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ABSTRACT

ABOVE AND BEYOND THE STANDARD MODEL:
ON PHENOMENOLOGY OF LEE–WICK THEORY AND MASSIVE

VECTOR COLOR–OCTET

By

Arsham Farzinnia

“A thesis has to be presentable... but don’t attach too much importance to it. If
you do succeed in the sciences, you will do later on better things, and then it will
be of little moment. If you don’t succeed in the sciences, it doesn’t matter at all!”

—Paul Ehrenfest (1880 – 1933)

The present Thesis is dedicated to a formal and phenomenological investigation of exten-

sions to two separate sectors of the Standard Model of particle physics (SM): the electroweak

sector and the strong sector. The Thesis is divided into two main parts: Part I focuses on the

Lee-Wick Standard Model (LW SM), which, by providing a solution to the Hierarchy prob-

lem, forms a natural extension of the electroweak sector, while Part II studies the coloron

theory, arising from extending the strong sector gauge group.

Providing a general introduction about the current state of the SM and the associated

challenges in Chapter , we proceed in Chapter to analyze the tension between naturalness

and isospin violation in the LW SM. Chapter discusses the global symmetries and the

renormalizability of LW scalar QED. A first complete calculation of QCD corrections to the

production of a massive color-octet vector boson (colorons) is reported in Chapter . Finally,

we conclude the Thesis in Chapter by summarizing the discussed results and presenting an

outlook for future research in the surveyed areas.
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PREFACE

“The world needs to wake up from its long nightmare of religious belief; and
anything that we scientists can do to weaken the hold of religion should be done,
and may in fact be our greatest contribution to civilization!”

—Steven Weinberg (1933 – )

The scientific method has been proven to be the only reliable method for unraveling the

mysteries of the natural world. Since the dawn of Homo sapiens’ domination of the earth,

curiosity has been the main thrust behind the slow but steady progress of this “Wise Man”.

The primitive man, himself a product of a long evolutionary process on a planet which from

the cosmological perspective is nothing but a speck of dust in the vast universe, looked with

awe at the heavens and their apparent order. Being inescapably confronted with the “big

questions” of the origin and the nature of life and the universe, this creature’s big brain saw

initially no way out but to speculate about the possible answers, desperately trying to find

temporary relief from curiosity. Indeed, curiosity was a curse from which there appeared to

be no escape.

In the bumpy course of human history, since reaching full behavioral modernity around

50,000 years ago, various cultures and societies have tried to dogmatize their speculative (and

often superstitious) resolutions in an effort to effectively terminate this curiosity “disease”.

To some it seemed appropriate to go so far as attempting to prosecute and eradicate free-

thought and intellectualism altogether. Despite ignorant opposition, a thirst for knowledge

has always compelled many individuals not to succumb to superficial speculations, but rather
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to try to inquire about the natural world through objective observations and evidence-based

empirical studies. Curiosity has played a central role in the development of this scientific

method of studying natural phenomena.

Scientists across different cultures, throughout centuries, have accumulated the acquired

knowledge of those before them and expanded upon it, “standing on the shoulders of giants”

as Isaac Newton put it. The scientific method stands in sharp contrast with the dogmatic

speculations preceding it, and as Steven Weinberg phrased, it has no prophet or authority

but it does have many heroes. In our modern perspective, the evidence-based quest for truth

about nature, inspired by the age-old curiosity and facilitated through falsifiable hypothe-

ses and reproducible experiments, has culminated in what is called the Natural Sciences,

containing physics as a branch.

The magnificent success of science in unlocking the secrets of the nature has had a

tremendous impact on the development of the human intellect and its maturity. It has

enabled us, to a certain extent, to leave behind childlike wishful-thinking and elect the

rational deduction of facts as the correct approach towards understanding our own nature

and our relationship with the world we live in. Objective observation, lying at the heart

of science and the scientific method, provides us with the tools needed to tackle the global

problems facing us as a species. It implies the necessity of employing rationalism as an

alternative to tradition and the superstitious belief systems currently plaguing a substantial

percentage of the human population across the planet, including in the developed world.

My hope is that one day humanity as a whole will achieve a level of maturity to break

the millennia-old shackles of ignorance and embrace its own full intellectual potential which,

if applied correctly, can construct a far better world than the one we are currently living in!
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Chapter 1

INTRODUCTION

“The only thing that interferes with my learning is my education!”

—Albert Einstein (1879 – 1955)

Modern particle physics revolves around the idea of all matter and energy being com-

posed of elementary undividable discrete constituents. In the modern physics nomenclature,

this is referred to as “quantization”. This concept dates back to at least the 6th century BC,

proposed first by ancient Greek philosophers such as Leucippus, Democritus, and Epicurus,

ancient Indian philosophers such as Kanada, Dignāga, and Dharmakirti, and later studied

by medieval Persian scientists Alhazen and Avicenna, among others. Democritus was the

first to have coined the term átomos, meaning “indivisible”, to describe these elementary

constituents. The modern concept of atoms was introduced in the 19th century, through

the work of John Dalton in chemistry, who thought of atoms as the fundamental particles of

nature, and hence, adopted Democritus’ terminology. By the early 20th century, however,
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it became evident through the experiments of Rutherford and others that atoms were not

indivisible, but instead were composed of even smaller components themselves.1

On the theoretical side, the special theory of relativity was discovered by Albert Einstein

in 1905. Furthermore, in his account for the photoelectric effect, Einstein proposed a radical

concept regarding the nature of light, describing it in terms of discrete packets of energy

(called photons). These prominent theoretical breakthroughs led to a profound change in

scientific understanding of the physical world in early 20th century. The notion of quanti-

zation of light, in particular, paved the way for the subsequent discovery and development

of quantum mechanics through the work of Niels Bohr, Wolfgang Pauli, Werner Heisenberg,

and Erwin Schrödinger, to name a few. Experimental discovery and identification of many

subatomic particles and their properties, such as the electron, proton, and neutron, together

with their quantum mechanical description, gave rise to ever more detailed models of atoms

in the first half of the 20th century.

The high energy scattering experiments throughout the 1950s and 1960s uncovered the

spectrum of a variety of new particles, initially all thought to be “fundamental” exhibiting

no further substructure, referred to as the “particle zoo”. Meanwhile, theoretical progress

concerning the incorporation of the special theory of relativity into quantum mechanics,

initiated by Paul Dirac in 1920s, gave birth to the development of a more comprehensive

quantum theory by the mid 20th century, called the quantum field theory. Quantum field

theory consistently describes all matter as being composed of point-like fundamental par-

ticles, and the interactions among them as being mediated by various quantized pockets

1There are many books dedicated to reviewing the history of modern physics, with an
emphasis on particle physics and gravity. The enthusiastic reader is encouraged to consult
e.g. [8]-[11], among many other excellent reviews.
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of energy, themselves also identified as fundamental particles. In light of this theory, the

particle zoo could be explained in terms of different bound-states of a limited number of

fundamental particles and their quantized interactions; this dramatically simplified the high

energy description of matter and interaction forces.2

Accordingly, many of the initially considered “fundamental” particles in the zoo turned

out to be described in terms of even more fundamental constituents, and hence, the notion

of being fundamental was now reserved to apply only to a limited number of particles from

which all others were composed. Initially, the existence of many of these truly fundamental

particles were merely postulated in the quantum field theoretical description of the particle

zoo; however, the experiments in the final decades of the 20th century unambiguously verified

the existence of all but one of these postulated particles, confirming their lack of substructure

up to the accessible energy scales.

According to the experiments, the currently accepted picture of the elementary con-

stituents of matter, exhibiting no further substructure, contains the following: quarks exist-

ing in six different varieties commonly referred to as “flavors” (up, down, charm, strange,

top, and bottom), and six leptons consisting of electron, muon, and tau, each accompanied

by a neutrino of the corresponding flavor3 (Fig. 1.1). Quarks and leptons are organized in

three “generations” or “families”, and are all spin–
1

2
particles, which makes them fermions

(named after Enrico Fermi who made, among other things, important contributions towards

understanding the behavior of these particles). A direct prediction of quantum field theory

is that all of these particles have a partner with the same mass but opposite electric charge,

2The gravitational force has not yet been described consistently by a quantized field
theory.

3In light of the discovery of neutrino oscillations, the actual three neutrino particles have
tiny masses, and are linear combinations of the flavor neutrinos described above.
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Figure 1.1: An illustration of the Standard Model matter and force particle content and the
Higgs boson. Quarks and leptons come in six different flavors, and are each organized in
three generations. The existence of the Standard Model Higgs boson remains elusive as of
yet. For interpretation of the references to color in this and all other figures, the reader is
referred to the electronic version of this dissertation.

(Figure courtesy of Fermilab Visual Media Services. The small text inside each box denotes
the particle’s name; it is not intended to be necessarily readable and is for visual reference
only. http://www-visualmedia.fnal.gov/VMS_Site/gallery/stillphotos/2005/0400/

05-0440-01D.hr.jpg)

forming the fundamental constituents of antimatter.

Quarks tend to combine in special manners to form bound-states, called hadrons. Hadron
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is a collective name for baryons (composed of three quarks) and mesons (composed of a quark

and an antiquark). The proton (two up quarks and one down quark) and neutron (one up

quark and two down quarks) are, therefore, baryons in this classification. Various numbers

of protons and neutrons bind together to form the nuclei of atoms of different elements in

nature, accompanied by an appropriate number of electrons in orbits around the nucleus to

make the atom electrically neutral. Hence, all known forms of matter, from simple elements

in the periodic table to complex molecules and structures made of them, can be traced back

to the bound-states of a handful of elementary particles.

Next, let us take a look at the quantized interactions in nature among the matter particles.

There are four known forces in nature: gravity (attractive between masses), electromagnetism

(attractive between opposite charges and repulsive between like charges), the strong nuclear

force (binding quarks inside the proton and neutron, and binding protons and neutrons inside

the nucleus), and the weak nuclear force (responsible for certain radioactive decays). In the

quantized description provided by quantum field theory, electromagnetism is mediated by

a massless, electrically neutral particle, called the photon, interacting only with electrically

charged particles. The strong interaction has eight massless, electrically neutral mediators,

called gluons, and is felt only by particles carrying the color quantum number, i.e. quarks

and gluons. Color can be perceived as the analogue “charge” appropriate for the strong

interaction; hence leptons, being colorless, are not affected by the strong force. The weak

interaction is mediated by three massive mediators: W+, W−, and Z vector bosons, where

superscripts represent the appropriate electric charges. The weak force is felt by all the

left-handed4 quarks and leptons. All of these fundamental force-carriers are spin-1 particles,

4In the relativistic limit, a particle is called right-handed if its direction of spin is parallel
to the direction of motion, and left-handed if the spin direction is anti-parallel to its motion.
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which makes them bosons (named after Indian mathematician and physicist Satyendra Nath

Bose, for his work related to Bose-Einstein statistics and the theory of the Bose-Einstein

condensate).

A consistent quantum field theoretical description of gravity currently does not exist. A

proposed quantized mediator of gravity takes the form of a massless, electrically neutral,

spin-2 particle, called the graviton, with a tensor nature (as opposed to the spin-1 vector

mediators of the other three forces). This is motivated by the macroscopic properties of

gravitational fields as described by the general theory of relativity. However, since the rest

masses of the elementary particles are extremely small, and the gravitational interaction is

much weaker than the other forces, gravity can be safely neglected in the relevant energy

scales currently under study in particle physics.

The quantum field theoretical description of the electromagnetic, strong, and weak forces,

and their interactions with quarks and leptons is collectively called the Standard Model of

particle physics (SM). It represents the currently accepted theory explaining the particle zoo

and other observed high energy phenomena with high precision. A final elementary particle

postulated in the SM, but yet remaining undiscovered, is a massive, electrically neutral,

spin-0 particle, called the Higgs boson (named after Peter Higgs, one of the contributors

to the description of the so-called “Higgs mechanism” of spontaneous symmetry breaking).

This scalar particle has been postulated in order to explain the origin of the masses of the

quarks and leptons. Incorporation of the Higgs scalar into the SM leads, however, to the

so-called Hierarchy Problem. Solving the hierarchy problem is currently one of the main

topics of research in particle physics. A potential solution to the Hierarchy problem will be

discussed at length in Part I of this Thesis.
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At this point, let us turn to a more comprehensive description of the SM. In the 1950s

and 1960s, it was realized by Chen Ning Yang, Robert Mills, Martinus Veltman, and many

others that quantized “gauge theories” provided a promising candidate for the quantum

description of the forces encountered in nature. A familiar classical example of a gauge

parameter would be the location where the gravitational potential field equals zero in the

Newtonian gravity. This represents a global free parameter in the theory, since its value

is a constant, independent of space-time. Depending on the problem at hand, the gauge

parameter may be freely chosen without affecting the outcome of the predictions for physical

observables, such as a particle’s kinetic energy in this potential field. The same observation

is true in quantum field theoretical description of interactions, although in a slightly more

complicated context. A proper isolation and treatment of the gauge parameter turns out to

be of extreme importance and leads to consistent theories which may describe a particular

interaction with properties obtained from experiment.

Let us examine more carefully how gauge theories emerge in context of quantum field

theory. Imagine a particular quantum field theory possessing a specific global continuous

mathematical symmetry; i.e. the theory remains invariant under a continuous symmetry

transforming operation. The branch of mathematics dealing with symmetries is called group

theory. As mentioned before, “global” means that the mathematical parameter in group

theory describing the symmetry is not a function of space-time; in other words, this symmetry

parameter is a constant across space-time of the theory. In that sense, the global continuous

symmetry of our quantum field theory is described by the particular mathematical group

associated with the symmetry under consideration, leaving the theory invariant. Given this,

if the ground state (vacuum) of the system does not exhibit the same global continuous
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symmetry, the symmetry is said to be “spontaneously broken” in this quantum field theory.

In other words, non-invariance of the ground state serves as the condition for a spontaneous

symmetry breaking (SSB), even though the Hamiltonian or Lagrangian of theory is still

fully invariant under the symmetry transformation. Upon a spontaneous breaking of a

global continuous symmetry, according to Goldstone’s theorem [12] (named after Jeffrey

Goldstone who formulated and proved the theorem), a massless scalar particle, called the

Nambu-Goldstone boson, will be generated. This is a peculiarity of quantum field theories

with spontaneously broken global continuous symmetries.

The situation turns out to be more interesting if our continuous symmetry is “local”; i.e.

the symmetry parameter is a function of space-time of the theory. Such a quantum field

theory is then called a gauge theory. The reason for the terminology is that in order for the

theory to be invariant under the local continuous symmetry transformation, a new massless

vector degree of freedom, containing a free gauge parameter, must be introduced. Mathe-

matically, this vector particle acts as if to “connect” different space-time points that have

different symmetry parameters.5 Hence, a quantum field theory possessing one or more local

continuous symmetries necessarily contains massless vector bosons (one for each symmetry

generator), which makes it quite tempting as a suitable candidate for describing quantized

interactions in nature, mediated by massless gauge bosons, such as electromagnetism and

the strong interaction.

What would happen if the local continuous symmetry of this gauge theory were spon-

taneously broken? According to Goldstone’s theorem, again a massless Nambu-Goldstone

boson is released. It turns out, however, that this Nambu-Goldstone boson combines with

5Geometrically, the situation is analogous to “parallel transporting” a vector on a curved
surface, which leads necessarily to the introduction of the “Christoffel symbols”.
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(or as is commonly referred to, is “eaten” by) the vector boson of the gauge theory, mak-

ing the latter massive. The previously massless gauge boson with only two (transverse)

polarizations has now become massive and, consequently, has acquired a third (longitudi-

nal) polarization component, which is exactly provided by the “eaten” Nambu-Goldstone

boson. Hence, spontaneously broken gauge theories contain massive gauge bosons (one for

each broken symmetry generator), making them again tempting as suitable candidates for

describing quantized interactions in nature, mediated by massive gauge bosons, such as the

weak interaction. Let us discuss how these ideas are adopted in practice.

The quantum field theoretical description of electromagnetism, involving photons, is

called Quantum Electrodynamics (QED), developed among others by Julian Schwinger [13,

14], Sin-Itiro Tomonaga [15], Freeman Dyson [16], and Richard Feynman [17]. Feynman

called it “the jewel of physics” for its extremely accurate predications of various physical

observables, such as the anomalous magnetic moment of the electron and the so-called Lamb

shift of the energy levels of hydrogen. It represents the first successful application of quan-

tum field theory to the physics of elementary particles, describing the quantum nature of

the interaction between light and electrically charged matter. QED is a gauge theory with

a local continuous U(1) symmetry, representing an unobservable (local) phase. The U(1)

symmetry has only one generator and is unbroken; therefore, QED contains one massless,

electrically neutral gauge boson, identified with the photon. Since photons themselves do

not carry electric charge, they do not interact with one another. The Abelian6 nature of the

U(1) group mirrors directly this physical property of the theory.

6In group theory, a group is called Abelian if its generators commute with one another;
otherwise, it is referred to as non-Abelian. U(1) is a trivial example of an Abelian group,
since it has only one generator.
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The QED vacuum is a dynamical “polarizable medium”; i.e. it contains virtual electron-

positron pairs which are constantly created and annihilated for a short period of time, ac-

cording to the Heisenberg uncertainty principle. In the presence of a “bare” charge (which is

formally infinite), these virtual pairs become polarized and induce a net screening of the bare

charge at low energies, corresponding to a finite observed charge at long distance scales.7

At high energies, shorter distance scales from the bare charge are probed, which are less

screened by the dynamical vacuum. This results in a larger observed charge and a stronger

perceived electromagnetic force. As a consequence, in QED the strength of the electromag-

netic interaction increases (logarithmically) with energy (see α1 in Fig. 1.2); in other words,

the electromagnetic force becomes stronger at shorter distance scales.

Strong interaction field theory is based on an SU(3) unbroken local symmetry, and is

called Quantum Chromodynamics (QCD). It was developed by Chen Ning Yang and Robert

Mills [18], Murray Gell-Mann [19], and many others. The SU(3) group consists of the set of

Special Unitary 3× 3 matrices, and is a non-Abelian theory. It involves the color quantum

number (analogous to the charge in QED), which is only present in quarks and gluons.

The symmetry group is, therefore, formally designated as SU(3)C (subscript C standing

for color). The QCD’s SU(3)C symmetry group contains eight generators, corresponding

to eight massless gluons as force-carriers. In contrast with the photon, which itself does not

carry electric charge, gluons do carry color quantum numbers and interact among themselves.

This fact is reflected in the non-Abelian nature of the theory. Moreover, contrary to the

Abelian QED, non-Abelian theories have as a peculiarity that the strength of the force

decreases logarithmically with increasing energy or equivalently at shorter distance scales (see

7See the renormalization discussion later on in this chapter.
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Figure 1.2: Relative strengths of the Standard Model interactions as a function of energy.
The electromagnetic coupling constant (α1) increases with energy scale, while the weak force
(α2) and the strong force (α3) coupling constants decrease, reflecting the asymptoticly free
nature of the latter interactions.

(Figure courtesy of c©The Royal Swedish Academy of Sciences. “The 2004 Nobel Prize in
Physics - Popular Information”. Nobelprize.org. 6 Apr 2012. http://www.nobelprize.

org/nobel_prizes/physics/laureates/2004/popular.html)

α3 in Fig. 1.2); in other words, quarks and gluons are practically free (i.e. non-interacting)

inside hadrons at close distances. This phenomenon is referred to as Asymptotic Freedom

[20, 21], and makes a perturbative treatment of strong interaction possible at high energies.

Although not yet formally proven, it is generally assumed that QCD predicts the appearance
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of only colorless bound-states of quarks in nature; i.e. all hadrons are colorless, in agreement

with observations. This is called color confinement.

As mentioned previously, the asymptoticly free nature lying at the heart of the strong

interaction makes it possible to invoke perturbation theory at high energies, since the strength

of the interaction decreases with an increasing energy. To be precise, in a perturbative

treatment the theory is expanded in terms of an asymptotic series as a function of its (small)

coupling constant (α3 for the strong force in Fig. 1.2). The leading order term (LO) in the

perturbative expansion corresponds to the classical level interaction, and is called the “tree-

level” interaction. The subsequent terms in the expansion form the so-called “quantum

corrections” to the tree-level interaction with an increasing level of complexity. Each of

the higher order quantum corrections is, however, proportional to a higher power of the

perturbative coupling constant, and is, therefore, increasingly suppressed. A perturbative

analysis in quantum field theory is, hence, only meaningful so long as the coupling constant of

the theory under consideration remains small, increasingly suppressing the higher powers of

quantum corrections. Throughout this Thesis, we will extensively make use of perturbation

theory, confining the analyses to the energy regions where such a treatment remains valid.

A field theoretical description of the weak force with three massive gauge bosons, two of

which carry opposite electric charges, is quite subtle and hints at a gauge theory with spon-

taneously broken local continuous symmetries (to explain the masses), and involving some

degree of mixture with the electromagnetic U(1) symmetry (to explain the electric charges).

Sheldon Glashow [22], Steven Weinberg [23], and Abdus Salam [24] were independently able

to show that a gauge theory based on an SU(2)L × U(1)Y symmetry, spontaneously bro-

ken to U(1)EM, produces three massive gauge bosons (corresponding to the three broken
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generators) with positive, negative, and neutral electric charges, along with another gauge

boson that is massless and electrically neutral (corresponding to the unbroken generator).

As previously noted, the weak interactions affect only left-handed fermions, or equivalently,

right-handed antifermions. The subscript L, thus, refers to the left-handed nature of the

weak force. The subscript Y represents “hyper-charge”, a U(1) quantum number for the

particles in the unbroken phase. Upon the spontaneous symmetry breaking, the surviving

U(1) symmetry is identified with the ordinary QED (hence, the subscript EM); the massless

gauge boson associated with it is identified with the photon, while the three massive gauge

bosons are the W+, W−, and Z vector bosons, the force-carriers of the weak interaction.

In that sense, SU(2)L × U(1)Y symmetry group provides a unified gauge description of

weak and electromagnetic forces, and is, therefore, called Electroweak theory. It should be

emphasized that electroweak theory represents only a unified gauge description, rather than

a true physical unification of weak and electromagnetic interactions, since the weak and

electromagnetic coupling strengths remain distinct (Fig. 1.2).

At this stage, let us define more precisely the Higgs mechanism [25]-[30] responsible for

electroweak symmetry breaking. In electroweak theory, the SSB is achieved by introducing

a potential energy function for a complex scalar SU(2) doublet (denoted as φ in Fig. 1.3),

effectively adding four extra degrees of freedom to the theory. As depicted in Fig. 1.3, the

potential develops a Mexican hat form, with the stable minima consisting of points along

a circle at the bottom of the hat, representing an infinite number of degenerate vacua with

non-zero values (note that the vacuum with the zero expectation value is unstable). One

may choose any point on this circle8 as the true vacuum of the theory, thereby, allowing the

8The different points correspond to different choices of gauge and are, therefore, physically
equivalent.
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development of a particular non-zero vacuum expectation value (VEV). This choice leads to

an explicit spontaneous breaking of electroweak symmetry as described above. Fluctuations

around this non-zero VEV redeploys three massless scalar degrees of freedom as the Nambu-

Goldstone bosons (one for each broken symmetry generator), as well as one massive scalar

state, which is called the Higgs boson. In Fig. 1.3, the Nambu-Goldstone bosons correspond to

fluctuations along the equipotential circle at the bottom, which is reflected in their massless

nature. The Higgs boson, on the other hand, is generated by fluctuations in the radial

direction where the potential changes, inducing a mass term for this degree of freedom.

In electroweak theory, additionally, the coupling of the scalar doublet to fermions is

responsible for the fermion masses, with their masses proportional to the strength of the

associated couplings. This type of coupling is called the Yukawa coupling (named after

Hideki Yukawa who was the first to introduce a coupling between scalars and fermions in

context of a different theory). The massive weak gauge bosons acquire their masses by eating

the Nambu-Goldstone bosons, as discussed earlier. Therefore, in electroweak theory, gauge

bosons and fermions are massless in the unbroken electroweak symmetry phase, and become

massive in the broken phase. Even though the Higgs mechanism provides, among other

things, an economical solution to mass generation for both fermions and weak gauge bosons,

the Higgs boson itself remains elusive so far, and forms the last missing piece of the SM.9

To summarize, the SM has an SU(3)C × SU(2)L×U(1)Y gauge structure with a Higgs

mechanism for the SSB, and encompasses all known subatomic particles and their interac-

9As of early 2012, the searches at the Large Hardon Collider (LHC) may indicate the
existence of a SM Higgs boson at around 2σ statistical significance. This implies that the
SM Higgs boson, if existed, is most likely to have a mass constrained to the range 116-
131 GeV by the ATLAS experiment [31]-[33], and 115-127 GeV by CMS [34]-[37]. These
findings are, however, statistically not strong enough to claim a discovery (the 5σ threshold)
and await the accumulation of more data.
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Figure 1.3: Standard Model Higgs potential illustrated. Upon spontaneous symmetry break-
ing, the extremum at zero vacuum expectation value (VEV) becomes unstable and the system
is forced to acquire a stable non-zero VEV at a randomly chosen point around the bottom
of the hat. The degree of freedom along the radial direction (along the arrow) corresponds
to the massive Higgs boson, while the degree of freedom perpendicular to it (on the equipo-
tential circle at the bottom of the hat) is the massless Nambu-Goldstone boson.

(Figure courtesy of Nature Publishing Group. “Eyes on a prize particle”, Luis Álvarez-
Gaumé & John Ellis, Nature Physics 7, 2-3 (2011) | doi:10.1038/nphys1874. http://www.

nature.com/nphys/journal/v7/n1/fig_tab/nphys1874_F1.html)

tions. Furthermore, using the experimentally determined values of a number of parameters

as input, the SM can, given its renormalizable nature, make specific predictions regarding

the outcome of many other experiments with, in principle, an arbitrary degree of accuracy.

In order to test the SM predictions in the electroweak sector, a number of high precision

experiments, the so-called electroweak precision tests, have been conducted. Data collected

through these experiments can be parametrized in various manners,10 in order to make com-

10See Chapter for an elaborate discussion on these electroweak parametrizations.
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parison with the theoretical predictions, and place tight constraints on the numerical values

of many of the SM input parameters.11 Fig. 1.4 summarizes the experimentally measured

values of a number of parameters predicted in the SM, and compares them with the theoret-

ical prediction, with the highest deviation lying within a 3σ bound. As one may appreciate,

the SM is impressively successful in predicting the values of many observables, and passes

the most stringent experimental tests.

As impressive as the SM might sound, there are, nevertheless, a number of theoretical

and observational indications suggesting that it cannot represent a complete and final ac-

count of the quantum world, as the ultimate theory of nature. These indications demand

explicit extensions and improvement of the SM, requiring inclusion of some new physics. An

illustrative list of SM shortcomings contains the following observations:

• The SM does not contain a quantum field theoretical description of gravity;

• As indicated in Fig. 1.2, the strength of the electromagnetic, strong, and weak inter-

actions do not meet at one single energy. If, based on theoretical considerations, one

is to take the idea of unifying the interactions seriously, the SM does not unify the

coupling constants of the three forces, neither does it provide a unified description of

all three as different manifestations of one fundamental interaction;

• There are over twenty free parameters in the SM, the origin of which remains unex-

plained within the framework of the theory, and their numerical values need to be

considered as input to the SM;

11As we shall see, experimental deviations from the SM predicted value for these parame-
ters can be attributed to new physics, allowing one to place (lower) bounds on the value of
various beyond the Standard Model (BSM) variables.
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02750 ± 0.00033 0.02759
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959
σhad [nb]σ0 41.540 ± 0.037 41.478
RlRl 20.767 ± 0.025 20.742
AfbA0,l 0.01714 ± 0.00095 0.01646
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1482
RbRb 0.21629 ± 0.00066 0.21579
RcRc 0.1721 ± 0.0030 0.1722
AfbA0,b 0.0992 ± 0.0016 0.1039
AfbA0,c 0.0707 ± 0.0035 0.0743
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1482
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.399 ± 0.023 80.378
ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092
mt [GeV]mt [GeV] 173.20 ± 0.90 173.27

July 2011

Figure 1.4: Experimentally measured values of various SM parameters. Columns on right
illustrate deviations from the SM theoretical prediction, ranging anywhere between 0 to 3
standard deviations.

