

THE DESIGN OF CIRCULAR
REINFORCED CONCRETE FOOTING
ON ELASTIC FOUNDATIONS

Thesis for the Degree of M. S.

MICHIGAN STATE COLLEGE

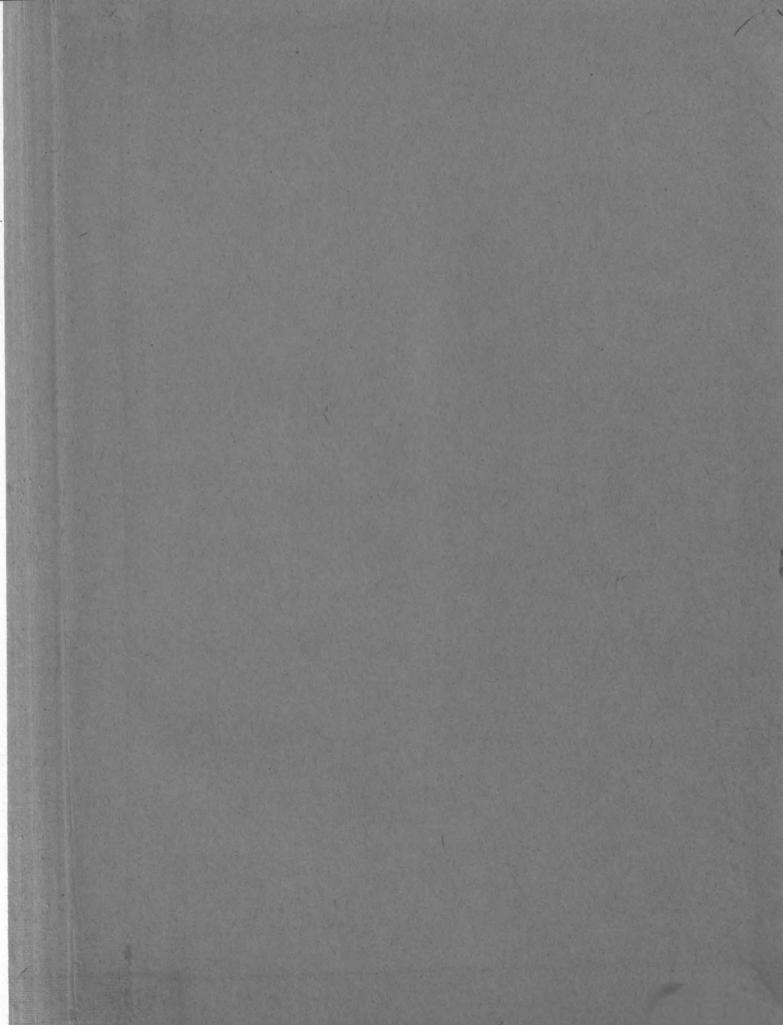
Yiun-Yuan, Haung
1949

This is to certify that the

thesis entitled

THE DESIGN OF CIRCULAR REINFORCED CONCRETE FOOTING ON ELASTIC FOUNDATIONS

presented by


Yiun-Yuan Huang

has been accepted towards fulfillment of the requirements for

M.S. degree in C.E.

Major professor

Date 5/16/49

THE DESIGN OF CIRCULAR REINFORCED CONCRETE FOOTING ON ELASTIC FOUNDATIONS

By
YIUN - YUAN, <u>FAU</u>NG

A THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
Department of Civil Engineering
1949

Ti

`

ACKNOCHEDGERENTS

The writer is greatly indebted to Professor

C. L. Allen, Head of Civil Engineering Department of

Michigan State College for his guidance and direction in

connection with the study and also to Dr. Richard E. J.

Pian for his valuable advices.

Professor Allen is going to retire at the end of June after his thirty years of untiring service at Michigan State College. Fortunately the writer is about to finish his studies toward Master of Science degree at the same time and is proud of being Professor Allen's "The Student Behind the Closing Gate" -- a Chinese proverb which means the last student before the retirement of his mastering professor.

TABLE OF CONTENTS

- I. IMTRODUCTION
- II. FUNDAMENTAL CONSIDERATIONS
 - 1. Basic Assumptions
 - 2. Method of Superposition
 - 3. Notations
 - 4. Basic Differential Equations for Moments and Equilibrium
- III. BASIC MOMENTS
 - IV. FOOTING CARRYING A VERTICAL LOAD RESTING ON ELASTIC SOIL (1)
 - 1. Energy Method of Determining Deflection Curve
 - 2. Shape of Pressure Distribution Curve
 - V. FOOTING CARRYING A VERFICAL LOAD RESTING ON ELASTIC SOIL (2)
 - 1. Load Moments
 - 2. Actual Moments
 - VI. FOOTING CARRYING A VENTICAL LOAD RESTING ON ELASTIC CONCENTRIC CIRCLES OF PILES
 - 1. Distribution of Pressure on Piles
 - 2. Moment Analysis
- VII. FOOTING CARRYING A MOMENT LOAD RESTING ON ELASTIC SOIL
 - 1. Pressure Distribution
 - 2. Proposition of Introducing a Symmetrical
 Distribution of Pressure in Practical Design to
 Make Unsymmetrical Case Symmetrical
 - 3. Moment Analysis

VIII. FOOTING CARRYING A MOMENT LOAD RESTING ON ELASTIC CONCENTRIC CIRCLES OF PILES

IK. NUMERICAL EMANFLES

- 1. Footing Carrying a Vertical Load and a Moment Load Resting on Elastic Soil
- 2. Footing Carrying a Vertical Load and a Moment Load Resting on Elastic Piles
- K. CONCLUSIONS
- XI. CHARTS FOR DISIGN

MII. APPENDICES

- 1. Derivation of D for Reinforced Concrete Section
- 2. Bibliography

•				
			,	

I. INTRODUCTION

In this paper is presented a practical mothod for designing a reinforced concrete footing of circular shape resting on elastic foundation based on theories of elasticity. Charts, as the time saver in design work, for solving internal moments under different loading and foundation conditions are prepared.

The most reasonable shape of a single column footing is supposed to be circular, as the foundation pressure under such a footing is symmetrical with respect to its center in every direction when its supporting load is central, which is the most usual case happened to a single footing. High structures like chimney, centrally supported elevated water tank, silo, and etc., which are circular in shape and sensitive to unequal settlement in foundation are specially suitable to have a circular footing underneath.

The conventional design of a single reinforced concrete footing is of square, rectangular or polygonal in shape and the foundation pressure is assumed to be uniform. The moments are investigated at several pair of parallel sections at which bending is assumed to occur. (The method of analyzing moment in such a way is supposed to be based on the Bulletin No. 67 of the University of Illinois Eng. Empt. St. 1913 on the title of 'Reinforced Concrete Wall Footings and Column Footings' by Arthur M. Talbot.) The

recent developments in theory of elasticity and soil mechanics prove that those assumptions mentioned above are not near from being true.

Structural engineers are very much interested in the design of a circular reinforced concrete footing on elastic foundation, but high mathematics which is essential for solving the problems concerning the theory of elasticity is too much involved and has kept many of them from being familiar with those theoretical methods. In this paper, high mathematics is eliminated as much as possible in derivation of formulas and in the case of footing carrying a moment load a symmetrical designing load is proposed to replace the actual unsymmetrical one without sacrifice of the reality which makes the complicated problems simple and easy to solve without using high mathematics.

Charts for solving moment in circular footings are prepared in this paper covering the usual loading and foundation conditions. The cut and trial procedure is inevitable in solving every statically indeterminate problem so it is not the inconvenience particularly presented in this paper.

II. FUNDAMENTAL CONSIDERATIONS

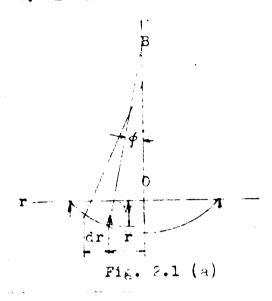
- 1. EASIC ASSULPTIONS: In this paper the following assumptions are made:
 - (1) The thickness of the footing is assumed to be small as compared with its radius so that the general theories of thin plates are applicable.
 - (2) The deflection of the footing is assumed to be small so that the energy method of determining deflection curve is valid.
 - (3) The center part of the footing directly underneath the column or column capital is assumed to be absolutely rigid.
 - (4) The intensity of reaction of the foundation, soil or pile, at each point of the bottom surface of the footing is assumed to be proportional to the deflection of the footing at that point.
 - (5) The Possion's Ratio for concrete is assumed to be constant and equal to 0.2.
 - (6) The weight of the footing is small as compared with its supporting load, and it is assumed to be uniformly distributed over the base area of the column or column capital in moment analysis.
 - (7) Those assumptions made in the general theories of reinforced concrete are also to be made in this paper.

2. NETHOD OF SUPERPOSITION:

The particular case of loading of a circular footing is such that it carries a downward load from column to which it supports and upward pressures from foundation on which it rests. Both of its surfaces are loaded and its edge is free in all directions. But the basic edge condition upon which the analysis of moments is based in this paper, is simple supported. In each case, the moments, radial and tangential, due to foundation pressure under the basic edge condition, are deducted respectively from those due to column load under the same edge condition which is equal and opposite to and colinear with the resultant of foundation pressure, and the net moments are those under actual free edge condition. In case the column carries a moment load besides a downward load (such as produced by wind load on a chimney footing or eccentricity in a building column footing), an equivalent symmetrical upward foundation pressure is assumed to apply at the bottom surface of the footing and an additional downward column load at top, so that it can maintain equilibrium. The momments in the footing due to moment load are thus computed as in previous way and added to those from real downward column load.

In this paper moments due to downward column load under basic edge condition are called <u>BASIC MONERTS</u> and those due to foundation pressures are called LOAD MONERTS.

Thus


Actual Moment = Easic Moment - Load Moment (In any case) or $M_{\bf r}=M_{\bf r}^{\bf r}-M_{\bf r}^{\bf n}$ (Actual radial moment) and $M_{\bf t}=M_{\bf t}^{\bf r}-M_{\bf t}^{\bf n}$ (actual tangential moment)

- 3. NOTATIONS: The following notations are used throughout in this paper.
 - Constants in the equations for deflection curve of circular plate
 - As Steel area in reinforced concrete section
 - C1, C2 Integration constants
 - D Flexural rigidity of section
 - Ec, E Modulus of elasticity of concrete, etc.
 - I Moment of inertia
 - K General moment constant in standard notation of R.C.
 - Kr Radial moment constant in circular plate
 - Kt Tangential moment constant in circular plate
 - L,L₁,L₂ Total load in each concentric pile circle, or total upward pressure in elastic soil under the footing
 - M Moment in general
 - Mr Radial moment in circular plate (actual)
 - Mt Tangential moment in circular plate (actual)
 - M'r Basic radial moment in circular plate (see definition in 2)
 - Basic tangential moment in circular plate (see definition in 2)
 - $\mathbf{M}^{\mathbf{n}}_{\mathbf{r}}$ Load radial moment in circular plate (see definition in 2)
 - M"t Load tangential moment in circular plate (see definition in 2)
 - O Origin

- P Total column load
- Unit shearing stress in circular plate
- R Radius of circular plate
- S_1 , S_2 Areas
- U₁, U₂ Strain energy
- Volume or total shearing force in standard notation of R.C.
- X) Y) Rectangular axis
- a Radius of column or column capital
- b Width of section in standard notation of R.C.
- e Eccentricity
- f_c Fibre stress in concrete
- f_S Stress in steel
- h Depth of section
- $_{
 m k}^{
 m j})$ Constants in standard notations of R.C.
- k' Modulus of reaction of foundation
- m Poisson's ratio
- p Unit load or pressure
- r Radius of circular section
- u Ratio of pressures at rim and center of footing
- V Unit shearing stress in standard notations of R.C.
- W. Deflection
- x,y,z Rectangular coordinates
- z (or) Radius of concentric pile circle

d	Ratio a/R
ß	Ratio r/R
μ	Ratio z/R
heta	Angle in polar coordinates in horizontal plane
ϕ	Angle in polar coordinates in vertical plane
	Constants

4. BASIC DIFFERENTIAL EQUATIONS FOR MOLENTS AND EQUILBRIUM:

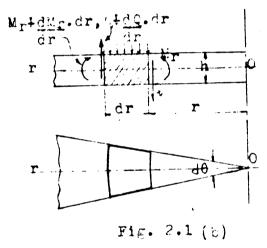


Figure 2.1a shows a diametrical section of a circular plate under bending and Figure 2.1b an elementary segment of it with forces marked.

