
# SOME FACTORS AFFECTING RETAINED AUSTENITE IN ALLOY STEELS

Thesis for the Degree of M. S.
MICHIGAN STATE COLLEGE
William James Buehler
1947



COPIES OF THIS DOCUMENT ARE AVAILABLE ON MICROFILM BY CONTACTING
AIR DOCUMENTS DIVISION, INTELLIGENCE T-2, AIR MATERIEL COMMAND,
TSNAD-28
AND REQUESTING ATI NO. 14602 Wright Field
DayTon, Ohio

This is to certify that the

thesis entitled

Some Factors Affecting Retained Austenite in Alloy Steels.

presented by

William J. Buehler

has been accepted towards fulfillment
of the requirements for
Chemical and
M.S. degree in Metallurgical
Engineering.

Major professor

Date May 29, 1947

# SOME FACTORS AFFECTING RETAINED AUSTENITE IN ALLOY STEELS

By
William James Buehler

Submitted to the School of Graduate Studies of Michigan

State College of Agriculture and Applied Science

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Chemical and Metallurgical Engineering
1947

THESIS

1

# Table of Contents

|                                     | Pag <b>e</b>   |
|-------------------------------------|----------------|
| Introduction                        | 3-11           |
| Experimental Procedure              |                |
| Part I                              | 12-16          |
| Part II                             | 16-17          |
| Part III                            | 18             |
| Diagrams                            |                |
| Carbon analysis apparatus           | 19             |
| End-quenching apparatus             | 20             |
| Experimental Results                |                |
| Outline                             | 21             |
| Carbon gradient data                | 22-26          |
| Graphs of carbon gradients          | 27-31          |
| Photomicrographs for Part I         | 32-57          |
| End-quenching data                  | 58 <b>-5</b> 9 |
| End-quenching graphs                | 60             |
| Microstructure of end-quenched bars | 61-63          |
| Photomicrographs for Part II        | 64-69          |
| Photomicrographs for Part III       | 70-72          |
| Discussion                          | 73-81          |
| Conclusions                         | 82             |
| Possible Future Work                | 83             |
| Selected References                 | 8 <b>4-</b> 86 |

## Introduction

Solid solutions in which gamma iron is the solvent and carbon is the solute are called austenite (1). The solid solution austenite is formed by heating a steel containing between 0.03 and 1.7% carbon to the austenitizing temperature. The austenitizing temperature is a function of the amount of carbon and alloying elements present in the steel. Gamma iron is quite important because practically all heat treating is done from this solid solution range which occurs above about 1330°F.

Upon rapid quenching it has been discovered that certain quantities of austenite remained untransformed in the martensitic matrix. Retained austenite is particularly undesirable from the standpoint of practically all physical properties due to the fact that it is considerably softer and more plastic than martensite.

The subject of the decomposition of austenite in steels, because of its immense practical importance, has been studied very carefully in recent years (2) (3). The decomposition products have been classified in three general groupings - pearlite, bainite, and martensite. Of the three decomposition products, bainite has received only scant attention. On occasions it was found that not all the austenite was transformed (4) especially in higher carbon steels containing high percentages of manganese, nickel, and chromium. This untransformed

or retained austenite has caused some investigation and several methods of quantitative analysis have been tried.

Some factors affecting the retention of austenite are as follows:

- (1) Carbon content
- (2) Quenching rate (quenching media)
- (3) Austenitizing Temperature
- (4) Sub-atmospheric cooling
- (5) Cold working
- (6) Tempering temperature and time

The fact that some austenite was retained on quenching higher carbon steels was known since the very early days of metallurgy. (5) It was originally felt that more austenite was retained when more drastic cuenching from a higher temperature was employed. This idea was later discovered to be incorrect, when certain alloy steels retained more austenite after oil quenching than they did after water quenching (7). The suggested explanation for this phenomenon was based primarily on the effect of stresses and stress distribution during quenching. When the problem was considered from a stress standpoint, care had to be taken to distinguish between compressional and tensional stresses within the steel being considered. Since austenite has a greater density

than martensite, compressive stresses will promote the retention of austenite while tensional stresses will promote its decomposition. In connection with this idea, experimental evidence showed that more austenite was retained in the exterior, on water quenching, while upon oil quenching, more austenite was retained in core area.

The earlier work caused some disagreement on the lowest possible carbon content at which austenite was retained regardless of the rapidity of quenching rate. Wever and Engel (11), by the use of X-ray analysis found that a minimum of 0.60% carbon was necessary in quenched steels for the retention of austenite. Davenport and Bain (12), claimed that they found traces of retained austenite in 0.54% carbon steel that was quenched.

Esser and Cornelius (13) found that the maximum amount of retained austenite results at cooling rates just below that of the critical cooling velocity. With either increasingly higher or increasingly lower cooling rates, the amount of retained austenite was found to steadily decrease. The idea of cooling rates was extended as the possible reason why more retained austenite was found in small sections quenched in oil than in corresponding sections quanched in water. The cooling rate of the oil was more nearly that of the critical

cooling velocity and thus retained more sustenite.

The maximum amount of austenite was retained when the steel was quenched from just above the  $Ac_3$  or  $Ac_m$  line. High-temperature quenching was found to give less retained austenite (5).

Several ideas have been put forward on the retained austenite to martensite transformation that occurred during cooling to very low temperatures. Early experimenters (14) found that the transformation occurred by a step-wise cooling to sub-atmospheric temperatures, transformation began at the -20°C. step. On holding at this temperature the transformation ceased after a period of time and no further transformation occurred until the temperature was again dropped. Complete, or nearly complete transformation occurred if enough increments of temperature drop were applied. From the step-wise action of the transformation it was believed that the real cause of the austenite to martensite change was brought about by the deformations, stresses, and strains which had occurred during cooling. Fletcher and Cohen (6), stated that aging at room temperature between the hardening and sub-cooling treatments lowered the temperature at which the retained austenite started to transform on sub-cooling and reduced the amount of transformation

achieved by any given cooling treatment. Virtually complete decomposition of the retained austenite could be accomplished by sub-cooling to-250°F. to-260°F., if the prior time at room temperature was kept within several minutes. Transformation of retained austenite due to relief of stresses and strains was definitely established when the effect of cold working on the retention of austenite was studied.

Hardened steels which contained 0.55% carbon were found by Bain (7) to be susceptible to retained austenite after quenching. Those alloy steels in which more than the normal quantities of nickel, manganese, and chromium were present can have a carbon content even lower than 0.55% and still retain unstable austenite. Tamaru and Sekito (15), found by X-ray studies evidence of retained austenite in steel containing as little as 0.40% carbon. Metained austenite was transformed by heating to a suitable temperature for a definite length of time. Partial transformation has occurred at very low temperatures, with the occasional formation of cracks.

A proportion of retained austenite amounting to 10% to 25% has been found in commercial steels. In many steels, the presence of a surprisingly large proportion of austenite had scarcely any effect on the hardness of the quenched steel. To obtain a reduction

of 10 points Rockwell required the retention of fairly large amounts of austenite. The explanation for this was based on the uniform distribution and orientation of the austenite in the martensitic structure. Bain (7) states that some high chromium steels quenched from an austenitizing temperature have been found to contain as high as 80% to 90% retained austenite.

The austenite in plain carbon steels has been substantially unchanged during heating for brief periods at 450°F. The complete transformation of austenite has been verified by X-ray diffraction and dimension change with tempering.

Careful studies (7) made on the isothermal transformation of retained austenite reveal that the product
of transformation at the tempering temperature was not
hard martensite, but rather one of the slightly softer
structures of the bainite group. The hardness of this
bainite was just a little greater than that of the
tempered martensite.

The behavior of some steels to get slightly harder at room temperature ws a large quantity of time has passed indicates that possibly the retained austenite, which is unstable after quenching, has slowly transformed into martensite. Bain (7), has referred to this phenomenon as a lingering austenite transformation. Tempering

at low temperatures, such as 200°F., has greatly speeded the transformation or "aging period" of freshly quenched high carbon steel.

French (8) stated that in a steel of around eutectoid carbon, it was found that the water quenched steel with less than 3% austenite had poor fatigue resistance, while the same steel quenched in oil contained 5% retained austenite and showed an appreciable improvement in the fatigue limit. The effect of the 5% austenite was thought to exert a cushioning action rather uniformly throughout the cross-section of the fatigue sample and thus cause increased fatigue resistance.

When wear resistance is desired, the retention of large quantities of austenite is found to be a disadvantage, since it is much softer and more plastic than martensite.

French(8) also stated that if sufficient quantities of manganese and nickel were added to a steel, it could remain completely austentic.

Hardened steel, containing tetragonal martensite and retained austenite, passes through three structural changes on tempering (9). During the first stage (200°F. to 350°F.) the tetragonal martensite undergoes a decomposition which causes a precipitation in the higher

carbon concentration regions and this transition precipitation accounts for the darkening of the martensite plates. During the second stage of tempering (450°F. to 550°F.) it is quite certain that the retained austenite is transformed. The transformation product has the general appearance of an acicular bainite. The main reason for believing that the transformation product is bainite is that the second stage tempering temperatures are well above the martensitic range of transformation. The third stage of tempering (550°F. to 750°F.) is characterized by the decomposition of the transition precipitate formed during the first two stages. The decomposition forms cementite particles which gradually coalesce into a spheroidized structure with a ferrite matrix.

Liedholm (10), supports Bain's statement on the transformation of retained austenite in plain carbon steels at a range of temperatures in the vicinity of 455°F. The transformation reaction causes an increase in magnetization of carbon steel by about 3%. It was found also that the relationship between the amount of austenite present and the magnetic properties defied the attempt of mathematical formulation. The investigation on cobalt high speed steels indicated that considerable austenite was retained after tempering at temperatures

of 900°F. or less. The retained austenite did, however, decompose rapidly upon tempering at 1000°F. and higher temperatures. The first changes in the austenite occurred at temperatures between 700°F. and 800°F. which indicated that the austenite transformation occurred over a range of temperatures rather than a sharp change at a definite temperature. No evidence was found in the literature to support the transformation of retained austenite in plain carbon steels over a range of temperatures. In view of the fact that the transformation of retained austenite in alloy steels occurred over a wide range it may be assumed that a similar system of transformation occurred in the plain carbon steels.

# Experimental Procedure

## Part I

Relation of Carbon Content to the Amount of Retained Austenite

Five steels were chosen for the experimental work, one plain carbon steel SAE 1010 and four alloy steels

SAE 2015, SAE 2340, SAE 3145, and SAE 4640. The analysis of the five steels were given in table I.

