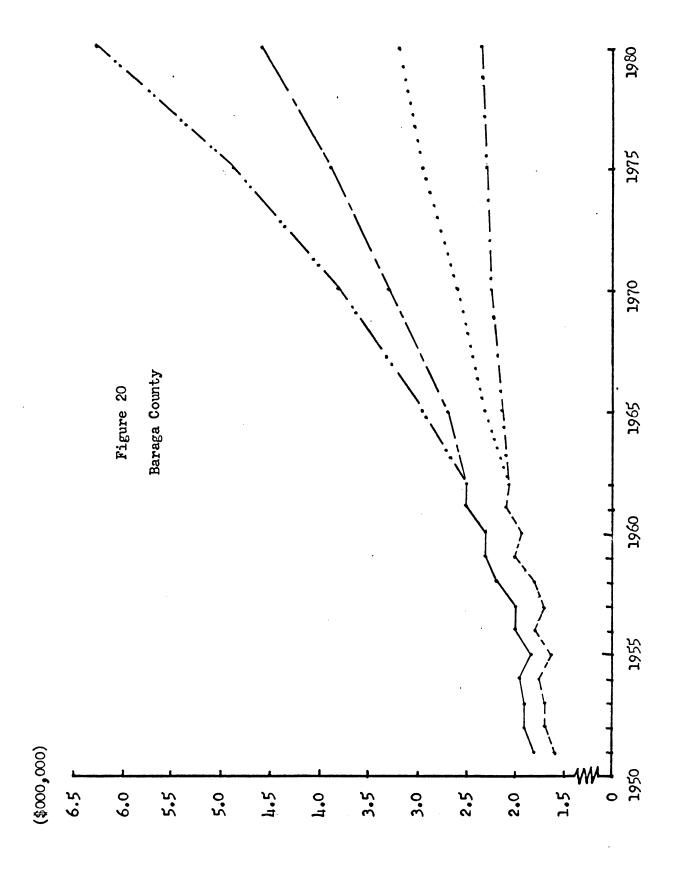

Berrien County

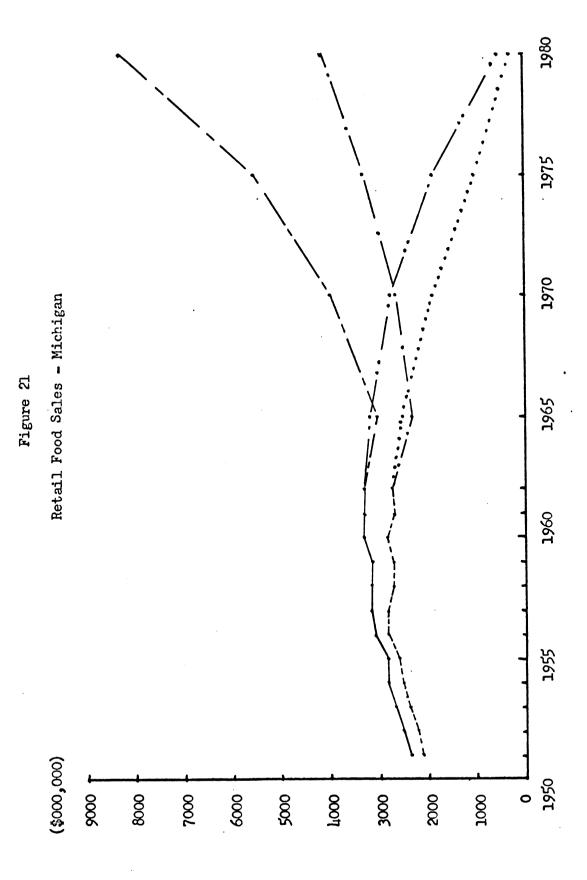
population, but also has one of the highest per capita income levels in the entire state. Continued urbanization, along with many other such trends, point towards an incessant increase in potential retail food sales. However, any retail food firm using the simple curvilinear method, would arrive at results showing an eventual decrease in both deflated and non-deflated potential food sales. Therefore, the composite method again seems to more accurately coincide with existing and expected conditions than does the simple method. Wayne County - Figure 19 shows a decreasing potential volume of retail food sales and, again, is justifiable. Wayne County is not only the industrial center of Michigan, but is also the most heavily populated county. However, the tendency in the last two decades has been for a large portion of the people to move out of the city of Detroit and into the surrounding suburban areas. In response to this general movement of population, retail food stores have also moved out of the crowded downtown district and out into the surrounding areas. Many have located in the large number of shopping centers recently built in the suburban areas. Finding a retail food store in the downtown shopping district of Detroit is now almost as much an oddity as finding a "Cobo Hall" in a suburb like Farmington. As these retail outlets move out of the city of Detroit, they re-locate in the three surrounding counties of Oakland, Macomb and Washtenaw, Therefore, the decrease shown in Figure 19 does not represent a declining



Detroit retail foodmarket, but rather a movement of this market out into the surrounding counties. Map #6 illustrates this movement.

Map #6
Detroit Area Counties




The Composite method, again, is a more realistic estimate, particularly on long run projections, since the simple projection technique shows a negative volume of potential retail food sales for the period following 1975. A decrease in the potential can be justified, but results like those derived from the simple projection are beyond any rationalization.

Baraga County - Baraga is the only upper peninsula county included in this five county analysis. Since this county has such a small resident population (approx. 6000), it is expected that the summer influx of tourists has a huge effect on its over-all economy. Likewise, it is expected that the annual volume of retail food sales is highly responsive to the number of "tourist days" each year. Figure 20 shows both deflated and non-deflated potential sales increasing, using the simple method. However, the Composite method shows only the non-deflated potential to be increasing to any extent. The deflated potential, which is more representative of the physical volume of sales, is shown to increase only slightly. This slight increase seems to be most easily justified because, despite the fact that tourism is expected to increase, the resident population is steadily decreasing. Thus, the Composite method is again more in accordance with anticipated conditions.

In each of the five selected counties, the Composite method of projection, described and used in this paper, has been shown to have a much more sound basis in economic logic. Even if the estimated values are not perfectly accurate, the Composite method can still be used with some degree of confidence by the retail food industry in comparing the counties relative potentials for determining the most optimal area of expansion.

State - Of additional interest to the retail food industry is the potential sales of the state as a whole. As shown in Figure 21, the simple projection again presents an unrealistic future trend. Even if the physical volume of food sales in Michigan remained constant, general price rises would cause increases in future dollar volume of sales. Therefore, the decrease in both deflated and non-deflated potentials, derived from the simple curvilinear projection, is almost impossible to justify. However, the composite results indicate an increase in both the dollar and physical volume of future retail food sales. This can be justified by increasing population, income levels, urbanization, product availability, etc.,

Composition of Potential Sales Volume

The Composite Method of projection estimates that potential food sales in the state of Michigan will increase from 3.2 billion dollars in 1962 to 8.3 billion dollars in 1990. This 160 percent increase in food sales will occur to the food industry as a whole. Some importance is generally placed on an estimation of what proportion of the potential sales volume will occur in the various types of food stores. For purposes of this paper, the food industry has been divided into six general types of food stores. Figure 22 shows the percent of past annual total food sales which were reported by the six different types of food stores.

Percent of Total Food Sales Attributed to General Type of Food Store

	Food Store Type								
Year	Groceries	Dairy Products	Fruits & Vegetables	Restau- rants (family)		Miscel- laneous			
1951	59.80	5.50	1.16	14.20	10.93	8,41			
1952	60.78	5,64	1.11	13.37	10.77	8.37			
1953	60.69	5.56	1.16	13.36	11.01	8.23			
1954	61.43	5.42	1.02	13.17	10.83	8.07			
1955	61.62	5.32	1.73	13.19	11.27	6.87			
1956	62.36	5.13	1.51	13.11	11.14	6.74			
1957	64.15	5, 28	1.13	12.76	10.62	6.06			
1958	65.92	4.96	.94	12, 37	10.17	5.64			
1959	66.72	4.66	.93	12,27	9.86	5.56			
1960	66.51	4.40	.86	12.57	10.05	5.59			
1961	68.14	4.38	.86	11.38	9.29	5.94			
1962	68, 38	4.05	.87	11.32	9,35	6.02			

As might be expected, the percent of total retail food sales taking place in grocery stores has increased over the twelve year period while the dairy product, fruit and vegetable stores have become less important. This is due, of course, to a decrease in the number of small specialty food stores and a tendency for the grocery stores to swallow up their sales. If this trend continues, by 1980 almost 80 percent of total food sales will occur in grocery stores and less than 3 percent in specialty food stores.

Projections made using simple linear extropolations based on twelve year prend.

importance of food sales in restaurants had increased during the twelve year period. However, as shown in Figure 23, despite a 20 percent increase in the absolute volume of restaurant food sales. the proportion of total food sales occurring in restaurants decreased from 14.2 to 11.3 percent during the observation period. Normally, as one's per capita income increases, one tends to eat a greater proportion of meals in restaurants. Therefore, restaurant food sales are not expected to drop below 10 percent of total retail food sales by 1980.

This enexpected drop in the relative importance of restaurant food sales may be partially justified by the trend towards increased consumption of ready prepared food which needs only to be heated before serving. Years ago, eating at a restaurant provided utility, in the form of convenience, as well as a social experience. But now, in the era of the "TV-Dinner," the convenience benefit has been somewhat eliminated. It now becomes just as convenient to puta TV dinner into the oven as to eat in a restaurant, and somewhat cheaper.

The slight decrease in the proportion of total food sales attributed to food sales in taverns may be the result of a decline in the number of taverns. Also, it may be the result of the average patron's increased thirst and decreased hunger? Nevertheless, the trend indicates a further drop to

¹K.D.Duft and Barl Brown, p. 18.

about five percent in 1980.

The remaining two percent of total 1980 retail food sales will be the result of sales in miscellaneous stores such as delicatessens, candy stores, etc.

proportions will vary among individual counties. For example, the tourist trade would tend to increase the relative importance of restaurant sales in northern Michigan counties, particularly those in the upper peninsula. Also, specialty food stores (dairy product stores, fruit and vegetable markets, etc.) will be less important in those counties with no large urbanized communities and more important in those counties with a highly concentrated population, i.e., Wayne, Ingham, etc. Grocery store sales will be relatively more important in rural counties where there are fewer specialty food stores.

CHAPTER VIII

APPLICATION OF PROJECTED DATA

useful, they must be applicable to the situation under examination. The validity of the projections made, can only be tested as time passes and the actual sales volume for a future year compared to the projected volume. Regardless, a projection procedure now exists and furnishes information for managerial decisions. Table 24 (Chapter VII) shows the absolute dollar value of the projections. The absolute value of the projected increase (or decrease) may be misleading since it does not describe the increase relative to the base period. Table 25 shows the projected percent increase in the deflated sales volume and is of more value when applying this data to problem solving discussions.

The data in Table 25 show that the volume of retail food sales in the state of Hickigan will double from 1950 to 1990. This has numerous implications to the retail food industry.

Entire State

Since the data in Table 25 has been deflated, it represents a doubling of the physical volume of food involved

in the sales. In order to handle this increased volume of food sales, additional facilities will have to be made available. This is highly inconsistent with the present trend towards decreasing numbers of food stores. This trend is expected to level off within the near future (5 years) and the number of food stores then increase slightly towards the end of the 1980 projection period. Nevertheless, the major trend will be a continued increase in the size of the average grocery store. However, it must be noted that various recent studies have shown that the optimum sized grocery store (profit-wise) lies between \$1.5 to 2.0 million annual gross sales. Still other studies have produced data showing increasing returns to scale as the size increases. At present, however, the average Michigan food store is much smaller than this limit and has plenty of room for expension.

Figure 23 illustrates these results. Even as the average size of the grocery store increases, this expansion will not completely meet the expanded needs of consumers and this remaining volume may support the recently increased

^{1 &}quot;Colonial Study," <u>Progressive Grocer</u>, January 1964, p. C.12.

²McKinsey General Foods Study, General Foods Corporation, October 1963, p. 13, Exhibit 10.

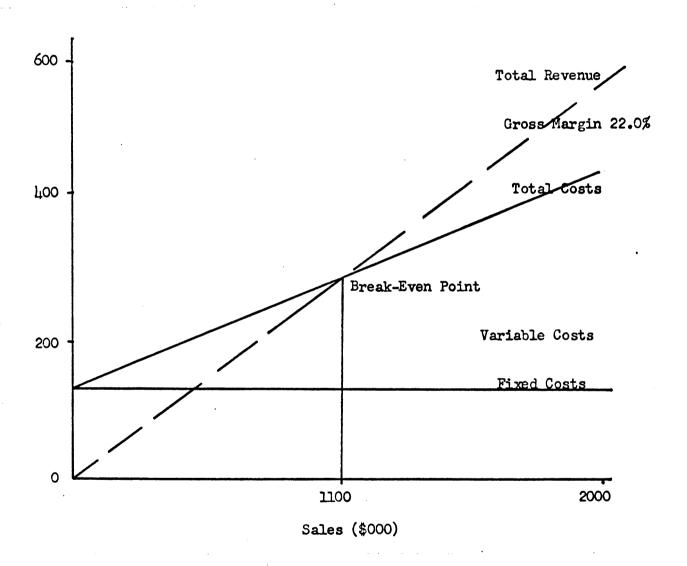
Duft and Brown, Table 12,

number of smaller "superettes" or so-called "convenience stores."

Food retailing will remain an industry of large numbers in spite of a pronounced decline in store numbers since 1950. The grocery store will become more important relative to the entire food industry as shown in Figure 22. Therefore, the retail food chains, affiliated and unaffiliated independent retailers will have to make numerous decisions concerning future expansion possibilities. Even if the expansion decision is made, further consideration will be necessary to decide whether this expansion will be vertical or horizontal; local, regional or state-wide; conducted by mergers or new construction; etc. There exists almost a certainty that food retailers will have to make major organizational changes in the future. As a result, the retailers will need to revise their marketing programs and methods. Regardless of what such changes will imply, the first and most important information needed is the market potential changes within the state. Even if the physical volume of retail food sales does double in the state of Michigan, the food industry is at a loss trying to meet these increased demands, unless it knows years of advance, just where, within the state, these changes will occur and the extent of this change. It is this type of information that the Composite County Projection Technique, described in this paper, was constructed to furnish. However, these composite sales projections should not be used by the

Table 25. Deflated Retail Food Sales.

(\$1000)						
County	1951	% of 1951	1962	% of 1951	1965	% of 1951
Baraga	1,622	100	2,075	127.9	2,137	131.8
Missaukee	894	100	1,149	128.5		137.1
Derrien	42,531	100	56,439	132.7	61,965	145.7
Ingham	59,639	100	82,151	137.7	90,552	151.3
Weyne	925,845	100	989,899		933,971	
State	2,138,200	100	2,779,642	130.0	2,339,797	109,4


County	1970	% of 1951		% of 1951	1930	% of 1951
Saraga		140.4	_	145.1	•	145.8
Missauk es Derrien	65,094		68,839		70,227	
Inghan Wayn o	97,638 820,596		103,092 605,297		107,843 364,009	
Etate	2,767,110	-	3, 371, 292	-	4,240,338	

retail food industry as the only criterion on which expansion decisions are based. This composite technique only considers the population number of food stores and income factors and, therefore, is not designed to present a complete picture of a given market place.

The projection results should then be used as one of many factors to be considered in a complete market analysis. The amount of emphasis that should be placed on the projections, therefore, depends not only on the particular

Figure 3
Break-Even Analysis, Economies to Scale

Revenue & Profits (\$000)

Duft, Kenneth D. "Profitability of a Transition Point Derived from Technological Changes in the Physical Distribution and Handling of Retail Food Products," M.S.U., December 5, 1963, pp. 24-25 (Unpublished).

situation involved, but also on the availability of information on the other important factors.

Metropolitan Areas

Michigan is characterized by having a large number of small regional food chain organizations (4-11 stores) as well as many of the national chains. Where as the national chains are interested in evaluating all the markets through—out the state, but the regional chains and affiliated independents are more interested in analyzing the metropolitan area in which they operate. Nichigan contains ten metropolitan areas and each can be analyzed and projections made in a manner similar to that conducted with the five selected counties. The metropolitan areas, consisting of two or more counties, can be studied by summing individual county data.

Even within a metropolitan area, special attention should be given to the outlying reasons behind certain county trends. For example, Wayne County, alone, presents an extremely misleading description of the Detroit Metropolitan Area. The projections show a decrease in the potential food sales in Wayne County, however, this decrease is overweighed by the expanding market of the surrounding counties.

The study conducted in the Chicago-Gary Metropolitan Area showed how the potential retail food market is moving

Duft and Brown, Table 16.

towards the suburbs and tends to follow the major traffic arteries. Since this is not just true for large cities like Chicago and Detroit, it produces unique problems when analyzing a metropolitan area. Therefore, even within a metro-politan area there may be variations between counties.

Counties

A county by county projection and analysis, like that performed for the five selected counties, is ideal for the large national food chain. This gives the industry a picture of potential sales throughout the entire state. Areas of increasing (or decreasing) sales potential can be determined allowing further decisions concerning future expansion plans. Now the retail food industry knows where (within the state) this doubling of food sales will probably occur.

one would expect that the southern counties will experience a greater increase in future retail food sales than will the northern counties. However, this generalization is not valid enough to base major managerial decisions on.

Returning to Table 25, one finds a southern county such as wayne showing a 1980 potential retail food sales volume only 39 percent of that in 1950 and a northern county such as Baraga with almost a 50 percent increase over 1950.

The importance of the Wayne County trends should not be underestimated. The magnitude of Wayne County food sales

alone, indicates the importance of this county in determining the entire state's projections.

The projected 1980 Wayne County food sales data need further explanation. The projected 1980 volume shows a rather sharp decrease from the 1950 volume. This trend, discovered during the 1951-62 observation period is justifiably attributed to the movement of Detroit's population out of the city and into the suburbs. Therefore, the 1980 projections are based on the assumption that urban renewal and the present population movements will continue. This assumption, alone, creates limitations worthwhile of additional consideration and comment.

for the upper income people to move back into the city once their children have left home. These people move into a small sami-luxury ultra modern apartment in the mid-city where the husband is within walking distance from the office and the wife need only walk across the street to the downtown shopping district. Although this latest trend is a far cry from the magnitude of the mass exodus experienced in the 1950's, it may be the beginning of something of great consequence within our metropolitan areas. Therefore, the Wayne County projections are extremely dependent on population trend assumptions and the projected decrease in potential sales may be an overentimate in view of the diminishing trend of Detroit's population exodus.

However, a detailed study such as this furnishes available information on the proper location of new facilities and expansion of those existing facilities.

The productive life of a new and modern retail food outlet, of supermarket size, is about twenty years. Therefore, before the investment on stores of this nature can be made, an analysis of the market for that twenty-year period must be conducted. Before a legitimate return on an investment can be anticipated, the consumer demand must exist not only now, but also in the future.

It must be noted, however, that this study's projections in no way detract from the requirement that every retailer must meet the task of serving consumers more effectively. For this is the heart of any consumer-oriented business such as food retailing.

Income Elasticity and Engel's Law

Income Elasticity (E)

Defore the projection technique and its results can be discussed in relation to economic theory, the equation coefficients (especially b₂, associated with deflated per capita disposable income) must be analyzed with regard to income elasticities and/or Engel's Law.

The equation usually used in determining the slope of Engel's curve and the income elasticity is of the form:

$$Y_i = a_i + b_i X + U_i$$

where Y_i is the per capita expenditure on the 1-th commodity (saving is included as a commodity) and X is per capita income.

so that the sum of the expenditures on individual commodities is equal to total income, i.e. $Y_1 = X$ at all levels of income.

The final technical criterion in the choice of a functional form to approximate the Engel curve is ease of numerical estimation. This criterion leads to a preference for forms which are suitable for regression equation estimation.

The multiple linear equation used in this paper was basically of the form: $Y = a + b_1 x_1 + b_2 x_2 + b_3 x_4$ where Y is per capita deflated retail food sales, x_1 is the number of food stores, and x_2 is deflated per capita disposable income. The income elasticity of this equation is determined as shown in Table 26.

Table 26, Income Elasticity 3,

	Marginal Propensity to Consume	Income Elasticity
Equation	$\frac{\partial Y}{\partial X_2} = MPC$	dx x2 E
Linear	b 2	$p^{5} \cdot \frac{x^{5}}{x^{5}}$

Herrmann, Robert Omer. p. 75.

