

# THE SYNTHESIS AND STUDY OF SOME SUBSTITUTED PHENYL W-(N, N-DIALKYLAMINO) ALKYL SULFIDES

Thesis for the Degree of M. S.

MICHIGAN STATE UNIVERSITY

Roger Allan Baldwin

1956

THESIS .

Alexandra Constitution

 $\wedge z^{i,d_i}$ 

# THE SYNTHESIS AND STUDY OF SOME SUBSTITUTED FHENTL (H. H-DIALKYLAMINO)

ALKYL SULFICES

By

Roger Allan Baldwin

### A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

Michigan State University East Lansing, Michigan 2/28/83

## ACK ROWLED CHEET

The author would like to express his sincere appreciation to

Doctor Robert D. Schuetz for his guidance and assistance throughout

the course of this work and during the preparation of this manuscript.

### TABLE OF CONTENTS

|                                                                                                | Page |
|------------------------------------------------------------------------------------------------|------|
| INTRODUCTION                                                                                   | 1    |
| orscherioa                                                                                     | 3    |
| exindimzemal                                                                                   | 15   |
| W(N.H-Dialkylamino) alkyl -o or p-substituted phenyl Sulfide Hydrochlorides and Hethyl Iodides | 15   |
| o- or g-Substituted Thipphenols                                                                | 37   |
| Y (M. M. Dialkylamino) alkyl Chloride Hydrochlorides                                           | 41   |
| ROMANY                                                                                         | ##   |
| SIBLIOTRATHY                                                                                   | 45   |
| FITA                                                                                           | 46   |

## LIST OF TABLES

| TABLE |                                                                                                          | Pace |
|-------|----------------------------------------------------------------------------------------------------------|------|
| ı.    | (N.N-Dialkylamino) alkyl -o or p-nostylaminophenyl sulfide quaternary methyl lodides or hydrochlorides . | 6    |
| II.   | W(N,N-Dialkylamino) alkyl -q or z-methoxyhenyl sulfide<br>hydrochlorides.                                | 7    |
| III.  | W(N. N-Malkylandno) alkyl -o or p-aldorophenyl sulfide hydrochlorides.                                   | 9    |
| IV.   | W(N, E-Malkylamino) alkyl -o or p-methylphanyl sulfide hydrochiorides.                                   | 10   |

# THE SYMPLESIS AND STUDY OF SOME SUBSTICUTED FRENTL $\omega$ -(E.M-DIALKTLANINO)

ALFTE TUEFINGS

By

Roger Allen Baldwin

AN ABSTRACT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

Year 1956

Approved

The present study deals with an investigation of substituted phenyl alkyl sulfides having a tertiary amine group on the terminal carbon of the alkyl chain. The study was undertaken since certain  $\omega(N,N-disubstituted amino)$  alkylyhenyl sulfides (1) and similarly related compounds (2.3) have been reported as useful local anesthetics.

Using a general procedure which involved the interaction, in an alkaline solution, of an g- or p-substituted thioghenol with an amino-alkyl chloride hydrochloride at the reflux temperature of the renction mixture for a two hour period resulted in the formation of a total of thirty previously unreported  $\omega$  (N.N-Disubstituted amino) alkyl-g or p- substituted thenyl sulfides.

$$+ cl(ch_2)_n R_2 \xrightarrow{R_1} R_2$$

The sulfides were characterised either as their hydrochloride salts or as their quaternary methyl indides.

The readily available aminoalkyl chloride hydrochlorides used for the preparation of the  $\omega$  (N,N-dialkylamino) alkyl moiety of the sulfides were  $\beta$  -disthylamino-thyl chloride,  $\delta$  -dimethylamino-thyl chloride,  $\delta$  -dimethylamino-thylathyl chloride,  $\delta$ -piperidino-appropriate chloride, and  $\delta$  -morpholino-appropriate chloride. The substituents on the beamene ring occupied positions either ortho or para to the sulfide linkage and included such atoms or groups as chloro-, methyl, amino, acetylamino, and methoxy.

### BIDLICORAIRY

- 1. M. H. Kim and R. D. Schuetz, J. Am. Chem. Soc., 74, 5102 (1952).
- 2. F. P. Luduena and J. O. Hoppe, J. Flarmacol. Exp. Therap., 104. 40 (1952).
- 3. E. Epstein and M. Heyer, J. Am. Chem. Soc., 77, 4059 (1955).

### INTRODUCTION.

The present study deals with an investigation of a series of new substituted phenyl alkyl sulfides having a tertiary asine group on the terminal carbon of the alkyl chain. This investigation was prompted first, by the report of Kim and Schuetz (1) that certainQ -(3.8-di-substituted saino)-alkyl-phenyl sulfides possess activity as local anesthetics; secondly, that derivatives of 2-alkoxy-4-suminobenzostes containing tertiary mitrogen groups (2) have been reported as excellent anesthetics and finally Epstein and Reyer (3) report that some- and dislikylassinosthyl exters of s-aminoalkoxybenzoic acids proved to be highly effective and non-irritating as local anesthetics with relatively low toxicities. As a consequence of these reports, it was anticipated that by varying the substituents on the benzene ring and, also, the tertiary amino group in the side chain of substituted though tertiary-aminoalkyl sulfides it should be possible to prepare conjounds exhibiting high anesthetic activity with low toxicity, and low irritation.

Only the pharmoological studies, which will be conducted by another group of investigators, and are thus not a part of this thesis can evaluate these compounds as local anesthetics.

Since amino- and alkoxyl- groups were prominent in the compounds shown by Epstein and Meyer to have local anesthetic properties, it was of interest to prepare a series of ortho- and pare- amino and alkoxyl substituted thicphenols for the purpose of converting them to substituted phenyl skyl sulfides. In addition, other ortho and pare substituted thicphenols containing methyl, chioro, and acetylamino groups

were used. The tertiary nitrogen containing alkyl groups used included, P-disthylamino, X-disethylamino-n-propyl, X-nethyl- $\beta$ -disethylamino-ethyl, X-piperidino-n-propyl, and X-sorpholiso-n-propyl. In general, the desired mixed sulfides were obtained as their hydrocaloride salts, but a few sere converted to their corresponding quaternery salts with methyl iodide.

#### DISCUSSION

There are two good general methods by which the desired  $\omega$  -(N,N-disubstituted meino) alich -2, m or p-substituted planyl sulfides could be prepared. These are indicated in the following equations.

Storting with a substituted thioghenol.

Or starting with a tertiary maine,

$$R_{2}^{\mathrm{HH}} + \mathfrak{A}(\mathfrak{G}_{2}^{\mathrm{H}})_{\mathbf{n}}^{\mathrm{CH}} \longrightarrow R_{2}^{\mathrm{H}}(\mathfrak{G}_{2}^{\mathrm{H}})_{\mathbf{n}}^{\mathrm{CH}} \longrightarrow R_{2}^{\mathrm{H}}(\mathfrak{G}_{2}^{\mathrm{H}})_{\mathbf{n}}^{\mathrm{CH}} \longrightarrow R_{2}^{\mathrm{H}}(\mathfrak{G}_{2}^{\mathrm{H}})_{\mathbf{n}}^{\mathrm{CH}}$$

The latter method was utilized due to the ready availability of the necessary aminoalkyl chlorides and since good yields of the sulfide were anticipated from the last step in this synthatic sequence.

Recorded in the literature are a wide variety of methods for preparing the substituted thiophenols meeded in the synthesis of the subetituted phenyl aminoalkyl sulfides. Bonleavy and Condit (4) prepared
aminophenylalkylamifides by the catalytic reduction, which they claimed
to be quantitative, of the corresponding nitro compounds using platinum

oxide and an initial hydrogen pressure of twanty-five pounds.

In a recent patent, q-asinothic phenol was prepared by the high pressure hydrogenation of mercaptobensethiazole using a cobalt sulfide extelyst (5).

Adinothiophenois were also prepared in a convenient method by Gilman and Gainer (6). In their method, an aqueous solution of the 1-chloro-2 or 4-nitrobanzene and sodium sulfide hydrate was refluxed for eight hours, followed by additioation which gave the animothio-phenois in good yields and this method was employed in present work.

