—— _—— —- .———- _———- —— _———- ———- __———— -_——- _— _————— .— .—.———— —— —— WM. HEAD LOSSES OF THE FLOW OF SLUDGE IN VARIOUS SIZES OF ”955 Thai: for fho Dogma of B. S. MICHIGAN STATE COLLEGE Jams N. Cariislo 1949 FRICTIOHAL HEAD LOSSES of the FLOW OF SLEDGE IN VARIOUS SIZES (3F PIPES #M A THE" IS FOR A 3.1. DEG by JAESES H.- CARLISLE THEb’lS :1 "a a If x“: ‘ & TABLE OF conmnngs PART I - . - . - - - - vPr0portiaa affecting Sludge PIX? II » a u - - n - - Pincussion of Formula: and Charts PART III - ~ - - ~ - - ~Experimental Data and D18» cussion PART EV - ~ - - - « - «Conclusion 4211 J; N 1.1 n’ m; 1r . I 216930 INTRODUCTION The problem.of functional head losses of sludge flowing in various sizes of pipes has long been a perplexing one to the design engineer, due to the varying nature of the sludge itself. It has been definitely established that no two samples of sludge are alike in water content, specific glavity and other such properties. Emperical formulas have been devined but their use is mainly for sludge flowing at velocities in the near turbulent region. Therefore in the recent years an attempt has been made by eXporimontation to find a solution which weeld standardize in some manner the design of sewage sludge pumps and sludge lines. It was the intention of the author, in some way, to add additional information to the exhaustive research of Mr. Harol' E. Babbit and Mr. David H. Caldwell of the University of Illinois Exyorimontsl Station. There were, howevert numerous obsticles in the way, mainly the time element and the lack of_exPerieontal equipment at michigan state College. Through the coOporation of the officials at theqockf_ son Sewage Disposal Plant at Jackson, nichigan, I set of data was taken and compared to data obtained from the W" Well Works, Aurora, Illinois, and the Illinois EXperimontal Station. It is with deep regret that a more extensive research effort could not hive been made, However, as it was stated previously otttcd the time element was an important factor. The author wishes to express sinceriat appreciation to Professor Frank Thoreaux of Michigan ststo College for hil time and professional assistance. mar ; The amount of information concerning sludge is limited and insufficient when attempting to estimate the head losses due to function caused by sludge flow: in pipe lines. In tho flow of sewage sludges it has been assumed that the for- mula usually applicable to water may be applied to sludge provided the velocity of the flow is great enough to cause turbulence. Problems envolving the laminar flow of fluid in various sizes of pipe can be solved by means of Boise- villcs's equation which is: ”-5 -.o 00:36 (—)G ‘54 where Hrzhead losses in feet L alongth of pipe in feet Q crate or flu! in cubic feet per second ,q zabsclute viscosity in poises Lb aweigr t in grams per cubic centimeter t>:dismeter in centimeters Q :discharge in cubic feet per second Turbulent flow frictional losses are determined by mean! or the Reynolds~Stsnton $18; tram. At present emoerical for. mules are being used to determine the laminar flow frictional losses 0‘ plastic or pseudo-plastic materials which are flow- ing in circular pipes. This means that not only are these loses evaluated for sludge out for other fluid as well. such as suspension of clay, need from ddllin; processes, and wood pulp suspensions. ”2.4. In carrying on from this point it would undoubtedly be clearer to discuss the investigations of other esperimenters, notably Babbitt. Professor Babbitt has been responsible for a number of the emperical formulas in use today. Professor Babbitt is also noted for his studies of the properties of the so-called plastic eluid which upon examination gives a much better understanding of the actions and reactions of sludge under varying conditions. It Would be nearly impossible to discuss in detail these properties, however, the author will present the most ingortant of tne characteristics which it is hoped will leave any reader's mind Open to individual examinv ation and espeximentation. One of fine properties Which varies considerably in all sludges is viscosity, waich is defined as the measure EEHEEE resistance 33 £93. 23 deformation 2; a fluid. The rate of deformation is a linear function of the deform~ ing iorce. The coefficient of viscosity of a fluid is equal to the tangential force on a unit area of either of two hori-. zontal planes at a unit distance apart required to move on plane with 3 unit velocity with reference to the other plane, the space between being filled with the viscous substance, Thereror it follows that:' ..3-. “c: .5?! (I) where .q' g coefficient of viscosity 5 II tangential unit shearing force x a éistance between th nlancs V a velocity of one plane with respect to the other. In the C.G.S.aystom.tho unit of viscosity 1. called the poise, or the centi-poiso, which is one one~hundredeth of a poise.' There is no name given to the coefficient in bhe F.P.3. system. The next important property which varies considerably in plasticity and plastic flow. Plasticity is defined as the prepccty or a substance which enables it to be continuously and permanently deformed in any ddircction without rupture under a stress exceeding the yield value. After deformation has started, equal increments of stress will produce equal increments of velocity. Since a part of the applied force 5 is used up in overcoming the yield value of $3, the equ tion for plastic flow becomes: Tl: (S-ifix (2) where 71 is the coefficient of rigidity of the W1. malerlal . Fig. I 5 hear-mLS'i'r'ess U O v: lac o h. of F-iouo Class I True Liquid ClaseII Pseudo-plastic Close III True Plastic Class IV Inverted Plastic Fifi re 1, is a representation of 1 recognized types of flow. Curve I represents the flow of a true liquid, the 310pe of the line is proportional to the coefficient of the viscos— ity. Curve II represents the flow of a pseudo—plastic material. This curve does hat follow the equation of a plastic flow since the line bends toward the origin at low rates of flow. Curve III represents e true plastic and is a graphical representation of equation (2). The apparent viscosity of the plextic at any point F! on Curve III is proportional to the slope of the lino CW1. Therefore the apparent viscosity is not constant for ' different velocities and stresses. The two different velo- cities such as A and E>. correspond to different viecoeity lines on and 05 , the elapse of which are proportional to the apparent viscosity. Curve IV represents the flow of an in- verted plastic material. This substance is then at low rate: d? flow but becomes increasingly thinker as the force increases. -‘5-‘ It was found by Babbitt, the flow of sludge and clay followed Curve III and were therefore