## Table I

|                        | <u>c</u> | Mn  | <u>P</u> | <u>s</u> | <u>Cr</u> | <u>N1</u> | Mo  |
|------------------------|----------|-----|----------|----------|-----------|-----------|-----|
| SAE 1010               | .15      | •55 | .016     | .045     |           |           |     |
| SAE 2015               | .33      | .54 | .017     | .024     | •33       | .73       |     |
| SAE 2340               | .297     | .71 | .011     | .017     | .22       | 3.42      |     |
| SAE 3145               | •40      | .72 | .016     | •020     | .69       | .139      |     |
| SAE 4640<br>(Aver.Spec |          | .65 |          |          |           | 1.82      | .25 |

The bars were first cut to a convenient length (6 inches) and then placed in a lathe chuck to be faced down on both ends and center-drilled. Upon center-drilling each end of the five bars, they then were turned on centers to the largest possible diameter giving a taper of no more than .001 of an inch from one end to the other. After all the preliminary machining was completed, the bars were then ready to be case carburized.

The carburizing was done in a 2.0% steel pipe carburizing bomb, using a commercial solid carburizing mixture of the following analysis:

Table 2

BaC03 10-12%

Na<sub>2</sub>CO<sub>2</sub> 2-3%

CaCO3 2-3%

Coke 25-30%

Charcoal (Type F.S.R) Balance

Two of the smaller diameter bars were placed in a bomb together, while the larger bars were carburized individually. When two bars were placed in the same bomb together care was exercised to keep the bars equidistant from the walls of the bomb and from one another. The commercial carburizer was packed very tightly about the samples. The sealed bombs were placed in a muffle type furnace controlled at 1700°F., and left there for a period of 13 hours. At the end of the 13 hours, the bombs were removed and allowed to cool in still air.

The carburized bars were then placed on lathe centers again and checked first for possible warping by the use of a dial indicator. If it was found that the bar had warped appreciably it was aligned by a few well placed hammer blows, while on the lathe centers.

Maximum warping occurred, as would be assumed, in the smaller diameter bars. The large bars (SAE 3145 and SAE 4640) exhibited practically no deformation during carburizing. After the proper alignment had been secured

the bars were ready to be machined. The machining operation consisted of removing, by the use of a lathe. layers of the carburized case of very definite thickness and catching the chips from each individual layer in a clean, oil free, envelope. The envelope was carefully marked to designate the steel and the exact layer it contained. The layers were removed in a systematic way, the first layer was .002 of an inch thick (a diameter decrease of .004) and each following layer was .005 of an inch thick, to a depth of approximately .062 inches or the core whichever came first. It was possible to tell when the core had been reached by the ease of machining and the type chip produced. The entire length of the test bar was not machined, thus leaving a stud about .75 inches long to be used later in the metallographic analysis of the carburized cross-section of the respective bar.

The steel chips were then analyzed for their carbon content in a standard carbon train (see diagram). The carbon contents of the various layers of the five steels were determined and plotted against the distance from the surface of the respective bars. The graph of carbon content vs. the distance from the edge of the bar indicated the carbon gradient in the case. Care was

exercised to repeat exactly each step of the procedure involved in the carbon analysis so that reproducible results were obtained. Bureau of Standards samples were used to check the accuracy of the "carbon train" at the beginning of each run.

The .75 inch studs which were not machined were then heated in used carburizing compound to a temperature of 1700°F throughout and quenched. The quenching media was stirred water for the SAE 1010 and stirred oil (100 deg. cent.) for the four alloy steels. The five samples were then tempered at 400°F. for a period of 1.5 hours. The tempering was done to transform the light etching tetragonal martensite to a body centered cubic martensite which was dark etching when 3% nital was used as an etchant, thus making a sharp differentiation between it and the light etching retained austenite. All samples were then mounted in bakelite with a steel band mounted around their periphery to help meintain a flat edge on the polished samples. Polishing was done in two steps; first the sample was lapped on a lead lap using medium lapping compound, then it was finished on a felt wheel using levigated alumina as the polishing compound. The polished samples were then etched with 3% nital.

After etching the samples were ready to be photomicrographed. The procedure used in taking the photomicrographs was to start at the edge of each sample

and proceed to the core taking photographs at 500 magnifications of each .0064 of an inch until the retained austenite was no longer visible. This procedure gave slight overlapping in each photomicrograph, allowing later matching of prints and thus forming a continuous photomicrograph from case to core.

# Part II

Effect of Quenching Rates on Retained Austenite

The same five steels were used for the second phase of the experiment as were used in Part I. bars were turned on a lathe to 0.500 inches diameter by 4.00 inches long. Flats were milled on each side of the bars (180 degrees apart) to a depth of .010 of an inch. One end of each bar was faced off while the other end was drilled and tapped to accomodate the 10-32 thread on the standard Jominy test bar holder. A sixth bar was machined from SAE 4640 steel to a diameter of 1.000 inch and a length of 4.000 inches and milled and tapped similarly to the other five bars. six bars were then case carburized for a period of 13 hours at 1700°F. The carburizing procedure was the same as that used in Part I. All six bars were then cleaned carefully and copper plated in a cyanide bath for 0.50 hours at a current density of 15 amperes per square foot.

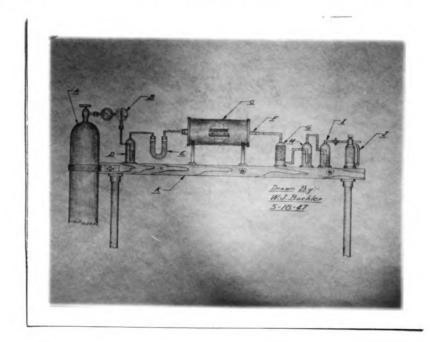
The six plated bars were then placed in a furnace

containing burning used carburizer which produced a slightly reducing rather than oxidizing atmosphere. The bars were heated completely to a temperature of 1700°F. All the bars were then quenched according to the standard Jominy end-quenching procedure (see detailed diagram), the 0.50 inch bars being quenched in a 0.25 inch stream of water while the 1.00 inch bar was quenched in a 0.50 inch stream of water.

The quenched bars were then polished on the flats etched (3% nital) and examined microscopically to determine the critical transition points on the bars. Representative photomicrographs were then taken at 500 magnifications at these points.

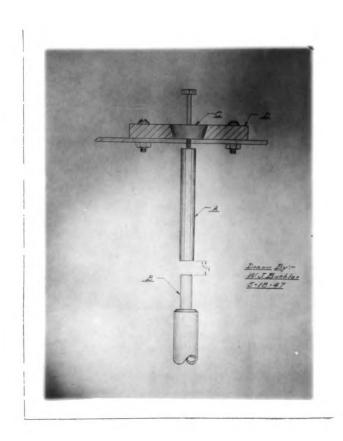
Rockwell-C hardness readings were then taken on the polished copper-free flats of the six end-quenched bars. The readings were taken every sixteenth of an inch for 1.50 inches from the cuenched end, and then every eighth of an inch between 1.50 inches and 2.50 inches from the quenched end. These Rockwell-C values were then plotted as hardness (ordinate) vs. distance from the quenched end of the bar (absissa). A 1.00 inch bar as well as a 0.50 inch bar of SAE 4640 steel was end-quenched in hopes of obtaining some correlation of the cooling rates in the 0.500 inch bar as compared to the known cooling rates in the 1.00 inch bar.

#### Part III


Transformation Range of

Retained Austenite in SAE 1010 (carburized)

Five samples of SAE 1010 (carburized, 1700°F., 13 hours, solid commercial carburizer) were quenched in starred water. Each of the five samples were then tempered carefully at a different temperature, temperatures being 350, 400, 425, 440, 450°F. and the time of tempering 1.5 hours. The samples were then mounted as in part I, in bakelite. Polishing was done on a lead lap and a felt wheel. The polished samples were etched with 3% nital by swabbing the polished surface with saturated cotton swabs.


The same approximate distance was chosen from the edge on each sample and a photomicrograph was taken at 500 magnifications. Effort was made to choose a representative spot characteristic of the amount of retained austenite in the chosen distance from the edge.

One photomicrograph was taken of SAE 2015 (carburized, 1700°F, 13 hours, solid commercial carburizer) quenched in oil (100 deg. cent.) and tempered at 430°F. This was done to note any transformation in retained austenite over that of the 400° tempered sample.



#### Key

- A- Oxygen supply tank
- B- Gas pressure regulator
- C- Combustion furnace
- D- Oxygen washing bottle (conc. H2SO4)
- E- Ascarite tube (CO2 removal)
- F- Combustion tube
- G- Zinc pellets
- H-  ${\rm CO_2}$  and  ${\rm O_2}$  washing bottle (conc.  ${\rm H_2SO_4}$  and  ${\rm CrO_3}$ )
- I-  $CO_2$  and  $O_2$  washing bottle (conc.  $H_2SO_4$ )
- J- Ascarite weighing bottle
- K- Bench



# Key

- A- Carburized test bar  $(\frac{1}{2}^n$  dia. x  $4^n)$
- B- Water supply nozzle (stream 1 dia., 21 head)
- C- Test bar adapter and centering attachment
- D- Test bar holder

# Experimental Results

The experimental results were divided into three major divisions and several sub-divisions, as follows:

