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ABSTRACT

ESSAYS ON AVERAGE TREATMENT EFFECTS

By

Myounggin Keay

This dissertation consists of three essays on estimating average treatment effects (ATE)

under counterfactual framework. In Chapter 1, I compare the performances of single-step and

two-step estimators for estimating the ATE in a linear model when treatment assignment

depends on unobservables. Recent advances in computing technology have enabled the

extensive use of single-step estimators, such as Limited Information Maximum Likelihood

(LIML), instead of 2SLS. In this study I make clear that there are two kinds of single-

step estimators for estimating ATE. LIML-type estimator is the one which uses the control

function method, on which the two-step method is also based, whereas FIML-type estimator

directly uses the joint distribution of underlying errors or endogenous variables. I find that

the relative asymptotic efficiency between two-step Heckit and single-step LIML cannot be

determined in general. However, the relative efficiency of single-step LIML with respect to

two-step Heckit is decreasing as the sample size increases, implying that if the asymptotic

variances are same, then single-step LIML is less efficient in finite samples. On the other

hand the FIML estimator tends to have very small finite sample variances, but it is less

robust to misspecification. Newey-type series estimators are also considered for correcting

the misspecification of error distributions, but it turned out that cost is greater than the

benefit. Under weak many instrument cases, the advantage of LIML in terms of median bias

was not as strong as in the linear models.

Chapter 2 explores the ATE estimator proposed by Terza (2009)’s Nonlinear Full En-



dogenous Treatment (NFES) model, where count dependent and binary treatment variables

are present. When the true conditional mean function takes the form of exponential func-

tion, the Heckit-type linear method, while it can be a good approximation, is inconsistent

for the true ATE since it is derived under the assumption of linear conditional mean. The

asymptotic distribution of nonlinear estimators have additional terms in asymptotic variance

of which magnitudes depend on population coefficient. Due to their presence, the asymptotic

variances of nonlinear estimators can be either larger or smaller than the linear counterparts

depending on the values of coefficients. It turns out that they tend to have small variances

when the variance of conditional ATE are small. And Monte Carlo experiments show that

they are fairly robust to various distributional misspecifications. In summary, nonlinear ATE

estimators are robust and consistent with small variance when the treatment effects are not

substantially different across individuals. An application to Botswana fertility is given where

the treatment is seven years of education with the dependent variable fertility.

Chapter 3 presents a method for estimating ATE for the case that the dependent variable

is count variable and the coefficients of covariates are random variables which are correlated

with the binary treatment variable. The identifying assumptions are given and the esti-

mating equation based on them is derived. Simulations show that, in large samples, it has

usually smaller biases and larger variances than the linear methods have. An application on

Botswana fertility is given with same variables as in Chapter 2.
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Chapter 1

Alternative Estimators of Average

Treatment Effect under

Misspecification and Weak

Instrumental Variables

1.1 Introduction

Although single-step estimators such as LIML has long been recognized as a good alterna-

tive to the traditional 2SLS (Anderson et al., 1982), the computational burden has prevented

them from being widely used in applied researches. Rather, people have preferred two-step

methods or, for some nonlinear models, have sought to find appropriate two-step estima-

tion procedure in order to circumvent the computational difficulty (Greene, 1998; Maddala,

1986). Nevertheless recent new findings about LIML along with the advances in computing

technology have reinvigorated researchers’ interest on those single-step estimators. Since

the controversial Angrist and Kruger (1991), we are now more familiar to the properties or

advantages of LIML estimators especially when there are many weak instrumental variables

(Bekker, 1994; Staiger-Stock, 1997; Flores-Lagunes, 2007). Extending our attention to the
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broad class of single-step estimators to which LIML belongs, we see that there are some

more advantages of single-step estimators other than in weak many IV’s: First, it reduces

the sampling error by skipping the first stage. Second, as in bivariate probit models, there

are some cases where there is no proper consistent two-step method (Wooldridge, 2010);

single-step estimator usually exists under some appropriate distributional assumptions.

One of the leading examples of single-step estimator is LIML in linear simultaneous

models. In LIML, after reduced form transformation, both the structural equation and linear

projection of endogenous explanatory variable are jointly estimated by maximum likelihood

method . Although 2SLS and LIML give different estimates, they can be interpreted as

two different opeartional version of same control function (CF) method; LIML is identical

to the single-step CF method, while 2SLS is to the two-step CF in linear models. If CF

method is available for a particular nonlinear model, then each single-step and two-step CF

estimating procedure can be understood as a generalized LIML and 2SLS respectively in

such nonlinear models (Wooldridge, 2007). In line with this idea, LIML can be viewed as

a joint ML estimation method based on the CF approach; such approach provides greater

generality since LIML can then be applied to the nonlinear models as well as the usual linear

simultaneous equations models.

In linear simultaneous models LIML and FIML are mechnically the same; the only dif-

ference is that FIML is a term used when the whole equations in the system are under

consideration, whereas LIML is used for a single equation in the system (Hayashi, 2000).

In the context of endogenous switching regression, FIML indicates an estimation method

through direct modeling of endogenous variables without resorting to control functions (Mad-

dala, 1986). If the selection equation is viewed as a structural equation, such method can be

called FIML because the absence of selection variable in the other structural equations makes

2



the reduced form transformation unnecessary. Therefore there are essentially two kinds of

single-step estimators at hand, which are the ones with and without control function in the

estimating equation. In this article, the former will be called LIML and the later FIML.

Even though LIML was fully robust in linear models, one of the shortcomings of the

single-step estimators in nonlinear models is that they usually require strong distributional

assumptions for constructing the likelihood functions. They can be inefficient or even in-

consistent unless the distributions are correctly specified. In order to address this problem,

one can also consider some distribution-free methods such as nonparametric or semipara-

metric approaches. The objective of this article is to propose those various estimators and

then to investigate their performances for the estimation of average treatment effect (ATE)

under counterfactual settings. One of the most common situations requiring two-step esti-

mation might be the case where an explanatory variable is endogenous. In such a situation,

a nonlinearity can easily be brought by assuming a binary endogenous explanatory variable.

Therefore the discussion starts from estimating ATE in endogenous switching regression

models with linear structural equations.1 As it will be clearer later, the partial effects of

binary endogenous variables is a special case of ATE under some parameter restrictions.

Although Angrist (2001) argues that the linear model is sufficiently fine for the partial effect

estimation, this article attempts to justify the use of nonlinear models, which will make the

whole argument more meaningful.

Section 2 describes the model under consideration. Here the relation between the partial

effects of binary endogenous variable and the ATE under counterfactual setting will be

clarified. Section 3 will provide a detailed description of those four estimators i.e. two-

1 The case of nonlinear structural model is the topic of the second chapter of this disser-
tation.
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step Heckit, single-step (Q)LIML, single-step (Q)FIML and Series estimators. Section 4

derives the asymptotic distributions of two-step and single-step estimators with the same

CF estimating equation. As it turned out, the asymptotic variance of one estimator is not

always greater or smaller than that of the other. Threfore the asymptotic analysis does not

provide any guideline as to which estimator is more efficient. Section 5 briefly describes the

data generating process used for the simulation and Section 6 discusses the results. The

focus of the analysis will be on the comparison between single-step and two-step estimators

mainly in terms of consistency and efficiency.

1.2 Model

As it was briefly discussed in introduction, the main objective of this paper is to compare the

estimators for the partial effects of binary variables or ATEs depending on the model specifi-

cations. Suppose that we are given a model with a binary endogenous variable. Although the

partial effect can easily be estimated given a set of proper instrumental variables, the main

focus here is how to use the fact that the underlying endogenous variable is binary. Although

it is perfectly legitimate to use usual IV procedure without paying too much attention to the

binary nature of the variable, I attempt to make use of such information in order to make

a better estimation. Therefore the discussion starts from the generic problem of estimating

partial effect of an endogenous explanatory variable. As it will be clarified below, this issue

can obtain generality by extending it to the topic of ATE. Below it will be shown that they

use common estimating equation although there are slight differences between the ATE and

the partial effects of binary endogenous explanatory variable. To state more properly it will

be shown that estimating the partial effects of binary variables is a special case of estimating

4



the ATE.

Consider a model as below.

y = µ+ τw + βx+ u

w = zδ + ξ,

(1.1)

In the above equations, w is the binary endogenous explanatory variable where τ is the

partial effect, x is exogenous covariates, and z is a set of all exogenous variables containing

x which are uncorrelated with u. In order for z to be proper IV, it must be δ ̸= 0. There

is absolutely no problem in estimating the τ by the usual IV procedure. If the endogeneity

of w is interpreted as an existence of unobserved variables c included in the error, then the

partial effect τ can be written as E(y|x, c, w = 1)− E(y|x, c, w = 0).

Now we want to estimate better by somehow using the additional information, i.e. the

binary nature of w. One natural possibility is to use any binary choice model for the reduced

form equation instead of linear probability model. A clear account of ATE is warranted at

this point before a further discussion. Suppose a counterfactual setting with a binary choice

variable; there exist two regimes for each unit of observation. Let the response variable only

in regime one is observed under w = 1 while that in regime zero is observed under w = 0.

The exogenous variables x are always observed. The value of w is affected by the values of

response variables for each regime, which creates correlation between response variables in

each regime and w. Thus the binary variable w gets an endogeneity, and the model under

such environment is sometimes called endogenous switching regression. A classic example

of such model is found in job training program analysis. In such model the binary variable

w denotes whether an individual takes the program or not, and the response variables y1

and y0 denote the wages with and without participation in the program (for recent survey
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on program evaluation, see Imbens and Wooldridge (2009)). It is not hard to imagine

those two regimes for each particular individual although those two response variables are

not observed in the real world at the same time; in line with such an idea the model is

called counterfactual (Rubin, 1974). For a particular individual the difference between y1

and y0 is called the treatment effect. The expectation of the treatment effects over the

whole population is called the average treatment effect, i.e. E(y1 − y0). Thus it is obvious

that this ATE is not generally same as the partial effect of the binary treatment variable

E(y|x, c, w = 1)− E(y|x, c, w = 0).

An estimable equation for estimating the ATE is derived below. Since there are two

regimes,

y0 = µ0 + xβ0 + u0

y1 = µ1 + xβ1 + u1.

(1.2)

In the above equations, the relation between x and y are assumed to be linear. For now let

us use another assumption that β0 = β1 and u0 = u1, which implies that the treatment has

an intercept shifting effect only. In other words, the treatment shifts the response variable

by exactly same magnitude for all the individuals in population. In addition to that let

E(x) = 0. This is without loss of generality because the intercept can be adjusted so that

E(x) = 0 be true. By those manipulations, it is easy to see that the ATE can be expressed

as

E(y1 − y0) = µ1 − µ0

In equations (1.2) y1 is denoted as the response variable when w = 1 while y0 is when w = 0.

In fact the observable response variable is y0 when w = 0 and so on. Let us denote the

6



observed response variable as y, then

y = y0 + (y1 − y0)w

Therefore using the above equation, the equations (1.2) can be incorporated into a single

equation.

y = µ0 + (µ1 − µ0)w + βx+ u (1.3)

Thus the partial effect of w becomes the ATE under the restriction above. Notice that the

equation (1.3) is same as the equation (1.1). Remembering that the restrictions β0 = β1

and u0 = u1 were put in equation (1.2) to obtain equation (1.3), we can easily see that the

equation (1.1) is just a special case of those models with counterfactual settings. Although

we started from a special case of binary endogenous explanatory variable in the beginning,

it will be discussed under the broad settings of ATEs for the rest of this article.

Returning to the equation (1.2), let us consider how to identify the ATE in a model

without any restrictions by using the fact that the treatment is binary. To do that there has

to be at least more than one IV for w. Rewriting the equation (1.2) with the reduced form

equation,

y0 = µ0 + xβ0 + u0

y1 = µ1 + xβ1 + u1

w = 1[zδ + ξ > 0]

(1.4)

It can be easily seen that once we drop one of the regimes in the above equation, then it

simply becomes the well-known Heckman correction method (Heckman, 1976). Therefore we

can use the Heckman correction model twice for each regime in order to consistently estimate

the coefficients in each regime. Of course all the assumptions for Heckman correction model
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are also required in this model: z is mean independent of ug where g = 0, 1, E(ug|ξ) is linear

in ξ, and ,although not necessary for the identification itself, w follows probit model so that

the inverse Mill’s ratio can be used. Therefore the estimating equation can be written as

y = µ0 + (µ1 − µ0)w + xβ0 + wx(β1 − β0) + u0 + (u1 − u0)w

= µ0 + τw + xβ0 + wx(β1 − β0)

+ ρ1wλ(zδ) + ρ0(1− w)λ(−zδ) + e0 + (e1 − e0)w, (1.5)

where λ(·) is inverse Mill’s ratio, and τ is denoted as the ATE. Estimating procedure is

basically same as Heckman correction model; in the first stage estimate the selection equation

by probit and put the estimated parameters δ̂ for δ and run the second stage regression just

like usual ordinary least squares. If one believes that β0 = β1 and u0 = u1, then the

estimating equation simply becomes

y = µ0 + τw + xβ0 + ρ
(
wλ(zδ)− (1− w)λ(−zδ)

)
+ e0. (1.6)

Running two-stage regression of the above equation (1.6) is an alternative estimation method

to the usual IV regression with linear probability model for selection. Nevertheless, following

discussions will be based on the equation (1.5) with greater generality rather than (1.6) .
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1.3 Estimation

1.3.1 Two-step Heckit and Single-Step Quasi-LIML

So far we have seen the relationship between partial effect of a dummy endogenous variable

and ATE in the previous section. In what follows the equation (1.5) will be used as a basic

estimating equation for most part of the discussion.

In equation (1.5) the errors eg are the difference between the structural errors ug and

the correction terms for each regime. We needed three important assumptions to be able to

write the model as in equation (1.5). The first two are the conditional mean independence

of z and ug and the linear conditional expectation assumption between the errors in each

equation i.e. E(ug|z, ξ) = E(ug|ξ) = ρξ. A sufficient condition for linearity is the trivariate

normal distribution between ug and ξ; under such assumption the coefficient ρg will then

be the covariance between ug and ξ. However, the linear conditional expectation will be

enough for writing the equation (1.5). Here the distribution of ug can be flexible; it doesn’t

have to follow any particular distribution as far as it is continuous. The next assumption

is that ξ follows normal distribution. This is more important than the former ones since it

warrants the use of inverse Mill’s ratio in the structural equation as well as the use of probit

for the first stage estimation. Without it, the above representation is invalid particularly for

the inverse Mill’s ratio, for which case we can possibly consider semiparametric estimation

methods instead of using the inverse Mill’s ratio for correction terms. And again the first

stage estimation can also be run by semiparametric binary choice model, which will be clar-

ified later. The following three propositions summarize the above discussion.
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Proposition 1.1. Given equation (1.4), it can be shown that

E(y1|z, w = 1) = µ1 + xβ1 +
1

Pr(w = 1)

∫ ∫ ∞

−zγ
u1p(u1, ξ|z)dξdu

Proposition 1.2. Given equation (1.4), if E(u1|z, ξ) = E(u1|ξ) = ρξ, then

E(y1|z, w = 1) = µ1 + xβ1 + ρ

∫ ∞

−zγ
ξp(ξ|ξ > −zγ)dξ

Corollary 1.1. If ξ ∼ N(0, 1) in addition to the assumption in proposition 1.2, then

E(y1|z, w = 1) = µ1 + xβ1 + ρλ(zγ),

where λ(·) is the inverse Mill’s ratio. Moreover, if u1 and ξ follow bivariate normal, then

ρ = cov(u1, ξ)/var(ξ).

One can use the two-step Heckit approach discussed in the previous section in order

to estimate ATE using equation (1.5). Easy to implement as it is, it could be inefficient

after accounting for the first stage sampling error. If we are willing to make some further

assumptions, then there actually exists a single-step ML estimation method using the likeli-

hood function for eg, which can be constructed as below. Let us call the composite error as

e = e0 + (e1 − e0)w and assume that it follows standard normal distribution and that the

selection mechanism is probit. Then a joint density function of y and w can be written as
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below.

p(y, w|z) = p(y|w, z) · p(w|z)

=
1√

2π · var(e|w, z)

· exp

(
− {y − µ0 − τ · w − xβ0 − wx(β1 − β0)− ρ1wλ(zδ) + ρ2(1− w)λ(−zδ)}2

2 · var(e|w, z)

)
·[Φ(zδ)]w · [1− Φ(zδ)]1−w, (1.7)

where inverse Mill’s ratio is compactly denoted as λ(·). The conditional variance of each eg

is given by Johnson and Kotz (1972) as

var(e0|w = 0, z) = σ20 − σ20ξλ(−zδ){−zδ + λ(−zδ)}

var(e1|w = 1, z) = σ21 + σ21ξλ(zδ){−zδ + λ(zδ)},

where σ2g ≡ var(ug) and σgξ ≡ cov(ug, ξ). All the parameters are estimable by a ML

estimation with equation (1.7). One of the advantages of this approach is that there is no

more sampling error to account for in the first stage estimation, which greatly simplifies

the computation of the standard errors. Let us now consider the normality assumption of

e which is one of two assumptions used in equation (1.7). In fact our knowledge about e is

in fact very limited, although the normality assumption on e was used in order to construct

a likelihood function. The composite error e was obtained by subtracting the Heckman

correction terms from u. Although we can maintain that u follows normal by the usual

central limit theorem argument, it is very hard to maintain that it still follows normal even

after it is purged of the elements causing the endogeneity. Other than that, one can surely

suspect the possibility of heteroscedasticity because the correction terms are the functions
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of explanatory variables and again e also is.

However, even for the case where the likelihood is not correctly specified, we can expect

to have at least a consistent estimator as long as the conditional expectation of y is correctly

specified (Gourieroux et al., 1984). Without caring about the conditional variances, let us

just use a standard normal distribution for p(y|w, z). Taking natural log, equation (1.7) can

be written as

ℓ(y, w|z)

= −{y − µ0 − τ · w − xβ0 − wx(β1 − β0)− ρ1wλ(zδ) + ρ2(1− w)λ(−zδ)}2

2

+w · ln[Φ(zδ)] + (1− w) · ln[1− Φ(zδ)] (1.8)

Now suppose that the assumptions in Proposition 1.2. and Corollary 1.1. are all satisfied.

Then it can be seen that the true parameter values maximize the expectation of log-likelihood

function in equation (1.8). If we label the true parameter value by “o” subscript, then δo will

surely maximize the expectation of probit log-likelihood function. Also under the assumption

that E(y|w, z) = µ0o−τo ·w−xβ0o−wx(β1o−β0o)−ρ1owλ(zδo)+ρ2o(1−w)λ(−zδo), the true

parameters (µ0o, τo, βgo, ρgo, δo) will maximize the expectation of the first term in (1.8). The

latter statement is true because the normal density belongs to the linear exponential family.

Since (µ0o, τo, βgo, ρgo, δo) maximize the first term in (1.8) and δo does the same for the

second and third terms, the whole set of parameters maximize Eℓ(y, w|z), which guarantees

the consistency. The above argument makes it clear that consistency depends on the fact

that the selection error is normally distributed, since it enables us to write the correction

terms as the inverse Mill’s ratio, which is a part of conditional expectation function of y. In

other words, although e does not have to follow standard normal distribution, the selection
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Table 1.1: Relationship among Estimators

linear nonlinear
single-step CF LIML (Q)LIML
two-step CF 2SLS Heckit

error has to be normally distributed in order to ensure consistency.

A general form of correction terms without the normality but with linearity assumption on

ξ is shown in the proposition 1.2. Also if the conditional expectation E(ug|ξ) is a nonlinear

function of ξ containing terms of higher degrees, then some additional correction terms

might be needed. As it will be discussed in the following section, one can consider using

nonparametric or semiparametric methods in such cases where it is hard to determine the

validity of those assumptions.

The estimation method using the above log-likelihood function (1.8) will be called quasi-

LIML or QLIML. A qualifier quasi- is used here due to the ignorance of the correct distribu-

tion of e. It is LIML since the likelihood function is constructed by the joint density function

of the response and endogenous explanatory variables as in the linear simultaneous equation

case. The only difference between the QLIML used here and the one in linear model is

that the former uses joint density of normal and Bernouilli while the later uses multivariate

normal.

1.3.2 Series Estimator

According to proposition 1.2 and corollary 1.1, the correction term will take the form of

inverse Mill’s ratio when E(ug|ξ) is linear in ξ and ξ is normally distributed. If ξ is not,

the correction term will not take the form of inverse Mill’s ratio any more. If E(ug|ξ) is a
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nonlinear function of ξ, then the correction term will have some more additional terms as

well as the leading inverse Mill’s ratio. Although it is still possible to derive the appropriate

formulae for correction terms for each distributional assumption, we usually don’t have

any knowledge about the population whenever the failure of the assumptions is suspected;

in such cases one can instead use some distribution-free methods. Rather than the fully

parametric approach, a semiparametric method can also be applied for the correction terms.

Here I will follow the methods proposed by Powell, Newey and Walker (1990), Newey (1994)

and Newey (2009). The discussions in those papers are mainly about the semiparametric

estimation of sample selection models where the β’s in equation (1.2) are identified. They

are semiparametric because the linear index zγ is always used as an argument of control

function.

The estimation will be carried out by two steps. In the first stage, the selection equation

is estimated by the nonparametric binary choice models as in Powell, Stock, and Stoker

(1989), Ichimura (1993) and Klein and Spady (1993). I use Klein-Spady estimator in this

paper since it is the most efficient one among those. Given a first stage estimate, a series

estimator can be constructed in the second stage as below.

y = µ0+τ ·w+xβ0+w·x(β1−β0)+w
( P∑
p=1

ρpψ(zδ̂)
p
)
+(1−w)

( P∑
p=1

ηpψ(−zδ̂)p
)
+ϵ0+w·(ϵ1−ϵ0)

(1.9)

The errors appeared here are not the same as eg in Heckit or in QLIML. They are essentially

the sums of the series terms from P+1 to infinity. The function ψ is monotone transformation

which makes the estimate less sensitive to outliers (Newey, 1994). For ψ, Newey (2009)

proposes three monotone functions: identity, inverse Mill’s ratio and CDF of standard normal

distribution.
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In Heckman correction method the correction term in observed subpopulation is the

inverse Mill’s ratio λ(zγ) under the usual assumptions, whereas that in the other unobserved

subpopulation is −λ(−zγ). Then the unconditional expectation of correction term over

the whole population is equal to zero; otherwise the unconditional expectation of error in

structural equation won’t be zero causing the intercept estimator inconsistent. This condition

is not automatically satisfied as in the original Heckman correction model when we apply

series estimator with powers of degree more than two and with a function ψ(·) other than the

inverse Mill’s ratio. Therefore an adjustment that makes the expectation of the correction

terms over the whole population be zero is required for a consistent estimation of the intercept

and ATE; it can be done by subtracting the sample means of the correction terms.

1.3.3 Quasi-FIML

Before considering this estimator, it should be emphasized that this is not in the class of

control function approaches as those previous three estimators. The basic motivation of us-

ing control function approach is that we suspect unobserved variables hidden in error which

are correlated with one of the regressors in the structural equation. Since it is unobserved,

by definition, the distribution that it follows is unknown. Indeed we haven’t put any distri-

butional assumptions for ug or eg in the two-step Heckman model. Even though we used

normal assumption for eg in QLIML, we do not claim that it is truly normal by labeling it

as QLIML. Therefore putting distributional assumption directly to the structural error ug

is not in line with our spirit of viewing this problem. However, if the normality assumption

happens to be true, then a FIML estimator that exploits the joint density function becomes

a very attractive alternative estimator with correctly specified likelihood. If it is not cor-

rectly specified, then the FIML with wrong distributional assumption on the errors becomes
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a quasi-FIML or QFIML that can still be used for estimating the ATE. Below is a description

of FIML: suppose the joint distribution of ug and ξ is multivariate normal as below.


u0

u1

ξ

 ∼ N




0

0

0

 ,

σ20 σ10 σ1ξ

σ21 σ0ξ

1




The variance of the selection error is set to be one since the coefficients in probit model can

only be estimated up to a scale factor. Under this assumption, we want to derive the joint

distribution of y and w conditional on the exogenous variables z. We can easily transform u

into y since it is linear. The transformation of ξ into w can be done by the equation below.

f(u,w|z) =
(∫ ∞

−zδ
g(u1, ξ) dξ

)w

·
(∫ −zδ

−∞
h(u0, ξ) dξ

)1−w

(1.10)

Those functions g and h are marginal density functions for ug and ξ conditional on z. For

example g can be obtained by integrating out irrelevant u0 from the joint distribution for all

three variables. Here we can see that the trivariate normal assumption is sufficient condition

for our purpose; the above likelihood function shows that the pairwise bivariate distribution

assumption for each ug and ξ is all that is necessary since we are hardly interested in

estimating σ01. The integrals on the right hand side of the above equation were needed

in order to get the marginal distributions for ug for the event where w = 1 and w = 0

respectively. It can be shown that the above density function can be written as

f(u,w|z) =

[
Φ

(
zδ + (σ1a/σ

2
1)u1√

1− (σ1a/σ1)2

)
·
ϕ
(
u1
σ1

)
σ1

]w
·

[{
1−Φ

(
zδ + (σ1a/σ

2
1)u0√

1− (σ1a/σ1)2

)}
·
ϕ
(
u0
σ0

)
σ0

]1−w

(1.11)
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Table 1.2: Distributional assumptions

QFIML QLIML Heckit Series

u normal none none none
ξ normal normal normal none
e NA none none NA

where Φ(·) and ϕ(·) denote the CDF and PDF of standard normal distribution respectively.

By using (1.2) the above joint density can easily be transformed to f(y, w|z). The estimator

using the likelihood function given above is called FIML (Maddala, 1986). In linear simulta-

neous equations models FIML basically uses the joint distribution of all endogenous variables

conditional on exogenous ones; the only difference in this nonlinear setting is that the joint

distribution of endogenous variables are constructed without reduced form transformation.

Since there is no guarantee that the errors follow trivariate normal, it should be properly

called “quasi”-FIML with a qualifier. The ATE is estimated simply as the difference of es-

timated intercepts in equation (1.2). If the true distribution is trivariate normal, then this

estimator becomes FIML and will be consistent and efficient. However, if that is not the

case, then it is neither consistent nor efficient. Therefore FIML is less robust than Heckit or

QLIML under various violations of distributional assumptions.

In sum there are the four available estimators for ATE using instrumental variables

in counterfactual setting. Those estimators were constructed under different distributional

assumptions which are summarized below. NA indicates the underlying error term is not in

the model. Even though not in the table, it has to be noted that there is linear conditional

expectation condition between u and ξ for the Heckit and QLIML.

17



1.4 Asymptotic Variances

In this section the asymptotic distributions of Heckit and QLIML, which are applications

of two-step and single-step CF method respectively, are given. The asymptotic distribution

of QFIML is straightforward and that of the series estimator in the following discussion

is derived by using essentially same method as in the two-step Heckit. In what follows a

common structural log-likelihood function for both single-step and two-step methods will

be used. The standard normal distribution will be used as the quasi-likelihood of structural

equation for QLIML estimation. Heckit uses OLS at second step; computing the least square

is equivalent to using the standard normal distribution for e. Therefore one can simply use a

common structural log-likelihood function to derive the asymptotic distribution of the two-

step Heckit as well as single-step QLIML. To make the discussion as simple as possible, the

parameters θ1 and θ2 are assumed to be scalars.

Let us first consider the asymptotic distribution of QLIML. Let q1(y|w, z; θ1, θ2) be

the log-likelihood or objective function to be considered for the structural equation and

q2(w|z; θ2) for the reduced form equation. In this particular endogenous switching regression

setup, θ1 = (τ, β′)′ and θ2 = δ, but again the discussion below assumes that they are scalar

for the sake of simplicity. Since the two sets of parameters are estimated together, the log-

likelihood function for QLIML is expressed in additive form as q1(y|w, z; θ1, θ2)+q2(w|z; θ2).
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Let qij ≡ ∂qi/∂θj and qijk ≡ ∂2qi/∂θj∂θk. Then

B0 =

 E(q11)
2 E(q11q

1
2)

E(q11q
1
2) E(q12)

2 + E(q22)
2



A0 =

 E(q111) E(q112)

E(q121) E(q122) + E(q222)



and
√
n(θ̂n− θ0) →d (0, A−1

0 B0A
−1
0 ). The asymptotic distribution of θ1 is the first diagonal

element of the sandwich form as below.

Avar
√
n(θ̂1n − θ10)

=
E(q11)

2K2 − E(q112)
(
2E(q11q

1
2)K − E(q112)[E(q

1
2)

2 + E(q22)
2]
)

(
E(q111)K − [E(q112)]

2
)2 ,

where K = E(q122) + E(q222) and θ̂1n denotes QLIML estimator of θ1.

A two-step approach maximizes q1(y|w, z; θ1, θ̂2) given the first stage estimates θ̂2. Then it

can be shown by using the result in Wooldridge (2010, Chapter 12) that

Avar
√
n(θ̃1n − θ10) =

1

[E(q111)]
2

(
E(q11)

2 +
[E(q112)]

2[E(q22)
2]2

[E(q222)]
2

)

where θ̃1n is the second stage estimate of θ10. The only case where those two asymptotic

variances are same is when E(q112) = 0, where one can estimate equation by equation with-

out any interaction between θ1 and θ2 possibly through some control functions. Since our

model generally contains the interaction terms, the presence of nonzero E(q112) should be

understood as a main cause differentiating the asymptotic variances of single-step and two-
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step methods. The magnitudes of Avar
√
n(θ̂1n − θ10) and Avar

√
n(θ̃1n − θ10) cannot be

determined in general. However, holding other terms fixed, higher value of E(q112) makes the

asymptotic variance of single-step estimator decrease since its denominator and numerator

are a polynomial of degree four and two respectively. Thus under a higher value of E(q112),

the denominator would dominate the numerator yielding smaller asymptotic variance. On

the other hand the asymptotic variance of two-step estimator would increase smoothly for

higher value of E(q112). However, if E(q112) is close to zero, then the fraction can possibly

be subject to an abrupt change even by a small change in E(q112) making comparison more

difficult.

1.5 Simulation Design

Monte Carlo simulations were carried out in order to compare the finite sample performances

of the four estimators under consideration. The data generating process is

x ∼ uniform[−10, 10]

y1 = 3 + 0.1x+ u0

y0 = 2 + 0.15x+ u1

w = 1[1.4− 0.05x− 0.3z + ξ ≥ 0]

z ∼ Binomial(1, 1/2),

where ug and ξ can follow normal, centered t(5) and centered χ2(5) with variances all

normalized as unity.2 Their correlations are set 0.0, 0.4, 0.5 and 0.6. The ATE, the difference

2 First and second moments alone do not uniquely determine the joint distribution of
nonnormal random variables. The stata code for this simulation will be provided upon
request.
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of the intercepts for each regime, is equal to one. To see the effect of weak instrumental

variable, a set of 10 randomly created binary variables was used. Because the nonlinear

selection function reduces the information in the domain through the indicator function, the

effect of weak IV is not very perceivable unless a large number of weak IVs is put in the

equation. To measure the quality of IVs as a whole, the concentration parameter is used,

i.e. E(δ′Q′Qδ)/L for y∗ = 1.4 − .05x − .3z + ξ where the i-th row of Q is (1, xi, zi) and

L is the number of instrumental variables. Then for the observation number n = 100, the

concentration parameter for y∗ is 10.575 when a relevant IV is used, and 1.0575 when ten

irrelevant IVs were added.

Vella and Verbeek (1999) already compared the performances of IV and CF under various

error distributions, but what they essentially compared was the two-step CF methods with

and without using the binary nature of treatment variable in the present context. And they

just investigated what they called restricted CF which is the single-regime model such as

equation (1.6). The contribution of this paper is that (1) both two-regime and one-regime

models are considered, (2) both single-step and two-step estimation methods are investigated,

and (3) the misspecifications of both selection and structural errors are allowed for.