The differential equation for moment per unit

length arc:

$$\operatorname{Mr} = \operatorname{D}(\frac{\mathrm{d}\varphi + \underline{m}}{\mathrm{d}r}\varphi) = -\operatorname{D}(\frac{\mathrm{d}^{2}w + \underline{m}}{\mathrm{d}r^{2}}\frac{\mathrm{d}w}{\mathrm{r}}\frac{\mathrm{d}w}{\mathrm{d}r})$$

$$---- \qquad (2.1)$$

$$\operatorname{Mt} = \operatorname{D}(\frac{\varphi + \underline{m}}{r}\frac{\mathrm{d}\varphi}{\mathrm{d}r}) =$$

$$- \operatorname{D}\frac{1}{r}(\frac{\mathrm{d}w}{\mathrm{d}r} + \frac{\underline{m}}{r}\frac{\mathrm{d}^{2}w}{\mathrm{d}r^{2}})$$

$$---- \qquad (2.2)$$

Considering the element abod in Figure 2.1b in equilibrium, taking moments about the center 0 and neglecting the terms containing the small quantities of higher order, the following relation is obtained:

$$M_r + \frac{dMr}{dr}r - M_t + Q_r = 0$$
 ---- (2.3)

Substituting the values of M_{r} and M_{t} in equation (2.1) and (2.2) the basic differential for equilibrium becomes:

$$D \frac{d}{dr} \left(\frac{d\varphi}{dr} + \frac{\varphi}{r} \right) + \frac{dD}{dr} \left(\frac{d\varphi}{dr} + m \frac{\varphi}{r} \right) = -Q$$

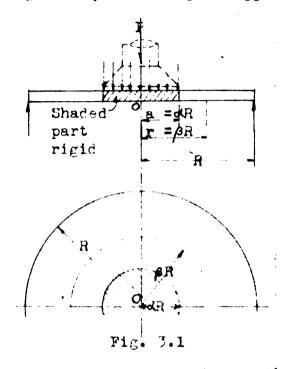
$$---- (2.4)$$

The deflection w in the above equation is considered to be positive when it is downward.

For a plate of constant thickness the Flexural Rigidity D is constant, and equation (2.4) reduces to:

$$\frac{d^2\varphi}{dr^2} + \frac{1}{r}\frac{d\varphi}{dr} - \frac{\varphi}{r} = -\frac{Q}{D}$$
---- (2.5)

or put into other forms:


$$\frac{\mathrm{d}}{\mathrm{d}r} \left[\frac{1}{r} \cdot \frac{\mathrm{d}(r\varphi)}{\mathrm{d}r} \right] = -\frac{2}{D}, \qquad ---- (2.6)$$

$$\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) \right] = \frac{Q}{D} \qquad ---- (2.7)$$

If Q is represented by a function of r, these equations can be integrated without difficulty in each particular case.

III. BASIC MODENTS

The problem is to solve the moments, radial and tangential, in a simple supported circular plate carrying a

symmetrical central uniform
load with its center portion,
direct under the load, considered to be absolutely
rigid. Referring to Figure
3.1, the diametrical section
of the plate, for sections
r > a,

$$Q = \frac{P}{2\pi r}$$

Substituting Q in equation (2.7) and integrating, we have:

$$\frac{\mathrm{d} w}{\mathrm{d} \mathbf{r}} = \frac{\mathrm{P} \mathbf{r}}{8\pi \mathrm{D}} \left(2 \log \frac{\mathbf{r}}{\mathrm{R}} - 1 \right) - \frac{\mathrm{C}_1 \mathbf{r}}{2} = \frac{\mathrm{C}_2}{\mathbf{r}}$$

$$\frac{\mathrm{d}^2 w}{\mathrm{d} \mathbf{r}^2} = \frac{\mathrm{P}}{8\pi \mathrm{D}} \left(2 \log \frac{\mathbf{r}}{\mathrm{R}} + 1 \right) - \frac{\mathrm{C}_1}{2} + \frac{\mathrm{C}_2}{\mathbf{r}^2}$$

From the boundary following conditions,

$$r = a = R, \frac{dw}{dr} = 0$$

$$r = R$$
, $F_r = 0$, or $\frac{d^2w}{dr^2} + \frac{m}{r} \frac{dw}{dr} = 0$

m = 0.2 for concrete

$$c_1 = \frac{P}{4\pi D} \times 0.67 \left[1 + \alpha^2 \left(2 \log \alpha - 1 \right) \right]$$

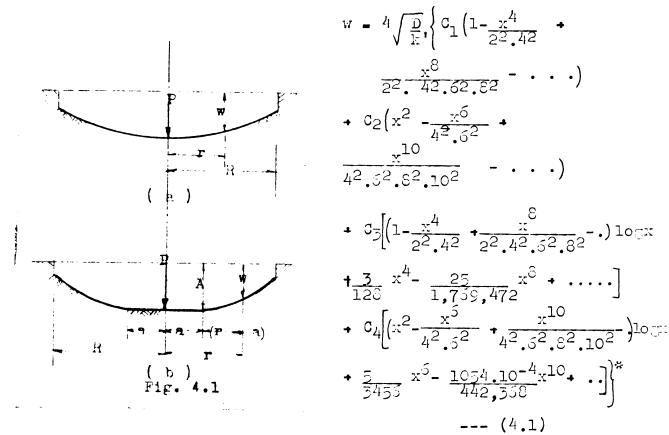
$$C_2 = \frac{PA^2 + R^2}{6 \pi D} \left[2 \log d - 1.67 \right]$$

Thus $H'_r = -D \left(\frac{d^2 w}{dr^2} + \frac{m}{r} \frac{dw}{dr}\right)$

= P x 0.0319
$$\left[\frac{1.5 + \alpha^2(310.84 - 1.5)}{1.5 + \alpha^2} - \frac{310.84 - 2.5}{1.5 + \alpha^2}\right]$$

(moment per unit length) --- (3.1)

$$H'_{t} = -D\left[\frac{1}{r} \frac{dw}{dr} + m \frac{d^{2}w}{dr^{2}}\right]$$


= P x 0.0319
$$\left[\frac{1.5 + d^2}{1.5 + d^2} \left(\frac{310 - d + 1.5}{1.5}\right) + \frac{1.5}{1.5}\right]$$

$$(\frac{3\log 4 - 2.5}{1.5 + \alpha^2}) \frac{\alpha^2}{\beta^2} + 1 - 3\log \beta$$

(moment per unit length) --- (3.2)

IV. FOOTING CARRYING A VERTICAL LOAD RESTING ON ELASTIC SOIL (1) - THE PRESSURE DISTRIBUTION CULVE

1. ENERGY NETHOD OF DETERMINING DEFLECTION CURVE: The exact solution of the deflection curve of a diametric section of a circular plate carrying a central load and resting on elastic soil whose intensity of pressure is proportional to the deflection of the plate at the same point under consideration, is: (refer to Figure 4.1a)

where $x = \frac{r}{D/k^{T}}$.

But for small deflections, the equation of the curve may be expressed on the form

$$W = A + B r^2$$
 --- (4.2)

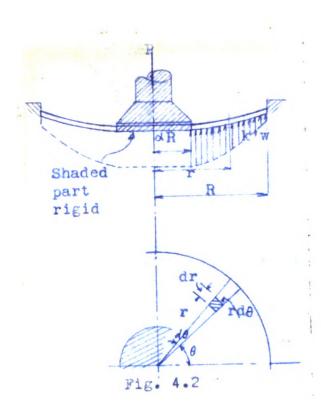
^{*}Timoshinko, Theory of Plates and Shells, p.278

which is obtained from neglecting the terms containing x of higher power than 2 in equation (4.1).

In our particular case, the central portion of the plate being rigid, equation (4.2) becomes: (referring to Figure 4.1b)

$$W = A + B (r - a)^2$$
 --- (4.3)
 $\frac{dw}{dr} = 2Br, \quad \frac{d^2w}{dr^2} = 2B$

From the above expressions we can conclude that the deflection surface has a constant curvature equal to 23 and the plate is under pure bending.


The strain energy of a plate under pure bending is

$$U_1 = 1/2 D \text{ (area of the plate)}$$

 $\frac{3^2w}{3^{2^2}} + \frac{3^2w}{3^{2^2}} + 2 \frac{3^2w}{3^{2^2}} \frac{3^2w}{3^{2^2}} --- (4.4)$

In our particular case,
$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial y} = \frac{\partial w}{\partial r}$$
 and

the central portion of the plate being rigid,

$$U_1 = D$$
 (area of elastic portion of plate) $\frac{\partial^2 w}{\partial r^2}$ (1+m) = $4B^2D$ (1+m) R^2 (1- α^2) ---(4.5)

Referring to Figure 4.2, the force exerted on the infinite-simal area of elastic foundation beyond the area direct under the rigid portion of the footing is

k'.wr.dr.d0

and the strain energy stored is

1/2.k.w².r.dr.d0
and that within the area direct
underneath the rigid portion

of the footing is $1/2.k.A^2.r.dr.d\theta$

Total energy stored in the elastic foundation

is
$$U_{2} = 1/2 \int_{0}^{2\pi} \int_{a}^{R} k'w^{2} r dr d\theta + 1/2 \int_{0}^{2\pi} \int_{0}^{a} k' A^{2} r dr d\theta$$

$$= \frac{k'}{2} \int_{0}^{2\pi} \int_{a}^{R} A + B(r-a)^{2} r dr d\theta + \frac{\pi a^{2}}{2} k' A^{2} - --- (4.6)$$

Integrating and neglecting terms containing α of higher power than 2 (in usual case α is less than 0.3 and α is small as compared with other quantities) we have,

$$U_2 = \pi k' \left[1/2A^2 R^2 + ABR^4 C_1 + B^2 R^6 C_2 \right] \qquad --- (4.7)$$
 where $C_1 = \left[1/2 - (4/3) A + A^2 \right]$ and $C_2 = \left[1/6 - (4/5) A + (3/2) A^2 \right]$

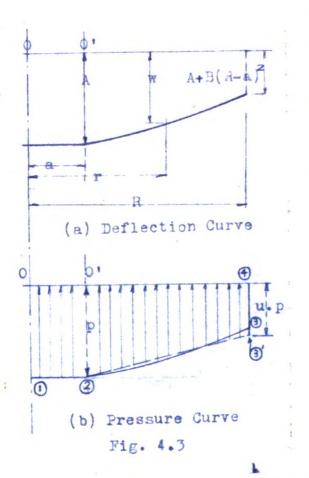
The total elastic energy in the whole system is,

$$U = U_1 + U_2 - PA$$
 --- (4.8)

where P is the total load from column.

As the total energy of the system in stable equilibrium must be a minimum, substituting (4.5) and (4.7) into (4.8) and putting

$$\frac{\partial U}{\partial A} = 0$$
, $\frac{\partial U}{\partial B} = 0$, and $m = 0.2$ for concrete


we have

$$A = \frac{\frac{P}{C_1 2 R^4}}{\pi k R^2 (1 - 9.5(1 - \lambda^2) \frac{D}{k'} + C_2 R^4)}$$

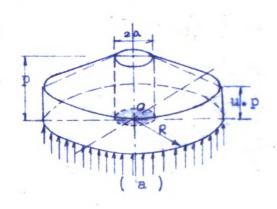
$$\frac{B}{A} = -\left[\frac{C_1 R^2}{9.6 (1 - \lambda^2) \frac{D}{k'} + C_2 R^4}\right] \qquad ---- (4.9)$$

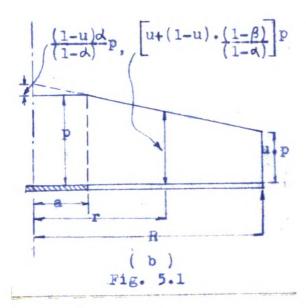
where D is the flexural rigidty of reinforced concrete section (see Appendix I), k'the modulus of reaction and C_1 , C_2 as the same meanings as indicated previously. With the constants A and E known, the deflection curves is determined.

2. SHAPE OF PRESSURE DISTRIBUTION CURVE: As we assumed

tion reaction is proportional to the deflection of the footing at that point, the foundation pressure curve has the same shape with that of the deflection curve. Figure 4.3A and b shows the diametrical deflection pressure curves respectively. The ratio between the pressures at the center and the rim bears the same ratio between the deflections at those points, that is the ratio B/A. As we

assumed before, the deflection is small, it is sufficiently accurate to assume straight line variation in deflection or pressure between outer edge of rigid portion of the plate and its rim provided that the area under the curve 2-3'-4-0's, is making equal to the area $2-3-4-0'(s_1)$.


$$S_1 = \int_0^{(R-a)} (A + Br^2) dr$$
 (origin at 0')
= Ar (1-d) + B (1-d)³R³
 $S_2 = A(1 + u)(R - a)$


Putting
$$S_1 = S_2$$

 $u = [1 + 2/3 (1 - d)^2 R^2 \frac{B}{A}]$ ---- (4.10)

where u is the ratio between pressures at point O' and the rim under the new assumption. It is evident that the ratio u is a function of the physical properties of plate, soil, and column which are known (or assumed) before design.