(Figure courtesy of LEP/TEV Electroweak Working Group (EW WG). “Preliminary con-
straints on the Standard Model” | preprint: arXiv:1012.2367 [hep-ex], updated for 2012 win-
ter conferences. http://lepewwg.web.cern.ch/LEPEWWG/plots/summer2011/s11_show_

pull_18.pdf)
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• As presented in Fig. 1.4, the SM predicted outcome for a number of experimental

parameters deviates up to 3σ from the experimentally determined value, entertaining

the possibility of some new physics substantially influencing those experiments;

• Dark matter, its existence inferred from various sources of astronomical and cosmolog-

ical observations, is not explained within the context of the SM. In other words, the

particle content of the SM (Fig. 1.1) cannot account for the observed dark matter in

the universe;

• The SM prediction for the value of dark energy, presumably responsible for the observed

accelerating expansion of the universe, is far too large by many orders of magnitude

and is physically excluded;

• The SM cannot account for the observed dominance of matter over antimatter in our

universe;

• The SM provides no justification for the observed homogeneity and isotropy of the

universe at large distance scales;

• Quantum corrections to the mass of the predicted Higgs boson are quadratically di-

vergent (see below), making its mass highly sensitive to the ultra high energy behavior

of the theory, around the Planck scale where gravity presumably becomes important.

These corrections, therefore, tend to generate a large mass for the Higgs boson. In

contrast, the actual mass of the Higgs boson must naturally lie near or below the elec-

troweak symmetry breaking scale, many orders of magnitude smaller than the Planck

scale. This requires a severe fine-tuning of the Higgs mass (and other SM parameters

related to it), in order to remove the enormous contribution of the quadratically di-
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vergent quantum corrections, and produce a natural weak scale “light” Higgs. This

spectacular cancellation is known as the Hierarchy problem. Another way to rephrase

the Hierarchy problem is to contemplate why the weak energy scale is so much smaller

than the Planck scale, or equivalently, why is gravity so much weaker than the other

forces.

Let us elaborate on this last bullet note. Within the context of quantum field theory, quan-

tum corrections often introduce divergent contributions to observables. This is a consequence

of extrapolation of the quantum field theory to very high energies, where the current de-

scription presumably breaks down, and a new unknown and more fundamental theory takes

over. Nevertheless, in order to obtain physically meaningful quantities with our current

understanding, these unphysical infinities must be properly parametrized and isolated (the

so-called regularization procedure), and disposed of, by being reabsorbed into the defini-

tions of physical quantities of the theory (the so-called renormalization procedure). In other

words, the unrenormalized theory contains bare parameters (such as bare mass and charge)

which are formally infinite due to the quantum corrections.

Upon renormalization, the properly regularized divergences of the theory are absorbed

into the definitions of these bare parameters, rendering finite results for the physical observ-

ables (such as renormalized mass and charge). As noted before, in case of the Higgs mass

the contributions from the quantum corrections are quadratically divergent. Reabsorbing

these gigantic contributions into the definition of the bare Higgs mass through the renor-

malization procedure requires a cancellation to a remarkable degree of accuracy, in order

to leave a finite, and in comparison tiny, renormalized weak scale mass for the Higgs. In

other words, the renormalized Higgs mass is severely fine-tuned, leading to the mentioned
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Hierarchy problem.

Many theoretical extensions of the SM have been proposed in order to tackle and resolve

one or more of the aforementioned SM issues. The main effort in particle physics community

has been concentrated towards solving the Hierarchy problem, through somehow eliminating

the quadratic divergences in the Higgs mass by construction. This is usually achieved by

imposing some new symmetries, which result in a new set of (heavy) particles, inducing a

cancellation among the quantum contributions originating from the ordinary particles and

the new set of heavy particles. The first half of this Thesis is, accordingly, dedicated to

elaborate on by far the simplest, although as we will see rather peculiar, solution of the

Hierarchy problem; namely, the Lee-Wick Standard Model (LW SM), as discussed below.

There are various methods of regularization in use in particle physics, each possessing

certain advantages and shortcomings, depending on specific circumstances. A method sug-

gested by Wolfgang Pauli and Felix Villars, published in 1949 [38], involves introducing a set

of auxiliary “fictitious” particles (see below) into the theory, the quantum contribution of

which is subtracted from that of ordinary particles. The mass parameter of these auxiliary

fields acts as the regulator, parameterizing the divergences of the original theory. Taking the

infinite limit of this mass parameter removes the fictitious particles from the theory, and the

original (divergent) theory is recovered.

In the original formulation of the Pauli-Villars (P-V) regularization method, the auxil-

iary particles were strictly introduced as a mathematical tool into the theory, in order to

regularize the infinities associated with the quantum corrections of ordinary particles. In

1969 Tsung-Dao Lee and Gian-Carlo Wick explored the possibility of these auxiliary fields’

being actual degrees of freedom, and the theoretical implications of this consideration [39].
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They were motivated by the following observation: by construction, the divergences of the

theory are cancelled among the quantum contributions from ordinary particles and their

auxiliary “partners”. This feature made the resulting theory, from a formal perspective,

highly attractive. At that time, their considerations led to a finite theory of QED [40].12

P-V auxiliary fields inherently contain an overall negative sign as part of their descrip-

tion, originally inserted to cancel divergences of ordinary fields. Therefore, promoting these

auxiliary fields from fictitious to real particles turns them, by construction, into so-called

“ghosts”. Ghost fields, carrying this extra negative sign, contribute a negative probability to

the processes in particle physics, and hence, are considered unphysical. The P-V ghosts as

real degrees of freedom, therefore, violate unitarity, indicating that the sum of the proba-

bilities of all processes in the theory would not equal one, and lead to an unphysical theory.

Coping with this problem, Lee and Wick were able to show that the issue could be averted

by relaxing causality at very high energies, having as a consequence that these auxiliary

partners decay before they are produced.13 As a result, the Lee-Wick (LW) theory inher-

ently violates causality at small distance scales corresponding to very high energies, beyond

the reach of current collider probes.14

Lee and Wick also showed that, from a theoretical point-of-view, the addition of this

“auxiliary sector” to the original Lagrangian would be equivalent to invoking a “higher-

derivative term”. In the latter approach, the kinetic term in the Lagrangian, ordinarily

12Modern finite theory of QED is based upon the renormalization formalism, in which
the infinities are reabsorbed in the definitions of the bare parameters, rather than being
cancelled by introduction of heavy partners.

13For an elaborate discussion on peculiarities related to the Lee-Wick theory, see e.g. [41,
p. 282].

14Odd as the theory might sound, one should bear in mind that causality in physics is an
axiom, and ultimately it is up to experiment to determine the energy bounds within which
this axiom is valid.
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prescribed by a quadratic derivative term, is viewed as the first entity in an infinite expansion,

and is extended to contain the next entity in the expansion series,15 which will be of a quartic

form.16 Using the equations of motion, one can prove the equivalence of the “auxiliary-field

formulation” and “higher-derivative term formulation” of the theory. The Lagrangian with

a higher-derivative term naturally produces a propagator with higher powers of momentum

in the denominator for the ordinary fields, which, in calculations of quantum corrections,

leads to a softening or complete removal of any divergences. This is in accordance with the

auxiliary-field formulation, in which the auxiliary fields soften or cancel the infinities induced

by the ordinary fields.

In 2008 Benjamin Grinstein and Mark Wise examined the possibility of applying LW the-

ory to the SM [42], since the resulting theory would be naturally free of any quadratic

divergences; hence, solving the Hierarchy problem in an economical way. As mentioned

above, the higher-derivative terms added to various sectors of the SM produce the higher

momentum propagators, softening or removing all SM divergences. Equivalently, in the

auxiliary-field formulation, all bosons of the SM are accompanied by a massive “Lee-Wick

partner”, while all left-handed and right-handed fermions have separately two corresponding

massive left-handed and right-handed LW partners, accomplishing the same result as the

higher-derivative formulation of theory.

In Part I of this Thesis, we take a deeper look into the LW SM, which, in the context of

resolving the Hierarchy problem, forms a natural extension to the SM electroweak sector. As

alluded to before, the electroweak precision data may be parametrized in particular manners,

15From a formal perspective, the inclusion of more LW partners per SM field is equivalent
to adding more higher-derivative expansion terms.

16Odd terms in the expansion are excluded by Lorentz invariance.
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in order to make comparison with theory possible. One particular way of parametrizing these

data involves determining the quantum loop correction contributions to the self-energy of

massive gauge bosons (also called vacuum polarization amplitude (VPA)); i.e. W± and

Z. The electroweak precision data place tight bounds on the value of the parametrizations

associated with these contributions. At low energies, the postulated existence of the heavy

LW partners introduces new (previously non-existing) corrections to these parameters; for

example, due to the LW partners manifesting themselves as “virtual particles” running in

quantum correction loops. As the contributions of LW particles are related to their masses,

one can utilize the tight constraints on the VPA electroweak parametrizations, deduced from

the electroweak precision tests, to place lower bounds on the LW masses. This analysis [1]

will be the subject of Chapter .

In 1971 Gerard ’t Hooft proved that the SM is a renormalizable theory [43]. This implies

that all divergences of the SM to all orders in perturbation theory are absorbed by renor-

malizing a limited number of the SM parameters, obtaining finite, physically meaningful

quantities for the observables. Generally, the renormalizability of a quantum field theory

may be qualitatively examined using a technique called power counting. In this technique,

one determines the powers of momentum in quantum correction loops, which in turn may

be used as an indication of the number of divergent quantum correction amplitudes (to all

orders) of the quantum field theory. If this number is finite, the theory under consideration is

renormalizable and all of its divergences may be absorbed in a redefinition of a finite number

of its bare parameters. If, however, by power counting the number of divergent amplitudes

is infinite, the theory is non-renormalizable.

The addition of higher-derivative terms to the SM Lagrangian, as prescribed by LW the-
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ory, might naturally raise concerns regarding the renormalizability of the resulting LW SM,

since it potentially alters the powers of momentum in the quantum correction loops. Renor-

malizability has been previously explored in the higher-derivative formulation of the theory

by means of power counting arguments. It is, however, not clear a priori how renormaliz-

ability manifests itself in the auxiliary-field formulation. In Chapter , studying a LW scalar

QED theory as a toy model, we directly examine the symmetries and renormalizability of

this class of Abelian LW theories in the auxiliary-field formulation, identifying the relevant

symmetries which lead to a renormalizable theory.17

In Part II of the Thesis, we turn our attention to investigating the collider phenomenol-

ogy of an extension to the strong sector of the SM described by QCD. As explained pre-

viously, QCD is based upon an SU(3)C local continuous symmetry. Since the late 1980s,

it has been of theoretical and phenomenological interest to extend the SM strong sector

to an SU(3)1C × SU(3)2C gauge theory, spontaneously broken to QCD’s SU(3)C [5]-

[7]. This class of extensions represents an integral feature of theories in which the elec-

troweak symmetry breaking is induced by the so-called strong dynamics, where a new type

of strongly-coupled gauge interaction forms a “composite Higgs” out of colored fermions.18

In accordance with Goldstone’s theorem, the spontaneous symmetry breaking releases eight

Nambu-Goldstone bosons, which are subsequently eaten by eight out of the sixteen originally

massless gauge bosons. Consequently, we obtain, in addition to eight massless colored gauge

bosons identified with ordinary QCD gluons, eight massive colored vector bosons which we

17The analysis performed in the context of LW scalar QED is expected to generalize to
non-Abelian LW theories, and in particular to the LW SM, although a formal proof is yet to
be provided.

18The situation is analogous to formation of “Cooper pairs” from electrons in a supercon-
ducting medium below the critical temperature.
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generically refer to as the colorons.

From the phenomenological point-of-view, the main coloron production channel in a

hadron collider is the quark-antiquark annihilation process. To date, all theoretical and phe-

nomenological analyses of colorons have been performed only at tree-level in perturbation

theory (LO). The next-to-leading order corrections (NLO) consist of the first order quan-

tum corrections in the perturbative expansion, and additionally, the emissions of real soft

and collinear particles which are undetected due to the limited resolution of the detectors.

Chapter is devoted to the first complete and comprehensive study of coloron production at

NLO, taking into account the full corrections arising from the real emission of gluons and

light quarks, in addition to first order quantum corrections [3]. The NLO study dramatically

improves upon the previous LO calculations, and makes it possible to predict new coloron

kinematic variables, which emerge only after a complete NLO analysis is performed.

Finally, we conclude the Thesis in Chapter , by summarizing the main contributions

examined in the pervious chapters, and providing an outlook for future research in these

areas.
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Chapter 2

CUSTODIAL ISOSPIN VIOLATION

IN THE LEE-WICK STANDARD

MODEL1

“If the facts don’t fit the theory, change the facts!”

—Albert Einstein (1879 – 1955)

2.1 Introduction

The Lee-Wick Standard Model2 (LW SM) [42] forms a natural and simple exten-

sion of the ordinary Standard Model, which solves the Hierarchy problem in an economical

way. As discussed in Chapter , the Standard Model (SM) suffers from the quadratic diver-

1This chapter is based on the paper first published in [1].
2A Lee-Wick extension of the Higgs sector had been previously proposed in [53]-[55].
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gences brought forth by quantum corrections to the mass of the SM Higgs boson. Absorbing

these contributions by means of renormalizing the bare Higgs mass requires a severe fine-

tuning, and introduces the Hierarchy problem. The LW SM, as an extension to the SM,

introduces new fermions, among other particles, with exotic properties (see below) — the

Lee-Wick (LW) fermions. Within the context of the LW SM, the Hierarchy problem is

remedied by an induced cancellation among the ordinary fermion quantum contributions

and those generated by their LW counterparts. The bare Higgs mass will then contain no

quadratic divergences and can be renormalized in the usual way as explained in Chapter ,

remaining insensitive to the high energy behavior of the theory.

In the SM, the electroweak sector at one-loop may be fully parametrized using the fol-

lowing five observables: the mass of the Z vector boson mZ , the so-called Fermi constant

GF as a measure of the symmetry breaking vacuum expectation value (VEV), the so-called

Weinberg angle θW indicating the degree of mixture between the electromagnetic and weak

forces, the mass of the Higgs boson mh, and the mass of the top quark mt. The values of

these five electroweak observables are extremely well-measured.

In order to extract the values of the electroweak observables from the electroweak preci-

sion data, convenient parametrizations have been introduced in terms of one-loop fermionic

corrections to the electroweak gauge bosons’ vacuum polarization amplitudes (VPA) (see e.g.

Fig. 2.4). In four-fermion scattering processes, oblique corrections are defined as quantum

corrections to the gauge bosons’ VPA which do not depend on the identities of the initial

and final state fermions. If such a flavor dependence does exist, the corrections are referred

to as non-oblique corrections.

In general, the oblique corrections are parametrized using the Peskin-Takeuchi S and T
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(or ∆ρ)3 parameters [56]-[58]. S measures, for example, the size of the electroweak symmetry

breaking sector, while T tracks isospin violation (defined below). If both non-oblique and

oblique contributions are present, one must employ, instead, the Barbieri et al. [59, 60] post-

LEP electroweak parameters Ŝ, T̂ , W , and Y .4 The well-determined experimental values of

precision electroweak observables can subsequently be used to place tight constraints on any

contribution from new non-SM physics to the gauge bosons’ VPA.

Since none of the LW degrees of freedom have been observed in experiments, they must,

if they exist, be heavy with masses beyond the reach of previous collider searches.5 As

mentioned before, addition of these new heavy exotic particles to the spectrum in virtual

form risks running into conflict with precise experimental data on the electroweak observ-

ables: virtual LW fermions, running in quantum loops, contribute to the gauge bosons’ VPA;

thereby, modifying the values of the aforementioned (non-)oblique corrections. In conjunc-

tion with the electroweak experimental data, this information can be used to deduce lower

bounds for the LW particle masses. In what follows, we will discuss how the exotic properties

of the LW fermions solve the Hierarchy problem, and show, in detail, how corrections to the

post-LEP electroweak parameters can be utilized to constrain the LW masses.

The LW SM features higher-derivative kinetic terms for each SM field.6 As a conse-

quence, the field propagators fall off to zero with momentum more rapidly than the ordinary

3Within the context of the standard electroweak theory, the ρ parameter is defined as the

zeroth-order ratio: ρ =
m2
W

m2
Z cos2 θW

= 1. Small experimentally measured deviations from

this value is attributed to the higher-order quantum corrections, and can place tight bounds
on the new physics contributions.

4For the precise definition of these parameters, see Sec. 2.4.1.
5As we will show in this chapter, a lower bound for the LW particle masses will be of the

order of a few TeV, in which case, they might lie within the reach of the LHC.
6See Sec. 2.2 for the exact formal definition of the LW SM.
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SM propagators, and the infinities associated with ultraviolet quantum fluctuations either

become less severe or are removed from the theory. In a scalar field theory all amplitudes

turn out to be finite by power counting. In a gauge theory the higher-derivative kinetic

terms generate new momentum-dependent interactions that prevent the theory from being

finite; however, a simple power counting argument shows that all possible divergences are

logarithmic. Thus, the LW SM offers a potential solution to the hierarchy problem. This

was the main motivation for studying the model [42] and analyzing its phenomenological

implications [61]-[64].

If a higher-derivative kinetic term is added to the Lagrangian, the propagator of a LW SM

field displays two poles,7 the lighter one corresponding to a SM-like particle, and the heavier

one corresponding to a new degree of freedom, the LW partner. An equivalent formulation

consists of separating the poles in such a way that to each field there corresponds only one

pole and one mass. The LW poles are then characterized by a negative residue, and, thus,

act as Pauli-Villar regulators. However, unlike mere regulators, the LW fields nontrivially

participate in gauge and Yukawa interactions.

In electroweak sector of the SM, the left-handed top and bottom quarks, tL and bL,

(and their replicas in the other two quark generations, as well as the corresponding leptons)

form a doublet under the SU(2)L × U(1)Y group, while their right-handed partners, tR

and bR, are singlets. The doublet structure is referred to as isospin, in analogy with the

ordinary spin doublet for the spin–
1

2
fermions. In contrast with the ordinary spin doublet,

however, members of these isospin doublets are different flavors and have different masses,

leading to a violation of the isospin symmetry. The mass difference among members of the

7Note that in quantum field theory, the pole of a propagator (i.e. the zero-value of its
denominator) is identified with the mass of the particle the propagator is representing.
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isospin doublet is most prominent in this third quark generation (top-bottom), compared to

the other two generations, with the top quark being about two orders of magnitude heavier

than the bottom quark. Hence, the isospin symmetry in the SM is broken, with the largest

violation in the top-bottom doublet.

Likewise, in the LW SM the largest one-loop contribution to the Higgs mass comes from

an isospin violating sector of the theory: the top Yukawa coupling. There are two heavy

partners of the top quark in the LW SM, one associated with the left-handed top-bottom

doublet, with mass Mq, and the other with the right-handed top, with mass Mt. The

contributions to the Higgs mass involving a single LW top are opposite in sign to those

from a single SM top, so they cancel the quadratic divergence associated with the Higgs

mass renormalization, δm2
h. The net contribution is still logarithmically divergent, and for

degenerate LW top quarks, Mq = Mt, is of the form

δm2
h =

3λ2
t

8π2
M2
q log

Λ2

M2
q
, (2.1)

where Λ is the cutoff, i.e. the highest energy scale marking the limit of the validity of the

theory. In the limit Mq →∞ the ordinary quadratic divergence reappears, with Mq acting

as a cutoff. Therefore, as already pointed out in Ref. [65], in order to avoid fine-tuning the

value of Mq cannot be too large.

Because the dominant correction to the Higgs mass is associated with an isospin violating

sector of the theory, it is important to check whether the LW tops cause a large contribu-

tion to the electroweak observables, which are usually protected by the so-called custodial

symmetry : ∆ρ, and, for theories with heavy replicas of the top quark, the ZbLb̄L coupling
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[66, 67].8 Large contributions to these quantities would lead to a stringent lower bound on

Mq, which would result in large corrections to m2
h and thus the necessity of fine-tuning the

scalar sector of the theory.

In this chapter9 we analyze the potential conflict between naturalness and isospin viola-

tion, by computing the contribution of the top quark sector to the ρ parameter and to the

ZbLb̄L coupling. Furthermore, we compute the Barbieri et al. [59, 60] post-LEP electroweak

parameters (Ŝ, T̂ , W , and Y ) to check for additional constraints. In terms of the post-LEP

parameters, we find a simple picture for the constraints on the LW SM. The dominant contri-

butions to T̂ come from the fermion sector at one-loop, and limits on this parameter provide

the strongest constraints on the top quark sector.10 In contrast, the dominant contribu-

tions to Y and W arise from the gauge sector at tree-level, and limits on these parameters,

therefore, provide the strongest constraints on the gauge sector. These results imply that

the bounds on the LW fermions, coming almost entirely from T̂ , are essentially independent

of the LW gauge masses.

Our results differ from those in Refs. [65, 68] because their one-loop analysis of the

effects of LW top quarks on electroweak observables rests on the incorrect assumption that

the corrections are purely oblique [56]-[58]. As discussed in Ref. [69] important non-oblique

corrections arise at tree-level in the LW SM, in the form of non-zero values for W and

8The electroweak gauge structure SU(2)L × U(1)Y may also be realized from a more
general approximate global symmetry structure SU(2)L × SU(2)R, in which only SU(2)L,
and U(1)R subgroup of SU(2)R are gauged (i.e. are local symmetries) and are identified
with the electroweak theory. The latter SU(2)R approximate global symmetry is called the
custodial symmetry, and protects the electroweak observables, such as the W -Z mass ratio
and the isospin, from large quantum corrections.

9Throughout this chapter, the timeline for the depicted Feynman diagrams is from left
to right.

10The dominant contributions to Ŝ, likewise, come from the fermion sector at one-loop,
but they are too small to provide strong constraints on the top quark sector.
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Y . Therefore, one must use the Barbieri et al. parameters to compare the LW SM with

experiment.

In Sec. 2.2 we review the structure of the LW SM [42] and establish notation. In Sec. 2.3

we present an effective field theory analysis of the LW corrections to ∆ρ and to the ZbLb̄L

coupling. In Sec. 2.4 we present our analysis of the post-LEP electroweak parameters and

the resulting constraints on the LW SM, while the constraints from the ZbLb̄L coupling are

analyzed in Sec. 2.5. The leading logarithmic contributions to the electroweak observables

in the full theory and the effective theory have to match; thus the results of Sec. 2.3 provide

an important check for those of Sec. 2.4 and 2.5.

Global symmetries and renormalizability of LW theories will be discussed in detail in

Chapter , while questions concerning unitarity [70], causality [71], and Lorentz invariance

in LW theories, although potentially important, will not be considered in this analysis. A

complete analysis of the one-loop renormalization of the LW SM can be found in [72].

2.2 The Lee-Wick Standard Model

It is straightforward to write a higher-derivative extension of the SM electroweak Lagrangian

[42]. Adopting a non-canonical normalization for the gauge fields, the gauge Lagrangian reads

Lhd
gauge = − 1

4g2
1

B̂µνB̂
µν − 1

2g2
2

Tr
[
ŴµνŴ

µν
]

+
1

2g2
1M

2
1

∂µB̂µν∂λB̂
λν +

1

g2
2M

2
2

Tr
[
D̂µŴµνD̂λŴ

λν
]
,

(2.2)
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where

B̂µν ≡ ∂µB̂ν − ∂νB̂µ , Ŵµν ≡
(
∂µŴ

a
ν − ∂νŴa

µ + fabc Ŵ b
µŴ

c
ν

)
τa ,

with τa ≡ σa

2
, and σa the SU(2) generators (Pauli matrices). The “hat” notation indicates

that the field’s propagator contains not only the ordinary SM poles but also the LW poles.

For example, in the limit of unbroken electroweak phase the B̂µ propagator has a massless

pole, corresponding to the ordinary Bµ gauge field, and a mass-M1 pole, corresponding to

its LW counterpart. Notice also that additional dimension-six operators could, in principle,

be added to this Lagrangian. However, these would lead to scattering amplitudes for the

longitudinally polarized gauge bosons growing like E2, where E is the center-of-mass energy,

and thus to a rather early violation of unitarity [73]. We, therefore, do not include them

in this analysis. Notice also that we only include one higher-derivative term per SM field,

which introduces a single corresponding LW pole. This is certainly fine for our purposes, since

in this analysis we focus on the low momentum regime, where additional higher-derivative

terms are negligible. However, at large momenta additional poles in the propagator can have

important implications [74, 75].

The higher-derivative extension of the Higgs sector is

Lhd
Higgs = |D̂µφ̂|2 − λ

(
φ̂†φ̂− v2

2

)2

− 1

M2
h

|D̂2φ̂|2 , (2.3)
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where as usual the Higgs doublet may be written in component form as

φ̂ =
1√
2




i
√

2φ̂+

v + ĥ− iφ̂0


 . (2.4)

Here and in Eq. (2.2) the covariant derivative written with a hat is built with the hatted

gauge fields. We will find it convenient to have a compact way of denoting iσ2φ̂∗ as we

build operators that couple the Higgs to the right-handed top quark. Hence, we make the

definition

ϕ̂ ≡ (iσ2φ̂∗) =
1√
2



v + ĥ+ iφ̂0

i
√

2φ̂−


 . (2.5)

The field φ̂ contains both the ordinary Higgs doublet and a massive doublet11 with mass∼ Mh.

In the fermion sector we focus only on the third quark generation, since this is the

dominant source of isospin violation and gives the largest correction to the Higgs mass.12

The higher-derivative extension of the fermion Lagrangian is

Lhd
quark = ¯̂qLi /̂Dq̂L + ¯̂t′Ri /̂Dt̂

′
R +

¯̂
b′Ri /̂Db̂

′
R

+
1

M2
q

¯̂qLi /̂D
3
q̂L +

1

M2
t

¯̂t′Ri /̂D
3
t̂′R +

1

M2
b

¯̂
b′Ri /̂D

3
b̂′R ,

(2.6)

where q̂L = (t̂L, b̂L). Notice that the right handed fields have been primed because, for

example, t̂L and t̂′R are not left and right component of the same Dirac spinor. In the

11If Mh is smaller than all other LW mass parameters, in a certain energy regime the
model behaves like a two-Higgs doublet model, although one doublet is of LW type. This
scenario was analyzed in [76].

12Inclusion of the remaining flavors would introduce new mixing matrices, and, without the
assumption of minimal flavor violation, potential sources of flavor changing neutral currents
(FCNC). However, in Ref. [77] it was shown that for LW fermion masses in the TeV range
the FCNC are sufficiently small to satisfy experimental constraints.
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unbroken electroweak phase t̂L (t̂′R) contains the ordinary massless SM left-handed (right-

handed) top as well as a massive Dirac fermion of mass Mq (Mt).

Finally we consider the Yukawa Lagrangian, which in the SM has no derivatives. There-

fore, we write

LYukawa = −yt ¯̂qL ϕ̂ t̂
′
R + h.c. , (2.7)

where the bottom Yukawa coupling has been ignored, since yb � yt.