1.6 Simulation Results

As it was mentioned in the previous sections, we focus on those four estimators, i.e. Heckit,

QLIML, Series and QFIML, the estimable equations of which are equations (1.5), (1.8),

(1.9) ad (1.11). In addition to those two-regime estimations, we also discuss one-regime

procedures i.e. IV estimator and Heckit with single regime, which are (1.1) and (1.6). In

order to distinguish Heckits in those two settings, it will be referred to as Heckit1 and Heckit2
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for regime one and two respectively. Heckit1 is essentially same as Heckit2 except for the

fact that the restriction that the partial effects of the covariates across two regimes are equal

was used for Heckit1. Also the IV estimator using equation (1.1) will be called linear IV

estimation or LIV lest one get confused with instrumental variable. Thus the difference

between LIV and Heckit1 is that the selection equation for LIV is the linear probability

model while for Heckit1 is probit. Of course we can think of the optimal IV estimation using

probit, but it will not be considered here. LIV is two-step estimation method; when the

same model is estimated by single-step LIML, then it will be written as LLIML in order to

distinguish that from QLIML above. Thus the focus is on the comparison between linear

and nonlinear control function methods i.e. LIV and Heckit1 for one-regime estimation. For

two-regime estimation, the focus is on the comparisons among Heckit1, QLIML, Series, and

QFIML. We discuss strong IV results from section 6.1 through 6.4. Sections 6.5 and 6.6 are

devoted for weak IV.

1.6.1 Comparison between LIV and Heckit1

To begin with, let us investigate the behavior of LIV and Heckit1 with strong IV under various

misspecifications. Although Vella and Verbeek (1999) dealt with this issue, the discussion

here is more extensive. The results are summarized in Table B.1 through Table B.4. For

each simulation session, the seven summary statistics are provided: Monte Carlo mean,

standard deviation, root mean squared error (RMSE), and median. The simulation was run

for different correlation values such as 0.0, 0.4, 0.5 and 0.6, which makes it easy to find out

patterns of behavior of estimators if any. Since there are three possible error specifications

for both structural and selection errors, we have nine combinations to consider. However, it

turned out that the cases of heavier tails generated by t(5) distribution is very similar to the
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normal cases and their results are omitted in the tables3. The horizontal rows are for three

possible selection error specifications and the vertical columns are for structural error.

Let us first compare LIV and Heckit1 in terms of bias. One can see that those one-regime

models are not particularly bad despite the true data generating process has two regimes. The

two estimators also converge well to the true parameter value, which is 1, under sufficiently

large samples. Heckit1 is valid under three assumptions which were already made clear

in Proposition 1.2 and Corollary 1.1. Although the exogenous variable z is independent

in the simulation design, the other two assumptions are designed to violated except for in

normal-normal case, where Heckit1 is truly legitimate. The conditional expectation will not

be linear unless both of the errors follow same distribution. Particularly if one of them is

skewed while the other one is symmetric, then the conditional expectation can be nonlinear.

Given the independent z, the other two assumptions fail unless the error combination is

normal-normal. If those assumptions are not satisfied, then the control functions in the form

of inverse Mill’s ratio will be misspecified ultimately causing an inconsistency. The results

in Tables B.1-B.4 clearly show this: regardless of correlation, when the selection errors are

skewed, the finite sample biases of Heckit1 are greater than those of LIV. Such large biases

are found only when the selection errors are skewed. Moreover, they are persistent even

when the sample size is sufficiently large. Also it shows that the results under misspecified

structural error are not as sensitive as those under misspecified selection errors. Since large

finite sample biases are common among the cases with skewed selection errors, it appears

that it is not so much caused by nonlinearity of E(u|ξ) as caused by nonnormality of ξ.

Nevertheless the results are also affected by nonlinearity of E(u|ξ). 4 One can also see the

3 The results for t(5) will be provided upon request.
4 Even though I did not include the results in this article, I also created an error generating

process where each of them is normal but the conditional expectation is not linear in order
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behaviors of estimates under various correlation values; given symmetric selection errors,

as the correlation becomes larger, the relative magnitudes of Heckit1 biases compared to

those of LIV decrease. However, under skewed selection errors, the Heckit1 biases are larger

than those of LIV regardless of correlations. To summarize, LIV has smaller bias under

skewed selection errors while Heckit1 does under symmetric ones. LIV is robust under

misspecification.

For efficiency, Tables B.1-B.4 show that Heckit1 has smaller Monte Carlo standard devi-

ation than the LIV does, which is true irrespective of the error specifications. Also in terms

of RMSE, except for some cases where the selection errors are skewed, the RMSE of Heckit1

is smaller than that of LIV overall. Therefore we have good reason to use nonlinear models

such as Heckit1 unless a nonsymmetric selection error is suspected.

IV estimators do not necessarily have finite moments, which is reflected by the consid-

erable magnitudes of standard errors under small sample sizes. Therefore, as suggested by

Angrist et al. (1999), it would be very useful to see the median or MAD as well as those

moment estimators such as mean and standard deviation. In terms of mean, Heckit1 has a

smaller bias than LIV except for the cases under skewed selection errors. In terms of median,

on the contrary, the tendency is just the opposite: one can see that in most cases the median

biases of LIV are smaller than those of Heckit1, and, particularly, they are for all the cases

under skewed selection errors. Nevertheless one can see Heckit1 is more efficient than LIV

in terms of MAD, which is in agreement with the results for standard deviation.

to see the pure effect of nonlinearity. The results show that nonlinearity of E(u|ξ) causes
larger finite sample bias for Heckit1.
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1.6.2 Comparison between Heckit2 and QLIML

Let us now compare the performances of Heckit2 and QLIML. Those two estimators use same

estimating equation; the difference is that Heckit2 is estimated by two-step procedure while

QLIML is by single-step. It is already known that in linear models with just identification

2SLS and LIML give numerically same estimates(Anderson et al., 1982). If IV or 2SLS

is understood as a special case of control function method, then the comparison between

Heckit2 and QLIML is essentially a comparison between 2SLS and LIML with nonlinear

selection function. However, as it was already discussed in previous sections, unlike linear

models, when the selection equation is nonlinear, it is impossible to determine in general

whether the asymptotic variance of one estimator is same or greater than the other. Therefore

it is not very meaningful to discuss the efficiency simply by comparing the Monte Carlo

standard deviations of two estimators under some sample sizes; it would be very likely to

see the similar tendency also in finite samples if the asymptotic variance of one estimator is

substantially larger or smaller than the other. Rather it would be more interesting to find

out how the relative efficiencies, i.e. the ratio of MSE’s, behave under different sample sizes.

For consistency of those two estimators, it is essential that the conditional expectation

of y on x and w be correctly specified(Gourieroux et al., 1984). It is basically whether the

conditional expectation on x, w can be correctly specified by the inverse Mill’s ratio once

it is taken for granted that the conditional expectation on x is linear. It is again based

on the assumption that the selection equation is probit. If true model is not probit, then

both Heckit2 and LIML might be inconsistent. Although it can be well expected that the

two estimators might be inconsistent under skewed selection errors, it turned out that they

converge well to the true parameter value even under such misspecifications. Therefore
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misspecification of selection error does not seem to be very critical.

The simulation results for Heckit2 and QLIML are also in Tables B.1-B.4 and Figure

D.1 displays the cumulative density functions only for the case of ρ = 0.6 and n = 1000.

According to the results, there are some cases where the Monte Carlo means are not converg-

ing to the true value monotonically. It can be explained by two ways: First, theoretically,

in the definitions of any kinds of convergence including the convergence in probability, the

behaviors of early terms of sequence are not very important; also the monotonicity is never

considered in weak law of large numbers or in uniform weak law of large numbers. The

second reason is practically more relevant. Since IV estimators do not necessarily have finite

moments, the IV estimators can produce many estimates of large magnitude on which the

numerical values of mean or standard deviation can be very sensitive. Thus it should not be

a major concern even though the sequence of mean is not monotonically converging to the

true value.

Let us now discuss the efficiencies of those two estimators. It can be seen that the Monte

Carlo standard deviation of QLIML is very large compared to Heckit2, which is more so

under small sample sizes. In addition to that, although QLIML is very inefficient under

small sample sizes, it nearly catches up with Heckit2 very quickly. Table C.1 shows the

relative efficiencies of some selected pair of estimators including QLIML with respect to

Heckit2. The relative efficiencies were computed as the MSE of each relevent estimators

divided by the MSE of Heckit1 or Heckit2. Thus if the value is greater than one, then it

implies that the MSE of Heckit1 or Heckit2 is relatively smaller. It can be seen from Table

C.1 that the relative efficiencies are decreasing as the sample sizes increase. In other words,

the single-step QLIML is less efficient particularly under small sample sizes.

On the contrary, the estimated asymptotic variances for actual estimation give mislead-
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ing information: a lot of cases the estimated asymptotic variances of single-step QLIML are

smaller than those of two-step Heckit2. Table C.2 tabulates the ratio of estimations with

higher estimated asymptotic variances for two-step Heckit2 out of total 1000 repetitions.5

According to Table C.2, roughly 50-60% of total estimations produce misleading informa-

tion about the true sampling distribution; overall the single-step QLIML underestimates its

asymptotic variance

In so far as the median bias of Heckit2 and quasi-LIML, it is hard to find any evidence in

favor of either estimator; the magnitudes of their median biases are more or less the same.

Like the standard deviation, MAD also shows that QLIML is more dispersed than Heckit2.

1.6.3 Comparison between Heckit2 and Series estimator.

A series estimator is expected to solve the following three major problems: allowing for non-

linear E(u|ξ), consistent estimation of index under nonprobit settings, and thus correction

of the misspecified control function.

There are various forms of series estimator, but here the three leading ones suggested

by Newey (2009) were used. According to the results presented in Tables A.1-A.12, one

can see that the ones with inverse Mill’s ratio have the smallest MSE. As for the degree of

power series of correction terms, the estimator that includes only the terms of degree one is

the best in terms of MSE; it is because larger number of control function terms interacted

by w creates severer multicollinearity. Therefore the only difference between best Series

estimator and Heckit2 is that the former uses Klein-Spady semiparametric estimator instead

of probit in the first stage. They are similar in that they use inverse Mill’s ratio of degree

5 This simulation was designed to generate same pseudo-random numbers across different
estimators enabling a direct comparison among them.
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one. According to Proposition 1.2, under the linearity of E(u|ξ), the control or correction

terms can be expressed as some function of index with single term. Corollary 1.1 implies

that normality of ξ lets us to write the correction terms as inverse Mill’s ratios. Without

the linearity of E(u|ξ), the correction terms should be expressed not as a single term, but

as a power series of some functions of index. However, Tables A show that such methods

create multicollinearity due to the interaction with w, implying that the series estimators

are not good alternatives for the cases where E(u|ξ) is nonlinear. Unfortunately, among the

three motivations of using series estimators, the only one that the Newey type estimators

can address is the second one, that is the consistent estimation of index.

The Series estimator is expected to do better under the skewed selection error, but there

is no particular evidence that the Series estimator gives smaller mean or median biases than

Heckit2 does; in summary, the KS semiparametric estimator combined with inverse Mill’s

ratio does not do better than the usual Heckit2 does in terms of bias.

There is a tendency that the MSE of series estimator is greater than that of Heckit2.

However, under small sample sizes, there are some cases where the MSE of series estimator is

smaller than the Heckit2. Such phenomena are more often found as the correlation becomes

higher.

1.6.4 QFIML

Heckit2, LIML and Series estimators are easy to compare with each other since they all

use or based on same estimating equation. On the contrary QFIML is different in that the

structural and selection errors are directly modeled without resorting to control function

method. QFIML uses trivariate normal assumption; therefore if the specification is true

then its asymptotic variance becomes simpler by information equality and QFIML becomes
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FIML. On the other hand QFIML fails to be a consistent estimator if the error distribution

is misspecified. Tables B.1-B.4 show this point: when the structural error is nonnormal,

then the sequence of Monte Carlo mean is passing through the true parameter value and

converging to somewhere else. Under normal structural error, QFIML converges to the true

value relatively well. In other words although a misspecified selection error does not have

strong effect, a misspecified structural error does cause inconsistency. One interesting thing

is that the inconsistency is not so serious under zero correlation.

For efficiency, QFIML has the smallest variance among those four estimators. Such fact is

also reflected and even exaggerated in the asymptotic variance approximations; the estimated

asymptotic variances are so small that the 95% coverage rates are abnormally smaller than

other estimators. The coverage rate converges to zero as the sample size grows bigger. This

is also true even when the errors are correctly specified. Therefore QFIML estimator is not

a desirable choice for test unless bootstrap standard error is used. To summarize QFIML

fails to be consistent under misspecified structural errors, and has extremely small coverage

rates.

1.6.5 Comparison between LIV and Heckit1 under weak IV

All the results for weak IV are presented in Tables B.5-B.8. The cumulative distribution

functions for the case of ρ = 0.6 with n = 1000 are shown in Figure D.2. From the table, it

can be seen that the behaviors of LIV and Heckit1 are not very different from those under

strong IV except for in terms of bias. Under both strong and weak IV, if the selection error is

skewed, then the linear model has smaller bias. However, under weak IV, even if the selection

error is symmetric, then the nonlinear model does not have any noticeable advantage over

linear ones as it used to have under strong IV. Thus the linear model is more robust under
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weak IV case.

Now let us discuss the results on RMSE. First, under symmetric selection error, the

nonlinear model still has advantage over the linear model in terms of RMSE. It is due to

the fact that the nonlinear model is more efficient than the linear one in terms of standard

deviation. Second, on the other hand, under skewed selection error, the efficiency of nonlinear

model is not strong enough to make the nonlinear model more advantageous than the linear

one in terms of RMSE.

1.6.6 Comparison between LIV and L-LIML and between Heckit2

and QLIML under weak IV

As it was already discussed, we have LIV and L-LIML for linear models and as their nonlinear

counterpart Heckit2 and QLIML. Unless the correlation is zero, under all circumstances the

median biases of L-LIML are smaller than those of LIV regardless of sample size and error

specification. On the other hand, the relation of the median biases of Heckit2 and QLIML

are not as simple as in linear models. Particularly, when ρ = 0.4, the median biases of

QLIML are greater than those of Heckit2 under all circumstances and it is still true in many

cases when ρ = 0.5. Nevertheless it shows a tendency of smaller QLIML median bias than

Heckit2 as the correlation becomes larger.

1.7 Conclusion

In finite samples, especially when the sample size is small, QLIML is relatively less efficient

than the two-step Heckit2 suggesting that there is no efficiency gain by running single-step

procedure which mimics two-step. QFIML is more efficient than Heckit2; however, it is not
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robust to distributional misspecification. In terms of efficiency, Heckit2 is a middle ground

between those two single-step estimators. Nevertheless Heckit2 is more preferable since it is

not only easy to compute but also robust to arbitrary misspecifications. Newey-type Series

estimators were expected to do relatively better under misspecification, but turned out not

to be good alternatives.

Under weak many instruments, QLIML shows better performance in terms of median

bias only when the degree of endogeneity is strong. Under weak endogeneity, there is no

clear evidence of such an advantage.
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Chapter 2

Estimating Average Treatment Effect

by Nonlinear Endogenous Switching

Regression with an Application in

Botswana Fertility

2.1 Introduction

In order to estimate the treatment effects of binary variable on count dependent variable,

Terza (1998, 2009) proposed nonlinear models that take into account the limited dependent

variables. As alternatives to those fully nonlinear models, a traditional linear regression

model with probit treatment equation can also be used. Although it seems to be more

sensible to apply the nonlinear models given count outcome variable, the previous literature

have not clearly stated the advantages as well as disadvantages of using nonlinear outcome

models rather than simply applying linear methods to estimate the treatment effects. While

the linear models implemented by Heckman’s (1978) method is already well understood,

large part of the statistical properties of Terza’s nonlinear approaches are still unknown.

The goal of this study is to explore the properties of nonlinear approaches to estimating the
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treatment effects and to give a guidance that might be useful to the empirical analyses.

Terza (1998) considers a model where the binary treatment variable shifts the intercept

inside the exponential conditional mean function and provides estimating equations that

can be implemented by using the observable variables. Also in later works, Terza (2008,

2009) extends the earlier model by incorporating the counterfactual framework where the

treatment status puts the individual in a different regime. Following the terminology used in

Terza (2009), the former model will be called throughout this paper “Nonlinear Endogenous

Treatment Model” (NET), and the latter “Nonlinear Full Endogenous Switching Model”

(NFES). As it will be shown in subsequent sections, NFES model is an extended version

of NET in the sense that an appropriate restriction on coefficients along with a fairly weak

assumption readily makes NFES and NET equivalent. While NFES is relatively new, NET

has acquired wide popularity among empirical economists. For the last decade it has been

applied to see the effect of founder CEO as incumbent on the active acquisition activity

(Fahlenbrach, 2009), the effect of credit constraint on floating net aquaculture adoption

in Indonesia (Miyata and Sawada, 2007), the effect of firm’s voluntary pollution reduction

program on pollution (Innes and Sam, 2008; Sam, 2010), the effect of duplicate coverage on

the demand for health care in Germany (Vargas and Elhewaihi, 2007), the effect of illicit

drug use on emergency room utilization (McGeary and French, 2000), the effect of physician

advice on alcohol consumption (Kenkel and Terza, 2001), the effect of insurance on demand

for health care (Koç, 2005), the effect of higher education on smocking (Miranda and Bratti,

2006), the effect of socio-economic factors on completed fertility (Miranda, 2003), the effect

of Mexican families’ migration in US on woman’s domestic power (Parrado, Flippen and

McQuiston, 2005; Parrado and Flippen, 2005), the effect of health maintenance organization

plans on the health care expenditure in private sector (Shin and Moon, 2007) and the fertility
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differences between married and cohabiting couples (Zhang and Song, 2007) to name a few.

Since most studies enumerated above use the NET model to measure the effect of binary

variables, the validity of their conclusions may be put into question unless the single regime

restrictions are correct. One important exception is Koç (2005) where he estimates two

different structural equations for each value of treatment variable. However, he mainly

focuses on the equation in each regime and not paying full attention to comparing the values

of dependent variables that might lead to ATE analysis. Although the first papers proposing

the ATE estimator based on the NFES model is Terza (2008, 2009), it only proposes the

possibility of such methodology in unifying framework with other nonlinear models without

fully discussing the properties of ATE estimator compared to traditional approaches. This

study will show that the ATE estimators based on NFES model can have higher efficiency

and smaller finite sample biases only under certain circumstances.

The rest of the paper is organized as follows. Section 2 introduces various switching

regression models such as NFES, NET, LFES and LET and discuss how the ATE can be

identified for each model. Section 3 characterizes the asymptotic biases when the methods

being used does not reflect the true population. Section 4 describes the various estimation

methods for NFES model. Section 5 is devoted to Monte Carlo simulation and discusses the

results and implications. In Section 6, the proposed approach is applied to a real data set

to estimate ATE and Section 7 presents the concluding remarks.

2.2 Model

In what follows the term nonlinear is exclusively reserved to describe the nature of dependent

variable of structural equation. In this count dependent variable setting, nonlinear models
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will use the linear index transformed by exponential function as their conditional expectation

function. On the other hand the linear models will be constructed as if the dependent variable

were continuous.

2.2.1 Nonlinear Models

The “Nonlinear Endogenous Treatment Model” (NET) first proposed by Terza (1998) is as

follow.

E[y|x,w, ϵ] = exp(α + xβ + γw + ϵ)

w = 1[zδ + v > 0],

where x is 1 × K vector of covariates, w is binary treatment variable and ϵ is unobserved

heterogeneity. The vector of covariates x and the vector of exogenous variables z are all

assumed to be independent with the structural and selection errors. Usually x is the subset

of z. The value of treatment variable, i.e. either one or zero, is determined by a binary

choice model such as probit. The treatment equation tells that the value of w is determined

by the exogenous variables z and the selection error v. When their sum is greater than

zero, w is equal to one, and zero otherwise. If w is determined purely randomly as in

randomized experiment, then it will be independent with the unobserved heterogeneity ϵ and

the regression will become very simple and straightforward. However, when w is correlated

with the unobserved heterogeneity, then a usual estimation that does not control for the

correlated error might suffer from an endogeneity problem for the estimation of γ. For

example, when the number of children a woman has at the time of observation is set as a

dependent variable y, it will be determined by her age and marriage status and so on that
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constitute the covariates x. The dependent variable will also be affected by the education

status w that is either zero or one depending on whether she has education at all. Since

the education status is determined by an individual’s utility maximization, the factor that

affects w might also affect y creating an endogeneity. Terza (1998) suggests an estimating

equation in the form of conditional mean function with a correction term that is conditioned

only on the observables.

The above model, however, is restrictive in that it supposes a constant semi-elasticity of

dependent variable with respect to the treatment across all the individuals in population.

This is related to the fact that the coefficient on covariates and the unobserved heterogeneity

are invariant under different treatment status. The model that extends the above one is

proposed by Koç (2005) and Zhang and Song (2007) as below.

E[yg|x, w, ϵ1, ϵ0] = E[yg|x, ϵg] = exp(αg + xβg + ϵg), g = 0, 1 (2.1)

w = 1[zδ + v > 0],

where different coefficients on covariates and unobserved heterogeneity depending on the

treatment status are allowed for. In other words, the treatment status puts an individual in

a different regime; if w = 1, then she is in regime 1 with the outcome y1 and similarly for

the other regime. Presumably each individual has her y0 and y1 for each treatment status

but one of them is not observed. The way to recover the unobserved counterfactual will

be discussed later on for estimation, but for the time being let us focus on the population

model itself. If those two outcome variables are known, then yi1−yi0 would be an individual

treatment effect. Since it might be different from person to person, we might want to know

the averaged individual treatment effect E(yi1−yi0) that is the so-called Average Treatment
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Effect (ATE). Incidentally the individual semi-elasticity can be computed by (yi1 − yi0)/yi0

that might not be constant across individuals either. This is the extended Terza model that

will be called throughout this paper “Nonlinear Full Endogenous Switching Model” (NFES).

The quantity of interest will then be the ATE that captures the causal effect of treatment.

Returning to (2.1), the first equality in the upper equation tells that the conditional

expectations of dependent variables for each regime depend neither on switching variable w

nor on unobservables for other regime. The exclusion of w is particularly important; once

the covariates and the unobservables ϵg are controlled for, the knowledge about realized

regime does not provide any additional information on the conditional expectation of de-

pendent variables. In other words, the equality assumes the ignorability (Rubin, 1978) or

unconfoundedness (Imbens, 2005) of w conditional on covariates and unobservables.

Although the treatment equation in (2.1) is expressed by a binary choice model, it is

also possible to use the linear probability model that is essentially a linear projection of

w on z. However, in the present model, the fact that the endogenous variable is binary

is not neglected so that an appropriate binary choice model is used. The implication is

that it can be viewed as a structural equation1. The treatment equation that describes the

regime switching mechanism can be modeled by any binary choice model, but here let us

assume that it is governed by probit model for the sake of simplicity. The robustness of

this assumption will also be discussed later. Now let the errors in outcome and treatment

1 In this respect the one step estimator that simultaneously maximizes the outcome as
well as treatment equation is called Full Information Maximum Likelihood estimator.
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equation be denoted by ϵ and v and follow trivariate normal distribution as below.


ϵ0

ϵ1

v

 ∼ N




0

0

0

 ,

σ20 ρ0σ0

σ21 ρ1σ1

1




This assumption becomes sufficient condition for each error to follow normal distribution. If

there is no correlation between ϵ and v, then the regime switching becomes entirely random.

Unless the covariances are equal to zero, the regime choice will be determined by each

individual’s own idiosyncrasies that create correlation between w and ϵ. Heckman correction

can be used to solve this endogeneity problem in linear model where the dependent variable

is continuous; the difference between Heckman corrected linear model and current one is that

the latter allows for noncontinuous outcome distribution with exponential CEF while Heckit

presupposes a continuous structural error of which the conditional expectation is expressed

as a linear function of v. Nevertheless the basic situation is more or less the same.

Under the above assumption the ATE can be identified as below (Terza, 2009).

ATE = E[y1 − y0] = E
(
E[y1|x]− E[y0|x]

)
= E

[
exp(α1 + σ21/2 + xβ1)− exp(α0 + σ20/2 + xβ0)

]
(2.2)

Thus an estimate can be computed by using the sample analogue method, i.e.,

ÂTE = N−1
N∑
i=1

[
exp( ̂α1 + σ21/2 + xβ̂1)− exp( ̂α0 + σ20/2 + xβ̂0)

]
.

As it will be shown in equation (2.4), the composite intercepts αg + σ2g/2 are identified
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without separately identifying αg and σ2g . The term ̂αg + σ2g/2 are the estimates of the

composite intercepts. Incidentally, the Average Treatment Effects on the Treated (See p.

906, Wooldridge, 2010) is computed by

ÂTT =

(
N∑
i=1

wi

)−1 N∑
i=1

wi

[
exp( ̂α1 + σ21/2 + xβ̂1)− exp( ̂α0 + σ20/2 + xβ̂0)

]
.

The NFES model discussed so far nests NET model shown in the very beginning of this

section. By putting restrictions β0 = β1 and ϵ0 = ϵ1 the two outcome equations in NFES

can be combined to be written as

E[y|x,w, ϵ] = exp
(
α0 + (α1 − α0)w + xβ + ϵ

)
,

where y = y0 + w(y1 − y0). The NET model, although having been claimed as a switching

regression in Terza (1998), does not clearly incorporate the two distinct regimes; the regime

changes according to the value of the binary variable, but switching is expressed only by

shifting the intercept term inside the exponential function. In linear model, it is similar

to the case where the coefficients of covariates for two regimes are identical except for the

intercept. Thus it is recommended to run the NFES model first; it is preferable unless test

rejects the hypothesis of β1 = β0. In ET model, the parameter of interest is usually the

coefficient on w, i.e. α1 of which interpretation is the semi-elasticity of y with respect to the

treatment variable. This is distinct from ATE that we are in many cases interested; ATE

must be computed as in equation (2.2).
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2.2.2 Linear Models

Angrist (2001, 2010) and Angrist and Pischke (2009) have pointed out that in many cases

a linear model may be sufficiently good for estimating the marginal effect of a model with

binary dependent variable. Angrist and Pischke (2009) also maintain the validity of such

approach even for the general limited dependent variable models on the grounds that the

linear coefficient can provide the linear projection coefficients that might be very close to

the actual causal effect. In line with that approach, the above endogenous switching model

can be expressed in linear form as below despite the nonlinear nature of count dependent

variables.

yg = µg + xβg + ug, g = 0, 1 (2.3)

w = 1[zδ + v > 0]

Let the explanatory variables be demeaned, then the ATE is E[y1 − y0] = µ1 − µ0. We

call this model “Linear Full Endogenous Switching Model” (LFES) as a linear counterpart

of NFES. As NFES model nests the NET, LFES does it for “Linear Endogenous Treatment

Model” (LET) under the restriction that β1 = β0 and u1 = u0, whereby the coefficient on w

becomes the ATE that is constant across all individuals. The treatment equation is modeled

as probit as usual.

When the true model is such that the outcome variable is nonnegative, the outcome

equations, i.e. the equations of which dependent variable is yg, in LFES model cannot be

viewed as the error form of conditional expectation. Rather it is the linear projection of y

on covariates and therefore E(yg) = µg since all the covariates are already demeaned. Then

the ATE is the difference between the two intercepts for each regime. The problem is that
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there is no known identifying strategy of those intercepts when the true model is exponential.

For example, one can try using the Heckman correction method (Heckman, 1978) for the

outcome equation. However, since the minimum condition is that E[u|x, v] = E[u|v] =

ρv (Olsen, 1980) and the model does not satisfy the first equality under the exponential

conditional mean, the LFES estimator with Heckman correction does not identify the true

ATE. Although u and x are orthogonal by linear projection, they are not mean independent

under the exponential conditional mean assumption.

Another alternative linear approach is the 2SLS that does not explicitly model the two

distinct regimes. As it was already shown by Angrist et al. (1996), the coefficient on w in

the regression without any other covariates will identify the Local Average Treatment Effect

(LATE). With covariates, the coefficient on w identifies the weighted averages of LATE for

each covariate cell (Hirano et al., 2000; Mealli et al., 2004). Although LATE will generally

be different from ATE, Angrist and Pischke (2009) support its usefulness on the grounds

that it does not require any distributional assumptions and its estimates end up being very

similar to ATE estimated by nonlinear modeling. In later sections, we will see the validity

of this claim through simulations.

Instead of applying the 2SLS method, one can make use of the fact that the endogenous

treatment variable is binary. Thus the probit model can be used for the first stage. Let

us call this the “Linear Endogenous Treatment (LET)” model and it is obvious that it is a

special case of LFES model with the restriction that β1 = β0 and u1 = u0 in equation (2.3).
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2.3 Estimation

Various estimation methods for NFES models are presented in this section. Based on the

estimating equations in Terza (1998), the estimation methods for NFES are discussed below.

2.3.1 Full Information Maximum Likelihood

When a binary choice model is used for regime switching, the treatment equation can be

regarded as another structural equation. Specifically we assume that the treatment variable

follows probit model and the outcome variables do Poisson distribution. Let the one-step ML

estimation method under these assumptions be called Full Information Maximum Likelihood

(FIML).

One of the advantages of FIML is that it is the most efficient estimator achieving the

Cramér-Rao bound with correctly specified likelihood function. Also unlike other estimators

that will be discussed below, it estimates all the parameters separately in a single step. (In

other estimators the structural intercept and covariance between ϵ and v are not separately

identified or, even if they are, it requires further steps to do that.) Despite those advantages

it is still computationally burdensome; it might not numerically converge to any meaningful

solution depending on specific data set, and, if ever, it usually takes a lot of time to make

the bootstrapping very awkward. In the case when it needs numerical integration by using

Gauss-Hermite quadrature, the error from approximation can be substantial depending on

the population. The likelihood of FIML estimator is as below. The assumption used is again

that ϵ and v follow trivariate normal.

Proposition 2.1. The joint density function of y and w conditional on the exogenous
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variables is

f(y, w|z) =

[
1√
π

∫
R
f(y1|z, w = 1,

√
2σ1ζ1)Φ

∗(
√
2σ1ζ1) exp(−ζ21 )dζ1

]w

·

[
1√
π

∫
R
f(y0|z, w = 0,

√
2σ0ζ0)

(
1− Φ∗(

√
2σ0ζ0)

)
exp(−ζ20 )dζ0

]1−w

,

where

Φ∗(
√
2σgζg) = Φ∗(ϵ) = F

[
zγ + (σga/σ

2
g)ϵ√

1− (σga/σg)2

]

Proof The basic proof was given in Terza (1998) and its extention to the NFES model is

given in Appendix A. �

The function f(·) denotes the used conditional distribution; it is usually either Poisson or

NegBinII. The above equation is a function of ζ that is being integrated out; the integration

will be computed by Gauss-Hermite quadrature method in actual estimation.

2.3.2 Quai-Maximum Likelihood Estimator

Unless the distributional assumption used in FIML are correct, the FIML estimator might

not be consistent; this is a cost of FIML in exchange for efficiency. By the way there

is another method called Quasi-Maximum Likelihood Estimator(QMLE) that trades the

efficiency with robustness by using weaker condition that only the conditional expectation

function (CEF) is correctly specified. As long as the used likelihood is in the class of linear

exponential family, and the CEF is correctly specified, the estimator is consistent even if

the whole likelihood function is not correctly specified (Gourieroux, Monfort and Trognon,

1984). Given the model in equation (2.1), a natural way to estimate might be running QMLE
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or Nonlinear Least Squares (NLS) by using the E(yg|x, ϵg). However, it does not give an

estimable equation due to the ignorance of ϵg; the unobserved variable needs to be removed

by integrating out from the conditioning set of that CEF. By using the fact that ϵ and v are

correlated, one can construct E(y|z, v).

E(yg|z, v) = exp

(
αg +

1

2
σ2g(1− ρ2g) + xβg + ρgσgv

)

Conditional on z, v determines the value of w. Since z, w makes a sparser σ-field than z, v

does, by law of iterated expectation,

E(yg|z, w) = exp

(
αg +

1

2
σ2g(1− ρ2g) + xβg

)
E[exp(ρgσgv)|z, w]

Thus E(y|z, w) can be expressed by using only the observable variables z, w. Then the

estimating equation is obtained as

E(y|z, w) = w ·

[
exp

(
α1 +

σ21
2

+ xβ1

)Φ(zδ + ρ1σ1)

Φ(zδ)

]

+(1− w) ·

[
exp

(
α0 +

σ20
2

+ xβ0

)Φ(−(zδ + ρ0σ0))

Φ(−zδ)

]
, (2.4)

where the composite intercepts and βg are identified. As was already seen in equation (2.2)

these parameters are sufficient for identifying ATE. A detailed derivation of the above es-

timating equation can be found in Appendix B. One can run a QML estimation using the

above CEF. A distributional assumption on y is needed as in FIML; the difference is that

FIML models yg to follow certain distribution with E(yg|z, ϵg) as CEF, whereas QMLE does

it with E(y|z, w). The integration does not appear in Poisson likelihood based on E(y|z, w)
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because the unobservable was already got rid of and the correction term does that role in-

stead. Both FIML and QMLE relies on correctly specified conditional mean for consistent

estimation of parameters. However, the conditional mean in QMLE, i.e., E(y|z, w), is ex-

pressed by all observable variables that makes the QMLE likelihood simpler than FIML. One

can run a QMLE by using a conditional distribution with the mean E(y|z, w). Specifically

two step method can be employed where the first stage probit estimates are substituted in

the correction terms. It does not, however, have to be carried out sequentially by two steps;

they can be estimated by a single step procedure where all the necessary parameters for

ATE are separately identified (Wooldridge, 2011). However, as Hellström and Nordström

(2008) and Chapter 1 have shown, the single step ML method for estimating ATE in linear

endogenous switching model is relatively less efficient in finite sample; it will be examined

in the sequel whether that is still the case in this nonlinear model with count dependent

variable.

