BRIEF STUDY OF THE THEORY OF STRESSES IN NON-PARALLEL CHORD TRUSS AND TRUSS WITH SECONDARY WEB SYSTEM

Thesis for the Degree of $B . S$. Steven Antonoff

1927
$\therefore 03 \mathrm{k} . \dot{x}$

grinnect AND AMP. SCILENCF

Bref stady of the iheory of streased in NonaParallel ChordStruse and cruse with Secondary Web Syotom

The rhesis Srbmitted to the raoulty of the

MICHIGAN STA4E COLLRGE
 01
 Agrioulture and Applied Soionoe

by

STBTEM AHTOMOPT

Candidete for the Degree of

Beohelor of Soience.

June I987

frHEStc

```
COF
```

I deaire to expreat my deop thanke to Profeseor HeA.Gould for his aseistanoe, argeation and oofnetruotive oritioiam of my work on this thesis. Thenk are elso due to Profeseore O.J.dllen and C.M.Cade for augeatione.

steren Antonoff

Michigan state College June I987.

CONTLH:

I	The Purpose
II	Son-Parallel Ghorda irues
III	cruea with Seoondary Wob Syetom
IV	Conolusion
V	summary of booke ueed.

I The purpose of this thesis is not a dissertation upon the atreases in varione members of ateel bridgen; nor is it an attempt to amplify the literature on the aubjoot. Many axoellent booke and magasine artioles have already been published in whioh the aubjeot of atresses in bridges is ooverod thoroughly. My only sorrow was, an I, oceapfionaly, looked over ame of the literature on this aubjeet, that a four jeas oouree in ongineering, as pratioed by most oolleger in the country, is a very chort oouree in whioh aufficiont time and effort can be devoted to the aubjeot of the theory of stress in atruotures. This aubjeot is broad, vory important and interenting.

It was then my ondeavor to find some way whioh would enable me to study the aubjeot a little deeper than it is generally posible for an undergraduate atudent in his regular oourae. Thia thesia thon 1a, as far an ite present writing is ooncerned, an attempt to write down those fundementale whioh 1 oould learn in this short time that was allotted to me. It was nevertheleas, my intention in deriving formala, to write down every atep, in order to make the work simple and oomprehonsible. I did this with apeoial amphasis on the free body method, beoaume the free body method prinoiplea as they wore taught by the men in our department in oourees of koechanios, styangth of Materiale and Theory of Struoturen, are really the same prinoiples upon whioh the subject of atresees in bridgen is based. It ia in no way based on any highly intrioate or oomplex formalape

II When the length of the apan exoeede oertain destanoe (about I75 ft. (it is then oonsidered adviaable to uee variable hoight of truan in order to ecoure greater economy. Ourved upper ohord in suoh a oase is gonorally oalled upon to anower the purpose. The most ideal type of truse with ourved apper ohord appeare to be the one in whioh, for wniform loading the panel pointe would fall on the reapeotive pointe of the moment diagram ourve for that loading. But bridgea are also aubjocted to partial loading. This oondition produces an ontirely different offect on the atrese ees. Pron sero etreses in diagonal wet members and equal horisontal oomponents in top ohord produoed by uniform loading, the partial loading aubjeote all diagonals to reversal of etrese. Suoh condition oalle for countere in every panel. The praotioe, however. tanght onginoers to use flatter top ohords and thue aroid uaing counters exoept the center panels. The uet of flatter top ohord not only eleminates some oountere but it also oontributea oonsiCorably to the aesthetioal offoot making the atruoture, at the aame time, reasonable eoonomical.
the atreas in any top ohord of non-parallel ohord trues, an ohown in digure I, may be determined by the general formula,

where s : atrese in top ohore
M a monent at a point opposite that ohord
r I perpendioular dietance from the top ohord to the moment oonter.

Figure I represents a oommon, eight panels, ourved top ohord truss. (See"the sheory of struotures" by Charles M. spofford page 184, figure 146.)

