a B .3 '.. ' q ’(‘q E x; {3 h‘1 .4:‘ ‘Q.§-t‘;::u .zérfl.\'fl _ Qr~:‘%.. 3. l‘P' ‘5 ‘- ‘3‘ '1 Q : .“Lv ‘ se-Ig: wk: u 3 E \5‘: traw- 4".1:.s..“a.}.:. at.» ~« f. T . z w: 5%,qu Kai A. ”Svafire. {‘1 i: c w .8“. '- : - .. 7 ’v‘ 5'“ .3"\’~’t SC 1 ‘45“: ‘ 8". 2' n: f .3 ‘:‘ .1: \‘t‘: a Kg"; .4 ‘ - «l I‘."‘, {F1 I, 13., L \."'O 0 \"V' ‘ bk 130‘s kw “-30. TH E815 4.5L, MICFHCM‘Q CTATE UNWERSITY Lip, {C/‘K RY Isomerizqtion of Cycioalkanea Under Carbonium Ion Conditions A Thesis .n submitted to the College of Natural Science ofl.Miohigan State University in partial fulfillment for the degree or Master of Science in Chemistry ' ‘5 Q", by Edward J. Apple (D I -. I: J; T LE OF CONTENTS Page I Acknowledgment - - - - - --------- 11 II Abstract - - - - - - - - ------- - - i IIII Introduction ------------- - - 1-7 IV Results and Discussion - - - - ------ 8-22 V Enoerimcntsl -’ ----------- - - - 23-28 VI Summary - - - - - ------------ 29 VII “Annendix Q - - - - ------------ bO-ol VIII deferences ---------------- bB-ob s—1. ,. \< 'N..H, +x (4) L... +' L......_.J 4“” 3 er” \ 5 4.... g +— 1+ '7' . ---v. .--. t ,u f i. - . a e v A ..veA— ‘ . . . _ - , I. I - 1 . .J‘ .4. 1 I -\ ‘ A ~. I , 4 1 .. .. . ...7._Z> . .ie V . » J , e i J V . s i s- a. 5 . I — ul N (4‘ L 7.7.— ‘ >- , xv . \\ —‘ (“C ": Ni O - o. J .- s .a \- e ’V '. . . '. - J. - I . v i . 54. r. x K- since this work desls with cyclic hydrocarbons, the binoleculer reaction process (4) may be.cxamined further. It the reerrsngement is going by (4), then the possibility or other products being torsed by rearrangement of the intermediate oarbonium ion must be examined. Reactions (5) and (5) appear plausible. Identification therefore of (5) (fl + I,“ N' i ’VMB. \ // K . \§‘-- WI . m- - + 3&5! 4—--—~‘ i/ ..i _+ .7 ' ,L_. L_i 4/ I ...—...}. ( ,-’ "" \‘g \ ,/ \\ ‘ 4__* i ; “ a r : \_w/’ 4' \_fif+‘(/\j (6) five and seven carbon compounds in the isonerizetion of nethyloyclopentane would constitute evidence for the occurrence of binolecular reactions, although it would not rigorously prove the occurrence or (4). The interconversion of methylcycIOpo.tanc end cyclohcxane is reported in the literature to be an “equilibrium process. It appeared desirable, therefore, to study the reections of cyclohexane and methylcyclopentane under oerboniun icn conditions. 1“ 4A . . . n I. . .. 1: .r h. 9 I l a r l ... r n « .... I. i. x I. _> a A. , r s l. A. “v u t, .i 1 1 a s b >a _. is . I . . n v. k . c D .. l .t . . v < - r. w. ‘ ’-7 I 1*?' b- a‘ ‘4 n. A... .. .96 i. {te- d I A .. . .. .... . n N . a. D. o .... u l. l .‘ i‘ _ I F 4 L . O . (II slut.— Three other conpounds appeared suitable for study under liquid phase carboniun ion conditions, namely ethylcyolopentano, methyloyclohexane and cyclohaptane. The following reactions have been reportadzlo’ll'ld’lu'l4 r/Lj No deaction \\// L , _ l, /l\. “5131i 37-31 I 3 + g j ' J 80", IO nourg (trans) -*~-*—— 3.5% "'/\‘ ”K 'o " t d 7 t #_ , n o‘» unrea e are $4-241511'J1l \ J) + [... -.. f/ it + OU”' 7 traces traces X '2— car-:93:- I’L j p f" \3 3- 0439.3 10C ,1) The proposed mechanisms for these reactions involve primary oarbonium ions, 1.6. (7). However, the results are +. ,/\\ ‘ C+ C (7) s : Eli~ Ly} ( (5 + R J" e . . . l C n w \ J I :\. . .. y 4 ol 0 o L . v ‘\ . a ... r o _ n L ...... , 4- \ . . h ‘ u 1. .. . 4 _ v . . It; i p‘ _ z . O 1 v u - ‘ I, l ,- w . . . ... I v ’ ' I v . u a. . e . Ow . J. '- . ... h ‘ . .. a l T ' i u \ ‘ in ~ , A. n. ‘J . A . _ J} . I ‘. ill’. III]... A!!!“ -.--— ... . "II.‘ l\:k it, , AT. _ T\.\...l ‘\ wl" JT- also explicablc on the basis of bIJOlUCJlar reactions, 1.6. (8). '+ -k x"\ __ ‘Y fi f /‘\/R a.) in U 47/}: /R C. It can be seen that the predominant product in these reactions is the six-membered ring, methylcyclohexane, which is formed in preference to the five or seven- nembersd rings. This is undoubtedly due to the greater stability or the six-membered ring. opitzer and Huffmanls calculated from heats of formation that cyclohexans is l keel/mole or 532 more stable than any other cycloalkane. Pitzer's work also leads to the sane conclusions}5 A general study of liquid ghuee isoaerizations of theee cycloalkanes was undertaken with the following objectives: (a) to distinguish between the postulated primary carbonium ion processes and bimolecular reaction sequences, and (b) to ascertain the amount of inter- conversion between five, six and seven-membered rings under liquid phase carbonium ion conditions. In order to generate the desired carboniun ions under 1%: ti 4 us-|. V r.. J i conditions analogous to those dead for the isotope- position rearrangenenc or t-anyl chloride, the alkyl chlorida;of the cycloalkanes were used in the oreaence or aluminua chloride. A qualitative and quantitative study or tine, temperature'snd aluminum chloride concentration upon the direction and-extent or isomorization was also made. ‘ to n c 9. ‘q ‘- --. w. Results and Discussion Reactions were run on five different hydrocarbons and the reeulte obtained, with respect to time, temperature and aluminum chloride concentration are shown in Thblee I-Y.