V. FOOTING CARRYING A VERTICAL LOAD RESTING ON ELASTIC SOIL (2) LOMENT ANALYSIS

1. LOAD MOMENTS: The load moments, as defined previously, are internal moments, radial and tangential, of the footing due to foundation pressure when the edge is assumed to be

5.la shows the shape of load exerted on the bottom surface of the footing and Figure 5.lB its diametrical section. Referring to Figure 5.lb,

The volume of small pressure cone at top is $\frac{1}{3}$ $\frac{R^2d^3(1-u)}{1-d}$ p,

or $\frac{1}{3} R^2 \gamma p$, where γ is equal to $\frac{\lambda^3(1-u)}{3(1-\lambda)}$.

Total load on bottom surface = $up \pi R^2 + \frac{1}{3}\pi R^2(1-u)p$ $\frac{1}{3}\pi R^27p$ = $\pi R^2 p \left[\frac{2u+1}{3} - \gamma \right] --- (5.1)$

Load exerted on a circular area with a radius $r = \pi r^2 p \left[u + (1-u) \frac{R-r}{R-a} \right] + \frac{1}{3} \pi r^2 p \left[1-u-(1-u) \frac{R-r}{R-a} \right] - \pi R^2 p$ $= \pi r^2 P \left[(u-c) + \frac{(1-u)}{3} \left[\frac{3-\Delta}{1-\Delta} - \frac{2r}{R(1-\Delta)} \right] \right] --- (5.2)$

where
$$c = 7/\beta^2$$
.

$$2\pi rQ = (5.2)$$

$$2 = p\left[\frac{(u-c)}{2} + \frac{(1-u)}{5} \frac{3-\alpha}{1-\alpha}\right] r - \frac{(1-u)r^2p}{3(1-\alpha)R}$$
$$= \sigma pr - \frac{pr^2}{R}$$

where
$$\alpha = \left[\frac{(u-c)}{2} + \frac{(1-u)}{5} + \frac{3-\alpha}{1-\alpha}\right], \epsilon = \frac{(1-u)}{3(1-\alpha)}$$
.

Since
$$\frac{d}{dr} \left[\frac{1}{r} \quad \frac{d}{dr} \left(r \frac{dw}{dr} \right) \right] = \frac{Q}{D}$$

Substituting Q into the above equation and integrating, we have,

$$\frac{dw}{dr} = \frac{p\sigma}{8D} r^3 - \frac{pf}{15RD} r^4 + \frac{c_1r}{2} + \frac{c_2}{r} ---(5.3)$$

$$\frac{d^2w}{dr^2} = \frac{3p\sigma}{8D} r^2 - \frac{4pt}{15RD} r^3 + \frac{c_1}{2} - \frac{c_2}{r^2} - \dots (5.4)$$

Using the boundary conditions,

$$r - a - R, \frac{dw}{dr} - 0$$

$$r = R$$
, $M_r = 0$, or $\frac{d^2w}{dr^2} + \frac{m}{r} \frac{dw}{dr} = 0$

m = 0.2 for concrete

and neglecting the terms containing a^4 and a^5 we have

$$c_1 - pR^2_{\lambda}$$

$$c_2 = \frac{pR^4}{2D} \alpha^2 \lambda$$

where
$$\lambda = \frac{6 - 0.706}{1.5 + 2^2}$$

Substituting (5.3) and (5.4) with known value of C_1 and C_2 into (2.1) and (2.2) we have,

$$M_{r}'' = L \left[\frac{(0.5 + 0.4 \times 2/\beta^{2})\lambda - 0.4 \times \beta^{2} + 0.2 \times \beta^{3}}{\pi \left(\frac{2u + 1}{3} - \gamma \right)} \right]$$
(moment per unit length) ..(5.5)

$$M_{t}'' = L \left[\frac{(0.5 - 0.4\alpha^{2}/\beta^{2}) - 0.2\alpha\beta^{2} + 0.126\beta^{3}}{\pi \left(\frac{2u + 1}{3} - \gamma\right)} \right]$$

(moment per unit length) (5.5)

where L is total load exerted on the bottom of the footing which is equal and opposite to the column load P.

2. ACTUAL MOMENTS: Actual internal moments, radial and tangential, in a footing carrying a column load and resting on elastic soil are obtained from deducting the load moments obtained above from the basic moments correspondingly, those are

$$M_r = M_r^! \quad (3.1) - M_r^! \quad (5.5)$$
 . . . (5.7)

$$\mathbb{Z}_{t} = \mathbb{Z}_{t}^{t} \quad (3.2) - \mathbb{Z}_{t}^{t} \quad (5.6) \qquad ... \quad (5.8)$$

note that P in equation (3.1) and (3.2) is equal to L in equation (5.5) and (5.6).

Equation (5.7) and (5.8) can be put in other forms

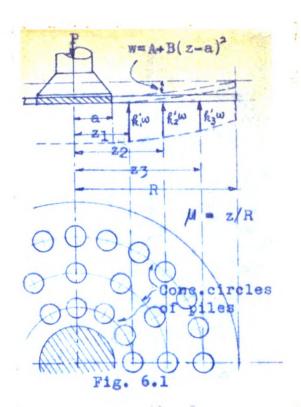
$$M_r = K_r P$$
 (moment per unit length) . . (5.9)

Mt = KtP (moment per unit length) . . (5.10)

K's are constants.

Curves for K values in equation (5.9) and (5.10) are plotted with different values of A and u (see P.49-54) so that the designer can realily find the designing moments.

In the particular case u . 1, it becomes the conventional case of assuming the pressure under the footing being uniform.


VI. FOOTING CARRYING A VE FIGAL LOAD RESTING ON ELASTIC CONCENTRIC CIRCLES OF FILES

1. DISTAIBUTION OF PRESSURE ON PILES

In investigating the distribution of pressure on piles the same method of minimum energy applied in Section V, is applied again here. As suggested in Section I the piles under a circular footing are to be arranged along the circumferences of concentric circles and in each circle the piles are suggested to be of same modulus of reaction (in practical case, they are of same diameter, length and material.) But piles in different circles may be of different modulus of reactions. Usually, piles in the circumference of inner circles have large modulus than that of outer ones as we can see the pressures over there are larger.

It is assumed that the intensity of reaction is proportional to the deflection of the footing at that point. As the load is symmetrical with respects to center it has equal deflection along the circumference.

Referring to Figure 5.1, z's and k's represent radius and modulus of reaction of different pile circles respectively. In a pile circle the pressure is assumed to be uniformly distributed along its circumference and k values have the unit of force per unit length of circumference per unit deflection. The w's are deflections of the footing at the circumferences.

Total load on the circumference of a pile circle with a radius $z_1 = 2\pi z_1 . k_1' . w_1$

Energy stored in the circle

=
$$\frac{\pi}{2} \cdot 2 \cdot z_1 \cdot k_1' \cdot w_1^2 = \pi z_1 \cdot k_1' \cdot w_1^2$$

Total elastic energy stored in pile foundation is

$$U_2 = \pi \sum z_1 \cdot k_1' \cdot w_1^2$$

As assumed before, for small deflections

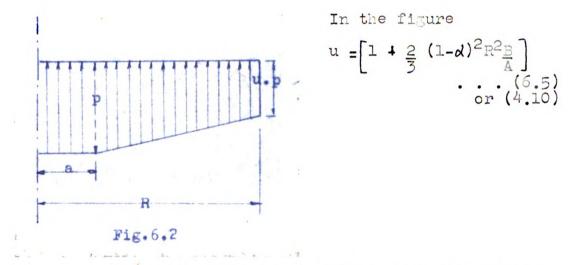
$$W1 = A + B (z_1 - a)^2$$
$$= A + B (\mu_1 - \lambda)^2 R^2$$

where $z_1 = \mu$, R

Hence
$$U_2 = \pi \sum k_1' \cdot \mu_1 \cdot R \left[A + B (\mu - \alpha)^2 \right]^2 \dots (6.1)$$

Strain energy stored by the footing is

$$U_1 = 4B^2D (1 + m)\pi R^2 (1 - \alpha^2)$$
 ... (6.2)
or (4.5)


Total energy in the system is

$$U = U_1 + U_2 - PA$$
 ... (6.3)

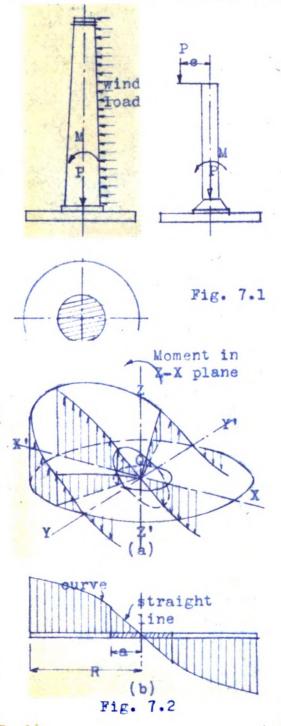
Substituting (6.1) and (6.2) into (6.3) (m = 0.2 for concrete) and putting $\overline{\underline{\partial} U} = 0$ and $\underline{\underline{\partial} U} = 0$, we have

$$\frac{B}{A} = -\frac{\sum_{k=0}^{A} \frac{M_{k}(M_{k-k})^{2}}{D_{k}k_{1}^{2}}}{4.8(1-\alpha^{2}) + E^{3} \sum_{k=0}^{M_{k}(M_{k-k})^{4}} \dots (6.4)}$$

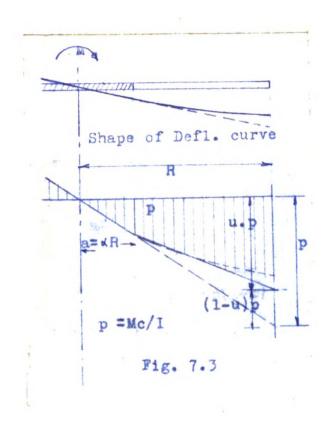
The same assumption in Section IV-2 is made here and the shape of diametrical section of pressure curve represented in Figure 6.2 is the same as represented in Figure 4.3b.

The unit pressure exerted by each pile circle of different radius can be proportionated from the ordinate in pressure distribution curve at corresponding radius. The total pressure from each pile circle thus can be calculated from its unit pressure and its circumference.

2. MOLETT APALYSIS: Considering one pile circle once only, the actual moments, radial and tangential, in a footing are represented by those equations for basic moments, (3.1) and (3.2), except replacing μ , for β and P in those equations representing total pressure exerted on the footing by that pile circle instead of total column load. The total moments in a footing resting on several pile circles can be obtained by summing up the moments due to individual circles correspondingly.


Equations (3.1) and (3.2) can be put in the forms

 $M_r = K_r P$ (moment per unit length) . . . (5.6)

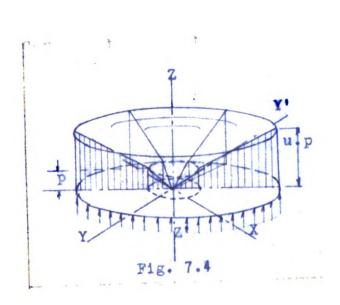

 $M_t = K_t P$ (moment per unit length) . . . (5.7) and K values in (5.6) and (6.7) are plot with different values of M, α and radius of pile circle so that the moments can be obtained readily at desirable points. (see §55-60).

VII. FOOTING CARRYING A MOMENT LOAD RESTING ON ELASTIC SOIL

1. PRESSURE DISTRIBUTION: On the column, or something otherwise, to which the footing supports, usually carries a moment load besides a vertical one. Like a chimney subjected to wind load and a column subjected to eccentric vertical load are common examples (Figure 7.1). The distri-

bution of foundation pressure in such a case is something like that shown in Figure 7.2a, and its diametrical section in the plane of moment is shown in Figure 7.2b. As the central portion of the footing is rigid, the pressure over there is of linear variation. One side of the diametrical section of pressure distribution curve is magnified in Figure 7.3. If the footing is non-flexible, the pressure distribution would be a straight line throughout and at the rim the pressure is p = Mc/I. Now due to the deflection of the footing the

pressure at the rim has been released somewhat becoming less than p, and the distribution of pressure between the rim and the edge of the rigid portion of the footing is along a certain curve. As we assumed first, the deflection is small. the curve is flat, and can be replaced by a straight line, providedly, the areas under those curves are set equal. The pressure at the rim under the assumption is 'up', where u has the same

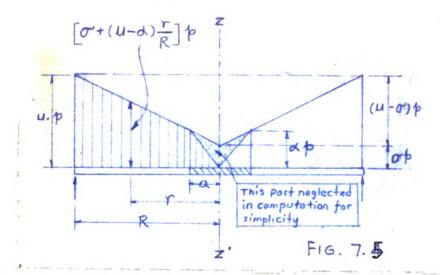

expression as (4.10) and (4.9).