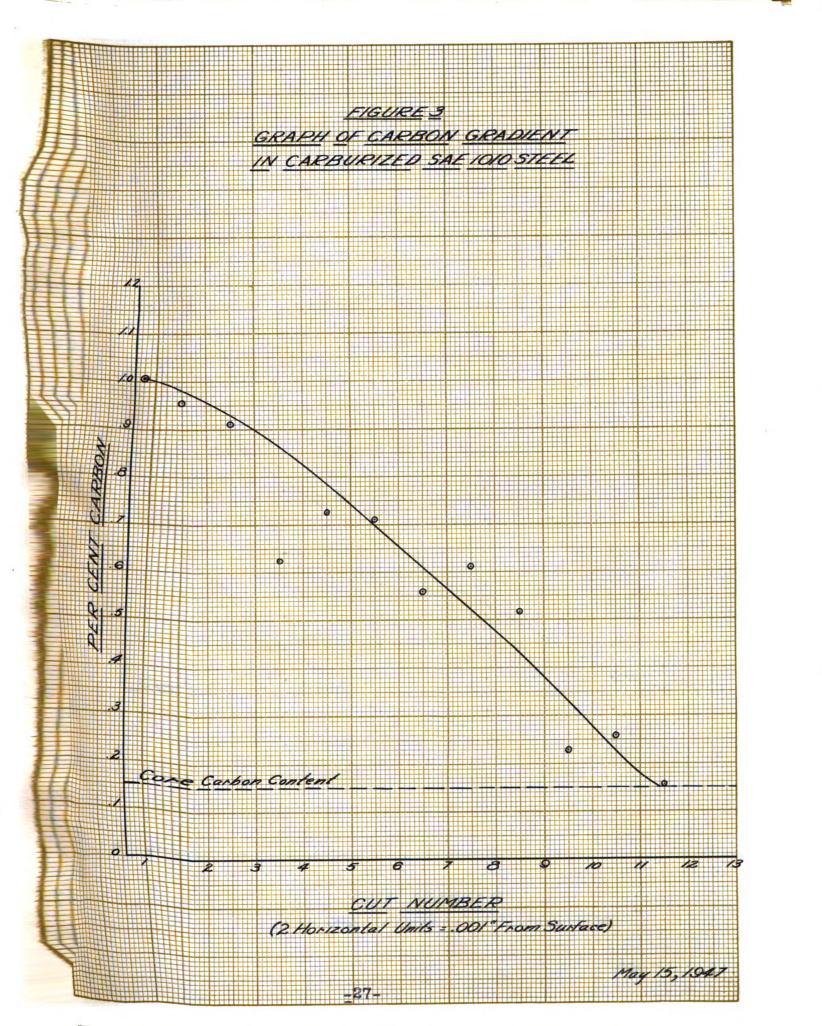
Part I

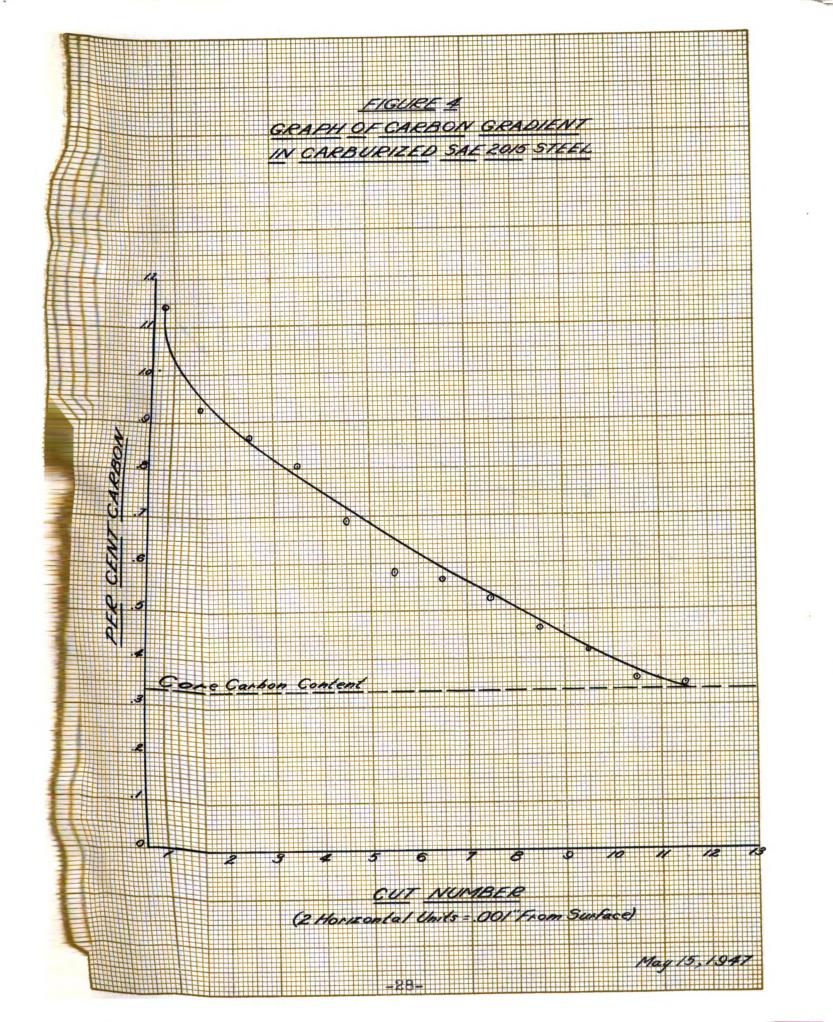
- (a) Carbon gradient data for carburized SAE 1010, 2015, 2340, 3145, and 4640.
- (b) Graphs of the earbon gradient data for the five steels listed in Part I (a).
- (c) Photomicrographs of retained austenite in cases of the five steels listed in Part I (a).

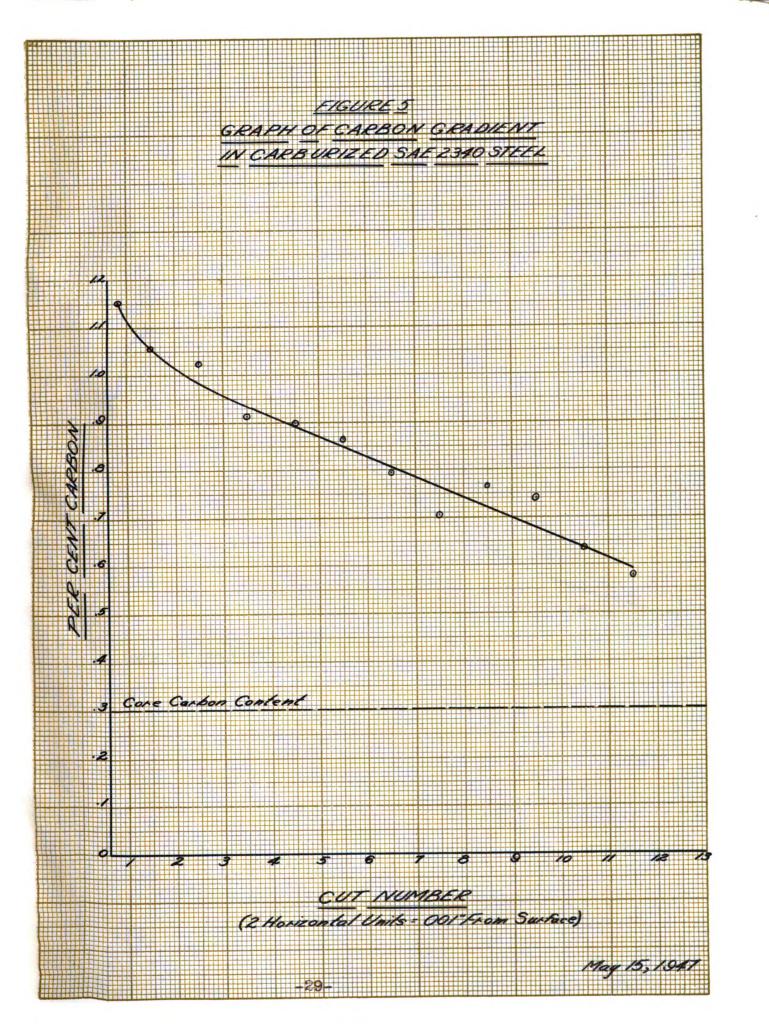
# Part II

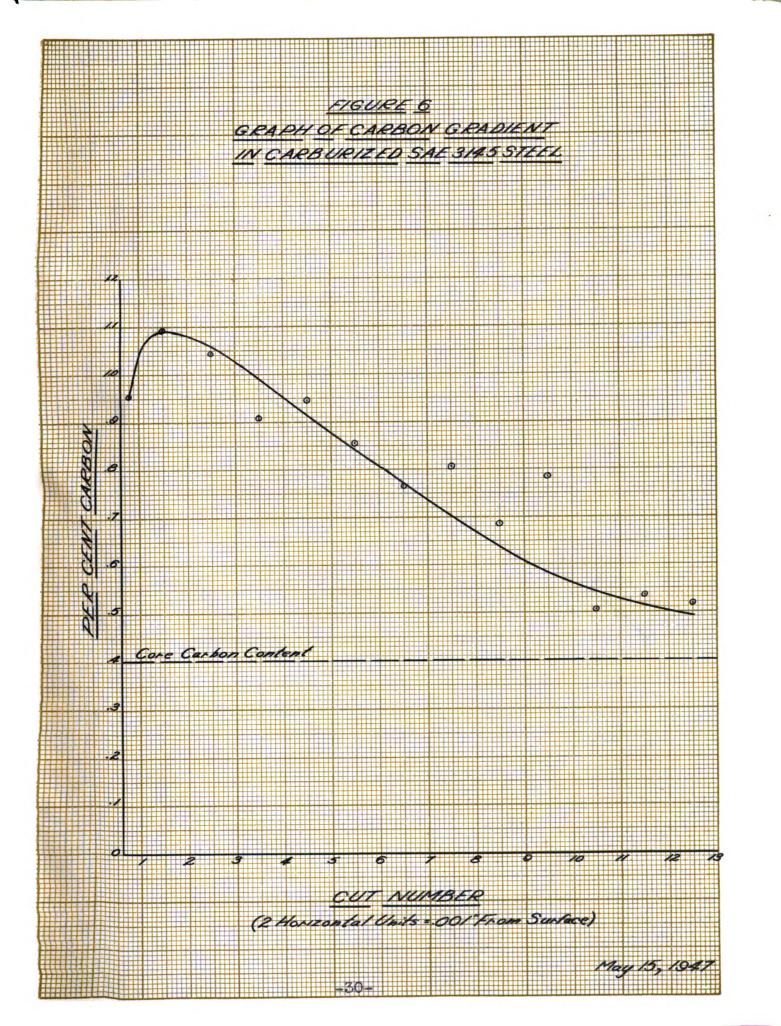
- (a) End-quenched hardness data from the five 0.5 inch and one 1.0 inch, end-quenched bars.
- (b) Graphs of the end-quenched data of Part II (a).
- (c) Microstructure of end-quenched bars (observing the polished flats).
- (d) Photomicrographs of the critical points on the polished flats of the five 0.5 inch end-quenched bars.

