

TRANSFORMATIONS OF CURVES

AND

NETS OF CURVES IN THE PLANE

THESIS FOR THE DEGREE OF M. A.
Inez Bagley
1934

Curren

LIBRARY Michigan State University mathematin

RETURNING MATERIALS:

Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

ACKNOWLEDGEMENT

In appreciation of the suggestions and inspiration received from Doctor Vernon Guy Grove.

TRANSFORMATIONS OF CURVES AND NETS OF CURVES IN THE PLANE

A Thesis
Submitted to the Faculty
of

MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE

In Partial Fulfillment of the Requirements for the Degree of

Master of Arts

bу

Inez Bagley

1934

TO16

TRANSFORMATIONS OF CURVES AND NETS OF CURVES IN THE PLANE

1. INTRODUCTION

It is the purpose of this thesis to study in some detail certain real point transformations of curves and nets of curves in the plane into curves and nets of curves in the same plane. We first set up some useful formulae in the case in which the transformation is a general point transformation. We then specialize the transformations in various ways. For example, we consider certain transformations which we shall call E transformations. If we further specialize the transformations we find that the transformation is a transformation by reciprocal radii.

Let the non-homogeneous coordinates \mathcal{X}_{j} , \mathcal{X}_{k} of a point P_{k} be given as analytic functions of two variables u, v. The locus of P_{k} is a net of curves in the plane.

Let the curves u = const. and v = const. be the lines respectively perpendicular to the x - axis and parallel to the x - axis. The parametric equations of x may therefore be made to assume the simple form

^{*}V. G. Grove, Contributions to the theory of transformations of nets in a space , Transactions of the

American Mathematical Society, Vol.35, No.3, pp.683-688
Hereafter referred to as Grove, Theory of transformations.

$$(1) \hspace{1cm} \chi_{1} = \mu_{1} \hspace{1cm} \chi_{2} = \sigma_{1}$$

It follows therefore, that

$$\chi_{iu} = 1, \qquad \chi_{iv} = 0,$$

(2)
$$X_{2}u = 0$$
, $X_{2}v = 1$, $X_{3}u = 0$, $X_{4}u = 0$

Let Py be a point in the given plane. It follows that its coordinates y,, y, are defined by an expression of the form

$$(3) \qquad \qquad \chi = \chi + \theta \chi_{\omega} + \phi \chi_{\nu}.$$

plane by the transformation (3).

wherein 8 and Ø are arbitrary functions of w and V.

The purpose of this thesis is to discuss the

transformation of curves and nets of curves in the

2. THE TRANSFORMATION E

A transformation will be said to be an E transformation if and only if the point of intersection of the tangent lines to the corresponding curves is equally distant from the corresponding points Px and Px.

Let the tangent to the curve v = v(u)through the point P_x pass through the point $\not\ge$, whose coordinates

^{*}V. G. Grove, The transformation E of nets,
Transactions of the American Mathematical Society, Vo.33,
No. 1, pp. 147-152.

. . are defined by an expression of the form

$$(4) \qquad \qquad \xi_1 = \chi + \mu L_1(\chi_u + \lambda \chi_v)$$

wherein

Likewise let the tangent to the corresponding curve through the point P, pass through the point E, whose coordinates are defined by an expression of the form

Computing the derivatives of ψ with respect to ω and v, respectively, and making use of equations

(2) we find that

(6)
$$y_{\nu} = (1 + \delta_{\nu}) x_{\nu} + \phi_{\nu} x_{\nu},$$
$$y_{\nu} = (1 + \phi_{\nu}) x_{\nu} + \phi_{\nu} x_{\nu}.$$

By substituting in (5) the values for ψ and ψ given in (6) we obtain

(7) $Z_{L} = X + \{\theta + \mu_{L}[(1+\theta_{L}) + \lambda \theta_{r}]\} X_{L} + \{\theta + \mu_{L}[\theta_{L} + \lambda (1+\theta_{r})]\} X_{L}$. Let $P_{Z_{L}}$, coincide with $P_{Z_{L}}$. From (4) and (7) we obtain the following equations

(8)
$$\lambda \mu_1 - \mu_2 [(1+\theta_n) + \lambda \theta_r] = \theta,$$
$$\lambda \mu_1 - \mu_2 [\theta_n + \lambda(1+\theta_r)] = \theta.$$