 $\frac{B}{A}$ in (4.10) is expressed by

PROPOSITION OF INTRODUCING A SYMMETRICAL DISTRIBUTION OF PRESSURE IN PRACTICAL DESIGN TO MAKE UNSYMMETRICAL CASE SYMMETRICAL:

The actual case in a circular footing carrying a moment load is of unsymmetrical bending. The exact analysis of such a case is difficult, especially when it rests on elastic foundation. But the moment load, like those produced by wind pressure on a chimney, does not act in a fixed plane and it will revolve in all directions. Thus we

have to design the footing in every section according to the maximum pressure distribution curve which is the diametrical curve in the plane of the applied moment. The



tension part the distributed pressure under the
footing is not interested
in design and may be neglected, which is one the
safe side. The shape of
the introduced symmetrical
distribution of foundation
pressure making the unsymmetrical case symmetrical
is shown in Figure 7.4,
where p = Mc/I as before.

If the design is made according to the proposed pressure it will sustain the moment load from any direction.

In the case of a column carrying an eccentric load which produces a moment in a fixed plane, the footing is suggested to design with the same proposed symmetrical load and just neglect the reinforcements in that part of the footing (semi-circular) which is in the tension region of foundation pressure due to the applied moment.

3. MOMENT ANALYSIS: Figure 7.5 shows the geometrical properties of the diametrical section of proposed symmetrical pressure distribution curve.

Vol. of Pressure at any Radius
$$r = pr^2\pi \left[\sigma + \epsilon \frac{r}{R}\right] - - - - (A)$$

Total vol. of Pressure
$$= pR^{2} \pi \left[\sigma + \epsilon \right] - - - + (B)$$

$$\sigma = d \left[1 - \frac{U - d}{1 - d} \right]$$

$$\epsilon = \frac{2}{3} \left[\frac{U - d}{1 - d} \right]$$

The load moments, or the radial and tangential moments in the footing when it is simple supported are obtained as follows:

$$2\pi rQ = p\pi r^{2} \left[\phi + \left(\frac{r}{R} \right) \right]$$

$$Q = \frac{p\sigma r}{2} + \frac{p\epsilon r^{2}}{2R} \qquad (7.1)$$

where O and f are constants expressed in Figure 7.5.

$$\frac{d}{d\mathbf{r}} \left[\frac{1}{r} \frac{d}{dr} \left(\frac{\mathbf{r}}{\mathbf{d}r} \right) \right] = \frac{Q}{D} \qquad \qquad (7.2)$$

Substituting (7.1) into (7.2) integrating, we have

$$\frac{dw}{dr} = \frac{po}{16D} r^3 + \frac{(p)}{30DR} r^4 + \frac{c_1r}{2} + \frac{c_2}{r} ... (7.3)$$

$$\frac{d^2w}{dr^2} = \frac{3p^2}{16D} r^2 + \frac{4 + p}{30DR} r^3 + \frac{c_1}{2} - \frac{c_2}{r^2} \dots (7.4)$$

Using the boundary conditions

$$r = a = R$$
, $\frac{dw}{dr} = 0$

$$r = R$$
, $M_r = 0$ or $\frac{d^2w}{dr^2} + \frac{m}{r} \frac{dw}{dr} = 0$

and putting m = 0.2 for concrete, integrating and neglecting terms containing α' and α' , we have

$$C_1 = -\frac{p R^2}{D} \gamma \qquad (7.5)$$

$$c_2 = \frac{p R^4}{2D} \gamma \qquad (7.6)$$

where
$$\gamma = \left[\frac{0.500 + 0.35}{1.5 + a^2} \right]$$

Substituting (7.5) and (7.6) into (7.3) and (7.4) we have

$$= pR^{2}\pi (\circ + \epsilon) \quad \frac{(0.50\circ - 0.40\epsilon) - 0.10\circ\beta^{2} - 0.05\epsilon\beta^{3}}{\pi (\circ + \epsilon)}$$

Actual moments, radial and tangential, are obtained by deducting (7.7) and (7.8) from (3.1) and (3.2) respectively, providedly the term $pR^2\pi$ ($\omega_+\epsilon$) which is the total pressure, in (7.7) and (7.8) is set equal to P in (3.1) and (3.2), we have

$$M_r = M_r' (3.1) - M_r'' (7.7)$$

$$M_t = M_t^* (3.2) - M_t^* (7.8)$$

or put into other form

$$M_r = H_r pR^2$$
 (moment per unit length) . . . (7.9)

$$M_t = K_t pR^2$$
 (moment per unit length) . . (7.10)

where p = Mc/I as before and K_r , K_t are constants.

Curves for K values in equation (7.9) and (7.10) are plot with different values of \varnothing and u, so that the moments can be readily obtained at desirable points. (see (9.61-66))

VIII. FOOTING CARRYING A NOLUME LOAD RESTING ON ELASTIC CONCENTRIC PILES

Applying the same reasoning in section VI-1, the same shape of pressure distribution curve in section VII-1 will have in a footing carrying a moment load and resting on elastic concentric piles except the B/A term involved in expression for u is the expression (6.4) instead of (4.9).

The unit pressure exerted by each pile circle of different radius can be proportionated from the ordinate in the distribution curve at corresponding radius. The total pressure from each circle can be calculated from its unit pressure and its circumference and the moments can be obtained by repeated use of equation (5.6) and (6.7) if there are several pile circles under the footing.

IK. MUNERICAL EMANPLES

1. FOOTING CARRYING A VERTICAL LOAD AND A MOMENT LOAD RESTING ON ELASTIC SOIL

Data: Vertical Load 1,200,000 lbs.

Revolving Moment Load 1,500,000 ft-1b

Size of Column Capital. α = 0.20

Allowable Soil Pressure . . . 6,000 lb/sq.ft.

Modulus of Reaction of

Soil k' 2,500,000 lb/cu.ft.

Modulus of Elasticity of

Concrete E_c 3,000,000 lb/ sq.in.

 $f_c = 1,350 \text{ psi, } f_s = 20,000 \text{ psi, } n = 10,$

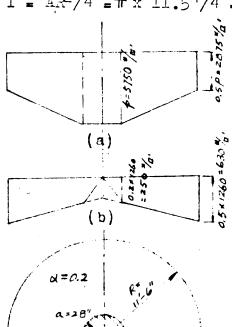
 $f_c^1 = 3,000 \text{ psi, } k = 0.400, j = 0.866, K = 235$

R. C. Code J. C. 1940

(a) Proportioning the Base Area

Vertical Load -

1,200,000 lbs.


Assumed Wt. of Footing =

208,000 lbs.

Total P 1,408,000 lbs.

Assuming the dia. of footing being 11.5 ft.

 $I = AR^2/4 = \pi \times 11.5^4/4 = 13,700 \text{ ft.}^4$

p' due to moment = Mc/I

= 1,500,000 x 11.5 13,700

= 1,250 psf

pi at edge of capital =

p'd= 0.2 x 1,250 = 250 psf

Met utilizable pressure for

carrying the vertical load

= 5,000 - 250 = 5,750 psf

Assuming
$$u = 0.4$$
,

$$p_2'$$
 at the rim of the footing = $u p' = 0.4 \times 1,250$
= 504 psf.

$$504 < 0.4 \times 5750$$
, (no tension at rim, 0.K.)

1,400,000 =
$$\pi R^2 \times 5750 \left[\frac{2u+1}{5} - \gamma \right]$$
 . . . (Eq. 5.1)

$$\frac{2u + 1}{3} = 1.8/3 = 0.60, \gamma = \frac{4^3(1 - u)}{5(1-4)} = 0.002$$

1,408,000 =
$$\pi R^2 \times 5750 \times (0.500 - 0.002)$$

$$R^2 = \frac{1.408.000}{\pi \times 5750 \times 0.598} = 130$$
, R =11.4 use 11 ft-6in. as assumed before

$$p'R^2 = 1250 \times 11.5^2 = 167,000 lbs.$$

Fadius of column capital = $0.2 \times 11.5 = .23 \text{ ft. or } 28^{\circ}$

(b) Moment Calculations

Moments at different sections are found from the K-valve-curves corresponding to each particular case.

RADIAL ROMENT TABLE

0.2R	O.4R	0.6R	0.8R	1.0R
0.17	0.045	0.010	0	0
238,000	63,000	14,000	0	0
0.21	0.063	0.015	0	0
<i>5</i> 5,100	10,500	2,510	0	0
<u>273,100</u>	<u>73.500</u>	<u>15,510</u>	<u></u>	<u></u>
	0.17 238,000 0.21 35,100	0.17 0.045 238,000 63,000 0.21 0.063 35,100 10,500	0.17 0.045 0.010 238,000 63,000 14,000 0.21 0.063 0.015 35,100 10,500 2,510	0.17 0.045 0.010 0 238,000 65,000 14,000 0 0.21 0.063 0.015 0 35,100 10,500 2,510 0

TALLEMIA COLUMN TABLE

Section	0.28	0.33	0.35R	0.43	0.6R	0.8R	1.CR
Kt	0.C41	0.056	0.053	0.054	0.035	0.025	0.0185
Mt KtP (due to vertical load) (Flate 5)	57,500	70,500				55 , 000	25,900
Kt.	0.045	0.070	୍ଠ.୦୪୫	0.056		0.054	0.025
Mt=Ktp R2 (due to moment load) (Plate 1)	7,580	11,700	11,300	11,000	7,180	5,700	4,350
Total Mt in-lb./in.	65 , 180	90,200	92,600	85,500	55,180	40,700	30,250

(c) Calculation of Depth

$$h = \sqrt{M_T/H} = \sqrt{273,100/235} = \sqrt{1150} = 34.0$$
" use 40" overall.

Wt. of footing = $x = 11.5^2 \times 40 \times 150 = 208,000 \text{ lbs.}$ 0.K. assumed.

Flexural Rigidity D = $\frac{E_c k^2 j}{2(1 - m^2)}$ h³ (see Appendix)

=
$$\frac{3.000.000 \times 144 \times .375^2 \times .875}{2 (1 - 0.2 \times 0.2)} \times (\frac{34}{12})^3$$

 $= 5.30 \times 10^{8}$ lb.-ft.

(d) Checking the shearing stress

 v_c allowable = 0.3 f_c^i = 0.03 x 3000 = 90 psi

$$= (28 + 34) \times 2\pi$$

= 390 in. (critical section is a circle with r = 52 in.)

Shear due to vertical load

$$V_1 = \left\{1,408,000 - \left[\text{Equ.}(5.2)\text{for r} = 62/12 - 5.17\right]\right\} \frac{1,200,000}{1,408,000}$$
$$= \left\{1,408,000 - \pi 5.17^2 \times 5750 \times \left[(0.4 - 0) + (\frac{1 - 0.4}{3}) \times \frac{1}{3}\right]\right\}$$

TARGERTIAL MOMENT TABLE

Section	0.22	0.33	0.35R	0.4R	0.5R	0.8R	1.0R
Kt.	0.041	0.053	0.050	0.054	0.035	0.025	0.0185
N _t = K _t P	57,500	70,500	81,300	75,600	49,000	25,000	25,900
(đườ to				1		1	1
vertical			!				
load)				! !			
(Plate 5)	0.01.2	6 656	 		1	<u> </u>	2 225
Kt.	0.045			0.056		0.054	0.025
Lt-Ktp R2	7,580	11,700	11,300	11,000	7,180	5,700	4,350
(due to						}	}
moment							;
load)			1			,	1
(Plate 1)			<u> </u>			· •	
Total It	65,180	90,200	92.600	85,500	55.180	40.700	30.250
in-lb./in.		- ,	1		1	L	

(c) Calculation of Depth

$$h = \sqrt{N_T/K} = \sqrt{275,100/235} = \sqrt{1150} = 34.0$$
" use 40" overall.

Wt. of footing = $x = 11.5^2 \times 40 \times 150 = 208,000 \text{ lbs.}$ O.K. assumed.

Flexural Rigidity D = $\frac{E_c k^2 j}{2(1 - n^2)}$ h³ (see Appendix)

=
$$\frac{3.000.000 \times 144 \times .375^2 \times .875}{2 (1 - 0.2 \times 0.2)} \times (\frac{34}{12})^3$$

 $= 5.30 \times 10^{8} \text{ lb.-ft.}$

(d) Checking the shearing stress

 v_c allowable = 0.3 fc = 0.03 x 3000 = 90 psi

= 390 in. (critical section is a circle with r = 62 in.)

