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INTRODUCTICN

The theory of functions of severasl complex vari-
ables has been the subject of study by mathematicians
for approximately the last fifty years. Publications
in the field began to make an appearance at about the
beginning of this century. However, most of the work
in functions of several complex variables has been done
since 1925, making it one of the newest fields in math-
ematics. Although this subjest has never enjoyed the
tremendous popularity attained by some of the other
modern trends in mathematics, much has been aceomplished
in the field, mainly by men in Germany and Italy. Among
those mathematicians who have made noteworthy contribu-
tions to the study of functions of several complex vari-
ables, mention might be made of the Germens, H. Behnke,
end his pupil, P. Thullen, Stefan Bergmann, F. Hartogs,
He Kneser, and P.J.Myerberg, and the Italians, E. E. Levi,
and F. Severi, and & Frenchman, H. Cartan.

In genseral the investigations into the field of
functions of several complex variables have been made
along the same lines which were followed in developing
the theory for functions of one complex variable. That
is to say, in the former as in the lattexr, studies have
been made of analyticity, continuity, the Cauchy integral,
power series expansions, singularities, zeros, and the

like. However, the results have been varied. In some
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cases, theorems are transferable almost word for word
from one field to the other, while in other cases the
differences are so marked as to be rather astonishing.

The purpose of the following discussion is quite

simple. We shall limit our investigations to functions
of two complex variables. This will simplify the state-
ment of theorems without too great a loss in generality,
since almost without exceptionytheorems which are proved
for funoctions of two complex variables can be generalisged
to the case of n complex variables. Our purpose will be
to contrast or compare some of the differences and simi-
larities in theorems as they are stated for functions of
one complex variable with the corresponding theorems for
the case of two complex variables. In a few instances,
a proof will be given; more frequently examples will be
used. However, the main objest of our discussions will
be to point out the differences or similarities between
corresponding theorems for the two ocases.

In conclusion it might be stated that this work
uses few theorems that have not been found in published
form. An attempt will be made to give proper references.
Mention might also be made of the material to be found on
this subject. For a very complete bibliography of material
published prior to 1938, the reader is referred to Behnke, H.
and Thullen, P., Theorie der Funktionen Mehrerer Komplexer

Veranderlichen, pp. 109-113. A few more recent references

are listed at the end of this paper.



CHAPTER I
FUNCTIONS. GECMETRICAL REPRESENTATION. REGIONS.

Functions. Fundemental to a discuseion of functiors
in some particular field is the definition of a function.
If for each pair of values (z, ,2,) of two complex vari-
ables, 8= X, +1iy, , 3,= X,=1y,, where (3, ,2,) is a point
of a region S of a 4-space of points (x,,x,,y, ,¥, ), there
is determined a value or set of values for a third complex
varisble w, then w is called a function of the two complex
variables 3, and s, [w = f(z.,z;ﬂ for the region 8. As
an example, w = 3z,+2z, 1is a function of the two complex
varisbles z, and 2, , since for any pair of finite vslues
given to 3, and 3,, a value for w is determined. Here 8
could be considered as consisting of all finite values of
2z, and g, , respectively.

Geometrical Representation. Cur definition of

a function of two complex variables has introduced the
idea of a region. In order to clarify the concepts of
the regions we shsall use, we must first see what type of
geometrical representation can be used for functions of
two complex variables.

As in the theory for one complex variable, where
we conveniently adopted the idea of two complex planes,
one for the independent variable and one for the functional
value, 80 in the case of two complex variasbles we might use
three planes, a 3z, -plane, & 3,-plane, and a w-plane. Now,
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given any function of z, and z,, we have for each pair
of values (3, ,z,) a corresponding value for the function.
Each such pair of values is called a point. For example,
the function ws= 3zt2z,8t the point (1l+i,-i) has for its
w-value, w= 3+i. Hence, the corresponding values of 3, ,
2., and w can be mapped on their respective planes, as

shown in figure 1l.1.

wW-plane 2, -plane Z, -plane
Y Y Y
ewz=3+i RIS
x l. xl.
‘;“'i
Figure 1l.1.

Regions. It is obvious that we might wish to con-
fine the discussion of a given function to sets of values
of 2z, and 3, other then their whole complex planes. Therse
are several types of regions which have been defined in the
theory of functions of two complex variables, such as the
Reinhardt field, the Hartogs field, circular fields, and
a few others.®* However, we shall use only three special
types of regions in our discussions.** These are the

generalized dicylinder, the dicylinder, and the hypersphere.
Generalized Dicylinder. The point (g2, ,z,) is said

to be contained in a generalized diocylinder 8 if its 2z, -

coordinate belongs to a simply-conneoted region 8, in the

* Behnke, H. and Thullen, P., Theorie der Funktionen

" Mehrerer Komplexer VeranderlIchen, pp. 1-20. (Hereafter
TeTerred to as Behnke.)

®%pochner, S., Functions of Several Complex Variables,

Part III, p. 1l61. (Heré;§ter referred to as Bochner.)




%, -plane and its 2z, ~coordinate belongs to the simply-
connected region 8, in the 2z, -plane. Pictorially, S

Z, -plane Z, -plane

G Ao\,
e

S L

Figure 1l.2. A Generalized Dicylinder.

might appear as shown in figure 1l.2.
Dicylinder. A dicylinder about the point (a,,a;)

consists of all points (z, ,z,) such that
\z.—&‘(cl., ‘Zz"az\<az.
In figure 1.3 we have illustrated such a region. The

Z, -plane %z, -plane
Y

A ViR \
(®

Figure 1.3. A Dicylinder.

dicylinder, we see, is a special case of the generalized
dicylinder where 8, and S, are now circles of radius 4,,d,
about 2,= &, and 3,- &,, respectively.

Hypersphere. A hypersphere about the point (a,,a.)
consists of all points (z, ,z,) such that

la, - a,| + lz.— 3. | < d.
The value that 3, may take to give a point in the hyper-
sphere depends on the value given to z,, or vice-versa.

0f these three regions defined, we shall use the first



two almost exclusively.
In the theory of functions of one complex variable

we often wish to consider the idea of a closed region,

that is, a region in which the boundary points are in-
cluded. In the case of a dicylinder or a generalized
dicylinder a boundary point will be a point (z, ,2zp) such
that,

a) 5, lies on the boundary of 3, and 3, is anywhere in 82

b) 8, lies on the boundary of S, and z, is anywhere in §,,

¢) % 1lies on the boundary of S,, 3; on the boundary of S,.

We recall from the theory for one complex variable
that when we consider s= x+iy, where x and y are real,
independent variables, we may then express
£(s) = u(x,y)+ iv(x,y)
where u and v are both real functions of x and y. Similarly,
in the theory of functions of two complex variables, if we
consider s&,= x+1iy, , and z;= X;+iy,, where x,,X;,¥ V2,
are four 1ndependent, real variables, we may then express
£(3,,%,) = u(x,,X3,5 ,¥2) + iv(x,,X,,7 ,¥a2)

where u and v are real functions. From this we see that
a function of two complex variables is in reality a function
of four independent real variables. Therefore, in dis-
cussing the theory geometrically, we must think in terms
of a four-space. This, at times, causes some difficulty

in visualizing our procedures geometrically.

Also, by considering z,= X, +iy. and z,=x,+iy,, as



mentioned in the preceeding paragraph, we may write
equivalent definitions for the dicylinder and the hyper-
sphere. Let a, =+ 18,, and a, =<, + 18,, Then the

dicylinder about (a,,s;) is given by
(k=) + (yo- B & 47 (ke -aY + (g - 8) < d,

and the hypersphere about (a,,a,) is given by

(o~ o) + (g=B) + (Ka- o) + (yo- A < 4%



CHAPTER II
SOME THEOREMS ON CONTINUITY.

In this chapter we shall take up some theorems on
the continuity of functions of two complex variables, first,
because they are of interest in themselves, and secondly,
because they will be of use in proving further theorems in
the following chapters.
To define a continuous function of two complex
variables we require, as for functions of one complex
variable, the idea of a limit. We say that a function
f(s,,3,) has a limit P at the point (a,,a,) {{igiﬁ(a.,z;)== Pl ’

V~vdy
if for every positive, real there exists a §, such that

If(z.,z;) - Pl < €
for all z, and z, such that
|20 - a,|< 8§, |3, -a.]| <8,
Further, we say that a function of two complex variables,

f(s,,23), i8 continuous at the point (a,,a;) if

1lim f(3|,31) = f(a!’a’l) .
!|-"l
t X X O

We have & theorem concerning limits in the theory
for functions of one complex variable,*

Theorem 2.1a.**

Hi)e Given z= x+ iy, a=w+1ia, P= A+ 1B,
and f(z) = ul(x,y) & iv(x,y).

* nmpownsend, B« J., Functions of & Complex Variable, p. 27,
(Hereafter referred to as Townsend.)

*#% we shall use this form for the statement of our theorems
in order to bring out the differences or similarities
between the theory for one variable and that for two
variables. 6




C1). The necessary and sufficient condition that

lim f(z) = P
2>
is that

]’.‘gn‘u(x,y)= A a y_.gl“v(x,y) = B.
\5-)-6 \5-"6

We shall prove the corresponding theorem for
functions of two complex variables.

Theorem 8,1b.

Hyj)e Given s,2x,+1iy, , 5=X,+iyz, 8,2+18, 8= 118,
P= A+iB, and £(3,,z,) = u(x, o X270 oYa.)*‘i'(xl vXaoF oFa) e

01). The necessary and sufficient condition that

%}Ea.f(zl ozl) = P

% X1
is that
1im u(x,,Xy,¥, ¥2) = A 80d  1lim v(x,,X;,7,,72) = B
Ka o o,
‘9:'530 :?::’At.
Y2 3, “;‘)'Aa.