2.3.3 Nonlinear Least Squares Estimator

The above QML method is run by using a likelihood in linear exponential family based on

the condition that the conditional mean function is correctly specified. By the way given

the correctly specified conditional mean function it is also possible to use Nonlinear Least

Squares (NLS) method. This NLS can also be viewed as a method of moment estimator. Let

us write the equation in additive form with the correctly specified conditional expectation

as

y = E[y|z, w] + e,
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where E(e|z, w) = 0 by definition. The true parameter values are such that it minimizes

E[y − E(y|z, w)]2 and the estimation can be performed by sample analogue. Since the

conditional mean contains the correction terms, it should be estimated through the first

stage probit. Under some regularity conditions this approach gives a consistent estimator.

See Wooldridge (2010, Chapter 12) for detailed discussion.

On the other hand this NLS estimator can also be interpreted as method of moment

estimator. From the minimization problem the true parameters satisfy the first order condi-

tion E(dE(y|z, w)/dθ× e) = 0 which can be a moment condition with the instrument vector

dE(y|z, w)/dθ. By the fact that E(e|z, w) = 0 along with law of iterated expectation, it can

be easily shown that any function of instruments can also be a good instrument. There-

fore we have infinitely many possible instruments that can serve to increase the asymptotic

efficiency of parameter estimators.

2.3.4 Weighted Nonlinear Least Squares Estimator

We have seen above that NLS with correctly specified conditional mean gives consistent

estimator under some regularity conditions. Also it became clear that the NLS estimator

can also be viewed as a method of moment estimator, from which one can construct in-

finitely many valid instruments and moment conditions. In order to avoid poor finite sample

performances due to overidentifying restrictions (Altonji and Segal, 1996; Ziliak, 1997), one

can resort to the optimal IV approach (See Wooldridge (2010, Chapter 8)). This can be

done in this case by dividing the instrument by conditional variance; the estimator using

E(dE(y|z, w)/dθ × var[y|z, w]−1 × e) = 0 as moment condition is more efficient than NLS

in the previous section.

One can also draw almost same conclusion by using the weighted nonlinear least squares
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(WNLS) approach, in which both sides of the error form equation is divided by the square

root of an arbitrary function v(z, w, γ) with nuisance parameter γ. Then the first order

condition becomes E(dE(y|z, w)/dθ×v(z, w, γ)−1×e) = 0. This WNLS estimator is consis-

tent under correctly specified conditional mean and identification condition; see Wooldridge

(2010, p. 411). Note that the difference between moment condition for optimal IV approach

and first order condition in WNLS is whether the original instrument is divided by var[y|z, w]

or by an arbitrary function v(z, w, γ). Under the condition σ2v(z, w, γ) = var[y|z, w] for some

constant σ2, the generalized information matrix equality (GIME) holds and the WNLS es-

timator becomes efficient; if σ2 = 1 then this essentially restates the efficiency result from

optimal IV. What if σ2v(z, w, γ) ̸= var[y|z, w]? Then the inference has to be made robust

due to the failure of GIME. Having said that, the consistency result still holds under the

assumption of identification condition and correctly specified conditional mean. Under the

assumption that y|z, w, ϵ follows Poisson distribution, Terza (1998) found correctly specified

conditional variance var[y|z, w]. If should also be noted that if the Poisson assumption fails,

then the conditional variance will be misspecified and robust inference is called for.

Estimation will be carried out by three steps. The correction term is estimated in the

first step and the structural parameters are estimated in the second step from which the con-

ditional variance is estimated. The last third step again estimates the structural parameters

by using the conditional variance estimated in the earlier step. Terza (1998) has proposed

two approaches to estimating the conditional variance. Among those, the regression based

method will be used in this paper since it is computationally easier to implement. The

derivation for NFES model under the assumption that y|z, w, ϵ follows Poisson is given in
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the Appendix C that turns out to be

var[y|z, w] = wδ1

(
δ1(exp(σ

2
1)L1,2−L

2
1)+L1

)
+(1−w)δ0

(
δ0(exp(σ

2
0)L0,2−L

2
0)+L0

)
, (2.5)

where δg = exp(αg + σ2g/2 + xβg), L1,2 = Φ(zδ + 2ρ1σ1)/Φ(zδ), L1 = Φ(zδ + ρ1σ1)/Φ(zδ),

L0,2 = Φ(−zδ−2ρ0σ0)/Φ(−zδ), and L0 = Φ(−zδ−ρ0σ0)/Φ(−zδ). Regression based method

estimates the σ2g that will be used to compute the conditional variance for WNLS. If the

Poisson assumption is true, then the GIME is applicable. Otherwise we need robust inference.

In any case, the parameter estimators are consistent under the regularity conditions given

above.

2.4 Asymptotic Distributions

The asymptotic distribution of FIML estimator is straightforward. Given the likelihood func-

tion in proposition 2.1, the score and hessian will be constructed as usual. If the multivariate

normal assumption is correct and so is the likelihood function, then the asymptotic variance

will be simplified. The disadvantage of FIML is that the parameters are not consistent any

more when the likelihood function is misspecified.

Now consider theWNLS estimator. The objective function is (y−E[y|z, w])2/2·var[y|z, w],

where E[y|z, w] and var[y|z, w] are from equation (2.4) and (2.5). Ignoring the first stage er-

ror, the asymptotic distribution can be written under the condition var(y|z, w) = v(z, w, γ)

as (See Wooldridge, 1997)

√
n(θ̂ − θ0) −→

d
N
(
0, [E

(
h(z, w, y, θ)

)
]−1
)
,
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where

E[h(z, w, y, θ)] = E

[
∇θm(z, w, θ)∇θm(z, w, θ)′

v(z, w, γ)

]
, (2.6)

and m(z, w, θ) = E[y|z, w].

Now consider the asymptotic distribution of PQMLE. The likelihood function is con-

structed using the Poisson distribution with the conditional mean in equation (2.4). Then

the asymptotic distribution is

√
n(θ̂ − θ0) −→

d
N
(
0, E[h(y|z, w, θ0)]−1E[s(y|z, w, θ0)s(y|z, w, θ0)′]E[h(y|z, w, θ0)]−1

)
,

where

E[s(y|z, w, θ0)s(y|z, w, θ0)′] = E

[
∇θm(z, w, θ)(yi −m(z, w, θ))

qvar(yi)

× (yi −m(z, w, θ))∇θm(z, w, θ)′

qvar(yi)

]
E[h(y|z, w, θ0)] = −E

[
∇θm(z, w, θ)∇θm(z, w, θ)′

qvar(yi)

]

The denominator qvar is the variance implied by the used distribution function in QML.

For WNLS the denominator of the expected Hessian was the conditional variance of y,

whereas qvar, that of expected Hessian and score for PQML, is the variance implied from

the distribution used for quasi-likelihood, i.e. the conditional mean for Poisson QMLE. The

asymptotic variance of PQMLE can be simplified under the condition

V ar[y|z, w] = σ2 · qvar, (2.7)

This condition says that the true conditional variance is proportional to the variance implied
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in the quasi-likelihood. Generalized Conditional Information Matrix Equality (GCIME)

holds under this condition that gives

√
n(θ̂ − θ0) −→

d
N
(
0, −σ2[E

(
h(y|z, w, θ)

)
]−1
)
.

By plugging (2.7) in (2.6), it is obvious that the two asymptotic distribution for WNLS

and PQML are equivalent. Having said that, without the condition (2.7), PQML might be

less efficient than the WNLS. Of course this conclusion is true in as much as the first stage

estimation error is ignored.

Now consider our model with the estimating equation as in (2.7). Although the de-

pendent variable yg conditional on x and ϵg follows the Poisson distribution with the

mean E(yg|x, ϵg) = exp(αg + xβg + ϵg), it does not necessarily mean that yg conditional

on x and w follows Poisson distribution with the mean E(yg|z, w) = exp(αg + σ2g/2 +

xβg)Φ(f(zδ))/Φ(zδ). To see this point, mean and variance conditional on z, w are

E[y|z, w] = wδ1L1 + (1− w)δ0L0

var[y|z, w] = wδ1

(
δ1(exp(σ

2
1)L1,2 − L21) + L1

)
+ (1− w)δ0

(
δ0(exp(σ

2
0)L0,2 − L20) + L0

)

It is obvious that they are neither same nor proportional by a constant. Therefore the

condition for GCIME is not satisfied and the PQML is asymptotically less efficient than

the WNLS. Nevertheless, it should also be noted that the first stage estimation error is

ignored in the asymptotic distribution above, that the small sample behavior can be different.

The asymptotic distribution of the estimators for structural parameters that accounts for

first stage error is straightforward with additional terms on the score functions. Then this
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adjustment make it impossible to use GCIME and creates a sandwich form variance matrices

both for WNLS and PQMLE.

The discussion so far has been about the structural coefficients inside the exponential

function. When our quantity of interest is ATE, which is a nonlinear function of structural

parameters, the asymptotic approximation of the variance matrix can be obtained by delta

method. Recall that the ATE is estimated as in equation (2.2). Terza (2009) derived the

following result.

Proposition 2.2. Along with the regularity conditions for Uniform Weak Law of Large

Numbers and asymptotic normality, suppose that the nonlinear functions g1(x, θ) and g0(x, θ)

are continuous and differentiable at θ0 and that their first derivative with respect to θ sat-

isfies all the conditions in Uniform Weak Law of Large Numbers for objective function. Let

the expectation of their derivatives with respect to θ be denoted by G1 and G0. Then the

asymptotic distribution of ATE estimator in equation (2.2) is

√
N(ÂTE − ATE) →d N(0, V ),

where

V = E[T ]2 + (G1 −G0)A
−1
0 B0A

−1
0 (G1 −G0)

′

and

g1(x, θ0) ≡ exp(x, β1) , g0(x, θ0) ≡ exp(x, β0)

T ≡ g1(x, θ0)− g0(x, θ0)−
(
E[g1(x, θ0)]− E[g0(x, θ0)]

)
Proof See Terza (2009). �
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In the above, T is the demeaned “ATE conditional on x”, which is a population property

that is not related to particular estimator being used. Incidentally if the structural param-

eters are estimated by two-step method, the terms B0 and si(θ0) can be easily adjusted by

using the result from two-step M-estimator (See Wooldridge, 2010, Chapter 12).

Under this setting if the two exponential terms, i.e. g1(x, θ0) and g1(x, θ1), are substan-

tially different along the values of covariates x, then the variance of conditional ATE will

also be large. Therefore one can have a large variance of ATE estimator to the extent that

the values of β1 and β0 are different. A lesson from this argument is that ATE estimator

by NFES might become less accurate when there are substantial inequality of the treatment

effect from person to person. On the other hand, there also exist the set of parameters with

which the variance of ATE estimator by NFES can be arbitrarily small. The extreme case

is when the conditional mean for each regime are identical, where the variance of T as well

as the covariance term becomes zero.

The above discussion shows that the consistent NFES method can have larger or smaller

variance depending on the coefficient values. As the conditional mean of two regimes are

similar, then one can expect that ATE estimator by NFES might be very efficient, but when

they are very much different, then it might have larger variance.

2.5 Monte Carlo Simulation

As it was already discussed in earlier sections, the NFES and LFES models are thought to

be consistent for ATE. Therefore the purpose of Monte Carlo simulation is to compare the

linear and nonlinear models for estimating ATE. Incidentally other alternative estimators
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including LET, estimated by 2SLS and Heckit, and NET model that has acquired wide

popularity needs to be examined in terms of consistency.

Specifically the main objectives of simulation study are: (1) to present the possibility that

NFES estimators can be more efficient than LFES under small variance of T , (2) to find out

how severe the bias in one-regime model is compared to that in two-regime model, and (3) to

check how robust the NFES model is to various distributional misspecifications. In addition

to that, it might also be interesting (4) to clarify the advantage of one-step estimations over

two-step ones in nonlinear models, (5) to compare Poisson QMLE and WNLS in terms of

efficiency, and (6) to find out the advantage of FIML estimator.

2.5.1 Data Generating Processes

For each simulation session, the number of replication is 1000, and the sample sizes are 1000,

3000 and 5000. There will be five Data Generating Processes (DGP). For all the DGPs the

following setup will commonly be used.

x ∼ uniform[−5, 5]

z ∼ Binomial(1, 1/2)

w = 1[.15− 0.05x− 0.3z + v ≥ 0]

E(y1|x, ϵ1) = exp(β10 + β11x+ ϵ1)

E(y0|x, ϵ0) = exp(0.1 + β01x+ ϵ0),

where the errors follow trivariate normal distribution. The treatment equation is designed

so that the numbers of observation for each regime are approximately same. The population
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ATE is set equal to one. For the errors, the covariance between ϵ1 and ϵ0 was set equal to 0.5

and the variances of all the errors are set equal to one. What is important is the covariances

between ϵg and v, for which 0.4, 0.5 and 0.6 were used. Below are the descriptions of data

generating processes used for each session.

DGP 0 : β10 = 0.564, β11 = 0.01, β01 = 0.1, yg ∼ Poisson(E[yg|x, ϵg])

ϵg, v ∼ trivariate normal

This is the ideal case for the NFES estimators. Since the data generating process is nonlinear,

the value of population ATE cannot be computed in closed form; rather the claimed true

value is computed numerically. Using Stata R⃝, I tried to find the value of the intercept in

regime one such that the difference between one and the numerically computed
∑

(y1−y0)/N

is less than 0.001 with a million observation from the above data generating process. The

value of intercept in regime one, i.e. 0.564 was found in this way. The dependent variables

y1 and y0 follow Poisson distribution for given conditional mean. The other DGP’s for

misspecified distribution will be slight modifications of this basic [DGP 0].

There are three distributional assumptions in the above data generating process: 1)

the dependent variable follows Poisson, 2)the unobservables in conditional mean function

follow the normal distribution, and 3)the selection error follows standard normal, i.e. the

treatment is probit. It might not be very surprising even if the NFES estimator performs

well under [DGP 0] on which the model is based. To be fully reliable and useful the nonlinear

models have to show their validity under misspecified distributions also. This is particularly

important because it has been a major source of critics in favor of simpler linear models that

the nonlinear models rely on strong distributional assumption (Angrist and Pischke, 2010).

There have been some papers addressing this issue: Romeu and Vera-Hernández (2005)
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use flexible functional form for the conditional probability of counts by using polynomial

Poisson expansions. Masuhara (2007) models the joint distribution of errors by Hermite

polynomials. Choi and Min (2009) use Johnson’s SU -normal distribution that is shown to

outperform the normal model in terms of consistency. And Deb and Trivedi (2004) use latent

factor structure and simulated likelihood methods to deal with nonnormality. Although those

methods provide very nice alternatives to the models based on normal assumption, it will

be shown below that the nonlinear model with normality still in many cases performs better

than the linear IV methods.

To check the robustness of NFES, I designed some other data generating processes such

that the above distributional assumptions are violated one by one.

DGP 1 : β10 = 0.564, β11 = 0.01, β01 = 0.1, yg ∼ uniform[0, 2E[yg|x, ϵg]]

ϵg, v ∼ trivariate normal

In [DGP 1], discrete uniform distribution was employed in place of the Poisson. It is set

such that the left and right end points of the support are zero and two times the conditional

mean.

DGP 2 : β10 = 0.564, β11 = 0.01, β01 = 0.1, yg ∼ Poisson(E[yg|x, ϵg])

ϵg ∼ bivariate normal, v ∼ (χ2(5)− 5)/
√
10

In [DGP 2], for the standard normal selection error, a skewed distribution (χ2(5)− 5)/
√
10

was used2. The mean and standard deviation are the same as the standard normal. This

2 A correlated trivariate distribution in which two of the errors follow standard normal
and the other follows centered χ2 distribution can be properly modeled by copula density
functions. Nevertheless the purpose of present simulation is not finding a multivariate dis-
tribution with parameters that uniquely determines a specific multivariate distribution. In
DGP used above, each random numbers were generated first by creating many standard
normal random numbers as “basis” variables. The dependence structure is then created
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probit assumption was important since it was this very assumption that made it possible to

write the correction terms as the fractions of two normal cumulative density function. The

conditional mean E[y|x, z] is misspecified without this.

DGP 3 : β10 = 0.516, β11 = 0.01, β01 = 0.1, yg ∼ Poisson(E[yg|x, ϵg])

ϵg ∼ (χ2(20)− 20)/
√
40, v ∼ normal

In [DGP 3], the case where the structural errors follow (χ2(20)−20)/
√
40 instead of standard

normal is considered. When the structural errors are not normally distributed as in [DGP

0], it directly changes the distribution of dependent variables and thus the population ATE.

To ensure that the ATE is equal to one, the constant term in regime 1 is changed to 0.516.

Normality of ϵg is used in the process of getting rid of ϵg from the conditioning set. Thus

a violation of this assumption causes the composite intercept misspecified. Only under

this assumption, we could obtain a nice result that the composite intercepts in estimating

equation E[yg|x, w] and that in E[yg|x] are identical. Therefore a violation of normality

will make ATE estimator inconsistent. The degrees of freedom in chi-square were chosen so

that the comparison between various estimators easy and meaningful to the extent that they

are shown to be consistent converging to the true value. It was found that the results for

structural errors were more sensitive to distributional misspecification than it is for selection

error. Also when the degree of freedom is as high as that used in selection, a lot of cases

the PQML estimator fails to converge to give nice estimates. One can see from the results

below that this choice of degrees of freedom is indeed good for comparison purpose without

too many extreme outcomes.

by using some common “basis” such that the linear combination gives intended correlation
structure. The errors in [DGP2] and [DGP3] are generated in this way. Stata codes will be
provided upon request.
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In [DGP 0], the variance of individual treatment effect, i.e. T ≡ g1(x, θ0) − g0(x, θ0) −(
E[g1(x, θ0)]−E[g0(x, θ0)]

)
was approximately 18.9. The asymptotic distribution in earlier

section says that the variance of ATE estimator is an increasing function of E[T 2]. [DGP 4]

is designed to show this.

DGP 4 : β10 = 0.865, β11 = 0.001, β01 = 0.35, yg ∼ Poisson(E[yg|x, ϵg])

ϵg, v ∼ trivariate normal

In the above process, E[T 2] is approximately 52.5. In order to create higher variance of

individual treatment, the vertical distance between two conditional mean function at a fixed

x has been adjusted without changing the true ATE value.

2.5.2 Main Results

The results for [DGP 0] is tabulated for all the discussed estimators except for FIML in

Tables E.1-E.3 for each correlation. The FIML results are separately given in Table E.4. For

other DGPs, only 2SLS, LFES (Heckit), NFES (2PQMLE) and NFES (WNLS), which are

the focus of our discussion, are tabulated in Tables E.5-E.7.

First, compare LFES with NFES under various estimation methods with small T . Tables

E.1-E.3 present the [DGP 0] results with E[T 2] = 18.9 that are relevent for this purpose. For

any correlation, it can be seen that NFES are extremely inefficient and their RMSEs are very

large compared to LFES under the sample size 1000. This is predicted by the asymptotic

distribution; the variance of T in nonlinear estimator is still prevalent in small sample.

However, such constant term rapidly disappears as the sample size increases. Also the results

in terms of median and mean absolute deviation (MAD) is not too bad; the medians of NFES

are closer to one than those of linear models. In addition to that, although the Monte Carlo
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standard deviations of NFES were very large, the degrees of dispersion measured by MAD

are smaller than those of linear models, from which one can conclude that the large amount of

RMSE was caused by some outlying estimates with extreme values. Therefore the measures

that are less affected by the extreme values give more favorable figures for NFES. At any

rate, such extreme estimates disappear as the sample sizes grow larger. With n = 5000,

the mean approaches to the true parameter value sufficiently close, and their Monte Carlo

standard deviations are smaller than those of linear models let alone median and MAD. In

sum, ruling out seemingly absurd estimates, when the variance of T is small, NFES model

does better than the linear models in terms of both consistency and efficiency particularly

as the sample size grows larger. On the contrary, the results under E[T 2] = 52.5 in Table

E.8 looks very different. Even under large sample size, NFES estimators are less efficient

than LFES. As seen in Proposition 2.2, the asymptotic variance of NFES estimators can

be arbitrarily large as the variance of T diverges to infinity. However, the results in Tables

E.1-E.3 imply that there can be the cases where NFES becomes more efficient than linear

estimators when the individual treatment effect is not substantially different from person to

person.

Incidentally it has been claimed that LATE and ATE obtained by linear IV and nonlinear

methods respectively might not be substantially different (Angrist and Evans, 1998; Angrist,

2001; Angrist and Pischke, 2009). Nevertheless the simulation results indicate that their

finite sample distributions and the estimates can be very different with each other. This

issue will also be revisited in next section.

Second, we have seen in the above that the NFES estimator is a very useful alternative

to LFES when the variance of T is small. However, it must be shown further that the perfor-

mances of NFES estimators are not very sensitive to the assumptions on which it is based.
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If the said nice properties of NFES are valid only under the ideal assumptions, its usefulness

will be much limited. The results of additional simulations under wrong distributions men-

tioned in previous subsection is tabulated in Tables E.5-E.7. In those tables, only PQML,

WNLS, and linear estimators that are still thought to be consistent were considered.

To begin with, see the case where the discrete uniform distribution was used in the

place of Poisson, i.e., under given E[yg|x, ϵg], the support is [0, 2E[yg|x, ϵg]]. Since the

distributional misspecification on dependent variable does not affect the consistency results

of PQML and WNLS, the point of interest should be the efficiency of NFES compared to

linear models. The results in Table E.5 show that the performances of linear and nonlinear

models are not very different from the ones in correct distribution. Regardless of ρ, NFES

model is better than the linear models in terms of efficiency as well as consistency. As in

the correct distribution case, despite some extreme values of estimates in small samples, the

performance of NFES measured by median and MAD is still better than the linear models.

Ruling out the seemingly unacceptable estimates, it can be said that NFES model is still

more efficient than linear models even in small samples. Therefore NFES is robust about

the distributional assumption on dependent variable.

Now consider the case where the true treatment equation is not probit. To that end,

a skewed random variable using χ2(5) was used. This is important because the correction

terms that we used for PQML and WNLS were derived under the probit assumption. When

violated, then the conditional mean function becomes misspecified and they lose the consis-

tency property. However, the results in Table E.6 show that their behaviors are not very

different from the cases under correct distribution. Although the performances of NFES in

terms of mean and variance are worse than the linear estimators in small samples, they are

better in terms of median and MAD. In larger samples they are a lot better by all criteria.
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Although a departure from probit misspecifies the conditional mean, the impact is almost

negligible.

Lastly, consider the cases where the distributions for unobservables are skewed. The

advantage of normal distribution assumption was that it leads to same intercept both in

estimating equation (2.7) and in equation (2.2) and thus the estimates from switching re-

gression could directly be used for ATE estimation. Therefore under misspecification, the

switching regression estimates do not give correct information for ATE, which leads to incon-

sistency. The results for misspecified unobservables are given in Table E.7, where the Monte

Carlo mean of NFES model is farther away than the other cases as expected. However, it

should be noted that it is not only the nonlinear model but also the linear models that are

under strain with misspecified errors. Monte Carlo means for both linear and nonlinear mod-

els are also farther away from the true value and their deviation is also noticeable. In other

words, skewed error moves the means away from the true value and makes the estimates less

accurate by increasing the variance. However, the NFES model tends to have smaller RMSE

in larger samples mainly due to its advantage in efficiency. The efficiency gain is particularly

notable when it is measured by MAD; in larger samples the MAD value is merely about half

as much as the ones of linear models. The WNLS is even more efficient than the PQMLE.

Third, from the results in Tables E.1-E.3 and E.5-E.6, the performances of 2SLS and

NFES estimators are more or less the same. As the correlation gets higher, their finite

sample biases grow bigger. However, 2SLS is diverging faster than the NFES, which implies

that the NFES estimators are not only robust to distributional misspecification on y and

v, but also suffering less to the higher degree of endogeneity than 2SLS is. The only case

of concern is when the structural error ϵ is misspecified, where both 2SLS and NFES are

diverging even faster than in the previous cases. However, unlike the above cases, NFES
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are affected more than 2SLS under higher correlation. Nevertheless due to the advantage

in efficiency the RMSE of NFES in larger sample is still smaller until the correlation is up

to 0.5. Even with 0.6, the RMSE of WNLS is still smaller. In sum, NFES performs better

than the 2SLS unless the structural errors are both misspecified and highly correlated with

the selection error at the same time.

To better understand the simulation results, the sampling distributions for some selected

estimators and DGP are graphically shown in figures. Figure G.1 displays the results under

ideal cases [DGP 0] where the normality conditions hold. Among many estimators with

different sample sizes, only 2SLS, NET(WNLS) and NFES(WNLS) with 5000 sample sizes

for different correlation values are listed. The blue line juxtaposed with the histogram is

nonparametric PDF estimate generated by Epanechnikov kernel with an optimal half-width.

It can be seen from the figure that the NET estimator3 behaves poorly in terms of both

consistency and efficiency as anticipated in earlier sections. Even under large observation

of 5000, sampling mean is very different from those of other estimators. Under multivariate

normality, NFES is clearly consistent and efficient in large samples. For misspecified cases

[DGP 1] and [DGP 2], it is clearly noticeable, in Figure G.2 and Figure G.3, that the NFES

estimator is consistent and more efficient than 2SLS at large sample sizes. Figure G.4 depicts

the sampling distribution with skewed structural error [DGP 3]. Although it creates bigger

finite sample biases for those two estimators, the efficiency loss of 2SLS is more pronounced

than in other misspecified cases. An important lesson from these figures is that the violation

of distributional assumptions on which nonlinear models rely can also cause disadvantage

for 2SLS that is not explicitly seen in traditional asymptotic analysis.

3 The estimators based on NET model will simply be called NET estimators. Similarly
for NFES estimators.
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2.5.3 Some Other Results

In addition to the main results, here are some interesting, but off the main topic results.

First, examine how large the biases of NET estimators are when the true model is of NFES.

It can be seen in Tables E.1-E.3 that neither by mean nor by median do the NET estimators

converge to the true value. It seems that the asymptotic biases of 1PQML and WNLS

estimators are considerable; it is clear that a single-regime estimation is worse than simple

linear models when the true model is of two-regime. Moreover, the seemingly large difference

of Monte Carlo means of 2PQMLE and NLS reflects that those two estimators are not even

estimating same agreed upon parameters. Gourieroux, Monfort and Trognon (1984) show

that the true parameters are consistently estimated when the conditional mean is correctly

specified. Also under the same condition, the NLS estimator also does the same thing since

it is the sample analogue of appropriately defined moment conditions. By those argument,

correctly specified conditional mean guarantees the convergence of those two estimators to

a same quantity. In other words, a substantial difference even with large sample size is

indicative of conditional mean misspecification. Therefore any parameter restriction in M-

estimator should be used with caution.

Second, it can be seen in Tables E.1-E.3 for nonlinear estimators, the one-step Quasi-

LIML, here NFES(1PQML) and NET(1PQML), is less efficient than the two-step methods,

here NFES(2PQML) and NET(2PQML), in small samples. Such result was already re-

ported in Chapter 1 for linear models where the dependent variable in structural equation

was continuous; present simulation also shows that the finding is still valid when the de-

pendent variable is nonnegative count variable. The results support the claim that two-step

estimation procedure gives more efficient estimator than one-step.
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Third, compare the 2PQML and WNLS for NFES model in Tables E.1-E.3. As it was

already mentioned above, the asymptotic distribution of QMLE and WNLS are very simi-

lar. Under the condition var(u|x,w) = σ2qvar, their asymptotic distributions are the same.

Simulation results show that the performances of those two estimators are indeed very sim-

ilar. Nevertheless it is also clearly noticeable that WNLS is slightly more efficient than the

2PQML, which may be due to the fact that the GCIME does not hold for the 2PQML

estimator.

Forth, according to the results for FIML that were tabulated in Table E.4, the FIML

estimator is considerably more efficient than the others. Nevertheless it does not seem to

converge well to the true parameter value, which may have resulted from the quadrature ap-

proximation error. To make this point clearer, another set of simulations using two different

numbers of abscissas, i.e. 8 and 16 were run; more abscissas clearly help the mean approach

to the true value. Incidentally the variances are not affected by number of abscissas. One

can have more accurate FIML estimator by increasing number of abscissas, but it would take

considerable amount of time in actual applications. One other feature that makes the FIML

less attractive is that the PQML and WNLS quickly catches up FIML in terms of efficiency

as the sample size grows bigger. Although FIML is the most efficient among all other es-

timators, the RMSE for n = 5000 is larger than PQML and WNLS due to the inaccuracy.

On the other hand under small sample sizes the linear estimators do as nicely as FIML.

Also using FIML becomes even less attractive when the standard error has to be found by

bootstrapping; it may take too much time to complete a single session of bootstrap. There

are other disadvantages too; since FIML heavily relies on the distributional assumption, any

violation of them will cause the estimator inconsistent. In sum, FIML does not have any

clear advantage over PQML and WNLS.
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2.6 Empirical Application

Primary education may increase the human capital and lifetime wage and thereby increase

the opportunity cost of having a child (Becker and Barro, 1988; Barro and Becker, 1989),

and it may help reduce the child’s mortality rate and hence let mothers have fewer children

to reach a desired level of family size (Lam and Duryea, 1999; Schultz, 1994a,b). Other than

that an enhanced literacy can help them use contraceptive method more effectively (Rosen-

zweig and Schultz, 1985, 1989). Based on those theoretical background, we are interested on

how much the primary education reduces the number of children in Botswana. The sign of

the effect is certainly presumed to be negative. Moreover, those who got primary education

may have better health information for their children, which may possibly reduce the child

mortality. Then we can also expect that the difference between ceb and children might be

smaller for those who got the primary education. In this case the treatment effect would be

greater when ceb was used as the dependent variable.

The data used in this empirical analysis is from Wooldridge (2010, Chapter 21). The

variables description and descriptive statistics are given in Tables E.9 and E.10. There was

a huge increase of enrollment rate in Botswana during 1970s. The female enrollment rate

in early 1970s were roughly 60% and kept increasing for the whole decade until it reached

nearly 100% in 1980(UNESCO, 2011). Due to that increase in enrollment, in 1989, the year

this data set was collected, more than half the total female population had at least seven

years of primary education. Thus this data set captures the ideal time point where there

were even amount of control and treatment groups.

The dependent variables under analysis are children (number of living children), ceb

(number of total children born) and mort (number of dead children) and the covariates are
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age, agesq, evermarr (ever married), urban (living in urban area), electric (has electricity),

tv (has a TV) and radio (has a radio). The variable of interest, i.e. the treatment variable is

educ7 (finished primary education) and the instrument variable is frsthalf (born in first half

of year). The correlation between educ7 and frsthalf is -.106. We are interested in the effect

of women’s primary education on the number of children that she ever has(ceb) and that

of living children(children). Although we are trying all the linear and nonlinear methods

for estimating the ATE of education on fertility, the nonlinear estimators are expected to

perform better in two reason: First, the outcome variable is typical count variable with

small natural numbers and thus modeling the conditional mean as exponential function is

well justified. Second, the ATE conditional on covariates might not be substantially different.

In other words, we would not assume neither substantial difference of causal effects across

different age groups nor any particular time trend.

Table E.12 presents regression results for various models and estimation methods with

children as the dependent variable. In what follows the regime with primary education will

be called regime one with a subscript 1 and the regime without it will be regime zero with a

subscript 0. In Table E.12 first four columns present the estimation results for linear models.

The ATE estimates of LFES(Heckit) is −1.552 but not statistically significant. Although

LET(Heckit) and 2SLS differ only in the first stage regression, the estimates of LET(Heckit)

is almost twice as large as the 2SLS estimate. The LFES(Heckit), LET(Heckit) and 2SLS

give ÂTE with a lot larger magnitude OLS does, which might be an evidence of endogeneity.