Solving (8) for μ , and μ we obtain

(9)
$$\mu_{1} = \frac{\phi[(1+\theta_{-})+\lambda\theta_{-}]-\theta[\phi_{-}+\lambda(1+\phi_{-})]}{(\phi_{-}+\lambda\phi_{-})-\lambda(\phi_{-}+\lambda\theta_{-})},$$

$$\mu_{2} = \frac{\lambda\theta-\phi}{(\phi_{-}+\lambda\phi_{-})-\lambda(\phi_{-}+\lambda\theta_{-})}.$$

$$(\phi_{-}+\lambda\phi_{-})-\lambda(\phi_{-}+\lambda\theta_{-})\neq 0.$$

Let the distance from Z, to X be A, and that from Z, to W be A. It follows that

(10)
$$d_{i} = \mu_{i} \left[\sum_{i} x_{i} + \lambda \sum_{i} x_{i} x_{i} + \lambda^{2} \sum_{i} x_{i} + \lambda^{2}$$

If we define E, F, G and \overline{E} , \overline{F} , \overline{G} respectively, by the formulae

it follows from (2) that

and, likewise, from (6) it follows that

(13)
$$\vec{F} = \Phi_{\nu}(1 + \Phi_{\nu}) + \phi_{\nu}(1 + \phi_{\nu}),$$

$$\vec{G} = (1 + \phi_{\nu})^{2} + \Theta_{\nu}^{2}.$$

If our transformation is an E transformation it is necessary that

$$(14) d, = d.$$

After some computation involving the use of equations

(9) to (13), inclusive, this condition may be written

$$\left\{ \left[\Theta \, \phi_{-} - \phi \, (1 + \theta_{-}) \right] + \lambda \left[\, \Theta \, (1 + \phi_{-}) - \Theta_{-} \phi \, \right] \right\}^{*} \left(\, 1 + \lambda^{*} \right) \equiv$$

$$\left(\lambda \Theta - \phi \right)^{*} \left\{ \left[(1 + \theta_{-})^{*} + \phi_{-}^{*} \right] + 2\lambda \left[\, \Theta_{-} \, (1 + \theta_{-}) + \phi_{-}^{*} \, (1 + \theta_{-}) + \lambda^{*} \left[(1 + \theta_{-})^{*} + \Theta_{-}^{*} \, \right] \right\}.$$

We may now consider (15) as an identity in λ and equate coefficients of corresponding terms. Hence

The first and last equations in (16) may be written in the following simpler form, respectively,

$$(\theta^2 - \theta^2) \phi_{m} = 2 \theta \phi (1 + \theta_{m}),$$

$$(\theta^2 - \theta^2) \theta_{m} = 2 \theta \phi (1 + \phi_{m}).$$

By combining the two equations of (17) we obtain

(18)
$$(1+\theta_{-})\theta_{+} + (1+\phi_{-})\phi_{-} = 0.$$

Likewise by using (18) and the second, third, and fourth equations of (16) we obtain

(19)
$$(1+0)^2 + 0 = (1+0)^2 + 0$$

By combining (18) and (19) we obtain the equation $(\theta_r - \phi_m)[(1+\phi_r)^2 + \theta_r^2] = 0.$

Since we are restricting ourselves to real transformations we get from

$$(1+\phi_{\nu})^{2}+\theta_{\nu}^{2}=0$$

 $1+\phi_{\nu}=0, \theta_{\nu}=0$

Therefore

$$\phi = -\nu + \nabla_1(\omega), \ \theta = \nabla_2(\omega).$$

It follows that

Hence the locus of Py is not a net but a curve. We will therefore restrict ourselves to the case wherein

$$\theta_{\nu} = \phi_{\nu},$$

From (18), the third equation of (16), and (19) we obtain

$$(\theta^{-} - \theta^{+})(\theta_{-}^{-} - \theta_{-}^{-}) = 0.$$

The second factor in this equation leads to the same conclusion as (20). Furthermore

The existence of the above inequality may be demonstrated by assuming $\theta - \sigma' = o$ and solving (17) for θ and ϕ . We obtain

Substituting these solutions in (4) we find that

Hence if $\phi - \phi = o$, the point P, is a fixed point. By using (17) and the fourth equation of (16) we find that (20) may be written in the form

$$\theta_{\nu} = \emptyset_{-}$$

From (17) and (21) it follows that

$$(22) \qquad \theta_{-} + \phi_{r} + \lambda = 0.$$

It is possible to show after some computation that the various equations in (16) to (22), inclusive, are all satisfied if θ and ϕ satisfy the following equations

(23)
$$\theta = \theta_{\nu},$$

$$\theta = \theta_{\nu},$$

$$\theta = \theta_{\nu},$$

$$(\theta^{2} - \theta^{2})\theta_{\nu} = 2 \theta \theta (1 + \theta_{\nu}).$$

Thus we arrive at the theorem:

The transformation defined by equation (4) will be a transformation g if and only if the functions e and ø satisfy the system of differential equations (23).