We prove the necessity of the condition tirst. We

have given then that

}.gna.f(" 122) = P
a2

By the definition of a 1limit this means that given ‘6—.;._70.
there exists a se (5 dependent on €) such that for
ll.-&.l( $ ama |z,-a;|<8,
it follows that
':!.'(s..z.,) - P‘( '1% .
This in turn means that
(1) |u+1v - A - 1B|<'er§f_
for
(=) + (7,-8)°< 8" and (x-ad'+ (7:-8)< S,
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By a theorem for funotions of one complex variable®

(2) l‘“‘i"ﬁ'"ﬁi Qlu-hli-'v-B' .
Substituting this in (1) we get
(3) Ju-a)+|v-3]<e

for

(x,-4, )"4- (y, -8, )z< $* ana (x,-%) + (72-8,) € s .
Now, for the same conditions on x,,x,,¥,,72,
(4) e -~ A]< € and |v - B|< €.
Prom the definition of a limit, (4) states that

lim u= A and limv =),

X, el, Xy >,

3% ee

g‘x-":dl Yo > B,

For the sufficiency part of the proof, we have given

that

lim u= A and lim v = B,

x> o, X~y &,

XA, Ry Ry

Y > 8, \5|-'5.

Y+ 8, B> By
By the definition of a limit these mean that given %)0,
there exist S.(u), Sfu), S(v), Sfv), such that
. e -al<%
or 2 a 2 2 2 -

(x,-%) + (7. =806 and  (x,-%) + (Yt.’ez)<(§z(""
and
lv - Bl<%

for

@ 2
(x,-%) + (7, -8)<o] and  (x,-%) + (72 - 82) <[5, ).
Adding together ‘u - Al and lv - BI, we obtain
(6) ‘u-1|+lv-3|<e

fOr 2 3 2 & 2 kR
(x-%) + (7,-8)<E and (xp=oh) + (y2~8) £ §

Where & 1is the minimum of &(u), &(u), S.(v), $:(v) .

* npownsend, p.l0.
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We know that
lr(:.,:,,) - P‘:l(u+1v)-(A+1B)|-‘(u—A)ﬂ(v-B)l( |u—1l+|v-Bl .
Substituting in (5) we get

|f(z. '82) - Pl( €
for

) 2 2 2 2 z
(x,=<) + ‘Yl'aJ( Y and (x,-d,) + (y.-8,) < ? °
This 1is nothing but the definition of the limit
'il.i—.-!)na. 1(3.,3'.) = P.
Z;>d,

Our main purpose in proving the above theorem was
to make possible & theorem on the continuity of a funotion
at & point. The theorem for functions of a single complex
*

variable is

Theorem £.2a. .

Hl). Given sz=x+iy and £(3)= u(x,y)+iv(x,y).

01)+ The necessary and sufficient condition that f£(s)

be continuous at the point s=a is that u(x,y)

and v(x,y) are both continuous at a.

The corresponding theorem for funotions of two
complex variables is almost identically stated.
Theorem 2.2b.

Hy)e Given s,=X,+1iy,, S =Xp+1iy,, and
(s, ,32) = ulx, ,Xe,¥7¢,72) * V(X ,X2,¥, +¥2 )

01). The necessary and sufficient condition that f(s,,s,)

be continuous at the point (a,,a.) is that ulx,,x.,¥, ,v2)

and v(x,,x,,7, ,¥.) &ne both continuous at («,,%,,43,,4,).

The proof follows immediately from theorem 2.1lb.

* fTownsend, p. 35.
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The next theorem on the continuity of functions
of two complex variables has no counterpart in the theory
for one variable. Instead it corresponds to & theorem
of two real variables.

Theorem £.3.

Hy)e In a given region 8, f(3,,3,) is continuous in 3,

uniformly with respect to 3.

Hy)e £(3,,%,) 18 continuous in s,.

01). #(s3,,8,) is continuous in both variables together.

The final theorem of this chapter concerns sequences
of continuous funoctions. For functions of one complex
variable we have *

Theorem 2.48.

H1). £(s),f(z),f{3z), « « . 1is a sequence of funotions

converging uniformly to a limiting function £(s).

Hp). Each f£;(s) is continuous in a region S.

C1). £(s) is continuous is 8.

For functions of two complex variablee‘ W6 can prove
& similar theorem.

Theorem 2.4b.

Hy)e £(s,,3,), £{9,,5.), qz.,zg), e « « 18 a sequence
of functions converging uniformly with respect to

both s, and 3, to & limiting funoction £(s,,8.).

X2). Bach f;(s,,3,) 1is continuous in both variables in

: region S.
C1). £(s,,3;) is continuous in both variables in S.

® @opson, E. T., Theory of Punctions of & Complex Varisble ,

n. 4. f(varanffar rvofPorrBd Ta as Congaony .
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To prove the theorem, suppose we are given an € ,
Then consider
|£(l.,zz) - f(z,+p,zz+q)‘ .
This can be written
(8) lﬂs. yZ2) - f(z.+p,z,,+q)|
= Ii’(z.,z,) - £.(3,,2;) + £,.(3,,2;)

= fu(5+pyzavq) + £,(z,+Dp,8,+q) - £(5.+ p,z,_i-q)l ¢

(8a) é lf(llozg) - fh(""l)'+'fh('l v32)
- f“(’\"'p”a‘fq)l"'Ith("fp’lach) - f('l+p'."+q)l .
Consider the terms of (6a) separately. By H1 of the theorem

there exists an N such that

(9) ‘f(3| v22) - £,.(3, oz!)l < %
and

€
(10) lf.(Z."'p.zz_“‘Q) - t(’c"’pozt"’Q)l < ?

for n> N. Also, since each f,(s,,8;) is continuous in 8,
then by the definition of continuity, given % there exists
a & (dependent on ‘;- and also on both 3, and z,) such that
(11) |:t..(z..s,,) - f..(s.a-p,:,;—q)l < §3'

for

|p|<$ and |q|<$.
Hence for each z, and z, in 8 and for any positive € there
exists a $ which is dependent on € and also on g, and 3,,
such that by substituting (9), (10), and (11) in (8a) we have

I:f(:.,z,_) - t(z.+p.zz+q)| 4 % + % + § =€

for

|p|<$ eama |a|<S.
This is merely the definition of the continuity of f(s,,2y)

in both variables, and hence our theorem is proved.



CHAPTER III

FUNCTIONS REGULAR IN A REGION,.
0SGOOD'S THEOREM. HARTOGS' THEOREM,

Functions regular in & region. For functions of

two complex variables, we define a function to be regular
in a region 8 if the derivatives of all orders, iterated
and mixed, exist and are continuous and bounded in every
region interior to S.* A function which has & region in
which it is regular is oftem referred to as an analytic
function.

It should be noted that when we refer to a function
of two complex variables as being regular or analytic, we
mean that the function is analytic in both variables to-
gether. O0sgood's theorem and Hartogs' theorem express
conditions on a function for such regularity.

0O8good's theorem. In order to prove 0Osgood’s theo-

rem we require several preliminary lemmas.
Lemma 1,%*
Hy). £(s) is regular in a region S.
Hg)e 2(s) is bounded in S with an upper bound M.

Es). A 18 a region whose closure is interior to 8.

Hy)e o 1is the distance from A to the boundary of 8. £

is the length of the boundary of 8.

C1)s Por s and s+h interior to A it follows that:

SRR S

- Bochner, p. 164.
= Bochner, p. 162,



1), £(s+h) - 1(;)' < :#L&

-2
8 [ ) f' [ ]
) (s)l < T

3). |f(s+h) - £2(s) _ _, \ mlnl-2 .
h HCHIES 2 Tr?

These &re readily proved by the use of Cauchy's formula.
Lemma & deals with funotions of two complex variables.
Lemma 8.

Hy). 2(s,,3;) is defined in & dioylinder P(a;,r); that

is, the dicylinders |[s,-a.|<r, |s.-a.l<r.

Hy)e |2(s,,5)| <M for (3,,3,) in P(aj,r).

Hz)e For every point (s, ,s;) in Plai,r), f(s,,s;) is
analytic in s, ,for (s,,s;) in P(a;,r) and f(s, ,s.)
18 analytic in s, for (s|,s.) in P(a;,r).

01)e In any dicylinder P(e;,r,), where r,< r, 9 f(s,,3;)

3
and J#(3,,3,) exist and are analytio in each
2%

variable separately.

It will be sufficient to ocarry through the proof for

To prove that '?TE: is analytio in 2z, , we recall that
by the definition of a partial derivative at a point, we
need oconsider f(s,,z,) as a function of s,, only. Since
by hypothesis we know that f£(3,,z,) is analytic in s, for

(s,,5,) in P(a.,r), then by the theorem on derivatives of

functions of one complex variable, %—i— exists and is anslytic
{]
in s, for the same dicylinder P(a;,r).®
To prove that %—i— is analytic in 2z, we make use of

the following device. Let h, be a sequence of complex

* Townsend, p. 77

oaf .
8,



1'6‘.:
quantities approaching sero 8s n->»>oco . Then consider

the sequence of funaetions

’u(’l’zl’ = f(s+h 5‘1)1 = £(2,,5

Considering f(s,,s,) &8s a function of 3, alone, from (3)

of lemma 1 we get

- I nlh..lz

F. S T2 o’
in a dioylindar P(a;,r.), where r, < r, This means that
?.(s,,s,) oconverges uniformly in both variables to %%: ’
since H‘|h.t£ is independent of the values given to
s, and s;;nﬂaov, considering f(s, ,s,) as & function of
8, alone, we know by hypothesis that f(s,,3,) 18 analytic
in s,. Therefore, F.(8,,3,), considered now as a funotion
of s, alone, is also analytic in 3,. By the Welerstrass
theorem for functions of a single complex variable, eino;,

in the dioylinder P(a;,r,), P.(%,,5,) converges uniformly

of
vo 0!.

the limiting funetion -%;— is anslytic in s, for (s, ,s,)
]

in s, and each P, (s,,3;) i8 analytic in s,, then

in P(ai,r,).*
We may now proceed with the statement and proof of
08good's theorem.**
Theorem S.1l.
H1)e 2£(s,,s.) 18 defined in the dicylinder P(a;,r).
Hg). lﬂ’l .'z)l < M for (s,,s:) in P(a_,,r).
Hg). Por every point (s, ,52) in P(a;,r), £(s,,57) 18

snslytic in s, for (3, ,s;) in P(a;,r) and f£(s, ,5:)
is snalytic in s, for (s,,s,) in P(a;,r).

‘ Copson, pe 95.
** pochner, p. 1638.
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G1). Then for ry<r the derivatives of all orders,

iterated and mixed, exist and are ocontinuous

and bounded in the dicylinder Pla;,r4).[In

other words, f(s3,,3;) is analytic in both
variables together .]