In corrying out the interaction of the animothic phenole and Co(N, N-dialkylamino) alkyl dialkylamino) alkyl dialkylamino) alkyl cor p-amino phenyl sulfides, a nitrogen atmosphere was required since the aminothic phenole were readily exidized to their disulfides. In all but one case with sulfides of the type used, it was found that in order to obtain a crystalline hydrochloride derivative of the tertiary aminon kyl aminophenyl sulfides, it was necessary to acetylate the amino group. Three sulfides of this series were characterized as their quaternary methyl indide salt rather than as the hydrochloride salt. Five previously unreported Co(N, N-dialkylamino) alkyl -0 or p-scetylamino phenyl sulfides were prepared in this series, and their

properties are surmitted in Table I. In addition two GA (N.N-dialkylamina) alkyl-q-nainophenyl sulfides were prepared and their properties are surmarized in Table I.

The methoxythiophenois were prepared successfully employing the procedure of Suter and Hansen (7) although in low yields. In this method ortho or para anisidine was discotized and then treated with potassium ethyl xanthate. Alkaline hydrolysis of the xanthate followed by acidification, and then stemm distillation of the reaction sixture yielded the crude methoxythiophenol which was purified by distillation under reduced pressure.

The sodium salts of the methoxythiophenole on reaction with the  $\omega$  (N,N-dialkylamino) sikyl chlorides resulted in the synthesis of ten new  $\omega$  (N,N-dialkylamino) sikyl -q or p-methoxyphenyl sulfides. A few of the physical and chemical properties of these compounds are indicated in Table II.

TABLE L

C(N.M.Malkylamino) alkyl -g or g-acetyleminophenyl suifide quaternary methyl Iodiaes or hydrochlorides

|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                       |              |                                                   |            |                   | ABALL      | ABALYSOS &                      |                         |            |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|--------------|---------------------------------------------------|------------|-------------------|------------|---------------------------------|-------------------------|------------|
| grad<br>gar.          | Ę.v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F 3            | n.F.º6. Yeld          | Yield        | Formula                                           | စ်<br>ဗ    | Calculuted<br>W 8 | 9 <b>9</b> |                                 | Found<br>H              | 6/3        |
| -(012)2r(012013)2     | ٣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -NEGOR 155-6   | 155-6                 | ಸ            | 915 K25 318 21                                    | टेंच       | 6.2               | 7.85       | 144.2 6.2 7.85 144.25 6.71 7.55 | 6.71                    | 7.55       |
| -(512) 2M GE2 GE3 23. | A STATE OF THE PARTY OF THE PAR |                | -E 124-5.5            | <b>9•</b> ₹2 | 24.6 95112501E31                                  | 144.2      | ري<br>دي          | 7.85       | 141.2 6.2 7.85 141.7 6.11 7.88  | 6.11                    | 7.83       |
| -(CES) ACOR) W.       | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E HOUSE        | 100 H 198-PM          | Z            | 19 9 41230123I                                    | 15.7       | هر<br>ف           | 8-12       | 42.7 5.9 8.12 42.73 5.98 7.97   | 9.08                    | 16-1       |
| -(CE) 11(CE) 2.       | -138.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *              | -H 120-1              | 33.5         | 33.5 C12F21 WSI                                   | 0°Th       | 41.0 6.0 9.1      | 6.1        | 10.6 80.6 10.1st                | 8                       | 10-6       |
| -(2:2)3 J             | ##<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 4500 3 184-5 | 1814-5                | 35.2         | 35.2 615 23 0 Han                                 | 4.45       | 54.4 7.0 9.7      | 2.5        | 54.70 6.87 9.54                 | 13-9                    | 76.6       |
| -(325) 3 (0.2)        | S 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ni<br>I        | 195-200               | R            | C13 220723012 186.0 6.83 9.9                      | 0.84       | 6.83<br>5.83      | 9.9        | 26.14                           | 47.92 <b>6.</b> 58 9.53 | \$5<br>\$5 |
| -(32)34 D.4           | ir<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THE COLUMN     | -Prights 174-5-5-5 50 | Z            | മുപ് <sub>രു</sub> ന് <sub>മ</sub> യ ജം5 7.65 9.7 | 55.<br>5.5 | 7.65              | 1.6        | 9.6 19.1 45.25                  | 1.67                    | 9•6        |

a. Tustermery metry initiae calt. b. Erdroch orthe. c. Christochlor d. Secrystallized from isopropyl alcohol. c. Secrystallized from absolute attach. f. Becrystallized from mathomol.

TABLE II

U(W.M-Dinikylamino) alkyl -g or p-methonyphenyl sulfide hydrochlorides,

| p                 |       | •          |         |                | - A            |          |               | •       | or saskymay | 3     |            |
|-------------------|-------|------------|---------|----------------|----------------|----------|---------------|---------|-------------|-------|------------|
| <b>~</b>          | ę.    | e.         |         | 1818           | Pormula.       | 9        | H             | හ<br>ස් | ຍ           | Bunca | 69         |
| -(CR2)2W(CR2CR3)2 | -OOR3 | 7          | 127-9   | 43.5           | 92 PE22 ON SCA | 56.7     | 8.05          | 11.7    | 56.61       | 7.87  | 11.42      |
| -(cm2)2#(em2cm3)2 | ¥     | -OCEL      | 133-3-5 | 59             | 42H220H3C1     | 299      | 8.05          | 11.7    | 56.63       |       | 8.16 11.90 |
| -(CH2)3H(CH3)2    | -008  | *          | 113.4   | 8              | G12H220HSG1    | 55.0     | 7.7           | 12.2    | 54.94       | 7.72  | 12.22      |
| -(082)3N(083)2    | 4     | -OOK       | 130-1-5 | \$             | Cleren one a   | 55.0     | 1.1           | 12.2    | 55.8        | 7.73  | 12.18      |
| -(ale)3#00        | -00E3 | Ť          | 155-6   | 73.5           | 614F22028301   | ¥.5.4    | 53            | 10.5    | 55.67       |       | 7.37 10.45 |
| -(am2)3# 0 a      | int   | -0011      | 146.5-8 | 78             | C14E202H3C     | 12.66    | -             | 10.5    | 55.47       | 4.    | 10.7       |
| -(0ff2)3# B       | -008  | 4          | 150-1   | 63.5           | C, SF240HSQ1   | 9.69     | 0.            | 10.6    | 59.33       | 8 S   | 10.68      |
| -(CH2)3M          | BC    | -0013      | 128-9   | 73.5           | C15H24CHSO1    | 59.6 8.0 | 0.8           | 10.6    | 59.87       | 8.07  | 10.61      |
| CHI CHI)2         | per . | OCH        | 173-4-5 | 92             | o zhzodisci.   | 55.0 7.7 | 1.1           | 12.2    | 16.7 99.48  | 1.91  | 11.96      |
| CHOREN(OHy)2      | 100-  | 5 <b>7</b> | 110-2   | S<br>S<br>with | G-FE OFF       | 55.0     | 55.0 1.7 12.2 | 15.2    | 55.22 7.87  | 19.   | 12.10      |

The chlorothichenols could be prepared from the endocolorobensense through the S-aryl ethyl manthates as previously described for
the corresponding methacythic hences. Hosever, only the g-dilorothicphenol used in this work was prepared in this manner. Since the method
of Genear, Papart, and Kospill (8) give better yields, it was employed
for the preparation of g-chlorothic phenol. In this procedure, gchlorobenzenesulional chloride was reduced with sulfuric acid and sinc
lowder to give yields as high as 73 percent of g-chlorothic phenol.

Interaction of the sodium chlorothic henclates with ()(N, N-dialky leader) slkyl chlorides resulted in the preparation of nine ()(N, N-dialky leader) alkyl -Q or p-chlorophenyl sulfides which are not recorded in the chemical literature and data on some of their physical properties are summarized in Table III.

Further, reactions of several O(N, 3-dinky) axino skyl chlorides with g and g-mathylthic phenols in an alkalina reaction resulted in the preparation of an additional four previously undescribed O(N, N-dinky) axino akkyl g- or g-methylphenyl sulfides and these, as their hydrochloride salts, with a few of their ghysical properties are indicated in Table 17.