classified true plastics. In an attempt to formulate the factors affecting the fric- tion resulting from the steady , uniform flow of sludge in a circular pipe, certain assumptions were made by Babbitt and then checked by certain tests. It was assumed that the eon- ditions effecting the friction resulting from the laminar flow of sludge in a circular pipe were the Velocity of the sludge, the diameter of the tips, the length of the pipe and the characteristics of the sludge such as density, rigidity and yield value. The pressure and temperature were assumed to affect the frict’on only through their effect on the charac~ tcristica of the sludge. Another facto which was assumed to possibly effect the friction was the roughness of the pipe well. However, it is known that, in the laminar flow of fluids, , pipe well roughness does not affect the friction loss. . Therefore, it was assumed that the oipc tall roughness will not affect friction loss in the laminar flodaglnoge. The friction loss was assumed to result orly from the rooming of the sludge layers past each other end not from kinetic energy losses. Eingham presented by a complicated metheect‘cal analysis a formula for the mean velocity of flow. V= 6%? (59- $530.8) (3) where 'D a diameter or pipe in feet 1‘ a coefficient of rigidity, pounds per foot per second 5p : cheering stress in a flowing material at the boundary or pipe wall, pounds per square root 3 : shearing stress at the yield point of a plastic material, called yield value, pounds per square foot. Bingham also showed that the coefficient of rigidity' 71 and the yield value‘sg were independent of the cnaracteriatice of tn. measuring Apparatus. but dependent only on the nature or the sludge. Investigation showed that by plotting Sp as ordn‘naie and 2% as abscissa the slope of the resulting line represents the coofgjcient of rigidity and for a given eludre, the same line represents the flow of the sludge in a pipe of any diameter. For industrial piping and wit sewage sludges, clay slurriea and ddllinganade, the following equation was found apnlicalte: fl‘ IGS “V L‘ 373* 352 <49 where g head loss 8! length in feet H. p u d reity, pounds per cubic 1" . .LO-Z‘t The critical velocity was considered as that velocity below which the friction loss is directly proportional to the velocity and above union the frictien lees is directly pro- portional to some rower of the velocity between 1.7 and 2.0. Reynolds showed that the critical velocity occured at a definite value of the Reynolds number. It has been recently shown tnat in industrial piping the value of the Reynolds number at the critical velocity is approxamately 2300. For circular pipes the flow will be liminar when the Feyrolde number is less than 2000, but in industrial installations the flow will usually be turbulent above Reyiolds umber of 3000. -‘7 C- .2.“ a ‘—.4__-‘mz-'m a! 3.)“. 3.! In order to determine Reynolds number it was necessary to know the viscosity of the flowins material. Since sludge possesses no definite viscosity but a varying apparent vise cosity, Reynolds criterion for critical velocity cannot be directly evaluated for sludge. However, by refering to Poisevilli's expression of viscosity Ji= 4.9.39. (5) formulagggoth the lower critical velocitvafland the upper v critical velocityszere derived, giving V1c= mean + we W4 79 + D" 3“: De vac: [£3071 + :27 annifia‘sg (7) (GD Actual eXperiments showed a high 33$;ee of correlation be- tween observed and computed.values. Among the important factors to be considered in sludge are the factors affecting yield value, and the coefficient of rigidity. Inc most im)ortant of these factual are concen- tration of suspended matter, size and character of particles of suspended matter, temnerature, thexotrophy, slippage and seepage, a itetion and gas content. In Babiitt's investigation, the concentration of sus- pended matter was take cs tue ration of the weirht of dry solids to the weight of the mixture of dry solids and lifiuid. According to the test made showed that the concentration of suspended matter greatly affects the yield value and affects the coefficient of rigidty to a lesser degree; Further tests were interpreted tu mean that the vet effect of an increase in qua-8a"- solids concentration was to increase the resistance to flow of tge material. binghsm stated the: es tLe else is decreased the res not considered as reliable in 0? the werticles may be chem: er' ts LIJJU A re (fixsn n-‘Us. Temperature istsnce to flow increases. :8 b: has a marked effect the disms tcr oi the Solid perti— This is Q 3?. formation however, chemicals present, W 1 vi H: on tie scosity o fluids. In the case of liquids a rise in tom ereture lower! the visc,sitdw ile 1T1 the case of gases the reverse is true. In Babaitt's investigation no attempt was made to foreslsto effect of temperature on the yield value in the case of sewage sludges. Hatfield found a lccrease in resistance to flow of sewsie sludge with an increase in temperature. Thixotroohy is the progerty, or phenomenon, exhibited by some shaken gels of becoming fluids when hasten. be reversible. It may be res may be seguired tion and possibly overcome. {restly affect the viscosity neous abservstions. if the proper This change may also dily seen th t erroneous data is not taken into c ns e3de>n~ lhese thixotropic creperties of fluids the by 3; iving erro~ Agitation may seen :6 the resistance to flow of s sludge in a given pipe line by chsng coefficient of rigidity. particles, rearrange or redIst a form of thixotrophy. One 0 arc-9 au- 1ng both the yield value and tho A ritstion may change tr 9 size of the ribute tee certicle s O 1" f the commonest nee the six. itstion *roduco reens of agitation is pumpmgzhe sludge through reciprocating, centrifugal or rotary Dunes. This very definitely effects the sludges floi characteristics. The theory has been advanced that 0 possibly the flow of sludge in long pipe lines may so change the values of 71 and 3% that the resistance to flow near the end of the line is less than at the beginning. Bubbles of gas so finely divided as to be unable to rise and escape can occurs In slulge through bacterial fermentation or as a resetl cf nechsnicel stirring. ths ;&S lowers the density and even though, theoretically, density Les not effect on the laminar flow of sludge, it was observed that, when the velocity of $10! was large enough to cause turbulence, the h ed 1033 due to frlctfion is nroportional to the dersity. altho'gh the investigations of sludge and its flow are limited, there have been a number cf other investigations by exper mentors who have had a primary interest in the prob- lem. ihe results and conslusions they have driwn with regard to sludge are interesting and somewhat based on assumptions w ion do seem 105icel. the following is a list of a number of these investigators and their conclusion!