First we shall show that the iterated derivatives
of all orders exist in P(a;,ry). Considering —%%g?
for example, by the definition of a partial derivative
at a point, we need consider f(s, ,s,) &8 a funotion of
the single variable z,, only. Applying the theorem on
derivatives of functions of one complex variable, we know
that all the derivatives with respect to s, exist at any
point in P(a;,r), and hence &t any point in the interior
dicylinder P(a;,r;).‘ Corresponding reasoning would prove
the existence of the iterated derivatives with respect to s..
To show that the iterated derivatives are bounded,

consider £(sg,,2) as a function of 8, alone. From (2) of

lemma 1 we have then

lof- M-L
o | = 2T «2

for (s, ,z,) in P(a;,r, )¢ This bound is independent of the

value of s, and also of the fixed value assigned to 3.

Hence -%2- is uniformly bounded for (z,,2z2) in P(a;,r, ).

In a dioylinder P(a;,r,) we know now by lemmsa 2 and from

what we have just proved that -%% satisfies the hypotheses

of both lemmas. considering-%éf- as our function, now, we
can apply (2) of lemma 1 to show that 3:1 is uniformly

¢ Pownsend, p. 77.
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bounded in a dioylinder P(e;,r,), where r,<r,. Using

this and also applying lemma 2 on the function {g}- .
T
we 866 that %% now satisfies the hypotheses for both

lemmas. This enables us to carry on the same discussion
3

for o F e« Hence, by continuing in a similar manner and
[ Yid

using a sequence of dicylinders, each one of which {is

contained in the one preceeding, we can show that any
o°F
o
dfoylinder P(a;,r,). Moreover, we can show that any

iterated derivative

is uniformly bounded in a

iterated derivative satisfies the hypotheses of both
lemmas in P(a;,r,), & fact which we shall use in further
parts of this procof. We have confined our proof to the
iterated derivatives with respect to s, since the proof
for the iterated derivatives with respect to s, follows
through in exaotly the same way.

To conclude our discussion of the iterated der-

ivatives, we must show that they are continuous in both
oz
of lemma 1 in P(a;,r,) as shown in the preceeding parsa-

L
graph, then considering '%;ér as & funoction of s, alone

variables together.® Sinoce satisfies the hypotheses

and applying (1) of lemma 1, we have
a“ F(!.’e\, %t) _ a" F(‘l. il)

(4) 61: oi.h éx' lh‘
where K is a constant depending on the sequence of dicylinders
" F

used. From (4) we have that Fre is continuous in s, uni-
]

formly with respect to s, since the right hand side of the

inequality is independent of the fixed value assigned to s,.

Next, since we can show that any iterated derivative is

* 7The continuity in both variables could also be shown
by using theorem 2.4b.
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O"F
analytic in s, by the use of lemma &, then —— 1is analytic

oz,
LY
in z,. The continuity of gaf' in z, follows from its
" ]
analyticity. g:“ now satisfies the hypotheses of theorem
]

2.3 and therefore is continuous in both variables in a di-
cylinder P(a,,r,,, ). A similar discussion would verify the
continuity of the iterated derivatives with respeot to z..

We shall next discuss the mixed derivatives. As
o"F

oz"

we have already shown, any iterated derivative

satisfies the hypotheses of both lemmas in & dicylinder
"¢

P(a.,r,). Applying lem%i'a to the function S we

have the existence of gtﬂﬁ%;and moreover, its analyticity

in each variable. Also for the same function, from (2) of
lemma 1, we have that 5%;%%; is uniformly bounded in P(a;,r..,).
We now have 52;5; satisfying the hypotheses of both lemmas

in P(a;,r;ﬂ).‘ Co;sequently, we can apply these lemmas to

a"" F ah*t F
considered as the funoetion and show that
o, o," s

exists, is analytic in each variable, and is uniformly

bounded in a dicylinder P{(a;,r..,). By repeated application
7 E
oxroe”
is bounded in P(a;,r,,.). Furthermore, we can show that
O™ F
ai.‘ air.h
Finally, we must show the continuity of
a.'“\ F
oz oy,
to satisfy the hypotheses of both lemmas in P(&a;,r....).
a‘\-’h p
o o
from (1) of lemma 1, we get

hem F(i\*e\,ig) a“‘m F(i‘» il)
(5) aa_l‘u de.™ T2, o= < Kl"hl

pf both lemmas we can show that any mixed derivative

satisfies the hypotheses of both lemmas.

ahm F
oz," o+
can be shown

A8 mentioned in the last paragraph

Hence, considering as a function of z, alone,

where K, is & constant depending on the sequence of di-



£0

a’\fh\p
oylinders used. Hence, from (5) we have that 3 91~
2, x
is continuous in z, uniformly with respect to 3. Also
ah’mF
since we can show ——— to be analytic in g,, it is
ot 9l y :
necessarily continuous in sg. Using these two facts and
LT
applying theorem 2.3 we have the continuity of EL——fL
oy azx

in both variables, in a dicylinder P(a;,r....)e
Now we see that we have shown that any iterated

or mixed derivative, all of which can be represented by
a‘\”‘\F

A, o3y
in both variables in a dicylinder P(&;,rn...,)s The Be-

s 0xists and i8 uniformly bounded and continuous

quence of dicylinders used was such that each one was
necessarily contained in the preceeding one. We can there-
fore select any dicylinder P(a;,ry) interior to P(a;,r)

and show that 0Osgood's theorem holds in P(a;,ry) by meking
(r- r!)

the decrease in radius from one dicylinder to the next Zeemet "

Hartogs' theorem is less restrictive than 0Osgood's
theorem in that it does not require the property of
boundedness. We hereby state Hartogs' theorem.®

Theorem 3.2,

Hy). f£(s,,%,) is defined in & region 8.
Hg). For every point (3| ,sy) of S, f(s,,s;) is analytic

for (s, ,s4) in 8 and f(s/ ,3;) is anslytic fov (5| ,5,) in S,
01). In S, f(s,,5,) is analytic in both variables.

The proof of this theorem is too long and involved to be
presented here. We shall use Hartogs' Theorem frequently

to determine the analyticity of various funotions.

® Boohner, pp. 164-172.



CHAPTER IV

THE CAUCHY-RIEMANN EGUATIONS.
THE THEOREM OF THE MAXTMUM.

The Cauchy-Riemann Equations. The extension of

the Cauchy-Riemann equations to the case of two complex
variables leads to several interesting results.

The theorem dealing with the Cauchy-Riemann e-
quations for funoctions of & single complex variable is *

Theorem 4.1la.

Hy)e In a given finite region 8, u(x,y) and v(x,y)

are two real, single-valued functions of the

real varisbles, x and y.

01). The necessary and sufficient condition that the

gomplex funotion w=u(x,y)+ iv(x,y) be regular

in 8 is that the partisl derivatives 94 ,6 3

—-X-’ —aT
Y . 9V | exist end are continuous in 8 and
) ¢ 63 — ———
satisfy the Cauchy-Riemann equations,
du _ 9 . du . _ v,
FY 3y ay ox

Immediately, using Hartogs' theorem, we can state

& corresponding theorem for functions of two complex vari-

ables.

Theorem 4,.1b.

Hy). In a given finite region 3, u(x,,x,,y, o7.) and

vix, ,X.,¥: ,¥.) are two real, single-valued functions

of the real variables X, ,X;,J: 4J2e

01). The necessary and sufficient condition that the

* rpownsend, p. 83. 21
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complex function w= u(x,,x,,y, ,7, +iv(x,,x,,¥, ,¥,)

be regular in both variables in 8 is that the

artial derivatives 9% 9%  dv_ dv_  (i=1,2
2 ¥, dys ox; dy. ? )
exist and are continuous in S and satisfy the

partial differential equations,

du _ Jv du _ _ 9OV (i=1,2).
dxi  duyi ’ oy oxy

The proof of this theorem is made gquite obvious
when we recall that in Hartogs' theorem the analyticity
of a function in each complex variable separately is a
necessary and sufrficient condition that the function be
snalytic in both variables together.

We have a further interesting theorem dealing with
the application of the Cauchy-Riemann equations to functions
of two complex variables.*

Theorem 4.2.

Hl). Given a real, single-valued function v(x,,X,,¥, ,¥z.)

which ig continuous ig‘g region 8.

Hg)e In 8, the second-order mixed derivatives of v exist,

are continuous, and satisfy the relations,

(a) v Oy (i=1,2)
ox} M dyi ©

(b) v . Oy
a’. a\“_ X, 65.

(o) o'V o'V - 0 .

OX, OXy + b\j. a%‘].—

02). Then there exists & real funoction u(x,,x,,y,,¥,)

such that the comg}ex fungtion w = u+iv ig

r@gular !._I_l. Se

* Bochner, pp. 176-177.
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To prove this theorem, suppose we have w= u+1iv,
& function which is regular in a region S. Then applying

theorem 4.1lb we see that necessarily,

dwn - IV
(1) O X%, - dy.
Qw . __ oV
‘2) oy, oX,
ow _ ovY
(4) <= =~ Tem -

Therefore, if we are given & real function,

v(x, ,x,,¥, ,7.), in order for some other real function,
u(x,,x,,¥, ,J2), to form with v an analytic function u+iv,
u must satisfy the four partial differential equations,
(1), (2), (3), (4). The necessary and sufficient con-
dition that these possess & solution for u is that the
second-order mixed derivatives are independent of their
order of differentiation. The second-order mixed der-

ivatives, independent of their order of differentiation, are,
dtw tw d'w ’ o' w o*w otu
) ) b
ox. Oxe =y dds DY dXy 4. d%a Oy, X, dy.dKa

Our procedure will be to take each one of these
mixed derivatives, obtain it in as many ways as possible
by differentiating (1), (2), (3), (4) above, equate the
proper second-order mixed derivatives of v, and see what
conditions we get on the function v.