As explained in the introduction, this “higher-derivative” formulation of the theory, in

which both the ordinary pole and the LW pole are contained in the same field, is equivalent

to an “ordinary formulation” in which, as follows: (i) the two poles belong to two different

fields, and (ii) the kinetic and mass terms for the LW fields have the wrong sign. This

alternative formulation is especially useful for calculating loop diagrams. In this chapter we

will compute loop diagrams with the top and bottom quarks in the loop. Thus we will find it

helpful to replace the higher-derivative fermion and Yukawa Lagrangians with the ordinary

formulation Lagrangians

Lquark = q̄Li /̂DqL + t̄′Ri /̂Dt
′
R + b̄′Ri /̂Db

′
R

− ¯̃q
(
i /̂D −Mq

)
q̃ − ¯̃t′

(
i /̂D −Mt

)
t̃′ − ¯̃b′

(
i /̂D −Mb

)
b̃′ ,

(2.8)

and

LYukawa = −yt
(
q̄L − ¯̃qL

)
ϕ̂
(
t′R − t̃

′
R

)
+ h.c. , (2.9)

where

q̂L ≡ qL − q̃L , t̂′R ≡ t′R − t̃
′
R , b̂′R ≡ b′R − b̃

′
R , (2.10)

and where the fields with (without) a tilde are LW (SM) fields. The equivalence between the
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higher-derivative formulation, Eqs. (2.6) and (2.7), and the ordinary formulation, Eqs. (2.8)

and (2.9), can be easily proved; see, for example, [42]. Notice that the wrong sign in front

of the kinetic and mass terms makes the LW (tilde) fields act like Pauli-Villars regulators,

with the difference that they also participate nontrivially in gauge and Yukawa interactions.

2.3 Effective Field Theory for ∆ρ and Zbb̄

The appearance of the LW fields in the Yukawa interactions, Eq. (2.9), suggest the pres-

ence of non-standard sources of custodial isospin violation at energies below the LW scale.

Dimension-six custodial violating operators can potentially arise from tree-level exchanges,

and from loop diagrams with one or more LW fermions in the loop. The leading contribution

to these operators, in inverse powers of the LW fermion masses, can be found by integrating

out the LW fermions at tree-level and computing loops in the resulting effective field theory.

For LW fermion masses much larger than both the Higgs vacuum expectation value (VEV)

and the external momenta, the effective Lagrangian can be computed in powers of ϕ̂/Mq,t

and /̂D/Mq,t. Including the leading non-standard corrections, this leads to

Leff = q̄Li /̂DqL + t̄Ri /̂DtR + b̄Ri /̂DbR − yt
(
q̄Lϕ̂ tR + t̄Rϕ̂

†qL
)

−
y2
t

M2
t

q̄Liϕ̂ /̂D
(
ϕ̂†qL

)
−

y2
t

M2
q
t̄Riϕ̂

† /̂D
(
ϕ̂ tR

)
.

(2.11)

Notice that the primes have been removed from the right-handed fermion fields, because

now left-handed and right-handed components are Dirac partners. Notice also that this La-

grangian assumes Mq and Mt to be of the same order, with no hierarchy between them. The

leading logarithmic correction to observables will, therefore, be proportional to logM2
q /v

2 ∼
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logM2
t /v

2. In what follows, we compute these leading-log corrections by constructing the

operators which arise in the effective theory appropriate for energy scales below Mt ' Mq,

in which the LW partners have been “integrated out” but the top quark remains in the

spectrum.

After electroweak symmetry breaking, the higher-derivative operators lead to a renormal-

ization of the fermion kinetic terms. An alternative approach consists of redefining qL and

tR to make their kinetic terms canonically normalized in both the broken and the unbroken

electroweak phase. This is achieved by the replacements

qL →
[

1 +
y2
t

2M2
t

ϕ̂ϕ̂† +O(1/M3
t )

]
qL , tR →

[
1 +

y2
t

2M2
q
ϕ̂†ϕ̂+O(1/M3

q )

]
tR , (2.12)

which leads to a new Lagrangian, equivalent to Leff

L′eff = q̄Li /̂DqL + t̄Ri /̂DtR + b̄Ri /̂DbR − yt q̄Lϕ̂
[

1 +
y2
t
2

(
1

M2
q

+
1

M2
t

)
ϕ̂†ϕ̂

]
tR + h.c.

+
y2
t

2M2
t

q̄Li
[
(D̂µϕ̂)ϕ̂† − ϕ̂(D̂µϕ̂)†

]
γµqL (2.13)

+
y2
t

2M2
q
t̄Rγ

µtR i
[
(D̂µϕ̂)†ϕ̂− ϕ̂†(D̂µϕ̂)

]
.

As expected, there are custodial symmetry violating dimension-six operators. However, at

tree-level there is no non-standard contribution to ∆ρ or the ZbLb̄L coupling.

L′eff features terms coupling one, two, or three ϕ̂ fields to a pair of fermions. Therefore,

dimension-six four-ϕ̂ operators arise both from vacuum polarization amplitudes and triangle

diagrams, as shown in Fig. 2.1. The log-divergent parts of these diagrams (which yield

the log(M2
t,q/m

2
t ) contributions) can be computed in the unbroken electroweak phase, with
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Figure 2.1: Diagrams contributing to the dimension-six four-φ̂ operators in the effective
theory, with the LW fermions integrated out at tree-level.

fermions in the loop. The logarithmically divergent part of the amplitude is reproduced by

the operators13

3y4
t

16π2

[
2

M2
t

+
1

M2
q

]
|D̂φ̂|2|φ̂|2 · 1

ε
+

3y4
t

16π2

[
1

M2
t

+
2

M2
q

]
|φ̂†D̂φ̂|2 · 1

ε
, (2.14)

where as usual ε = 2−d/2 in dimensional regularization. The first operator respects custodial

symmetry, but the second operator does not, since it contributes only to the Z boson mass.

The second operator gives the dominant contribution to ∆ρ, which is, therefore, of the order

(∆ρ)LW ∼ − 3

16π2

2m4
t

v2

[
1

M2
t

+
2

M2
q

]
log

M2
q

m2
t

, (2.15)

where the 1/ε is replaced by the large log which arises in the effective theory scaling from

13There are also quadratic divergences which are completely absorbed by a counterterm
of the form |ϕ̂|4, with no derivatives.
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Figure 2.2: Diagrams contributing to the dimension-six operators with two external qL and
two ϕ̂ fields. The triangle diagrams lead to the second operator of Eq. (2.16), which contains
non-universal corrections to the ZbLb̄L coupling.

the scale Mq ∼ Mt to the weak scale mt ∼ v. For LW fermions lighter than 1 TeV this is

a large negative isospin violating effect. For example, taking Mq = Mt = 500 GeV gives

∆ρ ∼ −1.4%. Furthermore, since ∆ρ is always negative, a heavy Higgs is strongly disfavored

in the LW SM.

The diagrams contributing to the left-handed fermionic gauge couplings up to one-loop

order are shown in Fig. 2.2. The tree-level diagram (corrected by the field strength renor-

malizations) corresponds to the custodial violating operator proportional to y2
t /2M

2
t , in

Eq. (2.13). This operator contributes to the ZtLt̄L coupling, not to ZbLb̄L.14 The re-

maining diagrams contain non-standard logarithmic divergences which are reproduced by

14Including the bottom Yukawa coupling would lead to a tree-level operator contributing
to ZbLb̄L. However, the top loop contribution is dominant, since 16π2y2

b ∼ 0.1.
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the operators

y4
t

16π2
1

4M2
q
i

[
q̄Lγ

µD̂µqL − q̄L
←−
D̂
†
µγ
µqL

]
ϕ̂†ϕ̂ · 1

ε
+

y4
t

16π2

[
1

M2
t

+
1

4M2
q

]
q̄Lγ

µqL i
[
(D̂µϕ̂)†ϕ̂− ϕ̂†(D̂µϕ̂)

]
· 1

ε
.

(2.16)

In this expression the first (custodially symmetric) operator amounts to a renormalization

of the standard gauge interactions, and does not contribute to non-standard fermionic gauge

couplings. The second operator violates custodial symmetry, and is only due to the triangle

diagrams in Fig. 2.2. This contributes both to the ZtLt̄L coupling and the ZbLb̄L coupling.

Expressing the latter in the form

e

cwsw
gbb̄L Zµ b̄Lγ

µbL

≡ e

cwsw

[
−1

2
+

1

3
sin2 θW + (δgbb̄L )SM + (δgbb̄L )LW

]
Zµ b̄Lγ

µbL ,

(2.17)

where (δgbb̄L )SM includes all higher order SM corrections, and replacing the 1/ε poles with

the large log arising from scaling in the theory, we find that the second operator of Eq. (2.16)

gives the dominant non-universal LW contribution to gbb̄L

(δgbb̄L )LW ∼ −
m4
t

32π2v2

[
4

M2
t

+
1

M2
q

]
log

M2
q

m2
t

. (2.18)

The SM prediction is already 1.96σ below the observed central value. Hence, the additional

negative correction in the LW theory goes in the direction opposite to what is favored by

experiment.

In the next two sections we compute perturbatively (in v2/M2
q and v2/M2

t ) and numer-
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ically the values of ∆ρ and the ZbLb̄L coupling in the full LW theory. Our effective field

theory results, Eq. (2.15) and Eq. (2.18), provide a check of these full calculations, since

the leading logarithmic contributions have to match. More generally, below we compute the

top sector one-loop contribution to all Barbieri et al. [59, 60] electroweak parameters, and

provide lower bounds on Mq and Mt from comparison with experiment.

2.4 Constraints from Post-LEP Parameters

In the language of Barbieri et al. [59, 60], the observables Ŝ, T̂ , Y , and W parametrize the

flavor-universal deviations from the SM at low energies. We now analyze the tree-level and

the fermionic one-loop contributions to these parameters and use them to obtain constraints

on the masses of the LW states.

2.4.1 Tree-Level Contributions

At tree-level, it is straightforward to read from Eq. (2.2) the vacuum polarization ampli-

tudes15

Π
Ŵ+Ŵ−(q2) =

q2

g2
2

− (q2)2

g2
2 M

2
2

− v2

4
, Π

Ŵ3Ŵ3(q2) =
q2

g2
2

− (q2)2

g2
2 M

2
2

− v2

4
,

Π
Ŵ3B̂

(q2) =
v2

4
, Π

B̂B̂
(q2) =

q2

g2
1

− (q2)2

g2
1 M

2
1

− v2

4
.

(2.19)

15The full Lorentz structure of a gauge boson’s VPA contains a term proportional to gµν

and another term proportional to the external momentum qµqν . For a massless gauge boson,
these two coefficients are the same, and lead to a transverse VPA Lorentz structure. This
is, however, generally not the case for a massive gauge boson, such as W± and Z, where
the two coefficients are different. In (2.19), ΠXY (q2) represents the coefficient of gµν in

the XY VPA, since only this piece is relevant for our calculation. B and W3 are U(1)Y
and the third component of SU(2)L group generators, respectively; within the context of
the electroweak theory, they mix to produce massive Z and massless photon.
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= D�1
XY

X Y

Figure 2.3: The XY VPA, defined as inverse of the full XY propagator, DXY (see foot-
note 15 for details).

Following [59], we see that there is no tree-level correction to the Fermi constant

1√
2GF

= −4Π
Ŵ+Ŵ−(0) = v2 . (2.20)

Barbieri et al. define the approximate electroweak gauge couplings

1

g2
≡ Π′

Ŵ+Ŵ−(0) , (2.21)

1

g′2
≡ Π′

B̂B̂
(0) , (2.22)

which in the LW SM gives g′ = g1 and g = g2. We then compute the tree-level electroweak

parameters [69],

Ŝ ≡ g2 Π′
Ŵ3B̂

(0) = 0 , (2.23)

T̂ ≡ g2
[
Π
Ŵ3Ŵ3(0)− Π

Ŵ+Ŵ−(0)
]

= 0 , (2.24)

Y ≡ 1

2
g′2m2

W Π′′
B̂B̂

(0) = −
m2
W

M2
1

, (2.25)

W ≡ 1

2
g2m2

W Π′′
Ŵ3Ŵ3(0) = −

m2
W

M2
2

, (2.26)

where in each equation the first equality is the definition of the corresponding post-LEP

parameter [59]. The VPAs (ΠXY ) are defined as inverse of the full XY propagator (Fig. 2.3).
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2.4.2 Fermionic One-Loop Contributions

The gauge current correlators receive important loop corrections from the top-bottom sector,

through the diagrams shown in Fig. 2.4. These vacuum polarization amplitudes contain two

infinities, which are absorbed in the definitions of g and g′ given in Eqs. (2.21) and (2.22),

respectively. As a consequence the non-canonical normalization adopted in Eq. (2.2) forces

us to define renormalized LW gauge masses. A convenient scheme consists of defining M

and M ′ by

− 2

g2M2
≡ Π′′

Ŵ+Ŵ−(0) , − 2

g2M ′2
≡ Π′′

B̂B̂
(0) , (2.27)

which simplify the one-loop calculations below. At tree-level, from Eq. (2.19), we see that

M = M2 and M ′ = M1, and both are related to the masses of the LW partners of the gauge

bosons. Because of the power counting properties of LW theories, after the usual16 coupling-

constant and mass renormalizations, all physical quantities remain finite [42]. Hence, M

and M ′ remain finite at one-loop (and beyond). However, since they are defined by the

zero-momentum properties of the gauge boson two-point functions, their values only ap-

proximately equal the masses of the LW partners of the gauge bosons. This suffices for our

purposes, since we are interested in low-energy observables; if we were studying quantities

measured at higher energies, we would want to define M and M ′ based on propagators

renormalized at high q2 instead.

The propagators in the loops of Fig. 2.4 correspond to mass eigenstates, where the masses

are obtained by diagonalizing the mass matrices by means of symplectic rotations: in this way

16Notice that the vacuum polarization diagrams involving only one LW fermion carry an
overall negative sign. In fact this happens to make all zero-derivative functions, at q2 = 0,
finite. For this reason there is actually one less infinity compared to the ordinary SM, and
the bare v is finite [42].
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Figure 2.4: Dominant vacuum polarization amplitudes for the LW SM gauge fields. These
include the ordinary (t0 and b0) and the LW third generation quarks (t1, t2, b1, and b2) in
the loop. These amplitudes contribute to the two-point functions of Eq. (2.19).

the LW fields maintain the “wrong-sign” kinetic and mass terms. A perturbative diagonaliza-

tion in v2/M2
q and v2/M2

t [65] requires considering two different scenarios: non-degenerate

LW masses, |M2
q −M2

t | ∼M2
q , and (near) degenerate LW masses, |M2

q −M2
t | �M2

q . For

non-degenerate LW top quarks the contributions to the electroweak parameters are quite

lengthy. To leading order we obtain

46



Ŝ = −
g2m2

t

48π2M2
q

[(
2 +

1

r2t

)
log

M2
q

m2
t

+
1− 3r2t + 6r4t − r

6
t + 3r8t

r2t (1− r2t )5
log r2t

−
5− 17r2t + 4r4t + 12r6t − 23r8t + 7r10

t

2r2t (1− r2t )4

]
,

T̂ = −
3g2m4

t

32π2m2
WM2

q

[(
2 +

1

r2t

)
log

M2
q

m2
t

+
1− 3r2t + 6r6t

r2t (1− r2t )5
log r2t

−
9− 12r2t − 21r4t + 46r6t − 68r8t + 22r10

t

6r2t (1− r2t )4

]
,

Y = −
m2
W

M ′2
, W = −

m2
W

M2
+

g2m2
W

640π2M2
q

[
− 7 +

3

r2
b

− 9

r2t

]
,

(2.28)

where

rt ≡Mt/Mq , rb ≡Mb/Mq . (2.29)

The electroweak parameters in the (near) degenerate case cannot simply be obtained by

taking the rt, rb → 1 limit in Eqs. (2.28), since the corresponding expressions diverge.

Instead, we must diagonalize the mass matrices perturbatively in 1/M2
q (or 1/M2

t ) and

|M2
q − M2

t |/M
2
q , and then compute the electroweak parameters. For exact degeneracy,

Mq = Mt, this gives

Ŝ = −
g2m2

t

16π2M2
q

[
log

M2
q

m2
t

− 12

5

]
,

T̂ = −
3g2m4

t

32π2m2
WM2

q

[
3 log

M2
q

m2
t

− 141

20

]
,

Y = −
m2
W

M ′2
,

W = −
m2
W

M2
−

7g2m2
W

640π2M2
q
.

(2.30)

Note that the absence of fermionic one-loop corrections to the tree-level value of Y is a
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direct consequence of the second definition in Eq. (2.27): a different scheme choice would

lead to an additional contribution. In the same way, changing the definition of M would

lead to a different fermionic one-loop expression for W ; in any case, the second term17 in

W is numerically very small and can be neglected. We, therefore, conclude that the leading

contributions to Y and W are those arising from the LW gauge-sector at tree-level, Eqs. (2.25,

2.26).

Since the tree-level values of Ŝ and T̂ vanish, the leading LW contributions to both Ŝ

and T̂ arise from the top quark sector at one-loop. In the case of T̂ this is not surprising

since the dominant locus of isospin violation in the model is the splitting between the top

and bottom quark masses. Because T̂ is the same as ∆ρ [60], we may compare the leading

logarithmic correction in Eq. (2.28) with the result obtained in the effective theory, Eq. (2.15);

we see that they agree. In the case of Ŝ, the situation is more subtle. The LW gauge-

eigenstate fermion partners, being massive, are not chiral and therefore, in the absence of

electroweak contributions to the masses that mix them with the light chiral gauge-eigenstates,

their contribution to Ŝ vanishes. Hence, the dominant LW contributions to Ŝ also arise

predominantly from the top sector of the theory.

Therefore, at tree-level plus one fermion loop we obtain a very simple conclusion: the

fermion sector contributes to Ŝ and T̂ only, while the gauge sector contributes to Y and W

only. It is true that when gauge loops are included, there will be additional contributions.

However, the gauge loop contributions are generally sub-dominant compared to the quantities

we have already calculated. The only potential exception is Ŝ, for which the fermionic one-

loop contribution is small. However, in Ref. [74] a numerical computation shows that the

17Note that the first definition in Eq. (2.27) pertains to Π′′
Ŵ+Ŵ− , whereas W is defined

in terms of Π′′
Ŵ3Ŵ3.
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gauge loop contribution to S is suppressed (see also [65]), since |Stree − Sloop| . 0.01.

Using the results of Ref. [60], this allows us to estimate the gauge loop contribution to Ŝ

to be 103Ŝ . 0.1, which is negligibly small. Thus, our existing results suffice for extracting

constraints on the LW fermions from the experimental data.

2.4.3 Comparison with Data

We begin with constraints on the masses of the LW partners of the gauge bosons. The

previous subsection found that the only post-LEP parameters affected by the LW gauge

boson masses are W and Y , and also that the tree-level expressions for W and Y , Eqs. (2.25,

2.26), suffice for comparison with data. The experimental constraints on Y and W are rather

tight and almost independent of the value of the Higgs mass [59]. These translate into the

95% C.L. lower bounds on M2 and M1 shown18 in Figs. 2.5 and 2.6. Fig. 2.5 shows the

bounds for arbitrary values of M1 and M2: for mh = 115 GeV the striped region is excluded,

while for mh = 800 GeV the additional narrow yellow region is excluded as well. Fig. 2.6

shows the 95% C.L. ellipses in the (Y,W ) plane from the global fit to data [59], for mh = 115

and mh = 800, as well as the LW prediction for degenerate LW masses, M1 = M2. All this

is in agreement with the results of Ref. [69] and gives the constraints M1, M2 & 2.4 TeV.

Next, we seek constraints on the masses of the LW partners of the top quark. The

previous subsection found that the post-LEP parameters sensitive to the LW fermion masses

are Ŝ and T̂ , which do not depend on the LW gauge masses at the one-loop level. We should

also note that, for a light Higgs, the LW prediction of Ŝ is very close to its central value,

Ŝ ' 0. Furthermore, from the global fit to the experimental data in Ref. [59], we conclude

18These bounds are derived using the errors and correlation matrix given in Ref. [59].
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Figure 2.5: Exclusion plot for the LW gauge-field masses M2 and M1. These bounds are
due to the constraints on Y and W , as shown by Eq. (2.25) and Eq. (2.26). For a light Higgs
(mh = 115 GeV) the striped region to the left of both curves is excluded. For a heavy Higgs
(mh = 800 GeV) the additional yellow strip between the curves is excluded as well.

that T̂ is only mildly correlated to Y and W , the parameters that are most sensitive to the

LW gauge boson masses in the LW SM. This confirms that the bounds on the LW fermions

should be essentially independent of the LW gauge masses, and should come almost entirely

from T̂ .
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Figure 2.6: The 95% C.L. ellipses in the (Y ,W ) plane, and the LW prediction for degenerate
masses, M1 = M2. The parametric plot is for 0.5 TeV < M1 = M2 < 10 TeV, and the
dots are equally spaced in mass every 0.95TeV (only two dots labeled). The lower bound on
M1 = M2 is approximately 2.4 TeV for a light Higgs.

In Fig. 2.7 we show the experimental mean value for T̂ (thick red line), the ±2σ al-

lowed region, the all-order (in v2/M2
q ) LW prediction (solid blue curve), the leading order

LW prediction from Eq. (2.30) (dashed blue curve), and the leading-log approximation (dot-

ted blue curve), as functions of Mq, in the degenerate case. This figure reveals the bound
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Figure 2.7: T̂ as a function of Mq in the degenerate case, Mq = Mt. The experimental mean

value for T̂ is shown by the thick red line, along with the ±2σ allowed region. Also shown are
the all-order (in v2/M2

q ) LW prediction (solid blue curve), the leading order LW prediction,
Eq. (2.30) (dashed blue curve), and the leading-log curve, Eq. (2.15) (dotted blue curve), as
functions of Mq, in the degenerate case. Note that the leading order prediction is not valid
below Mq ∼ 1 TeV. (See text for details)

Mq = Mt & 1.6 TeV on the LW fermion masses in the degenerate case. Note that although

Eq. (2.30) appears to predict a positive T̂ for small Mq (dashed blue curve), the complete

numerical evaluation (solid blue curve) shows that T̂ is always negative, as Fig. 2.7 shows

explicitly; below Mq = 1 TeV the perturbative diagonalization of the mass matrix is no

longer valid, rendering the leading order LW prediction unreliable in that mass regime.

If we relax the requirement of degenerate LW fermion masses, we obtain the 95% C.L.

bounds on Mq and Mt shown in Fig. 2.8. For a light Higgs the striped region in Fig. 2.8 is
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Figure 2.8: The 95% C.L. exclusion plots for the LW fermion masses Mq and Mt. These

bounds come almost entirely from the experimental constraints on T̂ . For a light Higgs the
striped region to the left of the curve is excluded, while a heavy Higgs is completely excluded.

excluded, while for a heavy Higgs the whole (yellow) region is excluded. Note from Figs. 2.5

and 2.8 that the mildest constraints on the LW masses are obtained in the fully degenerate

case, M = M ′ and Mq = Mt.

Returning to the case of degenerate LW fermion masses, we show in Fig. 2.9 the values

of Ŝ and T̂ as a function of Mq = Mt for 0.5 TeV < Mq < 10 TeV; the dots representing

53



1.45 TeV

2.4 TeV

mh = 115 GeV

mh = 800 GeV

-4 -2 0 2 4

-4

-2

0

2

4

1000 S
`

1
0
0
0

T`

Figure 2.9: The 95% C.L. ellipses in the (Ŝ,T̂ ) plane, and the LW prediction for degenerate
masses, Mq = Mt. The parametric plot is for 0.5 TeV < Mq < 10 TeV and the dots are
equally spaced in mass every 0.95TeV (only two dots labeled). The lower bound on Mq is
approximately 1.6 TeV for a light Higgs.

different values of Mq are placed at regular intervals. The 95% C.L. ellipses from the global

fit to the data [59] confirm the constraint Mq & 1.6 TeV for a light Higgs, while a heavy

Higgs scenario is disfavored for any LW fermion mass. In fact, for a heavy Higgs the T̂

parameter is expected to be positive, while the LW SM predicts a negative T̂ . This is a
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direct consequence of the negative sign in the LW fermion propagators, which results in an

overall negative sign from the (dominant) diagrams involving a single LW fermion in the

loop.

Our results disagree with those of [65, 68] in two ways: their bounds on the LW fermion

masses appear more stringent for a light Higgs and their limits appear to depend on the

masses of the LW gauge boson partners. The disagreement arises because their study of

one-loop electroweak corrections in the LW SM assumes the corrections to be purely oblique

and derives constraints by comparing the Peskin-Takeuchi S and T [56] parameters to data.

However, as clearly discussed in Ref. [69], and confirmed above in Eqs. (2.25) and (2.26),

the LW SM features large non-oblique corrections, in the form of non-zero values for Y and

W at tree-level. Hence, one must use the Barbieri et al. parameters to compare the LW SM

with experiment, as we have done.

2.5 Constraints from the ZbLb̄L Coupling

The leading contribution to the ZbLb̄L coupling (in the gauge coupling expansion) can be

obtained in the gaugeless limit from the φ0bLb̄L coupling [78]-[81], where φ0 is the Nambu-

Goldstone boson eaten by the Z. The loop diagram giving the largest correction involves

the SM and LW top quarks19 and is shown in Fig. 2.10. A detailed computation of the

loop integral, valid for arbitrary models with heavy replicas of the top quark, is given in

Appendix . At zero external momentum the amplitude corresponding to the diagram has

19In the gaugeless limit of the LW SM, as in the SM itself, all external b-quark wavefunction
renormalization corrections are proportional to y2

b and are, therefore, negligible. This should

be contrasted with the situation in the three-site Higgsless model [81].
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the form

iM = −A/pPL , (2.31)

where PL ≡ (1−γ5)/2 is the left-handed projector, p is the incoming φ0 momentum, and the

external fermion wavefunctions have been omitted. Then to leading order in g the correction

to the ZbLb̄L coupling is [78]-[81]

δgbb̄L =
v

2
A . (2.32)

Expanding the amplitude in powers of m2
t /M

2
q , we obtain

(δgbb̄L )LW = −
m4
t

32π2v2M2
q

[(
4

r2t

+ 1

)
log

M2
q

m2
t

+
4− 11r2t + 9r4t

r2t (1− r2t )3
log r2t −

6− 10r2t + 2r4t

r2t (1− r2t )2

]
,

(2.33)

for non-degenerate LW fermion masses, and

(δgbb̄L )LW = −
m4
t

32π2v2M2
q

[
5 log

M2
q

m2
t

− 49

6

]
, (2.34)

for degenerate LW masses. Both of these expressions agree with the dominant contribution

found in the effective theory, Eq. (2.18).

The experimental value of gbb̄L is derived from measurements of Rb, the ratio of the Z → bb̄

width to the width of the hadronic decays, and Ab, the forward-backward asymmetry for Z

decays into bb̄ [82]

(gbb̄L )exp = −0.4182± 0.0015 . (2.35)
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Figure 2.10: Diagram giving the largest contribution to the ZbLb̄L coupling. The latter

is related through the Ward identity to the φ0bLb̄L coupling — where φ0 is the Nambu-
Goldstone boson eaten by the Z boson. The top quarks running in the loop are both ordinary
and LW.

The SM value was computed using ZFITTER [83, 84] in Ref. [67], leading to

(gbb̄L )SM = −1

2
+

1

3
sin2 θW + (δgbb̄L )SM = −0.42114 , (2.36)

while the LW prediction is given by Eq. (2.33) and Eq. (2.34). In Fig. 2.11 we show the

experimental mean value (thick horizontal red line), the 2σ allowed region below the mean

value, the SM prediction (solid horizontal black line), the all-order (in v2/M2
q ) LW prediction

(solid blue curve), the leading order LW prediction, Eq. (2.34) (dashed blue curve), and the

leading-log approximation (dotted blue curve), as functions of Mq, in the degenerate case.

Note that the dashed curve and Eq. (2.34) are not reliable for Mq . 1 TeV, because the
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Figure 2.11: Constraints from the ZbLb̄L coupling. This graph features the experimental
mean value (thick horizontal red line), the 2σ allowed region below the mean value, the SM

prediction (solid horizontal black line), the all-order (in v2/M2
q ) LW prediction (solid blue

curve), the leading order LW prediction, Eq. (2.34) (dashed blue curve), and the leading-log
approximation (dotted blue curve), as functions of Mq, in the degenerate case.

perturbative diagonalization of the mass matrix is not valid in that mass regime.