Shear due to vertical load

$$V_1 = \left\{1,408,000 - \left[\text{Equ.}(5.2)\text{for r} = 62/12 - 5.17\right]\right\} \frac{1,200,000}{1,408,000}$$
$$= \left\{1,408,000 - \pi 5.17^2 \times 5750 \times \left[(0.4 - 0) + (\frac{1 - 0.4}{3}) \times \frac{1}{3}\right]\right\}$$

(f) Computation of steel area

- A_{sl} (for tangential moment) = M_t/f_{sjd}
 - $= M_{t}/20,000 \times 0.875 \times 34 = M_{t}/595,000$ sq.in./in.
- As2 (for radial moment in region of single layer of steel, assuming l'ø bars used)
 - $= M_r/20,000 \times 0.875 \times (34 + 1) = M_r/613,000 sq.in./in.$
- A_s 3 (for radial moment in region of double layer of steel assuming l''0 bar used and a vertical distance of 3"cc between the layers)
 - $= M_r/20,000x.675x(34 2.5) = M_r/552,000 sq.in./in.$

	R	ADIAL NOME	MT STEEL 3	CHEDULE	
Section	0.2R	0.4R	0.6R	0.8R	1.0R
Moment	273.000	75,500	15,510	0	0
Layer of steel	double		<u>:le</u>	s <u>i</u> nd	rle
As	0.250 (each layer)	! }	0.027 nit-sq.in.	/in.)	0
required	1"a @35"cc each layer	1"0 27"cc + 1"Ø 27"cc	‡# <i>\$</i> ⊚75°°c	О	0
As furnished	1"ㅁ ②글:"cc each layer	1" @7"cc -1"Ø @7"cc	1 " ⊄© 51 "cc	: "ø €7"ec	1"ø 28.75"cc

TAMBLETIAL MORLINT STEEL SCHEDULE

Section	0.23	0.3R	0.35R	10.4R	0.6R	0.83	1,0R
Moment lb-"/"	55 . 180	90,200	92,600	83,300	55 , 180	40,700	30 <u>.</u> 250
	0.110	0.150	0.155	0.145	0.095	0.059	0.051
Aa		(sir-l	e laver	sq.in./	<u>in.)</u>		
required	1"ø 37"cc	1"Ø 85"cc	1"Ø 65"cc	1"Ø 851"cc	1"Ø 25! "	1"Ø @5!"cc	3/4 " ¢ €81 " cc
As furnish- ed			the sa	.me as re	quired		

(g) Checking the bond stress

The critical section for bond is at the edge of the column capital.

Shearing force due to vertical load = V_1 = $\left[1,405,000 - \left(\frac{28}{12}\right)^2 \pi \times 5750\right] \times \frac{1,200,000}{1,408,000}$

= 423,000 lbs.

Shearing force due to moment load = V2

- = (Equ. A in Fig. 7.5) $0.2x1250x(\frac{28}{12})^2\pi$
- $= 1250x\pi x42 1250x\pi x 5.42$
- $= 1250x \pi (42 1.8) = 159,000 lbs.$

Total shearing force at the critical section =

 $V = V_1 + V_2 = 582,000$ lbs.

Bond stress = $V/\Sigma_{0.1}d$ = 582,000/314x.875x36.5 =85psi. where $\Sigma_{0.2}$ = $\frac{2 \times 20}{3.0}$ x 3.14 x 2 = 314 in.

Bond stress allowable = $0.0375f_c^{\dagger}$ = 0.0375x3000 = 112 psi 0.K.

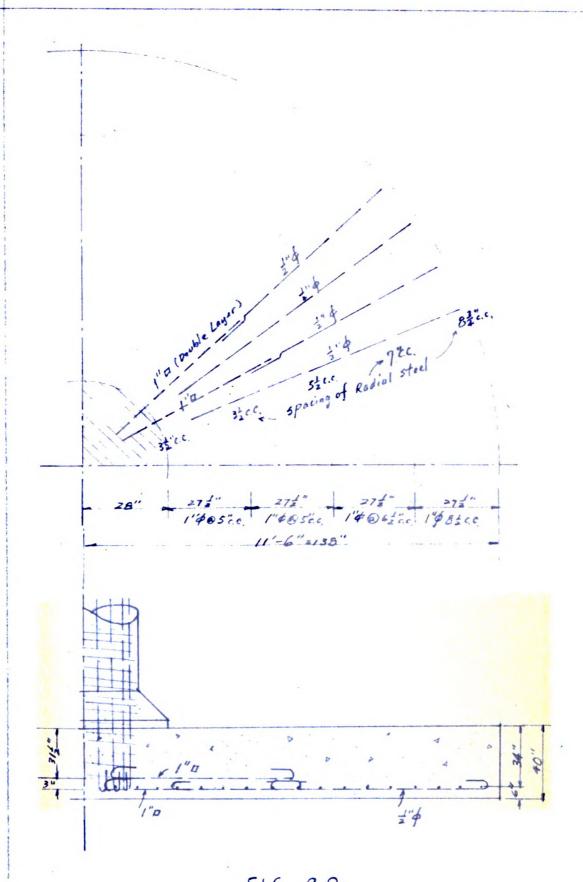
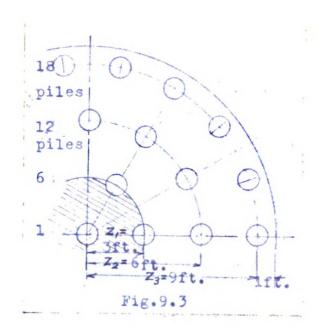
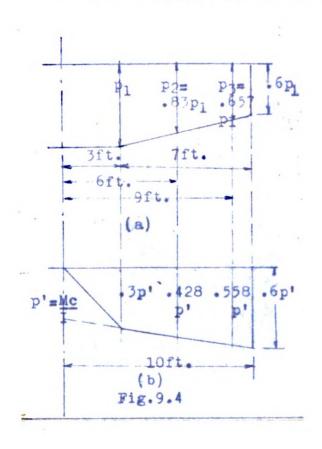



FIG. 9.2

FOOTING CARRYING A VERTICAL LOAD AND A MONENT LOAD 2. RESTING ON ELASTIC FILES 1,200,000 lbs Revolving Moment Load 1,500,000 ft-lbs. Size of Column Capital d = 0.3Allowable Bearing Capacity of Pile: Piles in inner circle. 30 tons each Piles in middle circle 40 tons each Piles in outer circle 35 tons each Modulus of Reaction of Piles k': Pile in inner circle 26x1051bs/ft each Pile in middle circle. 34x1051bs/ft each Pile in outer circle 30x1051bs/ft each Modulus of Elasticity of Concrete Ec-3,000,000 psi $f_c = 1,350 \text{ psi, } f_S = 20,000 \text{ psi, } n = 10,$ $f_c^* = 3,000, k = 0,400, j = 0.866, K = 235$ (a) The general arrangement of piles The arrangement of piles is shown in the figure 9.3 and the diameter of the footing is chosen to be 10 ft. $z_1 = 3$ ft., $\mu_1 = 0.3$


 $z_2 = 6 \text{ ft.}, \mu_2 = 0.6$

 $z_3 = 9$ ft., $\mu_3 = 0.9$

(b) Computation of Load on Piles

A. Load on piles due to vertical load

Referring to Figure

9.4a, Assuming u= 0.6

we have:

Unit pressure at middle

pile circle = p2

= [0.6 + 0.4 x 4/7] p1

= 0.83p1 lb/lin.ft.

Unit pressure at outer

pile circle = p3

= [0.6 + 0.4/7] p1

= 0.657p1 lb/lin.ft.

Total upward pressure

= column load + wt. of

P = $\frac{2\pi \times 3 \times p_1}{6}$ + $2\pi \times 3 \times p_1$ + $2\pi \times 6 \times p_2$ + $2\pi \times 9 \times p_3$ (reaction of (reaction (reaction of outer pile cir.) pile cir.) pile cir.)

footing

= $(p_1 + 6p_1 + 12x0.83p_1 + 18x0.657p_1)\pi$ = $28.8\pi p_1 = 90.5p_1$

Column Load 1,200,000 lbs.

Assumed wt. of footing . . . 160,000 lbs.

Total F 1,350,000 lbs.

 $p_1 = 1,360,000/90.5 = 15,000 lbs/lin.ft.$

 $p_2 = 0.83 \times 15,000 = 12,500$ lbs/lin.ft.

 $p_3 = 0.675 \text{ x15,000} = 9,900 \text{ lbs/lin.ft.}$

Load on entire inner pile circle = L_1 = 15,000 x 2 π x 3 = 282,000 lbs.

Load on entire middle pile circle = L_2 = $12.500 \times 2\pi \times 6 = 472.000 \text{ lbs}$.

Load on entire cuter pile circle = L_3 = 9,900 x 2π x9 = 592,000 lbs.

B. Load on piles due to moment load Referring to Figure 9.4b,

 $p_1' = 0.3p'$

 $p_2' = (0.3 + 0.3x3/7) = 0.428p'$

p'3 = (0.3 + 0.3x6/7) = 0.558p'

p' = Mc/I, I = $\pi r^3/2$ for each circle (assuming the area of the piles being uniformly distributed along the circumference of each circle)

I = $\frac{1}{8}x\pi(9^3 + 6^3 + 3^3) = \frac{1}{8}x\pi x952 = 1,510 \text{ ft}^3$ p' = 1,500,000 x 10/1.510 = 10.000 lbs./ft.

```
p_1' = 0.3x 10,000 = 3,000 lbs./ft.
   p_2^1 = 0.428 \times 10,000 = 4,280  lbs./ft.
   p'3 = 0.558x10,000 = 5,580 lbs./ft.
Load on entire inner pile circle = L1 =
   3,000 \times 2\pi \times 3 = 56,700 lbs.
Load on entire middle pile circle = L_2^{i} =
    4280 \times 2\pi \times 6 = 162,000  lbs.
Load on entire outer pile circle = L'3 =
   5,580 \times 2\pi \times 9 = 316,000  lbs.
Total load on inner circle = L_1 + L_1' =
    262,000 + 56,700 = 338,700  lbs.
Load on each pile in inner circle = 337,800/6
                                      = 55.300  lbs.
                                         ( \leq 30 tons O.K.)
Total load on middle circle = L_2 + L_2^* =
   472,000 + 162,000 = 534,000 lbs.
Load on each pile in middle circle = 534,000/12
                                       = 44,500 lbs.
                                          (< 40 tons 0.K.)
Total load on outer circle = L_3 + L_3^* =
   592,000 + 316,000 = 908,000 lbs.
Load on each pile in outer circle = 900,000/18
                                      = 50,400 lbs.
                                         (< 35 tons 0.K.)
(c) Computation of Moments
     M_r = K_r \times Total Load on Circle, M_{t=} K_t \times Total load
```

on circle.

LOWENT SCHEDULE

Section	0.5R	0.43	0.45R 0.5R 10.	,6R 1.0R
W2=.3 Kr(Flate 9)	0.13 69,500	0.065 35.600	0 0	0
Ib=.9 Kn(Flate S)	0.206		0.057 0.	
Radial Moment in in-lb/in.	255,500	154,600	51,700 12,	,700 0

-	M2=.3Kt(Flatel2) KtL	0.	025 900	ο. 18	.034 .100	17.	0 <u>5</u> 2 100	0.0 11.8	22 00] 1	0.02 1,80	2 C 0 11	.022 .800
lit	μ ₃ =•9K _t (Plate12) K ₊ L											
	angential Moment							!				,300

(d) Calculation of Depth

h = $\sqrt{M_T/K}$ = $\sqrt{255,000/235}$ = $\sqrt{1,100}$ = 33.2 " use 34" and a overall thickness of 40".

Wt. of footing $= \pi \times 100 \times 40 \times 150/12 = 157,000$ lbs. as assumed

Flexural Rigidity of the section = 5.3×10^8 lb.-ft. (the same as in Example 1.)

(e) Checking the Shearing Stress

The critical section for shear is a circular section at a distance 34^n from the edge of the column capital.

b = (0.3 x 10 x 12 + 34) x 2 T

 $= 70 \pi - 440$.

 $v_c = 0.03f_c^{\dagger} = 0.03 \times 3000 = 90 \text{ psi}$

Shearing force due to vertical load - V1 =

(1,350,000 - 282,000 - 282,000/5) 1,200,000/1,350,000

 \pm (1,360,000 -329,000) x 0.883 \pm 912,000 lbs.