- 1. ($90301?! , W. 33. (a) fhe most economical velocitg Sen pumping is the ‘rftical velocity. (b)The apparent viscosity of slurry at the critical velocity varied from 24 to 85 times that of water, depending on the concentration of solids. 2. American Suclety of Civil Engineers (3) Sundae is neither a viscous nor a homo- genous material but variable in character. (b) The usual analytical tests do not define its physical qualities, but it seems to behave more like suspended material. It (c) Below the critical voloc1ty sludres 11836 a different fr‘ct on factor from that found above the critical veloc ity. (d) Sludte frfction increases with decrease J a * 0.1.3913 3L” “‘3 contort u o (e) Sludje friction losses tond to inc rear 0 with lower fevu33atures. (f) Slud ge ”rictlon lossas £231‘1mnveloc1tiea from about u to 6 f3et parse cond or more, ad t: 10110:: 3333 0103317 tfr entracber' t133 :03 :13 law 10. :36 flow of water. L3 (.3 t v .9 .L . fir" v ‘. (3) Friction lossos £33 fresh or unuiqested sludge and £03 313333 13;; :n com: ired BGWGjO 833 more 6 ratio anu tle deto3rnfnation of the f3 0 tion factur is m>re d f103e3t. (h) within the limits of 1nvostlgation, no law of flow was found. 3. Hatfield, W. D. ' (a) lne viscous properties of sewage sludge have been shown to be pseudo-Elastic, that is, the anparent viscosity deflreases as the rate of shear and the shearing stress in- crease. __\ V r. Raga is thixotroptc, ‘;ha gseudo-plastic 333 t: .3ce 3nd, th330f03a, the annuront “3: v s shaking. (c) The enparent 3*acosity when plot,6d a ainat the rate of flow or the percontage of solids produ( es 8 strai3ht line on loga3lthnic co- GIRL-131' tea. , can be readily Seen that much 13 left to be uncoverod and that sludqe mzmos ard aluore lines 333 a long ways from po3fectiun. In :pi so of the astount oi ax»a riaentation that has been done thraz r3 3:111 room for imprwo emont f_r the number of vnrfiable conditions are uifficult to control. At the oregant the only anger tn the situation aptaars to be, not in emperical formulas, but in uata ta‘won under ac oual conoitions whe3o the variable prOportios of the sludge and the effect of the various distribution systems can be r.- corded as they really are. ?hon that day comes, here will undoubteoly be a considerable sabing 1n the BXpenso of design, construction and maintainenoo of sewege disposal units. field cosity oci mg sweetly reduced by stirring¢and PART II a1though the time element for this thesis was short, the author was able to obtain a set of data from the sewage plant of Jackson, Michigan with the intent of comparing the data to the results of other investegators. Included in the data ob- tained from other data are the charts which were drawn up from curves developed by the American Well Works of Aurora, Illinois. The results or these curves are shown in Big. 2. The chart gives the head losses in various sizes of pipes under varying rates of flow, velocities and moisture content. The value listed under sludge friction factors are the percentage that the head losses are of the 1005 water. By multiplying these per- centages times the various head losses for 100% water the head losses under the various moisture contents are found. The frico tional head loss values are plotted in Figure 3 through Figure 10 where it will be noted that they give a clearer picture of the behavior of sludge under the varying moisture contents. In all cases the sludge curves are by no means comparable to the curve for 100% water. They do however seem to approach the trend of the 100% water in the upper values of velocity and rate of flow. This is particularty noticable in Figure 6 and Figure 10 for the 8" pipe. In the case of the smaller pope the values are extremely high and run off the diagram. In all cases it can be plainly seen that for all moisture contents, with the exception of the curve for 100% water, there is a sharply defined hump in the curves at velocities varying between 1 and 3 feet per second. What really happens at those points can only be left to the imagination. It could be assumed , ‘.‘.__.v‘ omikbb Qonxkux numb DR. thQS \\e\s tooCmSV onk... O\3k\.\0u\ “EO.\\\\\S so CNNOI.Q\ 00\u.u to henbflt 2rd one ooh one. 0e. 09. one outbox .e 0.6 Out was: 05 0.3 0.9 0. ohm Vs... ooh 9.35% 0.9 0.5 om.\ on c 0.3 hex 0K 0W...“ 8.} 052% ”MM 8N. 0N? QNN 8.0 hmvvn 05$ 3% 9N6 0.: Ad? 99% ufilflN 86 DUNN. 0.9V 06%. V.\N. $.‘\ Qfix 05“. ON! Q.\.9Q.\ Qm.\ 0.‘ new. eov bunch... hoe oak one mun oewvew. 3&3: “.9 hwmkovo eon eaves? Nuance. one 0.! me oar nN «N 0% six tn one new one. new hwxeomw Q.» 9G. 09% h; h: 0.9%. use out?!“ vow QeNavhox Qahex 0.? Bart me 96% new. 3%. fix. NV 0V Sm. own News 8N he. eve cone!“ untrue. H3 e9». 02. and; one nor onNoNQ \S... Mex 9e fox he. ti... .3... e$ MM \V. .om. L exv Mum V5». «on Ms. odes. 0a.... 03“. omV out. o.\ coax eve xvhnoxN or». H: on: how $3.3? who we. 0.2. nun \ne. NV. «N. Ow... 3% km. new. 8.\ no. coon. ooh one 00$ 0!“ 3. 93¢. 36 out” use New. 9: 0N0 max. «.3 6.3 V66 e.N Quay bk ON the. WM. his. Do...» Eve New aha hem. 90%. mvh on.» Gnu. 3». mv. ofimx 05.1 can co.» or» nu. oNu Nfix 0N\ v.3 hex on.\ 03 m3 cox 9N nose. ON. the. «MN QWQHMN new 2: on. Q53 . 3K to... er. 0%.“. canoe.» hex 9.! NE NW h.\ hoe. 39903 v~.\ out ooh 0N NN. 0.0? no». on. box \6 ON mum. 0N0. 0%n Fe. nmo. 0.3.. But. $0. noex 6“ Mx. ”on. .013 “.9 W” . was «no «to N8 a.» .emamva who to who r... em.“ on... who see was so .fimnvowd and was x... as use was and Re to t Auxo \o\.m. k%\0\x have. \v\m, \%\0\X W 0.53% W \\\%\3 §be\ .0 Kuxog ebb D\.m. \sQ. .AQ {unto . Ran c... £6 are Sex... .3... S c?“ the. Ecttk a \\ 09 Kent thNtux uh. \K 00\ Keox Sotoxkux xk xx 00x.\e0. to? otux .xk t 09 KUQ toxxoik ktx muexfimu; \tk moments Vvéot Eel 0 . n a a 7 6 .3 4. 3. 7. U . 0 0 0 0 0 0 0 0 0 .I A {1.41. It . l / / l / / fl 0 0.1 . . . . o . n C l . .4 . .. A - a 4. .. lit .. .1 ~. 5... 1.71...» .. .i . / 7 6 4 I. . . . ,. . . v .. . 1.1 v u ¢ ..: v.1?! . . .'4-. 1‘ A. . ...1 . ... ...l J. nl vx. 1.7.1-1. d. .T. . 4 In! . ..6. it- .v. I z . I 4.; (J . . . . . . c .. 5.1.»... . l.. -1... . ii .Oi ...A!.. . y 1. l: . .5)... r -. . 4 . . fl .p . . H . 4‘ _ . ~ a . ,w . .. . . . w . . V . .. W 4. . . (wl. J. .0. M. 'Lia‘HIll. .v A a 1. . ”.4. I} a. all...” . .fluI ‘04.?! at...“ Ajl’.‘ l.v....I.-!O..a . ,.. ... . . . ....,. .. ._ , . . . .. . . . ... . .,.. . ._ q-.. ... ...... . . e . . . . l ., it . .. U- . .l. . .. a .m ... c 4. . ..... .....h.:..* . .. ._ A... .. . . .i.. av. . Ff... . . . . r . _. . .. ., ... . a. V.. «. . as . .... _ l. a. I. . .. . . . . . . . . . _ . .,, .. . .. . . . H .. . . w , ..... .. . ...V o.» .... . 