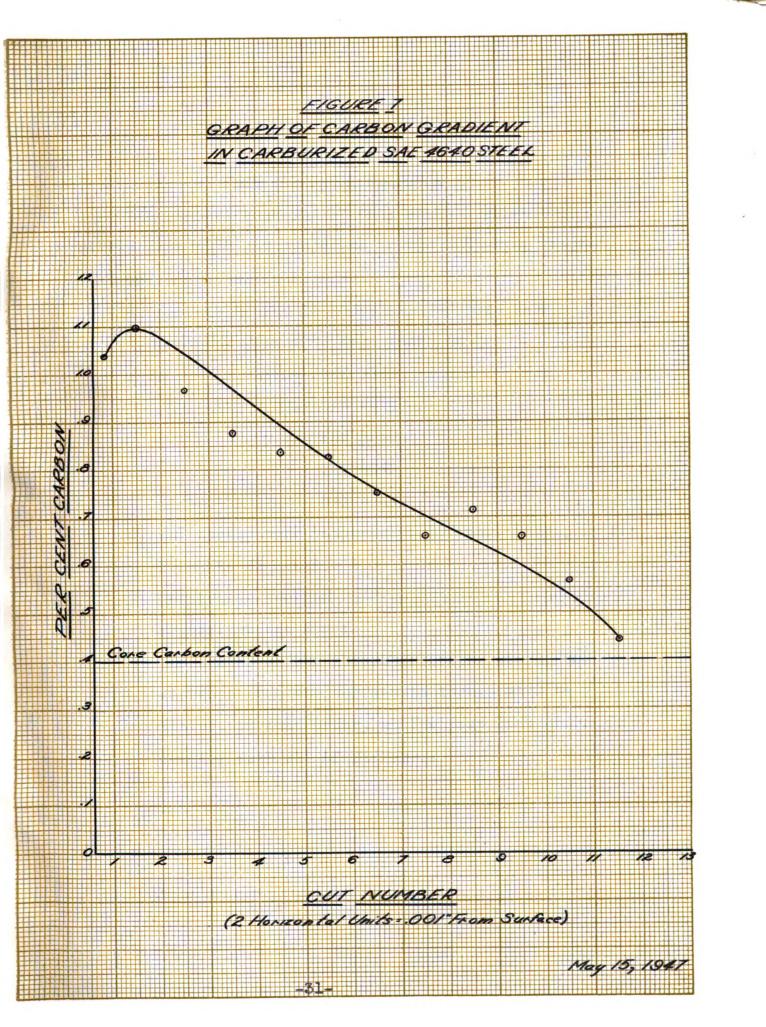
# Part III


(a) Photomicrographs showing the transformation of retained austenite in SAE 1010 and SAE 2015 with increased tempering temperatures.


Table 7


Data Of Carbon Gradient In Carburized


SAE 4640 Steel


| Cut No. | Distance<br>From Surface | Sample Wt. | Wt. CO2  | % Carbon      |
|---------|--------------------------|------------|----------|---------------|
| 1       | .000002"                 | 1.000 gr   | .0381 gr | 1.040         |
| 2       | .002007"                 | 1.000 gr   | .0407 gr | 1.110         |
| 3       | .007012"                 | 1.000 gr   | .0355 gr | •968          |
| 4       | .012017"                 | 1.000 gr   | .0322 gr | •8 <b>7</b> 8 |
| 5       | .017022"                 | 1.000 gr   | .0307 gr | •83 <b>7</b>  |
| 6       | .022027"                 | 1.000 gr   | .0303 gr | .826          |
| 7       | .027032"                 | 1.000 gr   | .0275 gr | <b>.75</b> 0  |
| 8       | .032 <b>-</b> .037"      | 1.000 gr   | .0242 gr | •660          |
| 9       | .037042"                 | 1.000 gr   | .0662 gr | .714          |
| 10      | .042047"                 | 1.000 gr   | .0242 gr | •660          |
| 11      | .047052"                 | 1.000 gr   | .0207 gr | •565          |
| 12      | .052057"                 | 1.000 gr   | .0162 gr | •440          |











# Part I Photomicrographs

The photomicrographs in this section represent steels that were all subjected to the following treatment and specifications.

- 1. Carburized for 13 hours at 1700 deg. Fahr.
- 2. Quenched from 1700 deg. Fahr. in

Water- SAE 1010

011- SAE 2015

SAE 2340

SAE 3145

SAE 4640

- 3. All steels were tempered at 400 deg. Fahr., 1.5 hrs.
- 4. Etchant- 3% nital
- 5. Transverse section
- 6. Magnifications 500 X
- 7. The number of the photomicrograph, steel, and distance from the surface in inches will be listed, in that order, on the page just proceeding each set of pictures.

1 848 1010 0.000-0.000

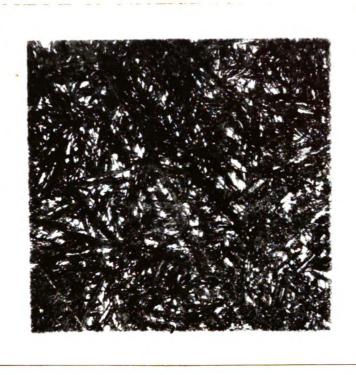
2 9A8 1010 0.0064-0.118

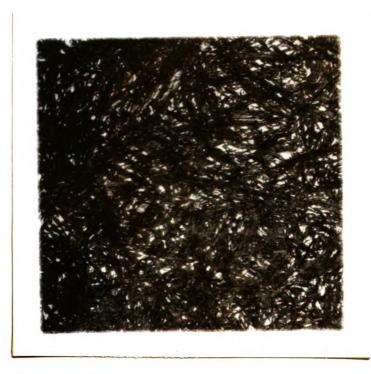









Ċ.


0.01 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( ) 30 ( )

4 2

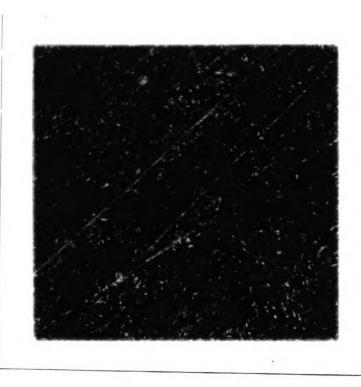
Cluf Has

ad:0.0-3910.0





5 SAE 1010 0.0256-0.0320


SAE 1010

0.0320-0.0384

6 (3501 643) 03.0.0-03.0.60

6 0101 849 4980.0-0130.0



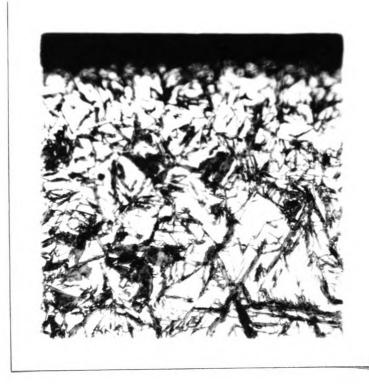




8
SAE 2015
0.0000-0.0064

7


0101 3.5


0.0844-0.0468

я

व्यक्ति सून्य

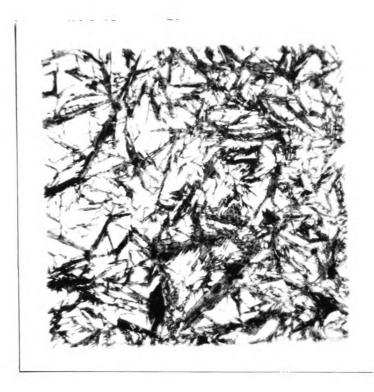
0.0000-0.0004





SAE 2015 0.0064-0.0128

10 SAE 2015 0.0128-0.0192


510: 5A:

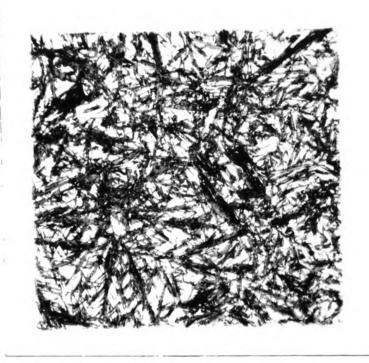
8 UO.C-890..0

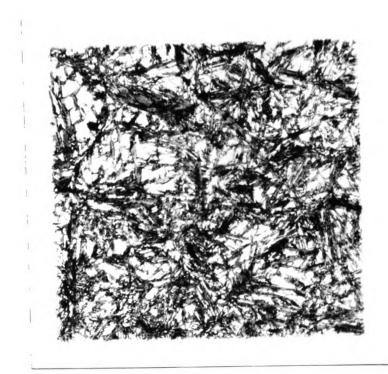
10

F 45 2015

3610.0-8:10.0







11 SAE 2015 0.0192-0.0256

12 SAE 2015 0.0256-0.0320

11 3123 513 9340.0- 517.5

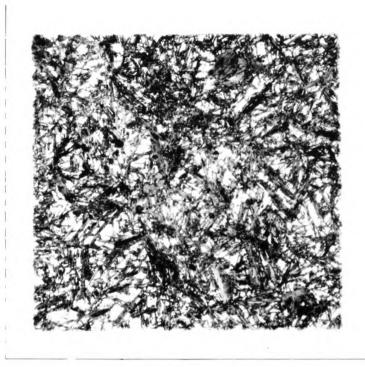
di kana Santaran Santaran

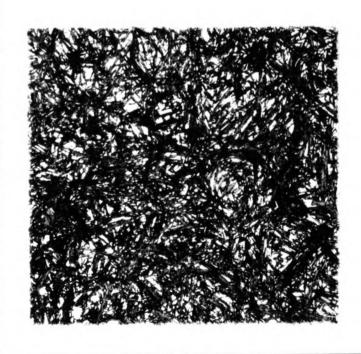




13. SAE 2015 0.0320-0.0384

14 SAE 2015 0.0384-0.0448


distribution

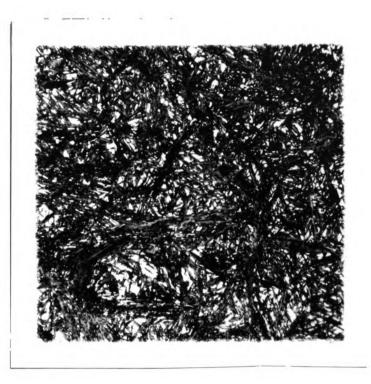

30 00 C - 1 1 K. . .