‘ The reactions consisted of a volaude fraction and a brown residue containing the alaninum chloride and polymeric ’ laterial. ‘The volmnle fraction was analyzed by vapor phase chronotrography. .. ‘ Several points of general interest are apparent from the results. (i) The reactions appear to stop after short periods of time. (2) Ethyl acetate was found to inhibit the reaction of methyl and ethylcyclopentanc. Similar * reports or inhibition by other compounds in this type of l‘Therefore,'de- reaction nay'be found in the literature. hctivation of the catalyst ...m. to be a common phenomenon in this type of reaction.‘ Under the liduid phone reaction ‘conditione the deactivation of the catalyst is acct likely caused by the polymer.' (3) 'Temperature-substantially affects’the"anount of isomerinstion. (4) The qualitative composition of the product is virtually unaffected by time, temperature and aluminum chloride concentration. Cyclcheptane appears to be an exception. - ' "The data given in Tables I and II summarize the results obtained in the isomerination of aethylcyclopentene and veyclohexane. ~It can be seen that reaction of either'compound leads to only one product. No product was found which would a J 1-1.. \d . |Ii .V— a . _ of o l a“ . ...e v n x i... .1 . q. r J . . ... ml - .... c a . H .\ H . ._ .t A I a} l 3.. e t . . A I. ..o .J a I D. . u ‘ . . w. i . ‘u' . n . -1 o . a ‘ A, L u . p . I r a g a - O t e u» * i y 1 h I q o . e v. v , . . . IH\1 n» .e n I k 1 n is r A 9 Q .yv li. a; u . Q u o n \ . ... . _ «1‘ . e .. 4 . 061 . Ll. r. ..s .. . .: o) w. A _ . . ..Iv. . 4 n 4 ' .. . h n . . . a i . . . a I. .. .. I a} a . a . It\ ( A. 3 a v ‘. I u at e 4 O . .. ‘ . u . I." . .1 . . . . .1. ya a l I II I i ,_ H .J J 14‘ J,» ‘u . .J'. .r . I t u 4 V . e! ,‘ . u ..4 ,. .s w a I i— . . f V n n.» - .. .n. W. J .11) . s. . .u .. _ ‘4 . . n .Y . q A I. . . A ‘.4 s )- '— J ., _. 4 e: ,I ' ‘- 1" ens-J 9‘ ,‘J .u a . D n 4 ‘ — >on \ ... ...! s I i ‘ I" s - n v e ‘ A r‘y l 59’ on .1. . - It - ... _ a . 4.. I ‘ . \l . . . h p C I o g A. it ‘ .— . o \ . . ..., . .i . a \V . r . o u . . F ‘ n . . .. r‘e A ~ . \. \I t v. .u' . . o e 1 I \ a I. l . a .. _. a j . . J. a.» A a: , .a.. \w‘ . ' 's I t . .. +v 2 a I . . L ,. a I f.’ . it p. I. -- e.J e ‘ ‘. "t .5. .7 ...) e clad-e 3).. ... if {J L! h a L .414 .o‘ -id‘ov 5. {4" ': u. U correspond to_the occurrence of reaction (5) or (6).; Therefore, in the case of these two compounds, there is_ no evidence for the occurrence of a bimoleculer reaction, but the results do not rule out this possibility, because reactioa_(4) may be occurring at a much faster rate than a (5) or (6). Furthermore, the reaction conditions may be such that reactions_(b) and (d) are highly unfavorable. These reactions involve_the formation of an olefin and a I secondary carbonium ion while (4) involves the foraation ,9: an olefin and a tertiary carboniun ion. It has been “foundithat fission steps leading to secondary earbonium . ions do not compete favorably with those leading to tertiary carboniua ions. _ ‘_. Graph I shows that the amount of interconversion.in the nothylcyolopentane-cyclohexane systea_is highly temperature dependent; the ratio nethylcyclOpentane/ cyclohexane increases with temperature. Graph II shows that reaction is complete sithin a short period of time. ' .Entries (19) and (20) of Table I when contrasted with (ll) and (15) show the effect of ethyl acetate upon the amount of isomerization. Fran these results it must be assumed that ethyl acetate is an effective inhibitor for this_type of_liquid phase reaction. Table III listed the results obtained for the.isoneri- nation of ethyleyclopentane. Entries (l),(e) and (a) sore A ..1 J {I f.‘ ‘0‘ all. JV \K. run sith ethylcyclopentane obtained from a hydrogenation reaction using ethyl acetate as solvent. It is noticeable that these reactions shoe relatively low percentages of' rearrangement. By the use of vapor phase chroaotrography, it was found that the ethylcyclopentene contained 21 ethyl acetate as impurity. further purification of the ethylé‘ cyclopentane was carried out by use of the Bookmanl negachroae before the remaining reactions were run. 'Coaplete conversion to methylcyclohexane was obtained in all of these reactions indicating that the ethyl acetate was responsible for theinhibition of the earlier reactions. This agrees with the results obtained for the nethylcyclopentane" isoaerisation. iIt should be noted that the only product in this reaction is the six4meabered-ring systea, aethyl- cyclonesane, and that there is-no further ring expansion to a seven-nenbered ring structure.