1 .l . -h. . . .l. . . H . a . .. ~ ., .l. .. .1 l l . w . .1». ~ , c . .., , . . c . .v . + . .. , . , . w n .. . .w ... ., .a mi}, . min. . N... .; .. 9. . . . . . w . .« ... A .... 4 .. . m; . v 4 . .b. . v ... h v » __. r». . . M7. 1“ l . . ., .. . M l .. . . . . _ . .. .. . . . .. ,. v .. .h. . ... ya . l. a “n. a . .. . . A _ l .r H ,. __ .w .. . . . w . T .. .. . a . . .u , . . . . _ . l. , 4 . . H ._.. ,. U .. . . . . .. l . _ . m . . ._‘ . u u ..... f. . . . . ... ~ _ _ . _ . . . q . .. 1 . Jr. .. . . sit]. n .. . . + a . l . q. . , . . . H . A. . .1 v -1.. .- {L ‘ -. T _ v 1 LL . .. . . . _ . . .l .. . e . . . . ......v x u c All, . . t : A _ c I :l . ill. o\.!.. J... a 0 y. l a v... I)! .V . .7 ‘3 all... r If: i . ..l . _ . . , M g . .H . . .w. . .. . . . . . . . m . -. - . _ ~ 4 _ . . . , U .. . . _.. , . ,.. . l . . . . . . . ._ . _. n c . . . . . . . .« ., . . .. 4 . . . . l I. ., u, l . _ .u . . . a. . u L , ...., . l . . 1 i r .\ . _ 4 . . —. . a . v . . .. _ . u . _ . . . _ H .. .. .. . u. . . .. . . - . . . M. -. . _. , - . . . . . . . . . . . N . c. . ._ . . ~ . . . . . -. 1. . . . ..... . _ p l . . l . . . _ . .. . _ . . _ .. . . . l . . . . a l .. w . . _ .2... so. . . . l . . . w. . Q . . , _ _. .. u- . . ..... v. v o .. - . n . c . . . o .. . - 4 . . . . . .- . . - -1 u- . ; . . .1 : .. --. - . _ . . . u i , . i . _ l ._ . . l. f , H- 3.0 u _ . . H. . . .. _ . . . . . . V .2 . . . . . . . . . h . a . . . . . . . .. . 5 . . . , . . . V- . . . v .. . . . .4. ,. .- n . . ._ . . - . . ;. z .. , . . v a . .. . . . . .ui: . . - ~ . . V . <. I v . . . . w — . .» _. _ . , _ q . H H J A . . . . g. .... 0. . _ i . . H .. . , . . . . ,r . . . .. . . . .. .. .u L . . .. ._ . m . . .. . ; 4 . , u . _.. . . _ I... x 1w u . v . . f. v . .1 l, L . . ; . . u . l\ . v M - ..., n . . . . ¢ . a .5 a c L _. . l, h . . I o. . . . .. r) . . 5...-..t. - .b..:.. . .. l. I- a o .. .. x.... ...x\ 1......1 1.... 1 . , . .. . ,, . .. _ _ . _ . _ . . A l . _. , _ . .. .. . . . _ . A. a . _ . . _ l . .. . .. . . .. . . 4 _ . U. . ,_ . a . , u x _ a . a c . . .o 1 LI . . p.12" ;.-.5€C ... Peer/OM44 _ ; - y of ‘ 0‘ 2:6 ’\ o\0 Vé/oazfg ‘( Ft. ,0 ' ' 4.0" 310 _ u . . ( .. .. . _ . 1 . .h. z . i . .. _ , .. . . 4 .a . . . c r I _ . .. . . p. . .. . _ I A I a i J. . - I l I“ . . e / . . n . , _ _ . . . . . . . ~ . a . M ‘ w . _ . .. . . u l w x _ .. - - - , . - . - . .L . . V . g . . . . . ,. _ .. I. M . . s. » ~ n I . . . l . . t . . . . I1 v I. _O A, . . I . . . . . . n , fl _ . . . . g . l . _. l1 _ , . . . . . _ . _ . . . .v 1 I :w . l . .4 ~ v u ...... . I .. I w I! 4 . 1.1 ..7\...v.r.rl.. .. . « x I A . . l . . . s . . v . . w . v . . . .. l . . _ . — . Eel nu 4 ‘ l . - 0 ¢ 1 ‘| In” x . l . .. | n s. 1 . v p . x .. \ ~19 a v . a a l . l . v c 1 . “ , . . . . . . u . . x. . .. o v, H . . . _ h .t. . . . .... .t - 9 . . c . l ., I .. / . . u _ J. 1 . v I _ i u. r \ l r ‘ _. . . , , . . . . . . e l - . .. . a .1. 5!... L». .i. « -i. rlrfi u » Lu ........ Kl )L . .0: I . i L. \r K I I f y . .. 1.. I I. I. . ... \.v..«§§ Fr ‘3 ol’ v.0 .9. no. ' “1%”... ~.. A. ’h rr4> 1 L44 rw +>~ ”591+ ‘~J 4<. I? “... 1*. rlL L}? ;; 4 - "H H» AL— r l A v A -QA ... TV ,. .9 .; ;. d 4+4 L * 1H .1 h 1;. ‘LI.’ . ..rr 2’ .J 4-4 ~4~1g<41 'v P’ 4' -- - -«~—v ‘ y_-—.—y~ ..., ‘r v -.- -..-.." -. .‘ I : 3.“? ‘ 7 ..- i . . n . . I‘ll...ii)ii..o.wi)*4li In. 3A7“. .1521... F ..........)....._....,. 1‘ \ . 4...“- T. it- A Iii. . . 4 Y ’a-. «4...? .....7 +--. » .. 44- .—J.»., ,r. . d-Ja} ... 4-— » .4}. ... . . . .-...z ...-.-» AI: v... .......v .y... . p w . .... 4.. . . leA .. .. AT.» . ..l . o . . . . . ...liroft. i «r qwl 1» ....... ... . .....LJ. V0». ...» ... ...v ... . . . .«i A. . » . .... ,1 w“, ' . ‘I’ .1. - —1.—+- "‘T ,_ »- ... ...- -v A i. r. t*#" .‘r ...». -....*._ —v ., ... ”f A , Ti ‘1‘”‘9' ;vr 1 h A. -fi “-..... . .-. ..L a +4 I .1. g»— 5., £.4 r‘ "'1 ;_ ... r »9 ' 4.»...1» A :r 'H I +. > 4 . .T... 4-“ -' .-.-i . 6 A t §.L|q .7». - --—'. “7‘ ... ‘ - .4”- . . .v r T v ...... .q ,.-. ..4». .1 . u o». ...... h Viv. J Vii! I I .v _ .g 1‘ . . & ..p . 9 3'7.“ ‘,- ...A. . ......9 ¢ . .Q.T.wla.m1+vv . ... r 7141.... c 2.... .-.- »~'~4 . "T"' 40-Ma- {‘3‘- -A. ..... | ,. .. . 1. “! . .-. 4 . ......» . «.... -..... p Y - .-H11>. . A: r w.» wk» . .. . ...- _. 1 .. ....-.lTrouv .+..:.v.A .... A... . ._ 1 fi}.l.+¢‘p ... o- L. . .. o. -a- ”-4- ” --‘yuh'm W'r-W 5 : '1 ‘.:‘.':.‘ f 4.1.. 1 . .ml ...... A... I I+JL . . .714. + l» v . >11? A VTHL 7.9. 1‘» .~.H.JT 4~.~ rv+d A... 41.0..Vcict I} “gnaw“? -..r.1+l....#.h7 $1.» I... .72...- 1.. . 1 .1 .wL... 1.“; I“; .4 1.:inA 5.1..~4L.1.1J¢%AY1¢.. JP. LA» . L. ......vwfl- 1.. .. ..Hvia QWTAQ o. . .a r3 9A4 ....A. 1.! f .A.<.i ~...+ ..7...»;. ”...... J... +1. ...},i. 1.... ... +1.3»..AT... .... .. 4 .v..u....... .. »._~A ...ri .. .A ... . . . «.r of.- v v . P»HW If: ......fi. .«.I.~.+L. .. w. t-.. ..rerAATJ .+ “s. . v . ......;4.+.. .... n.4,... . ».i_r.+ . [kl- 7 4 v. I i 4 4 i': Lk'f ;. A 7.. -33.... 1......L.» .. 9;...z» ....» o i . LL « ..Mw4..4 ... r4...... 2 slpt. 1.16.Q~ .lr‘llnrq‘. rth. .. ....A .. «~«.A.M.wg ‘AJ.A|L..I lk+YL. up A w L w..........,...... 7..-..- r2" - 1i-fr’; 1 ‘r-v 4.. .. . ... . _ . 1A.... 439. .4.” .1 yr». ......5 4»? «A. Jr... a h . Ar» ...T... ..l.«.r L . . L .M ...(j....!. ..«5 .$A. ..a —~ J ~‘ ' . i i T": T. .’. 7 7' 'N , . ‘ - ‘. -—s—;—<—‘ #— »r-o 4 -rq ‘ . ----. f - . _‘ .4 C" . . ..; . O A 74-J- A - .7 4.. .’.‘-- .... 7 5 .J ‘ .L. 4~l u-"£' M -..-m... . ' '- .fl - ¢ . . . . T ~-§—_ ... 4-.-;— ...( .. ..A . . 4. . . A... . L b» _. .... .-H ...... rum. F» -v V . LU . i .. ”7"." $.- __., 4 «fwgu ‘ 3 7 . - .A I ...... .A.b. . . . -..-AT...VAm . ..‘i...?... ... .r... ... . . . . v w... . . . .. ...w. . . . ... w ... . .. A .. LU . .. (-..- 1 L 4.. .> 34%} .... .. ...”..Lf..-+. " _. . .4 .. ». .J»...L.... .4- ..r.. .....NTM + . ._.. ....»u.... 1...-.. . . . J... LL .. ...... . ...L . ..~A. ......H. .. . fin“.-v...‘..J .... .. re... ..~ .1 ...... ......L. ...: .. . . . ..-..i»: T?....I.A.T...... e. _. A w... .... .... . ..h. .J .. m». I o»»...... . ... v . w. . :3 .v ..1...«..;. .... . . -..- _N i... “1“: 9. v. .A . IL. ....1....o...» 1.». .1». . ..v.+-:$l... .I . ...Tw....w .. .. . ..a . .r .uwmkqhu ... ~ _*L ....M..»... v..?. r. .s.....v. 1... I!§I.1. )Luntt'. 1 t 5 ~1¢ . ~—'.—<.-+--\4 1 1 .....,.. A- 7 ‘,—'~'- -> 4 ”—3.4.-- .«_ w“ ,7. a»... 7. Li».. L.) Y f... _ ... Aii+¥u..... . .. . . b“ (a. 4.}. . ._I+u\a1§ Y 1v»... #4. A. il. ‘7 ,— ... ..-.»L v. . .. .... #7.. p r 1 ... . . ..1 ... ...». 7‘14 .7 V ”3-..". .... A» v l*'~ Ir «‘4»...- ...“... . ‘4-“ .. s n 6 «-..»... . . ' ‘..,.. - Q- L'». . ‘ . - I“. 3-4 : ...- l- 'l r) p- r Jason-b». ...», Y “W’ > f~-fi-'~4-«v¢-o-«r~ . .... “Ti rfv - § .3 I 1* . T "ho-IH-v-f—vL‘r- . . ,. .. r‘"‘fi'“z . w-..» t‘ .. _ . ,a-J ..