As anticipated by the effective field theory calculation, the LW correction is always neg-

ative: this is essentially due to the negative sign in front of the dominant non-standard

triangle diagrams with one LW top and one SM top. It is large (for small values of Mq)

because of the explicit breaking of custodial isospin symmetry. Since the SM value is already

1.96σ below the experimental mean value, this correction goes in the direction opposite to

what is needed. Agreement at the 2σ level requires Mq & 4 TeV; at 2.5σ this bound relaxes

to Mq & 700 GeV.
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2.6 Conclusion & Discussion

There is significant tension between naturalness and isospin violation in the LW SM. While

corrections to the Higgs mass are smallest when the LW partners of the gauge bosons and

fermions are light, isospin violation that must be present in the top sector to account for the

large splitting between mt and mb tends to constrain the LW partners to have masses over

a TeV. We have performed an effective field theory analysis of the corrections to T̂ and the

ZbLb̄L coupling in the LW SM, and used it to confirm our full calculation of the LW effects

on Ŝ, T̂ , W , Y , and gbb̄L , including tree-level and fermionic one-loop contributions. The

post-LEP parameters yield a simple picture in the LW SM: the gauge sector contributes

to Y and W only, with leading contributions arising at tree-level, while the fermion sector

contributes to Ŝ and T̂ only, with leading corrections arising at one-loop.

In agreement with [69], we find that experimental limits on W and Y jointly constrain

the masses of the LW gauge bosons to satisfy M1,M2 & 2.4 TeV at 95% C.L., with relatively

little sensitivity to the Higgs mass.

We also conclude that the experimental limits on T̂ require the masses of the LW fermions

to satisfy Mq,Mt & 1.6 TeV at 95% C.L. if the Higgs mass is light and tend to exclude the

LW SM for any LW fermion masses if the Higgs mass is heavy. This is because a model

containing a heavy Higgs can be rendered consistent with the data only if some other sector

of the model provides a large positive correction to T̂ . However, in the LW SM, the fermionic

loops that provide the dominant contribution to T̂ always make T̂ more negative, due to the

negative sign in the LW fermion propagators. The LW fermions simply cannot compensate

for the presence of a heavy Higgs. Our results differ from those in Refs. [65, 68] because their

analysis incorrectly assumes that the electroweak corrections due to LW states are purely
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oblique. As explained in Ref. [69] the LW states actually induce important non-oblique

corrections, and one must, therefore, use the Barbieri et al. [59, 60] post-LEP parameters to

compare the LW SM with experiment, as we have done.

Weak isospin violation in the top quark sector also manifests itself through corrections

to the ZbLb̄L coupling. The SM prediction for gbb̄L lies at the lower end of the range allowed

by experiment at 95% C.L., so that new physics making negative contributions to the value

of gbb̄L would decrease the agreement with the data. As in the case of T̂ , however, we find

that the negative sign in the LW fermion propagators translates into a negative contribution

to gbb̄L ; the lighter the LW fermions, the greater the disagreement between prediction and

data. We find that the ZbLb̄L coupling places a lower bound of 4 TeV on the LW fermion

masses at 95% C.L.

On this note, we conclude our phenomenological analysis of the LW SM, reflecting various

constraints from the current experimental data. Having completed our phenomenological

study of the LW SM, we are going to focus, in the next chapter, on some of the theoretical

aspects concerning the global symmetries and renormalizability of LW theories, since they

are in general poorly understood. Understanding renormalizability of this class of theories,

in particular, is of great importance in order for them to be considered as reliable beyond the

Standard Model (BSM) candidates with accurate all-order predictions for the experiments.

We will examine these issues in both the higher-derivative and auxiliary-field formulations

of the theory by means of a relatively simple Abelian example.
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Chapter 3

GLOBAL SYMMETRIES AND

RENORMALIZABILITY OF

LEE-WICK THEORIES1

“Science is a way of trying not to fool yourself. The first principle is that you
must not fool yourself — and you are the easiest person to fool!”

—Richard Feynman (1918 – 1988)

3.1 Introduction

Renormalizabilty of Lee-Wick theories (LW) is an important theoretical aspect

which needs to be well-stablished, in order for them to be considered as reliable beyond the

Standard Model (BSM) candidates. In Chapters and , we explained how the LW theory

1This chapter is based on the paper first published in [2].
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may be formulated in terms of two separate but equivalent formal descriptions. Depending

on the problem at hand, one may choose to utilize either of the two formulations, in order

to facilitate the calculations and make certain formal aspects of the theory more transpar-

ent. Renormalizability has been previously explored in the higher-derivative formulation of

the theory (see below), but its precise theoretical description in the auxiliary-field formula-

tion remained unknown. In this chapter, we address this nontrivial issue along with global

symmetries possessed by LW theories in the auxiliary-field formulation.

To summarize our discussion so far, we saw that in the higher-derivative formulation,

the higher-derivative kinetic term gave rise to propagators that fall off with momentum

more rapidly than the ordinary Standard Model (SM) field propagators, thereby reducing

the degree of divergence of loop diagrams. On the other hand, higher covariant derivatives

also introduce new momentum-dependent interactions, which raise the degree of divergence

of quantum fluctuations. Power counting arguments [42] show that these two competing

effects conspire to make all loop diagrams at most logarithmically divergent. If the scale

associated with the higher-derivative terms is of the order of the electroweak scale, then the

latter becomes stable against radiative corrections: no quadratic divergences are present at

any order in perturbation theory, and no unnatural fine-tuning of parameters is required. In

addition, power counting arguments [42] show that this higher-derivative formulation of the

theory is renormalizable.

The higher-derivative kinetic terms in the Lee-Wick Standard Model (LW SM) result

in propagators with more than one pole. In minimal (so-called N = 2) LW theories2 [75],

2We will focus on N = 2 theories throughout this Thesis, though our results can be
potentially generalized to arbitrary-N LW theories, with N − 1 higher-derivative kinetic
terms associated with each field.
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there is only one higher-derivative kinetic term for each field, corresponding to two-pole

propagators. In the N = 2 LW SM, the lighter pole can be identified as a SM-like state

already seen in experiment, while the heavier pole corresponds to a new LW ghost state with

the same quantum numbers and negative norm. As explained in Chapter , this is dangerous,

since it would lead to a violation of unitarity. In order to avoid this scenario, the LW ghosts

must appear only as virtual states [39]. Furthermore, the integration contour in momentum

integrals involving ghost propagators must be modified so as to preserve unitarity [70]. The

price to be paid for these modifications is the presence of unobservable acausal effects in

scattering processes [39, 71].

Alternatively, in the auxiliary-field form of the theory, in addition to the SM fields there

are “LW fields” with kinetic energy terms with the opposite sign from their SM counterparts.

The opposite sign for the kinetic energy terms enforces the cancellations that soften the

divergences in the theory. The main advantage of the auxiliary-field approach lies in the

computation of loop diagrams, since aside from the overall sign the propagators are just

ordinary propagators. There are, however, a number of open field-theoretic issues with this

formulation, which require clarification.

In this chapter3 we clarify two issues in the auxiliary-field description of the theory in the

context of a simple but nontrivial theory — LW scalar quantum electrodynamics (QED).4

First, the interaction terms involving the LW fields have a very particular form, which is

not the most general one allowed by gauge invariance. For example, the couplings of the

LW vector fields are identical to the gauge couplings of the corresponding SM gauge fields.

3Throughout this chapter, the timeline for the depicted Feynman diagrams is from left
to right.

4Our analysis extends immediately to LW QED with an arbitrary number of matter fields,
either scalars or fermions.
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This equality and others are essential if the cancellations softening or removing the infinities

are to hold. On the one hand, it is not clear why, a priori, this special form of the interactions

should be preserved to all orders in perturbation theory. On the other hand, we know that it

must be preserved since power counting shows that the equivalent higher-derivative theory

is free of quadratic divergences.5 Here we identify approximate SO(1, 1) global symmetries

of the auxiliary-field description of the theory that allow us to understand its structure.

Second, we clarify the renormalizability of LW scalar QED in the presence of the massive

ghost LW vector field. Because of the qµqν/M2
A term in a heavy vector boson propagator

(where MA is the heavy vector mass), power counting in the auxiliary-field formalism is

difficult. We will identify two SO(1, 1) symmetric gauge-fixing conditions that simplify the

auxiliary-field LW analysis. In one case (ordinary), the gauge-fixing forces the qµqν/M2
A

terms to appear with canceling signs in the gauge-LW propagator matrix. In the other case

(“no-mixing”), the gauge-fixing eliminates the qµqν/M2
A term in the vector field propagators.

Working in the no-mixing gauge allows us to show that the number of superficially divergent

amplitudes in an Abelian gauge theory is finite, and the theory is, therefore, renormalizable.

Finally, to illustrate the renormalizability of LW scalar QED, we explicitly carry out

the one-loop renormalization program and demonstrate how the counterterms required are

constrained by the joint conditions of gauge and SO(1, 1) invariance. As a by-product of

these discussions, we compute the one-loop beta functions in LW scalar QED and contrast

them with those of ordinary scalar QED.

In Sec. 3.2 we introduce and illustrate the SO(1, 1) symmetries of a LW theory in the

context of φ4 theory. In Sec. 3.3 we consider LW scalar QED and derive the equivalent

5In the auxiliary-field formulation power counting is more difficult because of the cancel-
lations involved between different diagrams.

64



auxiliary-field description. We then analyze the global symmetries of the theory and explain

how these protect the form of the Lagrangian against radiative corrections. In Sec. 3.4 we

show how gauge-fixing can be implemented in an SO(1, 1) invariant fashion and derive the

corresponding propagators. In Sec. 3.5 we show that the number of superficially divergent

amplitudes is finite, and the theory is, therefore, renormalizable. Then we illustrate these

results at one-loop by carrying out the renormalization program and computing the beta

functions. Finally, in Sec. 3.6 we offer our conclusions and we sketch why a modified approach

is needed for the case of non-Abelian gauge theories.

3.2 Lee-Wick φ4 Theory

We first consider LW φ4 theory for a complex scalar field in order to introduce the auxiliary-

field formalism and the SO(1, 1) global symmetry of the model, as well as to set our notational

conventions.6 Lee-Wick φ4 theory is defined by the higher-derivative (hd) Lagrangian

Lhd = |∂µφ̂|2 −
1

M̂2
|∂2φ̂|2 − m̂2|φ̂|2 − λ̂

4
|φ̂|4 , (3.1)

where φ̂ is a complex scalar field, and the Lee-Wick scale M̂ parameterizes the energy at

which the model deviates substantially from the standard φ4 model. As we will see, M̂

also characterizes the mass scale of the LW ghosts, so long as m̂ � M̂ . This Lagrangian is

equivalent to one in which we introduce an “auxiliary” complex scalar field φ̃′ (the reason

6In this chapter we follow closely the conventions of Ref. [42].
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for the “prime” will become clear in what follows)

L = |∂µφ̂|2 + M̂2|φ̃′|2 + ∂µφ̂ ∂
µφ̃′∗ + ∂µφ̂

∗∂µφ̃′ − m̂2|φ̂|2 − λ̂

4
|φ̂|4 . (3.2)

Making the change of variable

φ̂ = φ′ − φ̃′ , (3.3)

we find

L = |∂µφ′|2 − |∂µφ̃′|2 + M̂2|φ̃′|2 − m̂2|φ′ − φ̃′|2 − λ̂

4
|φ′ − φ̃′|4 . (3.4)

The symplectic rotation7



φ′

φ̃′


 =




cosh θ sinh θ

sinh θ cosh θ






φ

φ̃


 , (3.5)

where

tanh 2θ =
−2m̂2/M̂2

1− 2m̂2/M̂2
, (3.6)

diagonalizes the scalar field mass terms while preserving the symplectic structure of the

kinetic terms [42]. Hence, we arrive at the auxiliary-field description of the LW φ4 theory

L
φ4 = |∂µφ|2 − |∂µφ̃|2 +M2|φ̃|2 −m2|φ|2 − λ

4
|φ− φ̃|4

= |∂µφ|2 − |∂µφ̃|2 +M2|φ̃|2 −m2|φ|2 − λ

4
|φ|4 +

λ

2
|φ|2

(
φφ̃∗ + φ∗φ̃

)

− λ|φ|2|φ̃|2 − λ

4

(
φ2φ̃∗2 + φ∗2φ̃2

)
+
λ

2
|φ̃|2

(
φφ̃∗ + φ∗φ̃

)
− λ

4
|φ̃|4 ,

(3.7)

7Note the contrast with an orthogonal rotation,

(
cos θ − sin θ
sin θ cos θ

)
.
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where

M2 = cosh2 θ M̂2 − e−2θ m̂2 ,

m2 = e−2θ m̂2 − sinh2 θ M̂2 ,

λ = e−4θ λ̂ .

(3.8)

Note that the kinetic term of the φ̃ field has the opposite sign to the usual one, and, hence,

the corresponding particle has negative norm and is the LW ghost field. Furthermore, the

mass of the LW ghost M is, in the limit m̂� M̂ , approximately the LW scale M̂ introduced

in Eq. (3.1).

This theory has an exact global U(1) symmetry, but is not the most general U(1) sym-

metric renormalizable Lagrangian that can be built out of the ordinary field φ and the ghost

field φ̃ charged under the U(1) symmetry. In particular, the six interaction terms in the sec-

ond line can in principle have six independent couplings. However, the dimension-four terms

in Eq. (3.7) do have an additional SO(1, 1) symmetry, under which the fields transform as



φ

φ̃


→




cosh β sinh β

sinh β cosh β






φ

φ̃


 , (3.9)

so long as we also promote λ to a spurion field8 that transforms as

λ→ e4β λ . (3.10)

8A spurion is a (fictitious) field that parametrizes the symmetry breaking. Its initial
symmetry invariant transformation can be used to construct the invariant operators of the
theory. Setting this field equal to its actual constant value will, subsequently, capture all of
the symmetry-breaking operators.
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Furthermore, the Lagrangian of Eq. (3.7) is the most general renormalizable and U(1)-

symmetric Lagrangian with SO(1, 1)-symmetric dimension-four terms. The different mass

terms for φ and φ̃ break the SO(1, 1) symmetry, but do so only softly. They are also the

only U(1)-preserving soft terms that break SO(1, 1). Thus in the LW φ4 theory, the global

SO(1, 1) symmetry of the dimension-four terms implies that loop corrections can only modify

the structure of the mass terms, introducing a mixing term between φ and φ̃ with infinite

coefficient. This can always be diagonalized via a symplectic rotation (of the form given in

Eq. (3.5)), which leaves the rest of the Lagrangian unchanged, except for a redefinition of

the coupling. Hence, Lee-Wick φ4 theory is renormalizable by power-counting.

LW φ4 theory is rather simple, because aside from mass renormalization the theory is fi-

nite. The LW scenario is, however, much less trivial in LW gauge theories, because of the new

momentum-dependent interactions in the higher-derivative formulation. In this case global

symmetries are important to understand the full structure of the theory. In the following

we will show that Abelian N = 2 LW theories have a softly broken SO(1, 1)m+1 symmetry,

where m is the number of matter fields, and the remaining SO(1, 1) transformation acts on

the vector fields. Since the SO(1, 1)m+1 breaking is soft, the special relation between the

LW couplings and the ordinary couplings is protected against radiative corrections.
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3.3 Global Symmetries of Lee-Wick Scalar QED

Let us now study an N = 2 LW theory of scalar electrodynamics. In the higher-derivative

formulation, the Lagrangian is9

Lhd = −1

4
F̂2
µν +

1

2M2
A

(
∂µF̂µν

)2
+ |D̂µφ̂|2 −

1

M̂2
|D̂2φ̂|2 − m̂2|φ̂|2 − λ̂

4
|φ̂|4 , (3.11)

where

D̂µ ≡ ∂µ − ig Âµ . (3.12)

The scalar sector is simply that of φ4 theory as shown in Eq. (3.1), and, hence, our analysis

of this Lagrangian will parallel the discussion of Sec. 3.2. Introducing auxiliary fields, now

for both the vector and the scalar and using the notation described above, we see that the

Lagrangian of Eq. (3.11) is equivalent to

L = − 1

4
F̂2
µν − ∂µÃν F̂µν −

M2
A

2
Ã2
µ + |D̂µφ̂|2 + M̂2|φ̃′|2

+ D̂µφ̂D̂
µφ̃′∗ + D̂µφ̂

∗D̂µφ̃′ − m̂2|φ̂|2 − λ̂

4
|φ̂|4 ,

(3.13)

to all orders in perturbation theory. Changing variables from Âµ, Ãµ, φ̂, φ̃′ to Aµ, Ãµ, φ′,

φ̃′, where

Âµ = Aµ − Ãµ , (3.14)

φ̂ = φ′ − φ̃′ , (3.15)

9In non-Abelian theories there can be additional dimension-six higher-derivative oper-
ators, which lead to heavy vector scattering amplitudes growing like E2, where E is the
center-of-mass energy [73]. For N ≥ 2 LW theories see, for example, Ref. [74].
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and substituting in Eqs. (3.12) and (3.13), gives

L = − 1

4
F2
µν +

1

4
F̃2
µν −

M2
A

2
Ã2
µ + |Dµφ′|2 − |Dµφ̃′|2 + M̂2|φ̃′|2 − m̂2|φ′ − φ̃′|2

− λ̂

4
|φ′ − φ̃′|4 − igÃµ

(
φ′Dµφ′∗ − φ′∗Dµφ′

)
+ igÃµ

(
φ̃′Dµφ̃′∗ − φ̃′∗Dµφ̃′

)

+ g2Ã2
µ

(
|φ′|2 − |φ̃′|2

)
,

(3.16)

where now the covariant derivative is in terms of Aµ,

Dµ = ∂µ − ig Aµ . (3.17)

The symplectic rotation of Eq. (3.5) again diagonalizes the scalar field mass terms while

preserving the symplectic structure of the kinetic terms [42]. Since the gauge interactions

stem from kinetic terms, and the φ4-interaction has a symplectic structure as well, it follows

that Eq. (3.5) only diagonalizes the mass terms leaving the rest of the Lagrangian invariant

in form. In terms of φ and φ̃ the Lagrangian now reads

L = − 1

4
F2
µν +

1

4
F̃2
µν −

M2
A

2
Ã2
µ + |Dµφ|2 − |Dµφ̃|2 +M2|φ̃|2 −m2|φ|2

− λ

4
|φ− φ̃|4 + igÃµ

(
φDµφ∗ − φ∗Dµφ

)
− igÃµ

(
φ̃ Dµφ̃∗ − φ̃∗Dµφ̃

)

+ g2Ã2
µ

(
|φ|2 − |φ̃|2

)
,

(3.18)

where we redefine parameters as in Eq. (3.8).

The Lagrangian of Eq. (3.18) has an exact U(1) gauge symmetry. In the limit λ → 0

the global symmetry is promoted to U(1) × U(1), because the φ and φ̃ fields can now

rotate independently, and only the diagonal U(1) subgroup is gauged. Thus, we expect

loop corrections to generate U(1)-symmetric terms — some with infinite coefficients — that
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will be U(1) × U(1)-symmetric in the λ → 0 limit. Eq. (3.18) is not the most general

renormalizable Lagrangian with this symmetry structure; for example, the coefficients of the

interactions involving Ãµ could be arbitrary. Notice, however, that this Lagrangian can be

re-arranged in the form

L = − 1

4
F2
µν +

1

4
F̃2
µν −

M2
A

2
Ã2
µ + |∂µφ|2 − |∂µφ̃|2 +M2|φ̃|2 −m2|φ|2 − λ

4
|φ− φ̃|4

− ig(Aµ − Ãµ)
(
φ ∂µφ∗ − φ̃ ∂µφ̃∗ − h.c.

)
− g2(Aµ − Ãµ)2

(
|φ|2 − |φ̃|2

)
. (3.19)

In the limit MA → 0, and treating the gauge coupling as a spurion field, the Lagrangian

respects a global SO(1, 1) symmetry under which



Aµ

Ãµ


→




coshα sinhα

sinhα coshα






Aµ

Ãµ


 , g → eα g . (3.20)

As mentioned in Sec. 3.2, an additional SO(1, 1) global symmetry for the scalar field arises

in the limit M → m, when λ is treated as a spurion field



φ

φ̃


→




cosh β sinh β

sinh β cosh β






φ

φ̃


 , λ→ e4β λ . (3.21)

In Sec. 3.5 we will argue that this theory is renormalizable, because the number of super-

ficially divergent amplitudes is finite, and no operators of dimension greater than four are

present in the auxiliary-field formulation. We may wonder whether radiative corrections

require introducing dimension-four SO(1, 1)×SO(1, 1)-breaking counterterms. However, as

in the LW φ4 theory described above, the answer is no: since SO(1, 1) × SO(1, 1) is only

71



softly broken by mass terms,10 the SO(1, 1)×SO(1, 1)-breaking corrections to the renormal-

izable terms are finite. Furthermore, Eq. (3.19) is the most general U(1) gauge Lagrangian

with dimension-four SO(1, 1)× SO(1, 1)-symmetric terms. Since renormalizability prevents

higher dimensional operators from being generated, we conclude that the form of the La-

grangian is protected to all orders against radiative corrections, with the exception of the

scalar field mass terms. However, as we have already seen, these can be diagonalized with a

symplectic rotation, without affecting the rest of the Lagrangian. In the simple example we

have shown there is only one matter field: for an arbitrary number m of matter fields the

global symmetry is promoted to SO(1, 1) × SO(1, 1)m, since each field is acted upon with

a different SO(1, 1) symmetry transformation, and the conclusions about renormalizability

persist, mutatis mutandis.

3.4 Gauge-Fixing

In order to quantize the electromagnetic field, one must introduce a gauge-fixing term. To

facilitate our subsequent analyses of divergences and renormalizability, we will find it most

convenient to employ gauge-fixing functions that respect the SO(1, 1) symmetry; otherwise it

can be unnecessarily difficult to recognize when significant cancellations occur. For example,

Ref. [42] employs an SO(1, 1) violating gauge-fixing term − 1

2ξ

(
∂µAµ

)2 which leads to

diagonal propagators of the form

P
µν
AA =

−i
q2

[
gµν − (1− ξ)q

µqν

q2

]
, P

µν

ÃÃ
=

i

q2 −M2
A

[
gµν − qµqν

M2
A

]
.

10The renormalizability of massive Abelian gauge theory [85] — arising from the coupling
of the Abelian gauge boson to a conserved current — insures that the gauge boson mass
term is “soft”.
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Because the qµqν/M2
A term is only present in the LW photon propagator, there is no simple

cancellation of the badly-behaved terms and the theory appears to suffer from quadratic

divergences and non-renormalizability at one-loop. The reason that Ref. [42] found no

quadratic divergences when computing the self-energy amplitudes for a massless scalar field

at zero momentum is that the quadratic divergence vanishes in the limit m→ 0 and q → 0,

since it is necessarily of the form Λ2m2/M2
A or Λ2q2/M2

A. These quadratic divergences are

“gauge artifacts” [72] in the sense that they contribute to both scalar wavefunction and mass

renormalization in such a way that the pole mass of the scalar is not quadratically sensitive

to the cutoff.

To ensure that the symmetry will be preserved, it is sufficient to write the gauge-fixing

term in terms of Âµ/
√
ξ, where ξ is the gauge-fixing parameter. If one treats ξ as a spurion

field, the SO(1, 1) transformation

Âµ → e−α Âµ, ξ → e−2α ξ , (3.22)

clearly leaves Âµ/
√
ξ invariant. We will consider two different SO(1, 1) symmetric gauge-

fixing scenarios that are each convenient in different circumstances, and will denote them as

ordinary and “no-mixing” gauge-fixing.

3.4.1 Ordinary Gauge-Fixing

First, let us consider a gauge-fixing function of the typical form G(Â) = ∂µÂµ. In Rξ gauge,

this amounts to adding to the Lagrangian the SO(1, 1) symmetric gauge-fixing term

Lordinary
fixing

= − 1

2ξ

(
∂µÂµ

)2
. (3.23)
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Using Eq. (3.14) to rewrite this in terms of Ãµ and Aµ, one obtains

Lordinary
fixing

= − 1

2ξ

(
∂µAµ

)2 − 1

2ξ

(
∂µÃµ

)2
+

1

ξ
∂µAµ ∂

νÃν . (3.24)

With the gauge-fixing included, and after integrating by parts, the gauge field Lagrangian

reads

Lordinary
gauge =

1

2
Aµ

[
gµν∂2 − (1− 1/ξ)∂µ∂ν

]
Aν

− 1

2
Ãµ

[
gµν(∂2 −M2

A)− (1 + 1/ξ)∂µ∂ν
]
Ãν − Aµ

1

ξ
∂µ∂νÃν .

(3.25)

We can invert the diagonal terms, in momentum space, to find the partial propagators

D
µν
AA =

−i
q2

[
gµν − (1− ξ)q

µqν

q2

]
, D

µν

ÃÃ
=

i

q2 −M2
A

[
gµν − (1 + ξ)

qµqν

q2 + ξM2
A

]
. (3.26)

Then the full tree-level photon and LW photon propagators, as well as the mixed-propagators,

can be computed by resumming the Dyson series to obtain

P
µν
AA =

−i
q2

[
gµν − (1− ξ)q

µqν

q2
+
qµqν

M2
A

]
, P

µν

ÃÃ
=

i

q2 −M2
A

[
gµν − qµqν

M2
A

]
,

P
µν

ÃA
= P

µν

AÃ
= − i q

µqν

q2M2
A

.

(3.27)

Notice that only the photon propagator depends on the gauge-fixing parameter ξ, since the

photon is the only true gauge field in this theory.

Up to an overall sign, the Ãµ propagator is identical to the unitary-gauge propagator of

a massive gauge boson, in a spontaneously broken gauge theory. In particular, it contains

the qµqν/M2
A term which would apparently render the theory non-renormalizable and rein-
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troduce quadratic divergences. However, the photon propagator and the mixed-propagators

contain the same term; when the PAA, P
ÃÃ

, and P
AÃ

propagators are all included in loop

integrals, the badly behaved terms cancel, and quadratic divergences are avoided. This can

be seen even more clearly from the form of the P
µν

ÂÂ
propagator. Recalling that all gauge

interactions depend on Aµ − Ãµ = Âµ and working in Feynman gauge (ξ = 1), we obtain

P
µν

ÂÂ
= P

µν
AA + P

µν

ÃÃ
− 2P

µν

AÃ
=

−i
q2 − q4/M2

A

[
gµν − qµqν

M2
A

]
, (3.28)

which decays like 1/q2 for large values of the momentum.

3.4.2 No-Mixing Gauge-Fixing

Next, we consider the alternative11 gauge-fixing function G(Â) =
(

1 + ∂2/M2
A

)1/2
∂µÂµ.

The resulting SO(1, 1)-symmetric gauge-fixing Lagrangian is

Lno-mixing
fixing

= − 1

2ξ

(
∂µÂµ

)2
+

1

2 ξM2
A

(
∂µ∂νÂν

)2
. (3.29)

Adding this to the original higher-derivative gauge Lagrangian gives, after integration by

parts,

Lno-mixing
gauge =

1

2
Âµ

[
gµν∂2 − (1− 1/ξ)∂µ∂ν

] (
1 + ∂2/M2

A

)
Âν . (3.30)

11In non-Abelian theories this introduces a q2/M2
A expansion in the gauge-ghost interac-

tion, which renders it less interesting. In Abelian gauge theories, however, the ghosts are
decoupled.
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This is equivalent to

Lno-mixing
gauge =

1

2
Âµ

[
gµν∂2 − (1− 1/ξ)∂µ∂ν

]
Âν

+ Âµ

[
gµν∂2 − (1− 1/

√
ξ)∂µ∂ν

]
Ãν −

M2
A

2
Ã2
µ .

