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ABSTRACT 

ON SOME ASPECTS OF PORTFOLIO MANAGEMENT 

By 

Mengrong Kang 

We study the on-line portfolio and the stochastic portfolio investment algorithms and 

test them with historical data sets. With regard to the stochastic portfolio we develop an 

optimal formula to manage the portfolio with daily trading in terms of the weights that 

are assigned to the different stocks in the portfolio. The implementation of the optimal 

stochastic portfolio depends on good estimation of the parameters that are in our case 

drifts and volatilities. We present some procedures to estimate the parameters 

dynamically. The problem of estimating drifts is inherently very hard as the noise 

(volatility) overwhelms the drifts. Volatilities are easier to estimate than the drifts and 

we can take advantage of the unique properties of the Brownian motion process to get 

pretty good estimates taking into account the decreasing effects of older financial data. 

Then we apply Karush–Kuhn–Tucker Theorem to get the weights of the optimal 

stochastic portfolio using the estimators. Finally we compare the results of the stochastic 

portfolio to that of the on-line portfolio using real stock data that now is widely available.  

In some cases the results achieved by the stochastic portfolio on real historical data are 

stunning. 
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1. Introduction 

 

There are many methods to manage portfolios. In this work we will concentrate on 

two methods: the on-line portfolio method and the stochastic portfolio method. We 

prefer those two methods because they are more mathematical / statistical in nature. 

Each of them has its own advantages and disadvantages and this will be one of the main 

topics covered in this work. We will focus mainly on the stochastic portfolio where the 

problems are both probabilistic and statistical and there is some interaction between the 

two. We will develop some interesting procedures of implementation the theory. We 

also tested the procedure on real historical data and found some very interesting results.  

 

Here are some historical remarks of earlier works in portfolio management. The 

classical theory of portfolio management is based on methods that consider the mean 

and variance/correlation of stock prices. The mean-variance approach is the basis of the 

Sharpe Markowitz (Sharpe et al.
 [12-14] [18]

, 1959) theory of investments in the stock 

market which is used by business analysts to develop a single period equilibrium model, 

the Sharpe Lintner capital asset pricing model (CAPM) (Sharpe 
[18]

, 1964; Lintner 
[11]

, 

1965; R. C. Merton [15], 1973). The first moment (mean) of the random annual return of a 

portfolio gives us information on the expected long term behavior under i.i.d 

assumptions of the prices relatives, when we keep the weight of stocks fixed in time. 

However, in stock markets one normally reinvests every day so that the total wealth 
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achieved is a product of the individual wealth achieved on each day. Besides, Rosenberg 

and Ohlson 
[17]

, 1976, showed that the dynamic interaction between investors’ behavior 

and the behavior of stocks led to internal inconsistencies in the continuous time CAPM. 

Also, it is now well-known that the future behavior of stock markets is not independent 

of the past. For the above reasons, distributional methods (Kelly 
[9]

, 1956; Bell and 

Cover
[2]

, 1980; Cover 
[3]

, 1984; Cover and Gluss 
[4] 

, 1986; Algoet 
[1] 

, 1992), that use 

adaptive investment strategies for rebalanced portfolios, have been developed. 

 Here is the way the thesis is organized. In Section 2, we describe the method of 

on-line portfolio 
[8]

 which does not use any distribution assumptions. In Section 3, we 

use a distribution assumption, Brownian motion based, and we present the target that 

the portfolio manager has to optimize in terms of the weight of the portfolio. We also 

show how to achieve this target using Karush–Kuhn–Tucker (KKT) Theorem. In Section 4, 

we deal with estimating of the parameters in the stochastic model, which is crucial in the 

implementing optimal solution. Finally, there is a short summary in Section 5. 