It is, however, very hard to get any meaningful conclusion just by seeing the linear regression

results: the only consistent estimator LFES(Heckit) fails to give significant result, and other

estimators of which estimates are significant do not seem to agree with one another.

The next three columns present the results of NET estimators. We already know that
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the NET model does not identity the true ATE unless the single regime restriction is true.

Indeed the ATENET estimates are substantially smaller than the ones from other estimators.

It was also pointed out in Section 3 that each estimator does not even agree with each other

under wrong restriction, which is well demonstrated here; the magnitude of PQMLE and

NLS estimates are very different and they seem to head to different places. The results show

that the ATENET estimate by PQMLE is close to zero and not significant. Although only

NLS gives an estimate weakly significant at 10% level, the magnitude is relatively smaller

than those of linear models; it estimates that the primary education reduces the number of

children by no more than 0.68. Also for semi-elasticity, the PQML estimate does not give

any evidence of effectiveness of primary education. Again only the NLS estimate is weakly

significant reporting roughly 30% decrease of living children. These results seem to mimic

the behavior shown in simulation of last section and it can be an evidence that the NET

model is inappropriate.

The last three (double) columns in Table E.12 list the results of NFES estimators. The

NFES estimates report that the primary education reduces 0.8(PQML) or 1.2(NLS) children.

It is worth mentioning that standard error of NFES estimates are a lot smaller than those of

other estimators, due to which all the three NFES estimates are significant at 1% level. What

is particularly interesting is the fact that the NFES estimates support the validity of 2SLS

estimate by providing similar values. LFES(Heckit) being consistent under probit selection

assumption, it can have higher finite sample bias than the 2SLS when the assumption is

violated as shown in Table E.5. Now can we say with greater certainty that ATE estimates

cannot be substantially different from the LATE by 2SLS as was claimed by Angrist and

Evans (1998) and Angrist and Pischke (2009) for bivariate probit case? As it was already

seen in the simulation results, being similar under weak endogeneity, they start to diverge as

66



the degree of endogeneity becomes higher. Therefore the fact that 2SLS and NFES estimates

are similar would be indicative of relatively weak correlation between selection error v and

structural error ϵ, rather than the validity of the above claim.

The estimated regime one (with primary education) averages
∑ ̂children1/N for three

estimators are 1.264(NLS), 1.499(2PQML), 1.482(1PQML) and those of regime zero (without

primary education)
∑ ̂children0/N are 2.488(NLS), 2.340(2PQML), 2.312(1PQML); from

those values one can compute the semi-elasticities, i.e. -0.49(NLS), -0.36(2PQML), and -

0.36(1PQML). All those estimates are greater in absolute value than the ones from NET

model. From these, it becomes more obvious that the NET estimators give us information

that looks very much different from what was provided by other estimators. Lastly we

can directly test the restriction put on the NET model. One may use the Wald test of

H0 : β1 = β0. The p-values for 2PQMLE and NLS are 0.000 and that of 1PQMLE is 0.001

implying that there actually exist two regimes4. All the above results unequivocally show

that the NET model is not an appropriate model to be used to describe this data set. We

can also test the endogeneity by checking the covariance between v and ϵg. Ignoring NET

model, all the two regime estimators show that the regime one covariance is significantly

positive, whereas the one at regime zero, slightly negative, is not statistically different from

zero. Overall the use of two regime endogenous switching model is well justified.

The above discussion was about treatment effect on the number of living children that

reveals the difference in the desired number of children for each education group. Another

interesting aspect can be the treatment effect on child mortality and those educated mothers

4 Since 2QMLE and NLS use two-step procedure, the asymptotic variance approximation
has to account for the first stage error. One of the advantages of single-step 1PQMLE is that
such first stage error is not present and the inference is straightforward. Although there is
slight difference in the p-values, such trivial difference is not thought to be of any practical
importance.
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are expected to have fewer dead children(Lam and Duryea, 1999; Schultz, 1994a,b). Thus

the treatment effect might be negative. Since a direct estimation yields extreme outlying

estimates for NFES model5, an alternative indirect way of estimation procedure is used.

To that end, another regression with the dependent variable ceb is run and presented in

Table E.13. Then the expected child death at regime g for each individual is computed as

m̂ortig = ĉebig − ̂childrenig. The treatment effect for each observation is then computed

as m̂orti1 − m̂orti0 and their average through the whole population becomes the ATE on

mortality presented in Table E.14. For example, the estimated regime one averages, i.e.∑
ĉebi1/N are 1.402(NLS), 1.697(2PQML) and 1.683(1PQML), whereas those of regime zero∑
ĉebi0/N are 2.890(NLS), 2.680(2PQML) and 2.657(1PQML). The differences in estimated

regime zero averages, i.e.
∑
ĉebi0/N −

∑ ̂childreni0/N are 0.401(NLS), 0.340(2PQML) and

0.345(1PQML) implying that the mothers without primary education lose on average 0.4

children. For those with primary education the quantity is
∑
ĉebi1/N −

∑ ̂childreni1/N of

which numerical values are 0.138(NLS), 0.198(2PQML), and 0.201(1PQML). The implication

is that the child mortality rate is reduced roughly by 0.14 to 0.26 per mother by primary

education. Although the ATE’s on mortality for nonlinear estimators are not significant,

they are still more efficient than the linear ones with an exception of LET(Heckit); the

bootstrap standard deviations of nonlinear estimators are smaller than the linear ones.

5 The 2SLS estimator gives insignificant -.002(.208). Unlike the general results, the NFES
estimators do not give a reasonable estimate; two-step QML estimate is 25.821 with boot-
strap standard deviation 784296.5 by 50 replications. It turns out that predicted values for
dependent variable in regime 1, i.e. m̂orti1 are very volatile; about 10% of the observations
have more than 10 predicted child’s deaths and about 1% have more than 100. Strangely
such phenomenon does not occur in regime zero.
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2.7 Conclusion

The main contribution of this study is to clarify the asymptotic distribution of the ATE

estimator based on NFES model. Unlike other structural parameters, the ATE estimates

are computed by a nonlinear function of the parameter estimates. The estimation error

therefore comes both from the error in parameter estimation and also from the computation

of ATE by the parameter estimates. The asymptotic distribution reveals that each factor

can be written additive separably with a covariance term. The theory predicts that the

efficiency of nonlinear ATE estimator is not taken for granted as in many other nonlinear

cases. However, when the nonlinear estimators are actually more efficient, simulations show

not only that it tends to have smaller finite sample bias, but also that its performance

under misspecified model is not too bad compared with the linear IV or LFES models. The

application shows an example in which this nonlinear methodology can be successfully used.

A nonlinear method is expected to be perform better if the variance of conditional ATE are

not substantial as in the Botswana fertility example.
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Chapter 3

A Two-Regime CRC Model with

Nonnegative Dependent Variable

3.1 Introduction

The Correlated Random Coefficient (CRC) Models that were first introduced by Heckman

and Vytlacil (1998) provided an alternative way to model the individual heterogeneity. The

main focus having been on clarifying the conditions for identifying the parameters of interest

under the presence of CRC since its inception (Wooldridge 1997, 2003, 2005; Card 2001),

more recent development is focusing on the extension to the cases where the support of

dependent variables are of limited nature. Wooldridge (2007) has suggested a method for

estimating Average Partial Effects (APE) where the count dependent variable as well as

random coefficients correlated with variable of interest are present. Cases of interest in this

article are very similar to it except for the fact that a binary variable with counterfactual

causal model is considered as a starting point. Specifically the goal of this paper is to provide

an estimation method for Average Treatment Effects (ATE) when the dependent variable is

count variable and all the covariates have CRC’s that are correlated with the binary variable.

This paper is organized as follows: In Section 2, previous discussion on CRC model will be

reviewed. Section 3 discusses various CRC models proposed so far in the context of ATE.
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Section 4 is the core of this article where the ATE estimation method for Nonlinear Two-

regime CRC model will be provided. Section 5 discusses two specification tests; the test for

endogeneity is designed for detecting the correlatedness of the random coefficients and the

model selection test is for choosing the model between the ones with and without random

coefficients. The method in this article is dependent on some distributional assumptions and

their sensitivity on the estimation performance will be examined by Monte Carlo simulations

in Section 6. Section 7 is an empirical application of this method and the performance of

other competing estimator will be compared. Lastly, Section 8 is concluding remarks.

3.2 Previous Literature

Random coefficients typically arise from a model where an unobserved variable interacts with

one or more observed variables. It then calls for different approaches due to the random

nature of the coefficients on the observed variables. The randomness of the coefficients

makes the conventional partial effect be random, and the quantities of interest are usually

the means of the random coefficients. In other words, we would like to estimate not the

partial effect but the average partial effect. If a regressor is mean independent from the

unobserved variables, then the APE of the regressor can be consistently estimated by using

OLS (See Amemiya, 1985).

Let the unobserved heterogeneity denoted q and the 1×K vector of exogenous variables

x . Then for the case where E[q|x] ̸= 0, even if E[q|x] can be appropriately modeled as a

function of x, the APE of a particular variable in x cannot be consistently estimated as long

as the function contains the x with degree one. In such cases, q needs to be expressed by some

proxy variables that does not contain x to consistently estimate the APE of a variable in x.
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Now let us consider a CRC model where E(q|x) ̸= 0 and proxy variables are not available

as follows. In CRC, no correlation means mean independence, not the usual orthogonality.

y = α0 + (α1 + q1)x+ u

Assume for now that the regressor of interest is exogenous, i.e. orthogonal to the structural

error. Then the model will have the regressor itself inside the composite error, i.e. q1x+ u.

Unlike from the mean independent case, this composite error does not vanish by using

conditional expectation operation and renders the regressor effectively endogenous. Heckman

and Vytlacil (1998) and Wooldridge (2003) have shown that under some assumptions, the

instrumental variables method can be used to consistently estimate α1.

In sum, when there are uncorrelated random coefficients, OLS gives a consistent estimator

under the mean independence of q conditional on regressor. For CRC models, under the

violation of mean independence, even a regressor that is independent of the structural error

u in the population effectively becomes endogenous due to the random part of the coefficient.

In what follows, our assumption is that the regressor is independent with the structural error

for the sake of simplicity. Too restrictive the independent regressor as above might seem to be,

the solutions for the CRC usually work for the nonindependent cases also (See Wooldridge,

2010).

It must be noted that given a particular regressor x, the coefficients on other regressors

can be both random and correlated with x. The first case to consider is the model where the

CRC with respect to a specific regressor is only on that regressor, i.e. the coefficients on all

other covariates are assumed to be constants. The problem with this case is that a usual IV

conditions are inadequate; even if the mean independence between IV and structural error
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and between IV and CRC are established, the orthogonality between that IV and composite

error is not guaranteed. In order for the IV to be effective, it has to satisfy an additional

condition that E[q1x|z] is constant (Wooldridge, 2003).1 Although this condition is not very

strong, its validity may be put in question when x is not continuous(Card, 2001; Wooldridge,

2005).

For the cases where the conditions for IV are not met, there is still another method

that uses control function approaches with stronger assumptions. Heckman (1976) provides

a solution for binary regressor, whereas Garen (1984) does it for continuous one. See the

equation below.

y1 = η1 + z1δ1 + a1y2 + y2z1γ1 + u1, (3.1)

where z1 is 1×L1 vector of exogenous variables and δ1 and γ1 are L1×1 coefficients vectors.

The common convention is that Greeks are constant and Romans random. Regressors may

or may not have random coefficients which may or may not be correlated with the structural

error. The variables z1 that have constant coefficients without any correlation with u1 will

be called exogenous variable throughout this article. And any variable that is correlated with

structural error or at least has correlated random coefficient will be called endogenous vari-

able; for instance in the above equation the endogenous variable y2 not only has correlation

with u1, but also has CRC.

One can also enrich the model by introducing some interaction terms between exogenous

and endogenous variables such as y2z1 in equation (2.1). Let us put some restrictions here;

suppose that y2 is binary endogenous variable and that the coefficient of the interaction

1 Although this condition is for the IV estimation in CRC models, it is still needed
for a random coefficient that is uncorrelated with the regressor. Even if E[q1x] = 0, it is
not necessarily that E[q1x|z] is constant. Again no correlation in CRC is not about the
orthogonality but mean independence.
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term γ1 is constant. Then this model simply becomes Linear Full Endogenous Switching

Regression or LFES model (Keay, 2011) with two regimes between which an individual can

switch. In this model all the coefficients in each regime are nonrandom. For this LFES it

is also possible to introduce CRC to the exogenous variables for each equation (Wooldridge,

2007). Or can one equivalently construct such two-regime CRC model, i.e. a two regime

regression model where the covariates in each equation have random coefficients correlated

with y2, by directly introducing CRC not only to the endogenous variable but also to the

exogenous variables as well as the interaction. Here is an equivalence result: two-regime CRC

model can be constructed by putting CRC to the all regressors in the equation including the

interaction terms.

The discussion so far was about the models with continuous structural error and hence

continuous dependent variable. In this paper I will provide a model where the dependent

variable takes nonnegative or more specifically natural numbers. Such cases arise very often

in real life such as when the dependent variable is commuting frequency (Terza, 1998) or

number of child (Keay, 2011). In addition to the nonlinearity in the first stage binary choice,

another nonlinearity to the dependent variable of the structural equation will be taken care

of. Although Terza (2009) has already considered such nonlinear model with two regimes

without CRC, its extension with CRC on all exogenous variables has not been proposed so

far. In the following, the former model will be called Nonlinear Full Endogenous Switching

Regression or NFES model and the later be called Nonlinear Two-regime CRC or NTCRC

model. The linear version of Two-regime CRC model was already proposed by Wooldridge

(2007) that will be called Linear Two-regime CRC or LTCRC model.

In what follows Poisson distribution will be used to model the nonnegative response in the

structural model. Incidentally an ensuing natural question is whether all the results in the
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Figure 3.1: Analogy Structure

linear model is valid to the same extent. Of course the model itself does not undergo much

changes although some quantities of interest will not be identified, which will be discussed

in the following sections.

The problem of NFES approach is that the intercept term inside the exponential function

in the structural equation is not identified by itself alone; instead Terza (2009) estimates the

average treatment effect for nonlinear model and such approach will be employed also for

the two-regime CRC model in this paper. As it was already mentioned above, the CRC

on binary endogenous variable makes two-regime switching regression model. The objective

of this paper will be to set out a NTCRC model by bringing once again the CRC to the

two-regime nonlinear switching model, where the average treatment effect will be identified.

Incidentally this is equivalent to the model where all the variables including the interaction

have CRC. The above discussion is summarized in the analogy scheme in Figure 3.1.

3.3 Various Models of CRC

3.3.1 Continuous Endogenous Variable

Let the variable with which random coefficient is correlated be denoted w. By the unobserved

heterogeneity argument the variable w is usually regarded as endogenous, which is also the
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case here. The CRC can be either only on w or on all other variables. In population regression

model, the variable w and all other covariates can be interacted, which may create many

possible combinations of situations: CRC only on w with no interaction, CRC only on w

with interaction, CRC on all variables with no interaction and finally CRC on all variables

with interaction. Consider a regression model as follows.

y = xβ + τw + γq + qxδ + u,

where x is a 1×K vector of exogeneous variables and β and δ areK×1 vectors. The variables

q and w are assumed to be scalar. The former is unobserved variable that is correlated with

the latter, but interacts with x. One of the characteristics of this model is that the variable

w will be correlated with the random coefficients of x, i.e. β+ qδ and, at the same time, will

be an endogenous variable in traditional sense because it is correlated with the composite

error γq + u. If an interaction term between x and w is included in this model and also if

that interaction term is again interacted with the unobserved variable q, then, given that

w is binary, the resulting model will be the two-regime CRC model that will be discussed

below.

y = x(β + δ0q) + w(τ + δ1q) + wx(κ+ δ2q) + γq + u

A random coefficient model with an endogenous variable with which the coefficients on an

exogenous variable is correlated is created in such manner. This model turns out to be a very

good description of education-fertility behavior which will be discussed in later sections. In

addition to that, this model is very general in that many other previous models can be treated

as its special cases. In case w is endogenous binary variable, a restriction δ0 = δ2 = 0 makes

the model as an ordinary two-regime switching model and also an additional restriction
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δ1 = κ = 0 will make it as Endogenous Treatment Model as in Terza (1998, 2009). There

are also many other possibilities that are nonetheless special cases of the model given above.

Let us focus on a continuous w here deferring discussion of binary case in subsequent sec-

tions. With count dependent variable, suppose the conditional expectation can be modeled

by an exponential function as link function. This approach explicitly considers the depen-

dent variable of the structural model as count variable that does not take negative value. As

the simplest case consider a model of CRC only on w without interaction as below.

E(y1|z, w, a1, r1) = exp(xδ1 + a1w + r1)

w = zδ2 + v2,

where x and z are 1 × L1 and 1 × L vectors of exogenous variables with x ⊂ z that are

independent with all the random variables generated in model. The coefficient vectors δ1

and δ2 are L1 × 1 and L× 1 respectively. Also assume that

a1 = α1 + d1

d1 = ψv2 + ed v2 ⊥⊥ ed

r1 = θv2 + er v2 ⊥⊥ er

In the first equation, α1 = E[a1] and d1 = a1 − α1. The second and third equations

are basically the linear projections of each random variable on v2. However, we need a

stronger condition that the orthogonal decompositions are not only uncorrelated but also

independent in order to facilitate the identification. The regressor w suffers from endogeneity

unless ψ = θ = 0. Along with those assumptions, we put multivariate normal assumption on
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the random variables (d1, r1, v2). Under these assumptions, Wooldridge (2007) has derived

a conditional mean function as below.

E(y1|z, v2) = exp

(
xδ1 + α1w + ψv2w + θv2 +

σ2r + 2σdrw + σ2dw
2

2

)

Although the above equation is estimable once v2 is estimated in the first stage regression,

the semi-elasticity of w, i.e. α1 is not identified due to the fraction term, and this is still the

case even if w is exogenous, where ψ = 0, θ = 0. In order to identify α1, it is required that

the random coefficient on w is uncorrelated not only with w but also with r1. Although the

semi-elasticity is not identified, one can still identify the APE of w over z, w and v2. From

the above equation, the partial effect of w is

∂E(y1|z, w, v2)
∂w

= exp

(
xδ1+α1w+ψv2w+θv2+

σ2r + 2σdrw + σ2dw
2

2

)
·(α1+σdr+ψv2+σ2dw).

By taking the average over the whole population, APE of w is identified. Wooldridge (2007)

also extends to discuss the case where the coefficients of other covariates are also correlated

with w. The results are basically the same; APE is identified although the semi-elasticity is

not.

3.3.2 Binary Endogenous Variable

Recall Figure 3.1. It should be noted that we are already familiar with the models with

CRC only on y, which are equivalent to the two-regime endogenous switching regression

(See Maddala, 1986). For the linear and nonlinear cases, one can use the correction methods

proposed by Heckman (1978) and Terza (1998) respectively. As an extension in linear model,
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the one with CRC not only on endogenous but also on all other variables, i.e. Linear Two-

regime CRC model (hereafter LTCRC), was explored by Wooldridge (2007). Consider a

regression model as follows.

y1 = xd1 + a1y2 + xy2g1 + u,

where x is 1×K vector of exogenous covariates and d1 and g1 are K × 1 vectors of CRC’s.

Also we have a vector of all exogenous variables z such that x ⊂ z. As in Chapter 2, it is

assumed that x is demeaned without loss of generality. Wooldridge (2007) shows that under

the assumptions

E(a1|z, v2) = α1 + φ1v2

E(d1|z, v2) = δ1 + ψ1v2

E(g1|z, v2) = ξ1 + ω1v2,

the estimating equation is

E(y1|z, y2) = xδ1+α1y2+y2xξ1+ρ1h2(y2, zδ2)+φ1h2(y2, zδ2)y2+h2(y2, zδ2)xψ1+h2(y2, zδ2)y2xω1,

where

h2(y2, zδ2) = y2λ(zδ2)− (1− y2)λ(−zδ2),

where λ(·) is inverse Mill’s ratio.

From this model and estimating equation, one can identify the ATE of y2 on y1, i.e. α1.

In the next section, the main contribution of this article, the Nonlinear Two-regime CRC
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(NTCRC) model and its estimation method will be discussed.

3.4 Nonlinear Two-Regime CRC Model

3.4.1 Model

In what follows we allow for a binary case of the variable of interest w, which calls for an

analysis of ATE under counterfactual framework. Under this setting, the first stage binary

selection equation is assumed to follow probit model, which makes the estimation more

efficient. For the continuous w, the average of the semi-elasticity of w, i.e. α1 was not

identified, while the APE was. Analogously, although the average semi-elasticity of w is

not identified, ATE will be. Consider a model in terms of conditional expectation functions

given below.

E(y0|z, w, a0, b0, a1, b1) = E(y0|x, a0, b0) = exp(a0 + xb0)

E(y1|z, w, a0, b0, a1, b1) = E(y1|x, a1, b1) = exp(a1 + xb1) (3.2)

w = 1[zγ + v > 0],

where ag are scalar errors, x is 1×K vector of covariates, and bg are K×1 random coefficient

vectors. The z is the vector of all the available exogenous variables such that x ⊂ z. For

those random coefficients, our quantities of interest will be the means of random variables.

In what follows, we will use notation var(x) ≡ σ2(x) and cov(x, y) ≡ σ(x, y). Also the

regime subscript will be suppressed whenever obvious. Here are the assumptions for further

discussion.
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Assumptions

1. Unconfoundedness: As was already stated in equation (3.2), w is redundant con-

ditional on a and b that summarize all the information about the determined regime,

i.e.

E(y1|z, w, a0, b0, a1, b1) = E(y1|x, a1, b1),

and same for Regime 0. Although the main focus is on w, this equation also assumes

the same thing for the unobserved heterogeneity for the other regime.

2. Multivariate Normality: For each regime in equation (3.2), we have

a = α + e

b = β + d,

where α and β are the means of a and b. The vector (e0, d0, e1, d1, v) of which dimen-

sion is (2K + 3)× 1 follows multivariate normal, i.e.

(e0, d0, e1, d1, v)
′ ∼ N(0,V),

where V is the appropriate variance-covariance matrix.

Let the linear projections of e and d on v as

e = σ(e, v)v + ϵ

d = σ(d, v)v + δ.

Note that b, d, δ and σ(d, v) are K × 1 vectors. Specifically, σ(d, v) =
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[σ(d1, v), · · · , σ(dK , v)]′, where bj = βj+dj is the j-th element in b. Since v and ϵ, δ are

orthogonal, they are independent under multivariate normality. Another implication

of the above assumption is that the selection equation follows probit model.

3. Conditional Independence: v and ϵ+ xδ are independent conditional on z, w, i.e.,

v ⊥⊥ ϵ+ xδ | z, w.

Under these assumptions, one can obtain the following lemma.

Lemma 3.1. Under the assumptions 2 and 3,

E[exp(e1 + xd1)|z, w = 1]

= exp

[(
σ2(e1) +

K∑
j=1

σ2(d1j)x
2
j +2

K∑
j=1

σ(e1, d1j)xj +
K∑
j=1

∑
r ̸=j

σ(d1j , d1r)xjxr

)/
2

]

×
Φ
(
zγ + σ(e1, v) +

∑K
j=1 σ(d1j , v)xj

)
Φ(zγ)

for Regime 1, and

E[exp(e0 + xd0)|z, w = 0]

= exp

[(
σ2(e0) +

K∑
j=1

σ2(d0j)x
2
j +2

K∑
j=1

σ(e0, d0j)xj +
K∑
j=1

∑
r ̸=j

σ(d0j , d0r)xjxr

)/
2

]

×
Φ
(
− zγ − σ(e0, v)−

∑K
j=1 σ(d0j , v)xj

)
Φ(−zγ)
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for Regime 0.

Proof Consider the Regime 1 only. For notational simplicity the regime subscripts are

suppressed. Derivation for Regime 0 is almost identical. Note that

E[exp(e+ xd)|z, w = 1] = E
[
exp

(
σ(e, v)v + ϵ+ xσ(d, v)v + xδ

)∣∣∣ z, w = 1
]

= E
[
exp

(
(σ(e, v) + xσ(d, v))v

)
exp(ϵ+ xδ)

∣∣∣ z, w = 1
]

= E
[
exp

(
(σ(e, v) + xσ(d, v))v

)∣∣∣ z, w = 1
]

× E[exp(ϵ+ xδ)|z, w = 1]

= E
[
exp

(
(σ(e, v) + xσ(d, v))v

)∣∣∣ z, w = 1
]

× E[exp(ϵ+ xδ)|z]

=
Φ
(
zγ + σ(e, v) + xσ(d, v)

)
Φ(zγ)

exp

(
(σ(e, v) + xσ(d, v))2

2

)
× E[exp(ϵ+ xδ)|z]

For the second term on RHS,

(
σ(e, v) + xσ(d, v)

)2
=

(
σ(e, v) +

K∑
j=1

σ(dj , v)xj

)2
= σ2(e, v) + 2

K∑
j=1

σ(e, v) · σ(dj , v)xj +
K∑
j=1

σ2(dj , v)x
2
j

+
K∑
j=1

∑
r ̸=j

σ(dj , v) · σ(dr, v)xjxr.
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Now consider the third term on RHS. From the normality of ϵ + xδ that is guaranteed by

the multivariate normal assumption,

E[exp(ϵ+ xδ)|z] = exp
(
var[ϵ+ xδ | x]

/
2
)
.

Now that

var[ϵ+ xδ | x] = σ2(ϵ) + σ2(xδ) + 2σ(ϵ,xδ)

= σ2(ϵ) +
K∑
j=1

σ2(δj)x
2
j +

K∑
j=1

∑
r ̸=j

σ(δj , δr)xjxr + 2
K∑
j=1

σ(ϵ, δj)xj .

Collecting those terms we have the stated result. �

Remark Terza (1998) directly used the multivariate normal property in order to solve the

conditional expectation, i.e. E[exp(ϵ)|z, v] = exp
(
ρσv +

1

2
σ2(1 − ρ2)

)
was derived under

the multivariate normal assumption between ϵ and v. Although such approach is also ap-

plicable here, it does not give a convenient expression for estimating the average treatment

effect. In the above derivation I used the linear projections of e and d on v that give un

estimating equation of which the coefficients can be directly used to find the ATE. As will

be discussed below, the structural parameters such as β is not independently identified, but

the coefficients on x and x2 from the estimating equation derived by the linear projection

coincides with those coefficients of the estimating equation for ATE.
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Now let us derive an estimating equation of the model in (3.2). Note that by assumptions

1 and 2,

E[y|z, w, a0, b0, a1, b1] = (1− w)E[y0|z, w, a0, b0, a1, b1] + wE[y1|z, w, a0, b0, a1, b1]

= (1− w)E[y0|x, a0, b0] + wE[y1|x, a1, b1]

= (1− w) exp
(
α0 + e0 + x(β0 + d0)

)
+ w exp

(
α1 + e1 + x(β1 + d1)

)
E[y|z, w] = (1− w) exp(α0 + xβ0)E[exp(e0 + xd0)|z, w = 0]

+ w exp(α1 + xβ1)E[exp(e1 + xd1)|z, w = 1]

By Lemma 3.1.

= w · exp
[(

2α1 + σ2(e1) +
K∑
j=1

σ2(d1j)x
2
j + 2

K∑
j=1

[β1 + σ(e1, d1j)]xj

+
K∑
j=1

∑
r ̸=j

σ(d1j , d1r)xjxr

)/
2

]
×

Φ
(
zγ + σ(e1, v) +

∑K
j=1 σ(d1j , v)xj

)
Φ(zγ)

+(1− w) exp

[(
2α0 + σ2(e0) +

K∑
j=1

σ2(d0j)x
2
j + 2

K∑
j=1

[β0 + σ(e0, d0j)]xj

+
K∑
j=1

∑
r ̸=j

σ(d0j , d0r)xjxr

)/
2

]
×

Φ
(
− zγ − σ(e0, v)−

∑K
j=1 σ(d0j , v)xj

)
Φ(−zγ)

(3.3)

The above equation identifies only σ2(dj), σ(e, v) and σ(dj , v) separately, and the average

of semi-elasticity, i.e. β is not identified due to the nuisance parameters σ(e, dj)’s. It

can be estimated by two step by using the probit model for the selection equation; given

the estimated index zγ, the above equation can be estimated either by NLS or Quasi-ML
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under Poisson distribution. Or can they still be estimated simultaneously by a single-step

method. See Chapter 2 for detailed discussion of estimation procedure and their asymptotic

distribution. Since the structural parameters α and β are not separately identified, our

interest should lie in average treatment effects.

3.4.2 Identification of ATE

Note that the ATE is E[y1−y0]. One of the easiest way to identify this is by using the law of

iterated expectation, i.e. E[y1 − y0] = EE[y1 − y0|x] as long as the expectation conditional

on x can be derived. To that end, the following lemma is derived.

Lemma 3.2. Under the assumptions given above, the following result holds.

E[exp(e+xd)|x] = exp

[(
σ2(e)+

K∑
j=1

σ2(dj)x
2
j+2

K∑
j=1

σ(e, dj)xj+
K∑
j=1

∑
r ̸=j

σ(dj , dr)xjxr

)/
2

]

Proof Note that

E(e+ xd|x) = E(e|x) + E(xd|x) = 0

var(e+ xd|x) = var(e|x) + var(xd|x) + 2cov(e,xd|x)

= σ2(e) +
K∑
j=1

σ2(dj)x
2
j +

K∑
j=1

∑
r ̸=j

σ(dj , dr)xjxr + 2
K∑
j=1

σ(e, dj)xj .

For any fixed value of x, e + xd is normally distributed since it is a combination of multi-

variate normal random variables as was mentioned in assumption 2. Since the mean and

variance of normal random variables are already obtained, the mean of its log-normal vari-

able is trivially found. �
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The ATE conditional on x is

E[y1 − y0|x] = exp(α1 + xβ1)E[exp(e1 + xd1)|x]− exp(α0 + xβ0)E[exp(e0 + xd0)|x].

Thus from the above lemma,

E[y1−y0|x]

= exp

[(
2α1+σ

2(e1)+
K∑
j=1

σ2(d1j)x
2
j+2

K∑
j=1

[β1+σ(e1, d1j)]xj+
K∑
j=1

∑
r ̸=j

σ(d1j , d1r)xjxr

)/
2

]

−exp

[(
2α0+σ

2(e0)+
K∑
j=1

σ2(d0j)x
2
j+2

K∑
j=1

[β0+σ(e0, d0j)]xj+
K∑
j=1

∑
r ̸=j

σ(d0j , d0r)xjxr

)/
2

]
.

(3.4)

Note the similarity of this equation with the estimating equation in (3); except for the cor-

rection functions, the expressions inside the exponential function are identical which makes

the identification of ATE possible. The estimator will be the sample average of equation

(3.4) over the values of x. The fact that each parameter is not identified does not make

any problems for ATE identification. The asymptotic distribution of this ATE estimator is

essentially same as was presented in Terza (2008).
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3.5 Specification Test

3.5.1 Tests for Endogeneity

In the previous section, we have derived the estimating equation (3.3) and ATE conditional

on covariates (3.4). In these equations no restrictions were imposed and an estimation of

the model without restriction, where the number of identifiable composite parameters is no

less than (K+4)(K+1)/2, might cause difficulty in numerical optimization. One can apply

the Lagrange Multiplier (LM) test in order to test for the presence of correlated random

coefficients. Another test called Variable Addition Test (VAT) is also available which is

asymptotically equivalent to LM but easier to apply. This test constructs a conditional

mean by adding appropriately defined variables to create the likelihood function of which

the score under restriction is same as the one used in LM test (See Wooldridge, 2011). The

actual test is performed by Wald test on the significance of coefficients of the added variables.

Revisit the estimating equation (3.3). Inside the exponential function we have each covariate,

the square of each covariate and their cross products. Let the vector of these functions of

covariates denoted x̃ and rewrite the estimating equation for Regime 1 as follows.

E[y|z, w = 1] = exp(x̃θ1)×
Φ
(
zγ + θ2 + xθ3

)
Φ(zγ)

, (3.5)

where θ2 = σ(e1, v) and θ3 = σ(d1, v). As was already mentioned, θ2 is scalar, θ3 is K × 1

vector and θ1 is (K + 2)(K + 1)/2× 1 vector. The estimating equation for Regime 0 is the

same as above except for the minus sign inside the Φ(·) in correction function.