Differentiating equations (1) and (3) with respect

to x, and x,, respectively, we get

tw _ o'V
(la) 2%, 0%, 0¥ O\,
: 3
8 —Q——-u—— - —?——v—— .
( ‘) 0%, 0% ¥, a%"

Bquating the right hand sides of (la) and (3a), we obtain



o'V - Otv
OXs a%: ox, Og-.. ¢
Differentiating (2) and (4) with respect to y, and

(5)

¥y, » respeotively, we get through a similar procedurs,

v _  d'v
a\j; ax| - ag. ax&

which is merely & restatement of (5).
Differentiating (1l)with respect to y, and (4) with

respect to x,, we get,

v ___ o'V
or a%;a%I atl axl-
F d*V
=0
‘6) a‘. axt + b\s‘a%‘ [ ]

Differentiating (3) with respect to y, and (2) with

respect to x,, we get,

'V _ v
- - )
or a\j\ 6‘31. A%, O %y
oV v

Ox%x,90x, M b‘sl 63\. =
which is a restatement of (6).
Differentiating (1) with respect to y, and (2) with

respect to x,, we obtain,

Y - — otv ,
or oyt aax.‘
otV bV
=0
(7) oxr | dyr e

Differentiating (3) with respect to y, and (4) with

respect to x,, we get,

v - _ v
or ot oxd
dtv ‘v
=0
(8) TR T

Thus we have the conditions (B6), (6), (7), ana (8)
for v in order that a function u exist to make w=u+iv
regular in 8. Thess conditions are stated in the theorem

as (a), (b), and (o).



Let us apply this theorem to several examples.
Exsmple 1. Consider

v BX\ Y ¥ X, Jut+ X, Vot X ¥, o
This function v is real, single-valued, and continuous for

all finite values of z, and 3,. Hence the first hypothesi

26

of theorem 4.2 is satisfied. Computing our mixed derivatives,

we find that * *
2y o'y v *v c0 9N XNy v
- P e T T e T T o owdy, Towdy, o

These derivatives exist and are continuous for all values
of 3, and %, . Substituting these values in the equations
(a), (b), (o), we see that Hy is satisfied. Hence there
must exist & function u, such that u+iv is regular for
all finite 5, and z,. Such a u is
U= X' = Jr* XX - Tt [+,
coming from the funotion
LN A T A H

= (x.+ iy, )"“" (xu"’ iy, )(xt."" u;) + (x,.+ 1y;)t

=(X} ~FHH X X =T Tt X2+T0 ) +1 (2X,7, 42X, Y.+ X, F 4 XY, )

=1+ iv .
Phis function, w=3a'+ z,3,.+ 853, is regular for all finite

values, a8 predicted by our application of the theorem.

Example 2. Consider
v DX =X
X+ Vi
Immediately we see that v is not defined for =x.=0, y.=0

that is, for the point gz,= O. Hence, any region 8, which

we consider must exclude 2,=0 . Our second-order mixed

o,

&
v
_9——:00

b‘jt 9y,
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derivatives are

a"v - 0 a"v = 2 :x.-e ] :x;-ﬁ )_x|x:+2 .x{ .
dx} TS (x{+ "'Y‘P‘_"Ly:
a‘v = o , a‘v = '2Y| xz+6}; X| x:*6y| y:x;-z 2!. .
2yt 2yt — (x+ )

o*v _ %‘ -Xy o'v . - Xy d'V . RXa Y, o'v . -ax}-z}-‘-—'
ax' a"‘ = x:+y: el 6!;3\3. -T{:*Y: )g 14 an.ax; - (x:"y: s‘ b a"| a* - (x:,*y: )‘

Substituting the proper derivatives in the equations (a),
(v), (0) of the theorem, we find that all are satisfied.

Thus, by the conclusion of the theorem there must exist a
function u such that u+iv will be regular for all finite

values of 8, and s, except for s,= 0. Such a u is

a = LIRS [ g

(xi+ 32)
coming from the function,

ws= -!-'- = ﬁ%—}&— = X Xt ih + 12! Xo=F2 X,

. [y = u + 17 ]
2 Xt 1f o+ n X+ Jy
As predicted, the function w = —g'— is regular in any
t 8

finite region which does not include points with their
s, ~-coordinate equal to O.

It might be interesting to investigate an example
which does not satisfy the hypotheses of the theorem. Al-
most any v chosen &t random would fail to satisfy the

conditions of the theorem. For example, V = X!+ X ¥,

would give 2 =0 for equation (a) of the theorem.

The Theorem 2; the Maximum. For functions of one

complex variable the theorem of the maximum is *

Theorem 4.38.

Hy)e £(3) is regular in a region 8 and continuous

® Qopson, p. 162.
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on the boundary of S.

01). There exists no point, s=-a, interior to S such

that

|2()] < |2ta)]
for all g within 8, unless f(z) = f(a).

The corresponding theorem for functions of two complex
variables follows almost word for word.®

Theorem 4.3b.

Hy). 2(3,,5,) 18 regular in a region 8 and continuous

on the boundary _9_:_1’; S.

0,)s There exists no point (a,,a,), interior to 8,

such that

li’(s. ,z,)‘ £ lﬂ""‘t)l

for all (s,,s,) in 3 unless £(3,,2,) = f(a,,a.).

Expressed more simply, both these theorema state that a
funotion which 18 regular in an open region and continuous
on the boundary of that region attains no maximum value

in that open region unless the function is a constant.

The extreme similarity between the theorems for the two
cases is due to the fast that the theorem for functions

of two complex variables is proved by considering each
variable separately and applying the theorem for functions

of one complex variable.

® PBoohner, p.l75.



CHAPTER V

THE CAUCHY THEOREM. CAUCHY'S INTEGRAL FORMULA. TAYLOR'S
EXPANSTONS. ASSOCYIATED RADII OF CCNVERGENCE.

In the theory of functions of one complex variable,
the Cauchy theorem and the Cauchy integral formula are ex-
tremely important in that they enable us to obtain power
series expansions for the funsctions being considered. 1In
the case of funotions of two complex variables we use some

similar theorems for the same purpose.

The Cauchy Theorem. The Cauchy theorem for functiems

of a single complex variable is *

Theorem bH.la.

Hy)e A region S is bounded by en ordinary closed curve C.**

Hg). 2£(3) 18 regular in 8.
Hz)e £(s) is continuous on C.

c1). £t(§)dﬁ= 0. [f, indicates values of 3 on c_.j

For funotions of two complex variables we have a
corresponding theorem. ***

Theorem 5.1b.

H;). P is a two-dimensional, closed, two-sided surface.

Hg)e P possesses a real, analytic representation

@.(x, ,x,7, 7o) = 0. iz1,2.

Copson, Pe. 61.
By an ordinary curve is meant & curve that may be broken
up into & finite number of divisions, each of which is
either a rectilinear segment parallel to one of the co-
ordinate axes or else has the property that it is deter-
mined by & funoction, y (x}, where (x) and its in-
verse function, x (y), are single-valued and have
first derivatives that are continuous except at most

at the end points.
##% pohnke, pe. 41l.

3’
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He). (s, ,8,.) _’;ﬁ regular ig S.

Hg). f(3,,8,) is continuous on F.

Cy). fﬂ 5,,6,)46,a6 = 0. [ﬂ,j,l indicate values of s,, z.
(2

on PF.

We should note that the surface P is a boundary surface
of a region in whioch f(s,,%,) is regular. Also, it is
the surface over which we integrate to obtain the con-
clusion for our theorem.

The converse of the Cauchy theorem, known as
Morera's theorem, is also of interest. For funcetions
of one complex variable it is *

Theorem 5.2a.

H1). f£(2) is continuous in & region 8.

Hp). .(t(ﬁ)a6= 0 for any closed curve C in 3, where
C incloses only points of S.

Ci1). f£(s) is regular in 8.

Por funotions of two complex variables. Morera's theorem
reads,**

Theorem 5.2b.

H1)e £(s,,s,) is continuous in a region s.
" Hg). Lz( %,,6,)a6,a%, = O taken over the boundary

surface, F, of any dioylinder lying completely
in 8.

01). t‘.| ”L) ‘1_8- rasular 1.2 S.

* pownsend, p. 80.
** pehnke, p. 41.
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The interesting fact about Morera's theorem for functions
of two complex variables is that a special surface of in-
tegration, namely the boundary surface of a dicylinder,

may be used.

The Cauchy Integral Formula. For functions of one

complex variable this important theorem is usually stated as *

Theorem H.3a.

Hy)e 8 is & finite, closed region with & boundary C which

consists gg_g finite number gg ordina{x curves.

Hg). 2£(s) 18 regular within S and continuous on C.

01). For any inner point s of 3

f(s)==<i?%r% '4:.1§L§;5‘1g .

In the case of functions of two complex variables,

we do not have a complete generalization.®™ Whereas in
Cauchy's theorem we were able to use a surface of integration,
for this theorem the integration is made over two ocurves in
sugoession.

Theorem 5.3b.

Hy1)e. 8 is a generalised dicylinder with boundaries C}

32 the s, -plane and Cp 35 the 3z, -plane.

Hp). f(s,,8,) 18 regular inside S and continuous on

the bounda:X.gg S.

C1). Por any point (s,,2.) of S

om = (ko] [ byt e

[& and %, indicate values of %, on G, and z, on C.
rospeotivoly.]

® Ggopson, p. 66.
*% Behnke, p. 40.
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As we shall show, this theorem is proved by
applying twice the Cauchy integral formula for functions
of one variable.

We have given & region 8, a generalized dicylinder,
which consists of @& region 8, in the z,-plane and a region
8. in the s,-plane. Now if we take 3, fixed at some point
s:. in 8,, we then have a function of one variable which is
regular in S,. Applying theorem 5.3a, the Cauchy integral

formula for the case of one variable, and integrating about

Ci, wo gat
o 1 [2(6,3)
(1) f“l Qzl)—m L—i#z—.—).d%. [ 2

for any value of z, in S,
Next take the funoction £(#§,,2,) from (1) and oon-
sider §, as fixed on C,, with 3. now varying. Applying

theorem 5.3a once more we have

t(g‘.zi);_—_ .....:.|.'_.. f_ﬁi.i.ﬂ__df,‘.
C.

2k (¢, - 3)
Substituting this for £(%,,3.) in (1) and dropping the
prime from s., we have that for any point (3,,s,) in 8

(2) (3, ,3,) = <__]:_.)‘./c‘/c' mlﬂﬂ..ﬁl 26.a6..

2T -5, )( 6, ~5.)

It is interesting to note that in proving the
Cauchy intergral formula for functions of two complex
variables we have not been forced to use &ll the con-
ditions given in the hypotheses. We might restate the
theorem, giving only such hypotheses as were used in
the proof of the formula (2).
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goorom Sedo

H1). There exists a g£;, where |z{|<d,_, such that

2(s,,8,) is regular at sll points (3,,3;)

'her. ".' s d|0
Hp). Por each 6 where Ig.|= a,, £(6,,3.) is
analytic in s, for |[s,|< 4, and continuous

£q_£ l';l =d;o

Hg). £($, ,%,) is continuous on 8.l = a,, 16.] = a..