Using the excellent method of Advas and Whitmore (9). S-chloroproppl corpholine and piperidine were prepared from the interaction of trimethylene chlorobromide and morpholine or piperidine employing pure dry benzene, as a reaction medium. •

4.4.1

TABLE III

U(N.M-Dialkylamino) alkyl -o er p-chlorephenyl sulfide hydrechlorides

|          | ςu |    |   |
|----------|----|----|---|
| The same |    |    | 3 |
| - C      | =  | 7" | 4 |

|                         |          |      | •         |        |                |          |                 | Anel           | Analyses %       |                  | editarios de caracterista de |
|-------------------------|----------|------|-----------|--------|----------------|----------|-----------------|----------------|------------------|------------------|------------------------------|
| ď.                      | en<br>en | er . | M. W.     | 7101d  | Formula        | ອ        | Calculated<br>H |                | 9                | Found            | 60                           |
| -( 012) 2N( 012 013) 28 | 5        | to a | 148-9     | 83     | c, eH19#8an2   | 51.5     | 51.5 6.85 11.4  | 11.4           | 51.49            | 51.49 6.86 11.27 | 11.27                        |
| -(OB2)2N(CN2ON3)2*      | 7        | ទ    | 123-4-5   | 50     | C12H19HSCL2    | 51.5     | 51.5 6.85 11.4  | 11.4           | 51.28            |                  | 6.93 11.26                   |
| -(082) 311 (083) 8      | 5        | bu)  | 127-8     | 36.4   | Chily MSCh 2   | 19.6     | 19.6 6.45 12.0  | 12.0           | 19.72            | 45.9             | 11.95                        |
| -(022)3N(0H3)2          |          | 8    | 126.5-7.5 | R      | SIN FECTS      | 9-647    | 54.9 9.64       | 12.0           | 19.82            | 6.56             | 12.18                        |
| -(OH2) 2H Q B           | 6        |      | 147.5-8.5 | 98     | G3H190HSC12    | 50.6     | 50.6 6.2        | 10.4           | 50.68            | 50.68 6.46       | 10.21                        |
| -(CH2)31 B              | juj      | ថ    | 184.5-6   | ಟ      | chykleowsca.   | 50.6 6.2 | 2.9             | 10.4           | 50.44            | 6.24             | 10.42                        |
| -(01/2) 3/1 OB          | 5        |      | 148-9     | 52     | Cly Medie      | 55.0 6.9 | 6.9             | 10.5           | 55.0             | 1-38             | 10.26                        |
| -(CH2)3H                | bg       | 8    | 157-8     | 90.5   | 90.5 quezinsaz | 55.0 6.9 | 6.9             | 10.5           | 55.02 7.05       | 7.05             | 10.7                         |
| OH; b                   | ind<br>T | 6    | 90        | र्गञ्च | grantint       | 9.64     | 6.45            | 19.6 6.45 12.0 | 48.95 6.59 12.36 | 6.59             | 12.36                        |

Solvents for recrystallization: a - isopropyl alcohol, b - isopropyl alcohol and cyclohexene.

TABLE IV

U (N. M-Malkylamino) alkyl -g or p-methylphenyl sulfide hydrochlorides

|                       |          |      | •              |       |                          |               |          | A238.               | Analyses %   |       |                  |
|-----------------------|----------|------|----------------|-------|--------------------------|---------------|----------|---------------------|--------------|-------|------------------|
| 1                     | 2        | 72   | M.P. Cc. Yield | Yield | Formula                  | 0             | alon!    | Calculated<br>G H S | Found<br>C H | Found | en en            |
| -(GH2)2H(GH2GH3)2 -1  | <b>*</b> | -083 | 150-1          | 66    | O. FREEFISCA             | 60.0          | 80<br>10 | 60.0 8.5 12.2       | 90.09        | 8.51  | 60.08 8.51 12.23 |
| -(CH2)24(CH2CH3)2 -CH | 3        | =    | 154-5          | 25    | d, yazzusa               | 0.09          | 80<br>10 | 60.0 8.5 12.2       | 60.15        | 8.46  | 60.15 8.46 12.07 |
| -(cm2)3H 0            | ×        | -081 | 168.5-         | 2     | Courses and Courses      | 58.4 7.7 11.1 | 1:1      | 11.11               | 58.6         | 7.61  | 10.11 13.1 3.85  |
| -(GE)3E               | 3        | H    | 6-191          | 2     | 94H2208501 58.4 7.7 11.1 | 500           | 1.1      | 11.1                | 55.47        | 3.1   | 58.47 7.60 10.93 |

a - recrystallized from isoproply alcohol.

These chlorides could have also been prepared by the more drawn out method of first preparing the alcohol from the chlorohydrin (10), by treating the latter with an appropriate secondary swine, and then converting the alkanolasine to its corresponding chloride by means of thionyl chloride in anhydrous chloroform (11), as a reaction media.

The general method employed in the synthesis of the substituted planyl tertiarymnino sulfides from the dialkylamino-alkyl chlorides and substituted planylthiol was carried out in the following sammer. The substituted anyl merosytum was dissolved in sufficient sodium hydroxide to neutralize both it and the (4) (3,%-dialkylamino) alkyl chloside hydrochloride. The alkaline solution of the merosytide was heated to its reflux temperature and a water solution of the dialkylamino alkyl chloride hydrochloride salt was added dropulse. Since methoxy-and smino-substituted thiophenols exidize readily in base, reactions involving such compounds were carried out in a nitrogen atmosphere. Following the addition of the aqueous amine hydrochloride solution, the reaction mixture was kept at its reflux temperature for two hours, after which it was allowed to cool to room temperature. The city layer which had formed was extracted with three portions of other and the combined other extracts were washed with ten percent sodium hydroxide,

then with water, followed by drying over anhydrous magnesium sulfate. The other solution of the sulfide was filtered, cooled in an ice bath and then enturated with dry hydrogen chloride gas. The resulting hydrochloride salt of the sulfide was collected by filtration and the ether filtrate was tested for complete removal of the amino sulfide by passing additional hydrogen chloride gas into the other filtrate. Isopropyl alcohol was used to recrystallize the hydrochloride salt generally.

In preparing the quaternary methyl indide salts of the amino sulfides, the other was removed by evaporation and the resulting dry city amine sulfide was treated with methyl indide. Methyl or ethyl alcohol was the solvent used to purify these compounds by recrystallization.

we difficulties were encountered in the reactions of β-diethylamino-n-propyl chloride, β-morpholino-n-propyl chloride, γ-morpholino-n-propyl chloride, er β-piperidino-n-propyl chloride with the substituted anyl merceptans. However, the reactions of β-methyl-β-dimethylaminosthyl chloride in alkaline media could very likely have resulted in the formation of two isomeric sulfities. It is known, for example, that 1-diethylamino-2-chloropropane hydrochloride yields the rearranged product, 2-diethylamino-1-propanol, upon basic hydrolysis(12).

This rearrangement is an example of participation by a neighboring group, the nucleophilic amino group, in a displacement reaction. The initial step in the mechanism of this type of reaction is a preliminary

intramolegular displacement reaction or ionization effected by the nucleophilic nitrogen to force a cyclic onium salt (13).

In the case of dimethylaminoisopropyl chloride, this would yield the intermediate.

Attack by a micleoghlic ion would very probably occur at the least substituted carbon(1) due to the inductive effect of the methyl group to give the rearranged product. However, if the initial step in the formation of cyclic ethylene ininonium ion is a reversible process.

due to internal nucleophilic attack by the G-assime group and the product step is also a reversible attack by a nucleophilic thickate ion then the above equilibrium scheme would be obtained due to the principle of microscopic reversibility and the product isolated would be the most thereodynomically stable.

Evidence for a mixture of products was indicated by the fact that it was difficult or impossible in some cases to obtain a crystalline

product with a sharp melting point. A broad melting range was found in several preparations after repeated recrystallizations from various solvent combinations. At the present time, it is not known which isomer predominates or if there is actually a mixture indeed.

#### EXPERT HERMAL

## (M.N-Dielkylamino) alkyl -o or p-substituted phenyl Sulfide Hydrochlorides and Methiodides

3 -Diethylaminoethyl-o-chlorophenyl sulfide hydrochloride

Into a three-necked 500 ml flask equipped with a reflux condenser, stirrer, and dropping funnel was poured 22 g. (0.15 mole) of g-chloro-thiophenol dissolved in a solution containing 20 g. of sodium hydroxide in 50 ml. of water. To this was added dropwise from the dropping funnel 18 g. (0.1 mole) of disthylaminosthyl chloride hydrochloride dissolved in 100 ml. of water. The stirred reaction solution was held at its reflux temperature during this addition and then for an additional two hours, at the end of which time a light yellow oil had separated. The oil was removed and the aqueous layer was extracted three times with 100 ml. portions of other. The combined other extracts and oil were washed with 100 ml. of a 5 percent sodium hydroxide solution and then with 100 ml. of distilled water. The other was dried over anydrous sodium sulfate.