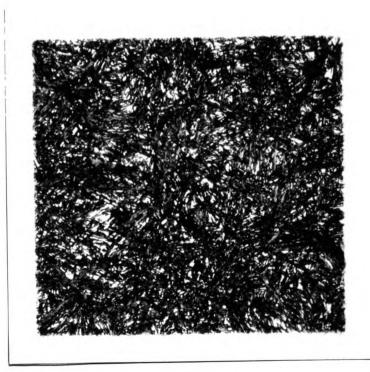
ال الم

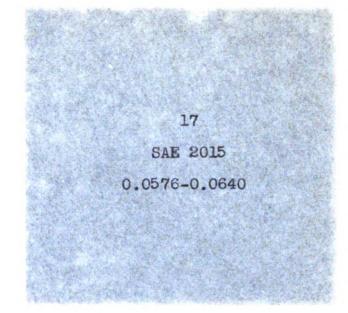
GIRA de la

8881. -8 11.0





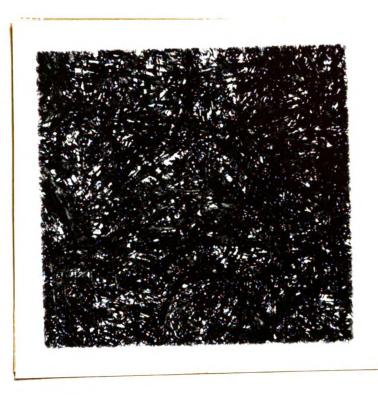



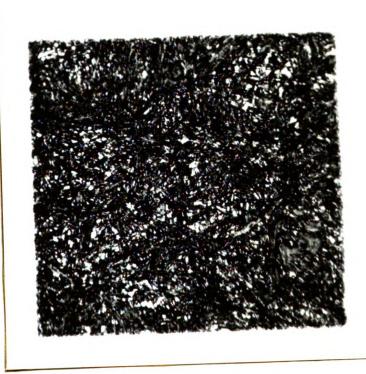




IS 124 FOLE 4180-0-0846-0

0.05 LA-0.0576





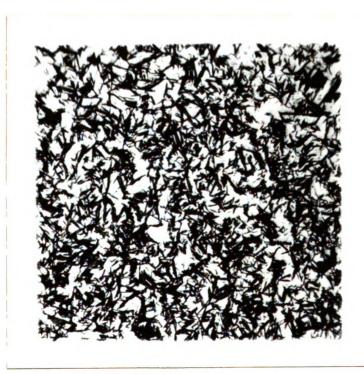

18
SAE 2015
0.0640-0.0704

7.7 (4.01) (4.01) (4.02) (4.04)

81 6.08 FA3 6.0846-0.0704






12

SAE 2340 0.0000-0.0064

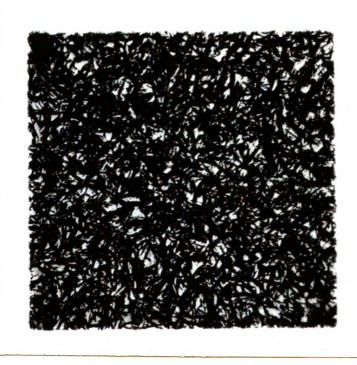
20 SAE 2340 0.0064-0.0128 10 - 10.00-0-0004 - 10.00-0-0004

> 0. 0234 842 8320.0+2300.0






21 SAE 2340 0.0128-0.0192

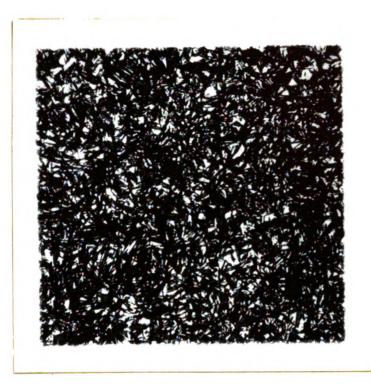

22 SAE 2340 0.0192-0.0256

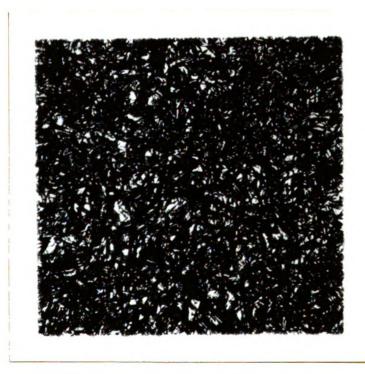
13 3294 333 3111,04 312,0

EAL FRAG

0.010th







23 SAE 2340 0.0256-0.0320

24 SAE 2340 0.0320-0.0384

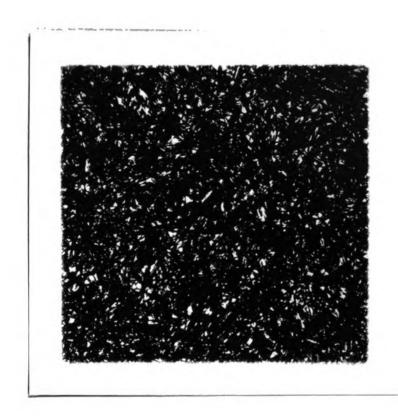
94 69-1-89-3 0430-8800-8

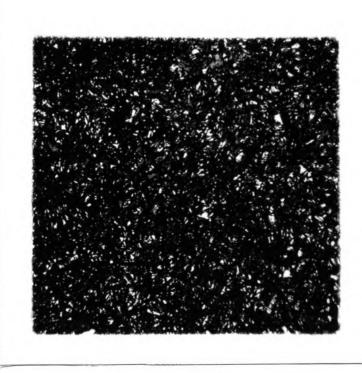
84 C#31 BAS 2830.0-0.50.0





25 SAE 2340 0.0384-0.0448


26 SAE 2340 0.0448-0.0512

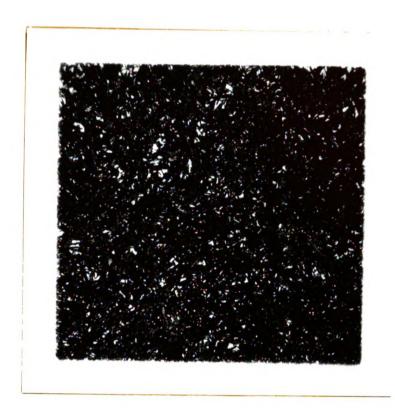

3:

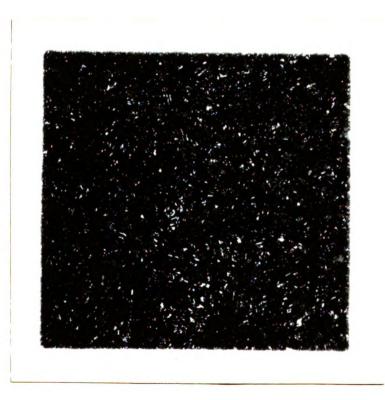
0.457 3.14

1.33.02- 0.0

18 1985 1240 0.0448-0.0515







27 SAE 2340 0.0512-0.0576

28 SAE 2340 0.0576-0.0640

TA USA CAAA ONGO, OL USAA, O

23 7 (7 5240 0.0576-0.0840

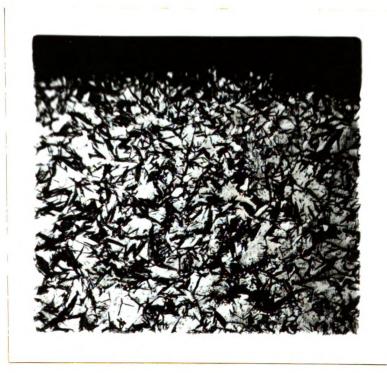




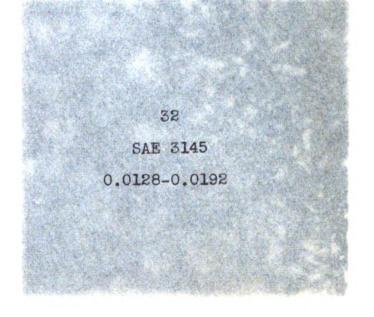




63 0043 3/3

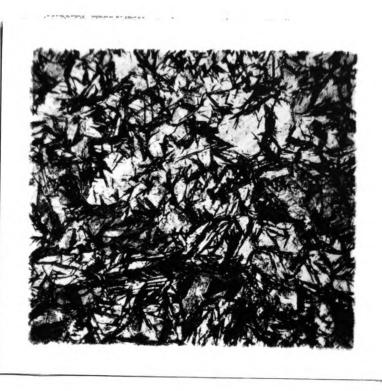

4,70.0-0890.j

0.3


645 6145

0.0 M L = 0.00 44










16 891 v End 5010. 748906.5

99 PAE 7145 0.0188-0.0188

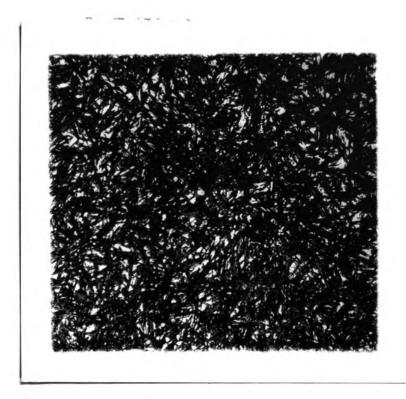


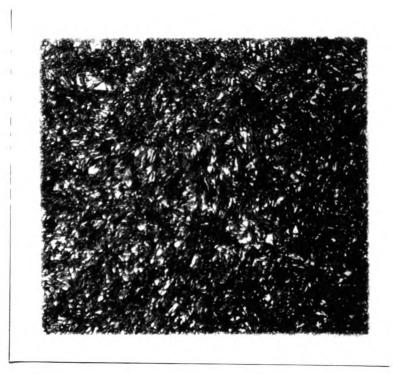


33 SAE 3145 0.0192-0.0256

34 SAE 3145 0.0256-0.0320

63.07.07.3879 63.07.07.08 64.07.07.08 64.07.07.08


24 CAR 2145 0.0058-0.0020 37 SAE 3145 0.0448-0.0512

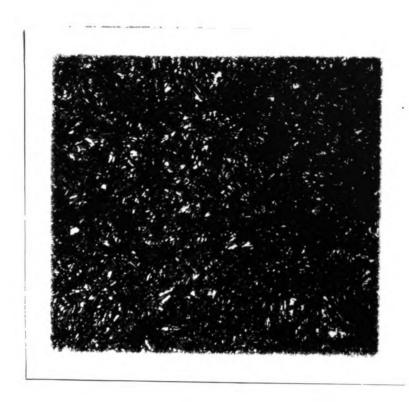

38 SAE 3145 0.0512-0.0576 35 SAE 3145 0.0320-0.0384

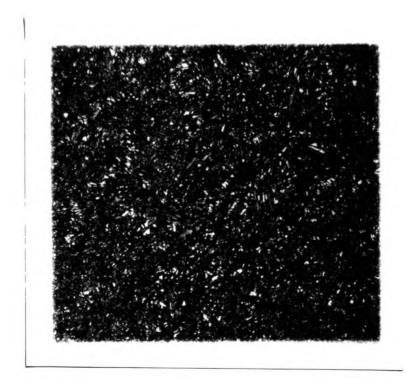
36 SAE 3145 0.0384-0.0448

%5 CAE 0165 0.0886-0.0884

28 FAE 8145 0.0854-0.0448







37 SAE 3145 0.0448-0.0512

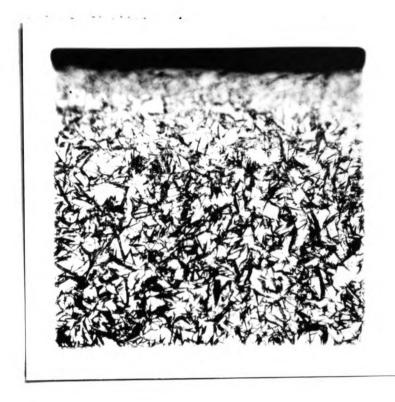
38 SAE 3145 0.0512-0.0576

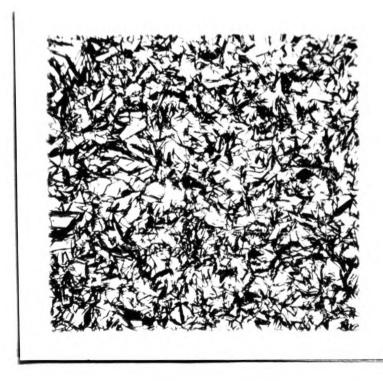
V. GAIR 393 RIGO.O-8880.U

88 SAE 8145 0.0518-0.0573






39 SAE 4640 0.0000-0.0064


40 SAE 4640 0.0064-0.0128

83 Care 743

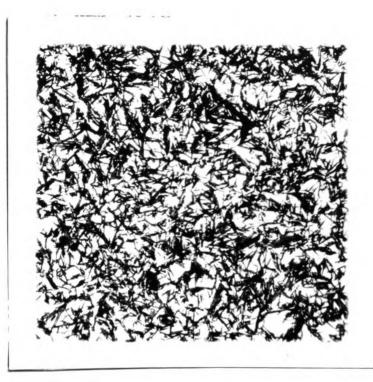
1000.0-000.0

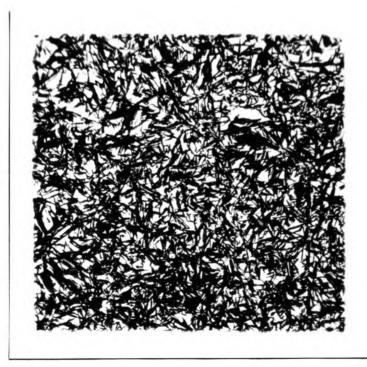
40 CAE 4640 0.0084-0.0188





41 SAE 4640 0.0128-0.0192


49


SAE:4640

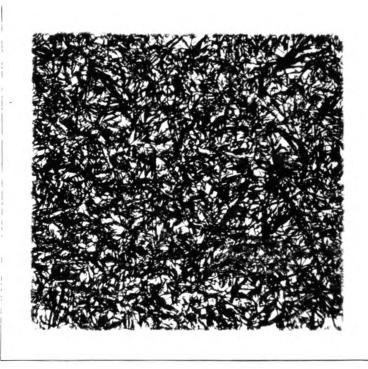
0.0192-0.0256

41 CAT 9000 0.0108-0.0128

03/04/11/1 98/04/04/1919.0






43 SAE 4640 0.0256-0.0320

44 SAE 4640 0.0320-0.0384

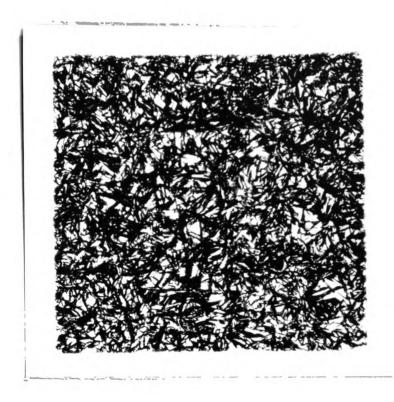
**4 1**03 **0.0**45830.∪

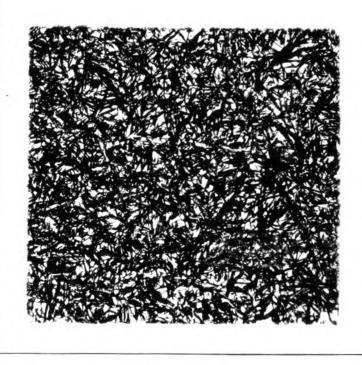
CAR 4640 O.CHEC-O.0284





544


\$ 11 4640


0.0256-0.0020

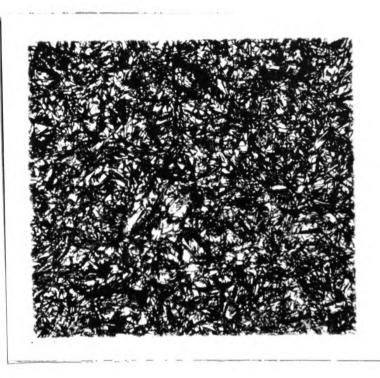
44

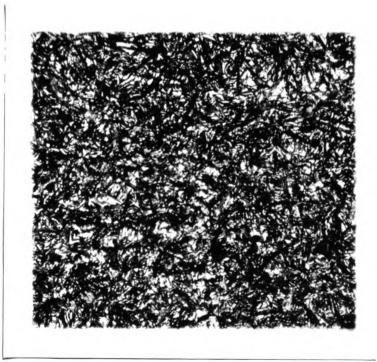
CAE 4640

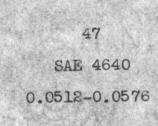
M630.0-0330.0






45 SAE 4640 0.0384-0.0448


46 SAE 4640 0.0448-0.0512

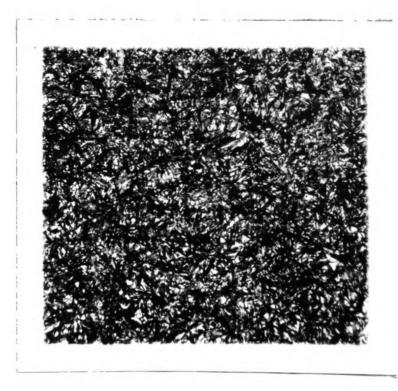

30 0284 (33) 5401.0-2130.0

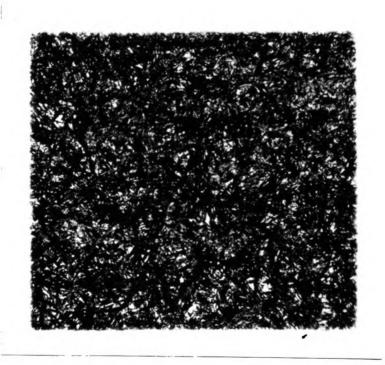
755 175 4340

0.044840.0511









48 SAE 4640 0.0576-0.0640

47 568 4640 0.0512-0.0576

48

EAL 4040 0.0576-0.0840





49 SAE 4640 0.0640-0.0704

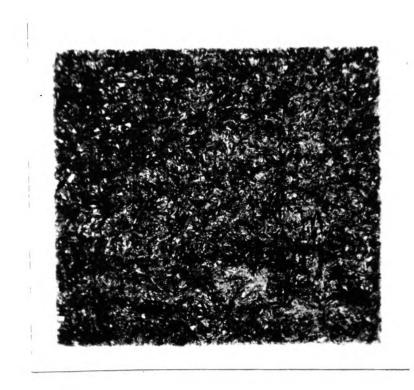
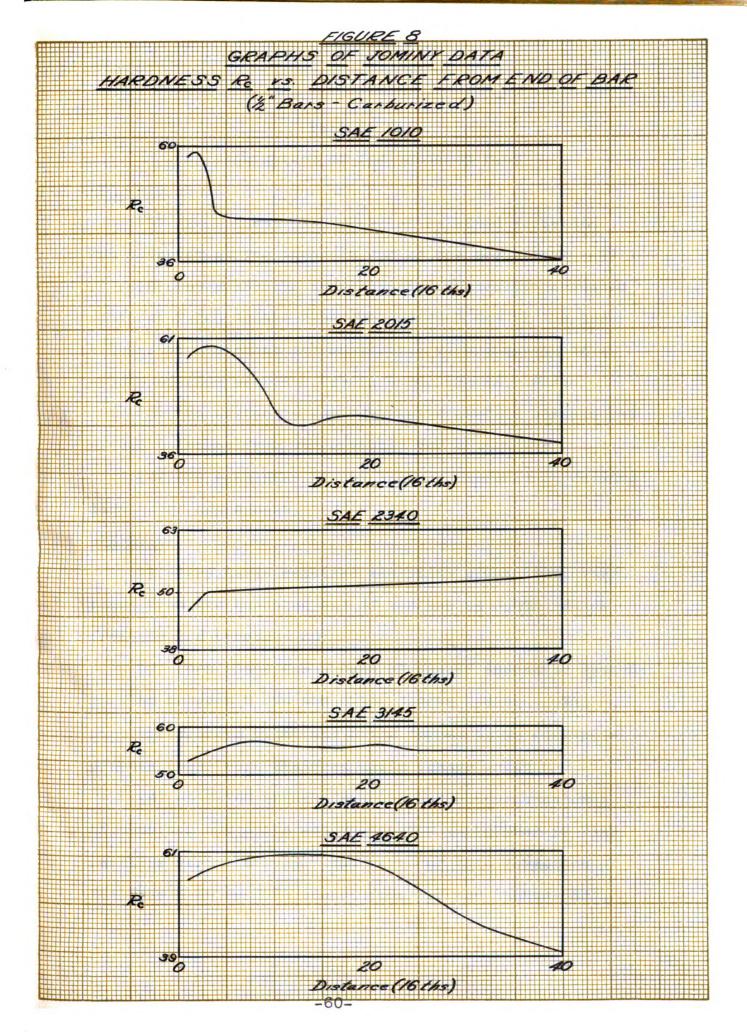



Table 8

Jominy Bar Data

All Bars 1 Except Those Designated Otherwise

(Hardness-R<sub>c</sub>)


| Distance<br>From Bar End | SAE<br>1010 | SAE<br>2015 | SAE<br>2340 | SAE<br>3145   | SAE<br>4640  | SAE<br>4640(1") |
|--------------------------|-------------|-------------|-------------|---------------|--------------|-----------------|
| 1(16ths)                 | 58          | 56.5        | 46          | 53            | 55           | 63              |
| 2                        | 59          | 58          | <b>4</b> 8  | 56            | 56           | 62              |
| 3                        | 55          | 59          | 50          | 55            | 57           | 62              |
| 4                        | 47          | 58          | 50          | 56            | <b>5</b> 8   | 62              |
| 5                        | 46          | 58.5        | 50          | 56            | 58 <b>.5</b> | 62              |
| 6                        | 45          | 5 <b>7</b>  | 49.5        | 56.5          | 59           | 62              |
| 7                        | <b>4</b> 5  | 55          | 49          | 57            | 59           | 61.5            |
| 8                        | 44          | 52          | 49          | 57            | 59           | 61.5            |
| 9                        | 43.5        | 49          | 49.5        | 57            | 59.5         | 61              |
| 10                       | 42.5        | 46          | <b>5</b> 0  | 55 <b>.</b> 5 | 60           | 61              |
| 11                       | 42.5        | 44          | 49.5        | 55.5          | 60           | 60              |
| 12                       | 43.5        | 43          | 49.5        | 56.5          | 60           | 59.5            |
| 13                       | 43.5        | 43          | 51          | <b>5</b> 6    | 60           | 59              |
| 14                       | 43.5        | 42.5        | 51          | 54.5          | 60           | 59              |
| 15                       | 43          | 44          | 51          | 55.5          | 60.5         | 58              |
| 16                       | 42          | 43          | 51          | 56.5          | 60           | 5 <b>7</b>      |
| 17                       | 42          | 44          | 51          | 54.5          | 60           | 56              |
| 18                       | 42          | <b>4</b> 5  | 52          | 55            | 59.5         | 55 <b>.5</b>    |
| 19                       | 41          | <b>4</b> 5  | 51.5        | 54.5          | 59.5         | 54              |
| 20                       | 41          | <b>4</b> 4  | 51          | <b>5</b> 5    | 58.5         | 52              |
| 21                       | 41          | 43          | 51          | <b>5</b> 8    | <b>5</b> 8   | 51              |