3. THE RADIAL TRANSFORMATION R

We shall say that a transformation of a plane into itself is a radial transformation if and only if the lines joining corresponding points in the plane pass through a fixed point.

For example the coordinates of P_{χ} are (ω, v) and the coordinates of P_{χ} are $(\omega + \theta, v + \phi)$. Hence the equation of the line P_{χ} P_{χ} is

This line passes through the origin if and only if

$$(24) \qquad \qquad \mathsf{u} \phi = \mathsf{v} \bullet.$$

Hence a necessary and sufficient condition that our transformation be a radial transformation is that $\omega \phi = V \theta$

4. A TRANSFORMATION WHICH IS BOTH E AND R .

If we impose the condition that our transformation be both an E and an R transformation it is necessary and sufficient that the following system of differential equations be satisfied

(25)
$$\Theta = + \Phi_{\nu} + 2 = 0,$$

$$(\Theta^{2} - \Phi^{2}) \Theta_{\nu} = 2 \Theta \Phi (1 + \Theta_{\nu}).$$

u 0 = v 0, 0 = 0 ,

However the last of these may be disregarded since by computation we may show that it is satisfied if the other three are satisfied.

We shall now proceed to solve for Θ and \emptyset .

Differentiating the second and third equations in (25) with respect to ω and \checkmark , respectively, we obtain

(26)

$$\theta_{uu} = \theta_{uv}, \theta_{uv} = \theta_{vv},$$

 $\theta_{uu} + \theta_{uv} = 0, \theta_{uv} + \theta_{vv} = 0.$

combining the equations in (26) we obtain the Laplace

differential equations

and, hence, know that a solution does exist. From the first and last equation of (25) we obtain

(27)
$$(u^{2}-v^{2})\theta_{r}=2uv(1+\theta u).$$

From the theory of differential equations we know that the solution of (27) may be found from the solutions of the following system

If we solve the equation

we obtain

$$(28) \qquad \qquad u+\theta=c,$$

Also,

This differential equation is homogeneous and may be solved by the usual methods. We obtain as its solution

(29) $\frac{u + v}{v} = C_{1}$

Hence we know the general solution of (28) is of the form

(30)
$$\theta + u = F(u_{\mu}u^{\mu})$$

wherein

and F is an arbitrary function. Let $2 = u_{\mu}$.

Differentiating the first equation of (25) with respect to u and substituting the result into the second, we

obtain

Likewise, differentiating (30) with respect to u and we obtain

(31)
$$\theta = F' \frac{\partial z}{\partial u} - I, \ \theta = F' \frac{\partial z}{\partial v}.$$

We now differentiate 2 with respect to w and v and obtain

(32)
$$\frac{\partial^{2}}{\partial v} = 2 u \mu \mu_{v} + \mu^{2},$$

$$\frac{\partial^{2}}{\partial v} = 2 u \mu \mu_{v}.$$

By combining (31) and (32) we arrive at the conclusion that

wherein K is an arbitrary non-zero constant. Hence

$$\emptyset = (K > 1) \sim .$$

Hence necessary and sufficient conditions that an E transformation be a radial transformation is that

5. THE TRANSFORMATION BY RECIPROCAL RADII.

Let there be given a circle whose center is o and radius $\lambda_{k\neq 0}$. Let P_{k} and P_{k} be two points collinear with o such that

$$(34) \qquad \overline{OP}_1 \times \overline{OP}_2 = h^2.$$

The relation existing between points P, P, satisfying (34) is called the transformation by reciprocal radii.* The point O is called the center of inversion, the given circle the circle of inversion, and its radius the radius of inversion.

Let the center of inversion be the origin. We now further consider the radial transformation E discussed in section 4.

If n, and n denote the distances from the points P_{γ} and P_{γ} , respectively, to the origin we find readily that

Hence

$$\Lambda_1 \Lambda_2 = K^2$$

(35)

Furthermore the coordinates of P_{γ} are

(36)
$$y_1 = K^* u m^*, y_2 = K^* v m^*.$$

They may be expressed in the form

which is the formula of a transformation by reciprocal radii. We note that the transformation (36) may be written in the form $y = x + \theta x + \phi x$, wherein θ

Synder and Sisam, Analytic Geometry of space, New York, Henry Holt and Company, 1914, pp. 201-3.