Allen, R.G.D. and A.L. Bowley. Family Expenditure, ("London School of Economics and Political Science: Studies in Statistics and Scientific Method," No.2 London: Staples Press, 1935), pp. 1-59.

Herzmann, p. 81.

•

.

Table 27 shows the result of the "E" calculation for the five selected counties and state.

Table 2	27.	Income	Elasticity	of	the	Demand	for	Food	(E).
---------	-----	--------	------------	----	-----	--------	-----	------	------

County Code	× ₂	Y	$\frac{x_2}{Y}$	p ³	E
67	167.6061	31.6769	5.29	.0384	. 20 3
∜33	98,9064	18,0273	5,49	.0674	. 370
∜57	81.0550	25.8249	3.14	.2577	.809
11	87.5973	12,1360	7.22	1268	-,915
#82	108,9785	22,9782	4.74	.1296	.614
State (#84)	179,8225	18,2014	9,82	.0552	.542

Table 27 shows an income elasticity of the demand for food (E) of .542 for the state, as a whole. When comparing this with past studies, this seems quite high. It indicates that as per capita deflated Disposable income increases by ten percent, per capita deflated retail food expenditures increase by 5.42 percent.

This may be attributed to the huge weighting effect Wayne County (E = .614) has on the state, as a whole.

considered the true income elasticity. True income elasticity is based on the assumption that "all" other variables
are held constant. In the beginning portion of this paper
the elimination of numerous variables from the equation under
consideration was described. Therefore, now that many of
these variables are no longer under consideration, one cannot

assume that they are remaining constant. Also a relatively high intercorrelation for the state would seem to reduce the accuracy of E.

Fote that just as Mr. Merrmann found great variations in E between different sized households, Table 27 shows great variations in E among the five selected counties.

Again, the negative E shown for Berrien County is most difficult to explain unless it is attributed to the high amount of intercorrelation previously mentioned. In the remaining four counties, the E varies from .203 in Baraga County to .809 in Missaukee County.

Cenerally speaking, as would be expected, the E is higher in those counties with lower income levels.

Fan	king of Per	Comita Disposable Income	-
1.	Ingham Wayne	#33 #82	.307
3. 4.	Baraga Missaukee	47 参 57	.203 .809

Food expenditures show a low level of response to income level changes in Baraga County (.203) because of the
magnitude of the tourism effect on food sales. Had the
tourist effect been removed, it is expected that Baraga would
be found consistent with the other three counties which show
that as income level increases, its effect on food expenditures decreases.

Engol's Law

A b₂ coefficient of less than 1.0 for each of the 84 time series multiple linear regression equations illustrates

some endorsement of the existence of Engel's law under dynamic conditions. The preceding few peragraphs, which show a higher E for lower income counties, also tend to show that Engel's Law does exist under dynamic conditions. Both of these findings follow the basic hypothesis that poorer families spend a larger percent of their total income on food than do the higher income families. However, a negative by was found in many counties. This phenomena still coincides with the basic requirement that as income increases, a lower percent is spent on food, but does not agree with the common assumption that Engel's Curve is positively sloped. Therefore, under dynamic conditions, Engel's Law does not perfectly apply throughout the state of Michigan.

The static conditions, illustrated in the cross sectional analysis, provided a b₂ which is not only less than 1.0, but also positive in nature. As was discussed in Chapter VII, the meeting of these two requirements indicates that Engel's Law does apply to the state of Michigan under static conditions, similar to those under which it was originally formulated.

Percent of Income Spant on Food

of additional interest to the economist is information on the percent of total income spent on food during the twelve year period. Table 23 and Figure 24 present adequate data from which the reader may visualize the general trend.

Figure 24 best illustrates the tendency towards a decrease in the percent of income spent on food. This, of

. • . • , course, coincides with the general increase in income levels throughout the state. Assuming this general trend continues, by 1930, less than fifteen percent of the average Michigan resident's per capita income will be spent on food.

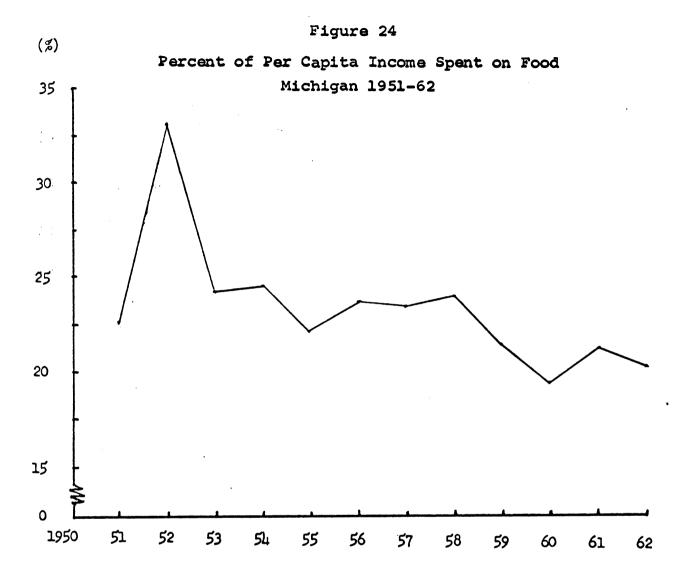
Limitations to Long Run Economic Frojections

locking to new markets and areas of possible expansion. A virtually insatiable domand for a peck at the future - even if clouded by uncertainty - has given rise to a host of longer run economic appraisals. Unfortunately, many of the more detailed studies consist largely of collections of data for past years and "numbers" projected on the basis of post trends.

Some of the basic limitations or deficiencies of long run projections, such as those made in this paper, are as follows:

- 1) Neither the economist nor anyone else can foresee the future. The economist must, therefore above all, appreciate the limitations of his tools and procedures.
- 2) Elaborate, detailed economic projections generally require more time and effort than can be justified even in an affluent society such as ours.

loaly, Rex F. "Long-Run Economic Projections: A review and Appraisal," Agr. Economics Research, Vol. XV. No.4, October 1963.


Table 23. Fercent of Per Capita Disposable Income Spent on Food.

County (#)	1951	1952	1953	1954	1955	1956
Baraga (7)	13.86	26.53	24.94	25.34	23,59	24.22
Fissaukee (57)	17.91	18.98	19.91	20.02	18.69	19.11
Borrien (11)	18.46	19.82	22.29	20.19	19.35	19.74
Ingham (33)	14.95	16.05	15.41	15.40	14.74	15.18
Eavne (82)	19,67	24.50	25,88	25.81	24.67	25.21
State (84)	22,67	33,10	24,19	24.32	22.20	23,68

County (#)	1957	1958	1959	1960	1961	1962	Average
Baraga (7) Missaukee (57) Berrien (11) Ingham (33) Wayme (92)	22.50 17.81 19.27 15.15 23.94	21.92 16.55 19.63 15.89 23.83	20.51 15.45 18.29 14.97 22.21	21.21 15.83 18.12 14.20 22.30	20.89 17.34 17.65 16.39 22.24	21.59 17.25 17.59 16.45 22.35	22.26 17.90 19.03 15.40 23.59
State (84)	23.33	23,92	21.59	19,33	21.13	20.30	23.33

3) Most long run decisions have many facets - economic, social, welfare, national security, etc., and no economic or other analytical framework can be expected to give unequivocal conclusions regarding the whole picture of the future.

The economic projection attempts a view of the future based primarily on present knowledge and relationships of the recent past. Usually the strategic assumptions are given and much of the projection follows logically from these assumptions. Accordingly, the projection is not an unconditional "forecast" of the future, but is an appraisal based on a

number of specific assumptions. Such assumptions make the projection job manageable, but just as often as not, they are

¹Daly, p. 114.

a Codys which simplifies the job and limits its usefulness.

The long run economic projection, consequently, can be little more than a rough eketch of future growth based on past trends and economic relationships. Such projections saldon reveal new problem areas, but help to quantify those known problems.

The composite method of projection, as discussed in this paper, does contain a limitation which is unnoticeable under average conditions. However, it might become more evident if projections are made for all of the 83 counties rather than for just a selected few, as was done in this paper.

Due to the characteristics of the expotential equation used in the composite process, the sum of the 83 county retail food sales projections will not necessarily equal the state projection for a given year. Although this phenomena tends to give the composite technique an unrealistic character, it is not totally unyielding in nature.

The most conventional way of correcting this "error" seems to be as follows:

- 1) Assume the state projection to be correct since the state data will have averaged out those counties with rather extreme tremes.
- 2) Determine the percent the sum of the county projections is above or below the state projection, and

This is also true of the simple regression technique and others except for a purely linear projection.

3) Subtract or add this percent of each county's projection to the original county projection so that the sum of the county projections equal the state projection. Despite the fact that this adjustment is most arbitrary, it seems to be the best correction device presently available.

CHAPTER IN

SURMARY AND CONCLUSIONS

This chapter will consist of suggestives and conclusions of the results. Each of these objectives of the study are equin stated, followed by a short explanation of findings of this study as they pertained to that particular goal.

Reaching the Objectives

Chiective #1: Determine the relationship and significance of economic and sociological factors in explaining variations in gross sales over time by counties, metropolitan areas, and state.

Chapter V suplains the process (time-series multiple linear regression analysis) in which four trial runs were conducted to determine the factors that have the major effect on variations in retail food sales. Following the climination of those factors with a high degree of intercorrelation or an insignificant effect, it was found that population was of such great importance, both in magnitude and in significance, that it concealed any relationships that might exist between food sales and other factors.

The third trial run it was decided to remove the effect of population from the regression equation by converting

the total retail food sales into per capita retail food sales. In the fourth and last trial run it was discovered that both number of food stores and deflated per capita income had an effect on deflated per capita retail food sales. The results of a five county regression analysis presented in Chapter VI show great variation among the counties. \mathbb{R}^2 varies from a high of .955 to a low of .132 and TB from 2.1865 to .3705. Generally, it was found that the number of food stores in a county had an inverse relationship to that county's retail food sales. The magnitude of this relationship was greater for the northern Michigan counties and was attributed to the decrease in the number of small country stores, leaving only the larger and more efficient stores which locate in a central retail sales area where the drawing power is increased.

In a majority of the counties it was found that (as is normally expected) the level of per capita income has a direct effect on per capita food sales. However, as shown in Fap 14, many counties showed income to have an inverse effect. Explanation of this phenomena is beyond the scope of this study, but does indicate an area in which further study is greatly needed.

Objective #2: Determine the significance of related factors in explaining variations in gross sales among the 83 counties for the years 1951-62.

Table 17 in Chapter V shows the results of the cross sectional multiple linear regression analysis. This cross sectional analysis was conducted to determine what effect, if any, the number of food stores and per capita income level had on variations of gross sales among counties in a given year.

The equation results show that both factors had a significant effect on food sales during the years 1951-57. However, during this time period, the percent of variation in gross retail food sales explained by the two factors (R²) decreased from 45 percent to only 7.3 percent. During the first seven years of the observation period (1951-62), both the number of stores and per capita income level were found to have a positive and fairly significant effect on gross retail food sales.

objective #3: Formulate a basic statistical procedure which would use the relationships determined in (1) and (2) to project the potential food sales volume by county, metropolitan areas, and state to the year 1930.

Chapter VII presents a detailed explanation of the statistical procedure advocated in this paper. Its step by step process can be summarized as follows:

Step 1: projection of the food price index number using a simple curvilinear regression equation.

Step 2: projection of the consumer price index also using the simple curvilinear regression equation.

Step 3: projection of the number of food stores for a given county, again using the simple regression equation where time is the independent variable and number of food stores the dependent variable.

Step 4: projection of per capita disposable income level in a given county using the simple curvilinear regression equation and projecting the data over time.

Step 5: transforming per capita disposable income data into deflated per capita disposable income by dividing the non-deflated data by the projected consumer price index,

Step 6: projection of the deflated per capita gross retail food sales for a given county using a multiple linear regression equation.

Step 7: projection of the non-deflated gross retail food sales for a given county by multiplying the projected deflated per capita sales data by the projected food price index.

Step 8: projection of total deflated gross retail food sales for a given county by multiplying the projected deflated per capita sales data by the projected population of that particular county,

Step 9: transformation of the deflated county retail food sales data projections into non-deflated projections using the projected food price index as it was used in the seventh step.

step 10: projection of gross retail food sales for a given year using a simple curvilinear regression equation as in steps 1 thru 4 so that the results of this simple projection over time can be compared with those of the Composite Method (Steps 1 thru 9) developed in this paper.

Step 11: transformation of this simple projected food sales datum into a deflated value again using the projected food price index,

Method projections with the simple curvilinear projections over time so that both methods may be evaluated and the most realistic and applicable technique selected. Following a detailed analysis in Step 12 it was concluded that in each of the five selected counties and the state, the Composite Method of projection was the most realistic and applicable. Its accuracy can only be determined over the time period for which projections were made.

<u>Objective #4:</u> Predict the proportion of projected retail food sales which will be associated with the different types of retail food sales.

In Figure 22 of Chapter VII, data is given which shows the percent of total retail food sales which occurred in each of the general types of food stores during the observation period.

As might be expected, the percent of total retail food sales taking place in grocery stores has increased over the twelve year period, while the proportion of sales attributed to the other types of food stores decreased. Assuming this trend continues, by 1980 approximately 60 percent of all retail food sales will occur in grocery stores.

Relatively unexpected, however, is the slight decline in the relative importance of food sales in restaurants. The data show that despite a continued increase in the absolute volume of food sales in restaurants, the importance of this sales volume relative to total retail food sales will slowly decline until it reaches 10 percent in 1900, when it is expected to level off if not increase slightly.

Sales in specialty food stores such as dairy product stores and fruit or vegetable markets is expected to decrease, relative to total food sales, until it is less than 3 percent in 1930.

Also, by 1980 retail food sales in taverns and clubs are expected to decrease to approximately 5 percent of total sales. The remaining 2 percent of total 1980 projected potential retail food sales will be the result of sales in miscellaneous stores such as delicatessens, candy stores, etc.

In summary, the grocery store will eventually become the dominant outlet for all food sales. Therefore, the grocery store organizations should be the primary sector of the retail food industry which is interested in sales volume projections.

Objective #5: Derive, explain, and analyze income elasticity of the demand for food in Michigan during the twelve year observation period.

Table 26 of Chapter VIII illustrates the procedure used to convert the per capita income coefficient of the multiple linear regression equation into a numerical measure of the income elasticity of the demand for food. Table 27 of the same chapter shows the results of the conversion as it was applied to the regression equations of the five selected counties and the state as whole.

The results show that the income elasticity of the demand for food for the entire state of Michigan is .542.

The elasticity of the five selected counties varies somewhat.

Nowever, once those counties showing a negative income coefficient are disregarded and the tourism effect is removed from the upper peninsula counties, there is found a consistency in those remaining counties whereby those counties with the highest level of per capita income also have the lowest income elasticity. This seems quite logical since it is normeably expected that as one's income level increases, he will spend a steadily decreasing proportion of that increase in income on food products.

Chiective #6: Analyze the results and convert the projections into suggestions of how this data might be applied by the retail food industries in their future planning.

Chapter eight deals with the interpretation of the test results in the context of applying projections to the rotail food industry and its overall market enalysis.

The size of the organization interested in the data (local, regional, or national membership) largely determines the size of the market on which there projections are needed. For example, the small local retail food store association may only be interested in the projections for one particular county, whereas a regional group may need to use and apply data from a large metropolitan area and anational food chain be interested in a county by county analysis and comparison throughout the entire state.

The projections show a 150 percent increase in the dollar volume of retail food sales in Michigan from 1950 to 1900 and a 190 percent increase in the physical volume of food products being handled. The retail food industry must now decide in what areas of the state these increases (or decreases) will be most pronounced so that additional facilities can be established to cope with this increased product decade. Regardless of the direction, if this proposed expension of retail food marketing facilities is to be horizontal, vertical, enlargement of existing outlets, or the addition of new outlets, the industry must first know the area of this potential increased sales before any decisions can be made on the expansion process. It is in this area that the projected potential retail food sales of a given area (or areas) can be most appropriately applied.

Testing the Hypothesis

The final discussion will deal with the acceptance or rejection of the hypotheses presented at the beginning of this paper.

been determined, statistical procedures such as a multiple linear and simple curvilinear regression analysis may be applied to accurately project into the future potential gross retail food sales by county, metropolitan area, and state.

general hypotheses, it is accepted on the following bases:

1) Two factors were found to have a significant effect on the volume of retail food sales and these relationships were

Even in all due respect to the complexity of the

2) The Composite Method of regression analysis and projection, used in this paper, produced projections of retail food sales more realistic and applicable than the most commonly used technique.

later used in the projection technique.

- 3) The Composite Method is basically justifiable by economic and statistical theory as well as logical reasoning.
- 4) Despite some unexplained irregularities, most consumer behavior patterns were consistent with the test results, i.e., Engel's curve.
- 5) Final evaluation of the accuracy of the projections must be delayed until the time, for which the projections were made, has passed and the actual sales volume determined.

Exp Expotheses fit Despite the emphasis placed on the measurement of the income elasticity of the demand for food on a national basis, a much more detailed analysis is necessary before this national measurement can accurately be applied to an individual area as small as a county.

This hypotheses is also accepted on the basis of the information presented in Table 27 which shows that income clasticity varies greatly among counties. Bad the income clasticity for the state (.542) been applied to each individual county, the results would be extremely misrepresentative. Likewise, therefore, it is also highly inaccurate for anyone to apply the national income elasticity to any one individual state. A detailed analysis must be made of the specific creatunder consideration before it can be determined if that area's true income elasticity coincides with being applied to it.

Sub Humotheses F2: The proportion of total gross retail food coles attributed to grocery stores will change only slightly in Fichigan's near future.

This hypotheses is rejected on the basis of the trends shown in Figure 22 of Chapter VII. As was previously discussed under Objective #4, the trend indicated that by 1900 almost 80 percent of all retail food sales will occur in gracery stores. This is almost a 33 percent increase in the proportion shown in 1950 and a 17 percent increase from that proportion shown in 1962. This seems to be a rather significant change and serves as justification for the rejection of the hyptheses.

Sub Bypotheses #3: Relationships found between variable factors and gross retail food sales vary so greatly among the 83 Michigan counties that an individual county analysis must be conducted to obtain accurate and applicable results.

Information presented in Maps 2 thru 5 in Chapter VI provide the basis on which this hypothesis is accepted. While testing the effect of the number of food stores and the por capita disposable income has on deflated per capita retail food sales, R² was found to vary from .21 to .96, h₁ varied from 6.0 to -18.87, h₂ varied from -.147 to .257 and TO varied from -15.6 to 6.73 in the multiple linear regression equation used to project deflated per capita rotail food sales. This variation; in the importance, magnitude, direction and significance of the effect the two independent variables have on the dependent variable, illustrates the validity of the hypotheses. Defore an accurate and applicable market analysis can be made, a county by county study must be conducted so as to take into consideration intra-county differences.

Concluding Statement

The need for long-run economic projections as an aid in policy formulation is fairly obvious. Most economic decisions, whether to invest in a new retail food outlet, build a dam, or to continue one's education, involve judgments about the future. To the extent that it is effective, the long-run appraisal may be proven incorrect, if problem areas

ere revealed and action taken to correct them. For as are Daly once stated, "Economic projections, in influencing long-run judgments and policy formulation, may generate the conditions which prove them wrong."

The factors effecting profits are almost countless; the relationships between them are intricate. While planning for new stores is vitally important, so is pricing, controlling labor expense and making superior merchandising decisions. Finning down the degree to which these selient management functions influence profits is difficult.

These unique conditions define the fundamental economics of this industry and hence chape its management problems. Simply being awars of these forces, however, is clearly not enough. Measuring them and determining more exactly their impact on profits and other market conditions is what is needed to take the appropriate action. In presentage this paper, it has been my objective to cast just one of these problems and requirements in a new light - a more exact light - so that better decisions can be made by better informal executives and other men within the Michigan retail food industry.