‘ I ' I Table xv .no.. that this isbalso the ease for methyl- cyclohexane. ?here is no ring erpansion to cycloheptene, but there is a ring contraction to a diucthylcyclopentane. In the case of cycloheptane, as shown in Table V, the anor product is methylcyclohexane along with small amounts of a dinethylcyclopentane. The above results, coupled sith‘* reports in the literature that dinethylcyclopentanes isomerize to methylcyolohesane}aleads to the follosing’ ’eonclusionsz“fhere is an equilibrium between Isthylah so. . . .m -, 7,. . ‘- ,.s . e .. a A. . l. . . a . 1 e1 .1 C . 1.. A a .T J . . . Ala . . . .w Q I; . . a - .Ia .. . A 058 ., O \f. . w l as .\ 4m x... .v Ye— ' M y i I . s 9 u ‘t'. , ’ a .y. . v \ v . I A . I: . ,. ... e .. - l ‘p . . I ‘ .r . _., d \|. it. o a 1:5 w... ‘- o a .. l r fl . y. . .. c. v . . J .a ..a t o I. 4 A . . .1 I QH~ . u i .a I.\.. I. . a .. u ‘4 ..r.‘ O s m. 7+. 4- '1 ‘ U . '1' '.a ... ....» v .. . L r .3 . .i H. I... .. l t . .A V . I. v 9 Z a J A I . . e.A sea. » n... 1 . ... ‘ I .\ .... ..... - 1.1, .. eyelcherane and dimethylcyclopentane shifted highly in the direction of methylcyclohexane. The conversion of cycloheptane to methylcyclohexane is not reversible, and the methylcyclohexane formed then isomerizes to a five- aembered ring structure. The stability of the various ring structures must also be considered.. The conclusions agree with the previous reportg:lin that the six-membered ring structure is more stable than a five or seven-membered structure. It may be further concluded that the five- sembered structure, dimethylcyclopentane, is more stable than the seven-nembered structure, cycloheptane. The dimethylcyclopentane reported in the isomerization of both aethylcyclohexane and cycloheptane was not definitely determined, but the following evidence points to one or both of the trans 1,8 or l,3—dimethylcyclopentanes. The position of the signal peak for the compound in the vapor phase chromatagraph shows it to be a seven-carbon compound with a boiling point slightly below that of nethylcyclohexane. a sample of the compound was separated on the chromatograph and analyzed by n.m.r. and infra-red spectroscopy. Figures I-IV show the spectra obtained. The n.m.r. spectra are shown in figures III and IV. The peak at T9.03 would correspond to the methyl groups. The presence of tertiary hydrogens is also shown in the spectra. This eliminates the presence of l,l-dimethyl- cyclopentane. ‘ h “- »J m: ‘t e h .. .9: a A ‘t ’\ b, 'I' ‘4 1' I“. «~p - 12 ~ The infraeredspsetra ere sheen in Figures I and II. These show the resenoe or a_ methyl group but the absence or‘a genedinethyl coupound.‘ A canoerison of the inrrh-red sptotra obtained from the compound with spectre of t“: pure dimethylcyciooentsnes both ois end trens shows that - ...:m h» ~“Mk' ‘ ’ “ * tht conpdund from theI iaonerilatlons is trans l,2 or 1,3- dinethyldyolopehtshe or a ulXture Iof Ithe two. i " .... .' .... ... - _ - .. S ; . 3 a i 1 2,. .... - L ".--—....- ‘..-- | - I v 3 ' i f i ‘ ; -..- -. ..., ,.-‘...-.A.. .V. . , .. , . . .. .. . - . _ _ -.-, . -.- . i : : , i ‘ 8.. , --.. ..-- _ - “...- : '2; «I ‘g : J ' ' 4‘ —— - e ..-, -- e -, _ - ‘. 1 i ' g ' f r ~~~~~ f ~--~ ~-\~ ~ ~- - '-r_ ; i h l 4 t g A : g - 5 : 1 E ' ' r“’“ ‘ . ’ ""“""‘ "" ’ ’." ‘ ‘ " ’I‘ " . ! i :g i , i h r"-* ; “*** _ ' a x 3”“: ‘7' '" ‘ ; a i r' 9.--..." . -_ .. a _ i ? t 2 re. “a... .I' . “D .o \I ‘r us ‘0 l'.i . . . t 0.7-- - .LS - Table I Isomerization of Methylcyclopentanea he. H m.moles A1613 Time Temp. ER" %[:::)‘- (min.) °C. 1 b.3h 30 -35 . 0 2 b.3h 10 0 0.9 3 h.3h I 20 o 23.0 h h.3h . 30 0 S.h S 8.68 10 0 1.5 6 8.68 20 0 h.1 7 8.68 30 6 8.3 8 b.3h 5 26 I 8.3 9 h.3h lo 26 3h.1 10 b.3h 20 26 h3.2 11 h.3h 30 26 53.5 12 8.68 5 26 13.0 13 8.68 10 26 h0.2 1b 8.68 20 26 h9.h 15 8.68 30 26 60.? .1 16 b.3h 10 no 26.h 17 8.68 10 ho 27.3 18 b.3h 180 30 60.5 b19 b.3h 30 26 0.8 bzo 8.68 30 26 1.0 a. hh.6 m.moles of methylcyclopentane and 1.63 m.moles of l-chloro-l-methy1cyclopentane were used in each reaction. b' 3.2% of ethyl acetate present. Thble II Isomerization of Cyclohexanea No. m.moles 11013 ($112.) Tergp. IWt. % b 1 1.7 10 0 <1 2 1.7 20 0 <1 3 1.7 30 0 0.h h 3.1: 10 0 0.9 5 3.h 20 0 1.7 6 3.1. 30 o 2.7 7 1.7 10 26 <1 8 1.7 20 26 1.9 9 1.7 30 26 - 16.9 10 3.1. 10 26 6.3 11 3.1. 20 26 11.5 12 3.h 30 26 11.6 13 1.7 180 30 8.7 lb 1.7 10 1.0 1.3 15 3.1. 10 I ho 5.9 3- h6.h m.moles of cyclohexane and 1.7 m.moles of chloro- cyclohexane were used in each reaction. .. 1,: .. Table III Isomerizstion of Ethylcy'clopentsnea No. m.moles 111013 a: EtAc Time Temp. we. fl. 6 I (mim) . c. I 1 1.16 2 30 26 1h 2 1.16 0 30 26 100 3 1.16 0 5 26 I 100 h .58 2 30 ho 8 5 1.16 2 30 1.0 12 6 1.16 0 30 70 100 7 1.7L: 0 90 70 100 A a. 15.6 m.moles of ethylcyclopentane and .58 m.moles of l-chloro-l- ethylcyclopentane were used in each reaction Isomerization of Methylcyclohexanea Thble IV No. I m.m61es 111013 (:35) Torso. wt-” 6] 7 1 1.5 30 0 0 2 3.0 30 0 0 3 1.5 30 26 0 h 3.0 30 26 0 5 ’ 1.5 180 26 0 6 1.5 30 ho 1.5 7 3.0 30 b0 h.1 8 1.5 30 70 7.5 9 3.0 30 70 10.0 10 h.5 30 70 9.h 11 3.0 60 70 9.9 8. 