Pigure I

Consider top ohord $U_{I} U_{2}$. By general formula (I) the stress inthis member is,

where $M=$ moment at panel point L_{2}, and $r=L_{2} b(f i g$. 2 perpendialar distanoe from the moment oenter to the member, the lever arm. The value of r may be determined by proportions from similar triangles $U_{I} U_{2}{ }^{a}$ and $U_{2} L_{2} b$, from whioh we have,

$$
r: 1: \text { h: s. }
$$

Solving for r we have,

It must be noted that tr i angle $U_{I} U_{2}$ is right angled triangle and the value of s as obtained therefrom is,

$$
=\left[\left(n-n_{I}\right)^{2}+1^{2}\right]^{\frac{2}{2}}
$$

thue making r, when this value of is abstituted in preceeling equation equal to,

$$
x=\frac{1 \times h}{\left[\left(h-h_{1}\right)^{2}+1^{2}\right]^{2}}
$$

The atreas in any top ohora momber, of ourred top ohord truen, may also be determined by resolving it into ita horisontal and vertieal oomponente. In Iigure 2 let S_{h} represent horisontal oomponent Of atroea S, and S_{T} the vertioal. Then by equation I
and
where 0 denotes the angle between ohord momber and horisontal. Both equation I and eqation 8 give the ame rearte.

$$
\mathbf{s}_{\mathbf{h}}=\frac{\mathbf{M}}{\mathbf{h}}
$$

and

$$
\mathbf{s}_{\mathrm{h}}=\frac{8}{5000} \quad(\text { erom equation } 8)
$$

Solving these two equations aimultaneously we obtain,

$$
\frac{M}{h}=\frac{s}{\text { Sec } 0}
$$

and

$$
s=\frac{\frac{M}{2}}{h \cos \theta}=\frac{M}{r}
$$

To determine the stress in any diagonal web member as $\mathrm{U}_{\mathrm{I}} \mathrm{I}_{2}$ fis gure 3, out seation I-I, as shown in the figure, and oonsider the part to the left of the seation as free body. By general fomula

the stress in $\mathrm{U}_{\mathrm{I}} \mathrm{I}_{2}$ is

$$
S=\frac{M_{0}}{r} \text {... } 4
$$

where M_{0} is the moment of the applied ldads to the left of seotion I-I taken about point 0 , and r is the perpendioular distanoe from 0 to the line of action of $U_{I} I_{2}$. The value of M_{0} may be obtained by considering, in figure 3, part to the left of seotion I-I as free body and taking moments of the applied loads about point 0. (olookwise moments are negative and oounter-olookwise are positive), thus,

$$
\begin{aligned}
& R_{I} d-P(d+1)-W(d+1)-S r=0 \quad \text { ania solving for } \\
& S=\frac{P_{I}(d+1)+W(\alpha+1)=R_{I}}{r} \ldots \ldots \ldots \ldots \ldots . .5
\end{aligned}
$$

$$
\bar{Z}
$$

$$
-i
$$

$$
-
$$

$$
\bullet
$$

$$
-
$$

-

but

$$
P_{I}(d+1)-W(d+1)-R_{I} d=M_{0}
$$

substituting this value in equation 5 we have equation 4, namely

$$
s=\frac{x_{0}}{r}
$$

The value of r may be calculated from similar triangles $O H_{2}$ and $\mathrm{O}_{\mathrm{I}} \mathrm{I}^{\prime} \mathrm{I}_{2}$, from which, by proportions, we obtain,

Salving for ar .

$$
O H=x=\frac{(d+2 I) h_{I}}{\left(h_{I}^{2}+1^{2}\right)^{\frac{1}{2}}}=\frac{t h_{I}}{\left(h_{I}^{2}+1^{2}\right)^{2}}
$$

By reason of similar triangles the value of dq2l may likewise be

$$
0 L_{2}: ण_{2} I_{2}:: U_{I} a: U_{R} a
$$

and

$$
0 L_{8}=a+21=t=\frac{h 1}{\left(h-h_{I}\right)}
$$

Another method by which the arose in diagonal mob member can be determined in in term of ito vortical component. Thus, resolving the tres S into its S_{V} and $S_{h}($ vertical and hopicental (oompononta and applying general equation the vortioal component dit the stress in $\mathrm{J}_{\mathrm{I}} \mathrm{I}_{2}$ may be expressed by equation,

Where M_{0} ie the moment of all the loads applied to the left of section I-I taken about point 0 , and t is the distance from 0 to the panel point I_{R}.