¹ Daly, p.113

BIBLIOGRAPHY

Public Documents

- "Concentration and Integration in Retailing," Staff Report to the Federal Trade Commission Economic Inquiry into Food Marketing, Part I, Govt. Printing Office, Washington, D.C., Jan. 1962, p. 32.
- Economic Report of the President, Government Printing Office, 1960, p. 18 (all such data are estimates for 1959 made by the Council of Economic Advisors.
- "Tact Book on United States Agriculture," U.S. Department of Agriculture, Office of Information, March 1963, pp. 68-9.
- Rockwell, George R., Jr., Income and Household Size: Their Effects on Food Consumption, Market Research Division, U.S.D.A., Report Ro. 340, Feb. 1961, p. LV.
- Imited States Population Census of Michigan. U.S. Department of Commerce, 1960.
- U.S. Business Census, U.S. Department of Commerce, 1943, 54, 58.
- U.S. Department of Agriculture, Food Consumption of Households in the U.S., Report No. 1, Washington, U.S. Printing Office, 1956, p. 190.
- Wirtz, Willard W. "The Consumer Price Index," U.S.D.L., Bureau of Labor Statistics, Jan. 1959, p. 1.
- Cassidy, Ralph Jr., Competition and Price Making in Food
 Retailing, University of California, Los Angeles,
 1962, p. 43.
- Cochrane, Willard W., and Bell, Carolyn S. The Economics of Consumption, New York; McGraw Hill, 1956, pp. 199-201.
- Croxton, Frederick E. and Cowden, Dudley J. Applied General Statistics, Prentice-Hall, Inc., Englewood Cliffs, N.J., April 1956, pp. 681-693.
- Dixon, Wilfried J., and Massey, Frank Jr. Jr., Introduction to Statistical Analysis, 2nd Ed., McGraw-Hill Book Company Inc., New York, 1957, pp. 146-52.

- Fox, Karl A., and Ezekiel, Mordecai. Methods of Correlation end Regression Analysis, John Wiley and Sons, Inc., New York, 1959, p. 152.
- Friedman, Milton. Price Theory. University of Chicago, 1962, p. 203.
- Wold, Herman and Lars, Jureen. <u>Persand Analysis</u>. (New York: John Wiley and Sons, 1953), p. 93.
- Mueller, Willard F. and Garorian, Leon. Changes in the Market Structure of Grocery Retailing, University of Wisconsin, Radison, 1901, p. 2.
- Reilly, William J. The Law of Ratail Gravitation, New Yorks William Reilly, 1951.

Articles, Journals, and Pulletins

- Allen, R.G.D. and Bowley, A.L., <u>Family Expenditure</u>, ("London School of Economics and Folitical Science: Studies in Statistics and Scientific Method", No. 2 London: Staples Press, 1935), pp. 1-58.
- Beegle, J. Allen; Phadtare, Hambir; Rice, Rodger; and Thaydon, John F. "Michigan Population 1960, Selected Characteristics and Changes," Department of Sociology and Anthropology, Special Bulletin 438, Agriculture Experiment Station, Michigan State University, East Lansing, Michigan, p. 7.
- Bilkey, Warren J. The Basic Relationships in Consumer Expenditure Behavior, Harvard Studies in Marketing Farm Froducts, Cambridge, Mass., Number 4-H, Oct. 1951, pp. 33-45.
- Burk, Marguerite C. "A Study of Recent Relationships Between Income and Food Expenditures," U.S.D.A., Agriculture Economic Research III, No. 3, July 1951, p. 97.
- Birk, Marguerite C. "Some Analysis of Income-Food Relationships," <u>Journal of the American Statistical Association</u>, 53:234, Dec. 1958, pp. 905-927.
- "Chains Reveal Rules of Thumb for Choosing Store Locations," Chain Store Age, Jan. 1960, pp. E33-E39.
- Clodius, Robert L. and Darrell F. Fienup and Larry Kristyanson.
 "Procurement and Practices of a Selected Group of
 Dairy Processing Firms," Research Bulletin 193,
 University of Wisconsin, Jan. 1956, p. 2.

- "Colonial Study," Frogressive Gracer, Jan. 1964, pp. C. 12.
- Converse, P. D. "New Laws of Retail Gravitation," <u>Journal of Marketing</u>, Oct. 1949, 14:379-64.
- "C.P.I.", Food Field Reporter, Feb. 3, 1964, p. 22.
- Daly, Rex F. "Long-Run Economic Projections: A Review and Appraisal," Agriculture Economics Research, Vol. XV, No. 4, Oct. 1963.
- DIE LEBENGROSTEN WELGICHER ARBUITER FAMILIEN FRUHER UND JETZT - ERMITTELT AUS FAMILIEN - HAUSHALTSRECHNUNGEN, Inst. International Statistical Bulletin 9:1-124, 111., 1895.
- Douglas, Edna. "Measuring the General Retail Food Trading Area A Case Study: II", <u>Journal of Marketing</u>.
 July 1949, 14:46-63.
- Ellwood, Leon W. "Estimating Potential Volume of Proposed Shopping Centers," The Appraisal Journal, Oct. 1954, pp. 581-587.
- "Facts in Grocery Distribution," <u>Progressive Grocer</u>, Aug. 1959.
- Ferber, Pobert. "Variations in Retail Sales Between Cities," Bureau of Economic and Business Research, Department of Economics, University of Illinois, <u>Journal of Earceting</u>, Jan. 1958.
- "Pood Chains Put the Old General Store Back on the Map,"

 Business Feek, April 4, 1959, pp. 92-4, 99.
- "Food That Isn't Food," Life Magazine, June 2, 1961, p. 9.
- Gibbs, M. G. "How a Prominent Chain Picks its Store Locations,"

 <u>Frinter's Ink</u>, Vol. CLI, Nov. 10, 1947, pp. 103-9.
- McVinsey General Foods Study, General Foods Corporation, Oct. 1963, p. 13. Exhibit 10.
- "Metropolitan Area Summaries," <u>Sales Management</u>, June 13, 1962, pp. 593-5.
- <u>Michigan Tourist Survey 1957.</u> Bureau of Business and Economic Research, Michigan State University, p. 29.
- Reynolds, R. B. "A Test of the Laws of Retail Gravitation,"

 Journal of Marketing, Jan. 1953, 17:273-77.

- Rouse, James W. "Estimating Productivity for Planned Regional Ehopping Centers," <u>Urban Land</u>, Oct. 1953, pp. 1-5.
- Supermarket Meys. New York, N.Y., beginning with January 1983.
- *Tourism Trends, * The Michigan Economic Record, Vol. 6, No. 2 Bureau of Business and Economic Research, Michigan State University, Feb. 1964.
- University of Pennsylvania. Study of Consumer Expenditures.

 Incomes and Savings. Vol. III, tabulated by the
 Eureau of Labor Statistics for the Wherton School of
 Finance and Commerce, 1956, pp. 139-140.
- Vauyhan, Clive E. "An Appraisal of the B.L.S. Consumer Price Index," Journal of Narketing, Cct. 1953, 18:138-145.
- Winston, Clement and Mable A. Smith. "Income Sensitivity of Consumption Expenditures," <u>Survey of Current Buciness</u>, January 1950, p. 17020.
- Wolff, Reinhold P. "Estimating the Market Potential of a Floating Population," <u>Journal of Marketing</u>, July 1954, 19:12-17.

Unpublished Material

- Duft, Kenneth D., and Brown, Earl H. "Michigan's Retail Food Industry - Statistics on Population, Store Numbers and Sales, by State, County and Netropolitan Areas," Michigan State University, Agriculture Economics Department, June 10, 1963.
- Duft, Kenneth D. "Profitability of a Transition Foint Derived from Technological Change in the Physical Distribution and Handling of Retail Food Products," M.L.V., M.T.A. 831, Dec. 5, 1953, pp. 24-26.
- Herrmann, Robert Omer. "An Investigation of Differences in Income Elasticities of Demand for Food in Households of Differing Size and Composition," Michigan State University, 1961, p. 63.
- Kiel, D.F., and Ruble, W.L. "Calculation of Multiple Regressions, Use of CORE Routine," A.E.S. Program Description 4, Sept. 30, 1963, Michigan State University Computer Laboratory.
- Kiel, D.F. and Ruble, W.L. "Formulas Used in CORE Routine,"
 A.E.S. Frogram Description 12, Oct. 15, 1963, pp.
 4-9, Michigan State Computer Laboratory.

- Kornblau, Curt, Director of Research, Supermarket Institute, paper presented on Nov. 1, 1963 at Michigan State University in a food warketing seminar.
- LaLonde, Bernard Joseph. "Differential in Supermarket Drawing Fower and Per Capita Sales by Store Complex and Store Size," Michigan State University, 1981, p. 119.
- Manderscheid, L.V. "An Introduction to Statistical Testing," Agriculture Economics Mimeo 867 revised, Feb. 1963, pp. 6-8.
- Woss, Thomas Neil. "Some Relationships of Selected Socio-Economic Factors to Food Consumption and Expenditures," Michigan State University, 1952, pp. 140-41.
- "The Merger Movement in Retail Food Distribution," National Association of Retail Grocers, 1955-53, Chicago 1959, pp. 25-7.
- Walker, N. Osborne. "A Study of Retail Food Store Facilities Which Will Need to be Constructed in Addition of 1950 Facilities, From 1960 to 1990 in the Chicago-Worthwest Indiana Standard Consolidated Area Resulting from the Projected Increase in Population and the Changes in the Ratios of Non-White and White Segments in Cortain Divisions of the Area," Jewel Tea Co., Inc., May 20, 1962.

AFFERDIX A

MICHIGAN RETAIL FOOD SALES DATA

APPENDIX A

Annual Gross Retail Food Sales for Michigan Counties

(000\$)

	County	1951	1953	1955	1953	1950	1962
_	Alcona	•	೭	380.7	961,	931,169,	739
	Alger	2,444,756	985, 20	986,1	618	532,16	401
	Allegan	,744,	0.0	604	3,528,	CS 2005 C	6.3
	Alpena	57	472,16	187,1	,115,	640,63	2,000
	Antrim	.025	926,63	040,	6.22	98,866,	, 227,
	Arenac	000	246,40	431.2	R53	06,662	4:4
_	Bereza	່ມ	.936,50	801,5	304	307,25	505
ထ	Barry	ଓଠଃ	307.16	847 8	165	753,23	0,579
_	Bey	556	(C)	243.9	925	690,90	404
0	Benzie	N	433,73	2,643,3	3,108	3, 210, 53	184,
-4	Berrien	47, 327, 433	53,966,700	54, 501,000		00,119,233	8,173
~	Dranch	7.693	291,13	8,966,9	9.945	0,433,33	1, 354,
m	Calboun	625	041,50	3.5	9,013	,025,16	:633
4	Ceas	`_`	645,93	647.3	605	1,230,10	0,774,
S	Charlevoin	246	:61.91	273,9	5 :30	407,53	800
8	Cheboygan	915,	525,83	957	712,	501, 33	.803°
~	Chippera	513	705,03	826.6	561	352, 36	493
œ	Clare	336	695,53	4.976.7	5,912	5,176,06	415
9	Clinton		7	161,1	790	133,20	504°
Q	Crawford	000	917.03	876.E	390	590,068	755
-	Delta		194,23	208	711,	4, 593, 46	6,711,
N	Dickingon		8	119,1	9,903	497,66	,738,
m	Eaton	4	1	7.00	032	0,000,00	6,350,
4	Eronet	5, 572, 300	6,031,10	074,2	7.744.	195,09	679
25	Genesee	355	53	,523,7	152,231,900	50,66	,073,
26	Gladwin	545.7	.874.90	000,90	982,1	041,13	78,600,
27	Gogebic	S	9,671,966	9,427,700	11,168,800	10,135,233	10,081,875
œ.	Grand	(•		200		600000
	Traverse	10,883,633	11,852,333	13,025,956	10,420,600	TO'07/1093	70,003,013

Appendix A Annual Gross Retail Food Sales for Michigan Counties (2)