39.3 m.moles of methylcyclohexane and 1.5 m.moles of 1-chloro-1-methylcyclohexane were used in each reaction. Table V Is «urination of Cycloheptanea No. m.moles A1013 (51111:) I Tera). Wt. 1Q Wt. % é’l 1 1.2 30 -15 3.1 o 2 .6 .. 30 ' 0 3.5 0 3 ’1.2 . 30 I 0 5.1 0 h .6 3o 26 5.6 0 5 1.2 30 26 37.1. 2.0 6 .6 30 ho 111.11 0 7 1.2 30 ho 52.5 2.5 8 1.2 30 70 89.7 .7.2 a. 16.6 m.m01es of cycloheptane and 0.6 m.moles of chlorocycloheptane were used in each reaction. .ondpmoaoaoho mo 5.30.89. map SUE ... ognomojho 439636.. so 3.366% omega .H .wE 1 6:88:03? ...TEpos wo 830.8.“ ofi. 18E ...ondpscmoaobé 4355p. .8 356.8% e223 .HH .mE J r 1 4 7 2 1 0 ppm Fig. III. NMR Spectrum of "dimethylcyclopentane". From the reaction of cycloheptane. Fig. IV. i L l 2 1 NMR Spectrum of "dimethylcycloPentane ". methylcyclohemne. From the reaction of ‘7. Q . I" t g H H Graoh I Effect of Time upon Exteat of Reaction Temperature 26 U. , I'-'Lolar Ratio: AlCIB/cyclic chloride 2 fororé 2 .66 1‘0 a. 80 ()0 __ [to -— / 20 _ _fi_ 1'”"” 1 1. time (min.) Graph II Effect of Temperature upon Extent of Reaction , neaction Time' 10 Minutes Molar Ratio: AlClB/cycli chloride 2 for() 2.66 forth 3.. ho _ 30 _ 20 _ 10 r- , '7 ”f ’- 1 1 O 10 20 30 10 O temp. U. ! — . s I V:-'L._‘-5m MEL Elf-LR I 411333! TAL 3 Apparatus: E; The reactions were carried out in a 25 ml. round bottom , I flask equipped with a side-arm inlet. The flask was connected ii to 0 Vacuum system through a small column and distilling head. RSSCILQQ Procedure: IFive ml. of methylcyclopentane were placed in the reaction flask and the flask was immersed in a pro-heated oil bath for ten minutes. To the magnetically stirred solution was added, through the side-arm, 0.2 ml. or lochloro-l-methylcyclopentane _..__.._- _ O )U." Lam: v... and .29 g. or aluminum chloride (Baker a Adamson, reagent a: g grade). After thirty minutes, the liquid portion was é collected under vacuum, at liquid air temperature. A brown 1: residue remained in the reaction flask, presumably polymeric 1%; material and aluminum chloride. The above procedure was followed for the other concounds, with variations in time, temperature and aluminum chloride concentrations :7} lv- .7.‘ ChemicalszI Methyloxclopentsne was obtained from ihillips Fetrcleum Company. Pure grade (99 mole % minimum purity). Methzlozolohexane was obtained from ihillirs ietroleum Company. Pure grade (99 mole firmininum purity). Cyclohoxane was freshly distilled laboratory grade. Boiling point 81-820/751 mm. Literature values}eb.p. 810‘0/760 Me. n? le4290e .. , Q < .b V .‘ ,e I' .h ' ‘t’ . * . , ., . .e - ' -..‘. .. J fl» \1 N .s. - J ...- ¢’ A, 0.;- .1‘4' be. J's . J \’ ‘5‘}. d.. oOJVJ-U. r...“ ’ . P ‘- .- . _ gin-1", r.‘ ... .- ‘ :‘ ' ;. 0 .3-.' ~s; b-- s . ‘h-h IA‘ .‘.‘--I -‘ a'-A'~.9. 1“ U Quid". JJ‘1JAn‘J A:JLD* " ' “ ‘ ' .' ‘ . L ‘ ’ f 4‘ . - ' . L ... ;- '; '\ - g .- e, i la '_ ‘ '_ ow "- e -. - - ' (9 , ‘- 5 I-“ 5'." 0‘. oh .; aw. -‘ ~> a», 2:. - -- -.“- .0 A. 1' X1 i O"- u H l' A, ~ ‘0‘“ ‘ v.4 0" Lfi L‘ J4 9"- v B L 4 ' ’ " .I. -I. :4 . f‘ ' ' :‘fK . . . ' I.- a ' e n (e ‘ l .. ' n -- . e. no.--*..‘.. ‘-“-'...'~ ”0*- ‘3‘ ’ I a ‘ " a ‘1 ‘ ’ ‘7 ‘ 1! » ‘6 k ' . e- ‘ . ‘I ' e I - ' . " . | ' i e I ‘ x. I .. . ' .- ' .1 . ..-, .-.... u .zu- a. t. .. . .-..s 1. s-- a LV"J‘ o’L { I...) van éJ Q a.“ V ‘O ‘ v '- 4 f t . . , .- . .. .. - k . - - i... ..p - n , e l . I” '- . . { f .‘ . -. . \ L .34 ._ - V' . , g . on. . i 2: I! L HUI-d 6'—la-‘ 0- ‘ C‘. 0’- “(na-aa. ‘ ~)e4v' 6h suk ““4 at J '— ' * "t ‘ - e ‘ , e r, 1 III-u ' . b l ‘ I I . OI' s . ... :3. ' O V g’ V r y - . . .-l 1. ..I . .1 - 1. .3 . .‘ a. .s» e .o J .1 A. a. -.'o ‘g 4 . v ‘J J '4 - a1 ‘9 \. ‘ . ‘A as: .2 6. a: so.“ ... v T f ’ '3 ' ‘= ' o ' " ~ \ x .‘ . ‘ - : v ' . ' 3 ' “ a... ’ I J .l-- i -4. ..\ ' 'Jal \I'..L J-J OJ.“ Jib .' .‘i --rd).‘ed U:.U M .0. Jet“: \' a ‘ . .A- .1 .. s t. .5 “oe.. 4’ vet‘- A'yu e...’ o‘A .I‘.a.~. U - .I‘ ...-u. Us- .- .. .. ~r , - r ' E “Us? .9 ‘4. ~. .... Y 7.. :' -. " a 'e‘ I -. \.v.. s . . J . - .. . . I‘M ) a. a- 50—6» ' -ee #0 J- - 4‘... “J A...“ J 6 “'0 -‘4 . \ té!) - ..aL. . . s N . s - . ' , s ’ O _e .' ' I~ D 'v , ! s- . t I a .\ a. ’. Q .~, - . I .. -‘ r: A ~..-‘ *6 . - ~ 7’ .44.... u’..s.~....1 h I! cuss . 5’ 1.1M. ~.-‘ h'. ~. Jna‘w‘L‘ .f r l ’ l O I. _ . . ' . 3" .... ... r. . -‘ . ..I, . ' ' L. . . . «L Poi. . ..--£ «.1 so... 'J.s-.... -31 3.,U&hajr1 . .I '. Q. p.0‘e' *av' gre O " .V' ..s. I; ~J-n-r) l'~.¢.é~—-l—4‘~ ~3fi‘3 ‘I-hIaJULJs ' - O f; . p A Q le . . ,' . e _ 4» use \ ~.- . . 6v... . _ ' J \ ' 7 .. - ' I .~ . I , . av v u ? . s 3 I'V ‘ ' . ' r j .T‘ " :J “- I 4 . '. .' i I I, .1; a . I n .. - . . “ I J I . e ‘0- .- — ...-CA ..I'h- ..‘h o v. nac— . _ ‘ , o e . p .4 *o e." Ap‘ ,, 1 ...,fl W ‘.I~..,.- . on . 7 O I fix 0 x a b — - o - ‘4- Q ‘9 f . - 6.4 s r' I H i L '0 . ‘ ‘J ‘4 ‘ ‘0} *J ~v ' e .. - . .- ‘ ' e i A '. . l r \ . — 'I I. ‘ ' a '0' fl‘ 0 l '1'. q I" g .“ 's " 1 e I. . s) .1. .A - ~ 4 ‘ a . ‘- 9' . . - , - I“ - u an ‘ .. -« .V ...—... A- J . -.. . v ‘ i o - J t. , . . . . 91"“..f ' N n .IH’eN ‘ rv - ‘ ‘ s ‘ Q . s » ' u . s h e ’ e «I ta 1 .1 5 . v '. e I .l 4. v".