- 6-

$$
\cdots-\overline{-}=\therefore=\bar{\square}
$$

$$
\text { }=
$$

$$
\text { s }=8 \text { 8seol . } 7
$$

Where is the angle between diagonal and vertioal. Taking momonte about point 0 the reanits may be obtained in the following form.

$$
\begin{gathered}
\mathbf{I}_{0} \in I_{I}-W(A+1)-P(d+I) \\
E\left(I_{I}-D-P\right) d-(W+P) I
\end{gathered}
$$

But

$$
\mathbf{R}_{\Sigma}-(\boldsymbol{w}+P)=V
$$

1a the ahear on section $I-I$, and $(\omega \phi P) I$ is the moment Mo abont panel point I_{0}. Arranging the term of the above tated equations the ralne of H_{0} may be exprienaed by the following equation.

Mote: rar furthor proof and oriterion of this oase see artiole 84, page 51 of the Theory of structures" by Charlea M. Bgoto ford.

To prodnoe \therefore. maximum tensile atrese in the diagonal wob member UIIE full panel loade maet be applied to the right of the aeo. tion I-I and no loade to the left of this neotion. Considering the oonventiomal tethod of leding, the value of M_{0} in equetion 8 mast be positive and as groat as poasible. Any load to the left of the section I-I will prodnoe negative moment and thereo fore reduce the pooitive value of Mo.

In prosent case let n n nuber of panels
a E number of panel: not loaded iv I weight per panel on lower ohord.
(Upper ohord loade will now be oniltted in order facilitate the work and simplify the formalas. It is my belief that this atep may be tamer.

Without en y detrimental effect to this work. seoause the upper chord loads mar cadiz be taken care of by the formulas for the lower chord load e and the combined effect thu e determined.)

Returning beak to the problem and taking moments mount potent 0, figure 8, we have,

$$
\mathbf{M}_{0}=\mathbf{R}_{I} \mathbf{d}-\mathbf{S r} \ldots \ldots
$$

Prom equation 7

$$
s=\mathbf{S}_{\mathbf{8}} \mathbf{s e c} \theta
$$

and

$$
8 e 00
$$

Combining these three equations and solving far st we obtain,

$$
S_{V}=\frac{R_{I}^{d h_{I}}}{x\left(h_{I}^{R}+I^{8}\right)^{\frac{1}{2}}} \quad \cdots \ldots \text { IO }
$$

The value of RI_{I} can be obtained by taking moments $\mathrm{R}_{\mathbf{8}}$ (right reaction) of all the loads applied on the trues.

Using notations stated above in this work the equation is

Substituting value of R_{I}, as obtained in equation $I I_{\text {, }}$ in equateton IO, and remembering that

$$
r=\frac{t h}{\left(h_{I}^{2}+I^{2}\right)^{\frac{1}{2}}}
$$

equation IO beoomes

$$
s_{\nabla}=-\frac{m d}{8 n 1}(n-m+I)(n-m) \ldots I \&
$$

The diagonal web members are aubjeoted to oompreseive etrese as well as to tensile. For maximum oompression in diagonal $\sigma_{I} I_{2}$ the moment M_{0} must be negative and as large as posaible. Each oondtion oan be obtained when the negative moment due to loade applied to the left of the eeotion I-I is greater than the poeitive moment produced by left reaotion kI. It is that pleoing loads on all panels to the left of the eeotion I-I and no loade to the right of that aeotion will produoe maximum moment M_{0}.