After drying, the other solution of aminosulfide was filtered into a dry three-necked 500 ml. flack fitted with a stirrer, condenser, and a delivery tube for admission of dry hydrogen chloride gas. After cooling in an ice bath, hydrogen chloride was bubbled slowly through the stirred ether solution. The white hydrochloride was removed by suction filtration and the filtrate tested with additional gaseous

•

•

. .

•

•

hydrogen chloride for completeness of reaction. After recrystallization from isopropyl alcohol, 23.3 g. (0.05) moles, 635 yield) of a white crystalline material which melted at 148-9°C, were recovered. Analysis of the compound for carbon, hydrogen, and sulfur gave the following results:

Calculated for C<sub>12</sub>H<sub>19</sub>FNCl<sub>2</sub>: E, 6.85; C, 51.5; S, 11.4.
Found: E, 6.86; C, 51.49; S, 11.27.

G-Methylaminoethyl-p-oblorophenyl sulfide hydrochloride

Following the procedure described above, 22 g. (0.15 mole) of p-chlorothiophenol dissolved in 80 ml. of water containing 20 g. of sodium hydroxide were treated with a solution of 15 g. (0.1 mole) of distipleninesthyl chloride hydrochloride in 100 ml. of distilled water. The reddish-yellow oil was treated as in the previously described preparation of the g-chloro isomer. The white hydrochloride which melted at 183-124.5°C., was recreatedlized from dry isopropyl alcohol and weighed 21.6 g. (0.075 mole, 78% yield). Analysis of the compound for carbon, hydrogen, and sulfur gave the following results:

Calculated for  $C_{12}H_{19}HSCI_{2}$ : E. 6.85; C. 51.5; S. 11.4. Found: E. 6.93; C. 51.28; S. 11.26.

6-Diethylaninosthyl-p-sethoxyphenyl sulfice hydrochloride

Using 20 g. (0.143 mole) of p-zethoxythiophenol dissolved in 100 zl. of zl. of 20 percent by weight aqueous sodium hydroxide, and 100 zl. of a water solution containing 23 g. (0.134 mole) of disthylaminosthylechloride hydrochloride and following the experimental procedure described above, there was obtained 25.6 g. (0.093 mole, 63% yield) of a white hydrochloride. The latter material was recrystallized from isopropyl alcohol and had an observed matthy point of 132-133.5°C. Analysis for carbon, hydrogan, and salthy gave the following datas

Calculated for C<sub>12</sub>H<sub>22</sub>NGCCl: C, 56.7; H, 8.05; S, 11.7. Found: C, 56.63; H, 8.16; S, 11.50.

B-Diethylaminoethyl-o-methoxyphanyl sulfide hydrochloride

resulting from 20 g. (0.1%3 mole) of Q-methoxythiophenol being placed in 100 ml. of 20 percenty by weight aqueous sodium hydroxide, was added 23.5 g. (0.136 mole) of disthylaminosthylchloride hydrochloride dissolved in 100 ml. of water. After carrying out the reaction as described above, a yellow oil separated. The crude hydrochloride, 16.3 g. (0.059 mole, 43.5% yield) on recrystallization from isopropyl alcohol, separated from solution as a gum which was crystallized by stirring in an ice bath. Its melting point was 127-9°C. Analysis for carbon, hydrogen, and sulfur gave the following resultes

 $(\mathbf{r}_{i}, \mathbf{r}_{i}, \mathbf{r$ 

.

•

.

.

•

Coloniated for 012H22CONO1: C. 56.7; H. 8.05; S. 11.7. Found: C. 56.61; H. 7.87; S. 11.42.

B-Diethylaminosthyl-p-nostylaminophenyl sulfide methyl icdide

To a solution made by dissolving 12.5 g. (0.1 mole) of g-aminothiophenol in 100 ml. of 20 percent by weight aqueous sodium hydroxide and
contained in a 500 ml. flask fitted with stirrer, reflux condenser,
dropping funnel, and a nitrogen gas delivery tube was added 15.5 g.
(0.095 mole) of disthylaminosthyl chloride hydrochloride dissolved in
100 ml. of water. The stirred reaction mixture was mildly heated for
a four hour period while a gentle stream of nitrogen gas was bubiled
through it. Shen the reaction mixture had cooled to room temperature
it was extracted with three 100 ml. portions of other. The combined
other extracts were washed with 100 ml. of 10 percent sodium hydroxide
and then with 100 ml. of water after which the other solution was dried
over anhydrous codium sulfate, and filtered.

After removal of the other by evaporation 20 ml. (0.20mole) of acetic anhydride was added to the residual oil. The remotion mixture was bested to its bailing point and them poured into water. The resulting solution was made slightly basic with sodius hydroxide causing an oil to separate which was extracted with other and dried over analydrous magnesium sulfate.

The other solution after decentation from the drying agent and treatment with dry hydrogen chloride gas resulted only in the formation of a non-crystelline guasay product. This susterial was neutralized with 10 percent sodium hydroxide, dissolved in other, washed with unter and then dried over anhydrous unquestum sulfate.

The other was removed by evaporation and the free sains was treated with methyl folide to yield a brown solid which on recrystal-limition from absolute ethanol yielded 5.2 g. (0.03 male, 215 yield) of the quaternary methyl iodide salt which melted at 155-6°C. Analysis for perbon hydrogen, and sulfur gave the following resultes

Calculated for C<sub>15</sub>H<sub>25</sub>M<sub>2</sub>OI: H. 6.2; C. W.2; S. 7.85. Found: H. 6.31; C. W.25; S. 7.55.

B-Methylaminosthyl-q-acetylaminophenyl sulfide methyl iodide

Following the method of the previous preparation, a 100 ml. aqueous solution containing 16.5 g. (0.095 mole) of disthylaminosthyl chioride hydrochloride was added to a refluxing solution of 12.5 g. (0.1 mole) of g-aminothiophenol dissolved in 100 ml. of 20 percent by weight aqueous sodium hydroxide. The resulting oily amine, after isolation, was acetylated by means of 20 ml. of acetic anhydride and then converted to its quaternary salt with methyl indide to yield, after several recrystalligations from absolute ethanol, 10 g. (0.0245 mole, 24.64 yield)

of white product which melted at 124-25.5°C. Analysis for carbon, hydrogen, and sulfur gave the following results:

Calculated for C<sub>15</sub>H<sub>25</sub>SN<sub>2</sub>OI; H, 6.2; C, 44.2; S, 7.85. Found: H, 6.11; C, 44.7; S, 7.88.

8 -Diethylaminoethyl-p-methylphenyl sulfide hydrochloride

Following the experimental method previously described, 17 g.

(0.1 mole) of \$\beta\$-disthylaminosthyl chloride hydrochloride dissolved in 100 mb. of water was added to 12.4 g. (0.1 mole) of p-toluenethicl dissolved in 100 ml. of 20 percent by weight aqueous sodium hydroxide. Beating this reaction mixture at its reflux temperature in a nitrogen atmosphere gave an insoluble, yellow oily amine. Following the usual separation and conversion to a hydrochloride salt resulted in 23.2 g. (0.089 mole, 89% yield) of the hydrochloride which was obtained as white needles after recrystallization from isopropyl alcohol. The product melted at 120-1°C. The following data was obtained by analysis for carbon, hydrogen, and sulfur:

Calculated for C<sub>13</sub>H<sub>22</sub>SHCl: C. 60; H. 8.5; S. 12.2. Found: C. 60.08; H. 8.51; S. 12.23.

@ -Diethylaminoethylamethylphenyl sulfide hydrochloride

.

•

•

;

. .

•

•

•

.

•

A STATE OF THE STATE OF

ŧ

To 12.4 g. (0.1 mole) of q-toluenethiol dissolved in 100 ml. of water containing 20 g. of sodium hydroxide was added 17 g. (0.1 mole) of β-disthylaminosthylchloride hydroxhloride dissolved in 100 ml. of water. After the reaction mixture had been refluxed under nitrogen for two hours, a yellow colored insoluble oil sopureted from the reaction mixture. From this city unterial, by following the previously described method of isolution and spine solt formation there was obtained 18.7 g. (0.072 mole, 724 yield) of a white hydroxhloride of the smine sulfide which on recrystallization from isoprepyl alcohol melted at 154-155.5°C. Analysis for carbon, hydrogen and sulfur gives the following results:

Calculated for C<sub>13</sub>H<sub>22</sub>CMCL: C, 60; E, 8.5; S, 12.2. Found: C, 60.15; H, 8.46; S, 12.07.