- — - v4 . v.‘ 1 - r". - - ‘— ‘. ‘ 1" A r f r 1 ‘ ' -- ' s- . r. r" -- F. .1 1‘ ’- W P” "’ " v - ‘ '5 ‘ é- - ‘ 4 . I. l - '- . . 4 . e a s r. I: .l a '. ' y a-‘ - - - -g- - organ.- .A. - r v _a u v 7 . r . o. . ' I . . .' .:9 L33 f .- ..‘. t ‘ we. ’ "\c. -.4.-'v--' 1’.. I. . r no, I 3. ':‘ , _ -. . c .‘J‘ ‘ - 1 J_ 4“... Q.‘ ‘J '_\. Cycloccptane was obtained from Alcrich Chemical Company.‘ Technical grace. Lthylcyclopcntane was prepared from cyclopentanone and cthyl bromine by a Grignard reaction, subsequent dehydration of the alcohol and hydrogenation of the'reaulting olefina. The Grignard reaction was run with 218 g. (2 moles) of ethyl bromide, 48 g. (2 holes) of Jagnesium turnings and 84 5. (1 mole) of oyclopentanone. The reaction mixture was decomposed directly to the olefins with 10% hydrochloric acid solution. Distillation gave 39 g. (.406 males, 40.6%) of two olefiha (ethylcyclopcntcne and cthylidine cycIOpentane) b.p. 48-48°/B mm. The clerics were hydrogenated in ethrl acetate, at atmospheric pressarc and a temperature of 50° OVcr platinum oxide to give a giantitativc yield of ethyl-cyclopcntuue b.p. 101-1030/750 1a., nge 1.419J. Literature valieégb.p. lOB-lOéo/VSO mh., n§9 1. 4194. l-c oci-l-~r**V‘_iclocent~ne as 3 prepared by the Grignard reaction of nethyl iofiiic and cyclonentcnonc. Using 569.2 3. (2.6 moles) of methyl iodide, 62.4 a. (2.6 moles) of Magncsium turnings and 105.2 g. (1.3 moles) (.432 miles, 37;) of i-isthyloyoio-' 1‘.) of CYOlOgfiflthSSS, 43. .‘.I u ' N J." 10‘: ‘tub W“5 ODt uinCdo Liter!- .‘5 pentanol b.p. ci-CC0/161Ca., 2:3.5 .A-'\ n-—- 1.4cc3. , c0 , , cure Valucn, b.p. 51-53°/iu mn., The l-me JleLlu ntaiol W13 trcutcd with c two-fold excess 01 cold c;ncentrc t‘: d r.jC:;c onlcric uciu SULdtiCn and iii" a- \- .a ‘- um (— ~.\ 4—! \- r. (s " h - "_ J a. a ‘ fig U u ' n ‘ . I ' L .1 ~-) . f ‘ . .' ,' Q.“ . " ., fl .1 _ . 7} ~ ~ ‘D s .\ o _ .I . ... l, l ‘: m l.’ \ g a c r u 0 at . - . , v,- a .- .‘ «i l. v- t g. . . c l" .- . _ l U , . ~ I f ‘ '\ ... '\ -~——-~—— .— - _~.-.. .' ‘ - . I b l ' - - ..’ o ‘ . I l ‘ ' ., v I .' “ ‘ui V " '. {1.1 \J L'\. ia‘ . 1‘. l~‘ ' .o .: r .y- ALA. c" u n.\.. A! l rN-- °~. r_ 9. f a I I} 3'4 " [ d A— - v ' I -. _ :':t ' ""1 'Z.‘5 .Ia' ‘ . ‘ " 3U ' ' [- f ‘1 0.. J. . g on - ’2 pl . .‘ . L ' t r. .o- k . v I - l _. l x . \ ' I l' . ‘ t ‘ ‘ L - . 'k -0- i r‘ - ‘ . .0» ‘ ' a ‘n -' _. 3' r .V . .. . I ~ I ,, L.a . .. ‘aé: -' 6 .9 ‘- ' .. .. f, I I I ‘ ‘ ‘ I a. - ‘ A ‘1‘ ' V y r ‘ - v c, --. ‘f I ‘ u.- - 1 w! x u 0' . : - r I“ v ‘ , I" 1’. k I" 1 I I IO U! I shaken intermittently for twenty minutes.' The l-chlorc- l-methylcyclopentane formed as an upper layer. Thin was sepcreted, dried in an air stream for thirty minutes and dietilled in Quantitative yield. Boiling point 70-71°/ 145Umm.,’n;g 1.4464. Values listed in the literatur§%b.p. 70°/145 mm., age 1.4465, egg .9541. The l-chlorle-methylcyclopentane was prepared immediately before use and was not stored for over I11 hours before use. ghl oroc clchexane was pre,ared by the addition of 60 m1 of concentrated hydrochloric acid solution to 20 g. (.20 moles) of cyclohexanol and refluxing for one hour. After separation, washing, drying and distillation, 15.6 g. (. l4 moles 70%) of chlorocycloheXene was obtained. Boiling point 142-1450/751 mn.. ng- 1.4621. Literature veluei? b.p. 142 °/7cc mm., n3: 1. 46254. l-chloro-l-methylcyclghexene was prepared by the Griinard reaction of methyl iodide with cyclohexanone and treatment of the resulting alcohol with concentrated hydrochloric acid. In the reaction, 142 g. (1 mole) of methyl iodide, 24 g. (1. mole} of Magnesium turnings and 49 g. (0.5 moleo) or (cyclohexanol were used. Distillation yielded 36 g. (.58 holes, add.é%) of l-methylcyclchexancl. Boiling point 64-66°/20 an., n%9 1.4587. Literature valuc§? h.b. 67-680/21 mm.,~n§2 1.4584.’ ,3 f“ er #. ... ....1. \- ." '- ...). .4" \I .It at; J. O ...: .1. ._ r. m ... ~awa- .-. . v a \ ... .. a f. .u \ a. . i . p .n u .. .I g. .1. .' .. b '10 .¥|a n t. .3 O-vv - 25 - The lfmathylcyclohexanol was treated with a two-fold excess or cold concentrated hydrochloric acid and shaken for thirty minutes. The l-chlorc-l;methylcyclohexane that formed was separated, dried in an air stream for thirty minutes, and distilled in quantitative yield. Boiling point 42-43°/20 mm., né- 01.4572.t Values listed in the literaturgf b.p. 43 0/20 mm., ng— 1.4579. The l-chlcro-l-methylcyclohexane was prepared immediately before use and was not stored for more than six hours beiore use. _ (I Chlorocxcloheotane was prepared by a Lithiun Aluminum Hydride reduction or cycloheptanonc and subsequent treatment or the alcohol with hydrochloric acid. Ten grams (.062 mole.) of cycloheptanone were treated with l. 2 g. (.031 moles) of Lithium Aluminum.Hydride, to yield 8.6 g. (.075 moles, 85. 3%) or cycloheptanol. Bo iling point 8o-88°/15 mm., n%9 1. 4754. Values listed in the literaturg? b.p. 87-880/15 mm., age 1.4757. 