6 6	#	County	1951	1953	1955	1958	1960	1962
Hilledale (1, 503.756 e 1142.633 7,411.733 8,660,400 9,024.900 10,452 Hughton II,683.733 12,223,100 12,755.633 14,655.333 14,6919.500 13,1649. Hugon C6, 575,665 76,576,566 17,201.33 91,939.333 15,104.919.500 13,1649. Huron G6, 575,665 76,576,566 11,240.033 13,391,833 15,161,800 13,918. Locaco 4,192.700 4,926,566 51,240.033 13,391,833 15,161,800 13,918. Locaco 6,511.766 7,395,433 7,395,433 7,395,433 17,395,435,435 17,395,435 1	σ	Gratiot	787	,834,30	303,46	2,190,03	788	2,640,7
Houghton 11,663,733 12,293,100 12,755,633 14,615,333 14,919,500 13,640 Inghton 65,375,620 79,393,300 10,301,2% 12,2010,066 12,104,966 12,231 Ionta 9,102,230 10,545,766 11,240,033 13,911,333 13,611,600 13,918 Ingham 9,102,230 10,545,766 11,240,033 13,931,333 13,611,600 13,918 Ingham 9,102,230 10,545,766 11,240,033 13,931,333 13,613,613 19,833 13,611,600 13,918 Ingham 6,511,766 7,309,300 7,945,133 7,595,433 7,595,406 7,945,133 7,595,406 7,945,133 7,595,406 7,945,133 7,595,406 7,945,133 7,595,406 7,945,133 7,595,406 7,945,133 7,595,406 7,945,133 11,003,406 7,941,606 7,941,991,200 13,918 11,003,406 11,002,206 11,002,206 11,002,206 11,002,206 11,002,206 11,002,206 11,002,206 11,003,406 11,002,206 11,002,206 11,003,406 11,002,206 11,002,206 11,003,406 11,002,206 11,002,206 11,003,406 11,002,206 11,002,206 11,003,406 11,002,206 11,002,206 11,003,406 11,002,209,400 11,002,206	_		303	,142,63	,411,73	8,660,40	304,5	0,452
Huron B.155,200 9,303 300 10,301,7% 12,010,066 12,014,9% 12,312 Inghan 6,579,6% 76,776,5% 61,320,133 13,314,833 15,116,600 12,312 Ionta 9,502,230 10,546,7% 61,124,013 91,391,333 15,116,600 10,492,200 4,926,5% 5,312,1% 7417,8% 6,833,633 13,918,130 12,001,4% 13,918 13,311,10% 12,001,33 7,395,433 7,565,0% 9,911,100 10,463,533 11,105,8% 13,000 10,499,200 44,576,2% 41,107,200 47,499,200 10,499,200 137,6% 11,201,100 10,463,533 11,105,8% 13,000 10,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 137,6% 13,000 15,499,200 15,400 15,400 15,400,133 12,000 15,400,133 12,000 15,400,133 12,000 15,400,133 12,000 15,400,133 12,000 15,400,133 12,000 15,400,133 12,000 15,400,133 12,000 15,400,133 12,000 15,400,133 12,400,133 12,400,133 12,400,130 12,400,130 12,400,130 12,400,130 12,400,130 12,400,140,140 11,175,333 12,400,140 11,140,140 11,175,333 12,400,140 11,140,140 11,170,140 11,170,140 11	_	Houghton	1,683,	2,293,10	,755,63	4,635,33	919,	3,640,7
Ingham	~	Huron	,158,	9,373,30	, 301, 26	2,010,06	,014,9	2, 312, 3
Londa 9,502,203 10,546,766 11,240,033 13,91,833 13,611,600 13,918 Londa 6,453,133 7,395,433 7,180,300 7,945,133 7,595,433 7,595,600 1,401,105 1,003,406 1,003,406 1,401,105 1,246,006 1,246,006 1,201,103 1,201,103 1,201,103 1,201,103 1,003,406 1,002,206 1,401,105 1,246,006 1,505,100 1,535,766 1,003,406 1,002,206	m	Ingham	,373,	6,776,56	,320,13	1,939,33	,163,1	9,238,8
Losco	.	ionta	502	0,546,76	,240,03	3, 391,83	611,6	3,918,9
Iron	عر ا	Iosco		.926,56	, 312,10	417,36	363,6	8,365,4
Imabella 6,453,133 7,395,433 7,595,066 9,911,100 10,463,533 11,105,00ckson Jockson 32,683,966 44,499,200 49,829,626 41,107,200 47,438,966 75,912,233 53,841,233 Kalkaska 1,033,633 1,187,666 1,201,500 1,509,133 1,429,600 1,401,1401 Keveena 1,031,64,033 120,290,900 137,5166 143,430,833 157,791,600 157,804,1401 Layer 8,050,566 8,427,700 9,507,166 12,201,066 2,052,666 7,003,733 2,385,126 1,495,300 157,804,804 1,505,100 15,646,733 12,831 12,83	ဖ	Iron	,511,	CE 60E	180,30	945,13	603	668.
Jackson 39,693,966 44,576,266 41,107,200 47,439,966 50,921,233 53,841,841,843,843,843,843,843,843,843,843,843,843	_	Isabella	453	395,43	,535,06	01,116,	463.5	1,105,2
Kalkaska 1,033,633 1,187,666 1,201,500 1,652,166 75,043,666 74,791 Kalkaska 1,033,633 1,187,666 1,201,500 1,509,133 1,422,600 1,401,500 Kewe 1,033,633 1,187,666 1,501,003,466 1,002,266 1,600,466 1,002,266 1,600,466 1,002,266 1,003,466 1,002,266 1,003,466 1,002,266 1,506,100 1,535,766 1,655,066 1,506,100 1,535,766 1,655,066 1,506,433 2,544,700 2,005,433 2,544,700 2,005,433 2,544,700 2,005,433 2,345 1,501,003 2,229,300 2,227,300 2,229,300 2,227,200 2,237,200 2,544,700 2,647,700 2,544,700 2,647,700 2,695,300 10,164,600 12,925,406 13,044,703 2,695,303 2,697,103 2,237,200 2,224,400 10,164,600 2,229,400 10,164,600 2,295,400 13,044,600 2,295,400 10,165,403 1,695,403 1,695,403 1,695,403 1,695,403 1,695,403 1,695,403 1,695,403 1,695,403	മ	Jackson	693	4,576,26	107,20	7,439,96	921,2	3,841,5
Kelkaska 1,033,633 1,187,666 1,201,500 1,509,133 1,429,600 1,401,800 Keweenar 109,164,033 120,290,900 130,51,66 1,003,466 1,002,266 936,133 157,591,800 157,891,800 158,991,800 157,891,800 157,891,800 157,891,800 157,891,800 157,891,800 157,891,800 157,891,800 157,891,800 157,891,800 157,891,800 15	6	Kalamazoo	667	9,829,03	,769,13	7,652,16	043,6	4,791,9
Kent 109,164,033 120,290,900 130,5166 143,430,833 157,791,500 157,894 Keweenaw 623,966 731,333 796,133 1,003,466 1,002,266 936,133 Lake 1,246,066 1,506,100 1,535,766 1,965,036 1,002,266 936,133 Lake 1,246,066 1,506,100 2,229,300 2,220,333 2,504,700 2,697,933 12,031,133 <td< th=""><th>0</th><th>Kalkaska</th><th>,033,</th><th>7,66</th><th>201,50</th><th>509,13</th><th>429,6</th><th>401,0</th></td<>	0	Kalkaska	,033,	7,66	201,50	509,13	429,6	401,0
Keweenaw 623,966 731,333 796,133 1,003,466 1,524,066 1,555,06 2,055,433 2,048 Lapeer 8,050,566 1,505,100 1,535,766 1,965,056 2,055,433 2,0483 Lapeer 8,050,566 8,427,700 9,537,166 12,201,066 1,5845,733 12,831,133 Lenawee 21,797,100 2,229,300 23,154,533 25,495,300 27,033,733 27,933 Litvingston 8,022,633 9,194,900 10,164,600 12,925,466 13,702,500 13,752,133 27,933 Luce 2,100,333 2,241,800 2,237,200 2,769,333 2,495,166 2,591,400 2,595,400 13,762,500 13,762,500 2,591,400 2,495,400 6,417,500 2,495,400 6,417,500 2,495,400 6,417,500 2,495,400 6,457,666 7,126,766 7,126,763 9,514,066 5,993,333 7,127,466 7,165,400 6,366,933 7,100,333 7,127,466 8,153,400 6,373,300 7,127,466 8,153,400 6,174,600 6,366,933 7,1		Kent	164	20, 290, 90	30,535,16	43,430,83	57,391,8	57,804,4
Lake 1,246,066 1,506,100 1,535,766 1,965,066 2,056,433 2,048, 12,201,065 1,2,646,733 12,031, 12,031,100 2,229,300 2,220,433 2,544,700 2,697,933 2,345, 12,201,065 1,2,646,733 12,031, 12,031,100 24,693,166 23,154,533 26,495,300 27,033,733 27,933, 12,342,100 24,693,166 23,154,533 26,495,300 27,033,733 27,933, 13,752,100 2,002,633 2,241,800 2,237,200 12,925,466 13,702,500 13,752,100 13,702,500 13,752,100 13,702,500 13,752,100 13,702,500 13,752,100,900 13,752,100 145,416,500 162,769,533 178,044,418,000 162,769,533 178,044,418,000 162,769,533 17,850,444,800 16,437,766 16,143,766 18,248,000 7,932,700 23,427,833 23,408, 11,15,700 4,915,033 5,410,700 6,313,300 7,127,466 7,165, 14,948, 11,175,333 12,862,666 13,939,66 13,138,233 18,723,566 19,823, 10,962,833 27,242,433 27,242,433 27,242,433 27,242,433 27,242,433 27,242,433 27,242,433 27,242,433 27,246,833 30,945,400 11,193,966 14,799,100 11,195,466 14,799,100 11,195,466 14,799,100 11,195,466 14,799,100 11,195,466 14,799,100 11,195,466 14,799,100 11,195,466 14,799,100 11,195,466 14,799,100 11,195,466 14,799,100 11,195,466 14,799,100,100,100,100,100,100,100,100,100,1	~	Keweena.		731,33	796,13	1,003,46	1,002,2	936,3
Lapeer 8,050,566 8,427,700 9,507,166 12,201,066 12,646,733 12,031 Leelanau 1,831,100 2,229,300 2,250,433 2,544,700 2,697,933 2,345 Leelanau 1,831,100 24,693,166 23,154,533 26,495,300 27,033,733 27,933 Luce 2,1797,100 24,693,166 23,154,533 26,495,300 27,037,733 27,933 Luce 2,100,333 2,241,800 2,237,200 2,769,333 2,697,166 2,591, Maccunb 72,299,800 87,541,233 102,999,400 1,932,700 6,417,500 5,495, Marquette 16,437,766 16,143,766 16,148,600 7,932,700 6,916,900 8,267,833 2,407,833 2,407,833 2,407,833 2,407,846 1,115,700 4,915,033 5,416,500 12,105,333 12,862,666 13,594,900 19,138,233 18,723,566 19,823, Missaukee 23,254,443 27,242,433 27,245,833 37,286,833 30,945,400 31,463,800 1,560,863 10,560,864 10	m	Lake		6,10	535,76	965,06	0.55	048,8
Leelanau 1,831,100 2,229,300 2,250,433 2,544,700 2,697,933 2,335 Lenawae 21,797,100 24,693,166 23,154,533 25,495,300 27,033,733 27,933 Livingston 8,022,633 9,194,900 10,164,600 12,925,466 13,702,500 13,752 Luce 2,100,333 2,241,800 2,237,200 2,769,333 2,897,166 2,591, Mackinac 3,904,900 4,573,366 5,650,100 6,385,400 6,417,500 5,495, Marquette 16,427,766 16,143,766 18,248,000 7,932,700 8,160,900 8,267,833 23,408 Marquette 16,427,766 16,143,766 18,248,000 22,531,200 23,427,833 23,408 Mecosta 6,757,600 6,174,600 6,366,933 7,824,766 8,153,700 6,174,600 6,366,933 7,824,766 19,398, Misland 11,75,333 12,862,666 13,594,900 13,138,233 18,723,566 19,398, Monstoe 23,254,143 27,242,433 27,639,736 14,105,466 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,948,866 11,114,300 1,193,966 14,789,789,766 14,789,789,789,789,	4	Lapeer	0.50	427,70	507,16	2,201,06	E46.7	2,831,6
Lenawee 21,797,100 24,693,166 23,154,533 26,495,300 27,033,733 27,933, Livingston 8,022,633 9,194,900 10,164,600 12,925,466 13,702,500 13,752, Luce 2,100,333 2,241,800 2,237,200 2,769,333 2,897,166 2,591, Mackinac 3,904,900 4,573,366 5,650,100 6,385,400 6,417,500 5,495, Marguette 16,427,766 16,143,766 18,248,000 7,932,700 8,160,900 8,267,883 23,408, Marguette 16,427,766 16,143,766 18,248,000 22,531,200 23,427,833 23,408, Macosta 4,715,700 4,915,033 7,824,960 7,127,466 7,126,766 7,126,766 7,126,766 7,100,333 7,824,766 8,153, Menomine 5,791,400 6,174,600 6,366,933 7,100,333 7,824,766 8,153,86 11,175,333 12,862,666 13,594,900 119,138,233 18,723,566 11,398, Monroe 23,254,143 27,242,433 27,639,733 37,286,833 30,945,400 31,463,488, Monroe 23,254,143 27,242,433 27,639,733 37,286,833 30,945,400 31,463,488,488,489,4866 10,952,800 14,105,466 14,789,766 14,948,866 19,823,800 14,105,466 14,789,766 14,948,866 14,789,766 14,789,766 14,948,866 15,800 14,105,466 14,789,766 14,948,866 15,800 14,105,466 14,789,766 14,948,866 15,800 14,105,466 14,789,766 14,948,866 15,800 14,105,466 14,789,766 14,948,866 14,789,766 14,948,866 14,789,766 14,948,868,833 30,945,860 14,948,866 14,948,868,833 30,945,860	'n	Leelanau	831	229,30	250,43	2,544,70	6.769	, 385, 5
Lifingston E,022,633 9,194,900 10,164,600 12,925,466 13,702,500 13,752 Luce 2,100,333 2,241,800 2,237,200 2,769,333 2,897,166 2,591 Mackinac 3,904,900 4,573,366 5,650,100 6,385,400 6,417,500 5,495 Marcomb 72,299,800 87,541,233 102,999,400 145,416,500 162,769,533 178,044 Marguette 16,437,766 16,143,766 18,249,000 7,932,700 8,160,900 8,267,833 23,408 Marguette 16,437,666 7,126,766 7,574,633 9,514,066 9,990,333 7,824,766 16,15,700 6,366,933 7,100,333 7,824,766 8,153,86 11,175,333 12,862,666 13,594,900 19,138,233 18,723,566 19,823 Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463,868 10,952,800 14,105,466 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,766 14,789,769	٠,	Lenawee	797.	4,693,16	3,154,53	6,495,30	033,7	7,933,5
Luce 2,100,833 2,241,800 2,237,200 2,769,333 2,697,166 2,591 Mackinac 3,904,900 4,573,366 5,650,100 6,385,400 6,417,500 5,495 Mackinac 3,904,900 87,541,233 102,999,400 145,416,500 162,769,533 178,044 Manietee 5,364,200 87,541,233 102,999,400 145,416,500 162,769,533 178,044 Marquette 16,437,766 16,143,766 18,248,000 7,932,700 8,160,900 8,267 Mason 6,457,666 7,126,766 7,574,633 9,514,066 5,980,333 7,126,746 7,126,746 7,127,466 7,126,746 7,127,466 7,127,466 7,125,746 11,175,333 12,862,666 13,594,900 19,138,233 18,723,566 19,823 Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463 Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463 Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463,480	_	Livingston	,022,	,194,90	0,164,60	2,925,46	,702,5	3,752,9
Nackinac 3,904,900 4,573,366 5,650,100 6,385,400 6,417,500 5,495,633 Hacomb 72,299,800 87,541,233 102,999,400 145,416,500 162,769,533 178,044,400 Manistee 5,364,200 6,206,833 6,264,000 7,932,700 8,160,900 8,267,803 Marquette 16,437,766 16,143,766 18,248,000 22,531,200 23,427,833 23,409 Mason 6,457,666 7,126,766 7,574,633 9,514,066 9,915,033 9,514,066 7,127,466 7,165 Menomine 5,791,400 6,174,600 6,36,933 7,100,333 7,824,766 8,153 Midland 11,175,333 12,862,666 13,594,900 19,182,23 18,723,566 1,398 Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463,483 Monroe 23,254,143 27,242,433 27,863,733 10,967,800 14,105,466 14,789,48	m	Luce	100	,241,80	237,20	,769,33	,497,1	, 591,1
Hacomb 72,299,800 87,541,233 102,999,400 145,416,500 162,769,533 178,044 Manietee 5,364,20 6,206,833 6,264,000 7,932,700 8,160,900 8,267,833 23,408 Marquette 16,437,766 16,143,766 18,248,000 22,531,200 23,427,833 23,408 Mason 6,457,666 7,126,766 7,574,633 9,514,066 9,913,406 7,127,466 7,165 Menominee 5,791,400 6,174,600 6,366,933 7,100,333 7,824,766 8,153 Midland 11,175,333 12,862,666 13,594,900 19,138,233 18,723,566 19,823 Missaukee 994,866 1,114,300 1,193,966 1,595,100 1,563,166 14,398 Monroe 23,254,143 27,242,433 27,639,733 30,945,400 31,463 Monroe 23,254,143 27,242,433 27,639,733 30,946,866 14,948	_	Mackinac	•	,573,36	650,10	385,40	,417,5	495,7
Marquette 5,364,200 6,206,833 6,264,000 7,932,700 8,160,900 8,267 Marquette 16,437,766 16,143,766 18,248,000 22,531,200 23,427,833 23,408 Mason 6,457,666 7,126,766 7,574,633 9,514,066 9,980,333 7,127,466 7,165,333 Menomine 5,791,400 6,174,600 6,366,933 7,100,333 7,824,766 8,153 Midland 11,175,333 12,862,666 13,594,900 19,138,233 18,723,566 19,823 Midland 11,175,333 12,862,666 1,193,966 1,595,100 1,563,166 1,398,23 Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463,848	_	Hacomb	2, 299	7,541,23	02,999,40	45,416,50	62,769,6	78,044,1
Marquette 16,437,766 16,143,756 18,248,000 22,531,200 23,427,833 23,408 Mason 6,457,666 7,126,766 7,574,633 9,514,066 5,980,333 9,818 Mecosta 4,715,700 4,915,033 5,410,700 6,873,300 7,127,466 7,165 Menomine 5,791,400 6,174,600 6,366,933 7,100,333 7,824,766 8,153 Midland 11,175,333 12,862,666 13,594,900 19,138,233 18,723,566 19,823 Missaukee 994,866 1,114,300 1,193,966 1,595,100 1,563,166 1,398,23 Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 14,789,766 14,948	_	Manietee	364	206,83	264,00	932,70	160,9	,267,6
Mason 6,457,656 7,126,766 7,574,633 9,514,066 9,950,333 9,818,065 Mecosta 4,715,700 4,915,033 5,410,700 6,873,300 7,127,466 7,165 Menominee 5,791,400 6,174,600 6,366,933 7,100,333 7,824,766 8,153 Midland 11,175,333 12,862,666 13,594,900 19,138,233 18,723,566 19,823 Missaukee 994,866 1,114,300 1,193,966 1,595,100 1,563,166 1,398,483 Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463,848	N		6,437	6,143,76	8,248,00	2,531,20	,427,8	3,408,8
Mecosta 4,715,700 4,915,033 5,410,700 6,373,300 7,127,466 7,165 Menominee 5,791,400 6,174,600 6,366,933 7,100,333 7,824,766 8,153 Midland 11,175,333 12,862,666 13,594,900 19,138,233 18,723,566 19,823 Missaukee 994,866 1,114,300 1,193,966 1,595,100 1,563,166 1,398,483 Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463,483 Monroe 23,254,143 27,650,865 10,967,800 14,105,466 14,789,766 14,948	m	Mason	457	6,76	574,63	9,514,06	036	818,2
Menominee 5,791,400 6,174,600 6,366,933 7,100,333 7,824,766 8,153,811	4	Mecosta	15	,915,03	410,70	,873,30	,127,4	165,6
Midland 11,175,333 12,862,666 13,594,900 19,138,233 18,723,566 19,823, Missaukee 994,866 1,114,300 1,193,966 1,595,100 1,563,166 1,398, Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463, Monroe 23,254,143 27,542,433 27,639,733 30,286,833 30,945,400 31,463, Monroe 23,254,143 27,542,433 27,639,733 30,286,833 30,945,400 31,463,488	ь	0	791,	.174.60	366,93	100,33	824,7	153,6
Missaukee 994,866 1,114,300 1,193,966 1,595,100 1,563,166 1,398, Monroe 23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463, Montralm 9,180,837 10,580,865 10,962,800 14,105,466 14,789,766 14,948	ശ	Midland	1,175	2,862,66	3,594,90	9,138,23	,723,5	9,823,2
23,254,143 27,242,433 27,639,733 30,286,833 30,945,400 31,463,9180,832 10,580,865 10,962,800 14,105,466 14,789,766 14,948	_	Ø	4	8	1,193,96	1,595,10	,563,1	338,6
9,180,832 10,580,865 10,962,800 14,105,466 14,789,766 14,948	ന	Monroe	3,254,14	7.242.43	7,639,73	, 286, 83	945.4	463.0
	•	Montcalm	9,180,83	580,86	0.952.80	105,46	789.7	948

Appendix A Annual Gross Retail Food Sales for Michigan Counties (3)