Continued On Next Page

Jominy Bar Data

(Continued)

| Distance<br>From Bar End | SAE<br>1010 | SAE<br>2015 | SAE<br>2340 | SAE<br>3145  | SAE<br>4640 | SAE<br>4640(1") |
|--------------------------|-------------|-------------|-------------|--------------|-------------|-----------------|
| 22                       | 41.5        | 43          | 50.5        | 58           | 56.5        | 51              |
| 23                       | 41          | 42          | 51          | 54           | 55          | 50              |
| 24                       | 40.5        | 42          | 51          | 55           | 52.5        | 49.5            |
| 26                       | 39.5        | 42          | 51.5        | 55.5         | 50          | <b>4</b> 8      |
| 28                       | 39          | 41.5        | 51.5        | <b>5</b> 5   | 49          | 47.5            |
| 30                       | 38          | 41          | 52          | <b>5</b> 5   | 48          | 46              |
| 32                       | 37.5        | <b>4</b> 0  | 52          | 54.5         | 44.5        | 45.5            |
| 34                       | 36.5        | 39          | 52          | 54.5         | 43.5        | 45              |
| 36                       | 36.5        | 39          | 52          | 55 <b>.5</b> | 43          | 45              |
| 38                       | 35.5        | 39          | 53          | 54.5         | 40.5        | 44.5            |
| . 40                     | 36          | 38          | 53.5        | 54.5         | 40          | 43              |



### Part II (c)

Microstructure of End-quenched Bars

# **SAE 1010**

- (1) The highest percentage of retained austenite was observed at the quenched end of the bar (photo 59).
- (2) The austenite concentration gradually decreased until at 0.150 inches from the quenched end of the bar patches of austenite and martensite were observed in a matrix of fine paarlite (photo 58) (photo 60).
- (3) The austenite and martensite patches disappeared at 0.375 inches from the quenched end of the bar.
- (4) The remainder of the bar was pearlite in varying degrees of coarseness.

## **SAE 2015**

- (1) Very large retained austenite areas (50%) were found from the quenched end of the bar to 0.090 inches from the end (photo 50)
- (2) Then there was a band of lesser austenite concentration between 0.090 and 0.150 inches (photo 51).
- (3) Between 0.150 and 0.210 inches large austenite patches (50%) were observed again (photo = 52).
- (4) At 0.700 inches from the quenched end patches of combined austenite and martensite surrounded by fine pearlite were observed. The range of this formation was from 0.50 to 0.75 inches from bar end (photo- 53).

- (5) The area between 0.210 and 0.500 inches contained scatterings of small austenite areas.
- (6) At 0.940 inches from the quenched end distinct carbide networks were observed and these networks continued, in varying degrees, to the end of the bar. The cementite network began when the austenite-martensite patches disappeared.

#### **SAE 2340**

- (1) Retained austenite was quite constant, up the bar from the quenched end, with regard to quantity and size of areas to 0.50 inches (photo 54).
- (2) At 0.50 from the quenched end there was a slight indication of carbide network formation (photo 55).
- (3) The retained austenite disappeared almost completely when the carbide networks became quite pronounced at 1.50 inches (photo 56).

#### SAE 3145

A trace of retained austenite was observed at the extreme quenched end of the bar only. This was the only position at which any austenite was observed (photo - 8).

SAE 4640

(1) There was a gradual decrease in the size of the austenite areas from the quenched end to the 1.310 inch position, at which point the carbide networks appeared (photo - 61) (photo - 62).

- (2) Between 1.310 and 2.625 inches from the quenched end the carbide network persisted.
- (3) At distances greater than 2.625 inches, there was pearlite in varying degrees of coarseness.

#### Part II Photomicrographs

The photomicrographs in this section represent steels that were all subjected to the following treatment and specifications.

- 1. Carburized for 13 hours at 1700 deg. Fahr.
- 2. End quenched in a 0.25 inch stream of water
- 3. All steels were then tempered at 400 deg. Fahr. for a period of 1.5 hours
- 4. Etchant 3% nital
- 5. Longitudinal section
- 6. Magnifications 500 X
- 7. The number of the photomicrograph, steel, and distance from the quenched end will be listed, in that order, on the page just proceeding each set of pictures.

50 SAE 2015 0.070" from end

51 SAE 2015 0.120" from end

52 SAE 2015 0.180" from end


āid € c.u

O.CVI Trom end

51 CAN DOID C.120M from end

55 9AE 2015 0.180" from end





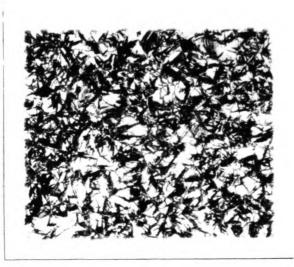


.

53 SAE 2015 0.690" from end

54 SAE 2340 0.125" from end

55


SAE 2340

0.810" from end

55 EAR E640 0.910" from end







• •

56 SAE 2340 1.500" from end

57 SAE 3145 0.018" from end

58

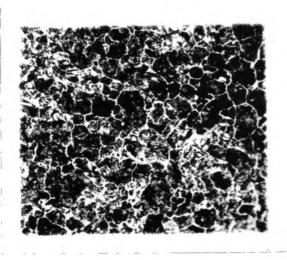
SAE 1010

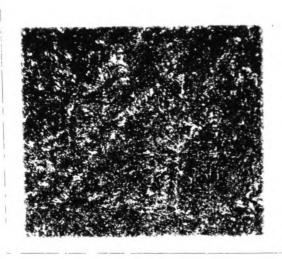
0.155" from end

9367 das

Lister from end

73


3-1, 111


DES COTI "SIC.O

외원

GEGI GAS

O. 150r from end







59 SAE 1010 0.010" from end

60 SAE 1010 0.210" from end

61 SAE 4640 0.010 from end

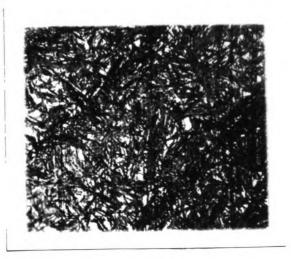
11/11/31/3

San act "Cip.c

Ç4•

0101 (23

AND DUTE TILE.


13

. **२२७**२ - १,४

0.0107 from end







FAE 1010

0.010" from end

Сэ

CIGI TAG

Las sort "013.0

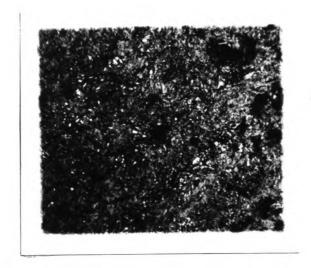
I3

0000 1.0

0.010" from end








SAE 4640

1.310" from end

0.00

1.cler from end



### Part III Photomicrographs

The photomicrographs in this section represent steels that were all subjected to the following treatment and specifications.

- 1. Carburized for 13 nours at 1700 deg. Fahr.
- 2. Quenched from 1700 deg. Fanr. in

Water- SAE 1010

011- SAE 2015

- 3. Etchant- 3% nital
- 4. Transverse section
- 5. Magnifications 500 X
- 6. The number of the photomicrograph, steel, and the tempering temperature (deg, Fahr.) will be listed, in that order, on the page just proceeding each set of pictures.

63 SAE 1010 350° F.

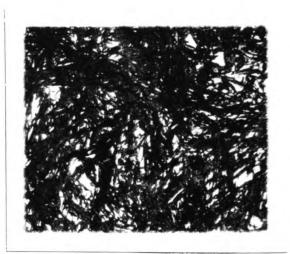
64 SAE 1010 400° F.

65 SAE 1010 425 °F.

.T <sup>9</sup>003

<u>r.</u> ≒

Other Han


4.00° F.

35

CIGI dal

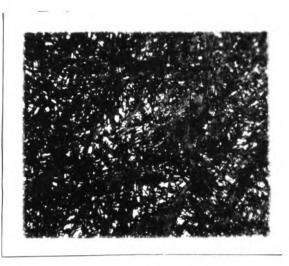
e do F.

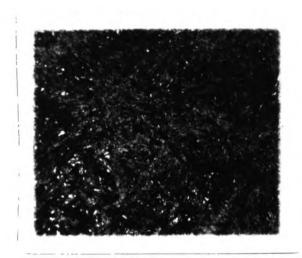






66 SAE 1010 440° F.


67
SAE 1010
450° F.


68
SAE 2015
430° F.

es Par Isio Aku<sup>o</sup> E.

१७ २८४ पुरु .स<sup>्</sup>रहरू

80 6103 847 .8 <sup>0</sup>008







#### Discussion

During the experimental work some doubt had arisen as to whether or not the light constituent, in the photomicrographs was actually retained austenite. It was thought that this light etching material might have contained untempered martensite. The best results obtained as far as proving that the light etching material was actually austenite, was obtained from work done on varying the tempering temperatures of sections of SAE 1010 carburized steel, that contained appreciable quantities of light material in the microstructure. Another indication was obtained by correlating the microstructure of the pelished flats on the 0.5 inch end cuenched bars to the Rockwell-C values obtained on the same surface.

The work on tempering of carburized SAE 1010 steel was done by obtaining five pieces of the steel all containing approximately the same quantity of the light etching constituent. These samples were then tempered at varying temperatures between 350°F. and 450°F. and it was observed, as was shown in the photomicrographs of Part III, that little change occurred in the light areas until 440°F. was reached, where there was appreciably less white constituent than at 425°F. At 450°F. only very slight traces remained. This transformation was quite in agreement with Bain's work (7), as he claimed

a transformation temperature of austenite in plain carbon steels at 455°F.

As was mentioned before an indication of retained austenite was obtained in the 0.50 inch bars of end quenched SAE 1010, SAE 2015, and SAE 4640 steels. The curves of these steels (Figure 8) showed a definite correlation between the areas of greatest retained austenite and the Rockwell hardness. On the other hand, SAE 2340 and SAE 3145 gave results that were definitely not expected in view of their microstructures. As an example, the SAE 4640 gave a Rockwell-C reading of 6 points lower at the quenched end where the cooling rate was the highest, than at a position .810 (approximately) inches from the quenched end. This was definitely abnormal for the end-quenched curve and thus indicated that the light etching material must have been somewhat softer (austenite) and caused this abnormality.