Y-Disethylamino-m-propyl-g-chloroghenyl sulfide hydrochloride

From 13 g. (0.09 mole) of q-chlorothiophenol dissolved in 100 ml. of 20 percent by weight aqueous codius hydroxide and adding to it 14 g. (0.088 mole) of 7 -dimethylaminopropyl chloride hydrochloride dissolved in 100 ml. of water, there was obtained an insoluble oil after a two hour reaction period at the reflux temperature of this mixture. The oily asine was converted to its hydrochloride and the latter on recrystallization from isopropyl alcohol, gave a white crystalline product which weighed 5.5 g. (0.032 mole, 36.46 yield)

and melted at 127-5°C. The following data was obtained by analysis for carbon, hydrogen, and sulfurs

Calculated for C<sub>11</sub>H<sub>17</sub>HSCl<sub>2</sub>: C, 49.6; H, 6.45; S, 12.0. Found: C, 49.72; H, 6.5h; S, 11.95.

X-Dimethylamino-n-propyl-p-chlorophenyl sulfide hydrochloride

Interaction of 14.5 g. (0.1 mole) of p-chlorothiophenol dissolved in 100 ml. of water containing 20 g. of sodium hydroxide with 15.8 g. (0.1 mole) of X-dimethylamino-m-propyl chloride hydrochloride in 100 ml. of water resulted in the formation of an oily smine after a reaction period of two hours at the reflux temperature of the reaction mixture. Reaction of the amine in other with gaseous hydrogen chloride gave 18.9 g. (0.071 mole, 71% yield) of a pure white hydrochloride product melting at 126.5-127.5°C. after recrystallization from iso-propyl alcohol. Analysis of the compound for carbon, hydrogen, and sulfur gave the following data:

Calculated for C<sub>11</sub>H<sub>17</sub>NSCl<sub>2</sub>: C, 49.6; H, 6.45; S, 12.0. Found: C, 49.82; H, 6.56; S, 12.18.

X-Dimethylemino-n-propyl-p-methoxyphenyl sulfide

:

• • •

•

•

• • • • •

4.4

of water containing 20 g. of sodium hydroxide was added 22 g. (0.14 mole) of 8-dimethylamino-p-propylabloxide hydrochloride contained in 100 ml. of water. The nature separated as an oil after two hours of heating at the reflux temperature of the reaction mixture. Conversion of the smine to its hydrochloride as previously described gave. 25.2 g. (0.096 mole, 69% yield) of the hydrochloride which melted at 130-131.5°C. after recrystellization from isopropyl alcohol. Analysis for carbon, hydrogen, and sulfur gave the following datas

Odculated for  $q_{12}R_{20}$  NEOCL: C. 55.0; H. 7.7; S. 12.2. Found: C. 55.25; E. 7.73; S. 12.18.

of -Mrathylamine-n-propyl-o-methoxyghanyl sulfide hydrochloride

The addition of 21 g. (0.134 mole) of Y-dimethylamino-m-propyl chloride hydrochloride dissolved in 100 ml. of water to 20 g. (0.143 mole) of Q-methoxythiophenol which had previously been dissolved in 100 ml. of water containing 20 g. of addime hydroxide resulted in the formation of a pink oily layer after a two hour reaction period at the reflux temperature of the reaction mixture. Solution of the smine and conversion of it to its hydrochloride followed by recrystallization of the latter from isogropyl alcohol yielded 15.3 g. (0.07 mole, 525 yield) of a pure product which melted at 113-400. Analysis for

carbon, hydrogen, and sulfur gave the following results:

Calculated for Cl24ggmacate C, 55.0; F, 7.7; S, 12.2.

Found: C, 54.44; H, 7.72; S, 12.22.

X-Dimethylamino-n-propyl-q-aminophenyl sulfide methyl iodide

Prom 12.5 g. (0.1 mole) of g-aminothisphenol dissolved in 100 ml. of 20 percent by weight aqueous sodium hydroxide and adding to this solution 15 g. (0.095 mole) of J-dimethylamino-n-propylchloride hydrochloride in 100 ml. of water, under an atmosphere of nitrogen yielded an oily amine after heating the reaction mixture at its reflux temperature for two hours. The oil was extracted with other and dried over anhydrous magnesium sulfate.

After removal of the ether by evaporation, the residual oil on reaction with methyl indide resulted in a yellow solid, which on recrystallization from absolute ethanol gave 11.2 g. (0.032 mole, 33.5% yield) of a white crystalline product have a melting point of 120-100. Analysis for carbon, hydrogen, and sulfur gave the following results:

Calculated for C12H21K2SI: C, 41.C; H, 6.0; S, 9.1.

Founds C. 41.01; E. 6.08; 3, 9.01.

&-Dimethylamino-m-propyl-p-acetylaminophenyl sulfide methyl iodide

Employing the previously described procedure, 12.5 g. (0.1 mole) of p-sminothiophenol dissolved in a 100 ml. of 20 percent by weight aqueous sodium hydroxide were allowed to react with 15 g. (0.095 mole) of d'adiusthylamino-m-propylchloride hydrochloride, added to the basic arylmercapten solution, in the form of a 100 ml. aqueous solution. The liquid dismine obtained from the other extract was acylated by heating it with 20 ml. (0.2 mole) of acetic anhydride and then the reaction mixture was poured into 500 ml. of water. Neutralization of this solution with 100 sodium hydroxide resulted in the separation of an oily material which after isolation and drying reacted vigorously with methyl iodide to give a white solid quaternary salt that recrystallizes easily from mathanol. The quaternary salt, 15.3 g. (0.0465 mole, 194 yield), melte at 195-200°C, and tended to turn yellow on standing.

Calculated for C14H23SH20I: C. 42.7: H. 5.9: S. 8.12. Found: C. 42.73: H. 5.98: S. 7.97.

V-Morpholino-n-proppi-q-chlorophenyl sulfide hydrochloride.

The addition to a solution containing 11 g. (0.076 mole) of goodhiorethiophenol, 100 ml. of water, and 15 g. sodium hydroxide, of 14.6 g. (0.075 mole) of 8 -morpholino-n-propylchloride hydrochloride discolved in 100 ml. of water resulted in the segmention of an oily smine after a two hour period of heating at the reflux temperature of the

reaction mixture. Treatment of the city mains, dissolved in dry ether, with gaseous hydrogen chloride produced a gam which solidified on being set aside for sometime. This material yielded, after recrystal-lization from isopropyl alcohol, 19.4 g. (0.063 mole, 86% yield) of a hydrochloride with a melting point of 147.5-148.5°C. Analysis for carbon, hydrogen, and sulfur gave the following datas

Calculated for  $C_{13}H_{19}MOSCI_{2}$ : C. 50.6; H. 6.2; S. 10.4. Found: C. 50.68; H. 6.46; S. 10.21.

8-Morpholino-n-propyl-g-chlorophenyl sulfide hydrochloride

The addition of 15 g. (0.075 mole) of 8 morpholino-n-propyl chloride hydrochloride dissolved in 100 ml. of water to 11 g. (0.076 mole) of p-chlorothiophenol in a solution of 13 g. of sodium hydroxide and 100 ml. of water followed by heating the reaction mixture at approximately 100°C. for two hours, resulted in the formation of an insoluble oil. After separation as previously indicated and conversion to the hydrochloride salt, there was obtained 18.6 g. (0.0605 mole, 81% yield) of product which was rather insoluble in isopropyl alcohol. The crystalline hydrochloride melted at 184.5-186°C. The following data was obtained by analysis for carbon, hydrogen, and sulfurs

Calculated For C<sub>13</sub>H<sub>19</sub>NO3CL<sub>2</sub>: C. 50.6; H. 6.2; S. 10.4. Founds C. 50.44; H. 6.24; S. 10.42. .

;

•

•

X-Morpholine-n-propyl-g-methoxyphenyl sulfide hydrochloride

The quantity, 21 g. (0.105 mole) of X-marpholino-p-propyl chloride hydrochleride contained in 100 ml. of water was added to 15 g. (0.107 mole) of q-methoxythiophemol dissolved in a solution prepared from 20 g. sodium hydroxide and 100 ml. of water. Following the previously described general procedure, 23.3 g. (0.77 mole, 73.5% yield) of a white crystalline hydrochloride was obtained which after recrystallization from isopropyl alcohol melted at 155-6°C. The following data was obtained by analysis for carbon, hydrogen, and sulfure

Calculated for C14H22O2H3CL: C. 55.4; H. 7.3; S. 10.5. Found: C. 55.67; H. 7.37; S. 10.45.