-. I L . .L :5... ._ .9- vi ... ..I...Lr J fier-J v.1...” . In. . ‘ Ouhy~v ¢-~«~ .. .7 v. . - «0.. 4?... .Amc . ... ... .. - . \+_...--.. I: .-......- .. -Aé—,—~—~$’~. 7»... 11"" b 1...... .«¢”... .‘~.7 4. .>.w.....« .25. +i+13irxy+ R. ..vr»... ww~~+ .... .....h. a ,c‘fiil x-.. «.1 .... a . . . r . .1..7$1 A il‘. . yx+flftltl , L . , . _ .. . V . . ~ . . w .. . ‘ri. .. LL... 4 n4. . . .. , _ .1 ... _ L «.ttlfifiu‘z y » . v ...4 .1 ‘-~-—l\ «vuV. a- w k... $ .b 4 "'*‘V‘V . ‘A w ----o u n «...; .u- .... , ~ ' “T“""“"'- 4 W . . . .. ....w, . . .7: .. .Nkw ..vv... . ,_ . ...!»(1 r1: 5...?» 9.1.3..) ..‘Ail if)». trll‘ .lsrlr» . xfsotl.|nnntl.\,5...?).v}. . o. 9 8 7 & 5 ..II.II.-.OI «- ... (1.02-5.01..vale1. .....lI -. ...-I . k .I I ..t r 1).)- ?! ....‘l 5.! {-12.1744 .. $1141.74. . . . .II [AT-XI... .. -. .. . . M - T« 4 4 I . . _. . ..w. .. 4 v . t. . 1......ij .4.. 0.... ‘3‘ I. .‘l. ‘- Iliq 4- [Ill-...)”. all-11,1-.jv"JVI II 1....4‘I). c a . . . . . . . . .v. -.- .w ... .. . . v « . _ . w . . 4 u . . O u . .§. .. t a . . . h .5 10.1.. If‘ tfi‘l‘Qo ’4I4ll‘iij . . . . . .....LILI. ... - I... .- ...... t.- ...I ..«.. 4. ...14 _ . . __ . w .. . To. ..9 ...- I .. ... 4 o . . . - . . It L Y. 74.4»? -4..4I...IA. ..Iu .. . .... I . . Yo. v.3 . w. ». .... ... . ... .fl: . . .'.. \. .. I . 44-21141; . . .I. ...» .. . _ b WI 1. 4 o a w. a __‘.v n I“; \I' I A. ..L . - . *~.‘ w.‘ . . .. ...»-.. .V * ... ......-... . n. .m I . .. h. . .4 ... .......4»p . T.- “ . .. w... ...... . ....u . 4 n. . . . . I... in. ..4IIVW..&.I I....-.....A.AV.I...-I.:I... .. ~. ... .I .~ . - . . .4... . . 4 I . . 4 . 4 14 .. r 4 I. ..~‘Ar .-.f10|.v-...404.‘l..\VI'l§I....~...r|.v.7.. ... .17- 7..’- . (I. . . 4 1. .. A . . . . . . . . T . .. m . 4 ~ . 4 . 4 . . m . w . H . . . “I .. -I «7.. Avovj. .114 I! -O'kI )..AI 74.81. ... 4 u... .. . -. v . . . .. . . . 14 . _ . . ... . a . .. ... . {1.1.31 olf. . | _. . . . .h .. . . . . .. . .v . . ... ..... .... 4.9 +1.... M . .. . ...-. . .. _. ... . a . q . 4... . ...u . .. . 4.. 1.... .. I .. .. .. . . . - Ilfi‘ . . . k .4 4 ... .1. I . ) . . . .4 .p ...I V .I. .4. . . I. .. 4 . \ . . . » . > I. ~ I w. . . . . .4. . y .- .... .u.. . . . . .. 9% . . . .. r. A I . . . . .rlIO v . . . . . w ...W. .. . . .. o . N . . .. M... .. . n. . . . . . . ...N .. . ... w; .. . . . . . . . .. . . n . -. ..I- 7...-- -.....AII...I.-). .m. .... . . v _ w. ..r. .... . 4. . . . ..v. . . . .... .r. x . - . 1 . w . . . I .I4 ......«I.I*. ...4.K-. .7.\II. ... . .I) . I. . 4....b-iIIJ. 9.9.113 T1. 1.0- Ie-C- Mr... I.- (I 4 -. . ... .. . . - 4 I . — 4 4‘ .. . “v _ . 4 . . .... .. . . . . . . . . . .-....» 3i,- ..--I,-I: .I .-. . _ . .. . . .. . . 6. pr- . - .. . .4“. ... w . :. ... . H . a V . . v . . ... ...tlw-TY...I.I_I lLr I . . 4. . . J . . . . n . ‘ I . ..~ . . . . . .. . . .. a .-. . . . . w- . .. , v..— . . . . .. . . . . . . . 4, . . . . _ . . . . .r . . .4 . . .. .. .w . . a . . . 4.... .. . . . . . .. . . . .. ... v .. .. _ - .. .lu . ... w .. . .. . . . . ~.. . .n. . . p. ... ...-.4..... w. ~ . . . ...... .m. f .. .-.---.... .... . ...-I .-. -1. --. . - . _ ._ . . ,. .. . . .. .u . ... .4 . . .. l. . l. v} .I I -... 1.1.. .I. . r A . . .. . ... v. .. . . . . _. . .pw ... I .41....1... . ..h.. +- .. . N . _ fl . . .- 4 . .. ... . . .-I.. ... Il‘v . .. N 4 . .4 . . 4a . . . . . .. w: . h . .. r 'IVIJ...If.Iilélt.’\v.I..V‘.IQ.-?.TI ‘- ,. ... . , n .. . .. .. 4 r.. ... . ... . . . p . . . .. . r 4 o . . 4w . .44 4 ~ . ... .... .. .. 9.... .o ... .4 v . x a .; . . - ._ . .. . a . . .w. . . . . . . V . . . .. V .4... 4A... . 14.? - _ , . v.* w . . ~ . . .. _ o . . . W .... . . . . . . U . . . I v.» . 4 . . H . . . - . . y .. ...-7| .4. . ” ... .- ..: v.5 .4 .. . ... V~. . . ‘ .. .. . . v... .44 .... .. ..n. . 4 I . I . . . . w L .. . . . l .. . .. A w . - . . -I . I .. .. ,. ... .. . . a . . . . ..I. I.!. «...-II; -I... . _ ..Il- . . .. . _ .. .. .t n .— - .. .. . ... 1.. . . 4 . a . p . . v . . . .. . . . . H . a I. :- I . . Off... (4. . 4 . .. «I. d... [..--4- ‘ ... . . .. . _ w .4. ... .. . . . . ... . . . .. . . m . .... .. . . I . ... . . I.. I t I. A .. .. . . - Ly .. . .. N .. 1 .. .. . . . fl. . . .... .. . 4 I r .0 I v- \D \V I, n V . . . . ... . ...-... . .4 . 7. . .. ...-1!! ... . . . _ . . .. . ... . . .. q, . . . . . . nu . . . . . . . . I. I... . I . .. . . I.. ...- v. .. . . - . , . _ v . . _. .... .. .. .. . . . . . . v . .II.‘. .. .. I. v. .1 -....I.. .. -....‘..9. ...-4 . . . . . . . .. . . . ...h u. . ,. 4 4.; ..... .. ..r ._ .u. . , v. . . . ... .. . _ .. . . . .. . . 4 . -.-. ,... ... .-....1-.¢ . . . . . .. a. . . . .... . . . w .. .. h . . .. . .. . I . .Ih . . . . . . . ... .. . . . x. u. . . .h . ---- . . . . .-.: . w . . . . . -..-Tit, . 13--.. .. . v .n n . v . . N 4 4 4 4 c I 4 . _ _ 4 4 l . u. _ . . . . . .0 . ... . . .. . .. t... . 4 44. \ .. . . .u . I I .. 4 . . . .. . W r _ .. . . . \ . . r I 4 . _ . . J ..I‘rlIr .;\ I41. '1 . o . . A . .I. . . a» . . . . _ . . . . .... . . . . . . . . . . . .._.. \ . 4 2 . . . . . ,_ . . .. r v . . . 4 . r . - . .. : .. . .o . .o . . . . .oI ...... .1. . F ... . .I ..t.. . . , _ .o . . . .4. . _ . . . . . .l _ _ 4 I I. . .9 v . . .-. I. ... I.- . r A. .. 4 . . .. . _ . . . l I p . I YI4 4: IV‘ . — w I 4 .. . . . --.- ..-. . . .. .... -.. ,-, . . .. . . .. . _ V A 4 . _ . ‘ . . . .V..V h . . . .. . _ . . . . .v . o . . . . . f. ..w . . . . . y. b . u . . .r .v y . .. I . - . , . . . _. . . . - 5 . .. :9, r ... . H . . .. .. .. . ... . . . . . .. .. . . . A v. v A 4 | u ._ 4 — _ v r 4 \ . 4 . . . . . . , . .. A, . .. ... I!- . . . . p . .... I p . . . . . .. . . u ...I. . .. I .4 . n ._ 1 . .. 4 v . . , . . .- - - . - . . ... . . . .. ... .- .. . .{T.4.. -. .... .. . . . _ . .... .. . u . . . . . . . A l. . . “4 I 4 . _ .. . A_'. . . . . . . . 7c. . . .v: . . . .. . . . _ . 4 . _ 4 I A .. n n 4 . . v . . . . a ‘ . _ .. . _ . . . 4. . . .40. .- ... I by. I v I 1.- . . . ~ ‘ . . . . \4 . Al. I .0 ; ..”.. .Wtc I .c l..— 4 A . . 4.... . . . . , . . ...2 . _ u . . . 4 . .p . - c. . . . .v I . . . . I. . _ .r . ._ . . . .. . .. . . v .. . . . .. . .. .u u 4. . . . . . . v. . I .. Io - . . I I.. . ’1 5.4 u. 0 ..I - . . . . . . .. . _ Va \0 .. v ..Q.. 4 . . . . . . _ . . _ . . . ._ . . . . . _ . A... I y . I . \ . l 4 I . . . . .r. .. . . . . . . I . . . _ .. . w . .. . 9.. Ar . . . . . . . , . . . . . . . . .. .. . . ~ . 4 . _ . ., . . . . . . ._ . ... .. . ._ . . . . . .. . 4 . . - . - . .. .. .. , . .. + . , h 4 . n I I\I . 4 4pv- II x . . . . ... . . . . . 7 . n _ , _ 4 . v 4 n . . . . 4 .. . r . v . . F. ~ . . .. w y a .. . . _ . . . . . .. . . . . . . ; . ..V . 4 . . . . ... . _v u .4 - .O . . 1 . ...- . . . .4 . - - ...- .. . ...... r - . . . ._ .. . - .. .. . ...I .. .I .. . . s . . . .4 -.. . I . . . . .. , . . . . 