In order to perform VAT, we need to construct a conditional mean function of which

score is identical to the equation (5) under restriction. Let the restriction or equivalently
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the null hypothesis

H0 : θ2 = θ3 = 0.

In other words, there is no correlation between selection error v and any other errors in the

structural equations. An LM test can be applied that does not require an estimation of

complicated model without restriction. The VAT is a device that facilitates this LM test by

using an auxiliary regression for Regime 1

exp
(
x̃θ1 + θ2λ(zγ) + θ3λ(zγ)x

)
, (3.6)

where λ(·) is inverse Mill’s ratio. The auxiliary regression for Regime 0 will have −zγ for

zγ. It can be easily verified that the likelihood and score functions derived from (3.6) under

restrictions are same as the one from (3.5). Therefore the score tests on the significance of

coefficients from the above auxiliary regression is equivalent to the LM tests on (3.5). Thus

the Wald tests for (3.6) will give a simple and asymptotically equivalent way to test the null

without estimating the model without restriction. In actual test, λ(zγ) has to be estimated

through the first stage regression.

3.5.2 Model Selection Test

What we have considered above is whether the already given random coefficients are corre-

lated with the selection error or not. Even when the null hypothesis is not rejected, it does

not warrants our coming back to the Nonlinear Full Endogenous Switching (NFES) Regres-

sion provided by Terza (1998). In current model, presence of CRC is assumed both in a and

b in equation (3.2). As a natural consequence one also assumes the multivariate normality
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between those errors and v. On the contrary, the coefficient b is assumed to be constant in

NFES and the multivariate normal joint error distribution is assumed just between a and v.

It should be emphasized that the VAT tests for the endogeneity under the assumption that

b is random, and thus a failure to reject null hypothesis does not imply an acceptance of

NFES. A practical consequence of this observation is that one has to include the square and

cross products of the covariates, which were not included in NFES, even when there turns

out to be no correlation between those random coefficients. Then how can one perform a

test of which the alternative is NFES model? The NFES model assumes that the coefficient

b in equation (3.2) is constant and thus d = 0 as well as σ2(dj) = σ( · , dj) = 0. From

equation (3.3), the null hypothesis will be the zero restriction on the coefficients of square

and cross product terms inside the exponential functions and the coefficients on xj inside

the correction functions.

3.6 Monte Carlo Simulation

The purpose of the simulation is two-fold: First, it will compare the performances of this

nonlinear ATE estimator with the linear method proposed by Wooldridge (2007). This will

show the advantage of using the nonlinear model for estimating ATE. Second, it will see

the impact of violations of the assumption that were used in order to derive the estimating

equation in the previous section.

3.6.1 Data Generating Processes

The derivation of the estimating equations depends on the three assumptions listed in the

above section. In this section, we examine the performances of the ATE estimator under
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violations of the first and second assumptions only. In order to check the robustness of those

assumption, a series of simulations are run by using the following data generating processes

(DGPs).

x ∼ uniform[15, 50]

z ∼ Binomial(1, 1/2)

w = 1[1.4− 0.05x− 0.3z + v ≥ 0]

E(y1|x, z, e1, d1) = exp
(
0.15 + e0 + (0.02 + d0)x

)
E(y0|x, z, e0, d0) = exp

(
0.1 + e1 + (0.0059 + d1)x

)
,

where y1 and y0 follow Poisson distribution with the mean specified above. This DGP was

designed to make the population ATE approximately equal to unity.

There are three sessions of simulations; DGP 1 deals with the ideal case where the errors

follow multivariate normal distribution and v ⊥⊥ ϵ + xδ. The joint distribution of errors for

DGP 1 is 

e∗0

d∗0

e∗1

d∗1

v


∼ N





0

0

0

0

0


,



1 ρ 0 0 ρ

1 0 0 ρ

1 ρ ρ

1 ρ

1




.

This variance-covariance matrix is in fact correlation matrix since the variances are all equal

to unity. For the simulation, e0 = e∗0/100, e1 = e∗1/100, d0 = d∗0/100, and d1 = d∗1/100 were

used. Also for the correlation values ρ, 0.3 and 0.5 were used. This is the case where the
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above estimator might perform the best, since the actual DGP conforms the assumptions on

which the estimating equation is based.

DGP 2 generates a process where the linear projection errors ϵ and δ are uncorrelated

but dependent with v. For a given v, ϵ is designed to be either the same value of v or −v

by a half probability for each. Then the scattergram will look like a X letter, where the

covariance of the two variables becomes zero, but very strongly dependent with each other.

Another important assumption for Lemma 3.1 is that v follows normal distribution, which

brought the normal cumulative distribution function Φ(·) in the equation. In order to check

the robustness of the estimator on that assumption, DGP 3 uses χ2(5) distribution to create

skewed errors. The variance-covariance matrix looks just the same as in the above equation.

However, we here drop the multivariate normal assumption; all the marginal distributions

of the errors follow some adjusted χ2 distribution with the predetermined correlation2.

3.6.2 Simulation Results

Tables F.1 and F.2 list the simulation results for ρ = 0.3 and 0.5 respectively. For each table,

each column for I, II and III lists the results for the DGP I, II and III both for linear and

nonlinear estimator. Let us first consider the performances of nonlinear estimator. In either

Table F.1 or F.2, the column I for DGP 1 shows that the ATE estimator is performing well

as expected. The results show that there are nontrivial amount of outlying values under

the sample size 1000. It is usually the case that the numerical optimization does not work

2 There might be infinitely many such joint distribution and the multivariate χ2 distribu-
tion, which is not used here, is just one of them. The reason why multivariate χ2 distribution
is not used is that 1) it is hard to generate the DGP 3 by Stata, and that 2) what matters
is just the failure of the normality for each marginal distribution and its impact on the esti-
mation. In this DGP 3, I generated χ2 distributions by first generating many basis standard
normal distributions. The correlations were created by using some common basis standard
normal distribution. The Stata code will be provided upon request.
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well in smaller sample size and gives many dubious estimates. In the Table F.1 and F.2, the

outlying values that are greater or smaller than the maximum and minimum values for the

sample size of 3000 were discarded from the generated data. Roughly about 8 to 10% of

the total data is removed in this way. However, whole data are kept for median and MAD

calculation which are not sensitive to the extreme values.

There seems to be no discernible difference between ρ = 0.3 and 0.5 The column for DGP

2 shows that for those two tables the results do not show any clear sign of the adverse impact

due to the violation of the independence assumption. Therefore we can conclude that the

independence assumption is more or less practically negligible.

The last column is for DGP 3, where the multivariate normal assumption is violated. In

this case, it is clearly visible that the estimator suffers from larger variance and bias even

under 5000 observations. It happens because we used the fact that E[exp(u)] = exp(σ2/2)

under normality in Lemma 3.1. If the normality fails, then the whole estimating equation

will be misspecified causing inconsistency.

A comparison between linear and nonlinear estimators shows that the nonlinear estimator

has larger variance particularly when the sample size is small. However, it is also clear that

the linear estimators do not show any sign of consistency. The nonlinear estimator keeps

approaching the true value, i.e. one, from sample size of 3000 to 5000, the linear estimator

does not show any convergence as the sample sizes grow. Another interesting aspect is that

the skewed distribution of errors not only affects the nonlinear estimator, but also the linear

one too. This is particularly true in Table F.2; in column III, the linear estimator is actually

moving away from the true value one. In sum, although having larger variance, the nonlinear

estimator is better than the linear one in terms of consistency. It is preferable to use the

nonlinear ATE estimator when the sample size is sufficiently large.
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3.7 An application: the effect of elementary school ed-

ucation on fertility in Botswana

In this section, the ATE estimator derived above will be applied to the Botswana fertility

data set from Wooldridge (2010, Chapter 21). Detailed descriptions of the data set are

already given in Chapter 2 and thus are omitted here. Before the regression results are

presented, it warrants some justification at this point why the data can be analyzed by the

CRC model framework. Consider a regression equation as below.

children = β0 + b1age+ β2agesq + u

For the time being let us focus on the motivation of CRCmodeling and ignore other covariates

that might also be present in the structural equation. The interpretation of β1 is the marginal

birth per year that is determined by the opportunity cost of childbearing (Becker and Barro,

1988; Barro and Becker, 1989). Since education increases human capital, higher education

would lead to lower b1. For now just assume β2 is constant. Then b1 is a negative function

of years of education. Thus the above equation becomes

children = β0 + b1(educ)age+ β2agesq + u.

It is assumed in the above model that agesq does not have the CRC. In other words, all

the heterogeneity of age are assumed to be absorbed into age only. This assumption helps

us dispense with age4 that might possibly cause much trouble in exponential regression.

Now suppose educ is continuous. Then for each value of educ, there are uncountably many
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regression equations with constant coefficient. Let us divide the support of educ by using

threshold 7, i.e. the duration of primary education in Botswana to have a model below.

children0 = β00 + b01(educ)age+ β02agesq + u0

children1 = β10 + b11(educ)age+ β12agesq + u1

The upper equation is defined on {ω|educ(ω) < 7} whereas the lower one on the complement

set.

Next suppose educ is not available but only educ7 is. The information reduction is done

by the following rule.

educ7 = 1 if educ > 7

educ7 = 0 if educ < 7,

where educ = zδ + v. Then the above model can be written as

children0 = β00 + b01(v)age+ β02agesq + u0

children1 = β10 + b11(v)age+ β12agesq + u1

educ7 = 1[zδ + v > 0]
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Considering the nonnegativity of children,

E[children0|age, u0] = exp(β00 + b01(v)age+ β02agesq + u0)

E[children1|age, u1] = exp(β10 + b11(v)age+ β12agesq + u1)

educ7 = 1[zδ + v > 0]

It is expected that there are negative correlations between bg1 and v; in other words σdgvs in

equation (3.3) might be negative. Higher education can reduce fertility either by increasing

opportunity cost or by providing people with more information on, say, contraception. Al-

though omitted for simplicity so far, other variables such as evermarr, urban, and electric,

which might have CRC’s too, will also be included in the following regression. Therefore all

the variables but agesq have the CRC’s and their square and cross product will be included

in the estimating equations.

Before running regression using NTCRC model, it might be a good idea to test for

endogeneity by VAT. The test statistic for both the regime that follows χ2(10) is 46.76 with

p-value .0000. The test statistics for Regime 1 and 0 that follow χ2(5) are 26.13 with p-value

.0001 and 20.64 with p-value .0009. Thus the null hypothesis of no endogeneity is rejected

and we will run a regression with full-blown model.

The regression results for LFES and NFES models are summarized in Tables F.3 and F.4.

First and second columns in Table F.3 show the results by OLS and 2SLS. Next columns are

the ones by LFES estimated by Heckman’s correction method. NFES model is estimated

by using both Poisson Quasi-ML and NLS methods. The results for NTCRC model are

provided separately in Table F.4. Although both NLS and Poisson QMLE is available also

for NTCRC, the estimate for NLS does not give a reasonable value; the estimated ATE for
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NLS is −5.28 and thus only the QMLE results are listed. All the standard errors in Tables

F.3 and F.4 are bootstrap standard errors. The bootstrap ran 500 replications. Among those

the bootstrap standard error for ATE in NTCRC model was particularly large. Since the

maximum number of children in the data set was 13, it might be highly unlikely that the

absolute value of ATE is greater than 13. By that reasoning, all the data with estimated

ATE over 13 were discarded to get the bootstrap standard error presented in the table. In

Table F.4, each basic covariate is numerically labeled such as age (1), evermarr (2) and so

forth. Using that numbers cov(1)=cov(δ1, v), cov(2)=cov(δ2, v), and so on.

Let us now see the estimation results for NTCRC model. As it was already expected in

theory, there are indeed, although insignificant, negative correlations between the selection

error and the coefficients of age for both the regimes. The estimated ATE is −1.020 which

is very close to the estimates from NFES model in Table F.3. Let us now see the LTCRC

estimates in Table F.4. The ATE estimate is substantially large and highly significant,

which is indicative of inconsistency of the estimator. Remember that both LTCRC and

NTCRC estimating equations are based on the conditional expectation and thus these two

estimators cannot be consistent at the same time. As long as we are convinced that the

effect of education on fertility is negative, the lesson is that the inconsistency of LTCRC can

be substantial, which supports the usefulness of NTCRC model provided in this article.

Finally one can perform the model selection test discussed in Section 5.2. The null

hypothesis that this model is in fact NFES is that the coefficients of all the bilateral products

as well as the covariances between δ and v are equal to zero. The Wald statistics of this null

hypothesis for Regime 1, Regime 0 and both the regimes are 106.74 (df=10), 339.63 (df=10)

and 602.32 (df=20) with p-values all equal to .0000, which justifies the model specification

as NTCRC.
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3.8 Conclusion

We have so far considered the endogenous switching regression where there is a random

coefficient correlated with the switching variable under the count dependent variable. The

count dependent variable requires a nonlinear modeling using the exponential conditional

mean function. Although it is impossible to identify the means of each CRC, we have seen

that the ATE, which might be more interesting, can be identified. Simulations show that

this ATE estimator by nonlinear two-regime CRC model performs well with large sample

size.
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Appendix A

Simulation Results for Series

Estimator
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Note to Tables A.1-12:

Each table presents the series estimator results for specified correlation and selection error.

Simulations were run for ρ = .0, .4, .5 and .6. For each correlation, three types of selection

error were considered. For a table, each column shows the monotone functions, i.e. identity,

inverse Mill’s ratio, and normal CDF used for binary choice index. Subcolumns p = 1, 2 and

3 specify the degree of polynomial of monotone function. Each row shows the distribution

used for u for each sample size.
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Table A.1: Simulation results for series estimators with ρ = 0.0, ξ: normal

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 0.905 0.672 0.184 1.238 -4.003 -4.536 0.002 -9.141 -2.676
s. d. 2.497 5.768 18.913 13.086 160.863 2144.130 15.011 207.018 2245.681

RMSE 2.499 5.777 18.931 13.088 160.940 2144.137 15.044 207.266 2245.684
obs=500 mean 1.009 1.010 1.018 1.104 1.470 2.085 0.956 0.997 0.117

u: normal s. d. 0.177 0.180 0.292 1.760 9.016 40.975 2.212 8.300 46.724
RMSE 0.177 0.180 0.292 1.763 9.028 40.989 2.213 8.300 46.732

obs=1000 mean 1.002 1.001 1.002 1.030 0.870 0.758 1.006 0.861 0.650
s. d. 0.070 0.070 0.072 0.732 2.567 18.714 1.101 2.712 24.053

RMSE 0.070 0.070 0.072 0.733 2.570 18.715 1.101 2.716 24.056

obs=100 mean 0.890 0.668 -0.235 1.673 -2.652 -66.012 -0.380 -8.688 47.569
s. d. 2.048 4.759 28.807 22.520 139.004 1954.183 26.305 161.743 1967.634

RMSE 2.050 4.771 28.833 22.530 139.052 1955.331 26.342 162.033 1968.185
obs=500 mean 1.000 1.001 1.009 1.121 1.694 1.946 0.941 0.932 0.402

u: t(5) s. d. 0.188 0.186 0.309 2.398 15.246 38.925 3.741 11.778 44.746
RMSE 0.188 0.186 0.310 2.401 15.262 38.936 3.742 11.778 44.750

obs=1000 mean 1.000 1.000 1.000 1.013 0.891 0.751 0.988 0.821 0.650
s. d. 0.074 0.075 0.077 0.739 2.419 17.300 0.951 2.682 22.353

RMSE 0.074 0.075 0.077 0.739 2.421 17.302 0.951 2.688 22.356

obs=100 mean 1.047 1.066 66.547 0.664 -0.076 -16.218 1.412 1.304 23.753
s. d. 1.665 2.042 1592.114 10.238 30.095 415.140 12.484 26.002 518.243

RMSE 1.665 2.043 1593.462 10.244 30.114 415.497 12.490 26.004 518.742
obs=500 mean 1.002 1.000 0.918 0.940 1.242 -2.349 1.040 -4.611 1.482

u: χ2(5) s. d. 0.108 0.141 2.064 1.753 4.146 48.550 2.220 142.931 67.768
RMSE 0.108 0.141 2.066 1.754 4.153 48.666 2.220 143.041 67.770

obs=1000 mean 0.997 0.997 0.998 1.008 1.062 0.387 0.973 1.011 1.909
s. d. 0.071 0.072 0.073 0.997 2.668 16.232 1.403 2.848 21.341

RMSE 0.071 0.072 0.073 0.997 2.669 16.243 1.403 2.848 21.361
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Table A.2: Results for ρ = 0.0, ξ: t(5)

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 1.462 1.470 1.215 0.537 8.813 18.942 -1.648 1.447 -4.180
s. d. 11.395 11.423 13.376 5.228 122.882 580.978 74.963 83.649 524.571

RMSE 11.404 11.433 13.378 5.248 123.130 581.255 75.010 83.650 524.597
obs=500 mean 1.000 1.001 1.000 1.021 1.183 3.112 0.969 1.150 -0.667

u: normal s. d. 0.095 0.095 0.102 0.996 2.973 31.698 1.305 3.011 36.946
RMSE 0.095 0.095 0.102 0.996 2.979 31.769 1.306 3.015 36.984

obs=1000 mean 1.001 1.000 1.001 0.966 0.872 0.903 1.043 0.942 0.613
s. d. 0.064 0.065 0.067 0.563 1.473 9.677 0.586 1.870 13.924

RMSE 0.064 0.065 0.067 0.564 1.478 9.678 0.588 1.871 13.930

obs=100 mean 1.251 1.118 2.949 0.711 0.669 -0.795 0.975 -0.022 -24.906
s. d. 3.150 2.484 39.619 4.924 33.028 1066.294 8.052 33.815 2086.952

RMSE 3.160 2.487 39.667 4.933 33.030 1066.296 8.052 33.830 2087.113
obs=500 mean 0.959 0.962 0.997 0.991 1.054 2.382 1.036 1.192 2.860

u: t(5) s. d. 2.136 2.109 1.384 1.261 3.918 28.998 1.589 3.125 106.597
RMSE 2.136 2.109 1.384 1.261 3.918 29.031 1.589 3.131 106.614

obs=1000 mean 0.995 0.995 0.995 0.999 1.050 0.995 0.986 1.041 0.938
s. d. 0.069 0.070 0.072 0.530 1.426 9.878 0.566 1.843 14.212

RMSE 0.069 0.070 0.073 0.530 1.427 9.878 0.566 1.843 14.213

obs=100 mean 1.727 1.624 1.502 0.530 -6.811 -15.234 2.146 -2.217 19.497
s. d. 12.393 10.564 10.555 10.995 173.140 262.276 34.055 154.943 392.817

RMSE 12.415 10.582 10.567 11.005 173.316 262.778 34.075 154.977 393.252
obs=500 mean 1.002 1.001 1.000 1.010 0.891 2.720 1.014 0.863 -1.823

u: χ2(5) s. d. 0.121 0.125 0.128 0.990 3.382 27.108 1.669 3.076 33.335
RMSE 0.121 0.125 0.128 0.990 3.384 27.162 1.669 3.079 33.455

obs=1000 mean 0.996 0.996 0.997 1.011 0.957 0.937 0.983 0.908 0.815
s. d. 0.069 0.069 0.072 0.543 1.475 9.421 0.562 1.926 13.655

RMSE 0.069 0.069 0.072 0.543 1.476 9.421 0.562 1.928 13.656
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Table A.3: Results for ρ = 0.0, ξ: χ2(5)

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean -0.190 -0.139 4.089 0.819 2.004 5.072 1.272 3.022 -14.460
s. d. 23.632 25.422 114.077 6.847 42.215 831.961 7.037 56.951 903.143

RMSE 23.662 25.447 114.119 6.849 42.227 831.971 7.042 56.987 903.275
obs=500 mean 1.027 1.032 1.025 1.048 1.289 2.570 0.956 1.175 -0.249

u: normal s. d. 2.031 2.024 2.064 1.285 5.439 35.175 1.964 4.368 45.661
RMSE 2.031 2.024 2.064 1.286 5.446 35.210 1.965 4.371 45.678

obs=1000 mean 0.789 0.808 0.790 0.963 0.900 0.704 1.044 1.072 0.845
s. d. 5.320 4.891 5.353 0.629 2.695 18.370 0.655 2.589 23.248

RMSE 5.325 4.894 5.357 0.630 2.696 18.373 0.656 2.590 23.249

obs=100 mean 0.753 0.535 0.048 1.108 -9.782 -7.016 1.195 -9.550 34.038
s. d. 6.102 7.119 18.836 6.519 175.169 1084.230 8.013 186.925 976.187

RMSE 6.107 7.134 18.860 6.520 175.501 1084.260 8.016 187.222 976.746
obs=500 mean 1.027 1.022 1.028 0.984 1.196 -1.794 1.075 1.094 4.281

u: t(5) s. d. 1.071 1.021 1.048 1.848 5.267 102.992 1.914 4.474 120.464
RMSE 1.071 1.022 1.048 1.848 5.271 103.030 1.915 4.475 120.508

obs=1000 mean 0.990 -1.301 -1.298 0.978 1.148 1.030 0.970 1.126 0.977
s. d. 0.155 56.188 56.188 0.721 2.230 18.927 0.757 2.648 25.814

RMSE 0.155 56.235 56.235 0.721 2.235 18.927 0.758 2.651 25.814

obs=100 mean 1.502 1.480 1.448 1.201 0.357 -26.260 0.628 -1.474 14.801
s. d. 14.174 14.044 16.133 4.734 53.792 469.023 8.254 51.984 753.007

RMSE 14.183 14.052 16.139 4.738 53.796 469.815 8.262 52.043 753.133
obs=500 mean 0.846 0.860 1.818 0.880 2.901 -0.413 1.084 3.467 7.182

u: χ2(5) s. d. 2.177 2.259 23.846 1.861 49.073 72.928 2.138 53.878 107.651
RMSE 2.182 2.264 23.860 1.865 49.110 72.941 2.140 53.934 107.828

obs=1000 mean 0.994 0.998 1.000 0.979 1.057 0.765 0.965 1.162 1.735
s. d. 0.207 0.199 0.211 0.915 3.777 17.255 0.880 3.305 23.844

RMSE 0.207 0.199 0.211 0.915 3.777 17.257 0.880 3.309 23.855
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Table A.4: Results for ρ = 0.4, ξ: normal

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 1.585 1.550 1.850 1.307 -1.812 -244.475 1.860 -0.862 98.108
s. d. 1.435 1.571 10.140 5.927 63.999 4349.198 8.261 66.486 3190.363

RMSE 1.550 1.665 10.175 5.935 64.061 4356.120 8.306 66.512 3191.841
obs=500 mean 1.656 1.656 1.657 0.957 0.705 -0.264 2.376 2.823 4.548

u: normal s. d. 0.211 0.205 0.204 1.796 6.261 32.845 2.813 4.549 40.649
RMSE 0.689 0.688 0.688 1.796 6.268 32.870 3.131 4.900 40.803

obs=1000 mean 1.653 1.653 1.653 0.945 0.949 1.195 2.296 2.512 2.830
s. d. 0.063 0.064 0.067 1.440 5.583 17.378 3.409 4.274 22.629

RMSE 0.656 0.657 0.657 1.441 5.583 17.379 3.647 4.534 22.703

obs=100 mean 1.602 1.577 1.800 1.335 -1.399 -218.822 1.455 -1.487 78.668
s. d. 1.279 1.441 7.871 5.523 58.693 3561.923 9.688 62.218 3133.514

RMSE 1.414 1.553 7.911 5.534 58.742 3568.700 9.699 62.268 3134.476
obs=500 mean 1.654 1.655 1.655 0.990 0.830 0.255 2.342 2.798 4.030

u: t(5) s. d. 0.186 0.178 0.181 1.695 5.922 35.032 2.826 4.555 42.870
RMSE 0.680 0.679 0.680 1.695 5.925 35.040 3.129 4.897 42.977

obs=1000 mean 1.654 1.655 1.655 0.935 0.943 1.534 2.301 2.504 2.436
s. d. 0.067 0.068 0.072 1.120 5.478 18.083 3.116 3.948 23.089

RMSE 0.657 0.658 0.659 1.122 5.478 18.091 3.377 4.225 23.134

obs=100 mean 1.630 1.647 1.643 0.557 2.528 54.997 1.883 2.775 -51.650
s. d. 0.669 0.709 0.846 13.044 32.373 1091.634 17.769 32.364 1110.114

RMSE 0.919 0.960 1.063 13.051 32.409 1092.969 17.791 32.412 1111.362
obs=500 mean 1.554 1.555 1.552 0.954 0.681 -0.374 2.471 2.601 7.852

u: χ2(5) s. d. 1.465 1.469 1.528 1.930 11.416 56.784 5.579 6.516 152.745
RMSE 1.566 1.570 1.625 1.931 11.421 56.800 5.769 6.710 152.899

obs=1000 mean 1.617 1.618 1.618 0.888 1.013 -0.488 2.290 2.712 5.325
s. d. 0.069 0.069 0.071 0.943 2.861 20.391 1.436 2.837 25.032

RMSE 0.621 0.622 0.622 0.950 2.861 20.445 1.931 3.313 25.402
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Table A.5: Results for ρ = 0.4, ξ: t(5)

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 1.409 2.225 2.288 0.560 0.223 6.892 2.466 3.017 -12.984
s. d. 2.607 18.243 19.057 5.776 18.087 711.156 8.557 16.688 1016.387

RMSE 2.639 18.284 19.100 5.793 18.104 711.180 8.682 16.809 1016.483
obs=500 mean 1.598 1.600 1.600 0.875 0.830 0.825 2.348 2.796 3.758

u: normal s. d. 0.086 0.087 0.092 1.128 2.996 14.825 1.330 2.956 20.996
RMSE 0.604 0.607 0.607 1.135 3.000 14.826 1.894 3.459 21.176

obs=1000 mean 1.604 1.606 1.605 0.965 1.015 1.373 2.244 2.647 2.821
s. d. 0.054 0.055 0.057 0.504 1.392 8.595 0.523 1.852 12.566

RMSE 0.607 0.609 0.608 0.505 1.392 8.603 1.349 2.478 12.697

obs=100 mean 1.751 1.782 1.720 1.101 7.428 -10.197 1.515 5.061 11.073
s. d. 15.885 16.054 15.538 5.884 80.305 691.627 9.981 61.300 747.279

RMSE 15.903 16.073 15.555 5.884 80.562 691.718 9.995 61.435 747.347
obs=500 mean 1.650 1.652 1.653 0.875 1.210 1.918 2.238 2.803 3.455

u: t(5) s. d. 0.891 0.873 0.856 1.206 5.961 26.496 3.160 4.053 30.221
RMSE 1.102 1.090 1.076 1.213 5.965 26.512 3.394 4.436 30.321

obs=1000 mean 1.602 1.604 1.604 0.945 1.136 1.697 2.249 2.835 3.044
s. d. 0.067 0.068 0.071 0.565 1.612 10.620 0.583 2.011 15.660

RMSE 0.605 0.608 0.608 0.568 1.617 10.642 1.379 2.722 15.793

obs=100 mean 1.774 1.799 2.166 0.825 2.110 -40.554 2.742 5.056 72.784
s. d. 1.966 2.097 7.903 4.384 50.278 767.518 6.341 58.716 1266.234

RMSE 2.113 2.244 7.988 4.387 50.291 768.642 6.576 58.856 1268.267
obs=500 mean 1.696 1.698 1.695 0.893 0.766 0.666 2.476 2.818 3.713

u: χ2(5) s. d. 0.115 0.119 0.119 1.105 3.736 15.999 2.016 3.012 21.298
RMSE 0.705 0.708 0.705 1.111 3.744 16.003 2.499 3.518 21.470

obs=1000 mean 1.690 1.691 1.690 0.942 0.807 1.360 2.446 2.653 2.657
s. d. 0.061 0.062 0.063 0.520 1.468 8.368 0.529 1.848 12.220

RMSE 0.693 0.693 0.693 0.523 1.481 8.376 1.540 2.479 12.332
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Table A.6: Results for ρ = 0.4, ξ: χ2(5)

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 1.726 1.225 4.124 1.235 0.229 30.498 2.139 0.775 24.472
s. d. 3.445 12.631 48.106 5.758 26.793 1313.152 5.254 30.090 1332.741

RMSE 3.521 12.633 48.208 5.763 26.804 1313.483 5.376 30.091 1332.948
obs=500 mean 0.807 0.825 0.697 0.860 1.041 -1.822 2.357 2.733 2.109

u: normal s. d. 19.300 19.152 22.329 1.501 7.222 61.044 1.903 4.446 69.006
RMSE 19.301 19.153 22.331 1.507 7.222 61.109 2.338 4.772 69.015

obs=1000 mean 1.602 1.606 1.606 0.904 0.390 0.960 2.366 2.528 2.314
s. d. 0.251 0.248 0.251 0.856 6.148 17.520 0.875 3.334 24.728

RMSE 0.652 0.654 0.656 0.861 6.178 17.520 1.622 3.667 24.763

obs=100 mean 0.036 0.220 0.271 1.478 0.467 7.669 2.376 4.986 -12.510
s. d. 34.923 33.714 52.038 5.905 65.448 690.188 9.930 59.551 814.498

RMSE 34.937 33.723 52.043 5.924 65.451 690.220 10.025 59.684 814.610
obs=500 mean 1.227 1.252 1.051 0.837 0.913 -0.252 2.428 3.008 5.698

u: t(5) s. d. 9.042 8.805 10.061 1.600 5.490 38.116 1.710 5.476 45.458
RMSE 9.045 8.808 10.061 1.608 5.491 38.137 2.228 5.832 45.700

obs=1000 mean 0.855 0.872 0.830 0.874 0.648 -0.647 2.351 2.774 2.880
s. d. 18.134 17.918 18.865 0.866 5.677 39.131 0.972 2.808 33.121

RMSE 18.135 17.918 18.866 0.875 5.688 39.166 1.664 3.322 33.174

obs=100 mean 1.454 1.521 1.707 1.160 1.187 -6.888 2.169 2.538 -40.546
s. d. 3.380 3.689 7.703 6.246 21.007 1121.906 6.961 19.943 1167.326

RMSE 3.411 3.726 7.736 6.248 21.008 1121.934 7.059 20.002 1168.065
obs=500 mean 1.233 1.248 1.243 0.783 0.877 -1.680 2.413 2.818 10.402

u: χ2(5) s. d. 9.881 9.540 9.832 2.428 9.586 50.114 2.987 5.788 135.818
RMSE 9.884 9.544 9.835 2.437 9.587 50.185 3.304 6.067 136.143

obs=1000 mean 1.615 1.621 1.627 0.902 0.860 -0.128 2.341 2.694 5.406
s. d. 0.129 0.137 0.150 0.757 2.054 16.384 0.681 2.356 22.334

RMSE 0.628 0.636 0.645 0.764 2.059 16.423 1.504 2.902 22.765
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Table A.7: Results for ρ = 0.5, ξ: normal

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 1.751 1.715 1.997 1.308 -1.748 -223.241 2.225 -0.054 71.763
s. d. 1.401 1.517 9.293 5.795 66.855 3905.942 8.544 69.193 2887.926

RMSE 1.590 1.677 9.347 5.803 66.911 3912.374 8.631 69.201 2888.793
obs=500 mean 1.821 1.822 1.823 0.940 0.681 -0.167 2.715 3.226 4.965

u: normal s. d. 0.222 0.216 0.214 1.869 6.120 32.301 2.960 4.529 40.405
RMSE 0.851 0.850 0.850 1.870 6.128 32.322 3.421 5.046 40.599

obs=1000 mean 1.816 1.817 1.817 0.925 0.938 1.166 2.640 2.944 3.502
s. d. 0.060 0.060 0.064 1.420 5.778 17.438 3.503 4.298 22.576

RMSE 0.818 0.819 0.819 1.422 5.778 17.439 3.867 4.717 22.714

obs=100 mean 1.771 1.746 1.898 1.353 -1.332 -211.368 1.807 -0.759 61.653
s. d. 1.184 1.338 5.350 5.525 60.928 3223.614 9.346 64.255 2838.222

RMSE 1.413 1.532 5.425 5.537 60.973 3230.602 9.381 64.279 2838.870
obs=500 mean 1.821 1.822 1.822 0.974 0.812 0.415 2.673 3.180 4.326

u: t(5) s. d. 0.196 0.186 0.189 1.750 5.686 33.790 3.034 4.551 41.661
RMSE 0.844 0.842 0.843 1.751 5.689 33.795 3.464 5.046 41.794

obs=1000 mean 1.817 1.818 1.818 0.918 0.939 1.506 2.645 2.941 3.133
s. d. 0.065 0.066 0.070 1.106 5.655 18.523 3.158 3.929 23.448