Rockwell-C and file hardness tests were also taken on the quenched rounds of Part I. These results were discounted because Rockwell-C values were taken instead of Rockwell superfical, and it was thought that the Rockwell-C "brale" might have penetrated the case instead of revealing the surface hardness. The file hardness test showed that the surface of the steel in every case was

softer than the file. This could mean that the case contained retained austenite or that the tempering treatment at 400°F. made the steel softer than the file.

The photomicrographs were observed in Part I and it may be said that the higher the carbon contents, up to the maximum of the surface, the more the tendency for the retention of austenite. It cannot, however, be said directly that the microstructures of Part I give a direct indication of the amount of austenite at a definite carbon content because other factors were involved.

One of the factors was the difference in quenching rate from the surface to the center of the round quenched. The quenching media had a definite effect in the amount of austenite obtained. All in all, in quenching a carburized round, two variables will always be involved and therefore both must be considered in evaluating the data obtained by this method.

If the photomicrographs in Part I are observed, it will be noted that the retained austenite seemed to decrease on the very edge. This was caused by a slight decarburization which either occurred during the carburization or later when the samples were heated in used carburizer to be quenched. Two of the steels showed decarburization in their carbon gradients (SAE 3145 and SAE 4640).

The carbon gradient curves had to be weighted in order that they would present somewhat of a smooth curve for comparison with the corresponding photomicrographs. Several points strayed from the general trend of the carbon curves and upon repeating the run, similar inconsistencies were encountered. The inconsistencies were probably due to inhomogeneities in the carburized layers involved and also due to the extreme difficulty in collecting the "eil free" chips. The values obtained should have been quite close inasmuch as extreme care was exercized in repeating the procedure very exactly each time a run was made.

The retained austenite in any one layer or carbon content in the carburized sections of Part I varied considerably as the piece was revolved. When the photomicrographs were made for Part I, this was taken into consideration and an average or representative point was chosen in every case. The same inconsistency arose on the flats of the end-quenched bars but in this case, observations were made down the center of the polished flats. These discrepancies probably occurred due to differences in the carburized cases and also they may have been due to an inhomogeneous sustenite before quenching. The latter explanation was very possible due

1700°F. was used and the time at temperature was as short as possible to prevent undue decarburization.

In Part III, it was found if several pieces of the same carburized steel were subjected to varying tempering temperatures that the inherent inhomogeneous structure caused differences in the results obtained. not true of the 450°F. temperature because practically all of the retained austenite was transformed throughout the complete sample. However, at lower tempering temperatures, errors could have very easily crept into the work by using poor judgement in choosing the area to photograph. The tempering effect could have been observed more accurately by using one piece of steel and one area, and this area could have been photographed at small temperature increments starting at 350°F. and continuing until 450°F. had been reached. Tempering time had a definite effect upon the amount of transformation especially in the temperatures around 450°F, and for this reason it was imperative that constant tempering times were used to insure any comparison whatsoever.

The microstructures of the end-quenched bars in PartII seemed to indicate that the higher the quenching rate, the greater the quantity of retained austenite. Previous work

has shown, on cooling rates, that there is a region near the critical cooling rate, which gives rise to more retained austenite, and this has been used to explain, in some degree, the greater retained austenite in oil quenched parts than in the same parts water quenched. Only the SAE 2015 steel gave an indication of the fact that there may be certain cooling rates less susceptible to the retention of austenite. A transverse banding of retained austenite in the bar was observed along its length. From the quenched end to 0.090 inches from the quenched end existed a dense mass of austenite. then there was a band of lighter austenite concentration between 0.090 and 0.150 inches, past which large austenite particles were observed and these gradually tapered off at a distance of 0.70 inches (approximately) from the quenched end of the bar. The area seemed too well defined to be considered an inhomogeneous segregation although it was not an impossibility. Some error was undoubtedly introduced when the copper was removed from the flats by hand honing and for this very reason, no definite statements can be made other than the close relation of the hardness curve to the microstructure. The error, although probably only a few thousands of an inch, may have meant a difference in carbon content of 5 to 20 points. The microscopic data

obtained in Part II had to be correlated to relative cooling rates within the bars because of a lack of high speed temperature recording equipment. The 1.00 inch SAE 4640 bar was run in an effort to try and link up to its known cooling rate that in a corresponding 0.50 inch bar of the same steel. The only comparison that was possible was that between the points on each bar where the carbide network just began to form. After a very careful microscopic examination of each bar, it was decided to throw out this means of getting at the cooling rate, due to the wide discrepancy in the starting point of the carbide network.

Another method was used to try and correlate the quenching rates of the 0.50 inch and 1.00 inch bars by the use of previous data obtained on SAE 4063. By graphing cooling rate (ordinate) vs. distance from the quenched end (abissa) for the SAE 4063 steel, it was found that the curves were extremely hard to interpret as such, and that before a comparison could be made it would be necessary to have more data particularly on the steels used in this experiment.

Metallographic methods (16) are not the only means of getting at the amount of retained austenite in a steel sample. As a matter of fact, there are several methods much more satisfactory but again, a lack of time

and equipment formed a barrier to a possible check on the results obtained. The determination of retained austenite has been done by magnetic methods, X-ray methods, specific volume changes, electrical resistance methods, dilatometric methods, and micro-hardness determinations.

An effort was made to link retained austenite with the Mr temperatures of the five steels used in the experiment. After several calculations were made, it was found that the Mr temperature in the high carbon high alloy steels fell below that of room temperature. The Mf temperatures for plain carbon steels of a similar carbon content were found to come quite close to that of room temperature. Lower carbon contents caused the Mr temperature to fall above room temperature. The data used in the calculations (17) showed quite a wide discrepancy and this had to be considered in the calculation of Mf temperature. It was observed that the plain carbon steels centained the least retained austenite while the higher alloy steels exhibited the most retained austenite in a similar carbon content layer of Part I. This phenomenon might have had some bearing on the fact that the higher carbon contents showed more retained austenite, and that it was necessary for the carbon content to be quite high in order to have the Mr temperature fall below room temperature. Also correspondingly lower carbon contents exhibited the same retained austenite percentage in alloy steels

as compared to the plain carbon steel, this being due to the effect of the alloying elements on the  $M_{\hat{\mathbf{I}}}$  temperature.

## Conclusions

- 1. Higher carbon contents promoted the retention of greater quantities of austenite, all other factors remaining constant.
- 2. The retention of austenite is not always the greatest at the critical cooling rate. This was indicated by the alternate bands of retained austenite in the SAE 2015 (end-quenched), with a band of very little austenite between them.
- 3. The light etching constituent austenite was completely transformed into one of its transformation products, in a plain carbon steel, at about 450° F. if
  sufficient time was used during tempering.
- 4. Retained austenite appeared to transform, upon tempering, over a range of temperatures rather than at any single temperature.
- 5. The higher alloy steels retained more austenite upon quenching than did the plain carbon steels.

## Possible Future Work

More work should be done in the future on the endquenched bars. It is felt that if a means of determining the exact cooling rates within the bars during quenching were made available some interesting data could be obtained in connection with the work on retained austenite.

A means of determining more correctly the effect of increased carbon content could be obtained by quenching, in the same media, several thin strips of the same steel, carburized to different carbon contents. By using thin strips the variable caused by the quenching rate could be completely eliminated. In this connection, strips of the same carbon content could be quenched in different medias to determine the effect of varying quenching rates upon the same section of a similar steel.

Also some work should be done in the future regarding the effect on the retention of austenite of quenching from higher temperatures in the austenite range.

## Selected References

- 1. Metals Handbook, 1939 Edition, American Society for Metals, Cleveland, Ohio
- 2. G. V. Smith and R. F. Mehl: "Lattice Relationships in Decomposition of Austenite to Pearlite, Bainite, and Martensite," Metals Technology, April, 1942
- 3. A. B. Greninger and A. R. Troiano: "Crystallography of Austenite Decomposition," Metals Technology, August, 1940
- 4. E. C. Bain: "Alloying Elements in Steel," American Society for Metals, Cleveland, Ohio, 1939
- 5. Samuel Epstein: "The Alloys of Iron and Carbon,"
  Vol. I Constitution, McGraw-Hill Book Co., 1936
- 6. S. G. Fletcher and M. Cohen: "Subatmospheric Transformation of Retained Austenite," American Society for Metals Transactions, Volume 34, 1945
- 7. E. C. Bain: "Alloying Elements in Steel," American Society for Metals, Cleveland, Ohio, 1939
- 8. H. J. French: "Alloy Constructional Steels," American Society for Metals, Cleveland, Ohio, 1942
- 9. D. P. Antia, S. G. Fletcher, and M. Cohen: "Structural Changes During the Tempering of High Carbon Steel,"

  American Society for Metals Transactions, Vol. 32,

- 10. C. A. Liedholm: "Retained Austenite and Its Decomposition Range in a Quenched Cobalt High Speed Steel,"

  American Society for Metals Transactions, 1935
- 11. F. Wever and N. Engel: "Uber den Einfluss der Abkuhlungsgeschwindigkeit auf die Temperatur der Umwandlungen, das Gefuge und den Feinbauder Eisen-kohlenstaff-Legierungen" (Effect at Cooling Velocity on the
  Temperature of Transformations and the Structure of
  Iron-Carbon Alloys), Mitt. K W. Inst. Eisenforschung,
  v. 12, 1930 pp. 93-114
- 12. E. S. Pavenport and E. C. Bain: "Transformation of Austenite at Constant Subcritical Temperatures,"

  Trans. Am. Inst. Min. Met. Eng., vol. 90, 1930, pp. 117-154
- 13. H. Esser and H. Cornelius: "Die Vorgange beim Anlassen abgeschreckter Stahle" (Occurrences during the Tempering of Guenched Steels), Archiv f. d. Eisenbuttenwesen, v. 7, 1934
- 14. G. Tammann and E. Scheil: "Die Umwandlugen des Austenits und Martensits in geharteten Stahlen" (The Transformations of Austenite and Martensite in Hardened Steel), Z. anorg. allgem. Chem., v. 157, 1926
- 15. K. Tamaru and S. Sekito: "On the Quantitative Determination of Retained Austenite in Quenched Steels,"

  Sci. Rep., Sendai, ser. 1, v. 20, 1930

- 16. P. Gordon, M. Cohen, R. S. Rose: "The Kinetics of Austenite Decomposition in High Speed Steel," American Society for Metals Transactions, Volume 31, 1943
- 17. R. A. Grange and H. M. Stewart: "The Temperature Range of Martensite Formation," Metals Technology, June, 1946

## ROOM USE ONLY

Dec 1 1947 ROOM USE ONLY

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 03082 2658