60 Nontmorrancy 1,210,777 1,191,466 1,501,400 1,786,466 1,972,733 1,814,225 61 Nuskegon 44,961,433 51,272,233 51,985,600 59,501,233 64,149,800 62,680,750 62,780,750 62,780,750 62,780,780,780 62,780,780,780 62,780,780 62,780,780 62,780,780 62,780,780 62,780,780 62,	- 1	County	1991	1953	1955	1958	1900	1962
Numbergon 44 961 433 51 727 233 51 985 600 59 501 233 64 149 800 62 683 Newaygo 5 055 433 57 10 666 6 0 200 466 7 670 600 8 052 633 8 261 Oceana 4 499 100 3 305 833 3 156 933 3 959 866 4 521 966 4 537 746 Oceana 2 508 36 2 527 023 3 156 933 3 959 866 4 521 966 4 537 746 Oceana 2 508 366 2 527 023 3 156 933 3 449 106 5 621 966 4 537 746 Occada 5 06 566 949 733 3 156 933 3 1 167 966 4 537 700 3 74 753 700 3 74 753 700 4 112 Occada 5 06 566 949 733 3 126 933 3 11 20 3 66 73 700 4 112 Occada 5 06 566 3 01 20 736 3 11 20 73 3 11 20 73 3 11 20 73 4 112 Occada 5 06 566 3 021 133 3 11 20 73 3 11 20 73 4 112 Octawa 5 07 100 3 021 133 4 21 20 70 4 773 333 4 773 333 <t< td=""><td>_</td><td>Montmorency</td><td>1,210,777</td><td>4</td><td>S</td><td>786</td><td>972</td><td>814</td></t<>	_	Montmorency	1,210,777	4	S	786	972	814
Newaygo 5,055,433 5,710,666 6,260,466 7,670,600 8,052,633 8,261		Muskegon	44,961,433	23	985	201	4,149	2,680
Oekland 163,467,400 194,668,833 227,319,233 278,373,066 302,905,400 316,319 Oceana 4,499,100 5,007,600 4,975,800 5,692,233 5,942,800 6,193 Oceana 2,688,500 3,05,933 3,150,900 3,749,166 4,521,966 4,533,700 4,333 Oscola 2,597,466 3,246,433 3,150,900 3,711,200 3,491,166 1,410,466 1,553 Oceala 2,597,466 3,021,133 3,139,566 3,937,766 1,410,466 1,553 Octawa 27,577,133 23,5195,933 31,837,500 32,656 4,112 Octawa 27,577,133 23,567,600 3,648,266 4,561,600 4,513 Octawa 27,577,133 23,648,266 4,561,600 4,513 77,240,400 77,240,400 Roscomen 3,648,266 4,561,600 4,514,000 4,514,000 5,567,600 5,703,506 4,717 Saginaw 51,329,500 37,966,566 12,973,600 37,71,500 37,72,500 37,		Newaygo	5,055,433	99	,260	670	052	,261
Oceana 4.499,100 5.007,600 4.975,800 5.692,233 5.942,800 6.193 Ogenaw 2.828,800 3.05,833 3.156,933 3.959,866 4.531,966 4.537 Oscola 2.597,466 3.264,433 3.139,560 3.441,200 3.943,300 4.353 Oscola 506,566 949,733 3.139,566 3.930,766 4.203,966 4.112 Ottawa 27,577,133 23,507,366 25,195,903 3.139,566 3.930,766 4.727 Ottawa 27,577,133 23,507,366 25,195,903 3.134,000 4,203,903 4,112 Noscomeon 3,848,266 4,561,000 4,567,000 5,676 3,456 3,456 Saginaw 51,919,766 456,100 4,577,000 4,777 4,617 Saginaw 51,919,766 43,471,966 4,571,966 15,610 4,617 Scholar 52,958,900 37,944,970 4,617 4,617 4,617 Scholar 52,958,900 37,944,570 4,617 4,6	-	Oskland	163,467,400	568,83	27, 319,	8,373,	2,905	6,818
Ogenea 2,622,500 3,265,933 3,156,933 3,959,866 4,521,966 4,533,700 3,746 Ontonagon 2,627,466 3,246,433 3,156,030 3,449,166 2,453,700 3,746 Oscoola 2,597,466 3,246,433 3,139,500 1,167,966 1,410,466 1,553 Ottawa 2,593,666 3,021,133 3,139,566 3,930,766 4,112 Ottawa 20,577,133 23,507,366 25,195,933 31,840,200 3,666 4,127 Resque isle 3,329,666 3,611,200 3,914,000 4,597,500 32,679,666 34,513 Roscommon 3,848,266 4,566,166 4,813,400 5,567,600 5,773,533 4,777 Roscommon 3,848,266 4,566,166 4,813,400 5,567,600 5,773,533 4,617 Roscommon 3,848,266 3,611,600 4,597,500 4,777,533 4,617 Roscommon 3,848,266 3,611,600 4,597,500 4,777,533 10,659 St.Jossylvan 3,701,300 3,7	-	Oceana	4,499,100	09	er)	692	540	193
Ontonegon 2,653,703 3,746 Oscola 2,597,466 3,246,433 3,038,033 3,449,166 1,410,466 1,67,966 1,610,466 1,553 Oscola 2,597,466 3,246,433 3,139,500 3,811,200 3,942,300 4,132 Oscola 2,558,900 3,021,133 3,139,566 3,914,000 4,597,500 4,733,533 4,727 Octawa 27,577,133 23,507,366 2,5195,933 11,849,200 3,914,000 4,597,500 4,733,533 4,727 Roscommon 3,648,266 4,566,166 4,813,400 5,577,500 4,733,533 4,727 Saginaw 51,919,766 4,566,166 4,813,400 5,734,533 4,733,566 5,733,666 5,679 Saginaw 51,919,766 4,813,400 5,734,700 4,713,100 4,713,700 5,733,566 5,679 Satilac 3,556,333 4,571,400 4,617,333 10,653 3,945 Satilac 3,500,433 10,122,066 10,951,366 10,014 13,756		Ogenaw	2,629,500	9	156	959	521	.537
Oscoola 2,597,466 3,246,433 3,150,300 3,811,200 3,942,300 4,333 Oscoola 506,566 949,733 975,200 1,167,966 1,410,466 1,553 Octawa 50,577,133 23,507,366 25,195,933 31,840,200 30,670,466 34,112 Octawa 27,577,133 23,507,366 25,195,933 31,840,200 30,670,466 34,553 Octawa 3,848,266 3,611,270 3,914,000 4,597,500 30,670,466 34,727 Noscommon 3,848,266 39,490,533 77,245,400 78,900 Saginaw 51,919,766 39,490,533 72,825,233 77,245,400 78,900 Schoolcraft 52,958,900 37,966,566 12,978,633 14,571,966 15,952,300 16,810 Schoolcraft 2,352,133 3,536,533 3,811,533 4,457,470 4,617,866 76,833 19,776 833 19,776 833 19,776 833 10,125 84,571,770 15,911,400 16,200,630 18,679,666 12,029,300 13,776,833 19,776 833 10,125 84,571,401 12,525,500 14,491,633 15,504,863 72,777,866 76,345 Nashtenaw 49,121,566 54,526,066 55,742,266 70,221,633 72,777,866 76,345 Nashtenaw 5,635,400 6,207,766 6,389,333 72,589,300 7,953,666 8,154,877,900 7,953,900 7,953,900 7,953,900 7,953,900 7,953,900 7,953,900 7,953,900 7,953,900 7,953,900 7,953,900 7,953		Ontonscion	2,088,266	627,02	0.38	449	453	746
Oscoda S06,566 949,733 3,139,566 1,610,466 1,610,466 1,120,466 1,610,466 1,610,466 1,610,466 1,610,466 1,610,466 1,610,466 1,610,466 25,195,933 11,840,200 30,609,466 34,112 0.2 1,610,466 34,112 0.2 1,610,466 34,112 0.2 1,610,466 34,112 0.2 1,610,466 34,121,200 3,610,466 34,121,200 3,610,466 34,121,200 3,610,466 34,121,200 3,610,466 34,121,200 3,610,466 34,121,200 3,610,466 34,121,200 3,610,466 34,121,200 3,610,466 34,121,200 3,610,466 34,121,200 3,610,466 3,910,	_	Osceola	2,597,466	246,43	150	811	043	333
Ottsego 2,558,900 3,021,133 3,139,566 3,930,766 4,250,966 4,112 Ottswa 20,577,133 23,507,366 25,195,933 11,840,200 3,60,466 34,553 Presque Isle 3,329,666 3,611,200 3,914,000 4,597,500 4,731,533 4,727 Roscommon 3,848,266 4,566,166 4,813,400 5,567,600 5,773,66 5,679 Saginaw 51,919,766 59,490,533 65,093,433 72,825,233 77,240,400 76,000 St.Joseph 11,310,133 12,365,666 12,978,633 14,571,966 15,724,300 16,810 Schoolcraft 2,332,133 3,636,633 12,978,661 10,776,833 10,629 Schoolcraft 2,322,133 3,636,633 10,122,056 10,961,836 12,029,906 12,022,300 16,290,600 Tuscola 12,122,520 14,491,633 15,504,333 10,122,056 16,201,603 12,022,603 10,00,433 10,00,433 10,60,903 12,00,403 10,00,433 10,00,433 10,60,903 <th< td=""><td>-</td><td>Oscoda</td><td>306,566</td><td>949,73</td><td>103</td><td>167</td><td>410</td><td>553</td></th<>	-	Oscoda	306,566	949,73	103	167	410	553
Ottawa 27,577,133 23,507,366 26,195,933 31,849,20 27,679,466 34,553 4,727 Presque Isle 3,329,666 3,611,20 3,914,000 4,597,500 4,733,533 4,727 Roscommon 3,848,266 4,566,166 4,813,400 5,567,600 5,793,666 5,679 Saginaw 51,919,766 59,490,533 65,093,433 72,826,233 77,240,400 73,900 St. Joseph 11,310,133 12,365,666 12,978,633 14,571,966 15,932,300 16,810 St. Joseph 11,310,133 12,365,666 12,978,633 14,571,966 15,952,300 16,813 3,945 St. Joseph 11,310,133 3,636,633 3,811,53 4,457,40 4,661,833 3,945 Schoolcraft 2,352,133 3,636,633 3,811,53 4,457,40 4,661,833 3,945 Shidawassee 14,197,700 15,611,40 16,290,60 18,679,40 4,661,83 3,945 Washtenaw 43,121,566 54,526,066 55,742,266 70,221,633 73,776,100 21,953,666 76,485,333 1,953,666 76,485,333	_	Otsego		-	139	030	200	1112
Presque Isle 3 329 666 3 611 200 3 914 000 4 597 500 4 733 533 4 727 80 8 8 26 166 4 813 400 5 567 600 5 703 066 5 679 8 609 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	_	ottawa	577	3,507,36	195	C# 80	3,609	553
Noscommon 3,848,266 4,566,166 4,813,400 5,567,600 5,703,066 5,679 58 58 58 59 490,533 77,240,400 70,900 70,900 8t. Clair 52,958,900 37,966,566 12,978,633 72,826,233 77,240,400 70,900 8t. Clair 52,958,900 37,966,566 12,978,633 14,571,966 15,952,300 16,810 5t. Joseph 11,310,133 12,365,666 12,978,633 14,571,966 15,952,300 16,810 5t. Joseph 11,310,133 12,365 12,978,633 14,571,966 15,952,300 16,813 10,858 10,018,571,400 4,617,833 10,659 811,420 16,290,600 18,679,166 19,679,833 19,776 813 19,776 813 10,122,066 10,951,366 112,494,966 112,529,300 13,275 813 15,504,333 15,504,833 13,904,833 73,777,856 76,345 84,848,848 11,020,466,270 1,160,301,733 1,168,599,766 1,264,367,900 1,251,696,333 1,195,79 84,850 5,695,400 6,207,766 6,389,766 1,264,367,900 1,251,696,333 1,195,79 84,850 5,695,400 6,207,766 6,389,333 7,589,300 7,953,666 8,154		e Isl	3, 329	8	914	597	73	727
Saginaw S1 919,766 59,490,533 65,093,433 72,826,233 77,243,400 78,900 st. Clair 52,958,900 37,966,566 12,978,633 14,571,966 15,952,303 16,813 st. Joseph 11,310,133 12,365,666 12,978,633 14,571,966 15,952,303 16,813 schoolcraft 2,352,133 3,636,633 3,811,33 44,617 40 457,40 46,022,133 19,659 833 10,022,033 10,018,733 10,776,833 10,659 833 10,659 833 10,706 12,029,303 19,706 12,029,303 12,525 800 12,522,500 14,491,633 15,504,333 13,904,823 29,476,100 21,303 Washtenaw 43,121,566 54,526,066 55,742,266 70,221,633 73,777,866 76,345 Wexford 5,695,400 6,389,766 1,264,367,900 1,251,696,333 1,195,79 Wexford 5,695,400 6,389,333 7,599,300 7,953,666 8,184	_	Roscommon	3,848,266	16	813	567	703	619
St.Clair 52,958,900 37,966,566 39,047,366 43,478,100 46,022,133 44,617 St.Joseph 11,310,133 12,365,666 12,978,633 14,571,966 15,952,300 16,810 Schoolcraft 7,057,566 7,844,333 3,811,33 4,57,400 4,077,633 10,659 Schoolcraft 2,352,133 3,636,633 3,811,33 4,457,400 4,061,833 3,945 Shlawassee 14,197,700 15,611,400 16,290,600 18,679,166 19,679 3,09 Tuscola 9,100,433 10,122,066 10,951,366 12,494,966 12,029,300 13,275 Van Buren 12,522,500 14,491,633 15,504,333 16,904,833 73,77,666 76,345 Washtenew 43,121,566 54,526,066 55,742,266 70,221,633 73,77,666 70,533,666 73,51,995,73 Waxford 5,635,400 6,389,333 7,589,300 7,953,666 8154	m	Saginaw	1,919.	490,53	093	828	.240	8,900
St.Joseph 11, 310, 133 12, 365, 666 12, 978, 633 14, 571, 966 15, 952, 300 16, 810 Sauilac 7, 057, 566 7, 844, 333 8, 291, 566 10, 018, 733 10, 776, 833 10, 659 831 10, 659 833 10, 659 833 10, 659 833 10, 659 833 10, 659 833 19, 706 813, 97.66 12, 290, 600 18, 679, 166 19, 679, 803 19, 706 13, 205 800 13, 205 800 13, 205 800 12, 225 500 14, 491, 633 15, 504, 333 13, 904, 823 73, 707, 866 54, 526, 066 55, 742, 266 70, 221, 633 73, 707, 866 76, 345 800 1, 251, 656, 333 1, 195, 79 800 1, 251, 656, 333 1, 195, 79 800 1, 251, 656, 333 1, 195, 79 800 1, 251, 656, 333 1, 195, 79 800 1, 251, 656 8, 154	-	St. Clair	2,958	7,966,50	047	478	023	4,617
Sanilac 7,057,566 7,844,333 8,291,566 10,018,733 10,776,833 10,659 Schoolcraft 2,352,133 3,636,633 3,811,33 4,457,400 4,661,833 3,945 Schoolcraft 2,352,133 3,636,633 3,811,33 4,677,400 4,661,833 3,945 Shiawassee 14,197,700 15,611,400 16,290,600 18,679,166 19,639,803 19,706 70,801 12,522,500 14,491,633 15,504,333 13,904,823 73,277,866 76,345 Washtenaw 43,121,566 54,526,066 55,742,266 70,221,633 73,277,866 76,345 Wayne 1,030,466,200 1,160,301,733 1,169,599,766 1,264,367,900 1,251,656,333 1,195,79 Wexford 5,695,400 6,207,766 6,389,333 7,589,300 7,953,656 8,154		st.Joseph	1,310,	65	978	571	932	6.810
Schoolcraft 2,352,133 3,636,633 3,811,33 4,457,400 4,661,833 3,945 8hiawassee 14,197,700 15,611,400 16,290,630 18,679,166 19,639,833 19,706 Tuscola 9,100,433 10,122,056 10,951,366 12,494,966 12,529,303 13,225 Van Buren 12,522,500 14,491,633 15,504,333 13,904,833 73,707,856 76,345 Washtenaw 43,121,566 54,526,066 55,742,266 70,221,633 73,707,856 76,345 Wayne 1,030,456,200 1,160,301,733 1,169,599,766 1,264,367,900 1,251,696,333 1,195,79 Wexford 5,695,400 6,207,766 6,389,333 7,589,300 7,953,656 8,154		Saullac		50	291	018	179	0,659
Shlawassee 14,197,700 15,611,400 16,290,600 18,679,166 19,679,833 19,706 Tuscola 9,100,433 10,122,0% 10,9%1,366 12,494,9%6 12,029,303 13,205 Van Buren 12,522,500 14,491,633 15,504,333 10,904,833 73,707,8%6 76,345 Washtenew 43,121,5% 54,526,0%6 55,742,2% 70,221,633 73,707,8% 76,345 Wayne 1,030,4%6,200 1,160,301,733 1,169,599,7% 1,264,3%7,900 1,2%1,8% 333 1,195,79 Wexford 5,695,400 6,207,7% 6,389,333 7,589,300 7,953,6% 8,154	_	schooleraft	3	636,63	811	457	661	945
Tuscola 9,100,433 10,122,056 10,951,366 12,494,966 12,229,303 13,225 Van Buren 12,522,500 14,491,633 15,504,333 13,904,833 20,475,100 21,303 Washtenaw 43,121,566 54,526,066 55,742,266 70,221,633 73,707,866 76,345 Waxhtenaw 1,030,466,200 1,160,301,733 1,108,599,766 1,264,367,900 1,251,686,333 1,195,79 Wexford 5,695,400 6,207,766 6,389,333 7,589,300 7,953,866 8,154	_	Shidwassee	4.19	5,611,40	290	619	6.3	9,706
Van Buren 12,522,500 14,491,633 15,504,333 13,904,823 20,475,100 21,300 washtenew 43,121,566 54,526,066 55,742,266 70,221,633 73,707,866 76,345 Washtenew 43,121,566,200 1,160,301,733 1,169,599,766 1,264,367,900 1,251,656,333 1,195,79 Wexford 5,695,400 6,207,766 6,389,333 7,589,300 7,953,666 8,154		Tuscola	9,100,433	0,122,00	951	494	80	3,205
Washtenaw 43,121,566 54,526,066 55,742,266 70,221,633 73,77,866 76,345 Wayne 1,037,466,270 1,160,301,733 1,169,599,766 1,264,367,900 1,251,696,333 1,195,79 Wexford 5,695,400 6,207,766 6,389,333 7,589,300 7,953,666 8,154	-	Van Buren	11	4.491.63	504	\$06	475	1,300
Wayne 1,020,406,200 1,160,301,733 1,168,599,766 1,264,367,900 1,251,686,333 1,195,79 Wexford 5,695,400 6,207,766 6,389,333 7,589,300 7,953,666 8,154		Washtenaw	43.121.566	90	742	221	8	6,345
Wexford 5,635,400 6,207,766 6,389,333 7,589,300 7,953,666 8,154	•	-1	33,466,200	7.105.691.7	3.599.76	4,367	1,696,33	95,79
	_		633	6,207,76	389	€ 685°	100	154
		2,	2,379,417,166 2,703,328	2,703,328,733	2,858,461,799	3,264,480,133	3, 27 4, 680, 632	8, 357, 807, 900

Mumber of 100d Stores

1962	10	6	10	2	6	4	0	ห	233.4	-4	C	3	.5	8	C'i	2	-	0	•	•	زي،		Ö		તં	4	r)		સં	4	45.4	77.	4,
0000	,		€.		S .			65	್ ನ			• • • •	, T.	4 1 1	•	1	723	·~.	,~1	۱ <u>۰</u> ۰		*	20	***	e.	1	. ~		ų) Ų)	-	e ei	,-4	m
1053	-4	,,	_	70.	S		4	Ö	235.0	. 5	ហំ	5.7	'n	-		, V	~			*	3	in	نہ	بہ	ið		15		6	0	O•09	u)	0.4
1055		d	-	-	13	,~,	.,	M	23%.0	d	2	99	444	77.	75	-	4	, m	3	N		.5	3		a	m			4	S	Ç	-	ď
1953	•				•			•	250.5				•	79.				•											7.	เก๋	67.0	ກັ.	N
1031		ហ្វ	120.0	76.5	1. 24. J.	₩	~• ; ; ; ;	71.3	273.1		13 · 22 co	0.00	6 ************************************	က္ ဗီ	⊕ 0•0		10 m	ා		(2) (3) (3) (4)	1ે4 . ડ	•	S € 0 €	0.50	**063	0.55	u, id		80°	102.6	70.4	•	0.20
County	51cona	F.lger	#11egan	Alrena	Antrim	Arenae	ರ್ಷಗಾಗ್ರತ	Barry	ু ক ্য	Senzie	Serrien	3rench	Calhoun	CO.03	Cherlevoix	Cheboycan	Chippewa	Clare	Clinton	Crowford	Delta	pickingon	Eston	Line to	6.60.60.60	Gladwin Gladwin	Gogazác	Grand	Traverne	Gratiot	H111sdole	Houghton	Huron
**	-1	~	m	4	r)	w	~	ශ	თ	10	11	12	13	14	18	<u>م</u>	11	ଫ ୮	61	R	77	22	23	54	5	7 0	27	23		53	B	쉱	35

APPENDIX A Number of Food Stores (2)

1955	•	2	3	3 47.	3 64.	156.	300.	14.7	S. 20	30.	3 22.	S. S.	25.	133,	45. 100.	3.2.	5. 2.	457.	7 45.	7 127.	5 47.	<u>.</u> 84.	<u>ල</u>	72.	5 19.	.011	3 SO.	2	7 247.	5 57.	5 799.
1953	ហ	เก	មា	6	S	r.)	ڻ ن	16.0	ស	0	មា	ห	ហ	ഗ	W)	0	O	ผ	C ·	Ŋ	ហ	c	0	0	S.	ស	0	0	S	0	0
ed On	350, 5			40.6	មា ិ ()	Ci	**************************************	17.C	562.1	15.0	2°°1	~	ૄ	170.0	70.1	\$	रहे ट ध	5° €	73.0		76.1		73.0	*.H	ර * ස්ව	175.1	57.0	प र () स	357.1	63.4	705.4
County	Ingham	Ionia	Insco	Iron	Isabella	Jackson	Kalandroo	Kalkaska	Kent	Konsenaw.	क् <i>र</i> ्य	Logar	Logienan	Lenavee	Livingston	Luce	Programme and	Kaogra	Ministee	At rouette	Mason	Mecosta	Menosinea	N. C.Land	11 saukee	Non roe	Fontealm	Nonth or or or	Muskeron	OF ASSESS	Oakland Pand
22	33	7	•	ဖွ	37	33	Ω	4		~	3	4	Ŋ	ų,	~	m	0	Ç	-4	C1	ന	4	Ŋ	Ó	-	Œ,	53	Ö	-4	N	m

APPENDIX A Number of Food Stores (3)

1952	_			•	_				•	77.	_		_		•	•	00	•	4,110.0		11,572.0
190	-			•	•					34.							32.		4,552,0	•	12,535,0
1953		S	.0	2	-	~	5	~	7.	13	6	4	d	5	6	60	04.	-	C	-	13,529.0
1955	G	-	5	4	ŝ	2	S.	σ.	5	Ġ	5	2	17	c	œ.	0.5	-	94.	22	,	14,292,3
1953	œ.	m		-	-	6		•		*		~	10.	•			œ.		5,959,0	o.	15,209,5
1951	45.4	43.1	31.4	40. 6	16.5		183.9	1.7 12	52.9	363.0	20 a c	95.1	1.00		134.1	113.0	107.4	221.9	6,495.0	ល់ ហ	AL 16,520.5
County	Oceana	Ogemaw	Ontonagon	Oscenia	OSCO38	Otsejo	Ottava	Presque Isle	ROS COMMON	Saginaw	St. Clair	St. Joseph	Santlec	School craft	Shiawassee	Tuscola	Van Buren	Washtenaw		Wenford	STATE TOTAL
42	64	65	99	29	68	69	2	71	72	73	74	75	76	11	78	79	င္ထ	81	82	83	84

Per Capita Disposable Income

		1951	51	19	1953	1	1955	1958	58	1	1960	-	1962	
*	County	Per Capita	Family	Family Capita	Family	Capit	Per a Family	Per Capita	Family	Capita	Family	Capit	Per a Family	. 1
-	Alcona	1,079	3.746	803		888	3.218		6,490			1.300	4.442	1
~	Alger	1,330	4, 586	1,118	3,778	1,248	4, 392	1,337	4,681	1,537	5,237	1,306	4,730	
m	Allegan	1,189	3,982	1,154		1,297	4,294		4,827			1,655	5,849	
4	Alpena	1,548	5,644	7		1,229	4,340		4,690			1,502	5,427	
n	Antrim	696	3,202	820		919	2,973		4,746	. 10	- 76	1,297	4, 319	
ဖ	Arenac	1,220	4,270	947		1,066	3,768		4, 383	- 10	4,688	1,341	4,583	
1	Baraga	1,486	5,016	870		196	3,278		3,649	- 166	4,064	1,232	4,288	
0	Barry	1,017	3,349	1,232		•	4,340		4,701		5,156	1,783	6,076	
ø	Bay	1,423	5,078	_		•	5, 394		5,565		6,248	1,754	6,236	
10	Benzie	1,564	5,130			1,013	3,283		4,029		4,466	1,368	4,394	
7	Berrien	1,517	5,018			•	5,087		5,303	- 44	5,964	1,963	6,668	
12	Branch	1,345	4,628	1,158		•	4,465		4,775	- 10	5,355	1,900	-	
13	Calhoun	1,470	5,108	1,565		•	5,848		6,012	1,945	6,730	2,059	6,951	
14	Cass	1,048	3, 386	1,190		•	4,801		4,594	. 16	5,046	1,662	701	1
15	Charlevoix	1,345	4,642	880		985	3,460		3,946	- 56	4,358	1,371	583	8
16	Cheboygan	1,502	5,237	818		918	3,216		3,740	- 16	4,143	1,248		3
11	Chippewa	1,509	5,448	1,179		•	4,513		5, 204	- 44	5,785	1,427	5,123	
18	Clare	1,533	5,126			1,202	4,102		4,429	- 10	4,921.	1,265	4,188	
13	Clinton	938	3,368	•		•	4,536		4,988	- 100	5,498	1,608	5,943	
8	Crawford	1,141	3,995	878		956	3,014		4,184	194	4,639	1,355	4,974	
Ħ	Delta	1,313	4,542	1,075			4,008		4,296		4,893	1,437	4,965	
22	Dickinson	1,267	4,150	1,146		•	3,925		4, 291	- 140	4,959	1,544	4,853	
23	Eaton	1,064	3, 523	1,232		1,389	4,558		4,912	- 14	5,515	1,846	6,497	
74	Enmet	1,486	5,120	1,052		•	4,168		4, 533	- 86	4,976	1,394	4,694	
25	Genesee	1,643	5,705	1,794			6,706		6,667	- 10	7,803	1,904	6,787	
56	Gladwin	923	3,247	871		973	3,580		4,232	- 16	4,457	1,292	4,424	
27	Gogebic	1,292	4, 290	1,121		1,208	3,970		4,242	-	4,913	1,325	4,143	
23	Grand Traverse	-	5,047	1,132		1,236	4,609		4.804	1,470	5,416	1,849	6,827	
2	Gratiot	1,251	4,366	1,086		1,207	4,134		4,548	-	4,960	1,673	5,934	
8	Hillsdale	1,079	3,551			1,217	3,959		4,439	-	4,804	1,669	5,679	

APPENDIX A Per Capita Disposable Income (2)