Shearing force due to moment load = V₂ = 1/2 x (162,000 + 360,000) = 251,000 lbs. (Only 1/2 of the total load is effective in calculating shearing force)

Total shearing force at critical section = $V = V_1 + V_2$ = 912,000 + 251,000 = 1,173,000 lbs. $V_C = \frac{1,173,000}{440x.075x34} = 90 \text{ psi C.K.}$

(f) Checking the value of u

Modulus of Reaction of inner pile circle = k'1

$$= 26 \times 10^{5} \times 6/2 \text{ mm}$$
 $= 8.3 \times 10^{5} \text{ lb./ft}^{2}$

Modulus of Reaction of middle pile circle = k2

=
$$34x10^{5}x12/2\pi x^{5}$$
 = 10.8 x 10^{5} 1b./ft.²

Modulus of Reaction of outer circle = k3

=
$$30 \times 10^{\circ} \times 10^{\circ} / 2 \times 9 = 9.5 \times 10^{\circ} / 16 / ft^{\circ}$$

$$D/k_{1}^{2} = 6.3 \times 10^{8}/8.3 \times 10^{5} = 76.1 \text{ ft.}^{3}$$

$$D/k_2^* = 6.3 \times 10^8 / 10.8 \times 10^5 = 61.0 \text{ ft.}^3$$

$$D/k_3^{\dagger} = 5.3 \times 10^8 / 9.5 \times 10^5 = 65.5 \text{ ft.}^3$$

$$\frac{A}{A} \qquad M(u-a)^{2} \qquad M(u-d)^{4} \qquad \frac{M(M-d)^{2}}{D/k!} \qquad \frac{M(M-d)^{4}}{D/k!}$$

$$\frac{M_{1}}{A} = 0.5 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 7.85 \times 10^{-5} \qquad 0.324 \qquad 0.0048 \qquad 8.83 \times 10^{-4} \qquad 7.85 \times 10^{-5} \qquad 0.324 \qquad 0.0116 \qquad 48.6 \times 10^{-4} \qquad 17.4 \times 10^{-5}$$

$$\frac{D}{A} = - \qquad \frac{P}{A} = - \qquad \frac{M(M-d)^{2}}{D/k!} \qquad 0.54 \qquad 0.5$$

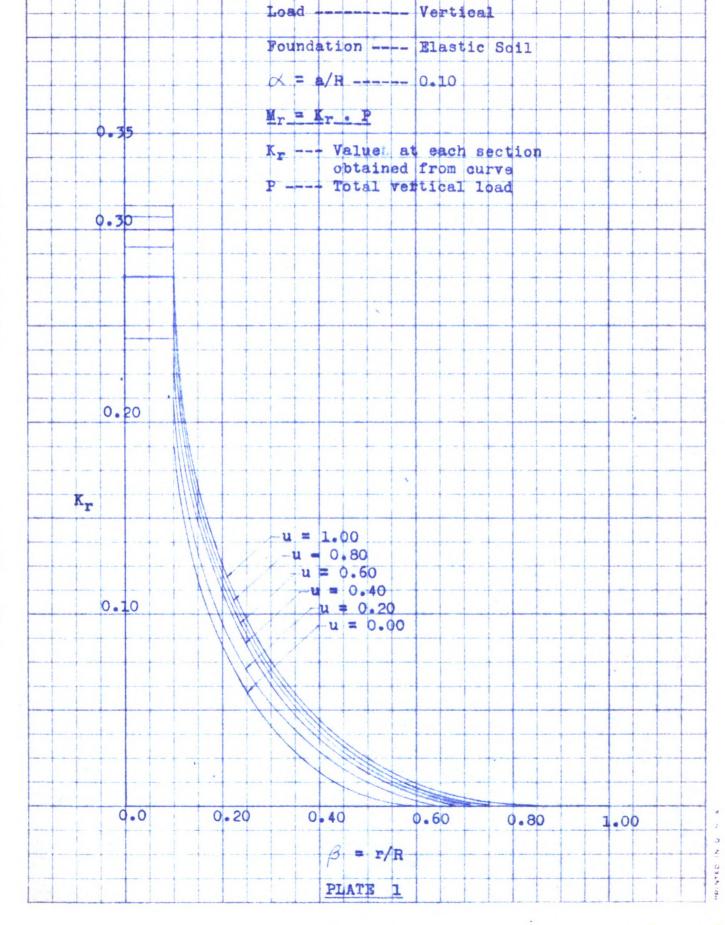
$$= - \frac{10x \ 57.43 \times 10^{-4}}{4.0 \times 0.91 + 1,000 \times 25.20 \times 10^{-5}}$$

$$= -5.74 \times 10^{-2} = -1.23 \times 10^{-2}$$

$$u = 1 + \frac{2}{3} \quad (1 - 0.557 \times 0.49 \times 100 \times 1.23 \times 10^{-2})$$

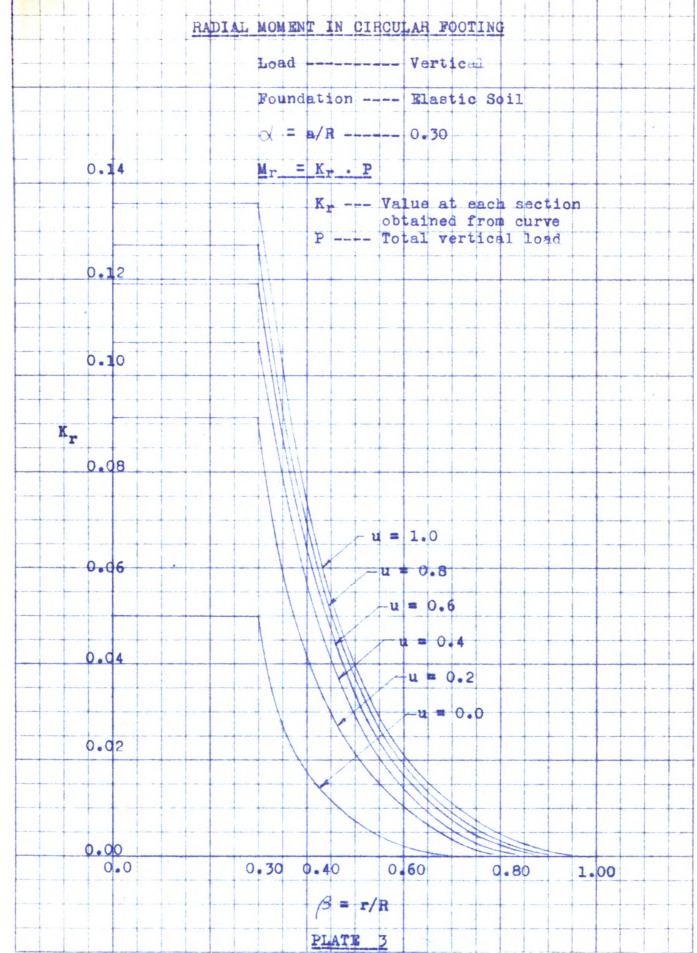
$$= (1 - 0.4) = 0.6 \text{ (as assumed before 0.K.)}$$

(g) The remaining computations are similar to those corresponding ones in Example 1 and they are omitted here.

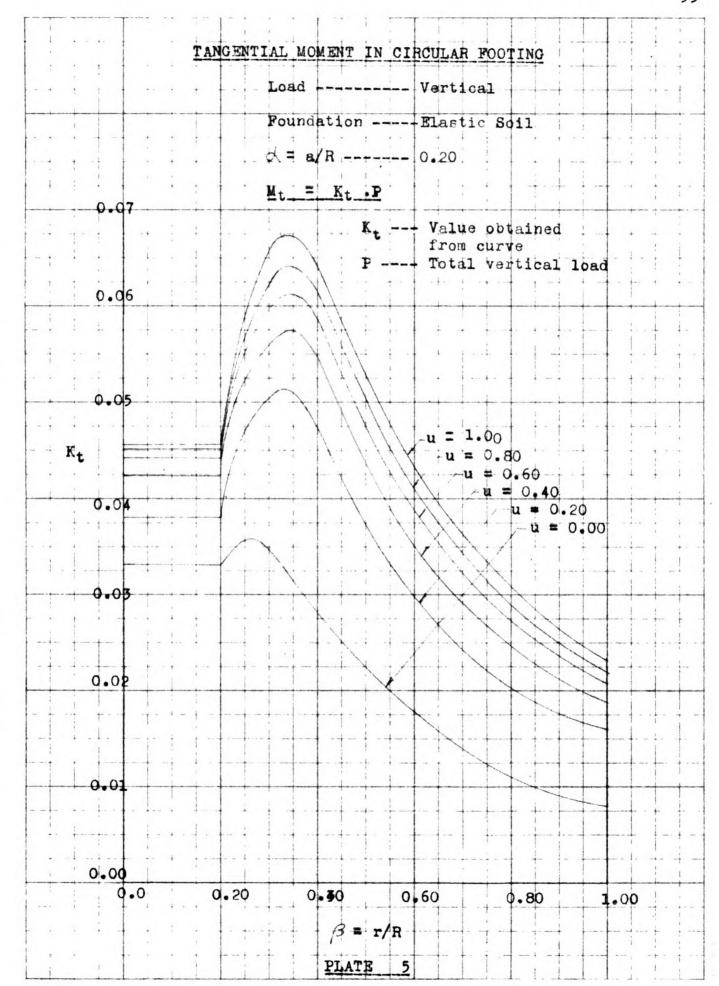

II. COMCLUSIONS

- (1) The moments, both radial and tangential, in a circular footing under any loading and foundation conditions, decrease greatly if the size of the column or column capital increases. A most economical ratio of α at which the sum of the volumes of footing and column capital is a minimum in the particular case under consideration could be obtained from several trial designs.
- (2) The tangential moment is always much more smaller than the radial moment at the same point under any loading and foundation conditions.
- (3) The maximum radial moment occurs at the edge of the column capital and the maximum tangential moment, in usual case (< 0.3), occurs at a section somewhere between the edge of the capital and the mid-point of the remaining part of diametrical section. As those maximum moments do not occur at the same point, the reinforcing steel in the footing will not be over-crowded in the section near column capital, which renders the design practical.
- (4) In any case, the radial moment decreases much more rapidly than the tangential moment at the same point along the radius of the footing. It shows only the central part of the footing needs heavy reinforcement.
- (5) The ratio u affects both tangential and radial moments due to moment load more than those due to vertical load

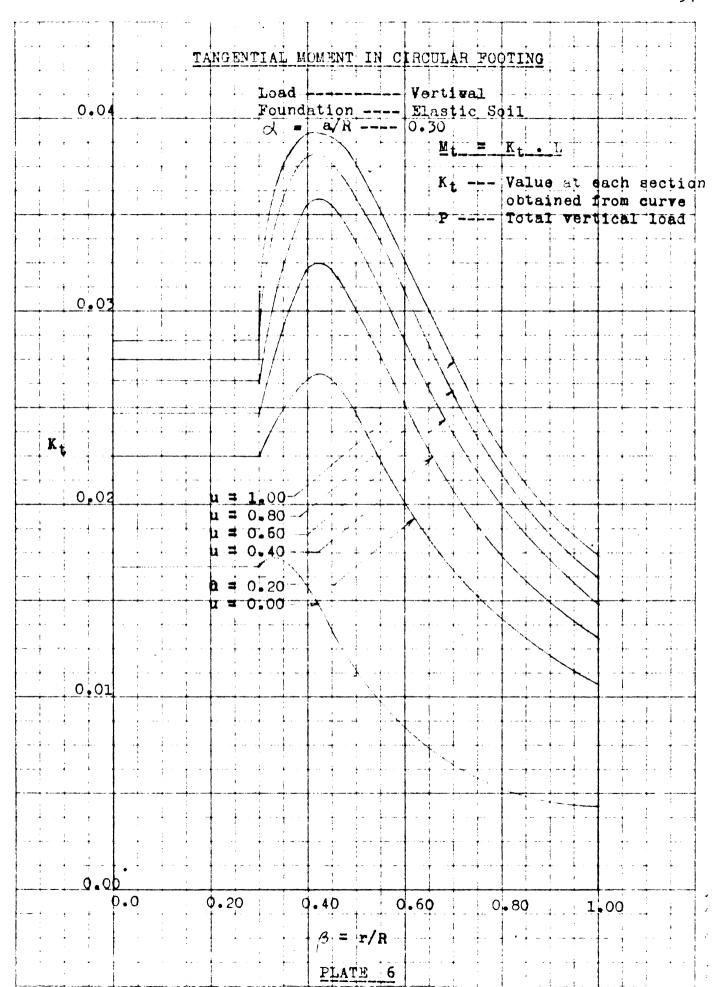
- on the same foundation, both of them decrease if u decreases.
- (6) As we assumed the foundation pressure being proportional to the deflection of the footing at that point, the pressure will be larger at the center than at the rim. Evidently this kind of pressure distribution, which is more or less dealing with fact, needs bigger footing area than that required by conventional decimn of assuming uniform pressure with the same specified allowable soil or pile bearing capacity. The fact shows the footing design in conventional way has greater tendency of settlement as the central part of the foundation underneath is over-stressel. In other words, with the same specified degree of settlement the allowable bearing capacity of foundation could be raised in design with the new method presented here.
- (7) The new design requires thinner section than that required by the conventional design of same specifications as due to both the affect of u in (5) and the affect of considering bending in all directions. (The conventional design assumed the bending only occurring at certain pairs of parallel sections.)