 

 

2. On-line Portfolio  

 

This method was initiated by Cover’s seminal paper 
[5]

 who presented the “universal 

portfolio”. His approach, while superior in theory as we learn from the theorems that are 

proved in the paper, is in reality not easy to implement. Helmbold, Schapire, Singer and 
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Warmuth 
[8]

 managed to create a version of the universal portfolio, known as “on-line 

portfolio”, that is much simpler to execute, even though their theoretical results are not 

as good as Cover’s. Ironically they got better results than the universal portfolio when 

they experimented with some real market data. They described an on-line portfolio 

selection using multiplicative updates, and achieved almost the same wealth as the best 

constant rebalanced portfolio (i.e. the weights of the stocks in the portfolio are 

constants) which, in particular, is better than the best performing stock in the portfolio. 

  

The following simple example (Helmbold et al. [7] 
, 1996) demonstrates the power of 

constant-rebalanced portfolio strategies. Assume that two investments are available. 

The first asset is a risk-free, no-growth investment stock whose value never changes. The 

second investment is a hypothetical highly volatile stock. On even days, the value of this 

stock doubles and on odd days its value is halved. The relative prices of the first stock 

can be described by the sequence         and the those of the second by the 

sequence 
 

 
   

 

 
     Neither investment alone can increase in value by more than 

a factor of 2, but a strategy combining the two investments can grow exponentially. One 

such strategy splits the investor’s total wealth evenly between the two investments, and 

maintains this even split at the end of each day. On odd days the relative wealth 

decreases by a factor of  
 

 
     

 

 
   

 

 
  

 

 
. However, on even days the 

relative wealth grows by  
 

 
     

 

 
    

 

 
. Thus, after two consecutive 
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trading days the investor’s wealth grows by a factor of  
 

 
   

 

 
  

 

 
. It takes only 

twelve days to double the wealth, and over    trading days the wealth grows by a 

factor of  
 

 
 

 
.  

 

In this work we represent a portfolio of stocks as a vector of relative prices 

x=(x1,x2,…,xN) where xi is a relative price of the i-th stock, i.e. the ratio of the next day’s 

opening price to its opening price on the current day, and N is the number of stocks. Let 

Z be the value of the portfolio, and let    be the weight (proportion) invested in the 

i-th stock. We assume that      and      . We can represent Z as a 

positive valued combination of assets that have the identity 

                

Then the ratio of the portfolio value at the next day to the value at the current day can 

be defined as  

            

Since we are going to trade once a day, we will assume  

   
   

  
   

where    is the price of i-th stock. 

 

We are going now to describe the on-line portfolio selection. Let N denote the 
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number of stocks in the portfolio,    
      

  
 

 

 
 where T is the number of trading 

days, and let            denote a vector of length N, then the on-line portfolio 

algorithm modifies the price relatives at the t-th day as  

       
 

 
     

 

 
   , 

and then select portfolio weights by using the vector 

                 
 

 
   , 

where 

  
    

  
     

    
 

       

   
     

    
 

        

 , 

   
         

     
 . 

The following theorem is proved in Helmbold et al paper.  

Theorem.  If    is the uniform proportion vector,          , then we have 

             

 

   

            

 

   

           
 
  

 
  

where u is the weights of the optimal constant-rebalanced portfolio. 

 

In Helmbold et al paper, the on-line portfolio algorithm performs better than the 

universal portfolio when tested on historical data of several portfolios. This means that 

the log-return after T days using the updated weight vectors,               
   , is 
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larger than the one achieved by Cover’s algorithm. The result seems to be inspiring. But 

when studying the updated weights    , we find that the weights always remain 

around the initial weights we choose on the first day. That is if we set       , which 

Helmbold et al suggested, even when considering an extreme situation in which the 

portfolio has a very bad stock and a very good stock.  