(3.31)

in the sense that solving the equations of motion for Ãµ and inserting the solution in (3.31)

recovers the form of (3.30).

At this point we can eliminate the Âµ field from Eq. (3.31) via Eq. (3.14); the Lagrangian

will include both diagonal and mixing terms in Aµ and Ãµ, and the full tree-level propagators

can again be computed by summing the Dyson series. However, for ξ = 1 the mixing term

vanishes,12 and we obtain the simpler diagonal Lagrangian

Lno-mixing
gauge,ξ=1

=
1

2
Aµ∂

2Aµ − 1

2
Ãµ(∂2 −M2

A)Ãµ . (3.32)

The corresponding propagators

P
µν
AA =

−i gµν
q2

, P
µν

ÃÃ
=

i gµν

q2 −M2
A

, (3.33)

have no qµqν terms so they are well-behaved at high energies. This is equally clear if we

12As an alternative to the ξ = 1 gauge, one could replace Eq. (3.14) with

Âµ = Aµ −
[
δνµ − (1−

√
ξ)
qµq

ν

q2

]
Ãν ,

in momentum space. This cancels the off-diagonal terms for any value of ξ, at the price of
introducing non-local interactions in coordinate space for ξ 6= 1.
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construct the Â propagator,

P
µν

ÂÂ
= P

µν
AA + P

µν

ÃÃ
− 2P

µν

AÃ
=

−igµν
q2 − q4/M2

A

, (3.34)

which falls off like q−4 in the ultraviolet.

We will now use the two convenient gauges introduced in this section to explore LW scalar

QED at one-loop.

3.5 One-Loop Renormalization

We will start by establishing an upper bound on the superficial degree of divergence of

Feynman diagrams in N = 2 LW scalar QED. For specificity, we work in the auxiliary-

field formulation and employ the no-mixing ξ = 1 gauge. Recalling that each loop integral

introduces four powers of momentum in the numerator, each trilinear gauge-scalar-scalar

vertex introduces one power of momentum in the numerator, and the propagator has two

powers of momentum in the denominator, we arrive at

D ≤ 4L− 2PA − 2P
Ã
− 2Pφ − 2P

φ̃
+ Vgss , (3.35)

where L is the number of loops, Pf is the number of propagators of the f field, and Vgss is

the number of trilinear gauge-scalar-scalar vertices. The number of loop integrals is, in turn,

given by the total number of propagators (each carrying its own momentum-space integral)

minus the total number of vertices (each carrying a momentum-space delta function) plus

one, since an overall delta function ensures momentum conservation for the external fields.
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Therefore, denoting the number of quartic gauge-gauge-scalar-scalar vertices by Vggss and

the number of four-point scalar vertices by Vssss, we have

L = PA + P
Ã

+ Pφ + P
φ̃
− Vgss − Vggss − Vssss + 1 . (3.36)

Finally we can relate the number of lines attached to a vertex to the number of propagators

(each connecting two vertices) and the number of external lines Nf

Vgss + 2Vggss = 2PA + 2P
Ã

+NA +N
Ã
,

2Vgss + 2Vggss + 4Vssss = 2Pφ + 2P
φ̃

+Nφ +N
φ̃
,

(3.37)

where the first relation deals with gauge lines and the second with scalar lines. Inserting

Eqs. (3.36) and (3.37) in Eq. (3.35) yields

D ≤ 4−NA −NÃ −Nφ −Nφ̃ . (3.38)

This equation tells us that the number of superficially divergent amplitudes is finite; since

no operators of dimension greater than four are present in the auxiliary-field Lagrangian, we

conclude that the theory is renormalizable.

In order to confirm renormalizability explicitly and to verify how the SO(1, 1)×SO(1, 1)

structure of the theory is protected against radiative corrections, we will now compute the

infinite13 part of the divergent one-particle irreducible (1PI) diagrams at one-loop. As a

way of checking our results and exploring the detailed symmetry structure, we will compute

13If we were to compute the finite part as well, we would need to employ the Cutkosky-
Landshoff-Olive-Polkinghorne prescription in order to avoid unitarity violation [70]. How-
ever, the infinite part is not affected by this subtlety [72].
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the diagrams in both the ordinary and no-mixing gauges, with ξ = 1. As we shall see, in the

no-mixing gauge only the vacuum polarization and self-energy amplitudes are infinite, while

in the ordinary gauge infinities also arise in the vertex corrections. Therefore, the way the

counterterms preserve the symplectic structure of the theory is different in the two gauges.

3.5.1 Counterterms

Radiative corrections renormalize the fields and mix the ordinary fields with the LW partners.

This not only preserves the U(1) gauge symmetry, but also does not generate any hard

breaking of the global SO(1, 1)×SO(1, 1) symmetry. Let us derive the most general relation

between bare and renormalized fields satisfying these requirements. We will employ the

standard QED nomenclature for the counterterms by using the subscript “3” for the photon

wavefunction renormalization, “2” for the matter field wavefunction renormalization, and

“1” for gauge vertex renormalization.

For the vector fields we have in general



Aµ

Ãµ


 =



√
Z3

√
Z′3√

Z′′3
√
Z̃3






A
µ
r

Ã
µ
r


 .

Gauge invariance requires Z′′3 = 0, lest a photon mass term be generated. Preserving the

form of the symplectic combination Aµ − Ãµ demands

√
Z′3 =

√
Z̃3 −

√
Z3 .

Finally, substituting in the kinetic term Lagrangian and imposing the SO(1, 1) symmetry
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on the counterterms gives

Z̃3 =
1

Z3
.

Therefore, the relation between bare and renormalized vector fields consistent with the sym-

metries of the theory is



Aµ

Ãµ


 =

√
Z3




1 Z−1
3 − 1

0 Z−1
3






A
µ
r

Ã
µ
r


 , Z3 ≡ 1 + δ3 . (3.39)

Similarly, in order to preserve the SO(1, 1) symmetry on the scalar fields, the relation between

bare and renormalized scalar fields must be a symplectic rotation times a wavefunction

renormalization



φ

φ̃


 =

√
Z2




cosh η sinh η

sinh η cosh η






φr

φ̃r


 , Z2 ≡ 1 + δ2 . (3.40)

Substituting Eqs. (3.39) and (3.40) in the Lagrangian, Eq. (3.19), and denoting the gauge-

scalar-scalar vertex and gauge-gauge-scalar-scalar vertex renormalizations, respectively, by

Z1 ≡ 1 + δ1 and Z′1 = 1 + δ′1 leads to

L = − 1

4
F2
rµν +

1

4
F̃2
rµν −

M2
Ar
2

Ã2
rµ + |∂µφr|2 − |∂µφ̃r|2 +M2

r |φ̃r|2 −m2
r |φr|2

− λr
4
|φr − φ̃r|4 − igr (Arµ − Ãrµ)

(
φr ∂

µφ∗r − φ̃r ∂µφ̃∗r − h.c.
)

− g2
r (Arµ − Ãrµ)2

(
|φr|2 − |φ̃r|2

)
+ Lct ,

(3.41)
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where the counterterm (ct) Lagrangian is

Lct = − δ3
4
F2
rµν +

δ3
2
FrµνF̃

µν
r − δ3

4
F̃2
rµν −

δ
M2
A

2
Ã2
rµ

+ δ2 |∂µφr|2 − δ2 |∂µφ̃r|2 + δ
M2|φ̃r|2 − δm2 |φr|2 − δmM

(
φ∗rφ̃r + φrφ̃

∗
r

)

− δλ
4
|φr − φ̃r|4 − iδ1gr (Arµ − Ãrµ)

(
φr ∂

µφ∗r − φ̃r ∂µφ̃∗r − h.c.
)

− δ′1 g
2
r (Arµ − Ãrµ)2

(
|φr|2 − |φ̃r|2

)
.

(3.42)

The renormalized trilinear and quartic gauge-scalar couplings are related to the bare

couplings by

g
√
Z3 Z2 = gr Z1 , g2 Z3 Z2 = g2

r Z
′
1 , (3.43)

where gauge invariance guarantees

Z1 = Z′1 = Z2 , (3.44)

to all orders in perturbation theory. The renormalized mass parameters are related to the

bare masses by

Z2

[
(cosh η)2m2 − (sinh η)2M2

]
= m2

r + δ
m2 ,

Z2

[
(cosh η)2M2 − (sinh η)2m2

]
= M2

r + δ
M2 ,

Z2(M2 −m2) cosh η sinh η = − δmM ,

(3.45)

whereas the renormalized and bare four-scalar couplings are related by

λZ2
2 e
−4η = λr + δλ . (3.46)
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Figure 3.1: One-loop contribution to the vacuum polarization amplitudes. Each external
vector field is either a photon or a LW photon.

The vector field kinetic terms in the counterterm Lagrangian are now mixed. However, it

can be easily shown that these are still invariant under an SO(1, 1) transformation, provided

that δ3 is promoted to a spurion field.

We shall now prove that this set of counterterms is sufficient to absorb all infinities at

one-loop. In the process, the SO(1, 1) × SO(1, 1) global symmetry leads to cancellation of

the quadratic divergences in the scalar field self-energy amplitudes. In order to simplify our

notation we will drop the subscript r everywhere, but it should be kept in mind that all

fields and parameters involved in the calculations below are the renormalized ones.

3.5.2 Vacuum Polarization Amplitudes

We begin our examination of the infinite part of the divergent 1PI diagrams of LW scalar

QED by computing the one-loop contributions to the vacuum polarization amplitudes for

the vector fields. The relevant diagrams are illustrated in Fig. 3.1, where each external field
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is either a photon or a LW photon. Since no gauge field propagators are involved in the

one-loop diagrams, the results are manifestly gauge independent. We find

iΠ
µν
AA = iΠ

µν

ÃÃ
= −iΠµν

AÃ
= iΠ(q2) (q2gµν − qµqν) , (3.47)

where, in dimensional regularization,

Π(q2) = −2× e2

48π2
1

ε
+ finite terms , (3.48)

with ε ≡ 2−d/2 as usual. The explicit factor of two arises from the presence of the LW scalar

loops, and the remaining factor is the ordinary scalar QED contribution. Since Π
µν

ÃÃ
contains

no mass term, we have

δ
M2
A

= 0 . (3.49)

The relevant counterterm contributions from the field-strength terms in Eq. (3.42) are

iδΠ
µν
AA = iδΠ

µν

ÃÃ
= −iδΠµν

AÃ
= −iδ3 (q2gµν − qµqν) , (3.50)

which are precisely of the form required to cancel the infinities in Eq. (3.47). In the minimal

subtraction scheme we obtain

δ3 = − e2

24π2
1

ε
. (3.51)

3.5.3 Self-Energy Amplitudes

We will calculate the one-loop contribution to the self-energy amplitude Σ for a scalar field

in the no-mixing ξ = 1 gauge and then will repeat the calculation in the ordinary ξ = 1
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Figure 3.2: One-loop contribution to the 1PI self-energy amplitude Σφφ in the no-mixing

ξ = 1 gauge. In the ordinary gauge there are also diagrams involving internal mixed gauge
propagators, P

AÃ
.

gauge as a check. The relevant diagrams for the φ field, in the no-mixing gauge, are shown

in Fig. 3.2. Those for the φ̃ field are obtained by replacing φ with φ̃; given the form of

the Lagrangian (3.19), we expect that the contributions of the diagrams involving internal

gauge bosons will change sign. The mixed self-energy amplitude Σ
φφ̃

explicitly breaks the

U(1)×U(1) symmetry to diagonal U(1), and must vanish in the limit λ→ 0; therefore, only

the diagrams with scalar loops will contribute to Σ
φφ̃

.

We begin our calculation of Σφφ in the no-mixing ξ = 1 gauge by considering potential

quadratic divergences. First, we examine the gauge-scalar diagrams on the top and middle

lines of Fig. 3.2. The first two diagrams correspond to the gauge-sector contribution in

ordinary scalar QED, which is quadratically divergent. That quadratic divergence is canceled

by the Ã diagrams, as we now demonstrate. The SO(1, 1) symmetry acting on the vector
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fields guarantees that: (i) the gauge-gauge-scalar and gauge-gauge-scalar-scalar couplings

involving the photon and LW photon are identical (up to an unphysical minus sign in the

gauge-gauge-scalar coupling14), and (ii) the LW photon propagator has a minus sign, relative

to the photon propagator. As a result, each diagram with an internal LW photon is opposite

in sign to its counterpart with an ordinary photon, and in the UV (where the LW photon mass

becomes irrelevant), there is an exact cancellation of the quadratic divergences. Likewise,

moving to the diagrams in the bottom row of Fig. 3.2, we recognize that the first diagram is

familiar from the ordinary φ4 theory, and is of course quadratically divergent. The second

diagram exactly cancels the quadratic divergence, as the SO(1, 1) symmetry acting on the

scalar fields guarantees the equality of the |φ|4 and |φ|2|φ̃|2 couplings, as well as the negative

sign in the φ̃ propagator.

Having established that Σ is free from quadratic divergences, we may proceed to complete

the one-loop calculation in no-mixing ξ = 1 gauge. In dimensional regularization, near d = 4,

the result is

−iΣφφ = − i
λ(M2 −m2) + 3g2M2

A
16π2

1

ε
+ finite terms ,

−iΣ
φ̃φ̃

= − i
λ(M2 −m2)− 3g2M2

A
16π2

1

ε
+ finite terms ,

−iΣ
φφ̃

= i
λ(M2 −m2)

16π2
1

ε
+ finite terms .

(3.52)

Notice that there is mass renormalization but not wavefunction renormalization, as the 1/ε

coefficients are q2 independent in this gauge. Moreover, in the limit of exact SO(1, 1) ×

SO(1, 1) symmetry (where M → m and MA → 0) the self-energy amplitudes vanish exactly

14This minus sign comes from the Aµ− Ãµ dependence. However, we can always redefine

Ãµ to −Ãµ, which turns Aµ − Ãµ into Aµ + Ãµ. This, for example, is the convention
adopted in Ref. [42].
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in the no-mixing ξ = 1 gauge, because the LW and ordinary propagators are then of equal

magnitude and opposite sign. The theory is still not finite, because, for example, the vacuum

polarization amplitudes do not vanish.

From Eq. (3.42) we find that the relevant counterterm contributions are of the form

−iδΣφφ = iδ2 q
2 − iδ

m2 ,

−iδΣ
φ̃φ̃

= − iδ2 q2 + iδ
M2 ,

−iδΣ
φφ̃

= − iδmM ,

(3.53)

and in the minimal subtraction scheme, we conclude

δ2 = 0 , (3.54)

and

δ
m2 = −

λ(M2 −m2) + 3g2M2
A

16π2
1

ε
,

δ
M2 =

λ(M2 −m2)− 3g2M2
A

16π2
1

ε
,

δmM =
λ(M2 −m2)

16π2
1

ε
.

(3.55)

Inserting these results into Eq. (3.45) yields the following expression for the mixing angle

η = − λ

16π2
1

ε
. (3.56)

Note that this vanishes in the λ → 0 limit, as expected: for λ → 0 the theory acquires a

global U(1)× U(1) symmetry (with the diagonal U(1) gauged) under which φ and φ̃ rotate
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independently. This prevents φ-φ̃ mixing terms from being radiatively generated.

The calculation in the ordinary ξ = 1 gauge proceeds somewhat differently because

mixed gauge propagators (P
AÃ

) are present. Once their effects are included, the quadratic

divergences still cancel among the diagrams involving internal gauge propagators. A direct

computation of the self-energy functions then yields

−iΣφφ = − i
λ(M2 −m2) + g2(3M2

A +m2 − q2)

16π2
1

ε
+ finite terms ,

−iΣ
φ̃φ̃

= − i
λ(M2 −m2)− g2(3M2

A +M2 − q2)

16π2
1

ε
+ finite terms ,

−iΣ
φφ̃

= i
λ(M2 −m2)

16π2
1

ε
+ finite terms .

(3.57)

In this gauge, both mass renormalization and wavefunction renormalization are present. The

counterterm contributions are, of course, still given by Eq. (3.53), which have the right form

to cancel both the q2-dependent and q2-independent infinities in Eq. (3.57). In minimal

subtraction scheme, one obtains the relationships

δ
m2 = −

λ(M2 −m2) + g2(3M2
A +m2)

16π2
1

ε
,

δ
M2 =

λ(M2 −m2)− g2(3M2
A +M2)

16π2
1

ε
,

δmM =
λ(M2 −m2)

16π2
1

ε
,

(3.58)

which lead to the same expression for the mixing angle as in the no-mixing ξ = 1 gauge,

Eq. (3.56). However, this time the wavefunction renormalization counterterm is

δ2 = − g2

16π2
1

ε
, (3.59)
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which differs from the result in the other gauge.

Since universality of the U(1) gauge coupling insures that the scalar field wavefunction

renormalizations are always exactly compensated by the vertex corrections, as Eq. (3.44)

shows explicitly, all that remains to show at one-loop, is the cancellation of all SO(1, 1)

breaking amplitudes in the φ4 sector.

3.5.4 φ4 Vertex

There are many diagrams contributing to the 1PI amplitudes with four external scalar fields.

As with the self-energy amplitudes, there are significant SO(1, 1) × SO(1, 1) cancellations

involved. However, now that these are well understood, we can reduce the number of dia-

grams by using the hat-field propagators on all internal lines: the Â propagator of Eq. (3.28)

when working in the ordinary ξ = 1 gauge, the Â propagator of Eq. (3.34) when employing

the no-mixing ξ = 1 gauge, and the gauge-independent φ̂ propagator which is constructed

by summing the simple propagators of the φ and φ̃ fields

P
φ̂φ̂

= Pφφ + P
φ̃φ̃

=
i (M2 −m2)

(q2 −m2)(M2 − q2)
. (3.60)

When we use the hat-field propagators, the expected cancellations occur within single dia-

grams, and are due to denominators with higher powers of loop momenta.

Let us denote by Γf1f2f3f4
the one-loop contribution to the 1PI amplitude with external

scalar fields f1, f2, f3, and f4 and start by working within the no-mixing ξ = 1 gauge. As a

concrete example, we will consider Γφφφ∗φ∗ , for which the relevant diagrams are those shown

in Fig. 3.3. The first two diagrams are entirely due to the φ4 interaction, and involve only

internal φ̂ fields. These diagrams are, thus, finite by power counting, since the φ̂ propagator
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Â

Â
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Figure 3.3: One-loop contribution to the 1PI amplitude with four external φ fields. The
number of diagrams is reduced by employing the hat-field propagators. (See text for details)

decays like q−4, at large momenta, and the vertices are momentum independent. The

remaining two diagrams of the first row, as well as the diagrams of the second and third row,

are entirely due to the gauge-scalar interactions, which depend on Aµ−Ãµ ≡ Âµ. Although

the trilinear gauge-scalar-scalar vertices are momentum-dependent, in the no-mixing gauge

all these diagrams are finite by power counting. Finally, there are the diagrams in the last

two rows, which involve both φ4 and gauge vertices. Once again these are finite by power
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counting in the no-mixing gauge. The same reasoning holds for all of the U(1) × U(1)

symmetric amplitudes; for the U(1) × U(1) violating amplitudes Γ
φφφ∗φ̃∗ , Γ

φφ̃φ̃∗φ̃∗ , and

Γ
φφφ̃∗φ̃∗ , the only difference is that the diagrams involving only gauge-scalar vertices do

not contribute. We conclude that the amplitudes are purely finite in the no-mixing gauge

and

δλ = 0 . (3.61)

The situation is different in the ordinary ξ = 1 gauge. If we, again, start by considering

Γφφφ∗φ∗ , we still conclude that the first two diagrams, which involve only the φ4 interaction,

and involve only internal φ̂ fields are finite. The ten diagrams involving only gauge-scalar

interactions are another story. Power counting now predicts a logarithmic divergence for

each of these diagrams, because of the qµqν/M2
A term in the Âµ propagator. However, we

expect that these divergences must cancel against one another for symmetry reasons. Recall

that the U(1) × U(1) violating amplitudes Γ
φφφ∗φ̃∗ , Γ

φφ̃φ̃∗φ̃∗ , and Γ
φφφ̃∗φ̃∗ receive no

contribution at all from the diagrams with only gauge vertices. Then those diagrams cannot

make an infinite contribution to the U(1)×U(1)-symmetric amplitudes like Γφφφ∗φ∗ either,

since this would correspond to a hard breaking of the SO(1, 1) symmetry acting on the scalar

fields. Explicit calculation confirms that the infinities arising from the diagrams with an even

number of gauge vertices (last two diagrams of the first row, and diagrams of the third row)

are precisely cancelled by the infinities from the diagrams with an odd number of gauge

vertices (diagrams of the second row). Therefore, the only possible infinite contribution to

Γφφφ∗φ∗ and the other 1PI amplitudes in this gauge must arise from the diagrams in the

last two rows, which involve both φ4 and gauge-scalar vertices. Note that this implies that

in the λ→ 0 limit all amplitudes with four external scalar fields are finite.
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Computing the φ4 vertex correction diagrams from the last two rows of Fig. 3.3 in

ordinary ξ = 1 gauge yields the following infinite contributions

iΓφφφ∗φ∗ = iX + finite, iΓ
φφ̃φ∗φ̃∗ = i 4X + finite, iΓ

φ̃φ̃φ̃∗φ̃∗ = iX + finite,

iΓ
φφφ∗φ̃∗ = −i 2X + finite, iΓ

φφ̃φ̃∗φ̃∗ = −i 2X + finite, iΓ
φφφ̃∗φ̃∗ = iX + finite,

(3.62)

where

X ≡ −λ e
2

8π2
1

ε
. (3.63)

At the same time, Eq. (3.42) provides the counterterm contributions

iδΓφφφ∗φ∗ = −iδλ , iδΓ
φφ̃φ∗φ̃∗ = −i 4δλ , iδΓ

φ̃φ̃φ̃∗φ̃∗ = −iδλ ,

iδΓ
φφφ∗φ̃∗ = i 2δλ , iδΓ

φφ̃φ̃∗φ̃∗ = i 2δλ , iδΓ
φφφ̃∗φ̃∗ = −iδλ ,

(3.64)

which are precisely of the form required to cancel the infinities in Eq. (3.62). In the minimal

subtraction scheme we obtain

δλ = −λ e
2

8π2
1

ε
. (3.65)

3.5.5 Running of g and λ

We will now determine the β functions of the LW theory and compare them with the results

for ordinary scalar QED. To lowest order, the β functions for the electromagnetic and φ4

couplings in the LW theory are given by

βg =
g2

2
µ
∂

∂µ
δ3 , βλ = µ

∂

∂µ

(
−δλ + 2λ δ2

)
, (3.66)
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where µ is the scale we must introduce in dimensional regularization to make the log argu-

ments dimensionless, and 1/ε in the counterterms is interpreted as

1

ε
→ log

Λ2

µ2
. (3.67)

Since we are employing a mass-independent renormalization scheme, below the LW mass

scale (MLW) we must impose the decoupling theorem and integrate out the LW fields. Since

what remains is identical to ordinary scalar QED, the counterterms are

δ3 = − g2

48π2
1

ε
, δ2 =

g2

8π2
1

ε
, δλ =

[
λ2

8π2
− λ g2

8π2

]
1

ε
. (3.68)

These, in turn, yield the low-energy leading order β functions

βg(µ < MLW) =
g3

48π2
, βλ(µ < MLW) =

λ2

4π2
− 3λ g2

4π2
, (3.69)

that are characteristic of ordinary scalar QED.

Above the LW mass scale, the appropriate counterterms are those we have derived for

the full LW theory. For the vector coupling, the counterterm value in Eq. (3.51) leads to

βg(µ > MLW) =
g3

24π2
, (3.70)

which is twice the ordinary scalar QED βg function. In other words, the contribution from

loops of the LW scalar is identical to that from loops of the ordinary scalar; since there are

no internal gauge fields, the calculation is manifestly gauge invariant.

For the βλ function above the LW scale we consider the no-mixing and ordinary gauges
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separately. If we employ the no-mixing ξ = 1 gauge, then Eqs. (3.54) and (3.61) tell us

that δ2 and δλ are each separately zero. In this gauge the LW scalar and vector fields make

contributions to the counterterms that are equal and opposite to those of the ordinary scalar

and vector fields. As a result, we find

βλ(µ > MLW) = 0 . (3.71)

In the ordinary ξ = 1 gauge, the values of δ2 are δλ are non-zero, as shown, respectively, by

Eqs. (3.59) and (3.65); however, the final result for βλ is the same, which provides a useful

check of our calculations.

3.6 Conclusion & Discussion

In this chapter we have discussed the global symmetries and the renormalizability of Lee-

Wick scalar QED. The combination of SO(1, 1) global symmetry, U(1) gauge invariance,

and an SO(1, 1) invariant gauge-fixing condition allows us to show directly in the auxiliary-

field formalism that the number of superficially divergent amplitudes in a LW Abelian gauge

theory is finite. To illustrate the renormalizability of the theory, we have explicitly carried

out the one-loop renormalization program in LW scalar QED and demonstrated how the

counterterms are constrained by the joint conditions of gauge and SO(1, 1) invariance. We

have also computed the one-loop beta functions in LW scalar QED.

It would be interesting to generalize the discussion presented here to the case of non-

Abelian gauge theories. However, this is not immediately possible. Notice that the SO(1, 1)

transformation of Eq. (3.20) mixes a gauge field, Aµ, with a non-gauge vector field, Ãµ.

93



In an Abelian theory, we have the freedom to promote A′µ ≡ coshαAµ + sinhαÃµ to a

gauge field for two reasons. First, the requirement that A′µ − Ã′µ transform like a gauge

field gives us the freedom to choose which field should bear the transformation. Second,

all gauge interactions depend solely on e(Aµ − Ãµ), which is an SO(1, 1) invariant. That

these conditions are satisfied in Abelian gauge theory is perhaps not surprising, given that

a massive Abelian gauge theory is renormalizable [85].

In a non-Abelian gauge theory, however, interactions do not depend solely on g(Aaµ−Ãaµ),

and the SO(1, 1) symmetry is violated by the gauge interactions themselves. To see this

consider the generalization of the gauge kinetic energy terms of Eq. (3.13) to non-Abelian

interactions,

Lgauge = −1

2
Tr F̂2

µν − 2 TrDµÃνF̂µν , (3.72)

where

DµÃν = ∂µÃν − ig[Âµ, Ãν ] . (3.73)

An SO(1, 1) transformation on the hat and tilde fields, and the gauge coupling, reads

Âµ → e−α Âµ , Ãµ → sinhα Âµ + eα Ãµ , g → eα g . (3.74)

Applying this to Lgauge gives

Lgauge → Lgauge + ig sinhα e−α Tr F̂ µν [Âµ, Âν ] . (3.75)

Thus the SO(1, 1) symmetry associated to the vector fields is explicitly broken by dimension-

four gauge boson self-interactions.
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In principle we would, therefore, expect the SO(1, 1) breaking to propagate to other

sectors of the theory, and spoil the special relations between couplings that guarantee the

cancellation of quadratic divergences. However, both power counting in the higher-derivative

formulation [42] and the high energy behavior of massive vector meson scattering in Lee-

Wick gauge theory [73] suggest that the number of superficially divergent diagrams remains

finite and that non-Abelian LW gauge theory may be renormalizable. A more thorough

understanding of non-Abelian LW gauge theories is, therefore, necessary in order to extend

the results demonstrated here for Abelian theories.

As we have seen, Part I of this Thesis has focused on an extension of the electroweak sec-

tor of the SM in which new (heavy) fermions, among other degrees of freedom, are introduced

in order to tackle and resolve the Hierarchy Problem, canceling the quadratic divergences

associated with the SM Higgs boson’s mass. We investigated in detail some of the interesting

and important theoretical aspects of this BSM theory, and analyzed how current experimen-

tal data constrains the new heavy degrees of freedom. In Part II of this Thesis, we proceed

to discuss a different type of BSM theory and some of its thought-provoking field theoretical

issues. This type of BSM theory would form an extension to the strong sector of the SM,

one in which new (heavy) colored gauge bosons (rather than new fermions) appear. Once

more, we will carefully explore both the formal and phenomenological aspects of this BSM

theory in detail.
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Chapter 4

PRODUCTION OF MASSIVE

COLOR-OCTET VECTOR BOSONS

AT NEXT-TO-LEADING ORDER1

“Everything should be made as simple as possible, but no simpler!”