^{**}J. L. Coolidge, A treatise on the circle and the sphere, Oxford, At the Claredon Press, 1916, pp.21-2.

^{***}Grove, Theory of transformations.

and ϕ are defined by (33).

Hence if the points P_{χ} of the plane are transformed by a transformation which is both E and
radial into points P_{χ} of the plane, the points P_{χ} are
the transformation of the points P_{χ} by a transformation
by reciprocal radii.

6. THE TRANSFORMATION OF NETS IN THE PLANE

In this section we shall set up the system of partial differential equations by means of which a given net in the plane may be transformed into an arbitrary net in the plane.

We first make a transformation of coordinates from the original coordinates

introduced in section 1 to coordinates ξ , η by means of the transformation

Consider the differential equation of a general net

$$(38) \qquad (dw - Adm)(du - Bdv) = 0$$

wherein

(39)
$$A = A(u, v), B = B(u, v)$$

are arbitrary functions of the indicated arguments.

Differentiation of (37) gives

(40)
$$df = fu du + f_v dv,$$

$$dy = \gamma u du + \gamma_v dv.$$

By a proper choice of f and η we may make the new parametric curves $f = \text{const.}, \eta = \text{const.}$ be the integral curves respectively of

It follows that

$$d = \rho (du - Bdr) = 0,$$

$$d = \sigma (dv - Adu) = 0.$$

wherein ρ and σ are factors of proportionality. By comparison with (40) we find that (41) will be satisfied by choosing

We have thus made the general net parametric.

In addition, it is known that a <u>parametric net in</u>
the <u>plane is both conjugate and asymptotic</u>. Hence
the coordinates of χ satisfy the following system of differential equations

(43)
$$\chi_{uv} = \chi + \chi_{u} + \beta \chi_{v},$$

$$\chi_{uv} = \zeta \chi + \alpha \chi_{u} + \beta \chi_{v},$$

$$\chi_{vv} = q \chi + \gamma \chi_{u} + \delta \chi_{v}.$$

E. P. Lane, <u>Projective differential geometry of curves</u>
and <u>surfaces</u>, University of Chicago Press, Chicago, 1932,
p. 133.

The case wherein 1-AB > 0 must be excluded, for if this were true, the net would degenerate into a one parameter family of curves

Combining (2) and (43) we find that

(44)
$$p_{2} = q_{2} = C = 0,$$

$$d_{2} = a_{3} = a_{4} = 8 = 6 = 0.$$

If we define H and K by the formulae

it follows that

$$H = K$$

Hence the <u>net</u> N_X <u>composed of the lines</u> $w = \underline{\text{const.}}$, $v = \underline{\text{const.}}$ has equal point <u>invariants.</u>

Likewise the coordinates of will satisfy a corresponding set of differential equations, namely

Solving (6) for x_{∞} and x_{ν} we obtain

wherein

$$R = (1 + \theta_u)(1 + \phi_v) - \theta_v \phi_u \neq 0,$$

because if this were true, would be a function of one variable which is contrary to our original hypothesis.

Calculation of the three second derivatives of with respect to w and ✓ and substitution of (47) gives

$$R_{3} = [(1+\phi_{1})\theta_{1} - \theta_{1}\phi_{1}]_{3} = +[(1+\theta_{1})\theta_{1} - \theta_{1}\phi_{1}]_{3} = +[(1+\theta_{1})\theta_{1} - \theta_{1}\phi_{1}]_{3} = +[(1+\phi_{1})\theta_{1} - \theta_{1}\phi_{1}]_{3} = +[(1+\theta_{1})\phi_{1} - \theta_{1}\phi_{1}]_{3} = +[(1+\theta_{1})\phi_{1}]_{3} = +$$

It follows that

$$R \overline{z} = (1 + \phi_{\nu}) \theta_{\mu \mu} - \theta_{\nu} \phi_{\mu \mu},$$

$$R \overline{\beta} = (1 + \theta_{\mu}) \phi_{\mu \mu} - \phi_{\mu} \theta_{\mu \mu},$$

$$R \overline{a} = (1 + \phi_{\nu}) \theta_{\mu \nu} - \theta_{\nu} \phi_{\mu \nu},$$

$$R \overline{b} = (1 + \theta_{\mu}) \phi_{\mu \nu} - \phi_{\mu} \theta_{\mu \nu},$$

$$R \overline{s} = (1 + \phi_{\nu}) \theta_{\nu \nu} - \theta_{\nu} \phi_{\nu \nu},$$

$$R \overline{s} = (1 + \phi_{\nu}) \theta_{\nu \nu} - \phi_{\mu} \theta_{\nu \nu},$$