MI. CHARTS FOR DESIGN

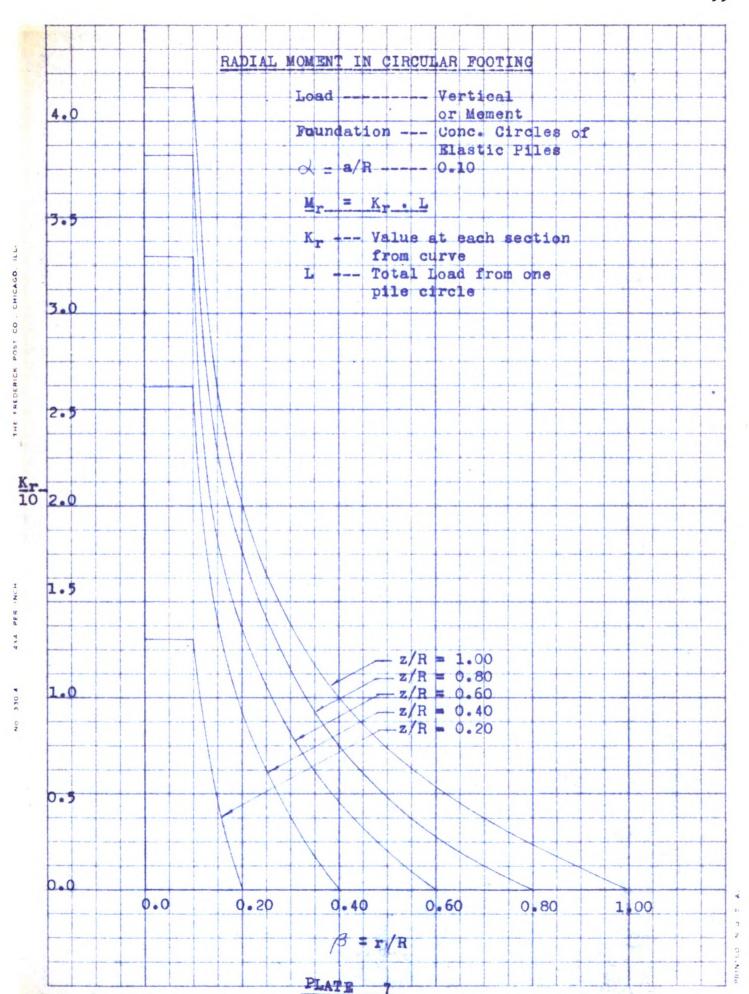
Flate 1		Radial Moment =	0.10	
110,00 1	•	TECTOR TOMOTTO	0.10	
Plate 2	•	Radial Moment	0.20	
Plate 3	•	Radial Moment	0.30	Vertical Load
Plate 4	•	Tangential Moment	0.10	Elastic Soil Foundation
Plate 5		Tangential Moment	0.20	
Plate 5	•	Tangential Moment	0.30	
Plate 7	•	Radial Moment	0.10	
Plate δ	•	Radial Moment	0.20	
Plate 9	•	Radial Moment	0.30	Vertical or Moment
Plate 1	.0.	Tanjential Moment	0.10	Load Elastic Foundation Pile
Flate 1	1.	Tangential Homent	. 0, 20	
Flate 1	.2.	Tangential Roment	0.30	
Plate 1	3.	Radial Moment	0.10	
Plate 1	4.	Radial Moment	0.20	
Plate 1	5.	Radial Moment	0.30	Moment Load,
Plate l	.5 .	Tangential Moment	9.10	Elastic Soil Foundation
Plate l'	.7.	Tangential Moment	0.20	
Plate 1	.8.	Tangential Moment	0.30	

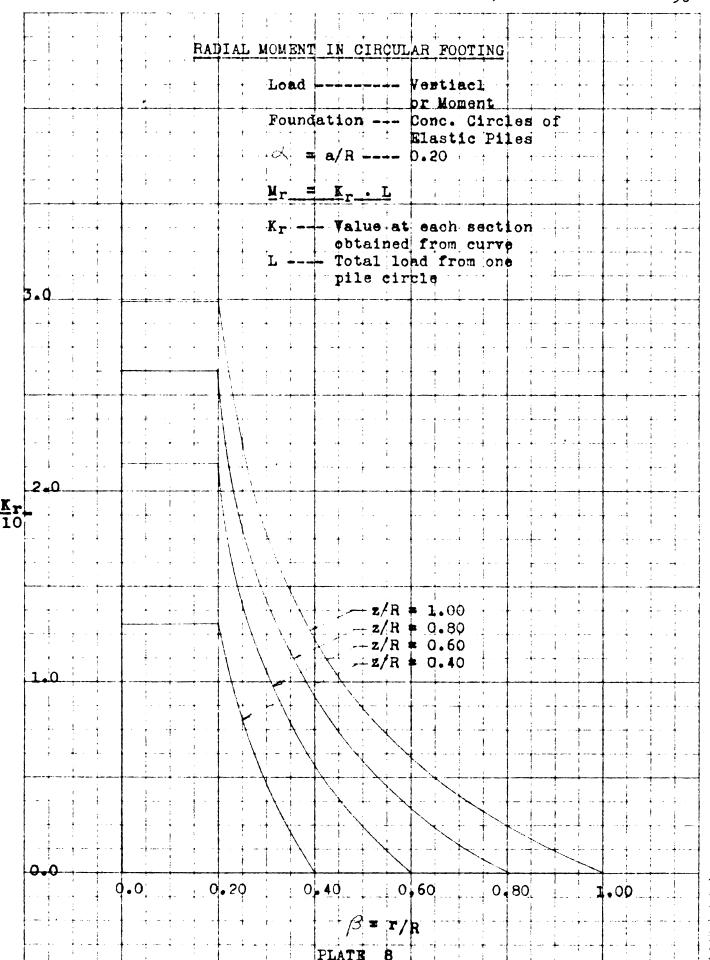

RADIAL MOMENT IN CIRCULAR FOOTING

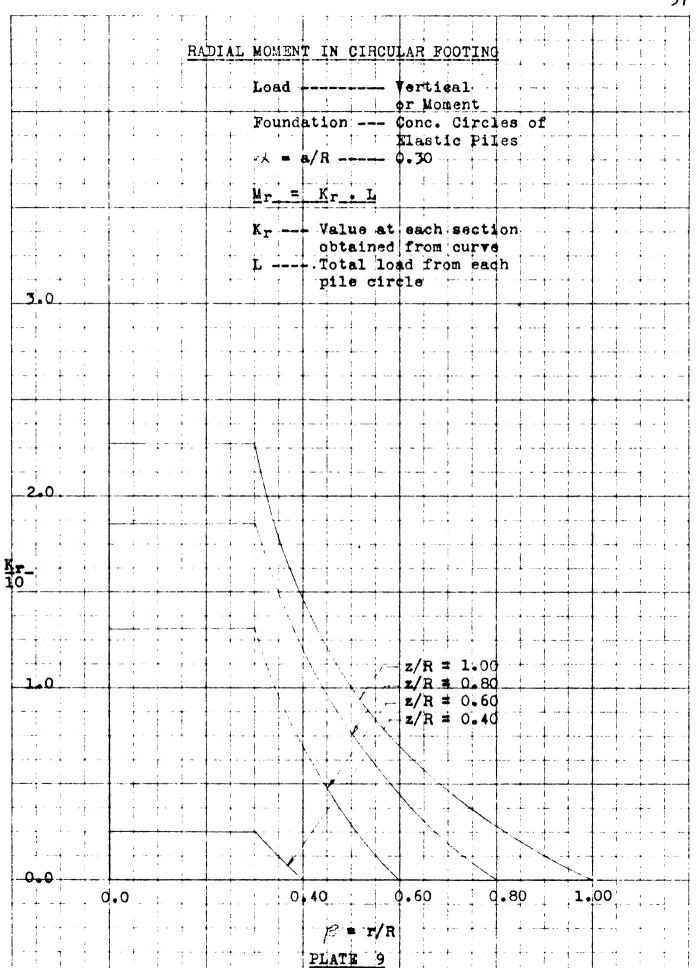
	RADIAL	MOMENT I	N CIRCI	LAR FOOTING
0.000		Load		Vertical
0.200		Foundati	on	Elastic Soil
			+	
		$\alpha = a/R$		0.20
		$M_{r} = K_{r}$	P	
0.175				
		Kr V	alue at	each section
		P T	otal vo	from curve
				1002 1000
0.150				
	1 1			
0.125			-	
0.127				
K _r				
0.100				
		1		
		1	u = 1.0	0
0.075			-u = 0.	80
		1 NA	u = 0	.60
			_u =	0.40
0.050		1111		
		1 1/2/1	~u =	0.20
		1 1 1	u	= 0.00
0.025				
9.023			M	
			11	
			1	
0.000			1	
0.0	0.20	0.40	C	.60 0.80 1.00
		0.	r/R	
		179	-/ 44	