—Albert Einstein (1879 – 1955)

4.1 Introduction

Massive color-octet vector bosons are present in theories which constitute an ex-

tension of the QCD sector of the Standard Model (SM). As explained in Chapter , since

late 1980s it has been of theoretical and phenomenological interest to extend the SM strong

sector in order to accommodate, among others, theories in which the electroweak symmetry

1This chapter is based on the paper first published in [3].
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breaking is induced by strong dynamics, where a new type of strongly-coupled gauge inter-

action forms composite Higgs out of colored fermions. Just as in the case of ordinary QCD,

one may apply perturbation theory to study this class of theories at high energies. This

may be again achieved through an asymptotic expansion of the theory in terms of the strong

coupling, αs,2 since the coupling decreases in strength as a function of increasing energy,

reflecting the asymptotically free nature of the theory.

The analyses of the production of the massive colored gauge bosons to date, however,

capture only the leading order (LO) in perturbation theory. In this chapter, we extend the

production analysis to the next-to-leading order (NLO) in perturbation theory, thereby, im-

proving dramatically upon the previous LO studies, in addition to predicting new kinematic

variables important for comparison with experiments.

Massive color-octet vector bosons are predicted in a variety of models, including axigluon

models [5, 44], topcolor models [45]-[48], technicolor models with colored technifermions [86,

p. 352-382], flavor-universal [49, 50] and chiral [51] coloron models, and extra-dimensional

models with KK gluons [7, 52]. These states have also recently been considered as a po-

tential source [87, 88] of the top quark forward-backward asymmetry observed by the CDF

collaboration [89, 90].3 Recent searches for resonances in the dijet mass spectrum at the

LHC imply that the lower bound on such a boson is now 2-3 TeV [4],[94]-[96].4 If there

2In previous chapters, we defined α3 to indicate the strong coupling. In this chapter,
however, we employ the more conventional term αs. Both conventions are interchangeably
used in the literature.

3Note, however, that the observation of a top quark forward-backward asymmetry is not
confirmed by results of the D0 collaboration [91, 92]. Furthermore, if the observed top quark
forward-backward asymmetry is confirmed, explaining this using color-octet vector bosons
is problematic given the tight constraints on flavor-changing neutral-currents [93].

4At least for the fermion charge assignments considered, and in the case where the reso-
nance is narrow compared to the djiet mass resolution of the detector.
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are color-octet vector bosons associated with the electroweak symmetry breaking sector, as

suggested by several of the models discussed above, their presence should be uncovered by

the LHC in the future.

In this chapter5 we report the first complete calculation6 of QCD corrections to the

production of a massive color-octet vector boson. We will refer to these massive color-

octet vector states generically as “colorons”. We treat the coloron as an asymptotic state

in our calculations, employing the narrow width approximation. Our next-to-leading order

(NLO) calculation includes both virtual corrections, as well as corrections arising from the

emission of gluons and light quarks, and we demonstrate the reduction in factorization-scale

dependence relative to the leading order (LO) approximation used in previous hadron collider

studies.

The QCD NLO calculation of coloron production reported here differs substantially from

the classic computation of the QCD NLO corrections to Drell-Yan production [99], because

the final state is colored. In particular, Drell-Yan production involves the coupling of the

light quarks to a conserved (or, in the case of W - or Z-mediated processes, conserved up to

quark masses) current. Hence, in computing the NLO corrections to Drell-Yan processes,

the current conservation Ward identity insures a cancellation between the UV divergences

arising from virtual quark wavefunction and vertex corrections. These cancellations do not

5Throughout this chapter, the timeline for the depicted Feynman diagrams is from bot-
tom to top, with exception of the fermion self-energy (Fig. 4.3) and the gauge boson VPA
(Figs. 4.8-4.10) diagrams where it is from left to right.

6As this work was being completed, a computation of the NLO virtual corrections of top
quark pair production via a heavy color-octet vector boson has been reported in [97]. That
work is complementary to ours in that it does not employ the narrow width approximation
for the color-octet boson, but neither does it include real gluon or quark emission. After this
work was submitted for publication, real emission has also been considered by those authors
[98].
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occur in the calculation of the NLO corrections to coloron production, because of vertex

corrections involving the three-point non-Abelian colored-boson vertices. As we describe

in Section 4.4, we use the “pinch technique” [100] to divide the problematic non-Abelian

vertex corrections into two pieces — a “pinched” piece whose UV divergence contributes

to the renormalization of the coloron wavefunction (and, ultimately, a renormalization of

the coloron coupling) and an “unpinched” part whose UV divergence (when combined with

an Abelian vertex correction) cancels against the UV divergences in quark wavefunction

renormalization. As we show, once the UV divergences are properly accounted for, the IR

divergences cancel in the usual way: the IR divergences arising from real quark or gluon

emission cancel against the IR divergences in the virtual corrections, and the IR divergences

arising from collinear quarks or gluons in the initial state are absorbed in the properly defined

parton distribution functions (PDFs).

We compute the gauge-, quark-, and self-couplings of the coloron from a theory with an

extended SU(3)1C×SU(3)2C → SU(3)C gauge structure, where SU(3)C is identified with

QCD. The calculation yields the minimal coupling of gluons to colorons, and allows for the

most general couplings of quarks to colorons. The cancellation of UV divergences described

above, however, occurs only when the three-coloron coupling has the strength that arises from

the dimension-four gauge-kinetic energy terms of the extended SU(3)1C × SU(3)2C gauge

structure. Our computation applies directly to any theory with this structure, i.e. to massive

color-octet vector bosons in axigluon, topcolor, and coloron models. In general, the triple

coupling of KK gluons in extra-dimensional models, or of colored technivector mesons in

technicolor models, will not follow this pattern. However, our results apply approximately

to these cases as well, to the extent that the SU(3)1C × SU(3)2C model is a good low-
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energy effective theory for the extra-dimensional model (a “two-site” approximation in the

language of deconstruction [101, 102]) or for the technicolor theory (a hidden local symmetry

approximation for the effective technivector meson sector [103, 104]).7

This chapter is structured as follows: in Sec. 4.2 we introduce the formalism of a minimal

vector coloron theory, deriving all the Feynman rules, and setting the stage for the subsequent

calculations. In Sec. 4.3 we review the leading order computations of the amplitude and cross

section for coloron production due to qq̄ pair annihilation. Sec. 4.4 describes in detail the one-

loop virtual corrections to the qq̄ pair annihilation process, elaborating on the contributions

from the quark self-energy, coloron-coloron and gluon-coloron mixed vacuum polarization

amplitudes, and the vertex corrections. We employ the pinch technique [100], described

above, in order to consistently treat the UV divergences, and obtain a gauge-invariant,

mutually independent set of counterterms. The one-loop cross section is constructed, and

the IR singularities of the virtual correction properly extracted. In Sec. 4.5 we consider

the real emission processes, consisting of real (soft and collinear) gluon and (collinear) quark

emission. In Sec. 4.6 we put all the pieces together, exhibiting the explicit cancellation of the

IR divergences among the real and virtual corrections, and demonstrate the renormalization

of the quark and gluon PDFs. We give a finite expression for the NLO-corrected production

cross section. Finally, in Sec. 4.7 we plot the cross section, demonstrate that the QCD NLO

corrections are as large as 30%, and show that the residual factorization-scale dependence is

at the 2% level. We also calculate the K-factor and the pT spectrum for coloron production,

7Arbitary three- and four-point coloron self-couplings can be incorporated in the
SU(3)1C × SU(3)2C by adding O(p4) terms in the effective chiral Lagrangian of Eq. (4.1),

and deviations in these couplings are, therefore, of O(M2
C/Λ

2), where Λ is the cutoff of the
effective coloron theory. The three- and four-point self-couplings, however, are neither rele-
vant to the leading order qq̄, nor to the IR divergent NLO coloron production contributions,
and, therefore, are numerically insignificant.
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since these are valuable for comparison with experiment. Appendix contains all the Feynman

rules of the coloron theory.

4.2 A Minimal Theory for Spin-One Colorons

In this section, we introduce colorons8 as the massive color-octet bosons arising when an

extended SU(3)1C × SU(3)2C gauge symmetry is spontaneously broken by a non-linear

sigma model field to its diagonal subgroup, SU(3)C , which we identify with QCD. The

symmetry breaking results in a low-energy spectrum that includes both a massless spin-one

color-octet of gauge bosons, the gluons, and a massive spin-one color-octet of gauge bosons,

the colorons.

In detail, we replace the QCD Lagrangian with

Lcolor = − 1

4
G1µνG

µν
1 − 1

4
G2µνG

µν
2 +

f2

4
TrDµΣDµΣ†

+ Lgauge-fixing + Lghost + Lquark .

(4.1)

Here, Σ is the non-linear sigma field breaking SU(3)1C × SU(3)2C to SU(3)C ,

Σ = exp

(
2iπata

f

)
, a = 1, . . . , 8 , (4.2)

where πa are the Nambu-Goldstone bosons “eaten” by the coloron, f is corresponding

8Colorons can, in principle, be introduced as matter fields in the adjoint of SU(3)C . This
approach, however, would lead to an early violation of tree-level unitarity, as the scattering
amplitude of longitudinally polarized massive spin-one bosons can grow, by power counting,
like E4, where E is the center-of-mass (CM) energy. The only way to avoid this is to
“promote” the coloron to the status of gauge field of a spontaneously broken gauge theory:
then the special relation between trilinear and quartic gauge couplings will lead to an exact
cancellation of the terms growing like E4, as happens in the standard electroweak theory.
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“decay-constant”, and ta are the Gell-Mann matrices, normalized as Tr tatb = δab/2. The

Σ field transforms as the bi-fundamental of SU(3)1C × SU(3)2C ,

Σ→ u1Σu
†
2 , ui = exp

(
iαai t

a) , (4.3)

where the αai are the parameters of the SU(3)iC transformations. This leads to the covariant

derivative

DµΣ = ∂µΣ− igs1G
a
1µt

aΣ + igs2ΣGa2µt
a , (4.4)

where gsi is the gauge coupling of the SU(3)iC gauge group. Up to a total divergence, the

quadratic terms in the Lagrangian are

L(2)
color

=
1

2
Gaiµ

(
gµν∂2 − ∂µ∂ν

)
Gaiν +

f2

8

(
gs1G

a
1µ − gs2G

a
2µ

)2
+

1

2

(
∂µπ

a)2

− f

2

(
gs1G

a
1µ − gs2G

a
2µ

)
∂µπa + L(2)

gauge-fixing
+ L(2)

ghost
+ L(2)

quark
,

(4.5)

where a sum over i = 1, 2 in the gauge kinetic terms is implied.

The gauge-Goldstone mixing term can be removed, up to a total divergence, by choosing

the gauge-fixing Lagrangian to be

Lgauge-fixing = −1

2

(
Fai
)2 , (4.6)

where the gauge-fixing functions are

Fa1 ≡
1√
ξ

(
∂µGa1µ + ξ

gs1f

2
πa
)
, Fa2 ≡

1√
ξ

(
∂µGa2µ − ξ

gs2f

2
πa
)
. (4.7)

The Faddeev-Popov ghost Lagrangian is obtained by taking the functional determinant of
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δFai /δα
b
j . This leads to

Lghost = c̄ai

[
− ∂µ

(
δijδ

ab∂µ − gsif
abcδijG

c
iµ

)

− ξ
g2
si
f2

4

(
δi1 − δi2

) (
δ1j − δ2j

)
δab +O(π)

]
cbj ,

(4.8)

where fabc are the SU(3) structure constants, and a sum over i, j = 1, 2 is implied. Notice

that we have included only the inhomogeneous terms in the transformation of the eaten

Goldstone boson, whence, the unspecified O(π) term in the ghost Lagrangian which are

unnecessary for our computation. Up to a total divergence, the quadratic Lagrangian now

reads

L(2)
color

=
1

2
Gaiµ

[
δijg

µν∂2 − δij
(

1− 1

ξ

)
∂µ∂ν +

g2
si
f2

4

(
δi1 − δi2

) (
δ1j − δ2j

)]
Gajν

− 1

2
πa

[
∂2 +

ξ

4

(
g2
s1

+ g2
s2

)
f2

]
πa (4.9)

− c̄ai

[
δij∂

2 + ξ
g2
si
f2

4

(
δi1 − δi2

) (
δ1j − δ2j

)]
caj + L(2)

quark
.

Aside from a factor of the gauge-fixing parameter ξ, the gauge and ghost fields share the

same mass matrix, as expected. This is diagonalized by



Ga1µ

Ga2µ


 = R



Gaµ

Caµ


 ,



ca1

ca2


 = R



caG

caC


 , (4.10)

where

R ≡




cos θc − sin θc

sin θc cos θc


 , sin θc ≡

gs1√
g2
s1

+ g2
s2

. (4.11)
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In Eq. (4.10) Gaµ is the gluon field and Caµ is the coloron field, whereas caG and caC are the

corresponding ghost fields. Inserting these expressions in Eq. (4.9) gives, for the coloron

mass,

MC =

√
g2
s1

+ g2
s2
f

2
≡ gs f

sin 2θc
, (4.12)

where gs is the SU(3)C coupling,

1

g2
s

=
1

g2
s1

+
1

g2
s2

. (4.13)

The gluon ghost is massless, whereas both the coloron ghost and the eaten Goldstone boson

have mass
√
ξMC . The interaction vertices and the corresponding Feynman rules can be

found in Appendix .

We will leave the quark charge assignments under SU(3)1C × SU(3)2C arbitrary, for

greater generality. In the mass eigenstate basis we write

Lquark = q̄ii
[
/∂ − igs /Gata − i /Cata

(
gLPL + gRPR

)]
qi , (4.14)

where PL and PR are the helicity projection operators,

PL ≡
1− γ5

2
, PR ≡

1 + γ5
2

, (4.15)

and i is a flavor index.9 The coupling to the gluon is dictated by charge universality,

whereas the gL and gR couplings to the coloron depend on the original charge assignments

of the quarks. For example, if both left-handed and right-handed quarks are only charged

9Here we work in the broken electroweak phase, and only employ fermion mass eigenstates.

105



under SU(3)1C , then gL = gR = −gs tan θc, while the axigluon [5, 44] corresponds to

gL = −gR = gs (i.e. θc = π/4). In general, gL and gR can each take on the values

−gs tan θc or gs cot θc in any specific model,10

gL, gR ∈ {−gs tan θc, gs cot θc} . (4.16)

4.3 LO Coloron Production

The dominant channel for coloron production at a hadron collider is given by the tree-level

diagram of Fig. 4.1, in which a qq̄ pair annihilates into a coloron. The tree-level diagram with

gluon-gluon fusion into a coloron does not exist in the Lagrangian of Eq. (4.1): in general

there are no dimension-four terms with two gauge bosons of an unbroken symmetry and a

spin-one field charged under the same symmetry. We use the narrow width approximation for

the coloron, take the quarks to be on-shell, and set their masses to zero:11 this is certainly a

good approximation, as current experimental bounds [4],[94]-[96] constrain the coloron mass

to be in the TeV range.

The leading order (LO) amplitude corresponding to the diagram of Fig. 4.1 is

iM(0)
qq̄→C = gs v̄

r(p̄) iγµ
(
rLPL + rRPR

)
ta us(p) εaλ∗µ (r) , (4.17)

where the superscripts r and s denote quark spin projections, λ is the coloron polarization,

10It is possible to generalize this setup to non-universal charge assignments: in this case
flavor-diagonal chiral couplings to the coloron would depend on a generation index. Flavor-
changing couplings are strongly constrained [93].

11Note that the Yukawa couplings of quarks to the eaten Goldstone bosons are proportional
to the quark masses, and hence vanish in the zero-mass limit.
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p p̄

r

a, ⌫

Figure 4.1: Tree-level contribution to coloron production. The coloron field, Caν , is repre-
sented by the zigzag line.

and

rL ≡
gL
gs

, rR ≡
gR
gs

, rL, rR ∈ {− tan θc, cot θc} . (4.18)

In d = 2(2 − ε) dimensions, the squared amplitude averaged over initial spins and colors,

and summed over final polarization states, is

|M(0)
qq̄→C |

2 ≡
(

1

dim(r)

)2(1

2

)2 ∑

spin & color

|M(0)
qq̄→C |

2

=
C2(r)(1− ε)

2 dim(r)
g2
s

(
r2L + r2R

)
ŝ , (4.19)

where dim(r) = 3 and C2(r) = 4/3 are respectively the dimension and Casimir of the

fundamental representation of SU(3), and ŝ ≡ (p + p̄)2 = 2 p · p̄ is the partonic center-of-

mass (CM) energy. This gives the LO cross section [44] for qq̄ → C,

σ̂
(0)
qq̄→C =

π

ŝ2
|M(0)

qq̄→C |
2 δ(1− χ) =

αs A(r2L + r2R)

ŝ
δ(1− χ) , (4.20)
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where αs ≡ g2
s/4π,

A ≡ 2π2C2(r)(1− ε)
dim(r)

, (4.21)

and

χ ≡
M2
C
ŝ

. (4.22)

The full LO cross section for pp → C is given by the convolution of the LO partonic

cross section σ̂
(0)
qq̄→C with the parton distribution functions (PDFs) for the quarks within

the protons, and a sum over all quark flavors,

σLO =

∫
dx1

∫
dx2

∑

q

[
fq(x1)fq̄(x2) + fq̄(x1)fq(x2)

]
σ̂

(0)
qq̄→C , (4.23)

where fq(x) is the PDF of parton q, and x the momentum fraction of the corresponding

parton. Taking the collision axis to be the 3-axis, the four-momenta of the partons are

p =

√
s

2
(x1, 0, 0, x1) , p̄ =

√
s

2
(x2, 0, 0,−x2) , (4.24)

where s is the CM energy of the colliding hadrons. This gives

ŝ = x1x2 s , χ =
M2
C

x1x2 s
. (4.25)

4.4 NLO Coloron Production: Virtual Corrections

In this section we compute the next-to-leading order (NLO) virtual QCD corrections to the

qq̄ → C amplitude. These include one-loop wavefunction and vertex corrections, which we

choose to compute in ’t Hooft-Feynman gauge, ξ = 1. The non-Abelian vertex corrections
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are computed by employing the pinch technique: this allows us to obtain QED-like Ward

identities, and absorb all UV infinities in the renormalization of the gauge field propagators.

After inclusion of the counterterms, the virtual corrections are UV-finite, yet IR infinite.

In Sec. 4.6 we show that the IR divergences cancel once the real corrections, corresponding

to the emission of soft and collinear gluons and quarks, are included in the calculation

of the inclusive production cross section. Our loop integrals are computed in dimensional

regularization, with d = 2(2− ε) dimensions. We first regulate the IR divergences by giving

the gluon a small mass (mg → 0+): in this way all infinities are in the UV, and regularization

requires ε > 0. After all of the UV infinities are removed, by cancellation and inclusion of the

counterterms, we let the gluon mass approach zero. This will make the virtual corrections

IR divergent, with the infinities being regulated by taking ε < 0.

Since the quark couplings to the coloron are chiral, in general, we need a prescription

for treating γ5 in d 6= 4. Here we take γ5 to always anticommute with γµ. Choosing an

alternative prescription, such as ’t Hooft-Veltman in which γ5 anticommutes with γµ for

µ = 0, 1, 2, 3 and commutes for other values of µ, would lead to a cross section for qq̄ → C

which differs from ours by only a finite renormalization of the coupling(s).

The general structure of the qq̄ → C amplitude, illustrated in Fig. 4.2, is

iMqq̄→C = gs v̄
r(p̄) i

[
Z

1/2
C Γ

aµ
qqC + Γ

aµ
qqG

ΠGC(ŝ)

ŝ

]
Zqu

s(p) εaλ∗µ (r) , (4.26)

where Γ
aµ
qqC (Γ

aµ
qqG) is the one-particle irreducible (1PI) quark-quark-coloron (quark-quark-

gluon) vertex and ΠGC is the coefficient of gµν in the gluon-coloron vacuum polarization

mixing amplitude (VPA). The factors Zq and ZC are, respectively, the residues of the full

quark and coloron propagators at the mass pole; they are obtained from the quark self-energy
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1PI

1PI

1PI
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1PI

1PI1PI

ampu-
tated

Figure 4.2: Structure of qq̄ → C amplitude, to all orders in perturbation theory. Direct
coloron production is illustrated on the left, while production via mixing with the gluon is
shown on the right. The gluon field is, as usual, represented by the coiling line; the coloron
field is represented by the zigzag line.

amplitude, Σ(/p), and the coefficient of gµν in the coloron-coloron VPA, ΠCC(q2), as follows

Zq =
1

1− Σ′(0)
, ZC =

1

1− Π′CC(M2
C phys

)
, (4.27)

where the prime denotes a derivative with respect to the argument, and MC phys is the

coloron’s physical mass. To lowest order, Zq = 1, ZC = 1, ΠGC = 0, and iΓ
aµ
qqC =

γµ
(
rLPL + rRPR

)
ta; inserting these expressions in Eq. (4.26) recovers the tree-level am-

plitude of Eq. (4.17).
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p ppp
Figure 4.3: Quark self-energy diagrams at one-loop. Particle notation as defined in Fig. 4.2.

4.4.1 Quark Self-Energy

The NLO quark self-energy correction to the qq̄ → C amplitude is found, from Eqs. (4.26)

and (4.27), to be

iQ = v̄r(p̄) iγν
(
gLPL + gRPR

)
ta δZq u

s(p) εaλ∗ν (r) , (4.28)

where

δZq = Σ′(0) . (4.29)

At one-loop, the Σ(/p) amplitude is given by the diagrams of Fig. 4.3. These lead to the

expression

Σ(/p) = − /p
g2
s C2(r) 2(1− ε)Γ(ε)

16π2

×
∫ 1

0
dx (1− x)

[(
4πµ2

∆Gq

)ε
+

(
4πµ2

∆Cq

)ε
(r2LPL + r2RPR)

]
,

(4.30)

where Γ(ε) is the Euler Gamma-function evaluated at infinitesimal ε, and

∆Gq = (1− x)m2
g − x(1− x)p2 − iη , ∆Cq = (1− x)M2

C − x(1− x)p2 − iη . (4.31)

The parameter µ is the mass scale introduced by the loop integral in d dimensions, and η
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is the positive infinitesimal parameter giving the appropriate prescription for computing the

integral in momentum space. As previously anticipated, we have introduced a small gluon

mass, mg, in order to regulate the IR divergences and isolate the UV infinities: with mg 6= 0,

Σ(/p) and Σ′(/p) contain only UV divergences. Inserting Eq. (4.30) in Eq. (4.29) gives

δZq = − g2
s C2(r) 2(1− ε)Γ(ε)

16π2

∫ 1

0
dx (1− x)

×
[(

4πµ2

(1− x)m2
g − iη

)ε
+

(
4πµ2

(1− x)M2
C − iη

)ε
(r2LPL + r2RPR)

]
.

(4.32)

The amplitude of Eq. (4.28) becomes

iQ = − αs
4π

2C2(r)(1− ε)Γ(ε)

∫ 1

0
dx

∫ 1−x
0

dy

[(
4πµ2

(1− x)m2
g − iη

)ε
iM(0)

qq̄→C +

(
4πµ2

(1− x)M2
C − iη

)ε
iM′(0)

qq̄→C

]
,

(4.33)

where M(0)
qq̄→C is given by Eq. (4.17), and

iM′(0)
qq̄→C = gs v̄

r(p̄) iγν
(
r3LPL + r3RPR

)
ta us(p) εaλ∗ν (r) . (4.34)

For later convenience we have traded the 1 − x factor, in Eq. (4.32), for an integral over

dy: this will allow us to directly add the self-energy correction to the vertex correction and

explicitly show the cancellation of the UV divergences.
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Figure 4.4: One-loop Abelian vertex correction to the qq̄ → C amplitude. Particle notation
is as defined in Fig. 4.2.

4.4.2 Abelian Vertex Corrections

The one-loop Abelian vertex correction to the qq̄ → C amplitude is given by the diagrams

of Fig. 4.4. These lead to the amplitude

iVAbelian =
αs
4π

[2C2(r)− C2(G)] Γ(1 + ε)

∫ 1

0
dx

∫ 1−x
0

dy

{[
(1− ε)2

ε
− (xyε− (1− x)(1− y))

ŝ

∆Gqq

](
4πµ2

∆Gqq

)ε
iM(0)

qq̄→C (4.35)

+

[
(1− ε)2

ε
− (xyε− (1− x)(1− y))

ŝ

∆Cqq

](
4πµ2

∆Cqq

)ε
iM′(0)

qq̄→C

}
,

where C2(G) = 3 is the Casimir of the adjoint representation, and

∆Gqq = (1− x− y)m2
g − xyŝ− iη ,

∆Cqq = (1− x− y)M2
C − xyŝ− iη .

(4.36)

Once again, we have included a small gluon mass mg in order to regulate the IR divergences.

113



→r = p + p̄

→p p̄
k

µ

⌫ ⇢

Figure 4.5: One-loop non-Abelian vertex correction to the qq̄ → C amplitude. Particle
notation is as defined in Fig. 4.2. Each three-gauge boson vertex is a full non-Abelian vertex
Γµνρ in Eq. (4.37).

4.4.3 Non-Abelian Vertex Corrections a la Pinch-Technique: Un-

pinched Diagrams

The non-Abelian vertex corrections are given by the diagrams of Fig. 4.5. When added to the

overall Abelian vertex correction, Eq. (4.35), these give the one-loop total vertex correction

to qq̄ → C. Unlike in QED, the UV divergences in the vertex correction do not cancel the

UV divergences arising from the self-energy amplitudes. The reason for this is that the QED

Ward identity ∂µjµ = 0 is now replaced by its non-Abelian counterpart Dµjaµ = 0, which

does not imply the equality of vertex and quark-wavefunction renormalization constants. It

is possible, though, to recover QED-like Ward identities for the currents jaµ by employing

the pinch technique. This consists of breaking up the gauge boson internal momenta of

a Feynman diagram into “pinching” and “non-pinching” pieces. The pinching momenta

are those which cancel some internal propagators, leading to a simpler diagram with the

external-momentum structure of a propagator. The non-pinching momenta will instead give

overall amplitudes satisfying QED-like Ward identities. A formal proof of these statements,

for an arbitrary non-Abelian gauge theory, can be found in the review of Ref. [100] (and
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references therein).

In our vertex computation the pinch technique works as follows. The non-Abelian vertex

structure in each of the diagrams in Fig. 4.5 is

Γµνρ(k, p, p̄) = gµν(−2p− p̄+ k)ρ + gνρ(p− p̄− 2k)µ + gρµ(k + p+ 2p̄)ν . (4.37)

We can break this into two parts,

Γµνρ(k, p, p̄) = Γ
µνρ
F (k, p, p̄) + Γ

µνρ
P (k, p, p̄) , (4.38)

where

Γ
µνρ
F (k, p, p̄) = − 2gµν(p+ p̄)ρ + 2gρµ(p+ p̄)ν + gνρ(p− p̄− 2k)µ , (4.39)

Γ
µνρ
P (k, p, p̄) = gµν(p̄+ k)ρ + gρµ(k − p)ν . (4.40)

Unlike Γµνρ(k, p, p̄), the Γ
µνρ
F (k, p, p̄) vertex satisfies a QED-like Ward identity for the

gC → C and CC → C amplitudes,

(p+ p̄)µΓ
µνρ
F (k, p, p̄) = gνρ

[
(p− k)2 − (p̄+ k)2

]
. (4.41)

As shown below, when Γ
µνρ
F (k, p, p̄) is used to compute the integral in momentum space

(instead of Γµνρ(k, p, p̄)), its UV divergences, added to the UV divergences of the Abelian

vertex corrections, exactly cancel the UV divergences of the quark self-energy amplitudes.