東= C= q=0,

Let us impose the condition that the transformation be an E transformation. By combining (13), (23), and (49) we find that

$$Z = \overline{\lambda} = -\overline{s} = P,$$

$$\overline{a} = -\overline{s} = \overline{S} = Q$$

wherein

(50)
$$P = \frac{1}{2} \frac{\partial}{\partial u} \log \overline{E},$$

It follows that

and

Hence a sufficient condition that the net Ny composed of lines respectively perpendicular and parallel to the x-axis have equal point invariants is that the transformation be an E transformation.

Differentiating an arbitrary function X by the rules of the calculus we obtain

(51)
$$X_{\nu} = X_{\xi} \xi_{\nu} + X_{\eta} \eta_{\nu},$$

$$X_{\nu} = X_{\xi} \xi_{\nu} + X_{\eta} \eta_{\nu}.$$

Substituting (42) into (51) we obtain

(52)
$$X_{\nu} = F_{\nu} X_{\rho} - A \gamma_{\nu} X_{\gamma},$$

$$X_{\nu} = -B F_{\nu} X_{\rho} + \gamma_{\nu} X_{\gamma}.$$

Solving (52) for $\boldsymbol{X_5}$ and $\boldsymbol{X_h}$ we obtain

(53)
$$\overline{X}_{S} = \underline{X}_{u} + A \underline{X}_{v},$$

$$\overline{Y}_{u}(1-AB),$$

$$\overline{X}_{h} = \underline{X}_{v} + B \underline{X}_{u},$$

$$\overline{Y}_{r}(1-AB).$$

Calculation of the three second derivatives of ✗
with respect to ₩ and ♥ gives

$$X_{uu} = \int_{u}^{u} X_{55} - 2A \int_{u} \eta_{v} X_{5} \eta^{+} A^{v} \eta_{v}^{v} X_{7} \eta^{-} + \int_{u}^{u} X_{5} \eta^{-} - (A \eta_{uv} + A u \eta_{v}) X_{7} \eta^{-} + \int_{u}^{u} X_{5} \eta^{-} - (A \eta_{uv} + A u \eta_{v}) X_{7} \eta^{-} + (1 + A B) \int_{u}^{u} \eta_{v} X_{5} \eta^{-} - A \eta_{v}^{v} X_{7} \eta^{-} + (1 + A B) \int_{u}^{u} \eta_{v} X_{5} \eta^{-} - A \eta_{v}^{v} X_{7} \eta^{-} + (1 + A B) \int_{u}^{u} \eta_{v} X_{5} \eta^{-} - A \eta_{v}^{v} X_{7} \eta^{-} + (1 + A B) \int_{u}^{u} \eta_{v} X_{5} \eta^{-} +$$

Since X_{--} , X_{--} , and X_{--} are linear combinations of X_{--} and X_{--} we may write the following equalities

$$X_{uu} = \alpha_{1}(S_{u}X_{5} - A\gamma_{v}X_{\gamma})$$

$$+\beta_{1}(-BS_{u}X_{5} + \gamma_{v}X_{\gamma}),$$

$$X_{uv} = \alpha_{1}(S_{u}X_{5} - A\gamma_{v}X_{\gamma})$$

$$+\lambda_{1}(-BS_{u}X_{5} + \gamma_{v}X_{\gamma}),$$

$$X_{vv} = \delta_{1}(S_{u}X_{5} - A\gamma_{v}X_{\gamma})$$

$$+\delta_{1}(-BS_{u}X_{5} + \gamma_{v}X_{\gamma}).$$

By combining (54) and (55) and solving for X_{55} , X_{59} , and X_{99} we obtain

By combining (44) and (57) we find that the original net N_{χ} becomes, after the transformation (37), an integral net $N_{\chi'}$ of the system