 

For example, we study the HP, Kodak and money market portfolio in 20 years (from 

1992 to 2011) using on-line portfolio method with initial weight 1/3 for each asset. The 

annual returns of HP, Kodak and money market are 0.08698516, -0.1855094 and 

0.03463049, while the annual return of the on-line portfolio is 0.02337952, far less than 

the annual return of HP stock and even the riskless rate. See Table 1a for the weight 

summary. Although the portfolio tends to invest more in the better stock, HP, the 

difference between the weights invested in different stocks is quite small. But comparing 

the prices of these two stocks during those 20 years (Figure 1a), it shows clearly that 

investing much more in HP than in Kodak during the last 10 years is a better option. 

 

In another example, we tested the on-line portfolio on IBM and Ford in 20 years 

with initial weight 1/2 for each asset. The annual returns of IBM and Ford are 0.1181272 

and 0.05999252, while the annual return of the on-line portfolio is 0.1135267, still less 

than the annual return of IBM stock. See Table 2b for the weight summary. Although the 

portfolio tends to invest more in the better stock, IBM, the difference between the 
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weights invested in different stocks is tinny that can be ignored. But comparing the 

prices during those 20 years shown in Figure 1a, clearly investing much more in IBM 

than in Ford is a better option. 

 

Table 1a 

 Money Market HP Kodak 

Min. 0.3209 0.3323 0.2944 

1st Qu. 0.3258 0.3419 0.3196 

Median 0.3288 0.3469 0.3253 

Mean 0.3289 0.3476 0.3235 

3rd Qu. 0.3313 0.3538 0.3316 

Max. 0.3429 0.3630 0.3358 

Weight summary of on-line portfolio:  money market, HP and Kodak 

 

 

Table 2b 

 
IBM Ford 

Min. 0.4846 0.4747 

1st Qu. 0.4946 0.4933 

Median 0.5004 0.4996 

Mean 0.5007 0.4993 

3rd Qu. 0.5067 0.5054 

Max. 0.5253 0.5154 

Weight summary of on-line portfolio:  IBM and Ford 
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 Figure 1a  

 

Stock price of HP, Kodak, IBM and Ford 
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The main reason that the on-line portfolio did not perform satisfactorily in the 

example above is that the on-line portfolio selection using multiplicative updates follows 

Kivinen and Warmuth
[10]

 with the idea that good performance can be achieved by 

choosing a vector     
 that is “close” to   

. The limitation of this approach results 

sometimes in a situation, especially when the market has high level of volatility, in which 

the portfolio cannot change fast enough and fails to compete against the best single 

constant-rebalanced portfolio or even the money market for a long time. 

 

 

3. A Stochastic Portfolio and its Optimization 

 

From the Section 2, we learn the importance of taking into account the volatility of 

the market. As we saw the on-line portfolio did not perform well in an environment of 

high volatility. In order to solve this problem we will use a stochastic model. The first 

approach in this direction is the Shape Markowitz mean-variance method which deals 

with discrete-time. When it comes to continuous-time, which is more appropriate, 

Fernholz and Shay 
[6]

 used stochastic portfolio theory to emphasize the long term 

performance of portfolios. Typically, the objective is to maximize annual average return 

of the portfolio in the long run, i.e. maximize  
       

 
, where    is the value of the 

portfolio after T years.  We suppose that Z can be expressed as an Ito differential 
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The stochastic portfolio theory assumes that the logarithm of each stock price 

follows a diffusion process with random drift and volatility. Also, the covariances 

between stock prices are random. The model of stock prices is as follows: 

   
 

  
 

   
      

    
              

   
    

 
   

  
               

  
     

where   
  is a standard Brownian motion. We also have money market that pays 

interests rate denoted by   , which is considered as a riskless rate of return. Let   
 

 be 

the money accumulated in the money market from an initial investment of $1 :  

   
 

  
       

When we are using the model, we will trade once a day and we will assume that during a 

day the drifts, volatilities and covariances are constants. In what follows, we sometimes 

drop the time notation with the understanding that everything happens during a day.  

 

From the assumption, the stock prices can be easily formed as below: 

Applying Ito’s Lemma, we get for each stock price( omitting the i notation) 

                   
  

 

 
   

 

 

         
 

 

  

If we denote the length of a day by    we can model the changing of the stock price 

during a day by  
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We can also present             , where         . 