2. .I .. ._ o . . . . . . . . . . _ . . .. . ..I . . . . .. . . . . . . . . ~ . . . .. . . . . H . . . r . .4 . . .. . . _ . . . . . . . _ . . n _ . .v .. . 4 ..u. . . . ~ .I r. n . . I. _ . . I . . . ._ y . . . . . 4 ...? .. .. _\4 .#.. . . . . . . . . . . . . ~ . . ._ . a . .. . . . . . . . . . .4 . . . 4 . .. . . . .. 4 _ x - .v . . . . . .. . .. . . .. . w. ... h .. . . . . . r . .. c .. _ .I . . ...! ...I. . ...N . .. i 0 T4 . . v . .9. LI) ._.V.I . . ..--.- .. .. LI Lift-iv - . .5 1. . . . . .. .. . . . . . .. . . . w n 4 _ . . . . M . ... _. ,. . . . .. . .. . . . . . . __ . . . . . 4 .- . . . .... .. ... w. .. . 4.. ... ... ... . .I . .. .. . . _ . . . . . . . . . . . . . _ . u . .. . . . . _ . . . I. u . . . . .. .. . . . . . s .I ...-.. ...... . .. ....-. .... I 4. -0.._... 1.. 2.. ... ....cw. ~..r..“...z . - ., . _ w.4- . 1-1.. 4 .4 .4 r 4 .. .h._ . .... - v M. ._ . .4 T. » . - . . V v . .u . 4. . .. Ia. . " ... v4. .4. a. . ... . ......" . .§. . « . . . . . . . .....m .L.. .4 v . 4. . .44 . . 4 F .. M y. 4. A n . . . . .. .H . 4- . ..4 . . . . .. .. . 4. . . 4 *..-AI .. a... _. . . I .I . ).. I ax. . . . . .D. . . - . , _ . I I . . . -. - . I . l-. r. 5. Ir (.+.P. Prllo l:.- .I.- .-.9-II .V-rl 4L. -. .LI- .rIP.IIb:. --.Orx....r I u-.. .L. .\-\|:f.LLI.rl‘Iv-.) I-. o . ..I.- GIT..- .v . 40 /0.0 8.0 6 3.?- 0 'w-3130. 0 0 0 0 . . . O 8 6 0. 8. 6 0 ~ A 2 I / I . 4,. .14 . ... 3’».....IJ..\. ..vlo .. {II-...... J.7.l.l...\-l. ..4 . 1* 14 ..431414... A OI . . . o . .. .... .. . .. .... ,4??? Ha . . -17. .. .. -A---11.91.111.11--. ..I-3.4.1.4- . . .$ "r.- . .. ....m ....» . ... ... . . .7... r, .. .I .4». .... .... .u»....+... .-. .4._A.f+..rHt. . . . n . . .. ..... ..-. . . . I ..- - . . .. ... . ... . 4. .4“... .. _. .... .... ... .w . ... “-A -..-..4 r ...-«......» ....... ... . . . . v 4...-».... .. .0 . .4... ... . . . , . .k. . 2 -.-V.0 ..... .I. ....1 . ......1. .. VP4.rwn. \ . m .. . .. _ ... . .. . .....lA .... .... ... A. .4 .4 .b .H- ~ .311-.. . .i-.- ‘ i- - v . A . -v A. I- I... .I.. . . ...... .... w m. _ m. - . . . . 14 A w 4-“.4. T .w!-J.vt.4.., ....a.. L.» r...--$..+4.Oo.-Ml..;- .-..I.-~........ . . -.... . _ . ... a. .. . a. . . ..m. .V ... ..4. ..--”......Jai ...n. ...-......4...‘ ..4.. ..w .. 7. .... .. 4 . .. .... .* r . _. 4.”.... . 1“». .r, ...... ...- ... __ .w?.... . . .A . . . . -. .. ... .4... . .... ._ . . V . p . ... . . . 4 .. .. . 4.. A h . .. .. .. . . I I ..... r r. ... . A — . . . . 4.... A» ..r .. .... . fl. . T .... ..... _. .~ . .. .. . _ . ”A h .. .-. .23.... l... .- -...- .. .I..-_- . .... . 5.1.--.- 4.I--.I..---. ...- . 3.32....- T..- ..I I . .- . . . . 1 . . . - r . » +m, . _. . . v. . ..IT. . -_ ..~ ...».- . - .....v.- ...»1 .A.. .. .A..-.- ...-.-!.#.+.A...Iiw...\..¢-I.~)1.I.-.J.1J..r..f.. .w - .. -. w.- v. 4.. 4 .. _ .4 .. . . . 1-5 .. .... . . r . . . .4._ ......A ... .u . ... ... 4.. .... . ... . .fl _. . .. . m . .w. ..H. ...M.. .14.” * . .... . - w. . +* . .. - .. I. . .. ,- . . . _. ._ .... .. .. z» . . . ... . .w.... .m . .... .M . . . - “ ... .......A... A ..I... . ..... . .-.. .. fl - .... .....r.I... .... - ». . .~ ... .~ -- .....A... ..r ..L. ...W ......-..s.. . “5 .. .V. .~ .. .. .y. . V. .. . ..4. r .. ...w.“ ....- .. ... ....«r. ........ . . .. .. «......o..?1....J-I. ... . M . . . . . . . .. . . . I _. .v. ..4 4. .- .. . .. ... . -. o. ... A.. . . .. ,. M. _ .. .....4 ... ... ... v ... ..u ......» . A . .. . T . y. 4 r ... .. .... . . . . _ . . _ . ~ .. . ... . . . . . . ... . . . . . ... . w - .. .1... .. ...-. . .. . I. . A w m . .. . 11....-. ...-... .. .T ....H -. .- . .A-.-19.4..-. .../.41- ..-... . I .. A..-1.1.. .-. - . -..-{I- -7. r --.-.2 ..-.A.... 113.3... .- Ii. -.AI.I..-I..L.-. 4-. . . . » .... a. V.-._ . a ... ... . . . . i ... . . .... ... m. .. .. . ...-I ..;.........-II.. _ 1-... .14.... . . . . . . _ “. . .. . ... . . . ‘ 4 .. a. .4... .y . .. . . A . _9 > . . w .... ... ...-... ... . . .. 4 . ~ - _ . . L .. . . ._ . . - A1~V .. 4 . M. ...W.-A .. - . . . . _ ... .N . ....p.. 4 . . .. . .- 14.....H_. 4....) .- .4-4I. O.- . .. I. .93.... )....4AI.. . _. t.. .I y .I a 4-1 I A . . H _ 2. . .. . .I A. A.. . a . .. . .. ... n . . . ..W.. .. .4.- . .. .,~ ...~.-...-.> . . .... . ... I...“ ...-f. ......I. . ..--...: . ...p... _ .... _ . , .. .-. «... A..... h. ’. A I . v.“.t.4_14II-JIIII.. A..-41.14.4111...11111;.1.IIov.4IA 2.414....- .- - - .4 .\-. 1|..4.l1.4¢.‘.’ .tIrA.‘IM .u . q . “.. . ..... ..I .. . p. ./ . u. ..r l . H .. . V - - . . . .. .. ..-- _. ..... . -. . 4 . . . .. .. r . .... . v . ...4.. .. . . .. . . . ... .. .. . . _ . - . o. - ...w... .T . . i _ . . .y . ... 4"- .-I.I . ....OAYfiAuA r . . 4 ..I . I ~. .1..I. . . .I . .4 ...-r! .. . .. .. .. ... 4. ... . . . - ...A ., .... ”i 4 .. A . . .u....A. . . .. . + . « . . 4 . ... ... . . . . 1 _- . . . A , ... I. . F 0 ..... ... . 7.1.4 . ... A . - .... 1-! .I . T 71...; . A! ...w. . PI? - fl )- - ..I . . .I .4 a ..I . L . .. . .... h k .... ... _ 4 4 . . v .w . 1 .. .- . . . . . ... ... .. . . “ .. . . . V n. .. ~ . a . . .q . 4 4 . . ./ . p .4. . ... . ... .9. I V 4 ...I .- . . w . . _. . . . . . . . .. _ .. s . . A .. . d -. 4. . .. - . A . ... t .1 . l I. . ... I .. . 4 .. ... 1.. x A. . I . I .l. .4 up . ... l a _ I . . 9 . Q . . . _ _ -0 . , . p . . . .. - . . .... .u m” .. ... -r. . N .7. - .. .I . . . _ . .. a .V. I. _. A . _ . . . g .. _ . - .. . . . - ...-1... . A. I_- - 4 , ..I . r: .. I .. 34.." w . . . ... -. . . ._ r . . . .A.. . n . . . .. . . ... I . . . .. . / . . I 4. .- - .. 4. . ... 4 I. 9. .11 .. .. ..I A. . - A . . .. F. . . ... ... . . . . _ . . . . . .. . . . - I . . . ...-... . . y . .. . w A. W .. 4 .\ p. . t .. A p _ - . . . _ _ . . - . .. .... . . .I .-. . ... .. ... .... 0-0-. . x a . _ . . . ..- . . .. L . H . .. . V 1 . . . . . _ . e _ . u f .. . . U . ... . .. . . . . . . . . v .. ._ , V . . . .4 . . 4 . . . - . . . - .. . ... .. ... A I - .... . ...- . - I.- .. . . . . A .u _ . . . . . h . v 4. . . . » I 4 -. . - . a. A 4. .. . . . . . . . . . 4 . . v .. . . - . . . . .. .. . . . . A o I. . .. ~ .. .. . 4 4 l o . . . . . . A _ A r . _ — n . . - u . I . .Id 1 . ... wLIf. A 4 . I . . .. .. _ . . . . .. . . .. . u - . ... ...44- A. . . _. 2-...- . . . . V a. 1 I.- A _ . _ r . .. . .. u . . . . . . . . . .. .. - - . - . . _ . _ . . .1V.p . . . .. . . . . .. . _ v . .. .. . . . .- . - . - . .. -- - ..I. .-I) -. . . - . . - . - 1—1-...“ . .. . ,- . . . ~ . n . u D 4 l nmA. . . . . . .. - .r . .v . - . .L .I .. . . _. . . . r - . .. . _ - AT_ : . . . . .. ... u -. Us f . - . 1-. . _ .. .. I}? 4. 1.1.. I 4 . I cit-fl .4 Vi.“ . . .. . . . . . . . . .. . . . _ . - .I- . > . m. . . . .. . .. .. _ )4 . _ . . . .. .. .w . . . . . .4 . .. . ... . . I . . . . . 4 .+ v. .A . . .. -. (.4 . ...-v. . .. . 