RMSE 0.820 0.821 0.821 1.109 5.655 18.530 3.561 4.382 23.544

obs=100 mean 3.642 -152.907 -152.886 0.779 3.737 41.465 2.791 7.904 -19.124
s. d. 54.878 3751.113 3751.115 5.864 64.437 888.309 7.768 78.898 1295.865

RMSE 54.941 3754.269 3754.270 5.868 64.495 889.230 7.972 79.199 1296.021
obs=500 mean 1.772 1.772 1.772 0.906 0.239 -61.222 2.842 2.999 29.286

u: χ2(5) s. d. 0.104 0.105 0.113 2.089 7.406 1422.404 3.171 5.429 527.206
RMSE 0.779 0.779 0.781 2.091 7.445 1423.764 3.668 5.785 527.964

obs=1000 mean 1.765 1.767 1.771 0.933 1.817 -72.234 2.636 3.944 -73.574
s. d. 0.066 0.071 0.108 0.981 16.911 1492.984 1.243 15.817 1969.699

RMSE 0.768 0.770 0.779 0.983 16.931 1494.779 2.055 16.088 1971.110
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Table A.8: Results for ρ = 0.5, ξ: t(5)

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 1.306 2.090 2.152 0.556 0.455 -3.359 2.801 3.397 -0.139
s. d. 7.878 11.556 12.338 5.503 21.766 879.925 8.941 19.344 1156.982

RMSE 7.883 11.607 12.392 5.521 21.773 879.936 9.121 19.492 1156.983
obs=500 mean 1.753 1.756 1.757 0.851 0.789 0.739 2.697 3.249 4.499

u: normal s. d. 0.082 0.083 0.088 1.132 3.022 14.768 1.336 2.888 20.764
RMSE 0.757 0.761 0.762 1.142 3.029 14.770 2.160 3.661 21.057

obs=1000 mean 1.759 1.762 1.761 0.949 1.016 1.397 2.569 3.082 3.437
s. d. 0.050 0.051 0.052 0.511 1.368 8.331 0.529 1.809 12.175

RMSE 0.761 0.764 0.763 0.513 1.368 8.341 1.656 2.758 12.417

obs=100 mean 2.265 2.313 2.238 1.085 0.694 8.374 2.778 3.693 1.471
s. d. 11.937 12.426 10.230 5.171 26.726 407.675 7.736 20.710 410.407

RMSE 12.004 12.495 10.305 5.172 26.728 407.741 7.937 20.885 410.407
obs=500 mean 1.755 1.759 1.764 0.943 1.104 12.207 2.575 3.202 -7.942

u: t(5) s. d. 0.100 0.104 0.145 1.011 2.692 268.626 1.018 2.993 292.329
RMSE 0.761 0.766 0.777 1.013 2.694 268.860 1.876 3.716 292.466

obs=1000 mean 1.755 1.758 1.759 0.913 1.067 14.594 2.587 3.175 -8.899
s. d. 0.065 0.067 0.069 0.639 2.300 342.987 0.738 2.671 337.136

RMSE 0.758 0.761 0.762 0.645 2.300 343.256 1.751 3.445 337.281

obs=100 mean 2.110 2.119 5.009 0.961 2.997 -32.207 2.458 60.007 20.749
s. d. 6.737 6.601 70.993 4.437 40.355 887.756 5.877 1359.200 476.175

RMSE 6.828 6.695 71.106 4.437 40.405 888.377 6.055 1360.480 476.584
obs=500 mean 1.859 1.861 1.859 0.871 0.419 -0.556 2.917 3.209 5.544

u: χ2(5) s. d. 0.159 0.167 0.172 1.420 5.204 21.634 1.956 3.350 29.005
RMSE 0.874 0.877 0.876 1.426 5.236 21.690 2.739 4.013 29.359

obs=1000 mean 1.862 1.863 1.863 0.944 0.771 0.537 2.800 3.063 4.313
s. d. 0.058 0.058 0.060 0.558 1.432 7.954 0.603 1.703 11.422

RMSE 0.864 0.865 0.865 0.561 1.450 7.967 1.898 2.675 11.892
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Table A.9: Results for ρ = 0.5, ξ: χ2(5)

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 1.820 1.379 3.770 1.261 0.199 20.936 2.421 1.174 34.170
s. d. 2.751 11.212 41.059 5.494 26.939 1211.318 5.171 29.922 1349.311

RMSE 2.871 11.218 41.153 5.500 26.951 1211.482 5.363 29.923 1349.719
obs=500 mean 1.555 1.577 1.439 0.831 0.947 -1.624 2.706 3.133 3.035

u: normal s. d. 4.775 4.544 7.980 1.605 7.436 54.468 2.089 4.489 60.785
RMSE 4.807 4.580 7.992 1.614 7.436 54.532 2.697 4.970 60.819

obs=1000 mean 1.758 1.763 1.763 0.877 0.320 0.833 2.713 2.962 3.072
s. d. 0.258 0.255 0.258 0.849 6.540 17.694 0.884 3.347 24.876

RMSE 0.800 0.804 0.806 0.858 6.575 17.695 1.928 3.879 24.962

obs=100 mean 0.254 0.447 1.164 1.498 0.300 0.825 2.665 5.009 -8.262
s. d. 33.037 31.418 47.442 5.905 60.848 648.799 9.067 55.814 760.331

RMSE 33.046 31.423 47.442 5.926 60.852 648.799 9.218 55.958 760.387
obs=500 mean 1.335 1.364 1.227 0.790 0.855 -0.637 2.802 3.505 6.911

u: t(5) s. d. 10.238 9.983 10.567 1.641 5.729 35.654 1.796 5.696 43.801
RMSE 10.243 9.990 10.569 1.655 5.731 35.692 2.544 6.223 44.198

obs=1000 mean 0.997 1.015 0.966 0.845 0.541 -0.616 2.723 3.206 3.572
s. d. 18.615 18.424 19.523 0.862 5.734 36.839 0.918 2.803 32.939

RMSE 18.615 18.424 19.524 0.876 5.752 36.874 1.952 3.567 33.039

obs=100 mean 2.585 2.533 4.956 1.197 3.327 5.477 2.480 4.877 4.803
s. d. 19.918 19.806 45.317 6.037 52.412 1014.042 6.409 46.194 1058.208

RMSE 19.981 19.865 45.490 6.040 52.463 1014.052 6.578 46.356 1058.215
obs=500 mean 1.758 1.760 1.748 0.711 -0.487 -0.813 2.871 2.357 4.825

u: χ2(5) s. d. 0.244 0.295 0.476 1.832 21.893 27.023 2.506 21.745 36.775
RMSE 0.797 0.816 0.886 1.855 21.943 27.084 3.128 21.787 36.973

obs=1000 mean 1.755 1.764 1.763 0.845 0.883 0.263 2.656 3.040 4.997
s. d. 0.296 0.300 0.309 1.157 4.033 17.755 1.302 3.414 24.746

RMSE 0.811 0.820 0.823 1.168 4.035 17.771 2.107 3.977 25.066
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Table A.10: Results for ρ = 0.6, ξ: normal

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 1.915 1.879 2.143 1.300 -1.608 -193.518 2.605 0.895 38.808
s. d. 1.342 1.436 8.169 5.694 69.991 3321.385 9.142 72.123 2551.367

RMSE 1.624 1.684 8.249 5.702 70.040 3327.076 9.282 72.123 2551.647
obs=500 mean 1.982 1.983 1.983 0.922 0.673 0.004 3.038 3.603 5.272

u: normal s. d. 0.238 0.232 0.231 1.948 6.047 31.575 3.186 4.544 39.956
RMSE 1.011 1.010 1.010 1.949 6.055 31.591 3.782 5.237 40.184

obs=1000 mean 1.974 1.975 1.975 0.906 0.927 1.122 2.973 3.367 4.184
s. d. 0.055 0.056 0.059 1.366 5.835 17.307 3.507 4.235 22.248

RMSE 0.975 0.977 0.976 1.369 5.836 17.308 4.025 4.851 22.475

obs=100 mean 1.943 1.918 2.008 1.363 -1.144 -192.521 2.197 0.241 35.246
s. d. 1.052 1.185 3.545 5.512 64.164 2704.632 9.076 66.997 2508.761

RMSE 1.412 1.499 3.686 5.524 64.200 2711.547 9.154 67.002 2508.995
obs=500 mean 1.985 1.986 1.987 0.958 0.819 0.686 2.987 3.526 4.452

u: t(5) s. d. 0.225 0.214 0.215 1.815 5.594 31.594 3.362 4.624 39.343
RMSE 1.010 1.009 1.010 1.816 5.597 31.596 3.905 5.269 39.494

obs=1000 mean 1.976 1.977 1.977 0.902 0.933 1.423 2.984 3.378 3.910
s. d. 0.063 0.064 0.067 1.058 5.529 18.686 3.014 3.744 23.460

RMSE 0.978 0.980 0.979 1.062 5.529 18.691 3.608 4.435 23.639

obs=100 mean 1.955 1.922 2.132 1.121 -4.785 4.184 3.445 0.366 17.115
s. d. 0.764 1.123 4.645 5.532 152.666 782.850 14.623 152.234 1219.060

RMSE 1.223 1.453 4.781 5.534 152.775 782.856 14.826 152.236 1219.167
obs=500 mean 1.917 1.923 1.923 0.840 0.659 -8.181 3.224 3.797 23.476

u: χ2(5) s. d. 0.217 0.250 0.253 2.353 9.886 348.054 3.657 8.948 401.758
RMSE 0.942 0.956 0.957 2.358 9.892 348.175 4.280 9.375 402.387

obs=1000 mean 1.917 1.918 1.918 0.861 0.827 -0.399 3.029 3.584 9.358
s. d. 0.066 0.066 0.069 0.819 3.603 32.080 1.385 3.346 87.408

RMSE 0.919 0.920 0.920 0.831 3.607 32.111 2.457 4.228 87.807
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Table A.11: Results for ρ = 0.6, ξ: t(5)

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 1.446 2.157 2.219 0.562 0.498 -11.457 3.171 3.872 11.510
s. d. 7.859 9.976 10.750 5.293 23.983 1027.405 9.272 20.461 1310.067

RMSE 7.871 10.043 10.819 5.311 23.988 1027.481 9.523 20.662 1310.109
obs=500 mean 1.912 1.916 1.917 0.828 0.735 0.709 3.057 3.702 5.147

u: normal s. d. 0.077 0.078 0.083 1.160 3.163 14.463 1.432 2.830 20.154
RMSE 0.915 0.920 0.921 1.172 3.174 14.466 2.507 3.912 20.576

obs=1000 mean 1.918 1.921 1.920 0.931 1.013 1.409 2.904 3.528 4.083
s. d. 0.045 0.045 0.047 0.524 1.344 8.027 0.541 1.754 11.680

RMSE 0.919 0.922 0.921 0.529 1.344 8.038 1.980 3.077 12.080

obs=100 mean 1.143 1.088 1.189 0.728 2.240 3.905 2.845 4.253 51.089
s. d. 19.862 21.975 19.205 4.783 18.476 358.296 6.649 16.360 1135.995

RMSE 19.863 21.976 19.206 4.791 18.518 358.307 6.901 16.680 1137.099
obs=500 mean 1.913 1.916 1.916 0.772 0.933 1.523 3.125 3.963 4.964

u: t(5) s. d. 0.121 0.121 0.126 1.499 4.518 25.017 2.401 4.036 31.489
RMSE 0.921 0.924 0.925 1.516 4.518 25.022 3.207 5.007 31.737

obs=1000 mean 1.900 1.903 1.903 0.903 0.862 0.986 2.893 3.412 4.494
s. d. 0.065 0.065 0.068 0.739 5.396 20.919 0.767 5.591 21.474

RMSE 0.902 0.905 0.905 0.746 5.398 20.919 2.042 6.089 21.756

obs=100 mean 1.994 2.570 -14.227 0.941 1.218 -17.108 3.017 20.454 20.701
s. d. 0.596 13.838 396.369 4.994 16.735 495.433 6.849 414.109 535.525

RMSE 1.159 13.926 396.661 4.994 16.736 495.763 7.140 414.566 535.888
obs=500 mean 2.033 2.035 2.036 0.898 0.822 0.082 3.162 3.603 5.496

u: χ2(5) s. d. 0.092 0.095 0.098 1.498 3.789 15.135 2.345 3.285 21.537
RMSE 1.037 1.039 1.040 1.501 3.793 15.163 3.190 4.191 22.001

obs=1000 mean 2.035 2.053 2.052 0.925 0.960 0.085 3.161 3.725 6.038
s. d. 0.056 0.410 0.410 0.563 4.975 25.166 0.584 5.150 44.941

RMSE 1.036 1.130 1.129 0.568 4.975 25.183 2.238 5.827 45.223
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Table A.12: Results for ρ = 0.6, ξ: χ2(5)

monotone functions identity IMR normal CDF
degrees of polynomial p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

obs=100 mean 1.978 1.641 3.899 1.297 0.203 6.196 2.702 1.417 45.284
s. d. 3.035 8.456 40.539 4.568 25.212 1097.418 4.901 27.891 1357.101

RMSE 3.189 8.480 40.642 4.578 25.224 1097.430 5.188 27.894 1357.823
obs=500 mean 2.358 2.384 2.252 0.803 0.832 -1.308 3.067 3.521 4.062

u: normal s. d. 10.869 11.195 7.897 1.721 7.599 46.393 2.277 4.513 48.607
RMSE 10.954 11.280 7.996 1.732 7.601 46.450 3.076 5.170 48.704

obs=1000 mean 1.923 1.930 1.930 0.849 0.265 0.721 3.080 3.415 3.858
s. d. 0.248 0.244 0.247 0.818 6.557 17.481 0.911 3.255 24.531

RMSE 0.956 0.962 0.962 0.832 6.598 17.483 2.270 4.052 24.697

obs=100 mean 0.571 0.746 2.299 1.476 0.254 -5.936 2.959 5.113 -3.693
s. d. 27.921 26.659 39.932 5.926 55.876 643.289 8.291 50.636 729.581

RMSE 27.925 26.660 39.953 5.946 55.881 643.326 8.519 50.803 729.596
obs=500 mean 1.463 1.494 1.460 0.745 0.801 -1.061 3.182 4.001 8.114

u: t(5) s. d. 11.088 10.818 10.984 1.689 6.117 32.627 1.899 6.071 41.818
RMSE 11.098 10.830 10.993 1.708 6.120 32.692 2.893 6.772 42.419

obs=1000 mean 1.182 1.200 1.145 0.819 0.442 -0.535 3.106 3.633 4.312
s. d. 18.243 18.064 19.343 0.861 5.515 32.703 0.908 2.765 32.058

RMSE 18.244 18.065 19.344 0.880 5.543 32.739 2.293 3.817 32.229

obs=100 mean -7.626 -2.993 -5.618 1.078 0.476 -17.813 2.942 6.034 18.191
s. d. 237.699 251.249 264.834 10.765 109.312 826.419 13.383 120.664 608.739

RMSE 237.856 251.281 264.917 10.765 109.313 826.633 13.523 120.769 608.982
obs=500 mean 1.856 1.885 1.881 0.700 0.331 0.582 3.173 4.010 6.456

u: χ2(5) s. d. 0.886 0.909 0.893 2.492 8.895 31.604 2.064 6.382 48.811
RMSE 1.232 1.269 1.254 2.510 8.920 31.606 2.997 7.057 49.115

obs=1000 mean 1.895 1.923 1.922 0.789 0.782 1.053 3.073 3.790 5.538
s. d. 0.163 0.191 0.211 0.928 2.266 15.294 0.850 2.507 25.215

RMSE 0.910 0.942 0.946 0.951 2.277 15.294 2.241 3.751 25.620
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Note to Tables B.1-18:

Each table presents the all the results but series estimator for specified correlation and IV.

Simulations were run for ρ = .0, .4, .5 and .6. For a table, each column specifies the estimator

categorized under different types of distributions for u. Each row shows the distribution used

for selection error ξ for each sample size. M, S, R, Md denote mean, Monte Carlo standard

deviation, RMSE and median respectively.
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Table B.1: Simulation Results: Strong IV and ρ = 0.0

u: normal u: χ2(5)
obs IV Heckit1 Heckit2 QLIML QFIML IV Heckit1 Heckit2 QLIML QFIML

100 M 0.803 0.976 0.809 0.135 0.975 4.440 1.126 1.124 0.060 1.006
S 18.556 7.140 7.539 18.502 1.431 108.561 6.028 6.146 26.560 1.546
R 18.557 7.140 7.542 18.522 1.431 108.616 6.030 6.148 26.577 1.546

Md 1.022 1.006 0.935 0.921 0.926 0.988 1.004 0.972 0.938 0.985
500 M 1.040 1.046 1.041 1.019 1.030 1.102 1.034 1.026 1.024 1.032

ξ: S 1.327 1.528 1.264 3.349 0.601 2.413 1.092 1.213 3.539 0.877
normal R 1.328 1.529 1.265 3.349 0.602 2.415 1.092 1.214 3.539 0.877

Md 1.004 1.010 1.002 1.022 1.017 1.064 1.023 1.035 0.991 1.014
1000 M 1.012 1.015 1.011 0.974 0.995 1.002 1.015 1.010 0.993 1.017

S 0.681 0.662 0.649 1.367 0.497 0.752 0.669 0.664 1.198 0.911
R 0.681 0.662 0.650 1.367 0.497 0.752 0.669 0.664 1.198 0.911

Md 1.024 1.045 1.032 0.995 1.006 1.011 1.012 1.020 1.002 0.995
100 M 0.732 1.955 0.909 0.032 1.027 -2.554 2.144 1.092 1.623 0.986

S 14.543 4.979 6.455 23.840 1.449 99.600 5.654 5.975 24.003 1.537
R 14.546 5.069 6.455 23.860 1.450 99.663 5.769 5.975 24.011 1.537

Md 1.005 1.396 1.003 0.960 1.007 1.346 1.422 1.056 1.096 0.835
500 M 1.036 1.603 0.985 0.909 0.991 0.893 1.555 0.966 0.936 0.732

ξ: S 1.398 1.394 1.302 3.765 0.573 1.455 1.386 1.085 2.806 0.981

χ2(5) R 1.399 1.519 1.303 3.766 0.573 1.459 1.493 1.086 2.807 1.017
Md 1.078 1.399 1.008 0.957 1.011 1.104 1.363 0.936 1.012 0.759

1000 M 1.052 1.411 1.003 0.975 1.021 1.017 1.390 0.965 0.892 0.689
S 0.631 0.665 0.618 1.788 0.499 0.708 0.686 0.624 1.756 0.925
R 0.633 0.781 0.618 1.788 0.499 0.708 0.789 0.625 1.759 0.976

Md 1.048 1.350 1.033 1.019 1.032 1.116 1.310 0.932 0.985 0.631
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Table B.2: Results for Strong IV and ρ = 0.4

u: normal u: χ2(5)
obs IV Heckit1 Heckit2 QLIML QFIML IV Heckit1 Heckit2 QLIML QFIML

100 M 1.259 1.361 1.195 -1.082 1.294 0.320 1.171 0.847 -1.217 1.205
S 24.316 9.359 8.948 25.431 1.307 13.649 4.706 6.192 23.647 1.444
R 24.318 9.366 8.950 25.516 1.340 13.666 4.709 6.194 23.751 1.458

Md 1.203 1.218 1.194 1.136 1.280 1.202 1.250 1.211 1.192 1.208
500 M 0.816 0.895 0.881 0.626 1.245 0.745 0.936 0.881 0.671 0.925

ξ: S 1.742 1.583 1.353 3.221 0.548 3.649 1.729 1.310 2.687 0.822
normal R 1.751 1.586 1.358 3.243 0.600 3.658 1.730 1.315 2.707 0.825

Md 1.051 1.060 1.080 1.031 1.237 1.000 1.026 1.007 1.031 1.048
1000 M 0.951 0.967 0.960 0.900 1.059 0.930 0.943 0.918 0.816 0.602

S 0.690 0.663 0.648 0.928 0.619 0.815 0.678 0.695 1.557 0.827
R 0.691 0.663 0.649 0.933 0.621 0.818 0.680 0.700 1.568 0.918

Md 1.032 1.018 1.028 0.980 1.088 0.975 0.998 0.978 1.011 0.211
100 M 5.185 2.227 1.156 -1.879 1.325 1.384 2.491 1.365 -0.404 1.175

S 71.770 4.895 5.504 24.664 1.381 43.334 8.577 9.176 25.317 1.555
R 71.892 5.046 5.506 24.832 1.418 43.336 8.705 9.183 25.356 1.565

Md 1.229 1.432 1.113 0.969 1.255 1.239 1.566 1.196 1.046 1.105
500 M 0.687 1.502 0.854 0.740 1.249 0.918 1.525 0.899 0.667 0.805

ξ: S 6.310 1.580 1.430 2.620 0.529 2.085 1.318 1.405 3.649 0.866

χ2(5) R 6.318 1.658 1.437 2.633 0.585 2.086 1.419 1.408 3.664 0.887
Md 1.102 1.393 1.022 1.008 1.195 1.129 1.409 1.062 0.996 0.757

1000 M 1.046 1.367 0.971 0.902 1.139 1.021 1.323 0.937 0.761 0.482
S 0.639 0.616 0.646 1.067 0.539 0.631 0.601 0.671 1.858 0.842
R 0.640 0.717 0.647 1.071 0.557 0.631 0.683 0.674 1.874 0.988

Md 1.090 1.333 0.996 0.944 1.114 1.058 1.317 0.997 0.960 0.075
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Table B.3: Results for Strong IV and ρ = 0.5

u: normal u: χ2(5)
obs IV Heckit1 Heckit2 QLIML QFIML IV Heckit1 Heckit2 QLIML QFIML

100 M 0.979 1.357 1.158 -1.361 1.374 0.695 1.498 0.608 -0.633 1.361
S 24.720 9.161 8.891 28.617 1.273 37.964 9.773 15.743 23.151 1.361
R 24.720 9.168 8.892 28.714 1.327 37.965 9.786 15.748 23.208 1.408

Md 1.251 1.233 1.254 1.128 1.365 1.214 1.269 1.162 1.312 1.274
500 M 0.775 0.869 0.853 0.621 1.280 0.681 0.901 0.829 0.567 0.998

ξ: S 1.864 1.589 1.413 2.870 0.512 3.592 2.078 2.201 3.691 0.664
normal R 1.878 1.595 1.421 2.895 0.583 3.606 2.081 2.207 3.717 0.664

Md 1.052 1.075 1.087 1.024 1.243 1.016 1.062 1.012 0.999 0.652
1000 M 0.935 0.952 0.945 0.877 1.154 0.864 0.921 0.877 0.808 0.707

S 0.715 0.670 0.663 0.900 0.393 1.030 0.704 0.778 1.624 0.469
R 0.718 0.671 0.665 0.909 0.422 1.039 0.708 0.787 1.635 0.553

Md 1.030 1.025 1.028 0.975 1.117 1.011 1.019 0.993 1.004 0.518
100 M 4.799 2.193 1.128 -0.612 1.395 0.647 1.756 0.866 -1.120 1.169

S 59.319 4.692 5.354 33.681 1.303 23.916 6.539 8.393 24.404 1.459
R 59.440 4.841 5.355 33.720 1.362 23.918 6.583 8.394 24.496 1.468

Md 1.265 1.483 1.165 1.153 1.306 1.215 1.569 1.227 1.263 1.017
500 M 0.648 1.464 0.819 0.909 1.290 0.853 1.459 0.875 0.826 0.769

ξ: S 7.227 1.549 1.501 3.030 0.490 3.762 1.598 1.431 4.111 0.799

χ2(5) R 7.236 1.617 1.512 3.031 0.570 3.765 1.663 1.436 4.115 0.832
Md 1.093 1.390 1.025 1.009 1.232 1.053 1.334 0.949 0.982 0.396

1000 M 1.031 1.342 0.950 0.850 1.190 0.968 1.317 0.898 0.835 0.509
S 0.644 0.591 0.651 1.291 0.388 0.759 0.695 0.747 1.346 0.628
R 0.645 0.683 0.653 1.300 0.432 0.760 0.764 0.754 1.356 0.797

Md 1.098 1.324 0.992 0.966 1.121 1.044 1.310 0.982 0.962 0.221
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Table B.4: Results for Strong IV and ρ = 0.6

u: normal u: χ2(5)
obs IV Heckit1 Heckit2 QLIML QFIML IV Heckit1 Heckit2 QLIML QFIML

100 M 0.646 1.340 1.101 -0.581 1.407 1.536 1.481 0.884 0.024 1.361
S 25.625 8.788 8.717 20.334 1.251 31.611 10.474 6.833 20.848 1.361
R 25.628 8.794 8.717 20.395 1.316 31.615 10.485 6.834 20.871 1.983

Md 1.325 1.329 1.292 1.166 1.368 1.235 1.251 1.217 1.244 1.274
500 M 0.736 0.844 0.827 0.595 1.295 0.819 0.918 0.799 0.573 0.998

ξ: S 1.988 1.600 1.475 2.543 0.476 2.794 1.623 1.607 4.106 0.664
normal R 2.005 1.608 1.485 2.575 0.560 2.800 1.625 1.620 4.128 0.440

Md 1.068 1.073 1.065 1.028 1.267 1.017 1.068 1.017 1.044 0.652
1000 M 0.920 0.938 0.931 0.897 1.137 0.894 0.941 0.841 0.844 0.555

S 0.749 0.686 0.688 1.090 0.360 0.903 0.740 0.902 1.573 0.767
R 0.754 0.689 0.691 1.095 0.385 0.909 0.742 0.916 1.580 0.786

Md 1.027 1.021 1.016 0.988 1.084 1.021 1.032 0.972 0.991 0.506
100 M 4.452 2.216 1.145 -0.533 1.484 -2.554 2.671 0.619 0.710 1.243

S 48.623 4.660 4.814 26.714 1.288 99.600 9.893 17.531 27.404 1.626
R 48.746 4.816 4.817 26.758 1.375 99.663 10.033 17.535 27.406 1.644

Md 1.324 1.550 1.199 1.295 1.383 1.346 1.790 1.232 1.231 1.030
500 M 0.628 1.435 0.791 0.899 1.323 0.893 1.501 0.740 0.653 0.769

ξ: S 7.991 1.548 1.562 2.946 0.463 1.455 0.999 1.624 4.086 0.753

χ2(5) R 8.000 1.608 1.576 2.948 0.565 1.459 1.118 1.644 4.101 0.620
Md 1.085 1.357 1.018 1.036 1.255 1.104 1.489 0.945 0.942 0.476

1000 M 1.014 1.319 0.930 0.827 1.189 1.017 1.435 0.887 0.747 0.504
S 0.652 0.566 0.659 1.155 0.389 0.708 0.606 0.744 1.709 0.575
R 0.652 0.649 0.663 1.168 0.433 0.708 0.746 0.752 1.728 0.576

Md 1.088 1.326 0.987 0.937 1.100 1.116 1.431 0.978 0.894 0.335



120

Table B.5: Results for Weak IV and ρ = 0.0

u: normal u: χ2(5)
obs IV Heckit1 Heckit2 QLIML QFIML IV Heckit1 Heckit2 QLIML QFIML

100 M 0.980 10.114 0.983 0.691 0.963 1.018 -1.436 1.014 2.490 0.998
S 0.638 172.074 0.636 32.420 1.096 0.640 93.693 0.630 24.057 1.007
R 0.638 172.315 0.637 32.421 1.096 0.640 93.724 0.630 24.103 1.007

Md 0.976 0.981 1.002 1.021 0.964 0.999 1.048 0.984 0.853 0.961
500 M 0.995 0.857 0.994 1.253 0.992 1.017 2.092 1.018 0.988 0.981

ξ: S 0.545 6.247 0.537 6.483 0.735 0.524 77.712 0.518 5.271 0.582
normal R 0.545 6.249 0.537 6.488 0.735 0.524 77.720 0.518 5.271 0.583

Md 0.990 0.979 0.993 0.974 0.956 1.005 1.016 1.004 1.190 0.993
1000 M 0.976 0.923 0.973 0.906 0.963 1.014 0.762 1.010 1.053 1.057

S 0.453 1.501 0.450 2.831 0.569 0.434 6.072 0.429 2.668 0.803
R 0.453 1.503 0.451 2.832 0.571 0.434 6.077 0.429 2.669 0.805

Md 0.967 0.939 0.973 0.972 0.968 1.001 0.995 1.005 1.038 1.008
100 M 1.035 -10.261 1.069 0.005 0.995 0.978 -3.914 1.009 0.948 0.910

S 0.613 265.733 0.614 24.815 1.094 0.630 223.518 0.623 30.667 0.983
R 0.614 265.971 0.618 24.835 1.094 0.631 223.572 0.624 30.667 0.987

Md 1.031 1.047 1.068 0.946 0.976 0.991 0.842 1.012 1.211 0.874
500 M 1.013 0.934 1.150 1.232 0.987 1.033 0.716 1.164 1.076 0.938

ξ: S 0.547 8.995 0.548 5.896 0.707 0.537 13.047 0.535 6.180 0.664

χ2(5) R 0.547 8.995 0.568 5.900 0.707 0.538 13.050 0.559 6.180 0.667
Md 0.996 0.954 1.128 0.958 0.992 1.009 1.006 1.143 1.101 1.034

1000 M 1.046 1.113 1.231 1.156 1.012 1.031 1.052 1.222 0.791 0.728
S 0.452 5.328 0.460 3.455 0.553 0.457 5.238 0.453 3.327 0.825
R 0.454 5.329 0.515 3.459 0.553 0.458 5.238 0.505 3.333 0.869

Md 1.037 1.065 1.196 1.109 1.004 1.029 1.032 1.202 0.874 0.748
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Table B.6: Results for Weak IV and ρ = 0.4

u: normal u: χ2(5)
obs IV Heckit1 Heckit2 QLIML QFIML IV Heckit1 Heckit2 QLIML QFIML

100 M 1.586 2.836 1.588 -3.068 1.586 1.536 -2.592 1.539 -2.606 1.433
S 0.633 35.243 0.606 20.161 1.022 0.597 240.707 0.592 25.049 0.941
R 0.863 35.291 0.844 20.568 1.178 0.802 240.734 0.800 25.307 1.035

Md 1.578 1.438 1.587 0.224 1.575 1.508 1.283 1.523 -0.266 1.391
500 M 1.400 0.037 1.398 -0.585 1.330 1.383 0.670 1.387 -1.625 1.192

ξ: S 0.526 24.103 0.521 5.314 0.677 0.515 9.581 0.513 6.592 0.778
normal R 0.661 24.123 0.655 5.546 0.753 0.642 9.586 0.643 7.095 0.801

Md 1.407 1.138 1.404 0.250 1.307 1.401 1.116 1.407 -0.122 1.394
1000 M 1.268 1.130 1.264 -0.057 1.206 1.277 1.006 1.276 -0.315 0.899

S 0.433 6.115 0.428 2.832 0.527 0.440 3.613 0.436 3.314 0.767
R 0.509 6.117 0.503 3.023 0.566 0.520 3.613 0.516 3.565 0.774

Md 1.282 1.014 1.274 0.566 1.167 1.287 1.019 1.280 0.286 1.103
100 M 1.587 2.641 1.617 -3.805 1.549 1.586 1.557 1.610 -1.096 1.523

S 0.594 34.063 0.579 23.632 1.033 0.633 51.806 0.638 40.577 1.066
R 0.835 34.103 0.846 24.116 1.170 0.863 51.809 0.883 40.631 1.187

Md 1.588 1.471 1.615 0.115 1.491 1.578 1.350 1.612 0.331 1.510
500 M 1.432 1.638 1.540 -0.501 1.398 1.399 -0.065 1.508 -0.406 0.957

ξ: S 0.530 23.301 0.532 5.135 0.675 0.528 25.444 0.529 7.720 0.871

χ2(5) R 0.684 23.310 0.758 5.350 0.783 0.662 25.467 0.733 7.847 0.872
Md 1.417 1.135 1.524 0.315 1.321 1.433 1.117 1.519 -0.074 1.102

1000 M 1.310 0.994 1.460 0.279 1.230 1.295 0.700 1.455 -0.084 0.635
S 0.428 8.085 0.426 2.615 0.501 0.435 9.323 0.435 3.917 0.793
R 0.529 8.085 0.627 2.713 0.551 0.525 9.328 0.629 4.065 0.873