And since the average annual return of a stock is 

    
    
    

 

 
 

     
  

 

 
   

 

 

 
          

while the expectation 

      
    
    

  

 
 

               
 

 
   

 
 

then we see if we will only consider the drift   while we are managing the portfolio, we 

take a huge risk that is caused by ignoring the volatility. In other words, the expectation 

itself is not the most important factor here. 

 

Next we will deal with the dynamics of   , the process that represents the value of 

the portfolio at time t. We write 

                    

where   , i=1,…,N, is the weight put in i-th stock, and    is the weight kept in 

money market. The self-finance assumption implies (we drop the time notation) 

       
   

  
               

Then the dynamics of Z are given by SDE (Stochastic Differential Equation)   
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It can be solved, based on the Ito’s lemma, as  

                                         
 

   

 

   

       

 

   

             
 

   

 
 

 
  

     

    
 

 

   

    

where for any time s, 

 
  

 
      

   

  

 

   

       

 

 

     

   

  

 

   

 

 

 

           

 

     

 

and 

            

Assuming mild restrictions on the volatilities (uniformly bounded) we get by the Law of 

Large Numbers 

             
 
   

        
   

 
         . 

So by considering a long term,    , we get 



13 
 

    
    
    

 

 

 
             

 
              

 
 

                 
 
        

 

   

 
 

The instant growth rate of Z at time s is given by 

                 

 

   

           
 

 
                 

 

     

 

Therefore, the difference between the growth rate of Z and the riskless rate, so called 

excess growth, is given by 

  
               

                   

 

   

 
 

 
                 

 

     

 

All the arguments above lead to the following theorem which is compatible with Kelly 

principle
 [9]

  

Theorem.  The portfolio that maximizes the long term average annual return is given at 

time   by 

                              
 
                     

    

12i,j=1Nwiwj ijs}  

(1) 

 

The rest of the section is devoted to solve Equation (1). The solution is based on 
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Karush–Kuhn–Tucker (KKT) Theorem which is an extension of Lagrange Multipliers. Here 

is the theorem
[19]

: 

Theorem (KKT).  Suppose that the objective function         and the constraint 

functions       
    and          are continuously differentiable at   . If    is 

a local maximum that satisfies conditions  

    
                     

    
                     

then there exist constants KKT multipliers      and Lagrange multipliers   , such 

that 

               
  

 

   

         
  

 

   

 

      
                     

 

Following this theorem, we start with a system 

        

which implies  

                                                             (2) 

where 

               , 

         is a              matrix defined by  
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 , 

                     

If the weights given by (2) satisfy     ,    , then we are done. Assume now that 

                  is not empty. In that case we still work with the 

equation        , but we have to modify it. Start by modifying the vector 

               . Do it by replacing    by         (   is called a 

Lagrange multiplier). Then modify the matrix          as follows: 

If               then replace the j-th column of   by 

                   In other words after the modification we get         

and           . Finally, if      then replace the (n+1)th column by 

          , namely after the modification we get            and 

              . 

 

One thing that should get attention is that the solution is KKT solution if    

      . Also KKT is only a necessary condition for optimal solution, i.e. it isn’t 

sufficient. This means that in theory we need to check all the KKT solutions and select 

the best of them. 

 

 

4. Estimations of Drifts, Volatilities and Correlations 
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Now the problem turns to estimation/prediction of the vector    and the matrix of 

  of the next day for the stocks in the portfolio. When we look at the daily return, we 

see that  

  
  

 
               

  

 
       

Since     is much larger than   , namely the volatility in a day is much larger than the 

drift. This makes that estimating the drift a very challenging assignment. On the other 

hand, estimating the drift is crucial since it is important component of Formula (1). In 

other words, after many years when the noise is less important, the current value of the 

portfolio will depend on the drift estimates that the portfolio manager has used many 

years before the current time. The conclusion is that we must estimate the drift to the 

best of our ability even though statistically speaking it is almost “mission impossible”.  