1 The cycloheptanol was treated with a three-fold excess or concentrated hydrochloric acid and refluxed for three hours. The chlorocycloheptane that formed was separated, hashed, dried and distilled to give a quantitative yield. hailing point 45-460/6 mm., nge 1.4692. Literature valueg? b.p. 1740/760 mm., ngg not listed, D3 .9957. l-chloro-l-ethyicyclopcntane was prepared by a Grignard reaction or ethyl bromide with cyclopentanona and treatment of the resulting alcohol with concentrated hydrochloric acid. ' Q s . “A ..J Q‘V . C ,‘ J . s I . ..w . . 9 - J. ,r a . h m _ .L . d A . . .. A. (cm i o , . g. - . . “el «51» C! L LI ' a . a. It 4 . .._.. .... I, ...u . V ¢ .... .x a . . rt“ 1 .. (7.. . a a . inn ».. ,p‘ .1... T. I‘ I! 7 . Veil \ . n ,u C L l . ea. 5 oiw ac. ). e I I ..- ,. ,r* .’ ‘ r— v.) ... . . ... D V v _ _ | .U I ‘ . . 'I ‘ .l , . .. O 1 u a - u ._ x ‘- u s A. _ . is . . . v— C ‘1 . v u . n L r L L A . ... u ,. l u 3. ' .. .. I Q I \. a; . . l ' al . v a l . n x k 0 ' . ‘3 ‘ . U . b 74 . . . . .4 . : 5 .r .. Na - e- . a. I I V I .I‘A p e.~ y . v . Law 7 d. I. he!" In - k Ia .. .. x ' q ( . a o (l < u . w _ D1 . . . .. l .e a .l I. . , O. 1 l. . . .- , . . I. . m a 1 .. l C v» v. . o 1 fi . r v ., .h - , O fa, r . 1. b t u i J .\1. I a . VF" 'Q .- .n; 4.. . .. a a I o . a . V\ .a . .. _. . 3 e .u C h n e 0’ \ _. i. t v o. . 3|. A .. . a. b .1 A Y. t: .4 I - all . . . ...u... a h. .1.— r~ e .. ,A.u . e e _ . . yr... . L .- u w} ...u . . + ... .f a 1' A ‘ ~ . r In. I. i a. 8 . . u o, .... .0 ...; ... ii... Ii - 27 -‘ The l-ethylcyclopentanol was prepared in befi yield by the reaction or 109 g. (1 mole) of ethyl bromide and 24 g; (1 mole) of Magnesium turnings in other with 42 g. (0.5 moles) of cyclopentanone. Obtained were 50 g. (.263 moles) of l-ethyl- cyclopentanol, b.p. 43-44°/4 mm., n§9 1.4559.‘ Literature » valuegz b.p.'58.5°/8 mm., n39 l.4540. The léchloro-l-ethylcyclopentane ass prepared in quantitative yield from l-ethylcyclopentanol by treatment with a two-fold excess of cold concentrated hydrochloric acid, with shaking for thirty minutes. Physical properties found, b.p. 52-530/35 mm., n§9 1.4525. Values listed in the D ‘ I 23 literature, bepe 50.50/35 films. 11%? 104525, a? .9548. Analysis or Prodmts: Small amounts or the distilled reaction mixtures were injected into, and separated to the various components by a Perkin-Elmer Model 154 Vapor Fractoneter. The columns used were 5-30? Silicon Oil on Celite and the temperatures used were 65-1000. Identification of the compounds was made by a comparison of the retention times of pure samples of known compounds with those of the reaction products, by separation, collection and infra-red and n.m.r. spectroscopy on the collected samples. duantitative determination or product percentages was made by integration of the areas under the signals and direct correlation of these areas to component weight. '31 u'_ l' \l ov -.I¢ r ... a -n ’ I Q .U .... it. ‘ d4 tJ~£fAL \\ ‘ ....u 1.. «J O a u w u c l I g 1 'Qu \. 'v ‘4 a. . .pL V— L ..It' (I... .\k_ l a mi N. .~ ... ...J - IQ. . b ., . s ' J! u 4 o o a. “w G .C 0. ed - A . n. 11?. ... .... e e v . u .o 0 n70 .. l U. s . . J .... I :1\ Wu ... la i O 1.. ' u .. . e ‘ I ’ .. . o a _ 1.. ‘1 'l .- fl U . ..‘ . i . 7n . i . . n . v. M _ J ... t . _ . ‘tb. . J 4 (all I. \ a. v .3 A u. u.L p ..- J ,7. a i J ' I 9 e I .... I . J o as. 0x a l A. .4 ‘1‘ spas-.....-- -\ a , J.” l. 6‘ \.. 5‘4 bi» “ .J a ‘1 . .. a). .0 'l p... .u ... . “ . r.. as» I o .. a .e ‘ N . ,. 4 . . M~ . n. y. s.“. a. i ‘ $1.. V b . .,... .... . a .....r 1 Q t . a." .. A e. . u l. .I. A o . ( 4 .1. 7.: r.- .. a . . . I ... J . I” , a .. a _ . . , I) iv 4 :7" .7! g... “‘4- )» J" -28- In the case of ethylcyclopentane a different method was used. The product resulting from the isomerization of cthylcyclopentane is methylcyclohexane. A good separation or the two compounds could not be obtained by the use of vapor phase chromotrography, so quantitative determination was carried out by use of infra-red spectroscopy. 'The percentage composition of the’reaction mixtures ; s were determined by comparison of several lines in the spectra with the spectra of mixtures offknown composition.' The‘ ‘ following lines were used: .thyloyOIOPCntane" 8.0913131 9.5211. methylcyclohexene- 10.8Qn,‘ll.06n, 11.48u, and 11.90u. .L .‘I‘ h ' t .u.) SUl‘dili‘ifi Y The liquid phase isomerization of methylcyclopentane to cyclohexane in the presence of l-chloro-l—methylcyclo- pentane and aluminum chloride was studied with the objective of assessing the contribution of bimolecular reactions to a: '1' 12-: W. ‘ . i the rearrangement. The reverse reaction, cyclohexane to methylcyclcpentane, was studied under similar conditions. No evidence was found in support or a bimolecular reaction sequence, but the data do not exclude this possibility. [petunia-as?” .Dfl.tifi.sflt.’mk.lla‘1 . . ~ ‘ ~ ‘ ' . ' . w' ( . I ‘ ( '9 ‘V; Three other hydrocarbons, ethylcyclopentane, methyl- cyclohexane and cycloheptane were also isomerized under similar conditions. No evidence was found for the occurrence 0: s bimolecular process, but as above data do not rule out 'this possibility. . The isomerizations favor the formation of six-membered rings over the five or seven-membered rings. Methylcyclohexane and cycloheptane were found to yield small amounts or a mixture or trans 1,2 and/or 1,3-dimethyl- _cyclopentane. Identification of the structures was made by infra-red and n.m.r. spectra. I Ethyl acetate was found to inhibit the isomerization of methyl and ethylcyclopentane. » 4 I a < .. s o .I s v.