X-Morpholino-m-propyl-g-methoxyphenyl sulfide hydrochloride

Following the procedure employed above, 18 g. (0.09 mole) of Semorpholino-m-propylebloride hydrochloride contained in 100 ml. of water was added to a refluxing solution of 13 g. (0.093 mole) of peresthonythiophenol dissolved in 100 ml. of water containing 12 g. of sodium hydroxide. The hydrochloride, prepared as described previously, weighed 21.3 g. (0.07 mole, 78% yield) and was found to melt in the range of 146.5-148°C. Isopropyl alcohol was used to recrystallize

• • • • 

the compound. Analysis for earbon, hydrogen, and sulfur gave the following results:

Calculated for C14H22O2H3CL: C, 55.4; H, 7.3; 5, 10.5.
Found: C, 55.47; H, 7.34; S, 10.7.

8 -Morpholino-n-propyl-q-methylphenyl sulfide hydrochloride

From 12.4 g. (0.1 mole) of q-toluenethiol dissolved in 100 ml.

of 20 percent by weight aqueous sodium hydroxide and adding to it 20 g.

(0.2mole) of N-morpholino-n-propylchloride hydrochloride in 100 ml.

of water, a colorless oil was obtained after two hours heating at the
reflux temperature of the reaction mixture. The oily amine was purified and converted to its hydrochloride which had a pink color. This
crystalline hydrochloride after being dissolved in isopropyl alcohol,
treated with Horite A and allowed to crystalline gave 16.9 g. (0.059

mole, 59% yield) of white product in the form of needles which melted
at 167-9 C. A mixed melting point of this material with the starting
halide, X-morpholino-n-propylchloride, with which it was similar in
appearance, was found to be in the range 125-135 C. which showed they
were not identical. Analysis of the product for carbon, hydrogen, and
sulfur gave the following data:

Colouisted for C14H22H3OC1: C, 58.4; F. 7.7; S, 11.1. Found: C. 58.47; H. 7.60; S. 10.93.

X -Morpholino-n-propyl-p-methylphonyl sulfide hydrochloride

toluenathiol, 100 ml. of water, and 20 g. of sodium hydroxide was added 20 g. (0.1 mole) of 8-morpholino-n-propyl chloride hydroxide was added 20 g. (0.1 mole) of 8-morpholino-n-propyl chloride hydroxhloride dissolved in 100 ml. of water. The oil which separated after a two hour reaction period was purified and converted, in the general manner employed above, to a slightly pink colored hydroxhloride which after being dissolved in hot isopropyl alcohol, treated with Forite A, and allowed to crystallize gave 22.4 g. (0.78 mole, 78% yield) of a pure product with a melting point of 168.5-169.5°C. A mixed melting point of this material with its ortho isomer depressed the melting point ten degrees. Analysis for carbon, hydrogen, and sulfur gave the following datas

Calculated for C<sub>14</sub>H<sub>22</sub>HHOCl: C, 58.4; H, 7.7; S, 11.1. Found: C, 58.6; H, 7.61; S, 11.01.

X-Morpholino-n-propyl-p-acetylaminophenyl sulfide hydrochloride.

A 100 ml. aqueous solution containing 19 g. (0.095 mole) of —morpholino-n-propyl chloride hydrochloride was added to a refluxing solution prepared from 12.5 g. (0.1 mole) of p-aminothiophenol, 100 ml. of water and 20 g. of sodium hydroxide. The resulting insoluble oily

ether and dried over anhydrous sodium sulfate. After the other was removed by evaporation, acetic anhydride was added to the amine and the mixture was warmed almost to its boiling point and then poured into water. The resulting solution was neutralized with 10% sodium hydroxide and the solid which precipitated was recovered by suction filtration. The noetylated amine after recrystellization from isogropyl alcohol melted at 98.5-99.5°C. Analysis for carbon, hydrogen, and sulfur gave the following data:

Calculated for 0<sub>15</sub>H<sub>22</sub>H<sub>2</sub>SO<sub>2</sub>: C, 61.6; H, 7.55; S, 10.9. Found: C, 61.4; H, 7.57; S, 10.84.

The free amine was dissolved in other and hydrogen chloride gas was passed through the solution resulting in the formation of 11 g. (0.034 mole, 35.25 yield) white, other insoluble hydrochloride. The hydrochloride, after being recrystallized from isopropyl alcohol, melted at 184-500. Analysis for carbon, hydrogen, and sulfur gave the following data:

Calculated for C<sub>15</sub>H<sub>23</sub>N<sub>2</sub>90<sub>2</sub>CL: C, 54.4; H, 7.0; S, 9.7. Found: C, 54.70; H, 6.87; S, 9.54.

8-Merpholino-n-propyl-g-aminophenyl sulfide dihydrochloride

A 19 g. quantity (0.095 mole) of 8-morpholino-n-propyl chloride bydrochloride discolved in 100 ml. of water was added to a solution

•

.

.

. . .

prepared by dissolving 12.5 g. (0.1 mole) of o-aminothiophenol in 100 ml. of 20 percent by weight aqueous sodium hydroxide. After a two hour reaction period, under a nitrogen atmosphere, the reaction mixture yielded an insoluble oily amine. The oil was separated, dried, and converted to its hydrochloride in the manner described above to give 9.6 g. (0.029 mole, 31% yield) of a white hydrochloride. The pure product, obtained by recrystallization of the hydrochloride from ethanol, melted at 198-200°C. Analysis for carbon, hydrogen, and sulfur gave the following data:

Coloulated for C13H22OH2SC12: C. 48.0; H. 6.83; S. 9.9.

Pound: C. 47.92; H. 6.88; S. 9.88.

X-Piperidino-n-propyl-p-chlorophenyl sulfide hydrochloride

The quantity, 14.1 g. (0.071 mole), of a piperidino-n-propyl chloride hydrochloride dissolved in 100 ml. of water was added to a well-stirred solution, at its reflux temperature, of 10.5 g. (0.073 mole) of p-chlorothiophenol dissolved in a solution of 100 ml. of water and 15 g. of sodium hydroxide. The reaction was complete at the end of two hours. After the usual experimental operations employed above, the crude hydrochloride was recrystallized from iso-propyl alsohol. The product weighed 19.7 g. (0.645 mole, 90.5% yield) and had a melting point of 157-158°C. The analysis of the compound for carbon, hydrogen, and sulfur gave the following data:

Calculated for C<sub>14</sub>H<sub>21</sub>MSCl<sub>2</sub>: C. 55.0; H. 6.9; S. 10.5. Found: C. 55.02; H. 7.05; S. 10.7.

X-Piperidino-n-propyl-q-chlorophenyl sulfide hydrochloride

The addition, over a two hour period, from a dropping funnel of 15.3 g. (0.078 mole) of 3-piperidino-n-propyl chloride dissolved in 100 ml. of water to a stirred refluxing solution of 11.4 g. (0.079 mole of g-chlorothiophenol dissolved in 100 ml. of water containing 15 g. of sodium hydroxide resulted in the separation of an insoluble oily amine. The hydrochloride was prepared from this amine in the manner used above followed by its recrystallimation from isopropyl alcohol. The pure crystallime hydrochloride weighed 12 g. (0.039 mole, 55% yield) an melted at 146-9°C. Analysis of the compound for carbon, hydrogen, and sulfur gave the following data:

Calculated for C<sub>14</sub>H<sub>21</sub>HSCl<sub>2</sub>: C, 55.0; H, 6.9; S, 10.5. Found: C, 55.0; H, 7.38; S, 10.26.

X-Piperidino-n-propyl-p-acetylaminophenyl sulfide hydrochloride.

The addition of a 100 ml. aqueous solution containing 19 g. (0.095 mole) of Z-piperidino-n-propylchloride hydrochloride to a stirred

.

•

refluxing solution of 12.5 g. (0.1 mole) of g-aminothiophenol dissolved in 100 ml. of water and 20 g. of sodium hydroxide resulted in the formation of an insoluble oily amine. To prevent oxidation of the amine sulfide the reaction was carried out under a nitrogen atmosphere. The other extracts of the reaction mixture were dried and the other was removed by evaporation. The residual free amine was treated with 20 ml. (0.2 mole) of acetic anhydride, warmed to boiling, and poured into water. The resulting solution was neutralized with 10% codium hydroxide and the solid hydrochloride which formed was recovered by filtration, dissolved in other, and on treatment with hydrogen chloride gas gave a gum which solidified on being set aside for some time. The hydrochloride was recrystallized from isopropyl alcohol, had a melting point of 174.5-175.5°C, and weighed 16.2 g. (0.46 mole, 50% yield). Analysis for carbon, hydrogen, and sulfur gave the following datas:

Calculated for C<sub>16</sub>H<sub>25</sub>H<sub>2</sub>OSCl<sub>1</sub> C. 58.5; H. 7.65; S. 9.7. Found: C. 58.54; H. 7.67; S. 9.66.