Md 1.310 1.092 1.444 0.578 1.152 1.320 1.063 1.453 0.400 0.483
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Table B.7: Results for Weak IV and ρ = 0.5

u: normal u: χ2(5)
obs IV Heckit1 Heckit2 QLIML QFIML IV Heckit1 Heckit2 QLIML QFIML

100 M 1.729 3.130 1.734 -3.201 1.721 1.686 -2.573 1.685 -0.896 1.595
S 0.592 62.997 0.588 21.170 0.998 0.600 182.319 0.589 28.523 0.930
R 0.939 63.033 0.941 21.583 1.231 0.911 182.354 0.904 28.586 1.104

Md 1.720 1.555 1.741 0.232 1.623 1.704 1.564 1.713 0.460 1.571
500 M 1.497 0.508 1.495 -0.280 1.388 1.488 0.541 1.496 -0.625 1.209

ξ: S 0.514 10.178 0.510 5.184 0.649 0.520 7.570 0.518 8.002 0.771
normal R 0.715 10.190 0.710 5.339 0.756 0.713 7.584 0.717 8.166 0.799

Md 1.498 1.152 1.494 0.463 1.333 1.505 1.132 1.515 0.151 1.350
1000 M 1.335 0.838 1.332 0.350 1.229 1.349 0.900 1.358 0.042 0.894

S 0.428 3.494 0.423 2.425 0.492 0.427 5.431 0.423 3.894 0.708
R 0.544 3.498 0.537 2.510 0.543 0.552 5.432 0.554 4.010 0.716

Md 1.353 1.009 1.350 0.683 1.165 1.354 1.038 1.361 0.425 0.463
100 M 1.726 3.822 1.754 -2.987 1.692 1.747 1.056 1.771 1.409 1.639

S 0.573 169.952 0.566 27.520 1.022 0.593 17.854 0.592 37.053 1.009
R 0.925 169.976 0.942 27.807 1.234 0.954 17.854 0.972 37.055 1.194

Md 1.731 1.506 1.753 0.771 1.623 1.740 1.615 1.747 0.973 1.594
500 M 1.501 4.126 1.608 0.403 1.417 1.492 0.421 1.599 0.790 0.972

ξ: S 0.506 77.381 0.493 5.296 0.652 0.545 8.400 0.546 8.326 0.828

χ2(5) R 0.712 77.444 0.782 5.329 0.774 0.734 8.420 0.811 8.328 0.829
Md 1.494 1.124 1.598 0.572 1.332 1.515 1.099 1.615 0.501 0.860

1000 M 1.366 1.141 1.509 0.702 1.244 1.354 1.039 1.500 0.905 0.714
S 0.410 4.313 0.402 2.793 0.472 0.417 2.638 0.415 4.161 0.726
R 0.550 4.315 0.648 2.809 0.532 0.547 2.639 0.650 4.162 0.780

Md 1.369 1.063 1.499 0.707 1.172 1.364 1.075 1.501 0.567 0.336
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Table B.8: Results for Weak IV and ρ = 0.6

u: normal u: χ2(5)
obs IV Heckit1 Heckit2 QLIML QFIML IV Heckit1 Heckit2 QLIML QFIML

100 M 1.870 2.304 1.837 -0.322 1.848 1.836 1.918 1.837 1.730 1.695
S 0.571 13.195 0.612 16.511 0.969 0.617 44.461 0.612 27.031 0.948
R 1.041 13.259 1.037 16.563 1.288 1.039 44.470 1.037 27.041 1.176

Md 1.879 1.702 1.826 0.885 1.716 1.837 1.665 1.826 0.965 1.635
500 M 1.590 1.115 1.589 0.222 1.421 1.618 0.601 1.628 1.247 1.251

ξ: S 0.498 6.704 0.495 5.268 0.625 0.513 21.976 0.511 7.572 0.750
normal R 0.773 6.705 0.769 5.325 0.754 0.803 21.979 0.810 7.576 0.791

Md 1.602 1.155 1.590 0.724 1.388 1.621 1.231 1.633 0.939 1.279
1000 M 1.401 0.892 1.397 0.529 1.231 1.441 1.013 1.452 0.990 0.979

S 0.421 2.709 0.416 2.149 0.458 0.431 4.355 0.429 3.972 0.668
R 0.581 2.711 0.575 2.200 0.513 0.617 4.355 0.623 3.972 0.668

Md 1.423 1.008 1.420 0.776 1.136 1.448 1.057 1.461 0.718 0.587
100 M 1.890 0.524 1.910 1.180 1.804 1.922 2.613 1.963 1.934 1.755

S 0.557 120.541 0.545 15.472 0.942 0.617 86.358 0.618 37.442 1.112
R 1.050 120.542 1.060 15.473 1.238 1.110 86.373 1.145 37.454 1.344

Md 1.894 1.771 1.902 1.495 1.724 1.936 1.728 1.993 2.310 1.700
500 M 1.593 1.180 1.696 1.464 1.472 1.610 0.280 1.805 3.106 1.000

ξ: S 0.501 12.399 0.492 4.972 0.636 0.491 14.177 0.574 8.526 0.871

χ2(5) R 0.777 12.401 0.852 4.994 0.792 0.783 14.196 0.989 8.783 0.871
Md 1.612 1.144 1.703 1.079 1.357 1.612 1.118 1.813 1.150 0.624

1000 M 1.431 0.902 1.570 0.895 1.244 1.437 0.645 1.645 1.035 0.674
S 0.404 1.596 0.389 2.999 0.422 0.426 3.557 0.422 5.245 0.683
R 0.591 1.599 0.690 3.000 0.487 0.610 3.574 0.771 5.246 0.756

Md 1.441 1.066 1.566 0.797 1.152 1.472 1.031 1.652 0.564 0.371
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Table C.1: Relative Efficiencies (Ratio of MSEs)

Heckit1 vs LIV Heckit2 vs QLIML Heckit2 vs Series Heckit2 vs QFIML

ρ ξ obs. u: normal u: χ2(5) u: normal u: χ2(5) u: normal u: χ2(5) u: normal u: χ2(5)

0 normal 100 6.03 18.69 3.01 2.78 0.04 0.06 6.75 324.48
500 7.01 8.51 1.94 2.09 0.23 0.52 0.75 4.89
1000 4.43 3.26 1.27 2.26 0.59 1.89 1.06 1.26

χ2(5) 100 13.66 16.15 1.13 0.63 0.05 0.07 8.23 298.49
500 8.36 6.69 0.97 2.95 0.19 0.88 0.85 0.95
1000 8.36 7.92 1.04 2.14 0.65 2.44 0.66 0.81

0.4 normal 100 8.13 14.70 0.44 4.44 0.02 0.06 6.74 8.42
500 5.70 4.24 1.75 2.16 0.20 0.49 1.22 4.47
1000 2.07 5.02 4.93 1.84 0.92 1.72 1.09 1.44

χ2(5) 100 20.34 7.62 1.10 0.46 0.07 0.03 202.95 24.78
500 3.36 6.77 1.10 3.00 0.17 0.40 14.52 2.16
1000 2.74 7.72 1.77 1.28 0.74 2.15 0.80 0.86

0.5 normal 100 10.43 2.17 0.43 0.14 0.02 0.01 7.27 15.05
500 4.15 2.83 1.73 0.90 0.17 0.09 1.39 3.00
1000 1.87 4.31 4.57 1.56 0.40 0.49 1.14 2.15

χ2(5) 100 39.64 8.52 1.05 0.52 0.06 0.03 150.73 13.20
500 4.02 8.20 1.14 1.67 0.14 0.34 20.02 5.13
1000 3.96 3.23 1.72 2.40 0.44 1.12 0.89 0.99

0.6 normal 100 5.47 9.33 0.43 0.66 0.02 0.08 8.49 9.09
500 3.01 6.49 1.72 2.12 0.14 0.07 1.56 2.97
1000 2.51 2.98 3.92 0.82 0.31 0.74 1.20 1.50

χ2(5) 100 30.86 2.44 0.90 0.38 0.08 0.01 102.44 98.67
500 3.50 6.22 1.21 2.33 0.13 0.14 24.76 1.70
1000 3.11 5.28 1.57 1.60 0.43 0.59 1.01 0.90



Table C.2: Ratio of estimations with ÂvarQLIML < ÂvarTwo−step

ρ ξ obs. u: normal u: t(5) u: χ2(5)

100 0.54 0.56 0.53
normal 500 0.54 0.52 0.53

1000 0.52 0.52 0.54
100 0.53 0.52 0.53

0.0 ξ: t(5) 500 0.57 0.55 0.56
1000 0.56 0.55 0.53
100 0.55 0.56 0.56

χ2(5) 500 0.58 0.58 0.57
1000 0.55 0.56 0.54

100 0.48 0.48 0.51
normal 500 0.53 0.53 0.56

1000 0.53 0.54 0.54
100 0.53 0.53 0.51

0.4 ξ: t(5) 500 0.52 0.54 0.51
1000 0.53 0.54 0.58
100 0.54 0.52 0.55

χ2(5) 500 0.56 0.58 0.59
1000 0.55 0.58 0.55

100 0.48 0.48 0.51
normal 500 0.53 0.55 0.54

1000 0.54 0.55 0.56
100 0.52 0.52 0.51

0.5 ξ: t(5) 500 0.57 0.54 0.54
1000 0.56 0.56 0.54
100 0.53 0.56 0.51

χ2(5) 500 0.58 0.58 0.56
1000 0.56 0.58 0.61

100 0.48 0.48 0.54
normal 500 0.54 0.55 0.54

1000 0.56 0.56 0.57
100 0.52 0.54 0.53

0.6 ξ: t(5) 500 0.56 0.54 0.56
1000 0.57 0.57 0.58
100 0.53 0.55 0.55

χ2(5) 500 0.59 0.59 0.57
1000 0.60 0.60 0.59
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Figures in Chapter 1
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Figure D.1: Sample Cumulative Density Functions under Strong IV with ρ = 0.6 and
obs=1000.
Note: The upper row is for normal ξ and lower row is for chi-squared ξ. The left column is

for normal u and right column is for chi-squared u. The dotted, short-dashed and
long-dashed line represent FIML, LIML and Heckit estimators respectively.
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Figure D.2: Sample Cumulative Density Functions under Weak IV with ρ = 0.6 and
obs=1000.

Note: Graphs are placed by same way as in Figure D.1.
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Appendix E

Proofs in Chapter 2

E.1 Proof of Proposition 1

Although the basic proof is presented in Terza (1998), the following generalizes it to the two
regime setting.

Lemma 1 ∫ ∞

−zγ
g(v|ϵ)dv = F

[
zγ + (σ1a/σ

2
1)ϵ√

1− (σ1a/σ1)2

]
Proof First imagine the joint density function of v and ϵ. Then the expression is the
probability of v ∈ [−zγ,∞), i.e. d = 1 conditional on ϵ.
A linear projection can be written as

v =
σ1a

σ21
ϵ+ e with e ∼ N

(
0, 1−

(σ1a
σ1

)2)
Then

w = 1[zγ + (σ1a/σ
2
1)ϵ+ e > 0]

= 1[e > −zγ − (σ1a/σ
2
1)ϵ]

= 1

[
e√

1− (σ1a/σ1)2
>

−zγ − (σ1a/σ
2
1)ϵ√

1− (σ1a/σ1)2

]
Therefore

P(w = 1|ϵ) =
∫ ∞

−zγ
g(v|ϵ)dv = F

[
zγ + (σ1a/σ

2
1)ϵ√

1− (σ1a/σ1)2

]
≡ Φ∗(ϵ)

as was to be shown. �

Proposition The joint density function of y and d conditional on the exogenous variables
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is

f(y, w|z) =

[
1√
π

∫
R
f(y1|z, w = 1,

√
2σ1ζ1)Φ

∗(
√
2σ1ζ1) exp(−ζ21 )dζ1

]w

·

[
1√
π

∫
R
f(y0|z, w = 0,

√
2σ0ζ0)

(
1− Φ∗(

√
2σ0ζ0)

)
exp(−ζ20 )dζ0

]1−w

Proof Note that

f(ϵ1, w = 1) =

∫ ∞

−zγ
f(ϵ1, v)dv

f(ϵ1, w = 0) =

∫ −zγ

−∞
f(ϵ1, v)dv

f(ϵ0, w = 1) =

∫ ∞

−zγ
f(ϵ0, v)dv

f(ϵ0, w = 0) =

∫ −zγ

−∞
f(ϵ0, v)dv

Let f(·|z) ≡ g(·).∫
R
g(y0|w = 0, ϵ0)

(∫ −zγ

−∞
g(ϵ0, v) dv

)
dϵ0 =

∫
R
g(y0|w = 0, ϵ0) · g(ϵ0, w = 0) dϵ0

=

∫
R
g(y0, w = 0, ϵ0) dϵ0

= g(y0, w = 0)

∫
R
g(y1|w = 1, ϵ1)

(∫ ∞

−zγ
g(ϵ1, v) dv

)
dϵ1 =

∫
R
g(y1|w = 1, ϵ1) · g(ϵ1, w = 1) dϵ1

=

∫
R
g(y1, w = 1, ϵ1) dϵ1

= g(y1, w = 1)

Thus we have

g(y, w) ≡ g(y1, w = 1)w · g(y0, w = 0)1−w

=

(∫
R
g(y1|w = 1, ϵ1)

(∫ ∞

−zγ
g(ϵ1, v) dv

)
dϵ1

)w

×

(∫
R
g(y0|w = 0, ϵ0)

(∫ −zγ

−∞
g(ϵ0, v) dv

)
dϵ0

)1−w
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Recovering the original notation

f(y, w|z) =

[∫
R
f(y1|z, w = 1, ϵ1)

(∫ ∞

−zγ
f(ϵ1, v|z) dv

)
dϵ1

]w

·

[∫
R
f(y0|z, w = 0, ϵ0)

(∫ −zγ

−∞
f(ϵ0, v|z) dv

)
dϵ0

]1−w

=

[∫
R
f(y1|z, w = 1, ϵ1)

(∫ ∞

−zγ
f(ϵ1|z)f(v|ϵ1, z) dv

)
dϵ1

]w

·

[∫
R
f(y0|z, w = 0, ϵ0)

(∫ −zγ

−∞
f(ϵ0|z)f(v|ϵ0, z)dv

)
dϵ0

]1−w

=

[∫
R
f(y1|z, w = 1, ϵ1)f(ϵ1|z)

(∫ ∞

−zγ
f(v|ϵ1, z) dv

)
dϵ1

]w

·

[∫
R
f(y0|z, w = 0, ϵ0)f(ϵ0|z)

(∫ −zγ

−∞
f(v|ϵ0, z)dv

)
dϵ0

]1−w

=

[∫
R
f(y1|z, w = 1, ϵ1)f(ϵ1|z)Φ∗(ϵ1) dϵ1

]w

·

[∫
R
f(y0|z, w = 0, ϵ0)f(ϵ0|z)

(
1− Φ∗(ϵ0)

)
dϵ0

]1−w

Let
ζ ≡ ϵ√

2σ
, ϵ ∼ N(0, σ2) (E.1)

Then

f(y, w|z) =

[
1√
π

∫
R
f(y1|z, w = 1,

√
2σ1ζ1)Φ

∗(
√
2σ1ζ1) exp(−ζ21 )dζ1

]w

×

[
1√
π

∫
R
f(y0|z, w = 0,

√
2σ0ζ0)

(
1− Φ∗(

√
2σ0ζ0)

)
exp(−ζ20 )dζ0

]1−w

as was to be shown. �
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E.2 Derivation of Estimating Equation for NFESModel

In what follows the regime subscripts were omitted for simplicity. For each regime

E(y|z, v) = exp(α + xβ)E[exp(ϵ)|z, v]

= exp(α + xβ) exp
(
ρσv +

1

2
σ2(1− ρ2)

)
= exp

(
α +

1

2
σ2(1− ρ2) + xβ + ρσv

)
The second equation derived by the result in Appendix A in Terza (1998).
Note that for regime 1,

E[exp(ρσv)|v > −zδ] =

∫ ∞

−zδ
exp(ρσv)p(v|v > −zδ)dv

=

∫ ∞

−zδ
exp(ρσv)

p(v)

P(v > −zδ)
dv

=
1

Φ(zδ)

∫ ∞

−zδ
exp(ρσv)p(v)dv

=
1

Φ(zδ)

∫ ∞

−zδ
exp(ρσv)

1√
2π

exp
(
− v2

2

)
dv

=
1

Φ(zδ)

∫ ∞

−zδ

1√
2π

exp
(2ρσv − v2

2

)
dv

=
1

Φ(zδ)

∫ ∞

−zδ

1√
2π

exp
((ρσ)2

2

)
exp

(
− (ρσ)2

2

)
exp

(2ρσv − v2

2

)
dv

=
1

Φ(zδ)
exp

((ρσ)2
2

)∫ ∞

−zδ

1√
2π

exp
(
− (v − ρσ)2

2

)
dv

=
1

Φ(zδ)
exp

((ρσ)2
2

)∫ ∞

−(zδ+ρσ)

1√
2π

exp
(
− v2

2

)
dv

=
1

Φ(zδ)
exp

((ρσ)2
2

)
Φ(zδ + ρσ)

By the same reasoning it can be shown that for regime 0,

E[exp(ρσv)|v < −zδ] =
1

Φ(−zδ)
exp

((ρσ)2
2

)
Φ(−(zδ + ρσ))

Since G(z, v) ⊂ G(z, w), by law of iterated expectation,

E(y1|z, w) = exp

(
α1 +

1

2
σ21(1− ρ21) + xβ1

)
E[exp(ρ1σ1v)|z, w]

E(y1|z, w = 1) = exp

(
α1 +

1

2
σ21(1− ρ21) + xβ1

)
E[exp(ρ1σ1v)|v > −zδ]

= exp
(
α1 +

σ21
2

+ xβ1

)Φ(zδ + ρ1σ1)

Φ(zδ)
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Similarly

E(y0|z, w = 0) = exp

(
α0 +

1

2
σ20(1− ρ20) + xβ0

)
E[exp(ρ0σ0v)|v < −zδ]

= exp
(
α0 +

σ20
2

+ xβ0

)Φ(−(zδ + ρ0σ0))

Φ(−zδ)

Therefore the estimating equation is,

E(y|z, w) = w ·

[
exp

(
α1 +

σ21
2

+ xβ1

)Φ(zδ + ρ1σ1)

Φ(zδ)

]

+ (1− w) ·

[
exp

(
α0 +

σ20
2

+ xβ0

)Φ(−(zδ + ρ0σ0))

Φ(−zδ)

]
,

where y = wy1 + (1− w)y0.

E.3 Derivation of Conditional Variance for WNLS Es-

timator

It was shown in Appendix A. in Terza (1998) that

E[exp(cg)|v] = exp
(
ρgσgv +

1

2
σ2g(1− ρ2g)

)
var[exp(cg)|v] = exp

(
2ρgσgv + 2σ2g(1− ρ2g)

)
− exp

(
2ρgσgv + σ2g(1− ρ2g)

)
Let all the expectations below are conditional on z. Then

E[exp(cg)
2|w] = E

[
E[exp(cg)

2|v]
∣∣∣w]

= E
[
var[exp(cg)|v]

∣∣∣w]+ E
[
E[exp(cg)|v]2

∣∣∣w]
Thus we need to find out the expressions for the two terms on the RHS.

E[var(exp(cg)|v)|w] = E

[
exp

(
2ρgσgv + 2σ2g(1− ρ2g)

)
− exp

(
2ρgσgv + σ2g(1− ρ2g)

)∣∣∣∣w]
= exp

[
2σ2g(1− ρ2g)

]
· E
[
exp

(
2ρgσgv

)∣∣w]
− exp

[
σ2g(1− ρ2g)

]
· E
[
exp

(
2ρgσgv

)∣∣w]
=

(
exp

[
2σ2g(1− ρ2g)

]
− exp

[
σ2g(1− ρ2g)

])
× E

[
exp

(
2ρgσgv

)∣∣w] (E.2)
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Also

E[E(exp(cg)|v)2|w] = E

[
exp

(
2ρgσgv + σ2g(1− ρ2g)

)∣∣∣∣w]
= exp

(
σ2g(1− ρ2g)

)
· E
[
exp(2ρgσgv)|w

]
Therefore

E[exp(cg)
2|w] = exp

[
2σ2g(1− ρ2g)

]
· E
[
exp(2ρgσgv)|w

]
By the way

E[exp(cg)|w] = E
[
E(exp(cg)|v)

∣∣w]
= E

[
exp

(
ρgσgv +

1

2
σ2g(1− ρ2g)

)∣∣∣w]
= exp

(1
2
σ2g(1− ρ2g)

)
· E
[
exp(ρgσgv)|w

]
Therefore

var[exp(cg)|w] = E[exp(cg)
2|w]− E[exp(cg)|w]2

= exp
[
2σ2g(1− ρ2g)

]
· E
[
exp(2ρgσgv)|w

]
− exp

(
σ2g(1− ρ2g)

)
· E
[
exp(ρgσgv)|w

]2
From the results in Appendix A,

var[exp(ϵ1)|w = 1] = exp(σ21)

{
exp(σ21)

Φ(zδ + 2ρ1σ1)

Φ(zδ)
−
(Φ(zδ + ρ1σ1)

Φ(zδ)

)2}

var[exp(ϵ0)|w = 0] = exp(σ20)

{
exp(σ20)

Φ(−zδ − 2ρ0σ0)

Φ(−zδ)
−
(Φ(−zδ − ρ0σ0)

Φ(−zδ)

)2}
Also

var
[
E[y|z, w, ϵ1, ϵ0]

∣∣∣z, w] = var
[
w exp(α1 + xβ1 + ϵ1) + (1− w) exp(α0 + xβ0 + ϵ0)

∣∣∣z, w]
= w exp(α1 + xβ1)

2var[exp(ϵ1)|z, w]
+(1− w) exp(α0 + xβ0)

2var[exp(ϵ0)|z, w]
+2w(1− w) exp(α1 + xβ1) exp(α0 + xβ0)

× cov[exp(ϵ1), exp(ϵ0)|z, w]
= w exp(α1 + xβ1)

2var[exp(ϵ1)|z, w = 1]

+ (1− w) exp(α0 + xβ0)
2var[exp(ϵ0)|z, w = 0]

= w exp(α1 + σ21/2 + xβ1)
2

{
exp(σ21)

Φ(zδ + 2ρ1σ1)

Φ(zδ)
−
(Φ(zδ + ρ1σ1)

Φ(zδ)

)2}

+(1− w) exp(α0 + σ20/2 + xβ0)
2

{
exp(σ20)

Φ(−zδ − 2ρ0σ0)

Φ(−zδ)
−
(Φ(−zδ − ρ0σ0)

Φ(−zδ)

)2}
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Let δg = exp(αg + σ2g/2 + xβg), L1,2 =
Φ(zδ + 2ρ1σ1)

Φ(zδ)
, L1 =

Φ(zδ + ρ1σ1)

Φ(zδ)
, L0,2 =

Φ(−zδ − 2ρ0σ0)

Φ(−zδ)
, and L0 =

Φ(−zδ − ρ0σ0)

Φ(−zδ)
. Then the last equation can be simply writ-

ten as

var
[
E[y|z, w, ϵ1, ϵ0]

∣∣∣z, w] = wδ21

(
exp(σ21)L1,2 − L21

)
+ (1− w)δ20

(
exp(σ20)L0,2 − L20

)
And

var[y|z, w, ϵ1, ϵ0] = var[wy1 + (1− w)y0|z, w, ϵ1, ϵ0]
= wvar[y1|z, w, ϵ1, ϵ0] + (1− w)wvar[y0|z, w, ϵ1, ϵ0]

+ 2w(1− w)cov[y1, y0|z, w, ϵ1, ϵ0]
= wE[y1|z, w, ϵ1] + (1− w)E[y0|z, w, ϵ0]

Taking E[·|z, w] at both sides,

E
[
var[y|z, w, ϵ1, ϵ0]

∣∣z, w] = wE[y1|z, w = 1] + (1− w)E[y0|z, w = 0]

= wδ1L1 + (1− w)δ0L0

Finally,

var[y|z, w] = var
[
E[y|z, w, ϵ1, ϵ0]

∣∣∣z, w]+ E
[
var[y|z, w, ϵ1, ϵ0]

∣∣z, w]
= wδ1

(
δ1(exp(σ

2
1)L1,2 − L21) + L1

)
+ (1− w)δ0

(
δ0(exp(σ

2
0)L0,2 − L20) + L0

)
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Appendix F

Tables in Chapter 2
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Table F.1: Simulation Results for rho = 0.4

Linear Models NET (1 Regime Nonlinear)
2SLS LET(Hkt) LFES(Hkt) 1PQML 2PQML NLS WNLS

n=1000 mean 0.726 0.742 0.747 -18813768 -1037.586 -6220.699 7.289E+13
mc. st. dev 2.463 2.448 2.404 378300000 30871.585 186544.680 2.055E+15

RMSE 2.478 2.462 2.417 378800000 30889.051 186648.410 2.056E+15
median 0.825 0.845 0.855 -91.134 -0.296 0.747 1.177
MAD 1.453 1.446 1.444 94.588 3.387 2.257 1.757

n=3000 mean 0.804 0.820 0.818 -2389.450 -4.619 -2.516 -0.347
mc. st. dev 1.255 1.254 1.256 19778.908 16.242 17.923 18.548

RMSE 1.270 1.267 1.269 19922.838 17.187 18.264 18.597
median 0.814 0.804 0.809 -187.915 -0.239 0.616 0.270
MAD 0.809 0.798 0.806 188.648 1.881 1.407 1.208

n=5000 mean 0.892 0.904 0.904 -904.755 -1.712 -0.857 -0.340
mc. st. dev 0.980 0.982 0.982 5179.628 6.637 10.024 3.833

RMSE 0.986 0.987 0.986 5258.226 7.170 10.194 4.061
median 0.907 0.913 0.906 -220.859 0.033 0.495 0.065
MAD 0.647 0.630 0.628 192.470 1.388 1.034 0.981

Note: The true ATE=1, The number of Monte Carlo repetition is 1000. LET(Hkt): LET model estimated by two-
step Heckit, 1PQML: one step Poisson Quasi-Maximum Likelihood estimator, RMSE=root mean squared error,
MAD=mean absolute deviation
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Table F.1 (cont’d)
NFES (2 Regime Nonlinear)

1PQML 2 PQML NLS WNLS

n=1000 mean -0.528 -0.084 -3.555 -0.100
mc. st. dev 17.753 14.587 105.187 18.089

RMSE 17.818 14.628 105.286 18.122
median 0.909 0.984 1.096 0.971
MAD 1.132 1.160 1.198 1.138

n=3000 mean 0.856 0.885 0.879 0.926
mc. st. dev 1.487 1.322 1.444 1.298

RMSE 1.494 1.327 1.449 1.300
median 0.934 0.937 1.004 0.958
MAD 0.679 0.674 0.706 0.649

n=5000 mean 0.983 0.980 0.973 0.996
mc. st. dev 0.933 0.935 0.987 0.912

RMSE 0.933 0.935 0.988 0.912
median 1.027 1.022 1.001 1.044
MAD 0.539 0.540 0.594 0.528



139

Table F.2: Simulation Results for rho = 0.5

Linear Models NET (1 Regime Nonlinear)
2SLS LET(Hkt) LFES(Hkt) 1PQML 2PQML NLS WNLS

n=1000 mean 0.620 0.634 0.635 -2.097E+11 -107.190 -70.525 1.E+07
mc. st. dev 2.512 2.517 2.522 6.902E+12 1678.496 1008.897 3.E+08

RMSE 2.541 2.544 2.549 6.905E+12 1681.979 1011.429 3.E+08
median 0.784 0.820 0.789 -90.775 -0.391 0.779 0.878
MAD 1.467 1.457 1.461 93.716 3.289 2.149 1.821

n=3000 mean 0.748 0.763 0.761 -4252.613 -7.376 -3.185 -1.604
mc. st. dev 1.254 1.255 1.256 56506.153 37.336 18.650 17.555

RMSE 1.279 1.277 1.279 56666.026 38.264 19.113 17.747
median 0.735 0.770 0.772 -151.285 -0.702 0.292 0.028
MAD 0.809 0.803 0.803 133.619 2.212 1.452 1.330

n=5000 mean 0.835 0.847 0.847 -622.799 -2.529 -1.083 0.221
mc. st. dev 0.986 0.988 0.988 2763.448 8.182 10.301 26.549

RMSE 0.999 1.000 1.000 2832.979 8.910 10.510 26.561
median 0.881 0.888 0.888 -191.688 -0.260 0.517 -0.121
MAD 0.638 0.640 0.631 131.812 1.558 1.084 1.112
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Table F.2 (cont’d)
NFES (2 Regime Nonlinear)

1PQML 2 PQML NLS WNLS

n=1000 mean -4.675 -4.115 -19.700 -1.291
mc. st. dev 101.905 79.327 383.617 28.446

RMSE 102.063 79.491 384.175 28.538
median 0.942 1.002 1.141 1.010
MAD 1.071 1.128 1.189 1.121

n=3000 mean 0.811 0.820 0.777 0.852
mc. st. dev 1.364 1.337 1.494 1.320

RMSE 1.377 1.349 1.510 1.328
median 0.932 0.936 0.950 0.954
MAD 0.651 0.646 0.721 0.625

n=5000 mean 0.935 0.940 0.937 0.954
mc. st. dev 0.952 0.946 1.004 0.920

RMSE 0.954 0.948 1.006 0.921
median 1.016 1.017 1.017 1.029
MAD 0.550 0.546 0.559 0.536
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Table F.3: Simulation Results for rho = 0.6

Linear Models NET (1 Regime Nonlinear)
2SLS LET(Hkt) LFES(Hkt) 1PQML 2PQML NLS WNLS

n=1000 mean 0.589 0.610 0.615 -3178.000 -83.600 -430.3381 2933.343
mc. st. dev 2.444 2.424 2.417 10050.000 828.368 7701.3678 80317.211

RMSE 2.478 2.455 2.447 10050.000 832.677 7713.4375 80370.723
median 0.743 0.725 0.761 -73.208 -0.760 0.50252408 0.818
MAD 1.500 1.500 1.483 76.071 3.636 2.3827269 1.897

n=3000 mean 0.690 0.703 0.703 -1579.442 -9.535 -5.6418819 326.938
mc. st. dev 1.269 1.269 1.267 17617.457 43.824 29.77737 9798.644

RMSE 1.306 1.304 1.301 17688.204 45.073 30.509119 9804.063
median 0.724 0.723 0.727 -134.971 -1.165 0.33116622 -0.149
MAD 0.830 0.843 0.846 112.208 2.613 1.4962865 1.456

n=5000 mean 0.777 0.787 0.788 -411.791 -3.600 -1.1125125 -1.055
mc. st. dev 1.012 1.015 1.015 1144.600 8.520 7.3739959 5.262

RMSE 1.036 1.037 1.037 1216.761 9.683 7.6706274 5.649
median 0.830 0.835 0.855 -158.018 -0.705 0.53132847 -0.315
MAD 0.655 0.658 0.656 104.547 1.930 1.0969538 1.192
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Table F.3 (cont’d)
NFES (2 Regime Nonlinear)

1PQML 2 PQML NLS WNLS

n=1000 mean -2.296 -362.847 -4313.352 -143.539
mc. st. dev 39.603 11411.335 126080.480 4209.908

RMSE 39.740 11417.134 126154.270 4212.388
median 0.983 0.998 1.170 1.188
MAD 1.113 1.165 1.176 1.150

n=3000 mean 0.717 0.725 0.670 0.782
mc. st. dev 1.650 1.595 1.842 1.517

RMSE 1.674 1.618 1.871 1.533
median 0.945 0.943 0.989 0.974
MAD 0.685 0.688 0.706 0.664

n=5000 mean 0.901 0.907 0.893 0.923
mc. st. dev 0.976 0.973 1.054 0.954

RMSE 0.981 0.978 1.059 0.957
median 0.975 0.986 0.993 1.007
MAD 0.556 0.547 0.596 0.539



Table F.4: Simulation Results for FIML estimator

correlation 0.4 0.5 0.6
# of abscissas 8 16 8 16 8 16

n=1000 mean 2.143 1.336 2.365 1.395 2.511 1.422
mc. st. dev 1.342 1.525 1.325 1.524 1.630 1.606

RMSE 1.763 1.561 1.902 1.574 2.222 1.661
median 2.014 1.430 2.246 1.523 2.376 1.593
MAD 0.737 0.725 0.726 0.747 0.749 0.843

n=3000 mean 1.888 1.348 2.234 1.557 2.302 1.670
mc. st. dev 1.048 0.975 1.121 1.032 1.074 0.904