As before, ooneider $n=$ number of panele in whole trues m = number of panela loaded W E niform load por prel
the maximum oompreseive atrese by equation (I) is (vertioal oom.)

$$
S_{\nabla}=\frac{-\underline{M}_{0}}{t}
$$

By applioation of the same method of analyeis as wes used in oase of tensile atrese it is poasible to expreas the vertioal oomponent of oompteasive etrese in this diagonal by the following equation.

$$
\begin{equation*}
S_{V}=\frac{-w n}{2 n t}(m-I)(d \nmid l n) \tag{I3}
\end{equation*}
$$

Since equatione I2 and IS exprese the value of vertioal oomponents of atresses in diagonal mombera, it is than poseible, by applioation of these twe formulas, to obtain etrenses in any vertioal as $\mathrm{U}_{2} \mathrm{I}_{2}$. ror all loads to the right of panel point Les, the vertioal member $U_{2} I_{2}$ is in oompreastion and equation 理 $/ 2$

$$
z
$$

-

$$
-=
$$

-.

applies, while for all loads to the left of the panel point U_{2} the member is in tension and equation I3 applies. Sinoe, in these equations, the positive sign indiates tension and negative oompression the appliaation of these equation to the vertioal members involves interchange of signs in the right hand member of both equations.

Stresses in Members of Truss Containing Secondary Web System. For spans of oonsiderable length the maximum economy is secured by means of subdividing panels and adding secondary diagonals and vertioals.The method of determining stresses in truss of this type becomes somewhat compliaated, espeoially when dealing with secondary system. The applioation of ordinary methods of joints, moments and shear require a little modifioation. In some members however the stress oan be obtained direotly by one of these methods. The methods of determining stresses in various members of truss with secondary web system will now be given.

Fig. 4.
Figure 4 represents ofetype of truss with secondary web system.

The rpper ohord stresses in a truss aimilar to the one ahown in Fis. 4 may be found by ueing general equation I. Conaider the upper ehord UI_{2}. By general methode of momente the atrean S is,

h
Whore Mre the moment at panel point I_{4} due to the applied loads and h is the height of the truse.

The atresses in lower ohord mambers oan be found likowise by taking momente abount the upper ohord pointe. Thum, for example, the atrese in $\mathrm{I}_{3} \mathrm{I}_{4}$ is foung by paseing seotion I-I Fif. 4, and taking momenta about point U_{I}. The reaulting equation may be tated in following terme,

$$
2 \times 1 R_{\perp}=W_{I} \times 1+W 8 \times 1-8 \times h=0
$$

Solving for s, we have,

$$
s=\frac{1\left(W_{I}-W_{2}-2 R_{I}\right)}{h}=\frac{M_{D_{I}}}{h} \ldots \ldots \ldots \ldots . I 5
$$

(1^{2} length of panel)
strean in $\mathrm{O}_{2} \mathrm{O}_{3}$ is equal to the atress in $\mathrm{U}_{3} \mathrm{~J}_{4}$ and ame mothod of amalyeie may be applied in oase it is desired to determine this atrese independent of the atreas in $\mathrm{O}_{3} \mathrm{O}_{4}$. Whe atresses in other ohord members oan be detormined by flf mothode mimilar to the one already deeoribe.

The atresses in subvertioals as $\mathrm{K}_{\mathrm{I}} \mathrm{I}_{\mathrm{I}}, \mathrm{M}_{2} \mathrm{I}_{3}$ oto.. are equal to the loade applied at their respeotive panel pointa. Por example, the atreas in $M_{I} I_{I}$ is equal to WI. Whe momber in in tenal on.
\square

-
$=$
-
$-$

$$
=
$$

-:

The atreasen in aubodiagonals an $I_{L^{\prime}} \mathrm{I}_{2}$ may be obtained by rosolving ite trese s into horisontal and vertioal oomponente and finding value of vertiael oomponont by mothod of momenta.