 

Another problem with the drift is that even though it looks that the drift should be 

basically constant for long duration, there is a possibility that the drift will change by 

huge number throughout relatively short time before it will go back to more “normal” 

level.  For example, Ford’s share price dropped from $ 12.83 to $ 9.68 in 10 days, which 

is almost 25% loss. The estimated standard deviation of the relative price during the 10 

day is around 50% larger than usual, but the thing that catches attention is that a 

reasonable estimate of the drift during the 10 days is -6.8348, which in absolute value is 
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almost 100 times larger than the stock market (S&P 500) drift. In this case, predicting the 

drift and volatility of next day is difficult but extremely important, so we need to 

carefully pick up the useful historic data and select suitable estimations.  

  

 

4.1 Basic Estimation 

 

One simple way is to take the average, standard deviations and correlations of the 

daily returns of the stocks in the portfolio of last   days to estimate the current day’s 

   and  . In what follows      
         

        
 denotes the daily return of the i-th day 

before the current day. We get the following estimates (the first 2 are the drift and 

volatility for each stock, while the third one is the covariance estimate for stocks k and l).  

                

 
 
 

 
     

 

    
   

 
   

     
 

    
             

   

  
    

 
 

    
    

    
        

    
      

   

                      

(3) 

where    
 

   
 , which is the time proportion of one day over the trading days in 

one year. 

 

When we tested the effect of estimates (3) on managing a portfolio with historic 
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real data, using different number of days, the return of the portfolio changed a lot. 

Taking the HP, Kodak and money market portfolio as an example, the annual return is 

quite different with different n (shown in Figure 2b), and the range is from -0.10300 to 

0.11890. The maximized annual return 0.11890 happens when n is 242. While when 

consider a portfolio of IBM and Ford, without using money market, the maximized 

annual return, 0.2033101, can be achieved by n=16, which is surprisingly small number. 

These results mean that, although the stochastic portfolio with estimate (3) sometimes 

has an amazing return, i.e. the annual return of the portfolio of IBM and Ford with n=16 

is two times of the annual return of the on-line portfolio, estimate (3) is not good 

enough because we do not know how many days to use, and the result of managing the 

portfolio is based to a large extent on the number of days that we use. To sum up, the 

question is: Which n should we use? We will talk about it later. 

 

One simple improvement that some people may like is to replace the average used 

in estimate (3) by weighted average, which emphasizes the importance of recent days 

over a more distant past. Specifically, take       and use   

            

 
  
 

  
     

       
 
   

      
   

     
                 

   

      
   

  
    

 
        

    
          

    
      

   

      
   

                    (4) 

We do not believe that (4) will make a big improvement over (3) with regard of 



19 
 

managing the portfolio. 

Figure 2b 

 

Annual return of the portfolio using different number of days 

 

Another improvement of the drift estimate in (3) will be to replace the model of 

simple averaging by a model of linear regression. We assume that  

                             

where   and   are unknown parameters. Then we use the standard linear regression 

estimate to find    and   , and the prediction of            . We recognize that 

the classical assumptions of linear regression model do not necessarily hold here, 
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however due to the great difficulty in estimating the drift in a reasonable way (explained 

above) it makes sense to try a linear regression approach and test how the estimates 

achieved in this way will influence the results of portfolio management.  

 

Remark.  A test on a real data showed that a portfolio that was using the linear 

regression to estimate the drift didn’t get a better annual return than estimates (3) or 

(4).  

 

 

4.2 Advanced Estimation 

 

After managing portfolio with real data based on the estimate method in Section 4.1, 

we found that the best number of days to use in the estimates, n, is many times ( but 

not always) around 250, in portfolios that use money markets as one of the possible 

investments. On the other hand it looks that estimating the volatility is an easier task 

than estimating the drift and, in fact, we can estimate the volatility in a reasonable way 

when we keep the number of days that we use in the estimate relatively small and fixed. 