01)e Por eny point (sz,,3,) in 8

(%.,6

£(3, ,3,) = (E'Tlri‘)t.f Lﬁ._f';'m:!"i:'f ag.ad, .

A further interesting observation can be made
coﬁcorning functions which have the same boundary values.
For the theory of funoctions of two variables, as in the
theory for funoetions of one variable, we can see that 1if
two funotions, say f(s,,s,) and g(s,,3,), have equal
values at all points of the boundary of & region of the
type we have been considering, then the two funotions

are identical throughout the region.

Taylor's Series Expansions. Once we have discussed

the Cauchy integral theorem, the next logical step 18 to
investigate the possibility of using the theorem, as we
do for funotions of one complex variable, in developing
some kind of a Taylor's series expansion for a funotion
we know to be regular in a given region.

We now state the theorem concerning Taylor's series

for funotions of one complex variable. *

* Copson, p. 73.



33

Theorem b5.5a.

H1)e £(s) is regular in the neighborhood |z - a| !

of the point s = a.
Hg). <£(s) can be represented in that neighborhood a8

& convergent power series of the form

" )
2(z) = £(a)+£'(a)(3-a) £ (? (z_a)z+....+_i?__r(l_?_l(,-.)“+...

We might recall that this series is uniformly oconvergent when

|s - a| < R,, where R, < R.

We state the corresponding theorem for funotions of

two complex variables. ¥

Theorem 5.5b.

H1). £(s,,2,) 18 regular in & dicylinder 8:
|z, - a,|<a,, |35, - a.]<a,.

Hp)e £(3,,3,) 18 continuous on the boundary of S.

c1). £(3,,3,) ocan be represented in 8 as a oconvergent

double power series of the form,

o®
f(’. ,z;) = 2 &0 (2. - &, )”‘(.1. - ‘1)1 ’

"‘.!--o
where
mel

1 ) f(ll L&;l R

8t =

To prove this theorem, let us suppose that we have,
as stated in the hypotheses, a funotion f(=, ,5,) which is
regular in a dicylinder 8, and continuous on the boundary
of that dioylinder.

* Rehnke, p. 40.
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Pirst, let us fix s, at 3., some value such that
}s{ - a‘|<1d,. We then have £(sz,,z;), & function of g,
alone, which is regular for (z, - a,|<d,. Kow, using
Taylor's theorem for functions of one complex variable,

theorem 5.5a, we can represent f£(s,,zi) by

f(l. .’1) = f(‘..z;)+ af(aq!Z;) . (2.-&.) +

(3) o2, 1!
e o o o4 ah f(‘llz:,) N (.-a.)m 4+ o o
2™ m!

Consider the genersl term

" f(a.,z1) , (z,-8.)"
oz m!

of the series. Take f(a,,z;) and let z, vary. We again

(4)

have a funstion of one complex variable. Applying theorem

b.ba once more we get an expansion

(8 ,3;,) = f(a,,8,) , Of(a,,a,), (s1-82) , , , ,
A 1!
(5) ’ .
e oo 4 9 f(n,,8;) (si-8a)
ot 2!

By & well known theorem of complex variable this series may be

differentiated term by term.® Substituting (5) in (4) and
performing the differentiation, we obtain a general term of

(4), and thereby & general term of (3) also,

(6) I e { (YN N |
m! 44 el 2%t

The 3. has been replaced by z,, since it was adopted as &

(3, -8, )"'(z;--m;)1 .

means of notation, only. We see that in (6) we have ob-

2
tained the general term a.”.(z.-a.)”(zt-az) a8 given in

® fTownsend, p. 237.
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the statement of the theorem.

We can obtain an equivalent, although less useful
form for the coefficient &, . Applying the theorem
concerning derivatives of functions of one complex vari-
able on the general term, (4), of the series (3) we ob-

tain for (4)*

(" (T}*&% /(s-a ) “"‘L&%?J: :

Pixing g. on 0, and applying the same theorem on the
geheral term of the Teylor's expansion of £(#§ ,s,)

we obtain
= e 2 ) £( %, 6.) (s;-a;)g ..
(8) 2(%,,s,) +=55 Thanin ab, e

Substituting (8) in (7) we find for the coefficient of the

general term of the expansion for f£(3z,,3;)

o= £2(8 ,5.)
Bt = ( PR ) ff (¢, -a,)™" (§,-8,)"" b2k, .

This is an equivalent form for the coefficient in (6).

We shall now discuss several examples of Taylor's
series expansions for functions of two complex variables.
Example 1. Expand f£(s,,z,) = 235,+ 3z; ebout (1+1,2),
This function is regular for all finite values; hence,
the power series expansion will be convergent for any di-
oylinder about the point (1+i,2). PFinding the derivatives
and substituting values as required in the conclusion of

theorem 5.56b, we obtain a finite power series,

25, ,2,) = (14+21)+2(5,- 1 - 4)+12(3.- 2)+ 3(g.- 2)

#* Downsend, p.77.
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Example 2. Expand f£(s,,z) = 3:§LT' about the
point (1,1). This funotion has a singular point at
s,= 1. Hence our expansion will be convergent only
for dicylinders such that [z, - 1|<{2. By taking
derivatives and using an induction we find that

('1’1-2! 2,
(za.‘ 1,-!01

of R "F O
2t,  E-1' a-z.“'o’(m’l)’ EN

"% _ (1?21 ,ama Q™'F
91,98 (3,-1)* oL d=;

Substituting these in the expressions given in the con-

for (m>1)e

clusion of theorem 65.5b, we obtain for the expansion about

the point (1,1),

g | < 9 )
(s, ,5,) = L1 lz-1) < (-1) (s,-1) (3.-1)<7(-1) (s.-1)
(s, ,8.) 1-1""1-1 +2 (1-1)1«"’ 1 < (1_1).:4»:

Assooisted Radii of Convergensce. In dealing with

power series expansions of functions of one complex vari-
able we define the radius of convergensce of the power
series. If we describe a circle having a radius r about
the point $ a such that the power series being con-
sidered converges for all values of g within the ocircle
and diverges for all values of z outside the circle, then

we define r to be the radius of convergence of the power

series®. Moreover, the power series converges uniformly
and absolutely for all values of s such that |z - a|<T,,
where r, < r, and ordinary convergence may occur only on
the oirole |z - a|=r.

In investigating the possibility of radii of con-

* pownsend, p. 230.
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vergence when considering funotions of two complex
variables, mathematicians have introduced the idea of
associated radii of convergence.®® A pair of positive

numbers, r{, r., are called a pair of associated radii

of convergence of the power series expanded about the

point (a,,a,) if this series converges for
[20 - &)<z,  |5. - &)<l
and diverges for
|ss - &> 2!, |z - 8> .

It can be seen that the values of r/ and r, depend
on each other; that is, the power series might still
converge if r were larger and r, were smaller, and vice-
versa. Hence, if we set

'z. - t.'=r. and |z; - l.;|=r,_‘
then the pair of associated radii of convergence of the
power series p(z,-a,,z,-a,) desoribe a curve P(r,,r,) = 0
in an 1, 1, -plane, and this in turn would mean & three-
dimensional manifold in the g,%., four-space. This
three-dimensional manifold is the boundary of the region
of convergence of the power series. We shall designate
this region of convergence as a region K.

Anslogous to the theory for one complex variable,
the power series converges absolutely and uniformly in-
side K, and ordinary convergence can ocour only on the
boundary of K. However, ordinary convergence may &lso
ogour on the planes g,= 0, 3,=0, protruding out from
K. Suoch protruberances from the region K are referred

to a8 spines of the convergent space.

** Bghnke, pp. 56-39.
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Example. Consider the series jz_z.z: « This series
possesses a region of convergence [z,|< 1. Tt also
possesses the spine
.= 0, |slz1 .
There are several interesting properties of the
associated radii of convergence.

Property 1. Monotone property. If r/'< r’ and r,

corresponds to r/ while T, corresponds to r,”, then
rs > r.. That is, if the radius in the 3, -plane in-
ocreases, the radius in the z,-plane either remains the
same or decreases.

Property 2. If r/,r, is & pair of associated radii

of convergence of the power series p(3z -a,,%.-8.),
then there exists at least one point (z; ,3.) where
|z:| = r |, |"z| = 1
at which the regular funotion represented by p(s,-a,,s,-a,.)
becomes singular. This corresponds to the statement in
the theory of funotions of one complex variable that
the power series expansion of an analytic function holds

out to the nearest singular point.



CHAPTER VI
SINGULARITIES.
As in the theory of functions of one complex
variable, we say that a funoction of two complex vari-

ables, f(3,,s,), has a singular point at (a,,a,) if

f(s, ,3.) i8 not regular at (a,,82) but has points in
any neighborhood of (a,,a.) at which it is regular.

A8 in the case of one complex variable, these
singular points may be classified as non-essential
singular points and essential singular points. How-
ever, a8 we shall see, in the theory of funotions of
two complex variables the non-essential singular points
themselves are of two types, poles or points of in-
determinacy.

We say that a function £(z, ,3.) has a non-

essential singularity at the point (a,,a.) if there

exists & neighborhood U(a,,a,) of the point and two
funotions g(s, ,z.) and h(z,,8.), which have no common

factors and are regular in U(a,,a,), such that

f(ll ,8;) = M

h('o ,z;_)
in U(a,,s,) and h(a, ,a;) = 0. If g(s,,s,) # 0, then

(a, ,a,) 18 called & pole, or non-essential singularity

of the first kind. 1If g(a,,a;) = 0, then (a,,s,) is

called a point of indeterminacy, or a non-essential

singularity of the second kind. All singularities

which are not non-essential singularities we define

as essential singularities. Thus, for example, the

39
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3,
S~ 8
of the type (z,, a), and & point of indeterminacy at

the point (0,a), while the function f(3,,3,) = e %2~

funetion, £(3, ,z,)= has poles at all points

has essential singularities at all points of the type (3, ,2).
In discussing functions of two complex variables,

reference is often made to functions which are mero-

morphic in a region. Essentially, we say that a function

is meromorphic in a region if it possesses only regular

points and poles in that region. More accurately, we

define a function f(z,,2.) to be meromorphic in a region

8 of the four-space if *
(a) there is an exceptional point set E not decom-
posing S; [}hat is, 8 - E is connected ],
(v) £(2z,,3,) is regular in 8 - E,
(0) ocorresponding to any point of E there exists a
neighborhood and two functions g(z,,z,) and
h(s, ,z,), which are regular in that neighbor-
hood, such that f= & _ [the fraction veing
in its lowest terms] in the points of 8 - B
lying in the neighborhood, and
(d) the set E must be the minimum set having this
propertye.
In studying the singularities of functions of
two complex variables, much of our work will be de-
pendent on & theorem that is generally referred to as

the continuity theorem. We shall here state the theorem

without proof.*®

* Bochner, p. 198.
*# Behnke, p. 49. A proof for this theorem may be found

in Rochner. »r. 199-201.
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Theorem 6.1.