RMSE 1.374 1.035 1.667 1.173 1.687 1.125
median 1.880 1.394 2.141 1.586 2.271 1.633
MAD 0.605 0.488 0.547 0.513 0.550 0.462

n=5000 mean 1.837 1.460 2.215 1.650 2.254 1.656
mc. st. dev 0.916 0.967 0.903 0.853 0.920 0.906

RMSE 1.241 1.071 1.514 1.073 1.556 1.118
median 1.822 1.471 2.195 1.641 2.197 1.617
MAD 0.507 0.486 0.552 0.403 0.511 0.544
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Table F.5: Simulation Results for DGP 1

Linear Model NFES
2SLS LFES(Hkt) 2PQML WNLS

ρ = 0.4 n=1000 mean 0.622 0.644 149.774 584.489
mc. st. dev 3.195 3.200 11454.700 18081.155

RMSE 3.218 3.220 11455.667 18090.568
median 0.858 0.864 0.979 1.027
MAD 1.581 1.539 1.280 1.246

n=3000 mean 0.892 0.904 0.946 0.983
mc. st. dev 1.439 1.436 1.604 1.521

RMSE 1.444 1.439 1.605 1.521
median 0.995 0.979 1.024 1.065
MAD 0.953 0.955 0.778 0.774

n=5000 mean 0.891 0.904 0.994 1.027
mc. st. dev 1.104 1.101 1.014 0.980

RMSE 1.110 1.105 1.014 0.980
median 0.894 0.916 1.023 1.028
MAD 0.728 0.714 0.585 0.564

ρ = 0.5 n=1000 mean 0.509 0.540 -6.616E+05 -1.324E+15
mc. st. dev 3.336 3.309 2.069E+07 4.103E+16

RMSE 3.371 3.340 2.070E+07 4.106E+16
median 0.759 0.826 1.030 1.032
MAD 1.614 1.590 1.248 1.182

n=3000 mean 0.827 0.839 0.922 0.971
mc. st. dev 1.463 1.464 1.497 1.427

RMSE 1.473 1.472 1.499 1.428
median 0.921 0.931 1.045 1.067
MAD 0.933 0.930 0.727 0.712

n=5000 mean 0.821 0.834 0.960 0.997
mc. st. dev 1.131 1.128 1.026 0.979

RMSE 1.145 1.141 1.027 0.979
median 0.853 0.860 1.016 1.037
MAD 0.737 0.734 0.582 0.559

See next page.
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Table F.5 (cont’d)
Linear Model NFES

2SLS LFES(Hkt) 2PQML WNLS

ρ = 0.6 n=1000 mean 0.402 0.428 -9.205 -12.746
mc. st. dev 3.387 3.364 173.719 301.270

RMSE 3.440 3.412 174.019 301.584
median 0.849 0.864 1.101 1.012
MAD 1.620 1.614 1.244 1.213

n=3000 mean 0.771 0.784 0.796 0.959
mc. st. dev 1.503 1.500 1.888 1.465

RMSE 1.520 1.516 1.899 1.466
median 0.852 0.874 0.983 1.121
MAD 0.958 0.959 0.722 0.689

n=5000 mean 0.768 0.779 0.950 1.013
mc. st. dev 1.149 1.147 1.009 0.945

RMSE 1.172 1.168 1.011 0.945
median 0.800 0.811 0.992 1.070
MAD 0.766 0.768 0.541 0.550
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Table F.6: Simulation Results for DGP 2

Linear Model NFES
2SLS LFES(Hkt) 2PQML WNLS

ρ = 0.4 n=1000 mean 0.791 0.503 -9.268 -3.302
mc. st. dev 2.329 2.788 321.882 135.961

RMSE 2.338 2.832 322.046 136.029
median 1.062 0.823 1.085 1.121
MAD 1.278 1.517 0.965 0.926

n=3000 mean 0.918 0.619 1.085 1.130
mc. st. dev 1.260 1.520 1.212 1.157

RMSE 1.263 1.567 1.215 1.164
median 0.930 0.653 1.016 1.041
MAD 0.816 0.999 0.606 0.597

n=5000 mean 0.857 0.553 0.998 1.015
mc. st. dev 0.956 1.148 0.827 0.829

RMSE 0.966 1.232 0.827 0.829
median 0.898 0.580 0.974 0.987
MAD 0.639 0.778 0.484 0.483

ρ = 0.5 n=1000 mean 0.523 0.100 0.422 0.578
mc. st. dev 2.581 3.067 6.241 13.511

RMSE 2.625 3.197 6.268 13.517
median 0.824 0.449 0.975 1.203
MAD 1.447 1.786 0.944 0.913

n=3000 mean 0.905 0.512 1.145 1.177
mc. st. dev 1.279 1.559 1.129 1.093

RMSE 1.283 1.634 1.139 1.107
median 1.013 0.621 1.122 1.148
MAD 0.821 0.988 0.603 0.570

n=5000 mean 0.810 0.411 1.038 1.048
mc. st. dev 0.942 1.148 0.744 0.726

RMSE 0.961 1.291 0.745 0.727
median 0.847 0.466 1.029 1.035
MAD 0.610 0.731 0.446 0.427

See next page.
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Table F.6 (cont’d)
Linear Model NFES

2SLS LFES(Hkt) 2PQML WNLS

ρ = 0.6 n=1000 mean 0.540 0.035 -40.132 -2.731
mc. st. dev 2.549 3.185 1267.348 77.542

RMSE 2.590 3.328 1268.015 77.632
median 0.884 0.423 1.069 1.064
MAD 1.321 1.646 0.849 0.871

n=3000 mean 0.822 0.345 1.137 1.163
mc. st. dev 1.275 1.569 1.120 1.068

RMSE 1.287 1.700 1.128 1.080
median 0.904 0.475 1.153 1.173
MAD 0.841 1.024 0.541 0.549

n=5000 mean 0.739 0.253 1.069 1.075
mc. st. dev 0.953 1.173 0.719 0.712

RMSE 0.988 1.391 0.722 0.716
median 0.750 0.269 1.080 1.077
MAD 0.629 0.789 0.426 0.424
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Table F.7: Simulation Results for DGP 3

Linear Model NFES
2SLS LFES(Hkt) 2PQML WNLS

ρ = 0.4 n=1000 mean 0.364 0.361 -1097.543 34.431
mc. st. dev 6.723 6.285 34992.925 874.882

RMSE 6.753 6.317 35010.165 875.520
median 0.676 0.646 1.241 1.235
MAD 2.681 2.697 1.836 1.826

n=3000 mean 0.750 0.749 1.861 1.370
mc. st. dev 3.039 3.059 14.839 3.718

RMSE 3.049 3.070 14.864 3.736
median 0.816 0.839 1.158 1.222
MAD 1.599 1.622 0.989 0.953

n=5000 mean 0.713 0.713 1.331 1.367
mc. st. dev 2.198 2.219 1.959 1.693

RMSE 2.217 2.237 1.987 1.733
median 0.761 0.769 1.105 1.201
MAD 1.239 1.260 0.769 0.772

ρ = 0.5 n=1000 mean 0.537 0.492 6.409E+05 2.076E+05
mc. st. dev 6.434 6.505 1.969E+07 5.937E+06

RMSE 6.451 6.525 1.970E+07 5.940E+06
median 0.745 0.735 1.425 1.409
MAD 2.611 2.651 1.571 1.356

n=3000 mean 0.419 0.405 1.420 1.497
mc. st. dev 3.132 3.145 2.629 2.370

RMSE 3.185 3.201 2.663 2.422
median 0.605 0.589 1.273 1.335
MAD 1.719 1.704 0.888 0.852

n=5000 mean 0.702 0.673 1.566 1.591
mc. st. dev 2.253 2.304 2.160 1.563

RMSE 2.273 2.327 2.233 1.671
median 0.787 0.731 1.328 1.419
MAD 1.297 1.338 0.746 0.789

See next page.
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Table F.7 (cont’d)
Linear Model NFES

2SLS LFES(Hkt) 2PQML WNLS

ρ = 0.6 n=1000 mean 0.278 0.231 169.761 4308.951
mc. st. dev 6.323 6.510 4842.930 131368.520

RMSE 6.365 6.556 4845.870 131439.140
median 0.744 0.715 1.466 1.605
MAD 2.634 2.705 1.402 1.328

n=3000 mean 0.575 0.541 2.485 1.755
mc. st. dev 3.067 3.122 24.906 4.314

RMSE 3.096 3.156 24.950 4.379
median 0.768 0.729 1.506 1.526
MAD 1.586 1.612 0.830 0.805

n=5000 mean 0.638 0.599 1.703 1.630
mc. st. dev 2.278 2.337 2.836 2.129

RMSE 2.307 2.371 2.921 2.221
median 0.673 0.610 1.473 1.416
MAD 1.371 1.411 0.646 0.612
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Table F.8: Simulation Results for DGP 4

Linear Model NFES
2SLS LFES(Hkt) 2PQML WNLS

ρ = 0.4 n=1000 mean 0.646 0.888 -18.308 -156.597
mc. st. dev 3.689 3.854 205.225 1979.583

RMSE 3.706 3.855 206.131 1985.846
median 0.819 0.988 1.213 1.026
MAD 2.099 2.069 1.764 2.137

n=3000 mean 0.725 0.910 0.864 0.535
mc. st. dev 1.881 1.834 1.998 3.068

RMSE 1.901 1.836 2.003 3.103
median 0.721 0.877 0.947 0.900
MAD 1.217 1.187 1.058 1.232

n=5000 mean 0.732 0.914 0.935 0.730
mc. st. dev 1.389 1.354 1.439 1.937

RMSE 1.415 1.356 1.440 1.955
median 0.762 0.935 1.064 1.078
MAD 0.917 0.841 0.770 1.004

ρ = 0.5 n=1000 mean 0.505 0.724 -8.922 -13.194
mc. st. dev 3.577 3.512 93.284 107.502

RMSE 3.611 3.523 93.810 108.435
median 0.751 0.925 1.164 1.360
MAD 2.017 1.979 1.468 1.609

n=3000 mean 0.663 0.833 0.911 0.641
mc. st. dev 1.847 1.806 1.713 2.531

RMSE 1.878 1.814 1.715 2.557
median 0.653 0.821 0.919 0.957
MAD 1.232 1.230 0.903 1.059

n=5000 mean 0.655 0.831 0.850 0.671
mc. st. dev 1.394 1.366 1.393 1.792

RMSE 1.436 1.376 1.401 1.822
median 0.685 0.874 0.909 0.896
MAD 0.895 0.834 0.835 1.113

See next page.
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Table F.8 (cont’d)
Linear Model NFES

2SLS LFES(Hkt) 2PQML WNLS

ρ = 0.6 n=1000 mean 0.321 0.584 -7.682 -12.635
mc. st. dev 4.308 3.733 64.476 117.247

RMSE 4.361 3.756 65.058 118.038
median 0.692 0.849 1.483 1.342
MAD 2.039 1.954 1.463 1.403

n=3000 mean 0.567 0.729 0.862 0.920
mc. st. dev 1.822 1.794 1.816 1.853

RMSE 1.873 1.814 1.821 1.854
median 0.611 0.758 0.971 1.114
MAD 1.215 1.164 0.912 0.869

n=5000 mean 0.595 0.759 0.858 0.850
mc. st. dev 1.380 1.353 1.480 1.547

RMSE 1.438 1.374 1.487 1.554
median 0.624 0.798 1.087 1.223
MAD 0.885 0.852 0.822 0.690

Table F.9: Variables Description

children number of living children
ceb children ever born
mort number of dead children
educ7 = 1 if educ ≥ 7
age age in years

agesq age2

evermarr = 1 if ever married
urban = 1 if live in urban area
electric = 1 if has electricity
tv = 1 if has tv
radio = 1 if has radio
frsthalf = 1 if mnthborn ≤ 6
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Table F.10: Descriptive Statistics

Variable Mean Std. Dev. Min Max
children 2.267 2.222 0 13
ceb 2.441 2.406 0 13
mort .173 .511 0 7
educ7 .555 .496 0 1
age 27.405 8.685 15 49
agesq 826.460 526.923 225 2401
evermarr .476 .499 0 1
urban .516 .499 0 1
electric .140 .347 0 1
tv .092 .290 0 1
radio .701 .457 0 1
frsthalf .540 .498 0 1

Table F.11: Regression Results: selection equation

1 Regime 2 Regime
Variable probit 1PQML 1PQML

age -0.014 -0.013 -0.007
(0.018) (0.019) (0.018)

agesq -0.001** -0.001** -0.001***
(0.000) (0.000) (0.000)

evermarr -0.306*** -0.306*** -0.301***
(0.049) (0.049) (0.050)

urban 0.257*** 0.256*** 0.258***
(0.043) (0.044) (0.044)

electric 0.412*** 0.413*** 0.418***
(0.079) (0.079) (0.073)

tv 0.828*** 0.831*** 0.811***
(0.111) (0.111) (0.089)

radio 0.492*** 0.491*** 0.490 ***
(0.045) (0.046) (0.048)

frsthalf -0.215*** -0.211*** -0.231***
(0.042) (0.044) (0.042)

constant 0.271*** 0.269*** 0.278***
(0.032) (0.032) (0.031)

L-likelihood -2371.668
Note: The second and third columns report the results
from single step estimation. All the figures in the parenthesis
are bootstrap standard errors. *: significant at 10%,
**: 5%, ***: 1%
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Table F.12: Regression Results: dependent variable children

Variable Linear Models NET (1 Regime)
OLS 2SLS LET(Hkt) LFES(Hkt) 1PQML 2PQML NLS

ATE -0.103 -0.120 -0.681 *
(0.363) (0.324) (0.394)

educ7 -0.398 *** -1.185 * -2.232 *** -1.552 -0.046 -0.053 -0.303 *
(0.046) (0.691) (0.432) (0.979) (0.158) (0.142) (0.172)

R1 R0
age 0.272 *** 0.262 *** 0.249 *** 0.251 *** 0.384 *** 0.340 *** 0.340 *** 0.265 ***

(0.019) (0.021) (0.021) (0.030) (0.049) (0.009) (0.009) (0.012)
agesq -0.002 *** -0.002 *** -0.002 *** -0.003 -0.003 -0.004 *** -0.004 *** -0.003 ***

(0.000) (0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000)
evermarr 0.694 *** 0.610 *** 0.499 *** 0.194 ** 0.930 *** 0.326 *** 0.325 *** 0.291 ***

(0.054) (0.096) (0.080) (0.098) (0.198) (0.030) (0.029) (0.033)
urban -0.246 *** -0.178 ** -0.088 0.206 ** -0.478 *** -0.101 *** -0.101 *** -0.085 ***

(0.047) (0.078) (0.066) (0.088) (0.172) (0.024) (0.023) (0.027)
electric -0.337 *** -0.233 ** -0.094 0.197 -0.512 -0.162 *** -0.161 *** -0.135 ***

(0.074) (0.114) (0.098) (0.126) (0.347) (0.044) (0.042) (0.051)
tv -0.330 *** -0.155 0.078 0.467 *** -0.563 -0.203 *** -0.201 *** -0.108 *

(0.085) (0.182) (0.124) (0.142) (0.698) (0.061) (0.058) (0.070)
radio 0.027 0.153 0.322 *** 0.620 *** -0.052 -0.015 -0.014 0.035

(0.053) (0.126) (0.099) (0.129) (0.294) (0.032) (0.030) (0.037)
constant -3.540 *** -2.880 *** 3.508 *** 1.878 ** -5.514 *** -5.507 *** -4.059 ***

(0.035) (0.385) (0.246) (0.943) (0.085) (0.077) (0.240)
cov(epsilon, v) 1.108 *** 2.550 *** -0.524 -0.060 -0.056 0.099

(0.257) (0.454) (0.905) (0.094) (0.085) (0.104)

L-likelihood -1088.243 1283.413 8597.940

R2 0.586 0.563 0.589 0.595
sigma 1.431 1.471 1.427 1.417
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Table F.12 (cont’d)
Variable NFES (2 Regime)

1PQML 2PQML NLS

ATE -0.830 *** -0.841 *** -1.224 ***
(0.318) (0.322) (0.375)

educ7

R1 R0 R1 R0 R1 R0
age 0.412 *** 0.294 *** 0.410 *** 0.293 *** 0.333 *** 0.239 ***

(0.019) (0.015) (0.018) (0.015) (0.022) (0.017)
agesq -0.006 *** -0.003 *** -0.005 *** -0.003 *** -0.004 *** -0.003 ***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
evermarr 0.268 *** 0.312 *** 0.270 *** 0.309 *** 0.219 *** 0.293 ***

(0.045) (0.042) (0.044) (0.042) (0.050) (0.045)
urban 0.006 -0.129 *** 0.003 -0.127 *** 0.031 -0.111 ***

(0.041) (0.034) (0.040) (0.033) (0.045) (0.036)
electric -0.070 -0.155 * -0.074 -0.150 * -0.028 -0.142 *

(0.057) (0.079) (0.057) (0.077) (0.065) (0.085)
tv -0.060 -0.121 -0.063 -0.111 0.075 -0.062

(0.079) (0.155) (0.078) (0.153) (0.089) (0.174)
radio 0.067 0.000 0.063 0.004 0.169 ** 0.021

(0.061) (0.046) (0.060) (0.045) (0.069) (0.049)
constant -6.843 *** -4.728 *** -6.813 *** -4.697 *** -5.671 *** -3.677 ***

(0.101) (0.153) (0.098) (0.146) (0.092) (0.169)
cov(epsilon, v) 0.390 *** -0.081 0.373 ** -0.062 0.656 *** -0.009

(0.178) (0.169) (0.169) (0.159) (0.202) (0.178)

L-likelihood -1067.756 1303.732 8521.373

R2

sigma
Note: All the covariates are demeaned. All the figures in the parenthesis are bootstrap standard errors.
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Table F.13: Regression Results: dependent variable ced

Variable Linear Models NET (1 Regime)
OLS 2SLS LET(Hkt) LFES(Hkt) 1PQML 2PQML NLS

ATE -0.179 -0.189 -0.897 **
(0.373) (0.343) (0.419)

educ7 -0.462 *** -1.187 -2.496 *** -2.118 * -0.074 -0.078 -0.372 **
(0.048) (0.725) (0.483) (1.084) (0.152) (0.141) (0.172)

R1 R0
age 0.269 *** 0.260 *** 0.243 *** 0.251 *** 0.388 *** 0.339 *** 0.339 *** 0.264 ***

(0.021) (0.023) (0.023) (0.033) (0.053) (0.009) (0.009) (0.012)
agesq -0.002 *** -0.002 *** -0.002 *** -0.003 *** -0.003 *** -0.004 *** -0.004 *** -0.003 ***

(0.000) (0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000)
evermarr 0.734 *** 0.657 *** 0.517 *** 0.174 0.936 *** 0.321 *** 0.321 *** 0.283 ***

(0.058) (0.101) (0.087) (0.107) (0.221) (0.029) (0.029) (0.034)
urban -0.248 *** -0.186 ** -0.073 0.233 ** -0.419 ** -0.093 *** -0.093 *** -0.071 ***

(0.049) (0.082) (0.072) (0.097) (0.190) (0.023) (0.023) (0.027)
electric -0.389 *** -0.293 ** -0.119 0.229 * -0.507 -0.172 *** -0.171 *** -0.140 ***

(0.078) (0.119) (0.105) (0.138) (0.374) (0.043) (0.042) (0.050)
tv -0.389 *** -0.228 0.063 0.537 *** -0.426 -0.215 *** -0.214 *** -0.106

(0.089) (0.190) (0.136) (0.153) (0.769) (0.079) (0.057) (0.070)
radio 0.001 0.118 0.329 *** 0.733 *** -0.048 -0.023 -0.023 0.033

(0.057) (0.134) (0.109) (0.142) (0.325) (0.114) (0.030) (0.037)
constant 2.698 *** 3.101 *** 3.828 *** 2.308 ** 0.518 *** 0.520 *** 0.783 ***

(0.037) (0.405) (0.276) (1.046) (0.083) (0.077) (0.104)
cov(epsilon, v) 1.229 *** 2.944 *** -0.296 -0.052 -0.049 0.131

(0.287) (0.493) (1.003) (0.091) (0.084) (0.103)

L-likelihood -84.416 2287.245 -9545.770

R2 0.605 0.588 0.608 0.615
sigma 1.513 1.545 1.509 1.495
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Table F.13 (cont’d)
Variable NFES (2 Regime)

1PQML 2PQML NLS

ATE -0.974 * -0.983 ** -1.488 ***
(0.591) (0.400) (0.511)

educ7

R1 R0 R1 R0 R1 R0
age 0.405 *** 0.293 *** 0.404 *** 0.292 *** 0.318 *** 0.239 ***

(0.018) (0.015) (0.018) (0.014) (0.021) (0.018)
agesq -0.005 *** -0.003 *** -0.005 *** -0.003 *** -0.004 *** -0.003 ***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
evermarr 0.287 *** 0.291 *** 0.289 *** 0.289 *** 0.240 *** 0.273 ***

(0.047) (0.044) (0.045) (0.043) (0.052) (0.047)
urban -0.016 -0.101 *** -0.018 -0.099 *** 0.006 -0.081 **

(0.041) (0.035) (0.040) (0.033) (0.045) (0.037)
electric -0.103 * -0.139 * -0.106 * -0.136 * -0.056 -0.128

(0.060) (0.080) (0.057) (0.076) (0.067) (0.085)
tv -0.106 -0.069 -0.109 -0.061 0.033 0.007

(0.083) (0.158) (0.081) (0.151) (0.096) (0.174)
radio 0.053 0.001 0.051 0.004 0.165 ** 0.025

(0.063) (0.051) (0.061) (0.046) (0.073) (0.053)
constant 0.164 0.645 *** 0.171 0.656 *** 0.098 0.809 ***

(0.111) (0.179) (0.105) (0.154) (0.102) (0.190)
cov(epsilon, v) 0.300 0.011 0.289 * 0.023 0.579 *** 0.091

(0.183) (0.179) (0.171) (0.159) (0.212) (0.185)

L-likelihood -66.489 2305.122 -9480.499

R2

sigma



Table F.14: Average Treatment Effects

children ceb mort

2SLS Ê(ŷ1) 1.741 1.914 0.173

Ê(ŷ0) 2.926 3.101 0.175

ÂTE -1.185 * -1.187 -0.002
(0.691) (0.725) (0.220)

LET(Heckit) Ê(ŷ1) 1.276 1.332 0.056

Ê(ŷ0) 3.508 3.828 0.32

ÂTE -2.232 *** -2.496 *** -0.264 **
(0.432) (0.483) (0.123)

LFES(Heckit) Ê(ŷ1) 0.326 0.19 -0.136

Ê(ŷ0) 1.878 2.308 0.43

ÂTE -1.552 -2.118 * -0.566 *
(0.979) (1.084) (0.291)

1PQML Ê(ŷ1) 1.482 1.683 0.201

Ê(ŷ0) 2.312 2.657 0.345

ÂTE -0.83 ** -0.974 ** -0.144
(0.337) (0.438) (0.152)

2PQML Ê(ŷ1) 1.499 1.697 0.198

Ê(ŷ0) 2.34 2.68 0.34

ÂTE -0.841 *** -0.983 *** -0.142
(0.310) (0.373) (0.123)

NLS Ê(ŷ1) 1.264 1.402 0.138

Ê(ŷ0) 2.488 2.89 0.402

ÂTE -1.224 *** -1.488 *** -0.264
(0.357) (0.454) (0.166)

Note: All the figures in the parenthesis are bootstrap standard errors.
The three nonlinear estimators on the bottom are all from NFES model.
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Appendix G

Figures in Chapter 2

Figure G.1: Selected Monte Carlo Simulation Results for DGP 0.
Note: Each column represents the sampling distribution of 2SLS, NET (WNLS) and NFES
(WNLS) estimator from left to right. Each row represents that of ρ = .4, .5 and .6 from top

to bottom. The sample sizes are 5000 for all. Among these five grids, the middle one
represents the population ATE, i.e. 1.
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Figure G.2: Selected Monte Carlo Simulation Results for DGP 1.
Note: Each column represents the sampling distribution of 2SLS and NFES (WNLS)
estimator from left to right. Each row represents that of ρ = .4, .5 and .6 from top to
bottom. The sample sizes are 5000 for all. Among these five grids, the middle one

represents the population ATE, i.e. 1.
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Figure G.3: Selected Monte Carlo Simulation Results for DGP 2.

160



Figure G.4: Selected Monte Carlo Simulation Results for DGP 3.
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Appendix H

Tables in Chapter 3
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Table H.1: Simulation Results for ρ = 0.3

DGP I II III
linear nonlinear linear nonlinear linear nonlinear

n=1000 mean 0.5640 2.192* 1.2664 1.584* 1.2505 5.366*
mc. st. dev 1.4758 3.703* 1.7732 2.326* 2.4280 15.545*

RMSE 1.5389 3.890* 1.7931 2.399* 2.4409 16.146*
median 0.5930 1.031 1.1954 0.961 1.0098 1.041
MAD 0.9266 1.023 1.0931 0.939 1.2917 1.322

IR 3.5610 7.286 4.3419 5.947 5.0139 15.939
n=3000 mean 0.5781 1.361 1.3657 1.233 1.2210 2.430

mc. st. dev 0.7665 1.613 0.9766 1.423 1.1970 5.627
RMSE 0.8750 1.653 1.0429 1.442 1.2172 5.806
median 0.5971 1.064 1.3409 0.913 1.1089 1.074
MAD 0.5106 0.547 0.6304 0.488 0.7878 0.809

IR 1.9470 2.398 2.4461 2.403 3.1001 5.169
n=5000 mean 0.5356 1.158 1.3692 1.035 1.2210 1.606

mc. st. dev 0.6042 0.807 0.7265 0.766 0.9759 2.919
RMSE 0.7620 0.822 0.8150 0.767 1.0006 2.981
median 0.5220 1.032 1.3442 0.890 1.1648 1.046
MAD 0.4223 0.394 0.5115 0.367 0.6017 0.589

IR 1.5592 1.750 1.8633 1.705 2.3029 3.032
Note: The Monte Carlo standard deviation is substantially large for the sample
size of 1000. The * indicates that the outlying values that are greater or smaller
than the maximum and minimum values of for the sample size of 3000 were
discarded from the generated data.
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Table H.2: Simulation Results for ρ = 0.5

DGP I II III
linear nonlinear linear nonlinear linear nonlinear

n=1000 mean 0.7653 1.358* 1.3439 1.634* 1.6385 3.457*
mc. st. dev 1.4605 1.843* 1.7058 2.590* 2.3073 9.524*

RMSE 1.4792 1.877* 1.7401 2.667* 2.3940 9.836*
median 0.7267 0.984 1.3196 0.931 1.4693 1.045
MAD 0.9558 0.927 1.0801 0.990 1.3670 1.200

IR 3.6600 5.074 4.3459 6.482 5.5827 11.164
n=3000 mean 0.7548 1.147 1.3890 1.182 1.5936 1.937

mc. st. dev 0.7953 1.044 0.9522 1.421 1.3847 4.738
RMSE 0.8323 1.055 1.0286 1.432 1.5066 4.830
median 0.7494 0.975 1.3690 0.872 1.4946 1.028
MAD 0.5424 0.478 0.6060 0.505 0.8624 0.764

IR 2.0694 2.085 2.4681 2.331 3.2039 3.935
n=5000 mean 0.7155 1.139 1.3440 1.024 1.7004 1.418

mc. st. dev 0.6110 0.749 0.7306 0.788 1.0403 1.757
RMSE 0.6740 0.762 0.8076 0.789 1.2541 1.806
median 0.7179 1.031 1.3386 0.865 1.6007 1.006
MAD 0.4144 0.413 0.5071 0.388 0.6847 0.574

IR 1.5459 1.594 1.9085 1.657 2.5199 2.697
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Table H.3: Regression Results for Linear and NFES models

Variables OLS 2SLS LFES NFES (PQML) NFES (NLS)
ATE -0.956***

(0.278)
-1.103***
(0.315)

educ7 -0.419***
(0.049)

-1.152*
(0.596)

-1.168**
(0.528)

R1 R0 R1 R0 R1 R0
age 0.273***

(0.017)
0.263***
(0.019)

0.271***
(0.020)

0.431***
(0.043)

0.419***
(0.020)

0.300***
(0.016)

0.339***
(0.022)

0.250***
(0.018)

agesq -0.002***
(0.000)

-0.002***
(0.000)

-0.004***
(0.000)

-0.004***
(0.001)

-0.006***
(0.000)

-0.004***
(0.000)

-0.005***
(0.000)

-0.003***
(0.000)

evermarr 0.685***
(0.052)

0.612***
(0.080)

0.135*
(0.078)

1.088***
(0.138)

0.212***
(0.047)

0.331***
(0.043)

0.174***
(0.055)

0.321***
(0.046)

urban -0.259***
(0.046)

-0.172**
(0.084)

0.187***
(0.064)

-0.596***
(0.120)

0.063
(0.051)

-0.152***
(0.040)

0.103*
(0.059)

-0.141***
(0.044)

electric -0.468***
(0.066)

-0.287*
(0.161)

0.117*
(0.093)

-0.781***
(0.224)

0.010
(0.079)

-0.242**
(0.113)

0.105
(0.090)

-0.244*
(0.127)

See next page.
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Table H.3 (cont’d)
Variables OLS 2SLS LFES NFES (PQML) NFES (NLS)
constant -3.514***

(0.245)
-2.815***
(0.620)

0.085
(0.268)

1.253***
(0.478)

-0.100
(0.097)

0.397**
(0.154)

-5.668***
(0.327)

-4.077***
(0.469)

cov(ϵ, v) 2.202***
(0.304)

-1.484**
(0.605)

0.714
(1.398)

-0.204
(0.192)

0.963***
(0.295)

-0.213
(0.218)

L-likelihood 1299.311 8534.8903

R2 0.585 0.564 0.593
σ 1.433 1.469 1.418

Note: All the standard errors presented above are bootstrap standard errors. *, ** and *** indicates the signifi-
cance at 10%, 5% and 1% levels respectively.



Table H.4: Regression Results for LTCRC and NTCRC models

Variable LTCRC NTCRC
ATE -1.020

(1.633)
educ7 13.376***

(2.347)
R1 R0 R1 R0

age (1) 0.104***
(0.030)

0.343***
(0.040)

0.405***
(0.040)

0.106
(0.088)

agesq -0.003**
(0.001)

-
0.009***
(0.002)

-
0.005***
(0.001)

-0.001
(0.001)

evermarr (2) -0.047
(0.164)

1.377***
(0.299)

2.180***
(0.844)

0.690**
(0.321)

urban (3) 0.132
(0.155)

-0.178
(0.287)

-0.265
(0.382)

-
0.826***
(0.319)

electric (4) 0.396**
(0.175)

0.686
(0.919)

-0.675**
(0.335)

-0.480
(2.471)

age*evermarr -0.097**
(0.041)

-0.009
(0.008)

age*urban 0.013
(0.025)

0.012
(0.008)

age*electric 0.009
(0.010)

-0.010
(0.054)

evermarr*urban 0.060
(0.427)

0.132**
(0.066)

evermarr*electric 0.479*
(0.272)

0.202
(0.178)

urban*electric 0.295
(0.287)

0.088
(0.248)

constant 0.999***
(0.345)

1.440***
(0.502)

-
7.010***
(0.749)

-1.666
(1.842)

See next page.
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Table H.4 (cont’d)
Variable LTCRC NTCRC

R1 R0 R1 R0
cov(ϵ, v) 1.208***

(0.460)
-0.677
(0.553)

2.438**
(1.068)

1.353
(2.435)

cov(1) 0.022
(0.033)

0.135***
(0.043)

-0.108
(0.074)

-0.041
(0.121)

cov(2) 0.675**
(0.287)

0.621**
(0.313)

0.290
(0.414)

6.954**
(3.374)

cov(3) -0.085
(0.263)

0.431
(0.279)

-0.312*
(0.182)

-0.225
(2.127)

cov(4) -0.869
(0.583)

0.953*
(0.563)

-0.094
(0.680)

-0.255
(1.240)

L-likelihood 1341.602

R2 0.6036
σ 1.4026

Note: The bootstrap error for NTCRC ATE estimator is calculated
by excluding all the replication with ATE values over 13. cov(1) is
the covariance between v and the coefficient of variable (1), i.e. age.
Variable number for each basic covariate is indicated in the variable
list. cov(2) and other numbers are defined similarly.
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