1g. 5
In figure 5, oonsider the forees aoting on joint Ka. An equation of momente about point I_{4} gires,

$$
\Xi_{2} \times 1-8_{\nabla} \times 81=0
$$

Solving for stwe have,

Kaking use of eqaution 8 previously derived we find s to be,

$$
s=s_{\nabla} \text { Sece }=I / 2 w R s e 0 \theta \quad(0 \text { ompreseion) }
$$

the atreases in lower ende of diagonal web member are equal to the product of acear in their reapeotive panele and seoant of angle between member and the vertioal. Streas in $\mathrm{M}_{3} \mathrm{I}_{6}$ may be obteined at followe. whe mear on seotion 2-2 in rig: 4is,
where m : number of panele from left reaotion to the loft ond

$$
\therefore=.
$$

－
－

$$
-
$$

$=$二
－．－
－
－＝
of panel containing eootion 2-2, and R_{I} and W as before. Solving for $\mathbf{R I}_{\text {. }}$.

$$
B_{I}=\frac{V}{2}(n-I) . \quad(n=\text { number of panels })
$$

Subatituting this velue of H_{I} in equation IT, we have,

$$
V=\frac{\square}{8}(n-2 m-I) \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .
$$

Therefore the atrese in $\mathrm{H}_{8} \mathrm{I}_{6}$ if,

$$
s=\frac{\square}{2}(n-8 m-I) s 00 \theta \ldots \ldots . \ldots . . \text { I9 }
$$

Streases in upper onde of diagonal tob mombere oan be determined by mothod of ahcari. (Elagomals as UM, UgM, eto.) Consider diagonal D2Mz. Pase eotion 8-8 Pice ts, and conider the portion of the struoture to the left of this seotion as free body. The shaer on this eection may be given by equation

$$
V=L_{I}-\left(\nabla_{I}+W_{E}+\nabla_{I}+\Xi_{E}\right)
$$

Thit chear is dietributed between $\mathrm{U}_{\mathrm{g}} \mathrm{H}_{3}$ and $\mathrm{K}_{2} \mathrm{~L}_{2}$. It is evident the n, that vertioal component of atreas is in $U_{2} H_{8}$ may be expreased by equation,

$$
s_{\nabla}=V \not s_{\nabla} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .
$$

Where F shear on seotion 8-5, an S_{i} - vertioal oompenent of etrese in abb-diegonal $\mathrm{M}_{3} \mathrm{I}_{4}$.
siquation 20 makes possible to determine the atreases due to uniformy distributed dead load. For an explained before.

$$
s=s_{\mathbf{r}} \sec \theta
$$

For maximum live load stresses the position of loade must first be conaidered before equation aan be applied. sither the method of moving up the loade or the arerage load method may be need. These two methods are given in detail in ohapter III of"the Theory of struoturee" by charles M. Spofford. igquation 8 may be applied to determine the marimum live load atreneea after the ralue of V and s^{2} in equation 20 had been determined for the poation of loale produciry meinum atroan at that aection.

Another method whioh may be employed to determine atrese in $U_{2} H_{8}$ is the method of momenta. Inf method will not be given here becanse the reader can find at a glance the value of S_{V} by taking moments about points I_{5} and I_{6} reepectively.
streas in vertioals as $\mathrm{U}_{2} \mathrm{I}_{4}$ is readily seen to be eaqual to the vertical oomplant of $\mathrm{U}_{2} \mathrm{M}_{3}$ plus the load at joint U_{2}. Thus, the etreas in vertioal $\mathrm{J}_{\mathrm{I}} \mathrm{I}_{2}$ can be determinad by the method of joints.