X-Fiperidino-n-propyl-p-methoxyphenyl sulfide hydrochloride

The interaction of 20.7 g. (0.105 mole) of Jepiperidino-nepropyle chloride hydrochloride contained in 100 ml. of water with 15 g. (0.107 mole) of pemethoxythiophenol dissolved in 100 ml. of water and 20 g. of sodium hydroxide resulted in the formation of an amine which separated as an insoluble oil. The amine, dissolved in dry other, was

converted to its hydrochloride with greeous hydrogen chloride. It malted at 128-29°C. after being dissolved in hot isopropyl alcohol, treated with Morite A, and allowed to crystallize. The amount of pure hydrochloride product obtained was 23.3 g. (0.077 mole, 73.5% yield). Analysis for cerbon, hydrogen, and sulfur gave the following data:

Calculated for C<sub>15</sub>H<sub>24</sub>NOSCL: C, 59.6; E, 8.0; S, 10.6. Found: C, 59.87; F, 807; S, 10.81.

8-Fireridino-n-propyl-q-methoxyphenyl sulfide hydrochloride.

The experimental procedure utilized in the synthesis of this material was the same as that used in the previous preparations. The quantity, 15 g. (0.107 mole), of q-methoxythiophenol dissolved in 100 ml. of water and 20 grams of sodium hydroxide was allowed to react with 20.5 g. (0.104 mole) of 5 -piperidine-n-propylchloride hydrochloride, added to the reaction flank as a 100 ml. aqueous solution, to yield an oily, insoluble amine. This on conversion to its hydrochloride in the usual manner separated from the other solution as a gua which later solidified on being set aside for some time. The crude product on recrystallization from isopropyl alcohol gave 26.2 g. (0.087 mole, 63.5% yield) of a pure hydrochloride melting at 150-16C. Analysis for carbon, hydrogen, and sulfur gave the following data:

Calculated for C<sub>15</sub>H<sub>25</sub>HOSCl: C, 59.6; H, 8.0; S, 10.6. Found: C, 59.33; H, 8.24; S, 10.66.

. r

&\_Methyl-β-disethylaminosthyl-p-nethoxylhenyl sulfide hydrouhloride

This compound, as the free amine, was obtained by the gradual addition of a solution of 22 g. (0.14 mole) of dimethylaminoisopropyl-chloride hydrochloride in 100 ml. of water to a stirred refluxing solution prepared from 20 g. (0.143 mole) of pumbhoxythiophenol, 100 ml. of water, and 20 g. of sodium hydroxide. The initial attempt to prepare the hydrochloride resulted in the formation of an uncrystallisable gum. The gum was dissolved in 15 percent sodium hydroxide and the aqueous solution was extracted with other and dried over anhydrous sodium sulfate. The other solution was filtered and hydrogen chloride gas was bubbled through to form a gummy hydrochloride which solidified on being set maids for some time. The product after five recrystal-lixations from isopropyl alcohol weighed 13.2 g. (0.051 mole, 365 yield) and had a melting point of 173-174.5°C. Analysis for carbon, hydrogen, and sulfur give the following datas:

Calculated for  $C_{12}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_{20}H_$ 

imes-Wethyl-heta-dimethylaminoethyl-q-methoxyjhenyl sulfide hydrochloride

Following the previously described procedure, 15 g. (0.107 mole)

of q-methoxythiophenol dissolved in a solution of 20 g. of sodium hydroxide and 100 ml. of water was allowed to react with 16.5 g. (0.104 mole) of dimethylaminoteopropylchloride hydrochloride, added to the basic arylmercaptan solution, as a 100 ml. aqueous solution, to yield an insoluble oily amine. The free amine was converted to its hydrochloride in the usual manner, and due to its solubility in isopropyl slochol was exceedingly difficult to purify. It had a meiting point of 110-112°C. The amount of pure hydrochloride obtained weighed 11.1 g. (0.0485 mole, 41% yield). Analysis of the compound for carbon, hydrogen, and sulfur gave the following datas:

Calculated for C<sub>12</sub>H<sub>2</sub>MOSCl: C. 55.0; H. 7.7; S. 12.2. Found: C. 55.22; H. 7.87; S. 12.10.

 $\alpha$  -Nethyl- $\beta$ -dimethylaminosthyl-p-chlorophenyl sulfide hydrochloride.

The synthesis of this material was carried out in a nitrogen atmosphere. g-Chlorothiophenol, 14.5 g. (O.1mole), was dissolved in 100 ml. of water containing 20 g. of sodium hydroxide and 15 g. (O.095 mole) of dimethylaminosiopropyl chloride hydrochloride in 100 ml. of water was added to the refluxing alkaline solution of the haloarylemerosptan. The resulting oily amine, after isolation and drying was converted to its hydrochloride by bubbling gaseous hydrogen chloride through an ether solution of the amine. The hydrochloride was very

difficult to purify and was completely soluble in isopropyl alcohol. It was recrystallized by the addition of other or cycloherene to the compound dissolved in isopropyl alcohol. The amount of material obtained weighed 21.2 g. (0.05 mole, 84% yield) and had a melting point of about 90°C. Analysis for carbon, Hydrogen, and sulfur gave the following data:

Calculated for C<sub>11</sub>H<sub>17</sub>H3Cl<sub>2</sub>: C, 49.6; H, 6.45; S, 12.0. Found: C, 48.95; H, 6.59; S, 12.36.

## 9- or 1- Substituted Thio; henole

e-Chlorothiophenol

by following the method of Schwarzenbach and Egli (14). In a three-necked, 500 ml. flack fitted with a stirrer, thermometer, and dropping funnel, 51 g. (0.4 mole) of q-chloroaniline dissolved in 240 ml. of concentrated hydrochloric acid was dissotised using 28 g. (0.4 mole) of sodium nitrite contained in 80 ml. of water. The precooled sodium nitrite colution was added alowly to the stirred acid solution of q-chloroaniline held at a temperature of 0-5°C. by means of an ice-ealt bath.

The diagonius alt solution was poured into a hot solution of potassium ethylmanthate, prepared from 160 g. (1.0 mole) of the man-thate and 600 ml. of water which had been heated to 80 C. This resulted in the formation of a heavy dark red oil, which was separated, and added to a mixture of 114 g. (2.0 moles) of potassium hydroxide,

200 ml. of ethanol and 100 ml. of water.

This reaction mixture after having been heated at its reflux temperature for three hours was diluted with two liters of water and neutralised with concentrated hydrochloric acid. The red oil which separated was distilled at about 3-4 mm. pressure to yield 23.5 g. (0.162 mole, 41% yield) of light yellow colored g-chlorothiophenol boiling at 75-80°C.

### p-Chlorothiophenol



Using the procedure described by Senear, Rapport and Koepfli(5), 120 g. (1.84 mole) of sine dust was added, in a half hour period,

to a stirred mixture prepared from 72 g. (0.34 mole) of p-chlorobenzenesulfonyl chloride, 720 g. of ice and 130 ml. of concentrated
sulfuric acid. The reaction mixture was held at 0°C. during the
addition of the sine and for two additional hours following the addition of the metal dust. The reaction mixture was then carefully warmed
to its reflux temperature and an additional 130 ml. of concentrated
sulfuric acid was added to it followed by the addition of, in small
portions, of 120 g. of sine dust. The reaction mixture was then set
aside over night under an atmosphere of nitrogen.

Steam distillation of the reaction mixture resulted in the formation of a white crystalline solid in the distillate. The solid was filtered onto a Buchner funnel and dried over calcium chloride in a vacuum desicontor. The product weighed 36 g. (0.25 mole, 73% yield) and melted at 53-40°C.

p-Aminothiophenol

NH SH

Following the technique developed by Cilman and Chiner (6), 123 g. (0.81 mole) of p-obloronitrobenzene was added to an aqueous

solution containing 430 g. (2 moles) of sodium sulfide normhydrate in two liters of water and the resulting mixture was heated at its reflux temperature for eight hours. The reaction mixture after being allowed to cool to room temperature was extracted with ether to remove a small amount of insoluble oil. The remaining aqueous solution was exturated with sodium chloride and then 240 g. (4 moles) of glacial acetic acid was added to it which caused an oil to separate from the solution. The oil removed by ether extraction, dried over anhydrous sodium sulfate and the ether removed by evaporation. Distillation of the oil yielded 62.4 g. (0.5 mole, 621 yield) of a colorless oil boiling at 143-47°C, at 11 ms, which solidified to a white solid on being set aside for some time. The product was stored under a nitrogen atmosphere.