‘. . I . L I. .. a o . 1 .. a; I . a) . v I n .. 4 . u .. . oi . . - l. I, . a . t . u I - . . 'os ,. a... .v .A . I y . z a c .u I o .s . P . a e _ v .0. n In _ s . s. \ V . on. 'w , v A .9 . 5 «0.; JI~_ 4.. n . b e ' . A ...- u . l U a 1' .3.‘ f c I. . .. .l... . ... .|\ . . ...: .3) ..J a a a v I ..L o . a ... '2‘; i. .x r . _.. O." C n . n . \ a J I; . Y. r ; w‘ m. ’ a . ... i. . a .. s . . .. A I vrl . ~ . c v. , .— . | .n I] \w n. J 0 «4a. OI‘ I a o ’- U i I. 1. ‘v ...A ....» ...-3 APEEHDIX Attempted Preparation of Lthylcyclcbutane~ 'It has been found that dialkyi oxalates decompose in 29 good yield to Sive olefins. it seemed interesting to try ~ the reaction on l-ethylcyclobutanol. Therefore, the following reaction reaction sequence was used in an attempt to prepare ethylcyclobutsne: ,. Km". 0 0 ‘”' \~ (“M“TV'O , ! i-OH H "- * f g 9' 4 i : UNI") 023551‘ ”fig?“ ' ; Cl- C- 0- Cl) MO- 0- 0"ng 1......- 2} sec .. ’ ...... ' Q é i .; '”"" ‘‘‘‘ ' L....1 .~ 0 ' 1' ; (\((_ l f" /“* 32 A ; - .— 0- 6-2 6-0.:em—1 (”M “"r/ ‘ —' l-‘tO ’ i ' i i 1'! - I ; -..—...- f 3 -——---———-5» 3a “I ‘ . ‘ x i i i ”a“ < To 27.5 g. (1.144 moles) of magnesium,turnings is other and 124.7 g. (1.144 moles) of ethyl bromide was added 20 g. (.286 moles) of cyclobutanons. The excess Grignard reagent was decomposed by addition of ice-cold saturated solution of ammonium chloride. The l-ethylcyclobutanol was separated, washed, dried and distilled. The yield was 22.6 g. (.226 moles, 79.9%) with the following physical properties: b.p. §9768°/ 40 mm., ngg 1.4410. neport of the compound in the literature could not be found so verification of the structure was made by infra-red and n.m.r. spectra. The l-ethylcyclobutanol was treated with oxalyl chloride to form the dioester. This was tried in two different ways. In the first procedure, 1-ethylcyclobutanol was dissolved ( . ‘ J, l . . ‘ s . r— J l r l v .f I _ -. - .. .... . .- - I L" ‘ . , . A \ I ', 7 * ‘ ‘. '0', .. r ‘ K d -M w ‘ . ' ‘ . o ‘ .' I I J. \ ' J ‘ \ : ‘ ‘ I. v . . ; . . -J a“ ‘ . .. ,1, v .. .- A u s . ...“ . - u u ‘ [S l _ Q 9 \I " ' ' l .. a l 0 ‘~ . ' 1 -‘ , v ‘ ’ - a v m ' . .4 I. ‘. Y t, ‘ .l . 0‘ L -/ a l t .I b 4 . p c . a '\ ' '1 ‘ I 1:1 . .14. ..1 .‘ .--=- J ,. . .‘ 'v M I '3.‘ ‘r»- z‘.vt v I a .. ~ H h ‘ r - - ‘ 40 nae-“u ... -0 ’\.\.«-4.- a act-«a. ---'. o r g ‘ ~: ' a . .. o - .L .' . .' '- J -’ U1 A - A J \r V V : v. 1'. 'l .. .. I ' ‘ .“ -4 _ e I u n . .. ‘ i -' an ‘1 -’ v ‘3‘ u f .' . . ' " . .. o : . o .L _ - ex - .a u , - J- I ' ’ .A 1' *J x, .I o C ‘ cl 0 I ‘ N A \ . - ‘ a. “ ‘l g, r ' ‘ ' A 1 I l, k,. . . V _ H ‘- - ' ' u- 1 . ‘ '_' .. 4 ‘ ' _ _ a i ‘ '. )H ‘ C n o ’ n .x A ' ' , . 4 .. l, J ,. . J A. .L 0.; I I ‘ - .‘N .' ' - ' . . . ‘- r . § ‘ t. . . i l ‘ u , . L. _- I \ A's- ‘ V” . . on J .. v t, v - .0. , ...... . .A. O A ‘, , '. I " " . l . 4 ." 4' ’~ ’ ‘. <".\..' J41 J. O ‘l—Ls L L J) ... ‘44 I'. ‘J a o) r ‘ " - r ' ‘\ ' A 1 . '~ . \, 1. \I \4’ j .l ’2 5‘ x n. J .L l-ou ". ‘0 ‘ie‘ . ' - r - - e. .. ‘ f. ‘ ' a‘ , " \’ - ‘.‘ 'o’A ow . --O / ' D . \J c a . .1 -O- 4‘.) ‘0 ) . o L :‘I I... c o .J ..L A. .. I. .J - '. A o. s " .‘ - ~ ~ , .I. ‘ . L .r -‘ -~‘ n \ , . n I ~ J x . 3+ . 'f I . ‘ ' - 1 ‘ . I -' ‘. - . '.- Jl .r‘ - b \t 4 , l. xix-J '.. . ~~ .1 o . d ‘ I . - .| :e ‘ u I o .3 _u v, ... . o L ..n. 0...; .3... -. . - ‘ ,. f ‘ . -‘ '. ~ * I .1. a .1 Cd - _L I " nl - \J x... J x.‘ ‘ Q: J t . 1.. m . l , ‘1 as . ‘ ... I‘ V: .. p ? Jo 4. . d a: " ‘- L l I- C \ «a I I. K: r' “ ’\ . ‘ v8 ' . (q . ‘ f‘ a .. ... 7' 1. r - ‘\‘q-k — . - “.5 . ....k‘. -' l .3 ‘4 4L .L l.-l VJb.J no). {,1 . 3-6.J . . . v ‘ | , d .‘ _ I "n“ J ‘. ."' “I i V'\‘ ‘ 3.- J. p 4““). I ...O . d.. i N ‘ - L .. J ..L ;‘ L (- . at .t. . ‘| I .' _ o- R' ‘ 9) Lo it L ,- 1 ‘ ’7‘- we, ~€ _—- c . . . - ‘1 (U. !_ s . . v.0 . 1 ,. .. , . . -. ‘i -- ...a : v V '4 ‘- Vi ._, - .. .r v— -- 0 a“; - 51 - in other and pyridine and the oxalyl chloride was added drop-wise. The mixture was refluxed for three honrs and then dissolved in water. The other layer was Separated, washed and the solvent distilled Oi r. 'The resulting ester was pyrolized at lad-213° . ' - The second procedure involved dissolving the alcohol in . sixsrold excess of freshly distilled guinoline‘rollosed 3mm; by drop-wise addition or the oxelyl chloride. The reaction gi ‘ ‘ mixture was then pyrolized directly at tehoeratures no tofl'r E £350. . 