H1). f£(s,,3,) i8 regular on a circle:

|3, -al=r, 3, = 8, .

This circle lies on & two-dimensional plane:

s, varzi_rg . Z, = 8, o
We shall designate this plane as 8, .

Hg). There exists & sequence of two-dimensional

planes, designated (8..} » Which converges to

€, . That is

)
8, = €  such that 1im € = 8,
P =»oo

Hg). £(3,,8,) 1is regular on these planes for |s, - a,|<r.

01). f£(3,,8,) is regular on &, for |z. - ajgr.

If we wish to consider single-valued functions
only, the continuity theorem may be stated in somewhat
more useful form.*

Theorem 6.2

Hi). £(3, ,2,) is regular on a circle:
‘Z|-‘|I=r' 2, = & o
na)o f‘ 2, .8;) -1;5 siggular 2-1 ‘Q. ,a;)o

C1). There always exists & 4 > 0, such that on each

plane, s,= €, , where |a, - &l|<a, there is at

least one singular point for values of s, in-

side of |z. - a.|<r .

This theorem may be proved directly from theorem 6.1.
We shall illustrate theorem 6.2 with examples of

geveral different funotions.

* Behnke, p. 49.
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Bxample 1. Consider f(s,,s,;) oiéﬁi « This function
has essential singularities at the points where 3, = a,.
The hypotheses of theorem 6.2 are satisfied since the
function 1is regular on the circle: lz. - a.l: ', 2, = 8,,
and since the function is singular at (a,,a,). Hence, as
we would expeat, the conclusion of the theorem holds for
this funcetion. Moreover, 4 may have any positive, real
value, since no matter what complex value we take for ,
we have a singular point (a,,€) on the plane §,= €.,
This singular point (a,,€,) completes the requirements
of the theorem by having its z,-value inside |z. - a.\<l Te.

Note that this function has a two-dimensional

manifold, or more specifically a plane, of singularities;
that is, for 2z,= a,, any value in the z,-plane gives an
essential singular point.
Example 2. Consider f£(z, ,3.)= 1 « This function,

we see, has poles at all points (g, ,s3,) for which z,= 2s3,.

Now, applying theorem 6.2, we find that all the hypotheses
are satisfied, since the function is regular for values

on the circle: Is. - za.|= r, 2,= a,, and since the
function is singular at (2a,8). Our next step is to de-
termine in what way the conclusion of the theorem applies.
On any plane 3%,=€, we have a singular point when s,= BE€,,
Conceivably, our choice or the plane s, = 6 might be such
thet the value g,= 2€, might 1lie outside the circle

ll.- aa.ls r. Hence, for a singular point (26€,¢€,)
satisfying the conditions of the theorem, the z,-value,
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2€,, must be such that |2€, - 2a,| < r. Simplifiea,
this requires that |e;- a.| L %. meaning that the choice
%, = € must be made within a distance .E of a,. 1In

short, for this function, a= X .

2
Observe that in this example, &lso, the funsction

has a two-dimensional manifold of singularities, sincse
for each value of 3, there is a corresponding value of
s, giving a pole.

Example 3. Consider f£(s3,,2,) = -%—z-!-:-]-‘-’-;- « It is in-
teresting to note that this functigx.’.t.h;; poles at all
points (a,a) except at the point (1,1) where it has
& point of indeterminacy since the function takes on
a value % there.

Seeking to apply theorem 6.2, we again find the
hypotheses satisfied, the function being regular on the
circle: ls. - 1|= r, 8, = 1 and having a singularity
at the polixit (1,1). The conclusion of the theorem
naturally follows. On any plane 32, =€, we have &
singularity when 2,=€, « 1In order for the value of
s, giving a singular point to be inside the circle
|l. - 1| = r, we see that our choice of €, must be such
that |€.- 1| < r. This means that the value 3, = €,
must be chosen inside a circle of radius r about the
point 3,= 1 in the z,-plane. In other words, for this

example, d=1r,



There are several interesting consequences of
the continuity theorsem which we shall now proceed to
state and discuss.

Consequence 1l.

H,). £(3,,2,) is regular in & region S of the four-

space except for a one-dimensional manifold at

the most.

01). Then f£(3,,3 ) is regular in the whole interior

of 8.

Before proving this consequence, let us investigate
its meaning. 1In simpler form, this consequence states
that for functions of two complex variables, if there
exist any singﬁlarities of the function in a given four-
dimensional region, then there must be at least & two-
dimensional manifold, or a double infinity, so to speak,
of singularities of the funetion in that region. For
example, & function cannot have one point of singularity,
such as (a,,8.). Neither can a function have a one-
dimensional manifold of singularities. Referring back
to the examples already discussed in this chapter, we
see® that in each case, the singularities formed a two-
dimensional manifold.

This is quite in contrast with functions of one
complex variable. For funoctions of one complex variable,
singular points are for the most part isolated. This 1is
always true in the case of poles.® An essential singular
point is in most cases isolated. However, an essential

singular point may be the limit point of an infinite

& n1pownsend, p. 270.
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sequence of poles or of an infinite sequence of essential
singular points.*

We shall now indicate a proof of conseguence 1
for the case where S is a generalized dicylinder. By
hypothesis our function £(2z,,2,) 1is known to be reg-
ular everywhere in S except for a one-dimensional mani-
fold. Suppose we consider the case where 2z, is fixed
and z, describes a curve in the z,-plane.

By hypothesis we know f£(z,,%z,) to be regular

2, -plane Z,-plane

@‘/{ﬁ
(o .

Al

Figure 6.1.
in S8 except on the one-dimensional manifold: 32z,= a,,
Zz, on arc AB. We will take any point a, on AB and
show that the function is regular at (a,,8,). In 8
on the z;-plane take & sequence of points, &3“} , none
of which lie on AB, with &, &as the limit point. Con-
struct a circle in S about the point 2,= a,. Let r
designate the radius of the circle. These constructions
will be possible for any &a. chosen in 8. Our next step
is to apply theorem 6.1, the continuity theorem. Our
f(z, ,z.) is regular on the circle: |z, - a.|= P NS

and it is regular for |z. - a.lér on the seguence of

* pownsend, p. 271.



46
(¢ .
planes 8L=£ « Hence, by the theorem, f(z,,%,) is
regular for |z. - a.'é r, g%,= &,, and so the point
(s, ,8.) is a regular point. Since this is true for any
choice of &,, there cannot be any such manifold of

singularities. A proof for the general case would be

similar.

Consequence 2.

Hy). Given a dicylinder S:

'31'3||<dl. |zz.‘ 31‘<d1-

Hz). On each two-dimensional plane 2z, = b,, where

b, is a value in |z, - a.|< d,, there is at

most one singular point of the regular function,

t‘ 2, ,z;) °

Hz)e £(3,,2,) has at least one singular point, P, in 8.

C,). There exists exaotly one two-dimensional surfaace,

P, passing through P such that all singularities

of £(z, ,2.) which 1lie in S 1lie on F, and each

point of F is a singular point of f£(3z,,s.).

Cz). P satisfies an equation z,- g(3,) for 'z,- a..l(dz.

Several examples will serve to illustrate this con-

sequence.
Example l. Consider £(3, ,2,) = "b in a dicylinder:
g - D

|5 - a|<ay, |z.- 8:]<a.. Take 4, such that a.>a.- b,
that is, such that b, is in the dicylinder. The hypotheses
of consequence 2 are all satisfied since on each two-dim-
ensional plane 3,= by, where b, is & value in \n;- a.,|< d.,

we have only one singular point (b,,b,), and since the
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funotion has at least one singularity in the dicylinder;
for example, the point (b,, a;+9§:.). Now, the gquestion
is, can we find the surface F of the type described in
the conclusions of consequence 2. Consider the plane
8, = b, 3, varying. This plane passes through (b, ,a._+%‘-'-).
All the singular points of f(3z,,z.) lie on this plans, for
in order that a point be a singularity, it must have a
%z, -coordinate, 3z, = b,. Furthermore, each point of this
plane is a singular point of f(3,,2,) for the same reason.
Finally, this plane has an analytic representation, &, = b,.
Bxample 2. Consider f£(s,,s,) = 1 in a 4i-

(2. -21}(zl+zlv)
cylinder about the origin: |[3,|< 4,, |3.|<d.. Im-

mediately we see that the second hypothesis of consegquenge
2 18 not satisfied, since for any plane zZ, = 8&,, where
s. 18 a value in |s,|d,, there exist two singular
pointe (&,,8,) and (-a,,82). Hence it is impossible

to find any two-dimensional surface F on which all the
singular points of f(s,,3,) lie.

Consequence 3.

Hy). The point set F lies in & region S snd is cut by

any two-dimensional plane 8,= b, once at the most.

Ho). 2(s,,3.) is regular at every point of S which does

not belong to F.

Hz). f(z,,3,) is singular in at least one point of F.

‘01). £(s: ,32) 1s singular at every point of F.

The meaning of this consequence may be somewhat
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clarified by the discussion of an example.

1
Z, - 82
S be a generalized dicylinder about the origin, and let

Example 1. Consider f(z,,2z,) = sin ( ). Let

P be the set of points (3,,3.) 1lying in S such that

% = 8, We see that P is cut by any plane z,= b, in
one point at the most, namely, the point (b,,b.). Also
f(s, ,%,) is regular at every point (s,,3,) of S where
5, # 2,34 and f(z,,2,) possesses an essential singularity
at the point (1,1). Thus, all the hypotheses of con-
sequence 3 are satisfied, and f(3,,2,) should be
singular at every point of F. Upon examining our function,
we see that at every point (3,,z,) for which ¢g,= s,,
£(3, ,8,) possesses an essential singularity. These are

the points of F.