4.. . . . .. .. .. .... 4 A — r . . .. _ .. ... .... - ...-.. . .. . .. .-. . . . - -..... . I. -..-.A.. . .. - ...! .A ... ..t o. \L .. . . . . V . .. A .- o » ... . . . .- .. . . A - . .- . . ._ ... .. . _ _ . . ... .. .. . . . l, . .4 . ... . . . . . y . VA . ...1 I 14...... v 1 . I. . . .I( A I ...44 -. , U . . .... .. . . . .. .4 . . . . . _ .. . _ .4 4... . . . . . . . . . . ... m _ . _ .. , . _ . . ... A: . 4 - ... . .- . ...-4. IL . ...w .4. .A... ..w. \YI. 4 1.. .... 4 .1.- » 4 u . . p I b. a . k l _ 4 . . _ . . . - .. _ . . . . . ... - _ - . . 4 A u _ .. .. . _ . I .~ 4. s . - . - - . .... - I-.. ..-, . I . - .-.-. . 1.. . , . . .. . u . .. . . . . n . . L . . . ., . . _ 4 . . . 4 . ... .. .. _ .. 4 . - .4 ... . . . - I... .. .... u- .- s'-. .--. I.....-.. o '7 .‘2/7 /6 . ...q 5 / \. Qt‘II. A..—I791. .. M . 4 / . . ..y _ , L . WT .... { EKQQQ _. M. . 1 ‘ . A,v-+4(!; . »\ VA. ‘21 1.1.... A 3 / ".Il él¢ll 5....‘4... Z / .. (all! \4. 9..-... .. . . ~ . flqfw $s ..... FQ/C 7(0N44.. 4055- 5-5 if (N- 4', P1??? ‘ [Rafe off/0w (90/- perm) .. _ . I A . _ ~ . . ~ . . . . . .... . _. .. . . , . _ < , n ..n v: c. ...i..1 ..y . . .. ... .. 7.11 . p ‘ . . . b y. . ,. . . y . . < “E. 6% Kai Q 4 “9-: ,.O~ . ...! .... 1.3%,... n: ... m .33.. ' .wna3 .3me . . . u . . p —. . p r.. ... v. .H v . _ . .. + ~ _ _ « I . n» A..]! w o ‘_v‘ 'x . .4 A---o é..¢..-v....?..-, .. ‘ - y 3 inc~ . ‘ .. . . . . 1 . I . u. I; .. . . . . A. ... . i. ‘!o .. A . y . _ T" ._ vq ‘ . § 3 . c )a ‘ .r w 1070 N41. [.035 5—5 fie IN. pl 95‘ 6” . 51’ .:.- . V .. _. s . . t ‘ . a . m ‘ . v.7. .,blv. . «ukoukaqumfi.Wwoumdfihfia u_.m-2..-.,.-”3.3.3.2-.-. .. ..W my .. .w 6 5 4. 3 2. . / v. : .\ 4. 19b I (la. ‘v .. t .1 L . 2 ‘1... y. a 1.. . X. ‘ ‘1 F511}. :14!.1-]:.7’ ..A.I.J...'.Iilfi \\.Y; W (4... 1‘14! 33‘... 1.. .. :5. ~ 2 a .‘ I \ .I v I. . ‘ . 2 . . 2 . y . . . _ . 2 . v . .. fi . 1‘ . . H 2 . . . . . 2 . . . . . A . . . y . . .. . . w: . . . . . _ H . 2. v . 2 2 . 2 ,_ _ o . ~ . ‘ .v. ¢ . . 1 . . . 4 . . n . . 2 . . . . _ . . . 4 _ » . .4 . . . . v .. , 2 _ . . . . . V v .2 . . . . \ . n A I t . Q . r . . , .. .. , s/z .... o .97..-..I,, .l: i . ..I ..I...€: . .. ..y‘f... . .- \. . . J k ' 4 y . . ,» 2“ .012. v. t . . l , . .. .. I. u. \ . . . . u . . w . . y . . . 2 . A. .4 . . . .. . . . H .4 . . . ._ . _ w . . . , L. ., . . ‘v. .14 .22--- ,2 . - .. , . , _ 2 n . . . . . 2 . ... 2 . . . .. . .2 r . . n v. .. v _. . _ .. . ‘ , . . ~ . . . r ; t» ... \ II {.{«. v u. f f v u (A x . ..I s A ... I. t. . - . . . .r \ A . 2 . . . . . . n . . . a . \ . . . 2 . . . .. « r . . . . , .. .‘. . . p » 2 P . A . . . . _ . l . .. . Aw . _ . \ . 4 .\ y i 1 7 . I . A. v‘.: -| ‘ 0.. )\.. 4: . A t . . v v . . . I \ ~ I . v4 Iv .._) v 2 av 26F, Ho. w: (90/; ' pier f 7.77/27 ."QA r:- I ,.,4 - . )4?» 0". Izod ' . ”00 O I 4 860900 ' 700 4oos‘obsoa that the sludge is either entering or has entered the turbulent reqion and is slowly approaching values more comparable to water even though they are much higher. It is also possible that agitation at this point has reached its maximum and has changed the particles to a more uniform.size and shape, thereby causing the flow to even out. It does indicate that the best velocities at which the the operation would be most successful would be between 5 and 7 feet-per-second. It oust be understood that the American Well Works did not publish ‘n the paper the conditions under wqich the tests were run. This would have a decided effect on the final analysis. It would be assumed that conditions were as ideal as possible and if they were as such, the curves would in some ways sub- stantiate the results of other investigators (See Part I). First, the sludge frict on losses increase with a decrease in moisture content. Second, the small 52:22: content does in- creese the head losses as compared to 100% water approaimately 1% tol4§ times depending on the velocity and moisture content. Third, the values give a curve of nearly the same slope as 1003 water in the higher ranges of velocity and rete of flow. In basingta design on the above facts and the American Well Works curves, it would have to be done with the greatest of care since a smooth curve would have to be superimposed on those curves. It is believed that in this way a slight safety factor would be introduced which would compensate to a certain extent for the varying preperties of the flowing sludge. 'éfla this point let us examine a few of the formulas which may be used under certain conditions where sludge is concerned. It must be noted that in most cases certain assumptions must be made which must be taken with questionable value. However, the values do give interesting results which do give an indi- cation of the variability of sludge. According to Babbitt and Deland (Sewerage and Sewage Treat- ment), if velocities above critical are used the friction loss in the sludge pipe can be estimated by the application of the Hazenai‘lilliams formula \/=!.BICE"3S°5q , using values of 6‘ 20% to 405 less than the values that have been established for the flow of water in pipes of the material to be used for con- veying the sludge. This means that, since, -e3 .54 VitalC E 5 5" (Fla-Ic)'.85-C#J)I.e$ or- S= ('2?)L85(‘¢¥Zs be: By considering only (3%?)L85- this gives for values of: C. 20°/e less ('7%‘)"°i .854 or 83-4°/o which M's 16-6 °/o lets #3011 value: for wafer C 30°/o less ('Z%q)"as= 1.153 or ns'.s% whack l5 IS-B‘VO more. c 40% less (.Lcagayes': 1.558 or 557096 morC The value for C 20iless seems erroneous since it gives a result of 16.63 less than the usual values for water. This cannot be according to the observationsof the American Well Works. They have shown that in virtually all cases the values should exceed water, such as, the values of t: 503 to 403 is correct or all are incorrect observations. Another interesting comparison is the comoarison of tJB formulas for lower and upper critical velocity by Babbit and number . Reynoldsn(using Schoder and Lawson as a reference),a Reynolds “ow number of over 63 will give turbulent». It will be assumed that the specific gravity is 1.008 (activated sludge) and a pipe diameter of 8". It will also be assumed that the moisture content is 97% and the coefficient of viscosity is 0.02 poisee. (E)(D)Cu) The refo re I Q? = P where @3 u rate of flow in gallons per minute 10 . diameter in inches J4 a coefficient of viscosity g) a Specific gravity By substituting in the formula, qganoafwn.. Now let us turn to the formula for upper critical velocity accordingABabbit since velocities over this will give turbulent flow. Therefore: V: nicer/1+ I17 'quonf-p- Dtg‘if. DP Where ‘7‘ 2 .001 $3 3 0 p 3 1/3 feet 6’ :62.4 lbs. per cubic foot The above valuel were taken from Babbitt and Dolend, "sewage and Sewage Design." Ry sub- stituting in the above formula, v: .07: 43:24 per second Therefore, any velocity above this value will theor- etically give turbulent flow. Since v=4y7l feet per second, it equals 4.2 feet per minute. Since anV mam =.as x4.2‘ L47 cubv'c Fee'} parse-eon! or (9: H ampm If the assumptions are correct or nearly correct, the above results would indicate that the use of empirical formulas will give results accurate enough for practical application. The re- liability of these seaumptions, however, could be proven only -.