			1951	1953	53	19	55	0	83	10	550	1	962	
非	County	Cantta	er Fortly	Capita	Family	@ @[Fomily	rer Capita	Family	rer Carita	r Family	Capita	Family	
Ħ	Houghton	151	. 26	₽	•	7	•	.22	O	្ត	ហ	4	w	
32	Huron	1,251	Ŝ	6 8 6	3,491	1,122	•	Ø	w	34	્	, m	·	
33	Ingham	52.	, 25	8	٦	0	•	0,	Ö	100	Q	7	4	
ጸ	Ionia	10	64	9	w.	7	•	.27	u,	, «!!	6	9	7	
S	Iosco	4	w)	1.4	•	7	•	.27	1.3	4		, o	7	
36	Iron	1,376	41	•13	a,	E.	•	.41	Ü	52	u	'n	w	
31	Isabella	•	₽	671		ື	•	245	4	53	Q	9	_	
99	Jackson	•	w	,51	S	€	•	60	~	ွှိ	4	੍ਹ		
ጽ	Kalamazoo	•	Q)	63			•	,82	0	12	Q	7	~	
\$	Kalkaska	954	2,925	770	7	866	•	eo.		10.	o,	~	~	
7	Kent	1,433	G.	1,660	•	1,823	•	683	0	ET	0	ð	~	
42	Keveenav	844	9	893	1	0	•	200	0	. 15	9	m	844	1
43	Lake	829	7	748	•	897	•	0	ø	. 23	Q	7	500	89
7	Lapeer	1,017	4,079	Q	4,011	7	•	7	Ѿ	36	M		, 587	
4	Leelanau	629	ď.	1,050	3,554	1,220	•	98.	S.	• 43	m	m •	9	
46	Lenavee	•	vi.		4,744	ง	•	19,	S)	,82	づ	C	Q	
7	Livingston	348	4,578	ई	4,650	1,541	5,240	1,606	5,474	1,785	6,027	1,752	6, 285	
4	Luce	•	7	843	4,265	934		G	G.	170	7	C	4	
6	Mackinac	•	5, 597	176	7	Q	•	4	₽	, 23	'n	(T)	Q	
	Macomb	•	4,992	•	5,763	~	•	.73	4	0.5	7	σ,	₹,	
	Manistoe	1,470	4,764	1,063	3,420	1,150	•	• 26	-	8	ภ	'n	Q	
	Marquette	1,408	4,993	•	4,219	~	•	8		S.	m	5	"	
	Mason	1,423	4,653	•	3,621	7	•	3	Ŧ	53	ď	S	æ	
3	Mecosta	1,205	3,958	066	3,191	7	•	. 28	~	33	7	7	1")	
	Menominee	096	4.)	1,061	3,616	4	•	53	S)	. 42	9	en •	wi.	
S 6	Midland	1,205	44)	9	5,162	ŝ	•	.61	₩.	(C)	S.	6	7,404	
	Missaukee	933	3, 566	819	3,180	974	•	S	◥	, 25	9	7	~	
	Monroe	1,313	4,701	1,433	4,955	1,536	•	85	•	යී	m	•	6,234	
23	Montcalm	1,236	3,982	1,178	3,670	1,281	•	u	63	·C·	6	1,496	4 ,904	

Appendix A Per Capite Disposable Income (3)

		19	1951	19	953	9	55	0	58	19	960	19	62
		Per	1	ď			z.		1	Fe		94	10.
#	County	Capita	124	amily Capita	Family	Capita	Family	Capita	Family	Capite	Fam11y	Capita	Family
69	Montrofency	1.473	•	866	3,102	Q	.71	114	.47	•	9	.15	ယ
19	Musk egon	1,595	•	•	4,754	S	14	. 57	31	•	0,	.77	N
62	Newaygo	892	•	•	17)	7	.72	. 29	47	•	83	.46	0
63	Oakland	1,564	5,627	1,816	6,293	2,026	7,112	1,962	6,838	2,352	8,212	2,532	9,276
9	Oceana	696	•	168	S	0	47	,17	117	•	44.	46	0
65	Ogenav	1,643	•	831	0	O)	36	60.	16	•	. 25	. 24	N
99	Ontonagon	1,095	•	888	0	100'1	48	,14	16	•	8	32	4
67	Osceola	\$0.00 0.00	•	849	0	, O	46	11,	14		4	39	
68	Oscoda	1,064	•	751	9,	838	10,	4	82		110	47	4.3
69	Otsego	1,579		699	7	6 29	00	30	10	•	3	8	w
20	Ottawa	1,454		1,350	ູ	1,437	187	. 51	,12	. •	82	,78	4
77	Presque Isle	970	•	862	4	<u>_</u>	8	101	53	•	90	S	RJ.
72	Roscommon	7,392	•	•	4	7	88	-	E .	•	83	55	O
73	Saginaw	₩3 •	•	•	7	9	7	69	98	٠	53	.91	556
74	St.Clair	ড	•	•	•	S	25	53	.37	•	8	. 6B	Q
75	St.Joseph	1,403	4,445	1,344	7	Æ	54	. 55	81	•	. 46	986	033
16	Santlac	6.4	•	•	•	7	40	. 36	550		95	4.	W
11	Schoolcraft	0	5,541	686	3,424	0	8	67.	\$	•	,92	, 22	~
78	Shiawassee	₹,	•	•	S.	S)	70	. 59	26	•	9	.76	~
79	Tuscola	4	•	•		7	E.	34	,75	•	,14	, 57	
8	Van Buren	V	-	•	9	(m)	. 26	43	62	•	15	65	T
81	Washtenaw	9	•	1,626	0	•	.72	, B1	81	•	. 59	£ 7	O
83	Wayne	C		•	9	٦	4.	0.5	12	•	111	13	u
83	Wexford	V	•	•		7	60	. 32	\$	•	16,	15.	0
84	STATE AVERAGE	1.610	5,655	1.641	5,563	1.815	6,248	1,810	6,245	2,224	7,741	2,000	7,011
		ŀ	•	•		•	•	•	•		,	•	•

Population
Populati
Populat
Popula
Popul
Popu
Pop
0
Ď,
-
-
**
100
2
O
O
County

*	County	1951	1962	1970	1975	1980
-	Alcona	5,906	•	6,907		•
N	Alger	9,931		8,565		
m	Allegan	48,517		71,478		
4	Alpena	22,826		37,892		
ın	Antrim	10,686		10,041		
9	Arenac	9,666		10,073		
-	Barada	7,948		6,398		
03	Barry	26,739		39,141		
0	Bay	90,319		131,763		
10	Benzie	8,353		7,394		
11	Berrien	119,118		200,425		
12	Branch	30,672		40,741		
69	Calhoun	122,618		160,985		
14	Cass	29,060		50,110		
2	Charlevoiz	13,470		13,361		
16	Cheboygan	13,813		15,442		
11	Chippewa	29,551		36,715		
10	Clare	10,392		13,326		
19	Clinton	31,872		47,056		
8	Crawford	4,233		6,043		
7	Delta	33,052		35,761		
22	Dickinson	24,937		23,042		
23	Eaton	686,04		63,039		
24	Emmet			15,305		
5	Genesee			544,031	•	
26	Gladwin			12,357		
27	v			22,058	•	
2	Grand Traverse	23		39,671		
2	Gratiot	-		41,164		
8	H1118dale	32,199	35, 362	37,955	39,670	41,465
33	Roughton	39,359		32,110		
33	Huron	33,235		34,896		

APPENDIX A County Fopulation (2)

176,777 220,730 34 Londa 33,655 44,259 35 Losco 11,466 18,241 36 Iron 17,641 17,034 39 Kalamazoo 131,008 181,413 40 Kalkaska 29,5782 332,317 41 Kent 295,782 332,317 42 Keweenaw 2,868 2,334 43 Lake 295,782 332,317 44 Lapeer 8,11,222 44 Lapeer 8,114 9,466 45 Lenawee 65,945 80,994 47 Livingston 27,376 41,598 48 Live 8,115 7,77 50 Mackinac 9,444 11,222 50 Mackinac 9,444 11,222 51 Marquette 27,620 22,240 52 Mackinac 9,444 11,222 52 Mackinac 9,444 11,222 53 Mackinac 27,620 22,240 54 Macomb 10,176 22,240 55 Machinac 27,620 22,240 56 Midland 7,391 6,661 57 Missaukee 78,211 109,028 58 Montcalm 31,491 36,905 59 Montcalm 21,825 157,041 50 Nontworency 124,385 157,041	2	County	1951	1952	1970	1975	1980
Lonia 33,655 44,2 Loco	33	Ingham	.77	23,7	ี่	3,7	•
Ioeco	*	Ionia	33,655	44,2	6	(*)	ထ
Iron	35	Iosco	11,466	8	~	9	a
Isabella	36	Iron	17,641	7.0	Ś	5.4	7
Jackson 110,332 137,98 Kalamazoo 131,008 181,48 Kalkaska 4,576 4,33 Keweenaw 2,868 2,33 Lake 5,265 5,32 Lake 5,265 5,33 Lake 6,5945 80,94 Leelanau 8,114 9,41 Luce 65,945 80,94 Luce 8,115 7,79 Mackinac 9,444 11,59 Marquette 43,504 58,11 Mason 20,620 22,2 Mason 20,620 22,2 Mason 20,620 22,2 Mason 20,620 22,2 Masoukee 43,504 58,11 Masoukee 7,391 109,0 Montmorency 4,155 Muskegon 124,385 Newaygo 21,826 24,7	37	Isabella	29,602	5	'n	0	9
Kalamazoo 131,008 181,4 Kalkaska 4,576 4,33 Keweenaw 2,868 2,33 Lake 5,265 5,33 Lake 36,407 43,33 Lake 8,114 9,4 Lavingston 27,37 41,5 Mackinac 9,444 11,2 Mackinac 9,444 11,2 Mackinac 9,444 11,2 Mackinac 13,575 10,1 Mackinac 20,620 22,2 Massoukee 10,176 21,5 Montacime 7,391 109,0 Montacime 7,391 109,0 Montacime 7,391 109,0 Montacime 7,391 66,6 Montacime 7,391 66,6 Montacime 7,391 66,6 Montacime 7,391 66,6 <t< th=""><th>33</th><th>Jackson</th><th>110,332</th><th>37,9</th><th>64</th><th>83,7</th><th>٦</th></t<>	33	Jackson	110,332	37,9	64	83,7	٦
Kalkaska 4,576 4,32 Kent 205,782 332,3 Keweenaw 5,265 5,33 Lake 36,407 43,3 Lake 8,114 9,4 Luce 8,114 9,4 Mackinac 9,444 11,2 Mackinac 207,045 50,4 Masson 20,620 22,2 Midland 37,241 56,1 Montage 7,391 66,6 Montage 7,391 109,0 Montage 7,391 36,9 Muskegon 124,385 157,0 Mackinac 7,391 66,6 Montage 7,391 66,6 Mackinac	ጽ	Kalamazoo	131,008	7	Ċ	(C)	'n
Kent 295,782 332,3 Koweenaw 2,868 2,35 Lake 36,407 43,3 Lapeer 36,407 43,3 Lapeer 36,407 43,3 Labear 36,407 43,3 Labear 36,945 80,9 Lavingston 27,37 41,5 Lavingston 27,37 41,5 Macking 20,444 11,2 Macking 20,444 11,2 Macking 20,620 22,2 Marquette 45,504 58,1 Matiliand 10,176 21,5 Midland 7,391 66,6 Montroland 37,241 36,9 Montroland 31,491 36,9 Montroland 124,385 157,0 Memaygo 21,825 24,7	\$	Kalkaska	4,576	4,3	4	0	્
Keweenaw 2,868 2,33 Lake 5,265 5,33 Lapeer 36,407 43,33 Lapeer 36,407 43,33 Lapeer 36,407 43,33 Labrana 8,114 9,44 Lavingston 27,376 41,5 Lavingston 20,44 11,2 Mackinac 9,444 11,2 Mackinac 207,045 58,1 Mackinac 43,576 19,1 Mackinac 20,620 22,2 Midland 20,620 22,2 Montage 7,391 66,6 Montage 7,391 4,4 Montage 7,391 4,4 Montage 7,391 4,4 Montage 7,391 6,6 Montage 7,391	4	Kent	5,73	2		533,742	ထ
Lake Lapeer 36,407 43,3 Lapeer 36,407 43,3 Lenawee 65,945 80,9 Livingston 27,376 41,5 Luce 8,115 7,7 Mackinac 9,444 11,2 Manistee 13,504 58,1 Manistee 13,504 58,1 Manistee 13,401 36,9 Montmorency 4,155 Muskegon 124,385 157,0 Newaygo 21,826 24,7	42	Koweenaw	2,368	(T)		Ξ.	
Lapeer 36,407 43,3 Lealanau 8,114 9,4 Lealanau 8,114 9,4 Luce 65,945 80,9 Luce 8,115 7,7 Mackinac 9,444 11,2 Mackinac 9,444 11,2 Mackinac 9,444 11,2 Mackinac 9,444 11,2 Mackinac 207,045 10,1 Marquette 43,504 58,1 Mason 10,176 22,2 Midland 37,241 56,1 Missaukee 78,211 109,0 Montmorency 4,155 Muskegon 124,385 157,0 Newaygo 21,826 24,7	43	Lake	5,265	(13) (13)		7	4
Leelanau 8,114 9,4 Lenawee 65,945 80,9 Livingston 27,376 41,5 Luce 8,115 7,7 Mackinac 9,444 11,2 Mackinac 13,504 10,1 Missaukee 10,176 21,5 Missaukee 78,233 24,5 Montmorency 4,155 Muskegon 124,385 157,0 Newaygo 21,825 24,7	44	Lapeer	\$	6.	Ö	4.0	Φ,
Lenawee 65,945 80,9 Livingston 27,376 41,5 Luce 8,115 7,7 Mackinac 9,444 11,2 Mackinac 9,444 11,2 Mackinac 9,444 11,2 Mackinac 9,444 11,2 Marquette 45,504 58,1 Marquette 45,504 58,1 Masson 20,620 22,2 Midland 37,241 56,1 Montmorency 4,155 Muskegon 124,385 157,0 Newaygo 21,825 24,7	45	Lealanau		7	<u> </u>	4	ထ
Livingston 27,376 41,5 Luce 8,115 7,7 Mackinac 9,444 11,2 Mackinac 9,444 11,2 Mackinac 9,444 11,2 Mackinac 13,575 19,1 Marquette 45,504 58,1 Mason 20,620 22,2 Mason 20,620 24,5 Maskegon 124,385 157,0 Maskegon 21,825 24,7	46	Lenawee	96	6,0	່ທີ	5.3	4
Luce Mackinac Mackinac Mackinac Mackinac Macomb Manistee 13,575 Marquette 43,504 53,1 Mason 20,620 22,2 Mason 19,176 21,5 Midland Missaukee 7,391 Montmorency Muskegon 124,385 157,0 Newaygo 21,825 24,7	47	Livingston	.87	1.5		୍ଦ	8
Mackinac 9,444 11,2 Macomb 207,045 508,4 Manistee 13,575 19,1 Marquette 45,504 58,1 Mason 20,620 22,2 Mecosta 19,176 21,5 Monominee 25,233 24,5 Midland 7,391 6,6 Monroe 7,391 6,6 Montcalm 31,491 36,9 Muskegon 124,385 157,0 Newaygo 21,825 24,7	43	Luce	0,115		~	3	7
Manistee 207,045 508,4 Manistee 13,575 19,1 Marquette 43,504 58,1 Mason 20,620 22,2 Mecosta 19,176 21,5 Midland 37,241 56,1 Missaukee 7,391 6,6 Montcalm 31,491 36,9 Montmorency 4,155 4,4 Muskegon 124,385 157,0 Newaygo 21,826 24,7	49	Mackinac	9,444	7.2	7	3,0	ᅼ
Manistee 13,575 19,1 Marquette 43,504 59,1 Mason 20,620 22,2 Mecosta 19,176 21,5 Midland 37,241 56,1 Missaukea 7,391 6,6 Monroe 78,211 109,0 Montcalm 31,491 36,9 Muskegon 124,385 157,0 Newaygo 21,825 24,7	S	Kacomb	40	8	'n	3	
Marquette 43,504 58,1 Rason 20,620 22,2 Necosta 19,176 21,5 Monominee 25,233 24,5 Midland 37,241 56,1 Missaukee 7,391 6,6 Monroe 78,211 109,0 Montmorency 4,155 4,4 Muskegon 124,385 157,0 Newaygo 21,826 24,7	21	Manistee	. 57	16	19	19,8	2,1
Mason 20,620 22,2 Necosta 19,176 21,5 Mandland 37,241 56,1 Missaukee 7,391 6,6 Monroe 78,211 109,0 Montrorency 4,155 4,4 Muskegon 124,385 157,0 Newaygo 21,826 24,7	52	Marquette	43,504	. T	S	3.	. O.
Necosta 19,176 21,5 Madland 37,241 56,1 Missaukee 7,391 6,6 Monroe 78,211 109,0 Montcalm 31,491 36,9 Muskegon 124,385 157,0 Newaygo 21,826 24,7	53	Mason	20,620	2.2	'n	4	'n
Menominee 25,233 24,5 Midland 37,241 56,1 Missaukee 7,391 6,6 Monroe 78,211 109,0 Montcalm 31,491 36,9 Muskegon 124,385 157,0 Newaygo 21,826 24,7	54	Mecosta	19,176	(2) 	ัก	4.7	
Midland 37,241 56,1 Missaukee 7,391 6,6 Monroe 78,211 109,0 Montcalm 31,491 36,9 Montmorency 4,155 4,4 Muskegon 124,385 157,0 Newaygo 21,826 24,7	55	Menominee	25,233		4	3,8	Ŋ
Missaukee 7,391 6,6 Monroe 78,211 103,0 Montcalm 31,491 36,9 Montmorency 4,155 4,4 Muskegon 124,385 157,0 Newaygo 21,826 24,7	56	Midland	37,241	6.1	Ġ	ູເຄ	4
Monroe 78,211 108,0 Montcalm 31,491 36,9 Montmorency 4,155 4,4 Muskegon 124,385 157,0 Newaygo 21,826 24,7	57	Missaukee	7, 391	9,0		5,9	9
Montcalm 31,491 36,9 Montmorency 4,155 4,4 Muskegon 124,385 157,0 Newaygo 21,820 24,7	53	Monroe	78,211	03,0		5,9	ဏ
Montmorency 4,155 4,4 Muskegon 124,385 157,0 Newaygo 21,820 24,7	59	Montcalm	31,491	36,9	41,	45,0	43,5
Muskegon 124,385 157,0 Newaygo 21,826 24,7	င် ဝိ	Montmorency	4,155	4.4		<u>.</u>	C
Newaygo 21,826 24,7	19	Muskegon	124, 385	57,0		2,1	238,126
	62	Newaygo	21,826	4.7		0,8	30,657
Oakland 425,427 736,6	63	Cakland	42	9	1,413,403	•	2,094,147

and the second control of the second control

APPEIDIX A County Fopulation (3)

4	County	1951	1962	1970	1975	1900
99	Oceana	16.149	4			17.453
S	A DESCO	975.6	•			10,391
8	Cortoragos	10.20	•			ACC. TE
2		441 m/4	, c		•	7 6 6
0	D TOBUS O	130111	٠		•	79767
63 83	Oscoda	3,165	•			4,195
63	Otsego	6,546	•			10,600
20	Ottava	76,243				192,282
71	Presente lale	2				15,775
72	Roscomoon	.5	-			11,049
73	Sadinew	157,239	200,134	242,511	273,442	309, 317
74	St. Clair	93,159	C			159,168
73	St. Joseph	35,797	•	51,	57	63,761
92	Sanilac	3),998	ζ,			35,552
11	Schoolcraft	9,127	်က			8,573
73	Shiawassee	45,219	Š			73,839
79	Tuscola	39,763				56, 279
80	Van Buren	40,105	`'			77,003
13	Washtenaw	•		27.		`~
83	Flayne		~			• •
83	Mextord	•	18	S	មិ មិ	8.4
84	STATE TOTAL	6,516,900	8,265,900	10,683,800	13,016,600	16,435,400