118. 6

Consider joint I_{R}, ifig. 6 as a free body. Resolve tresees S in abodiagonals $\mathrm{H}_{\mathrm{I}} \mathrm{I}_{2}$ and $\mathrm{M}_{2} \mathrm{I}_{2}$ into their Firtioal and horizon-

-
-•
\square
\square .
\square
tal oomponente. Applying prinoiples of equation I6, it is readily aeen that the value of vertioal oomponont of etreas in $M_{I} I_{2}=I / 2 w_{1}$. Likewiee y_{V} in $M_{2} L_{2}=I / 8 w_{z}$. ine total etreas in vertioal $\mathrm{J}_{\mathrm{I}} \mathrm{I}_{2}$ is thesum of these two oomponente, plue load m_{3} whiah is at joint L_{2}. The above reault may be expreseed by equation,

$$
\begin{aligned}
& s=I / 8 W_{I}+2 / 8 W_{2}+I / 8 W_{3} \\
& 21
\end{aligned}
$$

For equal loade equation 2 beoomes,

$$
\text { s = 2】 ... } 22
$$

Equation 28 givee value of atrese in $\mathrm{O}_{2} \mathrm{I}_{2}$ produced by uniformin diatributed dead load. In oalen where the atreas is due to ooncontrated live loade thia equation must be elightly modified before ite opplioation oan aucoesefully be made fa oorreot resutls.

Let $M_{I}, M_{R}^{\prime}, M_{B}^{\prime}$ and M_{4}^{d}, in rig. 4 , represent momente at pointa I_{I}, I_{2}, I_{3}, and I_{4} reapeotively due to the applied loade to the left of those points. Let l azlength of panel. then by general moment equation,

$$
\begin{aligned}
& w_{z}=\underline{M_{I}^{d}-2 x_{2}^{\prime}+Y_{Z}^{\prime}} \\
& 1 \\
& M_{z}=\frac{M_{2}^{\prime}-2 M_{8}^{\prime}+M_{4}^{\prime}}{1} \\
& w_{z}=\frac{-2 M_{I}^{\prime}+u_{2}^{\prime}}{1} \ldots \ldots(o)
\end{aligned}
$$

Substituting equations $(a),(b)$, and (0) in equation 28 we hare.

$$
s=\frac{M_{4}^{\prime}-2 M_{2}^{1}}{21} \ldots \ldots
$$

Mote: For oomplete disousion of the above principles see "Streases in iramed straotures" by Hool and kinne, artiole TI, page I88.

The atroes in upper ond of end poflat $I_{0} J_{1}$ oan be determined by pasing seotion ses, fig. s, and oonsidering thet portion as free body. Applying general equation I we have,

Where $\mathcal{M}_{L_{2}}$: moment at point I_{2}, and r : perpndioular diatance from point I_{2} to the lin of aotion of $I_{0} U_{I}$.

I

CuICLUSIUM

It was my great aorrow that limited time did not permit me to indlude into the present writing of my thesia all that I originally planned to write. It was my ondevor to write, in ad dition to thie work, on the methode otrese analyais in trusDes with multple web ajatems and on the mothode of determining stressea in cantilever bridgea. The aubjeot, after all, provede to be too broad to attempt in my present work. beoause, knowing a aubjeot and being able to write on the subject so thet othera may know it, are two different thinga. Io be able to tadosion ine ahort and oomprohensive form a subjeot so broad involves a neoesalty, in my part, to atudy the aubjeot thomoughly. It would also add at least twonty pagea or written mattor to the presont work. This conditions are a total imposeibility for just now. I must oonolude thie thesie ast it is being oontent with the faot that I had a eplendid opportunity to beoome abmerhat familiar with the aubjeot of streses in adranced typea of atructures anim be able to appreciate the vast amount of work and the difficulty one enoountere in attempting to write on the prinoples of atrese ana188is.

I do, however, feel that so far as was able to write . I have fully fulfilied my oxpeotatione. I have oummarised a flew fundamental prinoiples whioh, if properly applied, will onable one to determine etresees in ant atatioally determinate type of briage truas.
$\therefore \cdots$.

-

V

I the theory of struotures, Ey Charles M. Spofford,
2 Streseen in rramed struoturee, by Hool and kinn.
Fo Modern rramed structures. by Johnson, jryan, and turneaure.
(vols. I and II)
4 Handbook for Engineers and Ardaiteote. by Hillivs (Yoreign language book.)

RDOM USE ONLY

ROOM USE ORLY