Consequence 4.

Hy). £(s3,,3,) is regular &t all boundary points of a

region S.
Hp)e 8 is & closed, finite region with a connected

boundary.
C1). £(s,,3.) oan be analytically continued to each

inner point of S.

This is the most important of the consequences we shall
discuss. To better show its importance we might restate
it more simply. Consequence 4 states that iﬁ.ﬁ funotion

is singular anywhere in the interior of a closed, finite region

with & connected boundary, then that function is necessarily
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singular in at least one boundary point of the region.

Herein the theory of functions of two complex
variables differs greatly from the theory of functions
of one complex variable. In the case of one variable
& function may be regular on the boundary of a region,
yet 8till have singularities inside that region. For
example, the function f(3z) = -—-%——- has a singular
point z=a, yet on the boundary of any region enclosing
z=a as an imner point, f(z) is regular.

We might investigate a few examples of functions
of two complex variables as conseauence 4 applies to them.
Example 1. Consider £(3z,,2.) = %i . We shall usa three
different regions to illustrate three different applications.
(a)e Let S be the dicylinder: |z.|< 4, \z,- l;‘(d;,
where |aa|> d,, as shown in figure 6.2. The function

zZ, -plane Z,~plane

-
N

2z,

Pigure 6.2

f(s,,s5) = is regular at all points of the boundary,

singce the va;;e Z,= 0 has been excluded from the region.

By the conclusion of consequence 4, there can be no singular
points inside the region. We see that this is true, since
ell the singularities of the funotion lie on the plane % O.
(b). Let S be the dicylinder: Iz € &, |3.]< dae

The funotion f(z.,z;)=-§L has & pole at the point (EL,O).
t 8
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Since this point is interior to the dicylinder, by the
restatement of consequence 4 there must be at least one
singular point on the boundary of the dicylinder. The
point (d,,0) is such a point. In fact, every point
(s, ,0), where |z=4,, is a singular point on the
boundary of S.
(o). It should be noticed that a function may have &
s8ingular point on the boundary of the region which is
being considered without being singular at any point
interior to the region. This does not contradict the
statements of the theorem. If we consider the same
funetion, £(z,,z,;) = .E.'. , in a dicylinder: |s.\|<4,,
|5.- a2|<la.l , we have such a situation. For this

2, -plane Z.~plane

(1
\ J 5 Tad

Figure 6.3.

dicylinder the function has poles at all the boundary
points (3, ,0) such that |z,|=4,. Yet thers are no
singularities inside the region, since in order for a
point to be a singular point, its z,-coordinate must
be sero, and only boundary points possess such a value

for their z,-coordinate.



CHAPTER VII

ZEROS. NON-ESSENTIAL SIKGULAR POINTS. MITTAG-
LEFFLER'S THEOREM. THE WEIERSTRASS PROTCUCT THEOREL.

Zeros. For functions of two complex variables
we can define zeros in the same way that they are de-
fined for functions of one complex variable. If f(3z, ,s;)
vanishes at the point (a; ,a,) and is regular in a neigh-
borhood of (a,,a,), we say that (a,,a,) is a zero of f(sz,,s,).

From our discussion of singularities, where those
singularities might be confined to poles, we would expect
that if there exist any zeros of a function in some region
there will be at least a two-dimensional manifold of such
geros. Suppose we wish to consider a function £(3,,2;)

for its zeros in a region S. We will accomplish the same

end by considering the function — 1 ; for its poles
'0 v'l
in 8. By consequence 1 of theorem 6.1, if —1 has
£(s, v82)

any poles, it will possess at least one two-dimensional
manifold of poles. Hence, f(3,,82), if it has any seros
in 8, will possess at least one two-dimensional manifold
of zeros in 8. In & similsr way the other consequences

of the continuity theorem may be interpreted in terms of
1

2(%, ,%2)
In order to determine these zero manifolds as we

zeros by using the function

shall call them, the preparation theorem of Welerstrass
is8 used.®

Theorem 7. 1.

Hy). £(3z,,3.) is regular at the point (a,,a;).

® pehnke, pe. 57.
51




62

HZ)’ t(.l oa'l) = oo _b_ll'E f(z| .31) $ 0.

C1)e There exists a neighborhood U(a,,a,) of the

point (a,,a,) such that there exist:

a).
b).
0)0
(1)
such
(2)

& function 1 which is regular
Q(zl 951.)
in U and does not vanish in U,

& whole number M 2 0,

& function &P(z. »22) which is identically

equal to 1, or of the form

Y(z, ,2,) = (3,-8,)"+A,(2,)(z, -a, )"‘"4....5.+A,_(z,_),

where the A;(2z,) &are regular in U and

vanish _a_t_ Z2.= 8,,

that £(3,,2,) oan be written in the form,

(3, v32) = (3.~ a,_)”-d-(—;‘}-:;:-)-ql(z, vB2) e

;). If £(3,,8,) = 0, then the factor (3,- 8,)" is

omitted from representation (2).

A funotion of type (1) is called a distinguished

polynomial.
with respect

(z,- a, )m""" A, (2,)(3, -8,

Thus we define a distinguished Polynomial

to 3.= a, to be a function of the form

)M-I

+ e o o + A.‘(’l)'

where the A;(32,) &are regular in the neighborhood of a

point s.= &, and vanish at 3,= a,.

Observing (2) we note that we can now find, in the

neighborhood

equals zero.

U(a, ,a,), the manifolds wupon which £f(s,,3,)

Naturally, one such manifold will be the

plane 13z,= a, if the faoctor (3,- a;)” occurs in the
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representation (2). The factor 1 does not

Q(zl ozl,
vanish in U(a,,a,;), by definition; hence, this factor

will give rise to no zeros of the function f(s,,%,) in
U(s,,82). Obviously, we can obtain all other gero
manifolds of £(3z,,3,) by setting the factor Y(s,,z,)
equal to zero and solving the resulting m'th degree
equation. This gives us m roots,

5,= g (2), 2.=8a2), ¢« « ¢, 8 =g.(8.).
These are the m manifolds upon which /(s ,3,) equals
sero, and therefore they are the m manifolds upon which
f(3, ,3.) equals zero in the neighborhood U(a,,a:).

Bochner gives a method for finding this distin-
guished polynomial \Y(3, ,3,) for a given function, £(3z,,z,).*
We 8hall outline the method and illustrate with an example.
This method useé the origin, (0,0), as the point (a,,a,),
in a neighborhood of which we desire to investigate the
zero manifolds of £(3z,,2.)¢ This choice does not limit
the generality of the method, since our given function can
always be transformed by use of substitutions =/=(s,- a,)
and $.=(3,- 8,), enabling us to consider the transformed
function at (0,0), rather than the given funotion at (a,,s.).
Also, we shall consider functions such that £(s, ,8.) F# o,
permitting us by conclusion 2 of the theorem to omit the
faotor (3.~ a;f‘ from representation (2).

| Thus we are considering f£(z,,3.) &about the point

(0,0), and by the preparation theorem, this function has
a representation,

(3) £(3, ,3,) = 1 (2,,22) o
3,3, (e .50) qj 2

% Rochner. . 183-184.,



Our task is to find Q(3z,,2z,) and P(z,,3,). Let
P(z,,2,) = B(3,,3,) + H(z,,5,).

This enables us to choose B(3,,3,) arbitrarily. Then

we must find an H(z,,s,) which added to B(z,,z,)

will give a distinguished polynomial, Y(s,,z,). Sub-

stituting B(s,,2z.)+ H(z, ,3,) for Y(3 ,z,) in (3)

and solving for H(3, ,3.), we get

(4) H(z, ,2,) = £(2z,,2:)Q(z,,35,) - B(z,,%,.).

Therefore, to find H(3z, ,8.) we must find Q(3z,,3,),

given £(z ,3,) and having chosen B(3,,2%,) arbitrarily.

Since 1 must not vanish in U(a,,a.), Q(sz,,s3,)

Q(al ,23_)
must be regular in U(a,,a8.), and hence may be expanded

in a power series

o2
(5) Qlz,2,) = 2 CHIE A M

Mn=zo '
The coefficients gq,,, may be found by the use of a re-
cursion formula which involves the coefficients b, ,

and f,,, from the expansions

(6) . B(zl ,8;_) = ."2“‘ bhm I?‘Z: ’
(7) £(3,,2.) = :i Lo B2y

for B(s,,s,) and f£(s,,2.). This recursion formula is *
nw-! )
‘8) qm... = b'h.u - 2 "Z'. qp-.v f“*k-»,n-v. Z‘ q'-.,h rnvk-p,o

where k 1is the power of the first term in the series
o9

(9) 25, ,5,) = > fu(3,) 87
for whioh £(0)%0. . °

nxamglo. Consider

2(8, ,8,) = S 4328, + z.+ 5> - 32,5+

* Boochner, p. 184.
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for its zero manifolds in a neighborhood U(0,0). 1In
most oases the function being investigated for its sero
manifolds would be an infinite series. The zero mani-
folde of the funetion we are investigating would be
most easily found by setting the function,as it stands,
equal to zero and solving the resulting eguation for
its roots. However, for purposes of illustration, we
shall carry through the work for this function in the
manner described on pages 53 and 54.

Expressing f(3,,2,) a8 a series in the form
of (9), we obtain
(10) £(z, ,2;,) = 2z, + (32,)3, + (1 - 33,)3" + zs.3 .
Since (1-32,)# O when 3.,=0, then k=2,
We then choose B(z ,z.) = 8 . Considered
a8 & power series in the form (6), this means that all
b,.= 0, except b,,=1. Considering f£(3z,,z,) as a
power series in the form (7), we get for the coefficients,
Peo =0y, P, =0, P,,=1, ¢ ¢ &
Poe=0, P,=3, P,.=0, ¢ « ¢
Pae=1l, DPu,==3, ¢ ¢ &
Ppe=1l, « « o and all other p,,=0.
Next, using our recursion formula, (8), we find
.= 1, Q,, = 6, Qo, = 63, Q.3 = 667, q,, = 6744, .
q.= -1, q, = -12, q,, = -148, q,, = -1770, q,, = -23101, .
Qo= 1, q,,= 18, q,, = 867, q,, = 3825, Q.4 = 54795, .
4. =-1, q,, = -84, q,, = -428, q,, = -6948, q;,= -108846, .
Qe = 1, q,, = 30, q,,= 685, Qa3 = 11365, q4 4 = 193570, .