As mentioned above, this occurs because a QED-like Ward identity for qq̄ → C holds, as one

can prove by using the QED-like Ward identity for the gC → C and CC → C amplitudes
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Figure 4.6: Non-Abelian unpinched vertex-correction diagrams for the qq̄ → C amplitude
at one-loop. Particle notation is as defined in Fig. 4.2. The black disk indicates that each
three-point gauge boson vertex in these diagrams has been replaced by the non-pinched
portion Γ

µνρ
F , as described in Eqs. (4.38) and (4.39).

given in Eq. (4.41). The three diagrams which correspond to using Γ
µνρ
F (k, p, p̄) instead of

Γµνρ(k, p, p̄) are symbolically denoted with a black disk over the non-Abelian vertex, and

are shown in Fig. 4.6. These lead to the following contribution to the qq̄ → C amplitude

iVnon-Abelian =
αs
4π

C2(G)Γ(1 + ε)

∫ 1

0
dx

∫ 1−x
0

dy

{[(
1− ε
ε
− (x+ y)

ŝ

∆GCq

)(
4πµ2

∆GCq

)ε
+

(
1− ε
ε
− (x+ y)

ŝ

∆CGq

)(
4πµ2

∆CGq

)ε

−
(

1− ε
ε
− (x+ y)

ŝ

∆CCq

)(
4πµ2

∆CCq

)ε ]
iM(0)

qq̄→C (4.42)

+

(
1− ε
ε
− (x+ y)

ŝ

∆CCq

)(
4πµ2

∆CCq

)ε
iM′(0)

qq̄→C

}
,

where

∆GCq = xm2
g + yM2

C − xyŝ− iη ,

∆CGq = xM2
C + ym2

g − xyŝ− iη ,

∆CCq = (x+ y)M2
C − xyŝ− iη .

(4.43)
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Figure 4.7: Non-Abelian pinched vertex-correction diagrams for the qq̄ → C amplitude at
one-loop. Particle notation is as defined in Fig. 4.2.

In order to obtain Eq. (4.42) we have used the equations of motion for the external spinors,

together with the relations

2 cot(2θc) rL = −1 + r2L , 2 cot(2θc) rR = −1 + r2R , (4.44)

which are true for any charge assignment of the quarks. As anticipated, iQ + iVAbelian +

iVnon-Abelian is free of UV divergences, as manifestly shown by adding together Eqs. (4.33),

(4.35) and (4.42). This part of the amplitude is, however, IR divergent in the limit of zero

gluon mass. Setting mg = 0 and ε < 0 gives

iQ+ iVAbelian + iVnon-Abelian

=
αs
4π

[
C2(r)

(
− 2

ε2
− 3 + 2i

ε

)
+ C2(G)

iπ

ε

]
iM(0)

qq̄→C + finite .

(4.45)

Of course we still need to include the contribution from Γ
µνρ
P (k, p, p̄) (of Eq. (4.40)) in

the full non-Abelian vertex correction. This contains the pinching momenta: the action of p

and p̄ on the external spinors gives zero, and the remaining piece cancels the internal fermion
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propagator in the diagram. Thus, the internal fermion line in each diagram is pinched away,

leaving an effective diagram with a four-point coupling between fermions and gauge bosons

as shown in Fig. 4.7. The UV divergences of the pinched diagrams have the same group-

and momentum-structure as those of the VPAs, and can be absorbed in the counterterms

for the gauge field propagators. In order to see this clearly, we will now consider the form of

the “true” propagator corrections to the qq̄ → C amplitude in the following subsection.

4.4.4 Form of the Vacuum Polarization Amplitudes

The NLO corrections to the qq̄ → C amplitude due to the VPAs are found, from Eqs. (4.26)

and (4.27), to have the form

iP = iM(0)
qq̄→C

δZC
2

+ iM′′(0)
qq̄→C

ΠGC(ŝ)

ŝ
, (4.46)

where

δZC = Π′CC(M2
C) , (4.47)

and

iM′′(0)
qq̄→C = gs v̄

r(p̄) iγµta us(p) εaλ∗µ (r) . (4.48)

In order to obtain the second term of Eq. (4.46), we have replaced Γ
aµ
qqG with its LO com-

ponent iγµta. Notice also that at this order we can swap M2
Cphys for M2

C .

At one-loop, ΠCC(q2) is given by the diagrams of Figs. 4.8 and 4.10, in which the

gluon ghost is represented by dotted lines, the coloron ghost by a sequence of filled cir-

cles, and the eaten Goldstone bosons are represented by dashed lines. There are poles at

d = 2 proportional to both q2 and M2
C . The latter correspond to quadratic divergences
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Figure 4.8: Coloron-coloron vacuum polarization amplitude at one-loop. A gluon field is,
as usual, represented by a coiling line; a coloron field is represented by a zigzag line. The
coloron ghost is represented by a sequence of filled circles, and the eaten Goldstone bosons
are represented by dashed lines.

Figure 4.9: Gluon-coloron mixing amplitude at one-loop. Particle notation is as defined in
Fig. 4.8.

Figure 4.10: Fermion contributions (solid lines) to coloron-coloron vacuum polarization am-
plitude and gluon-coloron mixing amplitude. Particle notation is as defined in Fig. 4.8.
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(renormalizing the coloron mass scale f), whereas the former can only be logarithmic by

dimensional analysis (renormalizing the coloron field).12 The momentum-dependent part of

the full coloron-coloron VPA is not transverse, as the coefficients of the q2 and qµqν terms

are different. However, we have explicitly verified that the infinite part is transverse: this

is necessary, because the corresponding Lagrangian counterterms are transverse. For small

values of ε we obtain

(αs
4π

)−1
ΠCC(q2)gµν + qµqν–terms

= C2(G)

∫ 1

0
dx

{[(
µ2

∆GC

)ε
2
(

1 + 4x(1− x)
)
E + 2(1− 2x)2

](
gµνq2 − qµqν

)

+

[(
µ2

∆GC

)ε (
1− x(4− 3x)

)
E − x(1− x)

]
gµνq2

+

[(
µ2

∆GC

)ε
2xE + 3− 5x

]
gµνM2

C

}
(4.49)

+ 4 cot2(2θc)C2(G)

∫ 1

0
dx

{[(
µ2

∆CC

)ε (
1 + 4x(1− x)

)
E + (1− 2x)2

](
gµνq2 − qµqν

)

+

[
−
(

µ2

∆CC

)ε
x(1− x)

4
E − x(1− x)

4

]
gµνq2 +

(
µ2

∆CC

)ε
(1− 2x)2

8
E qµqν

+

[(
µ2

∆CC

)ε
5

4
E +

1

4

]
gµνM2

C

}

+ (r2L + r2R)Nf

∫ 1

0
dx

(
µ2

∆qq

)ε [
− 2x(1− x)

]
E
(
gµνq2 − qµqν

)
,

where our results depend only on the coefficient of gµν , the quantity Nf is the number of

12This situation parallels the renormalization of the electroweak chiral lagrangian [105,
106].
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quark flavors in the loop (see Fig. 4.10),

E ≡ 1

ε
− γ + log 4π , (4.50)

and γ is the Euler-Mascheroni constant. The ∆ functions in Eq. (4.49) are

∆GC ≡ xm2
g + (1− x)M2

C − x(1− x)q2 − iη ,

∆CC ≡ M2
C − x(1− x)q2 − iη ,

∆qq ≡ − x(1− x)q2 − iη .

(4.51)

Notice that the coloron-coloron VPA of Eq. (4.49) is not IR divergent in the limit mg → 0,

since there are no contributions with only massless (gluon) states. However, what enters

in Eq. (4.46) is the derivative of ΠCC (see Eq. (4.47)), which is IR divergent in the limit

mg → 0.

The momentum-dependent part of the gluon-coloron mixing amplitude (Figs. 4.9 and

4.10) is found to be transverse, both in the infinite and the finite parts. For small values of

ε we find

(αs
4π

)−1
ΠGC(q2)gµν + qµqν–terms = 2 cot(2θc)C2(G)

∫ 1

0
dx

(
µ2

∆CC

)ε

×
{[(3

4
+ 5x(1− x)

)
E + (1− 2x)2

](
q2gµν − qµqν

)
+ EM2

C

}

+ (rL + rR)Nf

∫ 1

0
dx

(
µ2

∆qq

)ε [
− 2x(1− x)

] (
q2gµν − qµqν

)
.

(4.52)

There are no potential IR divergences hidden in ΠGC .
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4.4.5 Non-Abelian Vertex Corrections a la Pinch-Technique: Pinched

Diagrams

The pinched diagrams of Fig. 4.7 are obtained from the diagrams of Fig. 4.5 by replac-

ing the full non-Abelian vertex momentum structure Γµνρ(k, p, p̄) from Eq. (4.37), with

Γ
µνρ
P (k, p, p̄) from Eq. (4.40). This leads to the amplitude

iPpinched =
αs
4π

C2(G)

∫ 1

0
dx

[
2

(
µ2

∆GC

)ε
+ 4 cot2(2θc)

(
µ2

∆CC

)ε ]
EM(0)

qq̄→C

+
αs
4π

2 cot(2θc)C2(G)

∫ 1

0
dx

(
µ2

∆CC

)ε
EM′′(0)

qq̄→C ,

(4.53)

where we have used Eq. (4.44) to rewrite the fermion couplings in terms of θc. This contri-

bution to the amplitude has the form of a VPA correction, like that in Eq. (4.46). In fact,

we can write

iPpinched = iM(0)
qq̄→C

Π̃′CC(M2
C)

2
+ iM′′(0)

qq̄→C
Π̃GC(ŝ)

ŝ
, (4.54)

where

(αs
4π

)−1
Π̃CC(q2) = C2(G)

∫ 1

0
dx

(
µ2

∆GC

)ε
4(q2 −M2

C)E

+ 4 cot2(2θc)C2(G)

∫ 1

0
dx

(
µ2

∆CC

)ε
2(q2 −M2

C)E ,

(4.55)

and
(αs

4π

)−1
Π̃GC(q2) = 2 cot(2θc)C2(G)

∫ 1

0
dx

(
µ2

∆CC

)ε
E q2 . (4.56)
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Figure 4.11: The relevant contributions to the coloron Dyson series; as before, the zigzag
lines represent colorons. The first row is the sum of the coloron VPA diagrams in the
propagator, while the second row represents the sum of the VPA diagrams on top of the
one-loop contribution from the pinched vertex correction (the double curly line illustrates
generically all the allowed gauge bosons in the original non-Abelian vertices). The overall
pinched amplitude factors out, and has no effect on the coloron pole mass.

4.4.6 Full Propagator Correction

We have just seen that, due to the pinch technique, the coloron-coloron and gluon-coloron

VPAs receive an additional contribution from the pinched non-Abelian vertex corrections.

Combining the VPAs, the UV divergences can be removed by two wavefunction renormaliza-

tion counterterms (which arise from renormalizing the gauge eigenstates G1µ and G2µ) and

one mass counterterm (which arises from renormalizing the vacuum expectation value f), in
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the usual way. In the MS scheme we obtain

(αs
4π

)−1 [
ΠCC(q2) + Π̃CC(q2)

]

= C2(G)

∫ 1

0
dx

{[((
µ2

∆GC

)ε
− 1

)
2
(

3 + 4x(1− x)
)
E + 2(1− 2x)2

]
q2

+

[(
µ2

∆GC

)ε (
1− x(4− 3x)

)
E − x(1− x)

]
q2

+

[
−
((

µ2

∆GC

)ε
− 1

)
2(2− x)E + 3− 5x

]
M2
C

}
(4.57)

+ 4 cot2(2θc)C2(G)

∫ 1

0
dx

{[((
µ2

∆CC

)ε
− 1

)(
3 + 4x(1− x)

)
E + (1− 2x)2

]
q2

−
[((

µ2

∆CC

)ε
− 1

)
E + 1

]
x(1− x)

4
q2 +

[
−
((

µ2

∆CC

)ε
− 1

)
3

4
E +

1

4

]
M2
C

}

+ (r2L + r2R)Nf

∫ 1

0
dx

((
µ2

∆qq

)ε
− 1

)
[
− 2x(1− x)

]
E q2 ,

and

(αs
4π

)−1 [
ΠGC(q2) + Π̃GC(q2)

]
= 2 cot(2θc)C2(G)

∫ 1

0
dx

{((
µ2

∆CC

)ε
− 1

)[(7

4
+ 5x(1− x)

)
q2 +M2

C

]
E + (1− 2x)2q2

}

+ (rL + rR)Nf

∫ 1

0
dx

((
µ2

∆qq

)ε
− 1

)
[
− 2x(1− x)

]
E q2 .

(4.58)

The overall UV-finite propagator correction to the qq̄ → C amplitude can be found by

insering these expressions in

iP + iPpinched = iM(0)
qq̄→C

Π′CC(M2
C) + Π̃′CC(M2

C)

2

+ iM′′(0)
qq̄→C

ΠGC(ŝ) + Π̃GC(ŝ)

ŝ
.

(4.59)
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Letting mg → 0, we find that P + Ppinched becomes IR divergent, with the divergence

arising from Π′CC . Setting mg = 0 and ε < 0 gives

iP + iPpinched =
αs
4π
C2(G)

(
−1

ε

)
iM(0)

qq̄→C + finite . (4.60)

We have seen that the pinched diagrams contribute to the full propagators of the gluon-

coloron system. This might seem in conflict with the expectation that the mass poles should

be a property of freely propagating particles, and should not depend on any initial and/or

final state. However, when we sum the Dyson series to obtain the full propagator, the pinched

diagrams always appear as an overall prefactor, as pictorially shown in Fig. 4.11. This has

an overall effect on the full propagators, which depend on the initial and final states, but

has no effect on the propagator poles. Thus when we compute physical masses, we can do so

by employing the true propagators in the computation, without the contribution from the

pinched diagrams.

4.4.7 Cross Section at One-Loop

Adding up the tree-level contribution and the NLO contributions from iQ + iVAbelian +

iVnon-Abelian, and iP + iPpinched, gives a qq̄ → C amplitude of the form

iMqq̄→C = iM(0)
qq̄→C + iQ+ iVAbelian + iVnon-Abelian + iP + iPpinched

≡ iM(0)
qq̄→C +

αs
4π

(
T iM(0)

qq̄→C + T ′ iM′(0)
qq̄→C + T ′′ iM′′(0)

qq̄→C
)
, (4.61)

where expressions for the real parts of T , T ′, and T ′′ are given below. Averaging the

squared amplitude over initial spins and colors, summing over final polarization states, and
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integrating over the phase space, gives the NLO result of the form

σ̂virt ≡ σ̂
(0)
qq̄→C + σ̂

(1)
qq̄→C (4.62)

=
αs A(r2L + r2R)

ŝ
δ(1− χ)

[
1 +

αs
2π

(
ReT +

r4L + r4R

r2L + r2R

ReT ′ + rL + rR

r2L + r2R

ReT ′′
)]

.

At ŝ = M2
C it is possible to integrate over the Feynman parameter space in the expressions

for iQ+ iVAbelian + iVnon-Abelian, and iP + iPpinched. As we have seen, the UV infinities

cancel in iQ + iVAbelian + iVnon-Abelian and are absorbed by propagator conterterms in

iP + iPpinched. Thus for mg 6= 0 the overall amplitude is finite. Taking the mg → 0 limit

leads to IR divergences in ReT , which are parametrized by taking ε < 0. For small and

negative values of ε we obtain

ReT =

(
4πµ2

M2
C

)ε
Γ(1 + ε)

[
− 2

ε2
− 3

ε
− 8 +

4π2

3

]
C2(r) (4.63)

+

[
− E +

61

9
− 5π

2
√

3
− π2

3
− 8

3
log

M2
C
µ2

]
C2(G)

+

[
77

48
− 7π

16
√

3
− 29

16
log

M2
C
µ2

]
4 cot2(2θc)C2(G) +

[
− 1

9
+

1

6
log

M2
C
µ2

]
(r2L + r2R)Nf ,

ReT ′ =

[
− 11

2
+

2π2

3

]
C2(r) +

[
1 +

5π

2
√

3
− 2π2

3

]
C2(G) ,

ReT ′′ =

[
95

9
− 7
√

3π

4
− 43

12
log

M2
C
µ2

]
2 cot(2θc)C2(G) +

[
− 5

9
+

1

3
log

M2
C
µ2

]
(rL + rR)Nf .

In the next section we will compute the corrections to the tree-level cross section due to

the emission of soft and collinear gluons. We will show that the real emission cross section

has IR divergences which exactly cancel the IR divergences contained in σ̂virt (Eq. (4.62)),

leading to a total cross section free of both UV and IR divergences.
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(c)(a) (b)
Figure 4.12: Diagrams contributing to the real emission processes. A gluon field is, as usual,
represented by a coiling line; a coloron field is represented by a zigzag line. (a) Gluon
emission. (b) Quark emission. (c) Antiquark emission.

4.5 NLO Coloron Production: Real Corrections

The real emission corrections, at NLO, are given by the diagrams of Fig 4.12. We first

consider the diagrams with real emission of a gluon, shown in Fig 4.12(a). The squared

amplitude, averaged over initial colors and spins, and summed over final colors and polar-

izations, is found to be, in d = 2(2− ε) dimensions,

|M(1)
qq̄→gC |

2 =
C2(r) g4

s (r2L + r2R)

dim(r)
µ2ε (1− ε)

×
[ −1

ω(1− ω)
C2(r) + C2(G)

][
ε− 1 + χ2

(1− χ)2
+ 2ω (1− ω)

]
,

(4.64)
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where

ω ≡ 1− cos θ

2
. (4.65)

χ was defined in Eq. (4.22), and θ is the angle between the emitted gluon and the colliding

quarks. The cross section for the real gluon emission is

σ̂
(1)
qq̄→gC =

1

2ŝ

∫
dΠ2 |M

(1)
qq̄→gC |

2 , (4.66)

where the integral is over the two-body Lorentz-invariant phase space in parton CM. In

d = 2(2− ε) dimensions,

∫
dΠ2 =

1

8π

1− χ
Γ(1− ε)

[
M2
C(1− χ)2

4πχ

]−ε ∫ 1

0
dω [ω (1− ω)]−ε . (4.67)

This leads to the partonic cross section

σ̂
(1)
qq̄→gC =

αs(r2L + r2R)A

ŝ

αs
2π

(
4πµ2

M2
C

)ε
Γ(1− ε)
Γ(1− 2ε)

×
[
− C2(r)

2

ε

χε(1 + χ2)

(1− χ)1+2ε
− C2(G)

2

3

χε(1 + χ+ χ2)

(1− χ)1+2ε

]
.

(4.68)

Now χ is no longer constrained to be equal to one. Instead we must have χ ≤ 1, or else

no on-shell coloron can be produced. The term proportional to C2(r) features a collinear

singularity, parametrized by ε, and a soft singularity, parametrized by 1 − χ. The term

proportional to C2(G) only features a soft singularity. The integral over χ in Eq. (4.68) is

finite for ε < 0, in spite of the singularity of the integrands. For small and negative values
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of ε we can rewrite the χ-dependence as follows

χε(1 + χ2)

(1− χ)1+2ε
= −1

ε
δ(1− χ) +

1 + χ2

(1− χ)+
−
[

2(1 + χ2)

(
log(1− χ)

1− χ

)

+
− 1 + χ2

1− χ logχ

]
ε ,

χε(1 + χ+ χ2)

(1− χ)1+2ε
= − 3

2ε
δ(1− χ) +

1 + χ+ χ2

(1− χ)+
, (4.69)

where, as conventional, the “+” distributions are defined by

∫ 1

0
dχ

f(χ)

(1− χ)+
≡
∫ 1

0
dχ
f(χ)− f(1)

1− χ ,

∫ 1

0
dχ f(χ)

(
log(1− χ)

1− χ

)

+
≡
∫ 1

0
dχ [f(χ)− f(1)]

log(1− χ)

1− χ .

(4.70)

The coefficients of the delta functions are found by integrating both sides of the equations.

The partonic cross section becomes

σ̂
(1)
qq̄→gC =

αs A(r2L + r2R)

ŝ

αs
2π

[
δ(1− χ)R +R′

]
, (4.71)

where, using Eq. (4.50), and expanding for small values of ε,

R =

(
4πµ2

M2
C

)ε
Γ(1− ε)
Γ(1− 2ε)

{
C2(r)

[
2

ε2
+

3

ε

]
+ C2(G)

1

ε

}
,

R′ = −2

[
E − log

M2
C
µ2

]
Pq→q(χ)

+ C2(r)

[
4(1 + χ2)

(
log(1− χ)

1− χ

)

+
− 2

1 + χ

1− χ logχ

]
+ C2(G)

2

3

1 + χ+ χ2

(1− χ)+
.

(4.72)

In the second equation Pq→q(χ) is the Altarelli-Parisi splitting function for an on-shell

quark to evolve into a virtual quark and a real gluon
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Pq→q(χ) = C2(r)

[
1 + χ2

(1− χ)+
+

3

2
δ(1− χ)

]
. (4.73)

Adding together σ̂virt, given by Eqs. (4.62) and (4.63), and σ̂
(1)
qq̄→gC , given by Eqs. (4.71)

and (4.72), shows that the IR divergences proportional to δ(1 − χ) cancel. There is still

a collinear singularity in R′, proportional to the Altarelli-Parisi evolution Pq→q(χ). This

singularity arises from integrating over all collinear initial-state gluons. As we will see in the

next section, these collinear IR divergences will be absorbed through renormalization of the

PDFs.

The real quark and antiquark emission diagrams are shown in Figs. 4.12(b) and 4.12(c),

respectively. The corresponding summed-averaged squared amplitudes in d = 2(2− ε) are

|M(1)
qg→qC |

2 =
C2(r) g4

s (r2L + r2R)

dim(G)
µ2ε

[
C2(r) + C2(G)

(1− χ)(1− ω)

(1− (1− χ)(1− ω))2

]

×
[
2 (ε+ χ) +

1− ε− 2χ(1− χ)

(1− χ) (1− ω)
+ (1− ε)(1− χ) (1− ω)

]
,

(4.74)

and

|M(1)
q̄g→q̄C |

2 =
C2(r) g4

s (r2L + r2R)

dim(G)
µ2ε

[
C2(r) + C2(G)

(1− χ)ω

(1− (1− χ)ω)2

]

×
[
2 (ε+ χ) +

1− ε− 2χ(1− χ)

(1− χ) ω
+ (1− ε)(1− χ) ω

]
,

(4.75)

where dim(G) ≡ 8 is the dimension of the adjoint representation. Note that the amplitudes

for quark and antiquark emission are related by crossing, i.e. ω ↔ (1− ω). The integration

over the two-body Lorentz-invariant phase space proceeds as in the gluon emission case,

yielding
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σ̂
(1)
qg→qC = σ̂

(1)
q̄g→q̄C =

αs A(r2L + r2R)

ŝ

αs
2π

R′′ , (4.76)

where

R′′ =
dim(r)

dim(G)

{
C2(r)

3 + 2χ− 3χ2

2
+ C2(G)

[
(1− χ)(2 + χ+ 2χ2)

χ
+ 2(1 + χ) logχ

]}

−
[
E − log

M2
C
µ2
− log

(1− χ)2

χ
+ 1

]
Pg→q(χ) . (4.77)

Here Pg→q(χ) is the Altarelli-Parisi splitting function for an on-shell gluon to evolve to a

virtual-real quark pair,

Pg→q(χ) =
C2(r) · dim(r)

dim(G)

[
χ2 + (1− χ)2

]
, (4.78)

where C2(r) · dim(r)/dim(G) = 1/2. There is no soft singularity in σ̂
(1)
qg→qC ≡ σ̂

(1)
q̄g→q̄C ,

only a collinear singularity proportional to the Altarelli-Parisi evolution Pg→q(χ). As noted

above regarding σ̂
(1)
qq̄→gC , this singularity will be canceled by renormalization of the PDFs

when we compute the total hadronic cross section.

4.6 NLO Cross Section

Our calculations in the previous sections have produced all of the relevant partonic cross

sections at NLO and demonstrated them to be both UV and IR finite.13

13Note that the gg → C process vanishes at tree-level [107] and the one-loop contributions
are small, less than of order 0.1% of the qq̄-initiated leading order contribution [108]; we,
therefore, do not include this process in this work.
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The full NLO cross section for coloron production at the LHC is

σNLO =

∫
dx1

∫
dx2

{∑

q

[
f0
q (x1)f0

q̄ (x2) + f0
q̄ (x1)f0

q (x2)
](
σ̂

(0)
qq̄→C + σ̂

(1)
qq̄→C + σ̂

(1)
qq̄→gC

)
(4.79)

+
∑

q

[
f0
q (x1)f0

g (x2) + f0
g (x1)f0

q (x2) + f0
q̄ (x1)f0

g (x2) + f0
g (x1)f0

q̄ (x2)
]
σ̂

(1)
qg→qC

}
,

where the partonic cross sections σ̂ are given in Eqs. (4.20), (4.62), (4.71), and (4.76), and

where the superscript “0” in the PDFs will be clear in a moment. We saw that all IR

divergences contained in σ cancel, except for a couple of collinear singularities proportional

to Altarelli-Parisi evolutions. Such singularities arise because we integrated over all collinear

quarks and gluons, even those which we should have included in the PDFs. Therefore, the

corresponding IR singularities are absorbed by renormalizing the bare PDFs in Eq. (4.79).

In the MS scheme,

fi(x, µF ) = f0
i (x)

−
g2
3

8π2

(
1

ε
− γ + log(4π)− log

µ2
F
µ2

)∫
dχ

χ

∑

j

f0
j

(
x

χ

)
Pj→i(χ) ,

(4.80)

where i, j = q, g, and µF is the factorization scale. Exchanging the bare PDFs for the

renormalized ones replaces E with log µ2
F /µ

2 in Eqs. (4.72) and (4.77). The hadronic cross
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section becomes

σNLO =
αs AH1(θc)

s

∫
dx1
x1

∫
dx2
x2

(4.81)

{∑

q

[
fq(x1, µF )fq̄(x2, µF ) + fq̄(x1, µF )fq(x2, µF )

](
δ(1− χ) +

αs
2π
Fqq(χ)

)

+
∑

q

[
fq(x1, µF )fg(x2, µF ) + fg(x1, µF )fq(x2, µF ) + (fq → fq̄)

] αs
2π
Fqg(χ)

}
,

where the function H1(θc) is defined below, in Eq. (4.85), A is defined in Eq. (4.21), and the

partonic CM energy ŝ has been traded for the hadronic one, as in Eq. (4.25). Notice that

since the integrand is now finite, we can ignore the 1− ε factor in A. The functions Fqq(χ)

and Fqg(χ) are

Fqq(χ) = 2 log
M2
C

µ2
F

Pq→q(χ) +Dq(χ) ,

Fqg(χ) = log
M2
C

µ2
F

Pg→q(χ) +Dg(χ) ,

(4.82)

where

Dq(χ) = C2(r)

[
4(1 + χ2)

(
log(1− χ)

1− χ

)

+
− 2

1 + χ

1− χ logχ

]

+ C2(G)
2

3

1 + χ+ χ2

(1− χ)+
+ δ(1− χ)Q ,

Dg(χ) =
dim(r)

dim(G)

{
C2(r)

[(
χ2 + (1− χ)2

)(
log

(1− χ)2

χ
− 1

)
+

3

2
+ χ− 3

2
χ2

]

+ C2(G)

[
(1− χ)(2 + χ+ 2χ2)

χ
+ 2(1 + χ) logχ

]}
,

(4.83)
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and

Q = Nf

[(
− 1

9
+

1

6
log

M2
C
µ2

)
H1(θc) +

(
− 5

9
+

1

3
log

M2
C
µ2

)
H2(θc)

]

+ C2(r)

[
− 8 +

2π2

3
+

(
− 11

2
+

2π2

3

)
H3(θc)

]
(4.84)

+ C2(G)

[
61

9
− 5π

2
√

3
− π2

3
− 11

3
log

M2
C
µ2

+

(
77

12
− 7π

4
√

3
− 29

4
log

M2
C
µ2

)
cot2(2θc)

+

(
1 +

5π

2
√

3
− 2π2

3

)
H3(θc) +

(
190

9
− 7
√

3π

2
− 43

6
log

M2
C
µ2

)
cot(2θc)H4(θc)

]
.