APPENDIX 9

TIME SERIES MULTIPLE LINEAR REGRESSION EQUATION RESULTS

APPENDIX B

TIME SERIES MULTIPLE LIMEAR REGRESSION EQUATION RESULTS

# #	County	Inter- Correlation	7≈	æ	ď	20	Te b1	TB _{b2}
-1	Alcona	-070	.846	422,818	-7.642	-,015	-7.808	404
N	Alger	123	. 242	235,214	-2.662	.124	-2.041	1.406
m	Allegan	784	. 252	418,213	-1.240	013	-1,603	163
4	Alpena	431	.154	770.763	-6.705	•026	-1.873	CA
S	Antrim	712	.956	453,092	-7.134	.038	-10.030	N
Ø	Arenac	.713	.717	266.827	4.636	100	4.692	-
~	Baraga	.132	.854	406,336	-13,921	.038	-8,136	1.756
60	Barry	**988	.747	366.493	-	017	-1.147	-,134
61	Bay	637	.210	316,093	- 363	.074	-1.237	.633
10	Benzie	-,170	.811	510.058	-6.622	0	€6.6°9	806
11	Berries	** 813	.132	652,442	-, 356	-	-1.707	-1.897
12	Branch	₩,656	.569	474, 318	-2,266	060	-4.066	-2,696
13	Calhoun	**932	. 592	492,196	- 638		-1.479	.053
74	Cass	922	-203	358,782	-1,109	022	. 319	283
13	Charlevolr	-,217	.654	611,802	-6.176	024	-4.741	-, 511
10	Cheboygan	.158	.462	772,308	-7.525	*037	-3,383	.516
11	Chippens	.134	.237	394.171	-, 891	100	-2,321	.116
6	Clare	* 331	. 445	342,967	4.201	064	3,272	-1.414
13	Clinton.	606*-	800	356,001	-3.462	620	-2,415	.447
20	Crawford	** 387	.749	602,833	-12,134	057	-5,808	
77	Delta	-,243	.690	446.030	-2,177	•088	•	1.272
22	Dickinson	577	868.	697,333	-5.988	.071	-7.334	~
23	Eaton	952	.433	267,912	451	.014	723	7
24	Enmet	-,166	.957	540,850	-2.997	034	-15.621	-1.157
25	Genesee	-,140	.145	133,859	021	.142	157	1.918
26	Gladwin	.044	.737	148.045	2.222	.055	1,523	• 386
27	Gogebic	-,013	. 519	653,150	-3.051	160*-	-3,611	953
28	Grand Trave	erse616	.795	1,009,494	-6,601	122	-6,557	m
33	Gratiot	800	.832	505,845	-1.523	103	-6.516	-2.958
8	Hillsdale	** 8883	.610	206,674	665	.049	-1.072	0
Ħ	Houghton	160	.755	450,646	-1.107	6000	400 mm	
inini Mini	Ingham	473	351	335,850	2.806	190	1.550	1.343
•								

APPRIDIX B Time Series fultiple Linear Regression Equation Results (2)

Code	County	Inter- Correlation	-12 22	45	p ¹	_{D2}	$^{\mathrm{T3}}\mathbf{b_{1}}$	13b2
75	Ionia	168	EU3 .	53.1	-		5	C
, K.	IORGI	-174	600	10,01	C	C		•
9 8	Iron	442	220	426.700	100 E	173	2.207	1.573
37	Isabella	6 000	160	7		C	1.73	3
æ	Jackson	670	05g	73.7	•	O	4	17
8	Kalamazoo	-,775	613	26.7		0	7.67	-14
6	Salkasta	- CO2	697	4	-14.902		0	-
4	Kent	668	351	64.7	•	-	٠. ا	• 21
42	Keyeereu	040	.721	21,3	က		4C.	
4 3	Lake	610	.016	31.3		-	2.50	.75
44	Lapeer	733	្សសន	41.4	'n	C	.21	77
45	Lectona	400	000	15.0		~	63.	67.
46	Lenawea	-,713	.255	49.7	522		.23	<u>ာ</u>
47	Livingston	•	,		ı			
6.4	Luce	₩ 445	.912	4.16	.34	.043	C	13.
43	Nackingo	106	.040	9.73	6.69	P -4	4	₽ .034
S S	Maconb	. 507	161	5.61	0	0	5	3
21	Manistee	1 € €	.919	3. 34	643	C	1,4	10
52	"largietto	027	507	6.73	2.3	C	J. 55	7
10	"agon	532	.045	3.04	Ñ	O	7.00	40
54	flecoata	647	.796	2.57	.46	C	4.72	η IŲ
S S	Nenosatneo	-,719	606	9.23	.73	-	7.07	3
3 0	Midland	602.	.519	421.802		019	-2,979	423
57	Missariceo	* .1⊖3	629	8.49	3	~	2.93	4
60	tionroe	** 535	390	4.02	47	C	00	2
53	!lontcaln	- 503	12 0.	9.92	2.10	~	.73	\subset
2	Montmorancy	C71 Y	. 5 30	5.01	-15.669	C	3.77	S
ដ	Musice you	10 to	003	B.04	00.	C		(*) (*)
62	11 Gray you	S. 0.	.376	S.93	23	N	.23	.72
63	Oakland	197	-150	6.00	\$ (2	(53	.223
64	Oceana	931	.552	2.67	756.1-	. 922	1.15	Si
65	Organas	044	010	2.18	00	013	(3) (4)	ლ. ტ. (
9	Ontonadon	-, 301	613	5.87	2	98 C.	£.27	7

APPENDIX B Time Series Multiple Linear Regression Equation Remits (3)

poog#	County	Inter- Correlation	7 tot	ø	I _q	20	T P	T
67	Osceola	**806	.923	411.815	-6.372	.023		5.03
63	Oscoda	ma 727	.463	465.52	•	030	2,659	
69	Otsego	*083	.713	1,822,511	-60.222	-045		1.261
2	Ottawa	899	.077	91.690		017		
7	Presque Isl	.e-s 327	.362	490.072	00	500	-2.253	05.00
72	Roscommon	*295	-016	903,326	0	600		409
73	Saginan	** 516	.372	331,014		.043	[1.257
14	St.Clair	** 391	043	229,510		107		816
75	St.Joseph	871	.3717	452,073	-1.163	.041	2,005	669
20	Sanilac	- 5550	.866	271,999		400	5.896	1.856
11	Schoolersft	1 .297	\$000°	525,571	-4.913	*CO-	-2.509	.063
9	Shiawassee	*794	-163	256.467	.037	033	.124	2858
79	Tuecola	1.862	. 593	441,473		-053	-2.351	000
8	Van Buren	,071	.722	1,143,016	-9.319	.117	4.306	
2	Washtenaw	-822	. 5 69	617,730		070	3.194	
20	Hayne	-,146	293	122,737		133	1.233	2.300
හ	Wenford	** 279	.929	1,523,607	-23,372	100		
84	Michigan	166	.053	250,515	*005	.055	.371	1.435

APPENDIX C

CHOSS SECTION MULTIPLE LINEAR REDRESSION EQUATION RESULTS

	1
	<i>i</i>

APPEIDIX C

CROSS SECTION MULTIPLE LINEAR RECRESSION ECHATION RESULTS

Year	Inter- correlation	R2	•	Įq	P ₂	Tub	TB _{D2}
1951	689	•457	46.073	•003	.133	.443	%. 8
1952	• 379	•130	201,155	•014	.072	1,399	2,722
1953	650	.157	196.875	.011	160	.974	3,144
1954	450	105	230,153	-015	190	1.197	2.284
1955	402	.111	221,95\$	-013	900	1.037	2,430
1956	.437	.107	236.462	•014	•078	1.007	2, 387
1957	.432	.073	253,007	-015	•059	1,118	1.809
1959	430	60°	314,419	•019	900*	1,353	•168
1959	150 th •	-003	341,662	•019	011	1,295	- 331
1960	. 45 5 5	-014	333,512	•014	£00°	c77.	.075
1961	9 000	- 007	310,633	-015	•012	•913	. 331
1962	202	-011	350,179	•016	0.030	698	867

APPEIDIX D

SIAPLE CURVILIDEAR REDRESSION EQUATION RESULTS

APPEIDIX D

STAPLE CURVILINGAR RECRESSION ECUATION RESILTS

County Code	Variable*	12 2	•	L ^D	2 q	H.	TB _{b2}
1-63	Food Price Index Consumer Price Index	.956	418,303	-11.734	•112 •072	-2.004	2,165
e -4	401	. 597 6 38 7 48	-30,784,460,00 703,63 23,666,17	1,081,709,33 -23,23 -841,07	22.05.7.	1.7618 -2.9087 -3.1426	-1.6559 2.8105 3.2758
	461	.852 .793 .276	-51,265,560,00 -394,96 3,220,13	1,851,396,25 1 16,79 133,97	15,660,29 •16 •96	-3.1426 1.7411 .3434	3,2758 -1,9137 -2018
m	401	.916 .931	135,450,904,00 550,60 8,506,03	4,768,894,99 13,21 -301,10	-36,620,73 -19 3.03	2.2176 -1.4129 -2.3702	-1.9251 1.1560 2.7432
•	4 00	964 417 559	-01,044,000,00 260,47 25,402,86	2,690,559,00 - 6,20 - -875,14	-18,806,13 -05 7,92	2.2382 -9859 -2.9964	-1.7760 .9045 3.0665
ស	401-	.978 .953	-2,494,544,00 273,05 12,924,87	65,806.75 - 5.10	684,33 03 4,53	-1.7296 -2.2959	. 3241 1. 3271 2. 51 34
v	4 0 r	977 969 620	4,853,576,00 203,63 11,857,60	-182,506,50 -0.21 -116,33	2,850,19 .09 4,00	7641 9520 -1.3272	1.3489 1.1837 1.4419
•	401	918 834 239	14,191,976,00 91,53 23,520,96	-404,919,00 -2,19 -995,12	4,959.14 .01 8,99	-2.1867 .9668 -1.8418	2.4768 .7175 1.8798

*Variable: 4 = Simple projection of gross retail food sales 6 = Number of food stores
7 = Per Capita disposable income

Code #	Variable	₹ 2	85	P ₁	2 q	E C	Teb 2
6	40	961	-4,122,464.09 419.01 -145.42	50, 478, 00 -10, 09 -8, 74	3,110,20 506 604	.0559 -1.4043	.3896 .9944 .6233
ø	4 0 r	939	-241,997,056,00 1,035,65 1,072,53	8,644,640,00 -23,42 -36,46	-64,924.31 .16	2,3199 -1,4127 -,2596	-1.9696 1.1164 .4979
10	♥ ♥►	957 969 436	-23,179,744,07 30,27 37,973,93	835,631,50 1,02 -1,330,46	-6,617.33 -32 11.97	3.9333	-3.5210 8776 2.7743
11	491	967 992 953	-215,834,368,00 940,41 13,372,24	7,772,672.00 -15.83 -403.73	-51,066,31 07 4,53	1.8906 -2.0831 -4.0187	-1.3967 1.0661 4.4347
12	406	903 972 945	-27,972,273,03 327,03 23,337,13	1,003,184,00 -7,71 -1,013,42	-7,014,41 .05	1.0253 -1.1671 -5.7430	7651 -9321 6.0824
m ri	4 0 L	937 967 967	-74,036,272,00 924,50 -539,43	2,700,440,00 -19,10	0,447.47	.5035 -1.5776 .2152	-1742 1-0913 -2634
14	401	.918 .870 .973	-60,637,952,00 226,03 -4,588,43	2,177,043,00 -4,59 153,42	-16,440,70 -03 -05	2.0015	-1.7095 1.3213 8934
15	401	945 940 578	-67, 312, 358,00 236,94 23,814,99	2,404,120,00 -5,61 -1,019,17	-19,672,00 -04 9,32	4.7112 -1.3743 -2.5350	4.3579 1.0175 2.6215
16	401	. 856 . 823 . 319	-91,843,272,00 379,41 35,096,68	3,172,277,50 -10,41 -1,263,39	-25,137,02 03	2.0621 -1.3157 -2.1995	-1.3471 1.1180 2.2399

20	•
	•

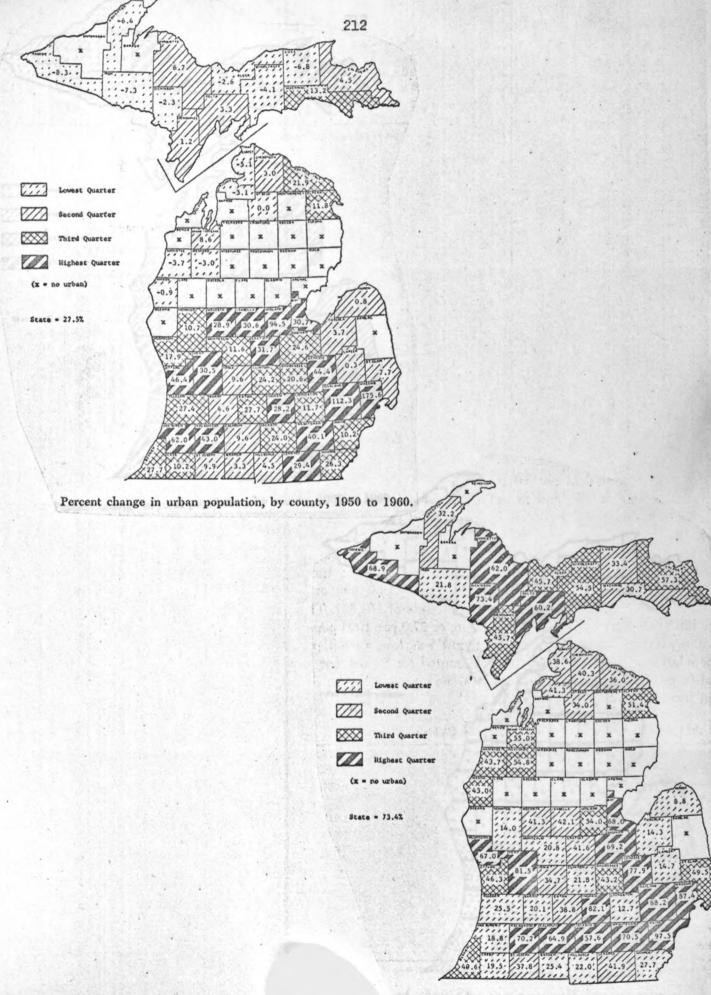
Code	variable	7 2	æ	${\bf I_Q}$	2 q	E C	TB _{D2}
17	4 7	.963 .852	-136,660,440.00 -96.74 12,478.16	4,885,194,00 10,56	-39,652,74 -13 3,53	5, 3075 , 5046 -,9594	-4.8699 -7222 1.0107
1 0	401	.033	-13,822,896.00 261.51 8,274.03	437,044,50 -9.14 -205,32	-2,577,75 .09 2,50	1.3126 9734 5074	1.0959 5390
19	401		7,231,104,00 200,32 -4,019,10	-445,837,00 -3,69 135,52	8.167.33 .02 72	4187 -1.2444 -7223	.8659 .7501 4337
R	401	9000 4000 6000	2,257,712,00 93,93 27,4°9,32	-94,863.53 -8.50 -971.31	1, 654, 15 02 03 03	3065 -4.9653 -5.6273	. 6633 3.7920 5.8194
ı:	401	.652 .964 .723	-72,637,434.00 430.05 17,594,13	-2,553,839,03 -9.21 -531,12	20,600,20 05 05 5,40	-1.1709 -1.3950 -2.7311	203 EEE6.
22	401	. 830 . 943 . 053	-10,063,552,00 274,92 12,916,30	637,453.00 -5.61 -449.22	3, 341, 32 04 4, 31	. 5435 -1.4062 -2.5433	2986 1.0411 2.7553
23	401-	. 997 960	221.04 3, 094.19	1,49	1,92	6903 -1.0303	-8340 1-4713
24	4 10 L	. 975 . 333	156.71	2.44	\$00° \$00° \$00°	.2333 -1.6923	6479 1.7506
25	4 0 r	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2,049,54 -25,110,95	73,933,896,03 -36,29 923,36	C48,707,75 .16 -7.03	4.3091 -2.2342 2.6330	-4.0793 1.0323 -2.5425

opoge #	Variable	ia G	Ø	P _I	P2	Ig _{EL}	TB _{b2}
26	404	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	-21, 317, 840,00 244,64 4,428,77	715,356,00 -9,74 -165,35	-4,334,45 11 1,06	1.6246 8229 -1.0299	-1.2539 1.0341 1.2113
27	401	.994 .994	-145,318,209,00 313,62 4,147,52	5, 363,661,00 -6,51 -123,15	-45,981.01 .04 1,28	4.5965 -2.0853 4440	-4.4544 1.3747 .5198
2 8	40 F	948 002 934	-133,553,535,00 173,89 37,233,01	4,641,184.00 -1,99 -1,325,99	-35,655,64 .00 12,19	2.2747 -0000 -7.1061	-2.4955 0000 7.3035
&	491	9000 8000 8000	-73,292,16/1,00 234,46 23,733,13	2,607,375,00 -2,57 -739,53	-19,617,11 52 6,93	3.2904 -1.1439 -4.8093	-2.7 93 4 - 9666 5. 1323
£	4 9 ~	.923 .394 .981	85,644,430,000 441,14 8,350,32	-3,016,919.00 -11.60 -327,33	29,155,72	-3.2277 1.2046 -3.5319	3,5261 .9429 4,1669
Ħ	401	. 759 . 997 . 278	-77,946 ,400,00 532,3 25,851,71	2,977,754.00 -10,19	-23,987.85 -03 0.27	1.7564 -2.5979 -1.5641	-1.5994 -9556 1.6160
32	401	939 654 531	-108,447,104.00 413.01 9,350.41	3,339,273,00 -16,04 -318,78	-30,400,77 .15 3,08	8.2512 33/9 -1.0340	-7.4095 -9455 1.1521
33	4 9 ~	9000 144	-519,491,340 .01 1,215,99 -11,537	18,515,323.00 -24.52 437,36	-137,645,75 .15 -2,43	3.9166 -1.4349 1.5132	-3.2914 .9632 -1.3016
34	401	.977 .923	-82,123,372,00 534,62 11,898,07	2,915,857,00 -13,71 -433,63	-21,994,54 119 4,32	3.5013	-3,3095 1,1608 5,7614

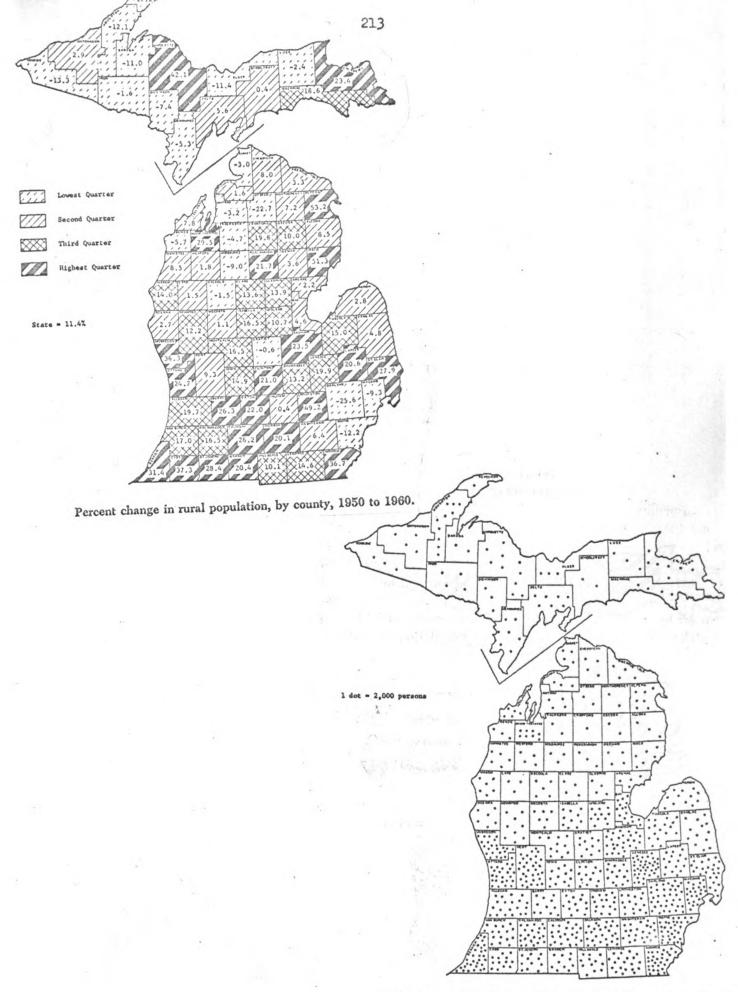
Code	Variable	[™] 2	•	ď	2 q	Tab1	133.p.2
35	6	960 081 503	-6,403,323,00 167,84 24,791,92	9,525,00 -3,39 -873,25	3,820,05 0.2 0,05	.0095 -1.3301 -2.2253	.4297 1.0873 2.3210
36	401	737 036 625	37,390,720,00 323,22 5,700,73	1,434,691,00 -9,82 -190,60	-12,180,50 -09 1,99	2.2858 -9324 -6709	-2.1199 .9716 .7973
37	401	979 623 000	-293, 254,00 255,50 6,635,48	-139,507,00 -0,14	5, 201, 55 0.0 2, 41	-1558 -9789 -1-2894	.6692 1.0976 1.5320
33	401	914	131,306,112,00 525,67 19,919,79		40, 362, 53 1, 10 6, 54	-0912 -0043 -4.4657	1.2341 9105 4.7656
33	40r	9000° 9000° 923	-225,241,355,00 807,69 11,457,97	6,963,690,00 -16,10	-33, 397, 83	1.0943 -1.5335 -2.2836	1.0573 2.5092
6	401	0 0 0 0 0 0 0 0 0 0 0 0	-15,417, 742,00 110,14 14,058,85	556,192,63 -2,53 -542,43	-4, 59°, 05 02 5, 27	3.1574 -2.8323 -2.2714	-2.9552 2.3217 2.403
41	401	922	-937,305,003,01 2,527,37 -9,477,63	33, 401, 163, 30 -67, 89	-254,702.13 -2153	4.7102 -1.1707 1.9704	-4.0559 1.0269 -1.6391
42	401	750 700 1100	-13,997,236,00 43,30 2,101,20	496, 214, 50 60 60	-4.110.02 00 1.19	2,7059 -,6437 -,6985	-2.531 -1523 1.0930
4 .3	491	2 6 C 2 8 C 4 8 C	-10,316,240,00 295,80 -525,04	349, 312,0) -8,62	-2,407.03 -07 -45	1.52.5 -1.3051 .0026	-1,1595 1,1879 1,993