 

Let us denote by    and    the number of days that we use to estimate   and  , 

respectively. So based on what we said above, it makes sense to let    be fixed, while 

   will be dynamic and will be based on the data that comes from the market. 



21 
 

 

We tried the idea of making    dynamic in real data using the HP, Kodak and 

money market portfolio as example. We wanted to figure out each day whether to use 

small number of days or large number of days to estimate the drift. 

 

Specifically we used a statistical test to decide if there is a significant difference 

between using        and       to estimate the drift using (3). If the 

significant difference exists, it means that   changes to a new level, and it will not make 

sense to use a drift estimate based on the historical data originated 20 days ago. In order 

to solve the significant difference problems, we came up with more advanced estimates.  

 

Estimate of the volatility:  From the SDE of the share price, we get  

             
  

 

 
          

By subtracting          from the equation of 
   

  
 we have 

   

  
          

  
 

 
   

Then we get an estimate of    by using (        ) which are the share price in days 

number     and   respectively. 
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As a result, we can predict       by     or more generally we may use a moving 

average         
           

   

     
  of our estimates of the last    days. We can even 

use weighted average  

       
             

   

         
   

 
                  

   

         
 

where      . 

 

Estimate of the drift:  After we estimate    , we can treat it as known to estimate   . 

We assume that   is a constant in the    days that we are working on, so we have  

   

  
         

     

The likelihood function of  
   

  
   

    

   

  is given by  

     
   

  
    

 

     
  

  

   

      
 
   
  

     
 

   
    

  

The maximum of      is achieved at (solve for   in 
           

  
  ) 

    
 

  
 
  

    
   

   
     

   

   
     

   

 

We get (at least in theory) that    is a better estimate of   than  
 

  
 

 
    
   

  
   

  
 , which 

we got in (3) . Actually, the formula that we got for estimating   can be explained also 
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by a regression between 
  

 
 and    : 

  

 
 

 

     
 

    

  
   

where   is i.i.d standard normal distribution.  

 

Estimate of the covariance:  Estimating      for     where     denote two 

different stocks, is based on the estimated   . We have:              , where 

              

Since 
   

  
            and similarly 

   

  
            we can simply 

estimate  

       
 

  
  

   

  
        

   

  
        

We can check if what we do makes sense by observing that we should get  

     
          

Finally we should probably use a moving average       by averaging over    days: 

    
     

     
        

   

     
 

 

Now we go back to the problem of designing an adaptive procedure of   . We can 

calculate the estimated drift,      , based on the last    days, e.g.      , and 

the estimated drift,      , based on the 230 days that preceded the last 20 days: 
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Since 
    

   
      

  

 
         , and we have independence, we have the 

variance of the difference 

                                       

where  

           
 

      
    

  
    
   

   
      

      

   
      

      

 

 
 

      
  

  
   

   
      

      

 

 

   
    

   

      

 
 

  
 

 

   
      

      

 

           
 

  
 

 

   
       

       

 

Then we get 

                 
 

  
 

 

   
      

      

 
 

   
       

       

  

and  
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when we assume   are fixed for each time s. With a hypothesis              
 , 

we test, in 95% confidence level, whether 

                

 
 

   
      

      

 
 

   
       

       

       . 

If the data significantly reject   , it means that right now the drift jumps to another 

level, so that using the last 250 days to estimate the drift is no longer a good possibility. 

From now on, we should estimate the drift based on the data created as of 20 days ago.  

 

We applied the updated method on historical stock market data of the last 20 years. 

With       and      , the annual return of the HP, Kodak and money 

market portfolio reaches to 0.1149204. Recall: The annual returns of HP, Kodak and 

money market are 0.08698516, -0.1855094 and 0.03463049, respectively. Using 

      and      , a portfolio of IBM, Ford and money market has annual 

return 0.135471 with advanced estimate method. Recall: The annual returns of IBM, 

Ford and money market are 0.1181272, 0.05999252 and 0.03463049, respectively. It is 

interesting to observe that the annual return of the portfolio based on the basic 

estimation from Section 4.1 is 0.1438097 when the number of days used to estimate 

was 241. But 241 days is the choice which is the best for the historical data that we used. 