The functions Hi(θc) are determined by the chiral couplings of the quarks to the col-

orons (which depend on the charges of the quarks under the full SU(3)1C × SU(3)2C

symmetry)
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H1(θc) =





2 tan2 θc rL = rR = − tan θc

tan2 θc + cot2 θc rL 6= rR

2 cot2 θc rL = rR = cot θc

,

H2(θc) =





2 rL = rR = − tan θc

2(1 + cos(4θc))

3 + cos(4θc))
rL 6= rR

2 rL = rR = cot θc

,

H3(θc) =





tan2 θc rL = rR = − tan θc

tan4 θc + cot4 θc

tan2 θc + cot2 θc
rL 6= rR

cot2 θc rL = rR = cot θc

,

H4(θc) =





− cot θc rL = rR = − tan θc

sin(4θc)

3 + cos(4θc)
rL 6= rR

tan θc rL = rR = cot θc

.

(4.85)

At NLO the µ dependence is removed by trading the MS couplings g1s and g2s, or gs and

θc, for the corresponding running couplings. Since θc is a free parameter, we simply set

µ ≡ MC , and express the cross section as a function of the MS couplings. At the same

time, the NLO µF dependence weakens once the renormalized PDFs are employed, as σ in

Eq. (4.79) is independent of µF to this order in perturbation theory. From these results we

may also compute the transverse momentum distribution of the produced coloron, which is
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given by

dσ

dpT
=

∫
dx1

∫
dx2

{∑

q

[
fq(x1, µF )fq̄(x2, µF ) + fq̄(x1, µF )fq(x2, µF )

] dσ̂qq̄→gC
dpT

+
∑

q

[
fq(x1, µF )fg(x2, µF ) + fg(x1, µF )fq(x2, µF ) (4.86)

+ fq̄(x1, µF )fg(x2, µF ) + fg(x1, µF )fq̄(x2, µF )
] dσ̂qg→qC

dpT

}
,

where

dσ̂qq̄→gC
dpT

=
1

4πŝ2(1− χ2)

pT√√√√1−
4p2T

ŝ(1− χ)2

× 2|M(1)
qq̄→gC |

2 , (4.87)

dσ̂qg→qC
dpT

=
1

4πŝ2(1− χ2)

pT√√√√1−
4p2T

ŝ(1− χ)2

×
(
|M(1)

qg→qC |
2 + |M(1)

qg→qC |
2 �ω→1−ω

)
, (4.88)

and ω (Eq. (4.65)) is given by

ω =

1−

√√√√1−
4p2T

ŝ(1− χ)2

2
. (4.89)

Note that this is the leading order prediction for dσ/dpT , and, therefore, this distribution is

strongly µF -dependent.
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Figure 4.13: Behavior of the Q function defined in Eq. (4.84), for µ = MC : this gives the
contribution from the virtual corrections to the NLO cross section for coloron production.
The upper curve is for the rL 6= rR scenario, whereas the almost identical lower curves are
for rL = rR = − tan θc, and rL = rR = cot θc. Note that Q, and, therefore, the NLO

corrections, become very large when sin2 θc is either too small or too large.

4.7 Conclusion & Discussion

We now illustrate14 our results for the NLO coloron production cross section in Figs. 4.13-

4.16. In each figure we consider the three possible flavor-universal scenarios for quark charge

assignment: rL = rR = − tan θc, rL 6= rR, and rL = rR = cot θc. All of the plots refer to

coloron production at the LHC with
√
s = 7 TeV.

Notice that the perturbative expansion is only meaningful as long as sin θc is neither

14For the purposes of illustration we use the Mathematica package for CTEQ5 [109] to
evaluate the relevant parton distribution functions.
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too close to zero (where g2s � g1s) nor too close to one (where g1s � g2s). This is clear

from Fig. 4.13, in which we plot the quantity Q defined in Eq. (4.84), for µ = MC : the

contribution from the virtual corrections to the NLO cross section. The upper curve is for

the rL 6= rR scenario, whereas the almost identical lower curves are for rL = rR = − tan θc,

and rL = rR = cot θc. For sin2 θc . 0.05 and sin2 θc & 0.95 the virtual corrections become

large, and the perturbative expansion in αs breaks down. Since αs ' 0.118 at the Z pole,

these boundaries correspond to g2s & 2.7 and g1s & 2.7, respectively.

In Fig. 4.14 we plot the µF dependence of the LO and NLO production cross sections

of a 2.0 TeV coloron (with sin2 θc|µ=2.0 TeV=0.25). The scale-dependence of the LO cross

section is of order 30% while, as expected, the NLO cross section has a much weaker scale-

dependence, only of the order of 2%.

In Fig. 4.15 we plot the cross section times branching ratio to quark jets as a function of

MC , allowing µF to vary fromMC/2 to 2MC . Here, in order to compare to the experimental

results of [4] (shown as the solid line in the figures), we correct for the acceptance of the

detector by multiplying our partonic-level NLO production cross section by the factor

R =

(
σ(pp→ C) · B · A

)CMS

axigluon

σLO(pp→ C)axigluon
. (4.90)

In this expression,
(
σ(pp → C) · B · A

)CMS

axigluon
is the CMS (LO) prediction for axigluon

production cross section, times dijet branching ratio, times acceptance15 reported in [4],

and σLO(pp→ C)axigluon is the leading order cross section in Eq. (4.23) in the case of an

15The CMS acceptance for isotropic decays is of order 0.6, independent of resonance mass
[4].
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Figure 4.14: Dependence of LO and NLO cross sections at the LHC (
√
s = 7 TeV), as a

function of factorization scale µF for MC = 2.0 TeV, sin2 θc|µ=2.0 TeV = 0.25, and the

three possible flavor-universal scenarios for the quark charge assignments. As expected, the
NLO cross section has a much weaker (formally, two-loop) residual scale-dependence.
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Figure 4.15: NLO cross section times branching ratio to quarks for on-shell coloron produc-
tion at the LHC (

√
s = 7 TeV), corrected for acceptance as described in the text. We consider

the three possible flavor-universal scenarios for the quark charge assignments, take the renor-
malization scale µ to be equal to MC , and plot σ for sin2 θc|µ=MC

= 0.05 (dashed), 0.25

(dot-dashed), and 0.5 (dotted). We plot these cross sections for µF ranging from MC/2
to 2MC and, reflecting the weak dependence of the NLO cross section on the factorization

scale, the resulting bands for each sin2 θc are very narrow. To give a sense of current exper-
imental reach, we plot the CMS [4] upper limit (solid line) on the cross section times dijet
branching ratio for a narrow resonance.
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axigluon (i.e. rL = −rR = 1), assuming the branching ratio to quarks B(C → qq̄) = 1.16

The three sets of thin bands correspond to sin2 θc|µ=MC
= 0.05 (dashed), 0.25 (dot-dashed),

and 0.5 (dotted). Here, the weak residual µF dependence is shown by the narrowness of the

bands. To give a sense of current experimental reach, we also show the 1 fb−1 CMS upper

bounds on the cross section times dijet branching ratio for a narrow resonance [4]. Note that

the bound on the axigluon [5] corresponds to the rL 6= rR plot with sin2 θc = 0.5 — and,

hence, a narrow axigluon resonance is constrained to have a mass of order 2.6 TeV or higher.

The enhancement of the axigluon cross section at NLO is responsible for the increase in the

bound from of order 2.5 TeV as reported in [4].

Next, we compute the “K-factor” for coloron production,

K(MC, sin θc|µ=MC
,µF = MC) ≡

σNLO(MC, sin θc|µ=MC
,µF = MC)

σLO(MC, sin θc|µ=MC
,µF = MC)

, (4.91)

shown in Fig. 4.16 for sin2 θc = 0.05 (dashed), 0.25 (dot-dashed) and 0.50 (dotted). Again,

we see that the NLO corrections are of order 30%. In Appendix we report the numerical

values of the K-factors corresponding to Fig. 4.16, as well as those corresponding to the

ATLAS KK-gluon search reported in [6].

At leading order, the coloron is produced with zero transverse momentum. We may use

our results to compute the pT spectrum in coloron production to leading nontrivial order

from Eq. (4.86). Using these formulae, we may compute the fraction of colorons produced

16It is worth noting that there are examples of models with colorons which do not decay
primarily to dijets, e.g. [110].
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Figure 4.16: “K-factor”, the ratio of the NLO to LO cross section for coloron production
at the LHC (

√
s = 7 TeV), plotted as a function of MC for sin2 θc = 0.05 (dashed), 0.25

(dot-dashed) and 0.50 (dotted), µF = MC , and the three different quark charge assignments.
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above a momentum pT min

P(pT ≥ pT min,MC, sin θc|µ=MC
,µF = MC)

≡ 1

σNLO(MC, sin θc|µ=MC
,µF = MC)

∫ pT max

pT min
dpT

dσ

dpT
,

(4.92)

where pT max is the kinematic maximum transverse momentum (which depends on the

coloron mass). For illustration, we plot this fraction for vectorial colorons (rL = rR =

− tan θc, with sin2 θc = 0.05) with masses of 1.2, 2.0, and 3.0 TeV in Fig. 4.17. Note that

of order 30% of the colorons in this model and mass range are produced with pT ≥ 200

GeV. Below a pT of 200 GeV the corrections become larger than 30%, terms proportional

to log(M2
C/p

2
T min) become large, and this fixed-order calculation becomes unreliable.

In conclusion, we have reported the first complete calculation of QCD corrections to

the production of a massive color-octet vector boson. Our next-to-leading order calculation

includes both virtual corrections as well as corrections arising from the emission of gluons

and light quarks, and we have demonstrated the reduction in factorization scale-dependence

relative to the leading order approximation used in previous hadron collider studies. In

particular, we have shown that the QCD NLO corrections to coloron production are as

large as 30%, and that the residual factorization scale-dependence is reduced to of order 2%.

We have also calculated the K-factor and the pT spectrum for coloron production, since

these are valuable for comparison with experiment. Our computation applies directly to

the production of the massive color-octet vector bosons in axigluon, topcolor, and coloron

models, and approximately to the production of KK gluons in extra-dimensional models or

colored technivector mesons in technicolor models. We look forward to future results from

the LHC, and the possible discovery of colorons.
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Figure 4.17: Fraction of colorons produced with a pT greater than pT min, as a function of
pT min. The curves are for MC = 1.2 (highest, thin blue line), 2.0 (middle, medium purple
line), and 3.0 TeV (lowest, thick green line), for the vectorial case rL = rR = − tan θc and

sin2 θc = 0.05. Note that of order 30% of the colorons in this mass range are produced
with pT ≥ 200 GeV. As denoted by the red shaded region, below a pT of 200 GeV the

corrections become larger than 30%, terms proportional to log(M2
C/p

2
T min) become large,

and this fixed-order calculation becomes unreliable.
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Chapter 5

CONCLUSION & DISCUSSION

“Physics is like sex: sure, it may give some practical results, but that’s not why
we do it!”

—Richard Feynman (1918 – 1988)

In the present Thesis, we have analyzed two separate extensions of the Standard Model

of particle physics (SM). As explained in Chapter , the SM rests on the foundations of an

SU(3)C×SU(2)L×U(1)Y gauge group, accounting for all three microscopically relevant in-

teractions; namely, the electromagnetism, the strong and the weak forces. On one hand, the

field theoretical descriptions of the electromagnetic and the weak interactions are intercon-

nected, forming the electroweak sector of the SM, and are described by the SU(2)L×U(1)Y

subgroup. On the other hand, the strong force is contained within the quantum chromody-

namics (QCD) SU(3)C subgroup.

We have seen that the SU(2)L×U(1)Y subgroup is spontaneously broken to U(1)EM by

means of the Higgs mechanism, which in the SM is facilitated by employing a fundamental
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scalar doublet. This is the mechanism by which the weak gauge bosons and the fermions

acquire mass. Introduction of this scalar doublet predicts the existence of a real degree of

freedom, called the Higgs boson, the mass of which appears to be highly sensitive to the high

energy behavior of the theory through quadratically divergent quantum corrections. While

the actual mass of the Higgs boson, if it exists, needs to lie naturally around the electroweak

symmetry breaking energy scale, its sensitivity to ultra high energies necessitates a fine-

tuning and causes the Hierarchy problem. Various beyond the Standard Model theories

(BSM) have been proposed in order to cancel the quadratic divergences of the Higgs mass

in a natural way and to solve the Hierarchy problem.

In Part I of the Thesis, we explored various formal and phenomenological aspects of one of

the proposed solutions to the Hierarchy problem, the Lee-Wick Standard Model (LW SM). In

this BSM theory, inspired by the Pauli-Villars regulatory scheme, a set of (heavy) auxiliary

fields are introduced, which form the Lee-Wick (LW) partners of the usual SM particles. Un-

like the SM fields, however, these LW partners carry an overall negative sign as part of their

description. It is this extra negative sign which induces a cancellation of the quadratically

divergent quantum corrections among the contributions originating from the SM particles

and their LW partners. Therefore the LW SM provides a natural and economical solution

to the Hierarchy problem.

We have seen that the SM, as a renormalizable theory, employs a few experimentally

determined observables as input in order to make robust predictions regarding the outcome

of many other experiments. In the electroweak sector, the SM predictions have been tested

to an impressive accuracy through the electroweak precision data. In order to facilitate

this comparison between theory and experiment, convenient parametrizations have been
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introduced. The relatively small deviations of the experimental values of these parameters

from their SM predictions can then be utilized as a powerful tool to place tight constraints

on the BSM variables possibly influencing those parameters.

Since the LW particles have not been observed so far in colliders, they must, if they exist,

be heavy with masses presumably beyond the previous colliders’ production threshold. In

Chapter we analyzed the phenomenological consequences of the LW SM, using the available

electroweak precision data in order to set lower bounds on the masses of the LW particles.

We found a lower bound of several TeV at 95% C.L. for the masses of these hypothetical

LW particles to be consistent with experimental data.

The LW SM with the auxiliary partners may, equivalently, be expressed in a higher-

derivative formulation, in which, instead of introducing new LW degrees of freedom, one

adds higher-derivative terms to various sectors of the original SM Lagrangian. Addition of

these higher-derivative terms might raise concerns about the overall renormalizability of the

LW theories and their consideration as reliable BSM alternatives with an arbitrary accuracy

in predictions. Previous power counting arguments have exhibited the renormalizability

of the LW theories in the higher-derivative formulation; however, exact translation of this

property to the auxiliary-field formulation remained unexplored. In Chapter we investigated

the global symmetries and renormalizability of the auxiliary-field formalism, by considering

a LW scalar QED theory as an Abelian toy model. We were able to identify a global SO(1, 1)

symmetry, which, together with the U(1) gauge invariance and an SO(1, 1) invariant gauge-

fixing condition, allowed us to prove the renormalizability of this class of theories and to

clarify the physics involved.

Part II of the Thesis was dedicated to a separate class of BSM theories, forming an
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extension to the strong sector of the SM. These strong sector extensions arise naturally,

for example as an integral feature of theories in which the Higgs boson is a composite

scalar rather than a fundamental degree of freedom, with its constituents held together by

a new strong interaction. The SM strong sector gauge group is extended to an SU(3)1C ×

SU(3)2C structure, which is spontaneously broken to the ordinary QCD’s SU(3)C group.

This introduces, in addition to the usual massless gluon-octet, a massive vector color-octet

of states, called colorons.

As is the case in ordinary QCD, a perturbative expansion of the theory in terms of the

strong coupling, αs, is appropriate at high energies, given its asymptotically free nature. To

date, colorons have been studied only to leading order (LO) in perturbation theory, as the

colored nature of this final state massive vector boson makes its higher-order non-Abelian

analysis rather nontrivial. In Chapter the first complete and consistent calculation of

coloron production at next-to-leading order (NLO) in perturbation theory was presented. We

provided a finite expression for the production cross section at the LHC, and demonstrated

that the NLO effect is as large as 30%; thereby, dramatically improving upon previous LO

results. In addition, we constructed coloron kinematic variables, such as its transverse-

momentum distribution, which make a direct comparison with experiment possible.

The research outlined in the present Thesis can be summarized as formal and phenomeno-

logical explorations of extensions to two separate sectors of the SM: the electroweak sector

and the strong sector. Motivations for going beyond the SM in these sectors, as explained

above, are different as they address different issues within the SM. The presented analyses,

however, by no means mark an end of theoretical investigations of Lee-Wick and coloron

theories, and there is much room left for extending the research in these areas in future
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studies. Establishing the renormalizability of the non-Abelian LW theories in the auxiliary-

field formalism remains, for example, unexplored and poorly understood, mainly since the

discussed SO(1, 1) symmetry is violated by the gauge interactions. A thorough non-Abelian

investigation of LW theories in this formulation promises to be a formidable task, but re-

mains necessary in order to extend the demonstrated Abelian results. The coloron NLO

analysis may also be enhanced by taking into account the coloron’s finite lifetime and its

subsequent decay into quarks and gluons through various channels. This allows for achieving

an even higher theoretical accuracy in order to compare with future experimental results.

Furthermore, using the NLO results, one may exploit the available experimental data to

improve the previously determined theoretical LO lower bounds on coloron masses.

As one might appreciate, we are currently progressing through a particularly exciting

era in particle physics research, specifically due to the experiments conducted at the LHC.

These experiments might discover the existence of the elusive SM Higgs boson, in which

case the SM and its symmetry breaking mechanism would be confirmed, with its last miss-

ing piece finally in place. Moreover, in light of a solution to the Hierarchy problem, the

LHC may find distinctive signals related to any of the proposed BSM theories, including the

LW SM; thereby, defining the direction of the future theoretical research. A more exciting

scenario, however, would involve a physical exclusion of the SM Higgs boson by the LHC

data. In that case, theoretical focus will be shifted towards alternative electroweak symmetry

breaking mechanisms, such as the strong interaction theories, including the coloron theory.

Additionally, one might imagine the discovery of signals not anticipated previously by the

proposed BSM theories, which would pave the way for fresh ideas and more advanced theo-

retical developments. In any case, the LHC findings promise to open the gates to a wealth
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of knowledge concerning the mysteries of the microscopic world — a world whose precise

small-scale exploration might, perhaps not so surprisingly, be connected to the large-scale

properties of the macroscopic universe, answering some of the big questions regarding its

future, present, and past!
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لب بر لب کوزه بردم از غا$ت آز
تا زو طلبم واسطه عمر دراز

لب بر لب من نهاد و می گفت به راز
می خور که بد$ن جهان نمی آ$ی باز
خJّام

Then to this earthen Bowl did I adjourn
My Lip the secret Well of Life to learn:

And Lip to Lip it murmur’d -“While you live,
Drink! - for once dead you never shall return!”

-Omar Khayyám (1048-1131)
Persian polymath, philosopher, mathematician, astronomer, and poet

Translation by Edward FitzGerald (1809-1883)
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Appendix A

EVALUATION OF THE φ0→ bLb̄L

AMPLITUDE

The triangle diagram of Fig. 2.10 can be easily evaluated once the mass matrix has been

diagonalized and the Yukawa couplings have been computed. For an arbitrary theory with

heavy replicas of the third generation quarks, and neglecting the bottom Yukawa sector, the

interactions with the Nambu-Goldstone bosons eaten by the W and Z boson read

∑

i,j

−i yt√
2
φ0
[
αij t̄iPRtj − αji t̄iPLtj

]
− i yt βij

[
φ−b̄iPRtj − φ+t̄jPLbi

]
, (A.1)

where t0 and b0 are the SM top and bottom, respectively, and where the remaining ones

are heavy replicas. From this expression one may extract the Feynman rules. Shifting the

momentum of the b̄L to zero, and omitting the external fermion wavefunctions, the amplitude
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reads

iM =
∑

i,j

(−)
Nij

∫
d4k

(2π)4
(ytβ0iPR)

i(/k + /p+mti
)

(k + p)2 −m2
ti

+ iε

yt√
2

× (αijPR − αjiPL)
i(/k +mtj

)

k2 −m2
tj

+ iε
(−ytβ0jPL)

i

k2 + iε
,

(A.2)

where Nij is the number of LW fermions in the i, j pair. Combining the denominators into

a single one, and shifting the loop momentum in the usual way, leads to

iM = −
iy3
t√
2
/pPL

∑

i,j

(−)
Nijβ0iβ0jαjimtj

∫ 1

0
dx

∫ 1−x
0

dy

∫
d4l

(2π)4
2(1− x)

(l2 −∆)3

−
iy3
t√
2
/pPL

∑

i,j

(−)
Nijβ0iβ0jαijmti

∫ 1

0
dx

∫ 1−x
0

dy

∫
d4l

(2π)4
2x

(l2 −∆)3
,

(A.3)

where

∆ ≡ −x(1− x)p2 + xm2
ti

+ y m2
tj
. (A.4)

Evaluating the integrals in the p2 → 0 limit gives

iM = − 1

16π2

y3
t√
2
/pPL

[∑

i

β2
0iαii
mti

+
∑

i 6=j
(−)

Nijβ0iβ0jαjimtj

(
− 1

m2
ti
−m2

tj

+
1

2

3m2
ti
−m2

tj

(m2
ti
−m2

tj
)2

log
m2
ti

m2
tj

)]
.

(A.5)
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Comparing this expression with Eqs. (2.31) and (2.32) gives

δgbb̄L =
1

16π2

y3
t v

2
√

2

[∑

i

β2
0iαii
mti

+
∑

i 6=j
(−)

Nijβ0iβ0jαjimtj

(
− 1

m2
ti
−m2

tj

+
1

2

3m2
ti
−m2

tj

(m2
ti
−m2

tj
)2

log
m2
ti

m2
tj

)]
.

(A.6)

to leading order in the weak gauge coupling.
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Appendix B

FEYNMAN RULES OF THE

COLORON THEORY

The Feynman rules1 for the trilinear and quartic vertices are shown in Figs. B.1-B.4. The

coloron is represented by a zigzag line, the coloron ghost by a sequence of small circles, and

the eaten Goldstone bosons by dashed lines. All other particles are denoted as in QCD

standard notation. Note that a coupling between the eaten Goldstone boson and quarks is

absent in the zero quark mass limit.

1The Feynman rules discussed here are equivalent to those in [97], aside from those for
the triple-coloron vertex which is not specified in that reference.
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Figure B.1: Feynman rules for the trilinear vertices. In each diagram the momenta are
toward the vertex. A gluon field is, as usual, represented by a coiling line; a coloron field is
represented by a zigzag line. The coloron ghost is represented by a sequence of filled circles,
and the eaten Goldstone bosons are represented by dashed lines.
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Figure B.2: Feynman rules for the trilinear vertices (continued).
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Figure B.3: Feynman rules for the quartic vertices. A gluon field is, as usual, represented
by a coiling line; a coloron field is represented by a zigzag line.
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Figure B.4: Feynman rules for the quartic vertices (continued).
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Appendix C

NUMERICAL VALUES OF THE

COLORON K-FACTOR

The numerical values of the K-factors for various values of the coloron mass and the three

patterns of coloron coupling are shown in Tabs. C.1-C.3. Finally, the values of the K-factor

corresponding to the KK-gluons of [7], corresponding to the experimental search reported in

[6], are shown in Tab. C.4.

161



MC (GeV) sin2(θc) = 0.05 sin2(θc) = 0.25 sin2(θc) = 0.50
1000 0.780 0.980 0.990
1200 0.800 1.00 1.01
1400 0.820 1.02 1.04
1600 0.840 1.04 1.06
1800 0.870 1.06 1.08
2000 0.890 1.09 1.11
2200 0.920 1.12 1.13
2400 0.950 1.14 1.16
2600 0.970 1.17 1.19
2800 1.00 1.20 1.22
3000 1.04 1.23 1.25
3200 1.07 1.27 1.28
3400 1.10 1.30 1.32
3600 1.14 1.34 1.36
3800 1.18 1.38 1.39
4000 1.22 1.42 1.43

Table C.1: K-factors for colorons of various masses, and rL = rR = − tan θc.

MC (GeV) sin2(θc) = 0.05 sin2(θc) = 0.25 sin2(θc) = 0.50
1000 1.11 1.11 1.12
1200 1.13 1.13 1.14
1400 1.15 1.15 1.16
1600 1.17 1.17 1.18
1800 1.20 1.20 1.21
2000 1.22 1.22 1.23
2200 1.25 1.25 1.26
2400 1.28 1.27 1.29
2600 1.30 1.30 1.32
2800 1.33 1.33 1.35
3000 1.37 1.36 1.38
3200 1.40 1.40 1.41
3400 1.43 1.43 1.44
3600 1.47 1.47 1.48
3800 1.51 1.51 1.52
4000 1.55 1.55 1.56

Table C.2: K-factors for colorons of various masses, and rL 6= rR. The classic “axigluon”

[5] corresponds to sin2 θc = 0.50.
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MC (GeV) sin2(θc) = 0.05 sin2(θc) = 0.25 sin2(θc) = 0.50
1000 0.800 0.980 0.990
1200 0.820 1.00 1.01
1400 0.840 1.02 1.04
1600 0.870 1.04 1.06
1800 0.890 1.07 1.08
2000 0.920 1.09 1.11
2200 0.940 1.12 1.13
2400 0.970 1.15 1.16
2600 1.00 1.18 1.19
2800 1.03 1.21 1.22
3000 1.06 1.24 1.25
3200 1.09 1.27 1.28
3400 1.13 1.31 1.32
3600 1.17 1.34 1.36
3800 1.20 1.38 1.39
4000 1.24 1.42 1.43

Table C.3: K-factors for colorons of various masses, and rL = rR = cot θc.
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MC (GeV) −0.20gs −0.25gs −0.30gs −0.35gs −0.40gs
500 0.660 0.770 0.830 0.870 0.890
600 0.670 0.780 0.840 0.880 0.900
700 0.670 0.790 0.850 0.890 0.910
800 0.680 0.800 0.860 0.890 0.920
900 0.690 0.810 0.870 0.900 0.930
1000 0.700 0.810 0.880 0.910 0.940
1100 0.710 0.820 0.890 0.920 0.950
1200 0.720 0.840 0.900 0.930 0.960
1300 0.730 0.850 0.910 0.940 0.970
1400 0.740 0.860 0.920 0.960 0.980
1500 0.760 0.870 0.930 0.970 0.990
1600 0.770 0.880 0.940 0.980 1.00
1700 0.780 0.890 0.950 0.990 1.01
1800 0.790 0.900 0.970 1.00 1.03
1900 0.800 0.920 0.980 1.01 1.04
2000 0.820 0.930 0.990 1.03 1.05
2100 0.830 0.940 1.00 1.04 1.06
2200 0.840 0.960 1.02 1.05 1.08
2300 0.860 0.970 1.03 1.07 1.09
2400 0.870 0.980 1.04 1.08 1.10
2500 0.880 1.00 1.06 1.09 1.12
2600 0.900 1.01 1.07 1.11 1.13
2700 0.910 1.03 1.09 1.12 1.15
2800 0.930 1.04 1.10 1.14 1.16
2900 0.940 1.06 1.12 1.15 1.18
3000 0.960 1.07 1.13 1.17 1.19

Table C.4: K-factors for KK-gluons of various masses considered in [6]. This calculation
is based on the theoretical framework of [7], with the KK-gluon coupling (specified in the
column heading) varying between −0.20gs and −0.40gs.
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