### q-Aminothiophenol



Following the same experimental procedure used for preparing p-aminothiophenol, the interaction of 125 g. (0.81 mole) of q-chloro-

nitrobensene and 480 g. (2 noise) of sodium sulfide nonshydrate yielded 59 g. (0.47 mole, 58% yield) of q-aminothiophenol, which had a melting point of  $25^{\circ}$ 0 and boiled at  $125^{\circ}$ 7 at 6 mm.

I-Methoxythiophenol

The procedure of Suter and Hansen (7) was utilized in the synthesis of this compound.

In a one liter three necked flask fitted with a stirrer, thermometer, and dropping funnel, 123 g. (1.0 mole) of geneticidine dissolved in 250 ml. of concentrated hydrochloric acid was disrotized by adding 69 g. (1.0 mole) of sodium nitrite contained in 300 ml. of water. The reaction temperature was held at 0-5°C, during the disrotization. Sodium acetate was added to neutralize the excess acid and the cold diaronium salt solution was gradually poured into a hot solution, 70°C, prepared from 300 g. (1.87 mole) of potassium ethyl manthate and 700 ml. of water. The stirred reaction mixture was then heated at its reflux temperature for an hour. The reaction mixture was allowed to cool to room temperature and the dark red oil which separated was removed.

The cil was added to a colution prepared from 115 g. of potassium hydroxide and 1 liter of 95% ethanol and the resulting mixture was heated at its reflux temperature for three hours at which point 20 g. of glucose was added to the refluxing reaction mixture. The volume of the reaction mixture was reduced to about 300 ml. by distillation of solvent and then acidified with sulfuric acid. A few grass of sinc duet was added and the reaction mixture was steamed distilled. The distillate was extracted with other and the other extract was dried over calcium chloride and the other removed by evaporation. Distillation of the crude product under reduced pressure yielded 60 g. (0.43 mole, 43% yield) of material boiling at 100°C at 10 mm. Suter and

Hensen (7) rejorted a boiling point of 85-90°C at 5 ma.

o-Methoxythiophenol

Following the experimental procedure just described for the preparation of genethexythiophenol, 123 g. (1.0 mole) of

o-enisidine on diagotization and reaction with potassium ethyl xanthate yielded 50.2g. (0.36 mole, 36% yield) of g-methoxythiophenol which had a boiling point of 124-129°C. at 13 mm.

# 8 (W. N-Dialkylamino) alkyl Chloride Hydrochlorides

X-Morpholino-a-propyl chloride hydrochloride.

This hydrochloride was prepared according to the method developed by Adams and Thitmore (9). A solution containing 300 g. (3.53 mole) of morpholine and 360 g. (2.29 mole) of trimethylene chlorobromide in 900 ml. of dry benzene was set aside at room temperature for one hour with an occasional shaking. Following this, the reaction mixture was heated at its reflux temperature for three hours during which time a heavy white precipitate formed. The precipitate was recovered by suction filtration and washed throughly with other. The other washings and benzene filtrate were combined and extracted with 500 ml. of 33 hydrochloric acid. The acid extract was made basic with 10% sodium bydroxide and the oil which separated was extracted with either and dried over anhydrous sodium sulfate.

The dry ether solution was filtered into a one liter three-marked flack fitted with condenser, stirrer, and delivery tube for admission of gaseous hydrogen chloride. Saturation of the amine other solution with hydrogen chloride gave 201 g. (1 male, 43.5% yield) of a white solid hydrochloride which was recrystallized from isopropyl alcohol. The melting point of the hydrochloride was 157-5°C. Its reported melting point is 168-170°C.(9).

X-Fiperidino-n-propyl chloride hydrochloride

Following the procedure used for the preparation of 8 -morpholinon-propyl chloride hydrochloride, the interaction of 275 g. (1.75 male)
of trimethylenechlorobroxide in 800 ml. of dry bensene with 298 g.
(3.5 mole) of piperidine, followed by conversion of the free smine to
its hydrochloride gave 150 g. (0.75 mole, 43.5% yield) of --piperidino-n-propyl chloride hydrochloride.

After a single recrystallisation from absolute ethanol, the melting point of the pure hydrochloride was  $215-6^{\circ}$ C. Its reported melting point is  $220^{\circ}$ C. (15).

## p-Chlorobenzenesulfonyl chloride



Using the method of Ullmen and Korselt (16), 130 g. (1.56 mole, 102 ml) of chlorosulfonic acid contained in a

half liter three-necked flack fitted with a stirrer, dropping funnel,

and thermometer, was cooled to -15°C. by means of an ice-salt bath. To the cold stirred chlorosulfonic acid, 60 g. (0.54 mole, 54.5 ml.) of chlorobenzene was added dropwise over a two hour period. The reaction temperature was kept between -10 and -5°C for an additional two hours after which the sulfonation mixture was set aside over night at room temperature.

The renation mixture was then poured ento cracked ice and the solid product recovered by filtration and dried. The crude product, weighing 100 g. (0.47 mole, 85% yield) was used directly for reduction to p-oblorothiophenol.

#### SUMMARY

- 1. Five (1) (N. N-dialkylamino) alkyl -o or p-acetylaminophenyl sulfides and two (1) (N. N-dialkylamino) alkyl p-aminophenyl sulfides were pre-pared for the first time as either their hydrochloride salts or quaternary methyl iodides and some of their physical properties are resported.
- 2. Ten new ((N, N-dialkylamino) alkyl -o or p-methoxyrhenyl sulfide hydrochloride salts were prepared for the first time and their melting points are reported.
- 3. Hime () (NoW-dislikylandno) slkyl -q or p-chlorophenyl sulfide hydrochloride salts were prepared which are not recorded in the chemical literature.
- 4. Four previously undescribed () (%.H-dialkylamino) alkyl -q or pmethylphenyl sulfide hydrochlorides were synthesized. Some of their
  physical properties are listed.

#### BIBLIOGRAPHY

- 1. F. H. Kim and R. D. Schuetz, J. Am. Chem. Soc., 74, 5102 (1952).
- 2. F. P. Luduena and J. C. Poppe, J. Pharmacol. Exp. Therap., 104, 40 (1952).
- 3. E. Bistein and M. Meyer, J. Am. Chem. Soc. 77, 4059 (1955).
- 4. J. J. Donleavy and F. C. Condit, J. Am. Chem. Soc., 69, 1781 (1947).
- 5. W. A. Lazier and F. K. Signaigo, U.S. Fat. 2,402,642 (1946); Chem. Abstr., 40, 5758 (1946).
- 6. R. Oilman and G. C. Cainer, J. Am. Chem. Soc., 71, 1749 (1949).
- 7. C. H. Suter and H. L. Hanson, J. Am. Chem. Soc., 54, 4102 (1932).
- 8. A. E. Senear, R. M. Bapport, and J. B. Foepfli, J. Biol. Chem., 167, 232 (1947).
- 9. R. R. Adams and F. C. Whitmore, J. Ass. Chess. Soc., 67, 735 (1945).
- 10. R. O. Clinton, U. J. Salvador, and S. C. Laskowski, J. Am. Chem. Soc., 71, 3366 (1949).
- 11. J. F. Mason and H. W. Block, J. Am. Chem. Soc., 66, 1443 (1940).
- 12. S. D. Ross, J. Am. Chem. Soc., 69, 2982 (1947).
- 13. E. R. Alexander, "Ionic Organic Reactions," John Wiley and Sons,
  Inc., New York, New York, 1950, p. 95.
- 14. G. Schwazenback and H. Egli, Helv. Chim. Acta., 17, 1177 (1934).
- 15. 3. Jabriel and J. Coleman, Ber., 19, 2836 (1906).
- 16. F. Ullman and J. Korselt, Ber., 40, 642 (1907).

NAME: Roger Allan Baldwin

BORN: June 2, 1931, in Decatur, Illinois.

ACADMIC CARRER:

September 1949 - June 1953 Fillikin University. Decetur, Illinois

September 1953 - June 1956 Michigan State University, East Lansing, Michigan

DEGREES HELD:

Bachelor of Science - 1953 Millikin University.

#### CHEMISTRY LIBRARY

- HOAR 2 4 75

·60

MAN 8 63