Substituting these coefficients in the expansion (5)
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for Q(s, ,%.) we obtain that expansion up to and in-
ocluding m=4, n=4. Multiplying this by £(z,,2.),
we geot

WY(s, ,s,) = B(s,,3,) + E(s,,5,)

(11) = 5+ (32, + 1730 + 1472, + 16595, + 4 + . )3z,

+(z:+6zf+5zz:+ N B
This, we see, is a distinguished polynomial since the
coefficient of the highest power of g, 1is equal to 1
and all the other coefficients of powers of 3, are
regular in the neighborhood of the origin and vanish
at the origin. To find the zero manifolds in the
neighborhood of (0,0), setting (1l) equal to gzero
and solving for the two roots, we obtain the zero
manifolds

2,=g,(3,), and 3,=g,(8;),

for the given function in the neighborhood of (0,0).

our discussion of zeros now leads us to *

Theorem 7.2.

Hy)e £(z,,3,) is regular at (a,,a.).
Hp). £(a,,82) =0, dut £(z,,3,) F 0.

C1). In & sufficiently small neighborhood U(a,,s,)

of the point (a,,8.) all zeros of f£(z,,z,)

lie on a finite number _c_a_f_ two-dimensional

analytic pileces of surface.

C2). All the points of these analytic pieces 92

surface, if they lie in U(a,,a,), are zeros

2_{ f(l‘ .Ba.)o

* Behnke, p. 59.



Thus we see that the zeros of functions of two
complex variables differ from the zeros of functions
of one complex variable in much the same way as do
singularities for the two cases. For functions of
two complex variasbles, if there are any gzeros they
will form at least one two-dimensional manifold. 1In

contrast to this, functions of one complex variable

can have a zero at a point. The function f(z)=32 - a,

for example, has a zero at the point z=a.

In the theory of functions of one complex vari-
able we have a theorem dealing with the zeros of a
funetion which is sometimes referred to as the unicity
theorem.*

Theorem 7.3a.

Hp)e £(2) is regulsr in a region 8.

Hz). £(3z) is egusl to zero at an infinite seguence

of points, ', z“, z“, . . . , which have &

point interior to S as & limit point.

01). £(g)= o0 in s.

b7

The unicity theorem for functions of two complex

variables is **

Theorem 7.3Db.

Hy). f£(3,,3.) is regular in a region 8.

Hz). £(3, ,2,) is equal to zero everywhere in s

where 8' 1s a region interior to S.

01) £(z,,3,) =0 _1_-_1'_1_ S.

*  Gcopson, p. T4.
** pochner, p. 174.
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We shall omit the proof of this theorem.

It is interesting to note that in the case of
one complex variable we need know that the function
is gzero at a sequence of points, only, while in the
case of two variables we must know that the function
equals zero everywhere in a subregion of the region in
which the function is regular. The reason for this
difference can be pointed out if we recall that functions
of two complex variables which are not identically zero
can still have two-dimensional manifolds upon which they
are equal to zero. Hence, when considering a function
of two complex variables, we could get & sequence of
points, lying on the zero manifolds of the function,
at which the funoction takes on the value zero, without
having our function identically equal to zero. However,
if we know the function to be zero at an infinite sequence
of points which do not lie on these zero manifolds, then
it necessarily follows that the function is identiocally
equal to zero in the region being considered.

Closely related to the unicity theorem for functions
of one complex variable we have the following theorem.*®

Theorem 7.4a.

Hi). £(2) and g(z) are two functions regular in s

region 8.

Hg). £(3)=g(3) at an infinite sequence of points,

s/ ,z",2", « . . , which have & point interior

Yo 8 as a 1limit point.

01). 2(3)=gls) in s.

* fownsend, p. 248.
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We can state & corresponding theorem for functions
of two complex variables.

Theorem 7.4D.

Hy). £(3,,2,) 2nd g(3,,2,) are reguler in a region s.

Hy)e £(2z,,2z,) = g(z ,3 ) for all points (z,,2z;) in

a region S’ interior Eg Se.
cy). f£(z,,z,)= gz ,2) ins.

Non-essential S8ingular Points. We have defined

non-essential singular points in chapter VI. A function

£(3, ,5.) is said to have a non-essential singularity at

the point (a,,a,) if there exist & neighborhood U(a,,a.)

of the point and two functions f(z, ,z.) and g(s,,3.),

which have no common factors and are regular in U(a,,a.),

such that £(z,,2z,) = &3 ,2:) in U(a,,a;) and h(a,,a,)=0.
We also mentionggz%ﬁ;;)there are two types of non-

essential singular points. A non-esgential singular point

is oalled & pole or & non-essential singularity of the

first kind if g(a,,a,) # O. In this case f(3,,z,) tends

toward infinity es (z,,3.) approaches the point (a,,a.).
We say that f(z,,2,) has the value ©o at the point (a,,a.).
A non-essential singular point is called & point of in-

determinacy or a non-essential singularity of the second

kind if g(a,,a;) = 0.

It is possible to show that if (a,,a,) is a point
of indeterminacy of the function f(z, ,%,) and if « {is
any preassigned value, that f(z,,z,) assumes the value
 gomewhere in any neighborhood of (&, ,8.).* Also,

for functions of two complex variables, points of in-

* Bochner, p. 199.
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determinacy are always isolated. This follows from

the fact that g(z,,2z,) =0, h(z,,z,)= 0 give four

equations in the four variables x,,X,,¥.,¥. When we

substitute z,= x,+ iy, and 2z, =x,4+ 1y, and equate

real and imaginary parts. Solving these four equations,

we will obtain a finite number of solutions, that is,

points where g(z,,z,)= 0 &nd h(3z,,z;,)= 0 .

Also,

for functions of two complex variasbles the

points of indeterminacy are always limit points of

non-es8sential singularities of the first kind. These

statements are clearly illustrated by example 3 of

theorem 6.2,

In conclusion we might state a theorem for non-

essential singular points corresponding to theorem 7,2

on zeros.*

Theorem 7.5.

 31).
01).

02) .

£(2, ,2.) has a non-essential singular point at (a,,a,).

All the singularities of f(%,,2.) in & sufficiently

small neighborhood U(a,,a2) of the point (a,,a,)

lie on a finite number of analytic pieces of surface.

All the points on these pieces of surface, so far

a8 they lie in U(a,,8,) are non-essential singular

EOint' _91 f(z‘ ,z;).

Mittag-Leffler's Theorem and the Weierstrass Product

Theorem. In the theory of functions of one complex variable

these two theorems concern the possibilities of forming &

funetion which has poles or zeros at an infinite number of

* Behnke, p. 61,
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previously assigned points.
Mittag-Leffler's theorem for functions of a single
complex variable is *

Theorem 7.6a.

Hi). Given an infinite set of points, z,, Z,, Z3, ¢« ¢ , Zp, & o

such that

o< |z )< 5K B3] <o ¢« « <2 < - ¢ -

[ ] 1m - [ ]
Hz) &4_’“ Z oo

Hz). QOorresponding to each 3, there is given an

arbitrarily chosen integral function of 1

1 g - 24
namelz, G’h(-;—-—z—h) .

Cy)e There exists & single-valued, anslytic function

which is regular for all finite values of z ex-

cept 2 = Zp.

Cz)e This function has Gh( 1
g — g
R

part of its expansion in the neighborhood of z,.

) as the principal

The Weierstrass product theorem, on the other hand,
concerns zeros.”™

Theorem 7.78a.

Hy). Given an infinite set of points, z,, Z,, 23, « « , Zn, o -

not including the origin, such that
l3||€‘zllgl33‘$o e o £|Zh|<o ¢ o
HZ)O im zh.—.oo °

-
Hz)e G(z) is an integral function.

C1). There exists & transcendental integral function

* fTownsend, p. 304.
*#% pownsend, p. 313.
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f the form

Q(z) = jfr( - i&) o

having the points 3z, and no others as zero points.

m, -~ |
L@ v an@)

Co)e The function

F(z) = 6" @(z)

1s the most general function having this property.

The difficulty in generalizing these theorems to
the case of two complex variabios lies in the fact that
for functions of two complex variables, &s we have already
seen, the zeros and poles are not isolated but lie on two-
dimensional manifolds. However, theorems have been de-
veloped which, although not complete generalizations, may
be 68lled the corresponding theorems for functions of two
complex variables.

First, we require two definitions. Two funoetions,
f(z, ,z,) and M(sz,,3,), which are meromorphic in the neigh-

borhood of & point P, are called equivalent with respect

o subtraction at P in case the difference, £(z,,3,) - h(s,,2,),
is regular at P. Two funoctions, f(z,,z,) and h(z,,2,),

whioh are regular in the neighborhood of a point P, are

called ecuivalent with respect to division at P in case
the quotient, 212;4231 , 18 regular and different from
h(z, ,z;)
zero at P.
The theorem concerning poles, corresponding to

Mittag-Leffler's theorem is *

* Behnke, p. 64.
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Theorem 7.6b.

Hl)‘ To each point P of & dicylinder '} let there

be associated & neighborhood U(P) and & function

fp(3, ,22) which is meromorphic there, such thsat

for any point Q chosen from U(P), where fo(z ,2;)

is the function associated with @, the functions

fp(2,,8,) and fo(3,,2,) are squivalent with re-

spect to subtraction.

C1). There exists & funotion, F(z,,z,), meromorphie

everywhere in %, which is &t each point P

equivalent with respect to subtraction with the

associated function fu(3z,,2,).

The theorem for funetions of two complex variables
corresponding to the Weierstrass product theorem is *

Theorem 7.7b.

H1). To each point P of & dicylinder % let there

be associated & neighborhood U(P) and & function

fp(3,,%,) which is regular there, such that for

any point Q chosen from U(P), where fqls,,s;) is

the funoction associated with @, fp(s,,3.) and

£4(3, ,22) are equivalent with respect to division.

C1). There exists & funotion G(z,,2,), regular in ‘} R

which is at each point P equivalent with respect

%o division with the associated function £,(3,,z;)

g Behnka, Pe 65.
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