When one tries other choices of number of days the results of the basic method can be 
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much worse so the practicality of the basic estimate success is questionable at best. It 

looks that the advanced method of dynamic managing of    is more robust. 

  

Finally we discuss the problem of selecting   . Although the situation here is less 

sensitive than in the case the drift, it is still important to know how to select an 

appropriate   . Let us look at some examples. In all the following examples, the best 

choice of    is around 30, however the optimal choice of    varies. We have 3 

examples:  (i) For the HP, Kodak and money market portfolio, the best return is 

achieved when    is around 10;  (ii) The best IBM, Ford and money market portfolio 

picks    around 20;  (iii) We also looked at a portfolio of IBM, Kodak and money 

market and we saw that the best    is around 200. 

 

The results above tell us that although the updated method reduces the model’s 

sensitivity, in terms of managing the portfolio, to the number of days used for estimating 

the drifts, the sensitivity of estimating the volatilities to the number of days used, still 

exists. 

 

 

4.3 A Bayesian Approach 
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The following is a version of Rogers [16] . The assumptions are that  , the volatility 

    matrix, is known( in fact we know how to estimate it daily) and the N-dimension 

drift   has to be estimated. The prior on   is chosen to be multivariate normal 

distribution denoted by         
    where    is a non-singular matrix. We 

recommend that the prior will be selected with care. Specifically we will observe the 

market for a while and use the estimates of Sections 4.2 as a basis, so that     will be 

the last estimated drift (it is    in the formula below) and   
   will be the empirical 

covariance matrix of the   estimates produced during the n days that we observed the 

market, i.e.  

  
   

                   
   

 
 

Using Girsanov formula one can calculate the posterior distribution of  , which is also 

multivariate normal         
   , where  

      
                  

           

     
  

  
                     

 

 
   

         

         
  

where    is a column price vector of the N stocks on the first day and ,    
    is a 

column vector of price variances of the N stocks on the first day. 

 

This calculation can now continue daily and we get the following formula how to 
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proceed from the t-th day to (t+1)th day:  

          
             

             

     
    

  
        

 

 
   

       

         
  

 

The Bayesian methodology seems to be a good improvement on what we have up to 

now. However, when tested on the real data, the Bayesian approach didn’t perform as 

we expected, in the sense that the portfolio in which the Bayesian estimates were used 

did not get an impressive annual rate of return. The annual return of the HP, Kodak and 

money market portfolio was only 0.08815587, and although IBM is a brilliant choice to 

invest in, the IBM, Ford and money market portfolio with the Bayesian estimation 

performs even worse than the individual Ford stock.  

 

 

5 Summary 

 

We went over two methods of managing a portfolio: The on-line method and the 

stochastic portfolio method. Each of them is advantages and disadvantages. The big 

advantage of the on-line portfolio is that one does not need to estimate parameters and 
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in fact there are no distribution assumptions. However, in many portfolios when 

implemented with historical data, the on-line portfolio did not perform that well. There 

is a gap between the theory and the actual results. The problem seems to be that it 

takes very long time to achieve even partial results of what the theory promises.  

When it comes to stochastic portfolio the big problem is to estimate the parameters 

which look like a very difficult assignment. However with a good dynamic estimation of 

drifts and volatilities, investments following the stochastic portfolio can lead to much 

better annual returns in comparison with the on-line portfolio. Still the estimation 

procedure leaves many issues unanswered. For example it is not very clear how many 

days one should look back in order to make the estimates useful. Since the outcome 

seems to be sensitive to the exact method that one is using in the estimates of 

parameters, there are still many issues that have to be worked on. 
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