-15... Shrough.experimentetion with equipment not available It the present time. dfidaudb‘Q-onunnuc-nun-nuau-uuouuncen- PART III It was mentioned preciouely that e not of date was obtained from the sewage diapoeal plant in Jackson, Hichigeng ‘The fol- lowing date was recorded! ‘ 4 DEPTH opi I PRESSURE u x 0 Specific FRIAL! WET WELL“ TIER Irum“. per PLO! ‘7 "ago " Gravity f 1 gjbet) “ (miga)‘ 33; 13;: .1 nan fg!29)u '4 u g / 2.5 ‘ .za‘ /2 5‘40 3?. 44 90 /. o .7 1.! 4/ /2 47a :20; 90 /.o 3 2 5' 3. 0 /2 450 .2 06 90 l- a 4 6'. .6" 7. a: [2 360 .2 44 70 /' 0 5" 5-0 J’. 33 /3 £24 2.0 9 41 /.0/ Since the pipe schedule was composed of both Itrtight 8” pipe and verione fittings 1t tee necessary to convert the fittings to equivilant lengths or 8' pipe. The following pipe eohedile wee evolved: ”HEAD LOSS: IN gggnwxr! ‘gyEn TERMS OF / 6 "I!” Prob oer . a: I 6" 6/)!“ W/V' .30 , 5* x6”!!" 7;... no? 3 ?oo fired: are 8 4.5" 3024: 2.04 4‘ .1 a V: ’ 302d: :9. 5’0 6' a” 60": Ya/rr: Iaao I a" 6'th Vo/re o. :10 4 a'ug’nra' 7?: 4.40 I a” Cross /, 6'0 3 5m} (as: 1.00 7174» ” a " p/pr cnar/ F139 12 The hbove head losses give a total of 21.44 5‘11 where V is the velocity in an 8” pipe. According to Fig. 114 in Schoder and Dawson and using a category between fairly smooth and rough the following equivalent diameters of 8” pipe were de- termined. (a) For category between fairly smooth and rough 2|.44 x 57 = 7‘14 diam. (b) For category between rough and extremely rough 2:44 x 2c. = 558 dvam. Therefore (a) is equivalent to 530 feet or 8" pipe and (b)ia equivalent to 372 feet of 8" pipe. For (e) a total of 530 d 720 e 1250 feet will be considered and for category (b) a total of 572 4 320 a 1092 feet will be considered. The gas pressure as measured by a manometer at the sludge digestégh was 7.5 inches or water. The construction plane indicated a static head or 7.22 feet from the discharge side or the pump to the point or discharge in the disasters. The total frictional head loss involved is unzai- 24537.29. which equals 1985 feet. Since for category (a) the total equivalent length of 8” pipe is 1250 feet, the loss per 100 feet 1. %%,= 158194. For category (b) the length of equivalent 8” pipe is 1092 feet. . 5 which gives a loss per 100 feet or 3:1 = [.81 Fed e It can readily be seen that the result of the Jackson ex- periment do not follwo the line of reasoning set forth from the results of other experimenters. In the first pla e the above head losses are lower for a moisture content of 90% as compared “17-.- to the head loss thaken from the curves in Figure 3 through 10. They should be within a range several times higher than a moisture content or 94%. Another point to be considered is that the moisture content for the first four trials remained constant at 90% even eithough the flow decreased. Also the pressure remained constant; however, the author is of the opin- ion that the gauge was giving incorrect readings, thereby cover- ing up any fluctuations in pressure. according to the work or other men, there should be a fluctuation in pressure since the flow showed a decrease. Naturally if the flow decreased there should have been a gradual decrease in moisture content. fine data obtained at Jackson most certainly doesn't give a true picture of the head losses under the varying flows. To obtain a clear picture or any head losses, a great many observations should be taken at several different plants. .Mflyo a better method ot’determdning the rate of flow should be used, such as a venture tube tBSD located on the discharge side or the pump. “ny guages that are to be used should record accurate pressure at any reading and should be attached to a short length of rubber tubing to prevent clo ging. Any laboratory tests that are to be made should be made if possible immediately following the collection of the data. The euthorfirmly oelieves that if precautions such as these are taken, errors introduced could be kept at a minimum. eve-18.- PART IV I! is the usual goal of a thesis to'either prove or dis- prove the theory behind a certain thinéfitnings. A practical engineer in many cases, looks toward the person the attempts to seek out the hidden facts that cause a fluid such as sludge to behave so differently under taried conditions. Such was the intent of this thesis. The conclusion to he drawn cannot be eased on the proving or disproving of any certain phase of the actions of the sludge, but rather on the general observations of the work of others and to an extent, personal eXperimentation. At a first glance, it would seem that the results recorded bythe author are of no value at all, but it is believed that even through exPeriments thet fail, there is always something of value learned. In the author's case, it was what to do, should the occasion everpresent itself. to allow for any erron- eous results. To those who may cary on with this work. it must be remembered that dependable equipment is a prerequisite to ac- curate reeults. It most certainly does not take a detailed krowledge of fundamentals of the flow of water or sludge or even their behavior, but rather equipment, time and ambition to analize and formulate into a definite pattern the information supplied by other investigators and personal experimentation. The problem of the frictional head losses in the flow of sludge is far from completion. It is not a problem to which there is no answer. There isadoubt that some day enough infor— mation will be supplied to definitely set design standards. It is deeply regretted that a job must be left partially finished but to those who read this paper, it must be understood that the author has attempted to embody the important facts, which are available at the present time. Should it be that these facts and ex; erience are clearly understood then success and not failure shall be the result. 4.1.”. I”. #17 ”7.13747 11:” u TfIJ 7T p131. 103mg; "Laminar Flow of Sludge in Fipes With Special Reference to Sewage Sludge” by Harold E. babbitt and David H. Caldwell ”Sewage and Berna. Design” by Harold E. fiabbitt ”Hydraulics" (Text) by Schoder and Dawson # 3f .69: 4’5“ . f "Y '1’!ng 31:? .14 51'}: d u T. m. 1.; 'u’ua‘éi US r L can ' ’50??? USE 05:1 . $3“ 'I. — - ' v A . . ’ ' . .