•pog	Variablo	7 2 3	•	Į.	t S	Î.	$\mathbf{T}_{\mathbf{D_2}}$
e E	461	0 3 10 10 10 10 10 10 10 10 10 10 10 10 10	-46,426,496,00 -11,35	1,594,279,00 6,64 333,06	-10,990,04 -10	1.8189 6630 6630	-1,4174 -1,0823 1,1175
3	400	939 693 643	• •	993,856,50	-6,502,15 -02 -02		
s.	4 01~	9 8 0 6 0 0 6 0 0	32.0 199	-970, 229, 00 -3, 51 398, 51	10,657,15	-1.4109 -2.4965 2.1249	1.7593
ତ କ	491	909		1,465,747,00 3,12 -152,10	-5,100.77 -00 1.1		-2859 -9567
57	401	315 308 733	-19,472,756,00 151,64 74,16	663, 304, 33	-5,651,93 -04	2.57)1 -1.4173 -0031	-2,3308 1,3456
8 0	4.06	00.00 00.00 753	-215,791,243,00 693,31 -4,866,19	7, 999, (14,00 -11,69 194,52	-64,793.33	5.2513	-4.0089 1.0582 -7525
6 9	497	.957 .843	-84,049,735,00 4.4,80 -1,496,13	2,071,005.00 -12.23 61.29	-20, 204.17 .09	2.0890 -1.1963	-1.6092 -9574 -0962
63	496	0.00 0.00 0.00 0.00	-13,142,736,00 14,11 16,006,82	634,472,77 .04 -552,12	-5,027,23 -01 5,00	2.12.1 6453 - 8498	-1.9045 -1.1821 -8334
ម	4 % L	979 979	-29,159,704,01 1,804,25 11,856,45	10,672,804,00 -30,82 -394,61	-73,194,03 -22 3,70	2.4273 -1.6125 -2.0372	-2.0374 1.0021 2.2473

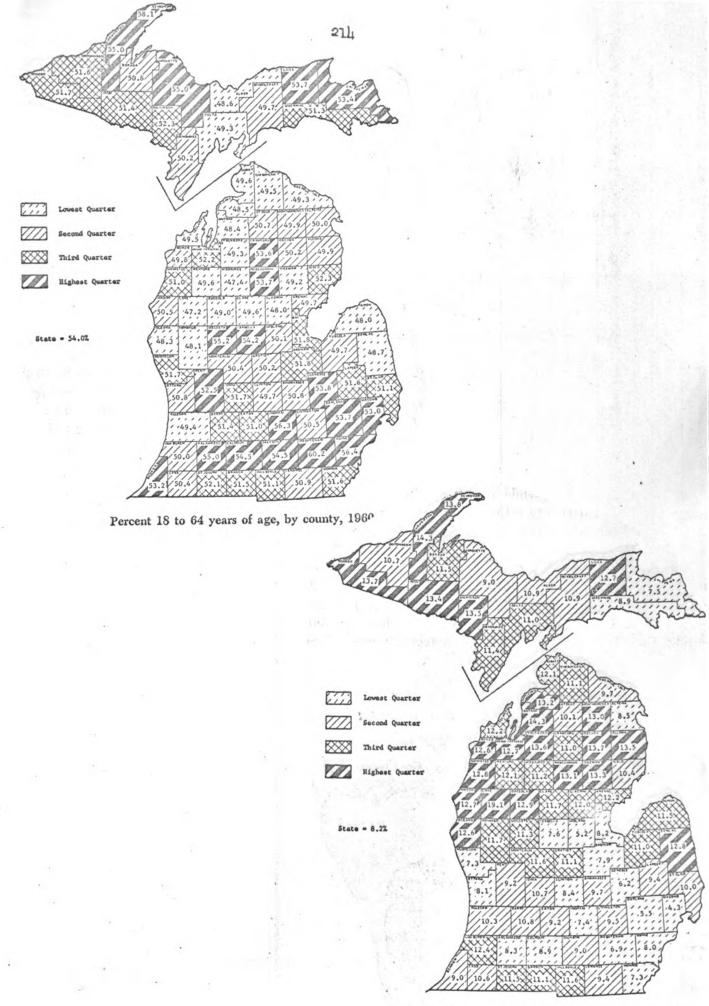
epoo	Variable	12 22	æ	a ^{rt}	² q	${\rm ^{TB}_{b_1}}$	$^{\mathrm{TB}}_{2}$
*	40 ~	.933 .911	-93,812,256,00 597,13 25,634,53	3,191,049,00 -12,01	-23,592,53 -03 -03 -03 -03	2.0329 -1.3459 -4.5203	-1.6998 1.0539 4.7921
ਨ ਇ	4 0 L	440 500 500 500	-35,022,976,00 59,01 -21,309,07	1,275,579,25 -53 751,93	-10,520,07 -0,530	4.0556 7000 4.0206	-4.1884 -0316 -4.5963
. 9	40r	838 878 808	-62,944,334,00 630,30 -12,205,20	2,654,078,00 -14,09 443,10	-19,250,75 -3.13	1.1432 -1.5376 2.7612	-,9353 ,9735 -2,5059
47	401	974	-114,037,712,00 340,50 -4,137,70	3,833,819,00 - 37 160,40	-20, 332, 96 	3.73.0 -1.3315 1.2304	-3,1875 1,0103 -,9460
φ *	6 b	717. 099 709	-13,656,352,00 50,20 64,972,96	576,872,00 .13	60.000 F	1.0972 2153 -6.5721	- 9546 -2.5093 6.7134
4 9	40r	100 100 100 100 100 100 100 100 100 100	-172,557,072,09 212,67 33,559,65	6,162,097,00 -5,30 -1,346,20	-53,005,73 ,04 12,10	7.2953 -1.202 -2.3792	-7.1045 1.1407 2.4140
50	407	906. 906. 773	-526, 392, 576,00 241,36 -8,663,99	12,706,464.03 .41 324.21	-14,625.60 .05 .2.67	.0055 .0031 1.1945	10.9413 10.9413
51	491	.947 .993 .755	-35,620,203,00 27,40 32,864,79	703 44 156	200 ° 000 °	1.6535 2.743 -3.9359	-1,275 -5,026 -105
52	ব া–	ଜ ଜନ ଓ ଜନ ଓ ଜନ	-51, 340, 864,00 20, 30 11, 244,50	1,795,212.00	-9, 313,16	-2.25:1 -1.57:1	- 4021 1-7157 1-99908

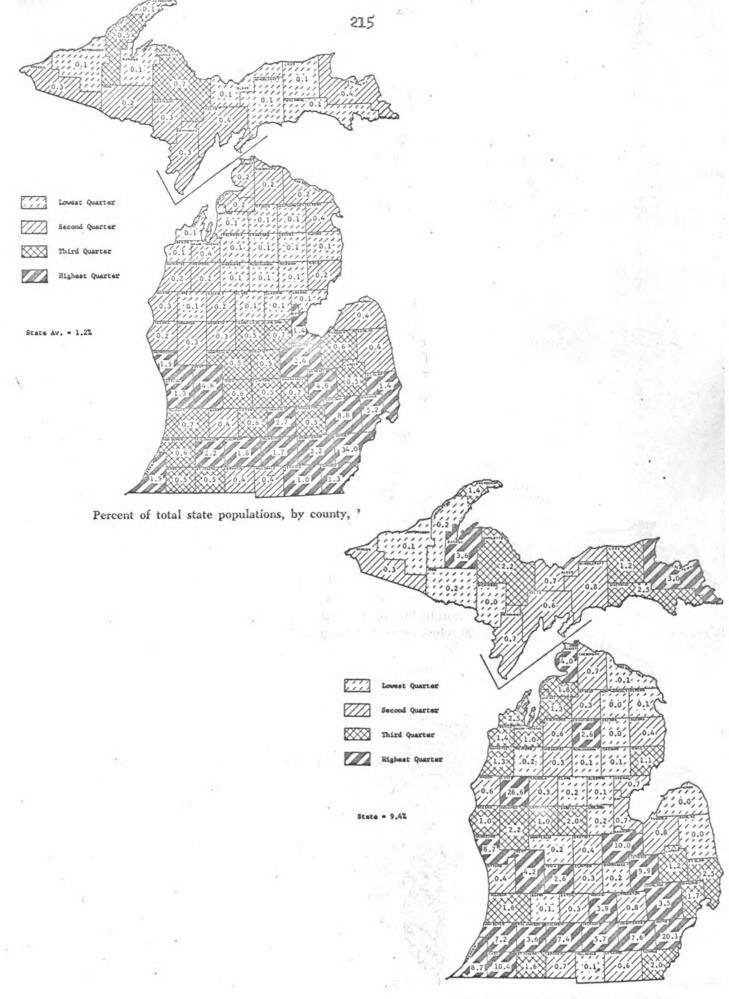

Code	Veriable	7×	4	ų.	P2	Te.	TB _D 2
62	401	• • • • • • • • • • • • • • • • • • •	-44,489,536.00 343.92 -4,057,59	1, 509, 409,00 -0,50 135,31	-10,595.07 -03	3.2758 -1.0357 1.1323	-2.5993 9633 7312
63	491	994 2°7 834	2, 393, 50 5, 659,95	ଦ୍ରଧ	567,772,00 .53 2,47	94 97 71	808
4	401	9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	11,251,216,00 +27,35 13,657,51	-252, 596, 57 3,93 -500,16	4, 370, 52 1,05 4,00	3053 -1.5974	1.1291 8406 3.9374
sn W	491	.931 .213	8,993,503,00 122,44 39,120,94	-360,197,00 .52 -1,368,32	4,707.15 04 12,25	7689 -1203 -2.0365	1.1358 -1.0493 2.0617
99	401	.944 .757 .776	-43,932,904.00 192.46 12,163.71	1,707,756.75 -5,31 -434,37	-13,3C7,57 -0.4 -4.2)	4.3091 -1.3323 -1.7473	-3.9555 & 1.2242 & 1.9117
67	497	.932 .932	4,878,664,00 156,43 15,595,32	-205,545,00 -3,13 -565,31	3,184.57 .02 5,43	4771 -1.7795 -3.4595	.8356 1.1102 3.7506
89	401	914 935 931	3, 600, 740,00 -45,75 35, 640,49	-147,154,25 3,02 -1,236,85	1,322,59 -03 11,83	4763 .8273 -3.9459	-1.0773 -1.0773
69	491	927 957	-39,619,323,00 62,63 42,217,25	1,385,747,00 - -1,27	-10,904.73 .01 12.24	2.7480 -3.4634 -2.8616	-2.4445 5.0439 2.8954
70	491	. 372 . 327 . 0 30	-146,663,690,00 704,73 15,804,86	4,739,524,00 - -13,32 -543,66	-29, 903, 59 .19 5, 20	1.7329 9234 -4.3253	-1.2543 .9366 4.6306

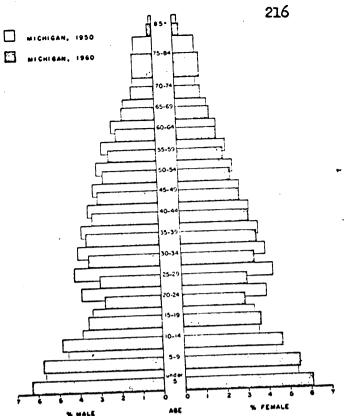
Code	Variable	22	•	a ^r	2	ੂੰ ਹੁੰ	Teb2
n	❤ છ	953	-20,547,152,00 188,75	736,237,00	-5, 258, 93	2.2359 -1.0325	-1.8089 .9597
72	L 40F		27,290.21 -61,229,049.00 220.97	E 260	9.11 -17,920,71	0 00 V	6.0559 -5.4326 -4239
73	401	, 4 mm	443 837 053	603.00 23.63	• (•	9.00 9.00 9.00	1.0343 -8552
74	491	.961 .999 .742	-417,462,655.01 837.25 -663.17	287 787	-124,175,53 -72 -13	5.6411 -5.2259 -2568	-5.2213 -9521 -1102
75	4 9 7	9.00 9.00 9.041	-11,309,563.07 305.11 10,023.73	432,723.01 -5.09 -332.63	437.14 .02 -13	.4515 -6.5221 -2.5433	.0516 2.7250 2.9011 5
76	4 .5 L	.053 .973 .648	-26,037,392,00 -195,03 2,447,23	359,810,07 13,94 -32,04	-4, 355, 26 -16 1.03	. 6337 1.5334 - 2639	5235 -2.0933 3909
77	401	752	-53,935,072,01 153.81 25,662.41	1,955,610,00 -3,51 -876,62	-10,553,35 -02 7,32	2.9547 -2.2233 -1.6357	-2.8145 1.3515 1.6433
78	40 r	701 701 800	-53,431,104,00 474,32 3,836,61	1,963,096,00 -15,62 -122,61	-12,455.06 .15 1.44	1,6024 -8395 -7843	-1.1510 -9739 1.0405
79	~⊙►	973 973 893	-53,133,372.07 118.87 11,472.22	2,069,674.30 2.71 -435.79	-14,751,57 -05 4,00	2.7371 4238 -2.1822	-2.2023 -9559 2.4323

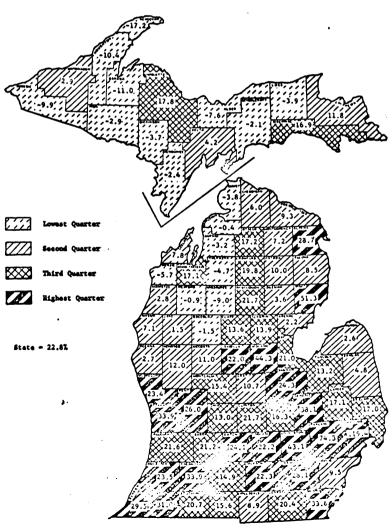

Code	Varieble	H.2	¢	I _Q	² q	T. P.	Tib 2
80	401	986 330 989	-34, 223, 360,00 2 ⁵⁰ ,73 8, 316,32	970,066,09 -4,91	-1,053,02 -24 2,34	8339 -1.0072 6959	-1023 9360 1.0320
81	40 r	100 400 400	-245,792,512,70 644,91 21,743,41	6,154,712,00 -10,43	-47,230,75 .04 7,59	1.2000 -2.0972 -2.6626	8499 -9542 2.0219
83	401	0 0 0 0 0 4 0 0 0	-13,042,51 21,504,53 -15,675,96	400.84 -367.61 -702.70	12.42.21.55.92	6,6537 -2,4558 2,3164	-6.4513 1.0684 -2.2043
8	4°C	600° 1	-11,216,975,07 73,13 19,073,75	403,027,09 -53	-1,509,24 -03	.0000 -2.6410	3318 -0000 2.7603
State	401	600° 710° 800°	6,723,224,0) -13,835,55 249,16	-132,734,03 405,23	2,537,45	-2.1576 -9762 -1.7624	4.6473 8509 2.2328

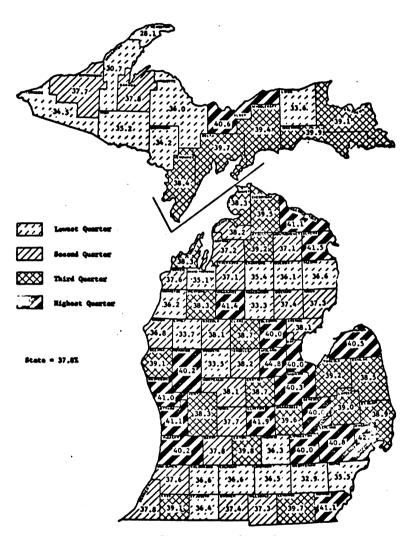
apprilia e


MICHIGAN POPULATION TREMOS

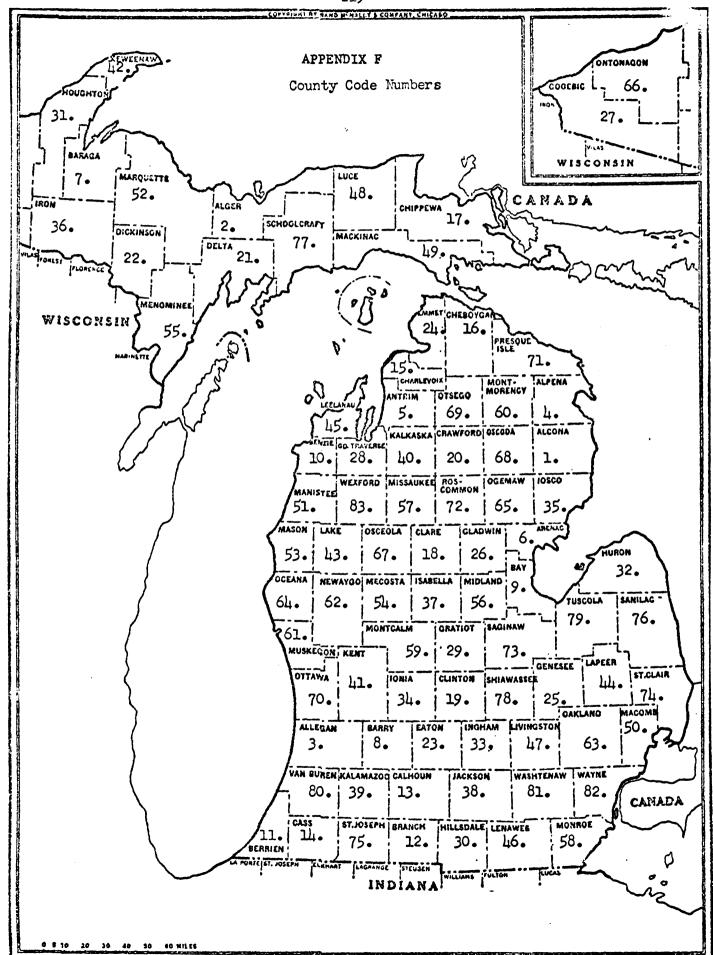

Percent of total population urban, by county, 1960.


Distribution of rural population outside places of 1000 to 25


Persont 65 years of age and aver by county 1000


Percent nonwhites, by county, 1960,

Age-sex pyramid for Michigan, 1950 and 1960.



Percent change in total population, by county, 1950 to $19\,\hat{o}\hat{o}.$

Percent under 18 years of age, by county, 1960.

APPENDIX F MICHIGAN COUNTY CODE NUMBERS

ROOM USE ONLY

.....