(58)
$$X_{55} = \alpha' \chi_5 + \beta' \chi_{\eta},$$
$$\chi_{5\eta} = \alpha' \chi_5 + \beta' \chi_{\eta},$$
$$\chi_{5\eta} = \gamma' \chi_5 + \beta' \chi_{\eta}$$

wherein

$$A' = \frac{2ABu + A^2B_v - A^2BBu}{\int_{a_v}^{b_v} (1 - AB)^2},$$

$$B' = \frac{(Au + AAv)\eta_v}{\int_{a_v}^{b_v} (1 - AB)^2},$$

(59)
$$a' = \frac{B_{m} + A B_{r}}{\gamma_{r}(1-AB)^{2}}, \quad b' = \frac{A_{m}B + A_{r}}{\gamma_{m}(1-AB)^{2}},$$
$$b' = \frac{(B_{r} + B B_{m}) \gamma_{m}}{\gamma_{r}(1-AB)^{2}},$$

Likewise by combining (49) and (57) we find that the net $N\gamma$ becomes, after the transformation (37), an integral net $N\gamma'$ of the system

wherein

(61)
$$J = \frac{(1+A^2)(P-BQ)}{\int_{a}^{b} (1-AB)^2} + L',$$

$$\bar{8}' = [(B_u + BB_v - P - BQ) + 2B(Q - BP) + B^2(P + BQ)] \xi_u,$$
 $\gamma_v^2 (1 - AB)^2$

wherein P and Q are defined by the formulas (50).

Suppose now that the net of curves $\xi = \text{const.}$, $\gamma = \text{const.}$ is an orthogonal net. It follows that A+B=0. Under this condition the coefficients \bar{a}' , \bar{b}' in (60) may be written in the form

(62)
$$\bar{a}' = \frac{Q + BP}{\eta_{V}(1+A')} + a' = \frac{1}{2} \frac{\partial}{\partial \eta} \log \bar{E} + a',$$

$$\bar{b}' = \frac{P + AQ}{\xi_{W}(1+A^{2})} + b' = \frac{1}{2} \frac{\partial}{\partial \xi} \log \bar{E} + b'.$$

We find readily that

$$\frac{\partial \bar{a}'}{\partial \xi} - \frac{\partial \bar{b}'}{\partial \eta} = \frac{\partial a'}{\partial \xi} - \frac{\partial b'}{\partial \eta}.$$

We may state our result in the theorem:

Any E transformation of an orthogonal net with equal point invariants is an orthogonal net with equal point invariants.

Impose the condition that the nets N_{χ} and N_{γ} be conformal, namely

From (12) and (13) it follows that

$$(1+\theta_{\nu})^{2} + \phi_{\nu}^{2} = (1+\theta_{\nu})^{2} + \phi_{\nu}^{2},$$

 $\theta_{\nu}(1+\theta_{\nu}) + \phi_{\nu}(1+\phi_{\nu}) = 0.$

Hence if the transformation is an E transformation it is, also, a conformal transformation.

Computing E', F', and G' for the transformed net $N_{\chi'}$ we obtain

(63)
$$F' = \frac{A + B}{5 \pi \eta_{\nu} (1-AB)},$$

$$G' = \frac{1 + B^2}{\gamma_r^2 (1 - AB)^2}$$
.

Likewise if we consider the net N_{γ} ', we obtain

(64)
$$\vec{F} = \frac{B\vec{E} + (I + AB)\vec{F} + A\vec{G}}{\int_{u}^{u} \eta_{r} (I - AB)^{2}},$$

Suppose now that the net N_{χ} is an orthogonal net. It follows that A+B=o. Let N_{χ} be an E transform of N_{χ} . Under these conditions we may write (63) and (64) in the form

$$E' = \frac{1}{\xi_{\omega^2(1+A^2)}},$$

(65)
$$F' = a,$$

$$G' = \frac{1}{2r^{2}(1+A^{2})}.$$

$$\bar{E}' = \underline{E}$$

(66)
$$\overline{G}' = \frac{\overline{G}}{2\pi^2(1+A^2)}.$$

We may therefore state the theorem:

Any E transform of an isothermally orthogonal net in the plane is an isothermally orthogonal net.

BIBLIOGRAPHY

- Coolidge, J. L. A treatise on the circle and the sphere. Oxford, At the Claredon Press, 1916.
- Grove, V. G. A general theory of nets on a surface.

 Transactions of the American Mathematical

 Society, Vol. 29, No. 4, pp. 801-814, October, 1927.
- Grove, V. G. Contributions to the theory of transformations of nets in a space S_n. Transactions of the American Mathematical Society, Vol. 35, No. 3, pp. 683-688, (1933).
- Grove, V. G. The transformation F of nets. Transaction of the American Mathematical Society,
 Vol. 33, No. 1, pp. 147-152, (1930).
- Synder and Sisam. Analytic Geometry of space. New York, Henry Holt and Company, 1914.