5 j “ Neither method gave satisfactory results, in that, only a small quantity of compound was recovered from the pyrolysis. 'rhe co:apound contained a band in the infra-red at 5. 80-5.83 corresponding to e carbonyl stretch, and had ' a boiling point of 55°/75i mm. ' ~~ e t x 2. , . l I .- Q1 § 0 ,‘ . ; - I A s “\ .5, . 0 v r ..." J .- a. .- u‘ .1 . ‘q J-v’g .‘I-q . e "‘1‘. b . d .4- ,u'. I f ”j .2. b) 7 J l‘a'-". :J ,,,.. .‘\ ‘ i . i. s '. ’b L! :P."~J \-"" 'v A.-.-.‘ ... (:1.\’.: ~ '1 l ‘r' J I s .- . a w vb v' A ‘ . o v 4 r" t I. ‘ i. z A. ..n .‘ ' \ u . U _ o‘ .3 .‘ ‘ '.i s' e ‘ . o' . AL '.3' '1 b‘ ‘- ‘ r... .C 1'. r U 3 I r '- 9 ~, . ... u- m P \ .. -1 L- ‘4 .I .2 .. .s - . «II J I ~ ' ‘ t '- , ' ’ s ., . . -. he; . . A! . . ; , . ‘ ,1 s a O .s ' i ' ‘ "‘ I T“ '1 O t. x. o , , ’ 1‘ .s '4 . V' - O u .. b : 'ti , . i, ‘ |s ‘ 'u l. 2. i. 5. 6. 7. 8. .9. 10. 11. 12. ‘ 14s RJFnRLNCLS F.C. Whitmore, J. Am. Chem. $00.,‘Qi, 3274 (1932). J.D. Heldman, J. Am. Chem. 530.,‘Qg, 17§9(1944).+ H. Fines and Escher, J. Am. Chem. 500., fig, 595 (1946). P.T. Bartlett, F.£. Condos and A. Schneider, J. Em. Chem. Soc.,.§g, 1531 (1944). 3.8. Bloch, H. lines and L. Schmerling, J. Am. Chem. Soc., pg, 153 (1946). __ H. Pines, B.M. dbarham and V.N. Ipatieff, J. Am. Chem. 300., 19, 1742 (1948). A.G. Evans, "The Reactions of Organic Halides in Solution". manchester University Press, hunchester, sngland, 1946, p. 15. J.D. Roberts, R.E. McMahon a J.H. Hine, J.A.C.S.‘zg, 4237 (1950). Schult, H303 and Verheus, sec. trav. chim., ca, 793 (1940). N.D. Zelinskii and co-workers, Zhur. Obshchei Khim.,.§1, 2156(1951). Chem. shun, ge, oozes (1952). N.I. Shuikin and L.M. Feofsnova, Izvest. Abad. Nauk. 8.8.5.3. Otdel. Khim. fiank., 1952, p. 137. Chem. Abetr.,‘gz, 1618h (1955). H. yinee, ?.J. Pavlik and V.N. Ipatieff, J. hm. Chem. 500., 1:3, 5738 (1351). E. Pines, F.J. Pavlik and V.N. Ipatierf, J. Am. Chem. 500., 23, 5544 (1952). H. Pines, h. Aristofr and V.N. Ipatiefr, J. Am. Chem. coc., 1;, 4055 (1950). R. byitzer and H.M. Huffman, J. Am. Chem. Soc.,.§g, 211 (1947). K. 5. Pitzer, Science, 191, 672 (1945). G. J. herebatsos, F.M. Vane, Private communication. p. g- . ti 0 ‘. , . 5 . C , . O :‘I ‘. C '7 ..- J ‘. t . t \ '- )UV ‘ . l _ .A ; - f.) g . . . ¢ - , I I I ? i i v I 9 o 9 ‘ .. . .~ . o "‘ p o > 1 v ‘7 y I a. 0 $‘ . l7 , a . . it‘ 6 _":.‘. 'v‘ _. -J V l,\rn' . l . _ A - | a L»; O . .. I ‘.-.. l - “ I“ .. " «"ha‘ ~ I -.o - ... u . a u). 0‘ r i U .. . . .. 7/ f I o g. .4 j.. 1 ‘ " - .. . . . . 0 .° 0 ..- D W ‘ O f I V . _- . .. H ' \ 7 a I IV. .I... . . J, ‘ . J C". l , . g ‘. ‘I ' l v . .N‘ \ I . .... ..- ; - . -'~ ¢ 1 l N ‘ . _ ~¢ . ‘f " ‘ . o .L. '.. .' l‘ ‘ '. '- - 'u .‘\ , | . -Q .‘ . ~. ¢ v I ;. .‘. ‘1 g n I) '3 ' ... . ’x ‘h s. a , I V l o ‘ I. . F, f“ (f o)- ‘..1 o F . \ \— '1 I‘; . '0 é .' w I z ’ f " )9 4 ¢ ‘4 ... . , r .1 .‘ ‘ A Q C ' . «a; 'v . .‘ 0 ~ . ,'" .M ~§I . ’ 4 I \ ‘ ‘ '7 a -. . \u’ 6 . ' ' r ¢ ‘ , . \f x - - . ‘ M \ C .- I . .' I .L .'o. ’ " \ O k V -_. I .., | C .v a . 1.‘1‘.d ,. 4 ’l '1 on 7". a..- ‘_,.. 54 g I .E - Q'-» s _ _ .. VA .. Ow‘ I J _ - .' - V . .. 1 o n. c. ' ’ o ‘l O .0 Q g I (I ' 1 , . ‘ .A I ‘I- . ' I I -\ k u .\ . ‘ --I 3 Q. . "O“ U . “w ‘ a 1'. L A D - , t' j a |) --‘I . -' ‘_IO~ \ ' ' " v’ . fl 0 0 fi- _- ‘ ' ‘ v I .‘J )‘l 9’ g . 1 . o '7’ O I I ' 1‘ ' s} . .x- .i.l . 3 ' O Q .. . b .' . . .' I ' 7' r T? .L I l. ‘. ..L .2 . c ,0 .--.| L‘ o . o .. | 7. ' ‘ - .-.. 1' V‘d ‘0 ._. .. ., . L' --../L .. .. 0 . . r ‘ “ '* I-.' D - . " C . -.. , .. 'u'v-«t'f ‘ ,fi ‘* o . A .' . . .1 ‘ I" v“... . ‘\ l... .. u 2-1 a s O ' P " :‘ \’\‘ 'n’ . ~ , at». I“ 1 II. ..‘ - A . O .c . .‘v. b on! ..J- 1 v . _ .. _. .' A I 'J I L' . . " O ‘J . . a. g I T" . \ ‘ . 9 "‘-J. '7 01.. fi-. O r--. I 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. - 33 - G.D. Hangman, "fiendbcox of Chemistry and hhyeica", 38th ed., Chemical nabber Fablishing 00., Cleveland, Lhic, 1956. G. Chavanne and P. Becker, Bull. soc. chin. Belg., fig, 591 (1927). U. Pines, and V.K. Ipatieff, J. Am. Chem. Sac.,.§_, 1076 (1959}. C.H. Collins enc 3.4. ficmnend, J. erg. Chem.,.§§, 638 (1960). 3.0. Brown and 5.0. Fletcher, J. an. Chen. 500.,‘11, 1845 (1949). D. Perlmen, L. Eavideon and £.J. Bcgert, J. Org. Chem.,.1, 294 (1935). K.C. Brawn, h.8. Fletcher and 2.3. Johannese , J. in. Chem. noc., 1g, 212 (1951). D.N. mutthews and 1.1. Becker, J. Grg. 3hem.,‘§1, 1317 (1956). Eurkcwnikcw, Journal der Ruesichcn Physikaliech-cnemischen Gesellschaft,.§§, 370 (1999) [Eellctein.§,(1),ag7. A.F. Plate and 1.1. Eelinkcv, Ahur. Cbechei Khim., 29 1064 (1959). h. Ya. Levine and E.E. Mezcntscvc, P12. 1 Ehin.I:, $0.1, 205 (1936). Shem. Abstr.,.§§, 8977i (1988). J. Sorbett, Prchte ccnnunicctien. 1‘. .4 ‘3’ AK‘! .‘ I \ . . u. "a. w' ‘2 o k. _. .I Y‘ I \ m . u . I!“ .... 9 .1 ... 41. .... .2 I. - rd . 1 ll ,y p (v .. . A .1 .K ) v). ,5 .J . O ... . t ._ l. 4. q .. p . v t . a. . ... 1. - .. . T. . . .1 . 1 , I; . ll O. 29.! O 1 .l .- .7, ‘ \ ... .fL _ l. n In. . , A ‘o‘ a! c c CHLTHIDI. I HQRHR' M W