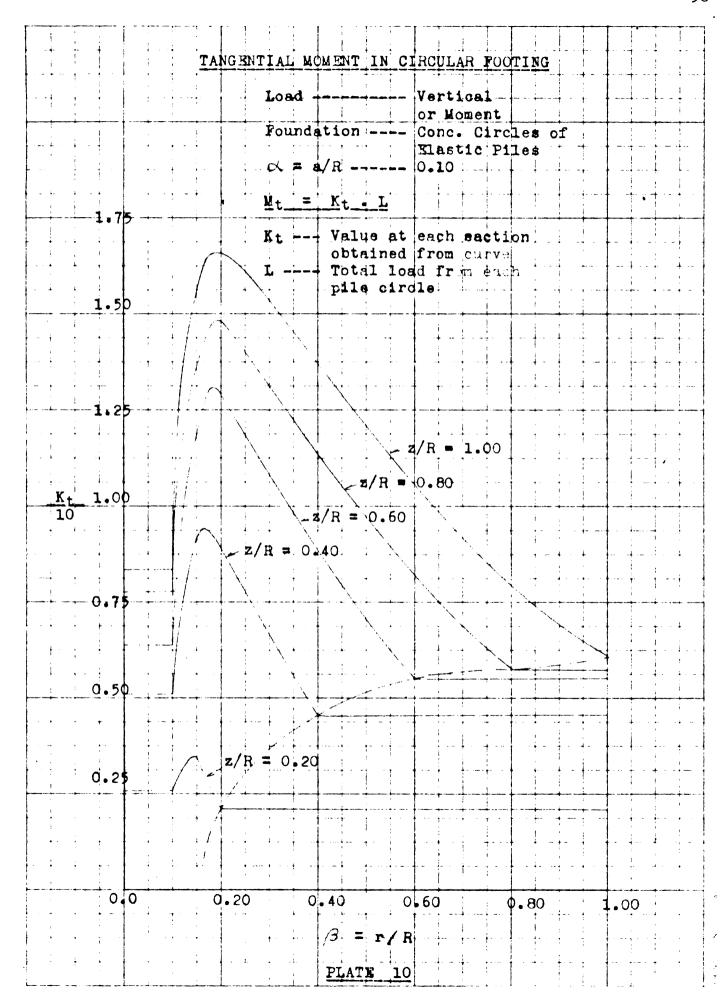


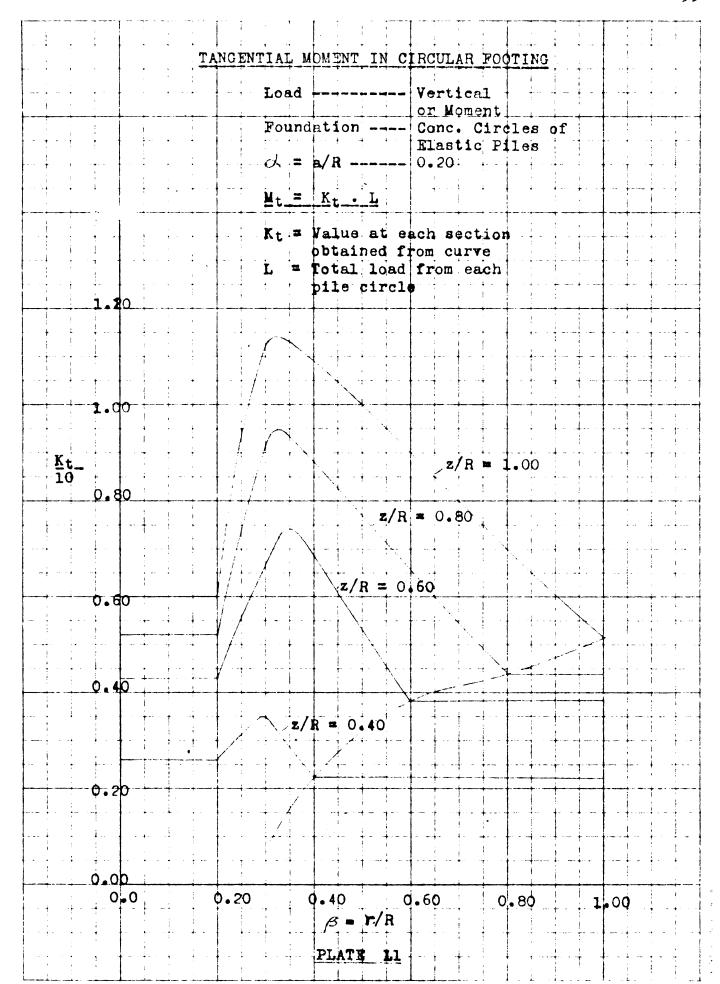
A . D V CIT


		Ţ	<u></u>	· [-	-;	I i			[1	1		
	i		• ·	•	: T A	NGR	NTTA	T. M	OM TIN	T T	N. C1	PCII	T A D	₽O.	OT 1		: • • • • • • • • • • • • • • • • • • •			•	•
- ; - ;				:	-				¥ ·		<u> </u>	1100	nitri	¥0,	4	10	· •		•	•	,
• •	•		•	•			- I	oad				Ver	tic	al		· ! · ·			•	:	
. !			-	•			F	oun	ati	on .		Ela	sti	c S	oil		+		+		
	*		• • •			<u> </u>	 . G	<u>۔</u> الج	a/R	; ; ====		0.1	Ω	1					•		
- • •				,	· · r · -			i	1											•	•
	- ;	-	.						K					·	-				-	-	+
•-	•		•	•	•		K	t	- V	alue bta	e at	ea fr	ch om	8 6 C1	tion	2	•			•	. •
~ • •			• -		•		P	· :	- T	ota.	l'Io	a d		:	V 6	-	•			٠	
٠,	0.1	2		:	•		;	•		:		. .		•	+ -		•	-		• •	٠
			_ 			† 				+ 				i							
	•				1.		• •	; ;						1							
	†				1, ',	7.); x k		÷		:				-		• •	· .		‡	+	•
	0.1	þ	•-		1.1,	1/1	• • • • -	<u>-</u>						:	-						
	ŧ			• •	$\langle \gamma \rangle$	1/3	• • • • •	•		٠			•	•	1	•		-	•	•	
• :	+			$-\frac{1}{p}$	$\frac{I}{I}$	1		• • •		•	:	:	•				:			•	4
	0.8	þ	•	# !	: /	1	1	, , , , , ,		٠		!	•		:					•	
								4 -	177 177		,						:				
K					<i>,</i>		\					,		:							
	•						1	•	1/1			น = -น	1.	.00 0 .8 0						•	
		0	· · · · · ·	# ;						12.			- -	0.6	۔۔۔						
	÷			ار ا	•			<u>. </u>		1.	12		-u. ≥ - u	.O. = 0 =	40	0	•		•	•	•
•	•		•	1	•		•	•			K	N. A.	- T	u =	0.	, -					
	0.40	}			: :						. نوب ن-	× .		.) .							
				,	• -			1				•	*		7				-	•	-
						ļ	-			•			•								•
	.			٠	•		:				•			4		: - ;	_		- 4	1	
	0.50			• •	- i			- +	+				· · · · · · · · · · · · · · · · · · ·		+		• • •- •	-	· 		
• .	•					:		ŧ :			1	,	•		-		-	7			•
			•		•	1	•	i	:	•			- •	•			•	1	· •	• •	•
	0.00									•	•								:	· ·	
	0.	0			. 0	• 20			40		. 0	60	;	0	-80			1.	υ <u></u> 0		
		1				į ,		•	13	= ·r/	/R	1					. !	į	•		ı
		1			•				PLA				4	•	+ :		7			•	




1. 181 181 0, 70, 7 P. 181 181

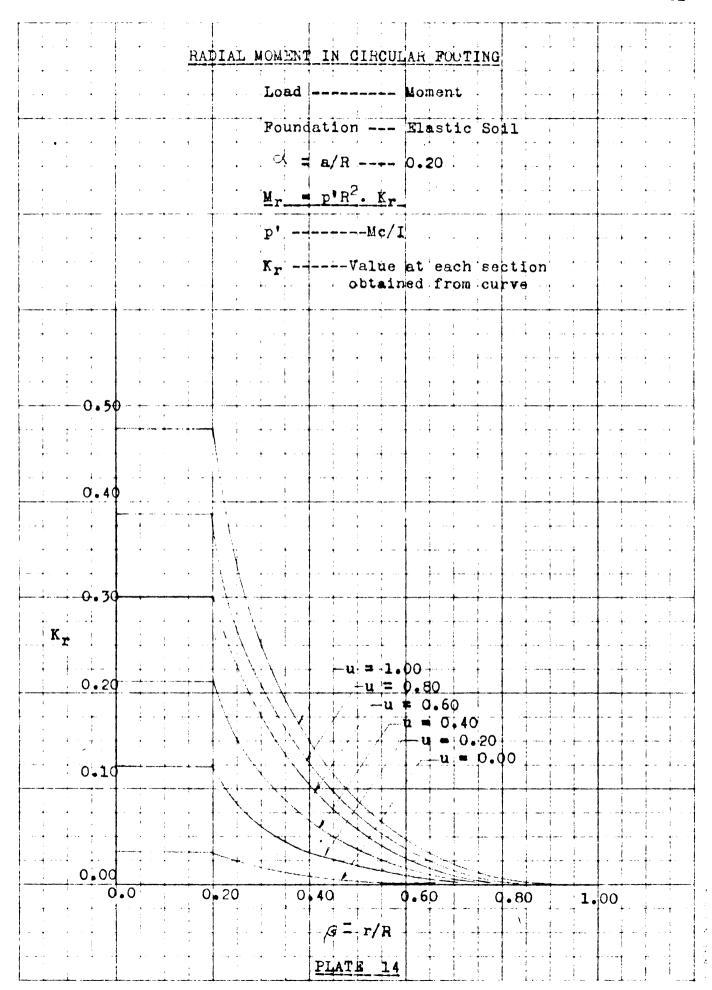



THE ESTEEN R POST OF CHELL

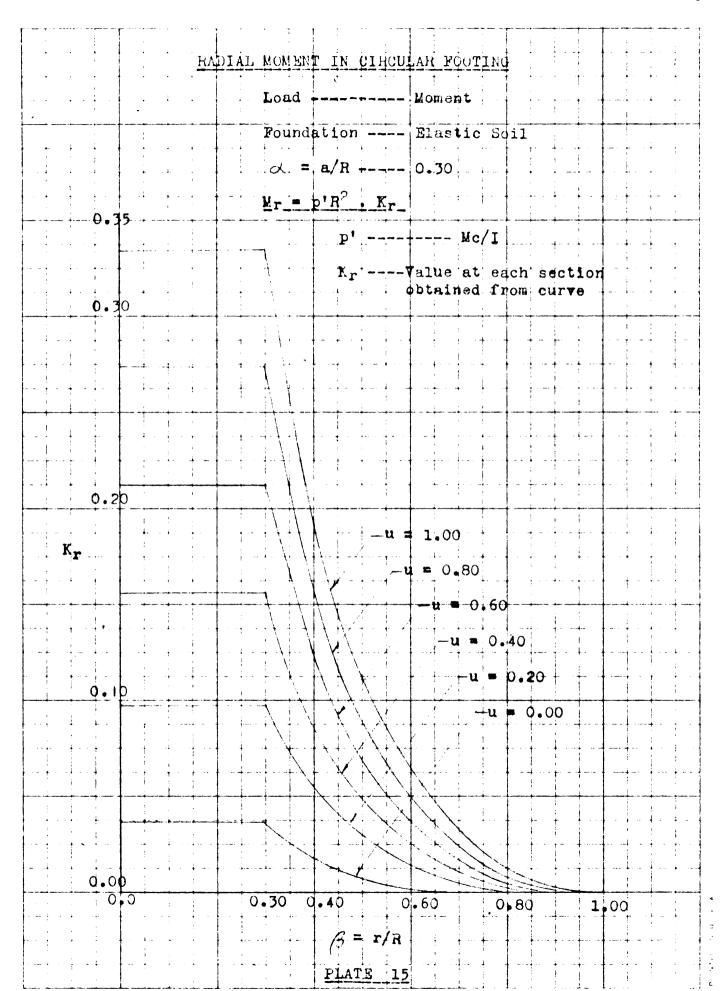

THE COMPLETE OF SOME ACCURAGE AND

		TAN	GENTI	AL MO	MEN	r in	CI	RCULA	R F	'00'	TING		<u> </u>		<u>!</u> 		
		; ; =	1	Load			i	Vert	,				· • · · · · · · · ·		<u>.</u>		• -
				Found	atio	on	· •	or M	om e	nt	les	of	+		<u> </u>		
				. d ■	† - †		•	Elas	tic	P	lles		1		<u>.</u> 1		
		• •	;		1		i		!	i •					1 1 1		
		· ·		<u>M</u> t_=	1				! 	· • • • • • • • • • • • • • • • • • • •			-		!		
				K _t	o1	btair	ted	from	cu	rve					i ! ——		
			: .	L	P	otal ile c	lo	ad fr	om	eac	h		 				
+ +			-	1			-		 -	! 1 !			 -	-	ļ ļ		
		• • • •		†*** † *** **** *		· · ·		.	· · ·	• ·	-	- •. . i	1				-
1 - • · - · · · -				-		· ·	, ,		<u>.</u>		-	1	. ‡		¦ ↓ 1		
	1.00				++				 				· · · · · · · · · · · · · · · · · · ·		 		
		,	• • •			- + -	•			;- 					† : :	! · · · ! - · · !	
			· • • = ·	1 4			!		 			!.			: 	•	
1	D-80						•		 			-	+-	-		ļ	 !
+				11 1	1			+				ļ.					
K _t _	0.60	† - †	•	1-1/-				1	z/	R •	1.	00			 !		
īŏ				/		7			1					-	<u>;</u> ! !.		
			· · · · ·	$\mathcal{F}\mathcal{F}$	-		+	z/R	=	0.8	0	The state of the s					
	0.40	.		1/1-						! !	-	- +		 		•	i .
		1				z/R		s én	-		2	_ F			ļ		<u> </u>
						2/ 1	<u> </u>		مرار					ļ	 ;		• - ·
	0.20	**************************************				-									· -		
	-		- 1		z/R	= 0.							-		· 1		
						<u> </u>				i		1 + 1 1		-		! -	:
++-	0.00	† · · · · · · · · · · · · · · · · · · ·					 			·		-		1	! -	!	.
•	0.0	; • • • •	;	0	40		0.	60	:	C	.80	1.	11	L 00)	· · · · · · · · · · · · · · · · · · ·	
- •		4 i		i i	B	= r/	R		† :- :	1			;		:	:	
		• ·		-1	PLA	TE	12	1	1	• -		;		1	;	•	

M. C. Taca A Political Ser


TOTAL STATE WATER

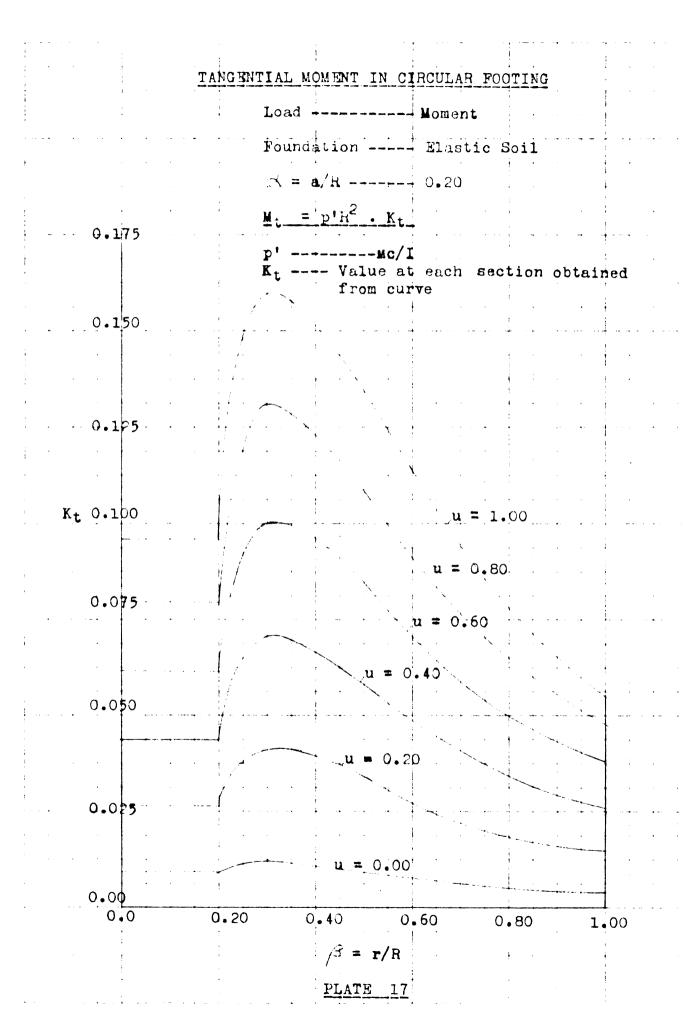
4 066 ...

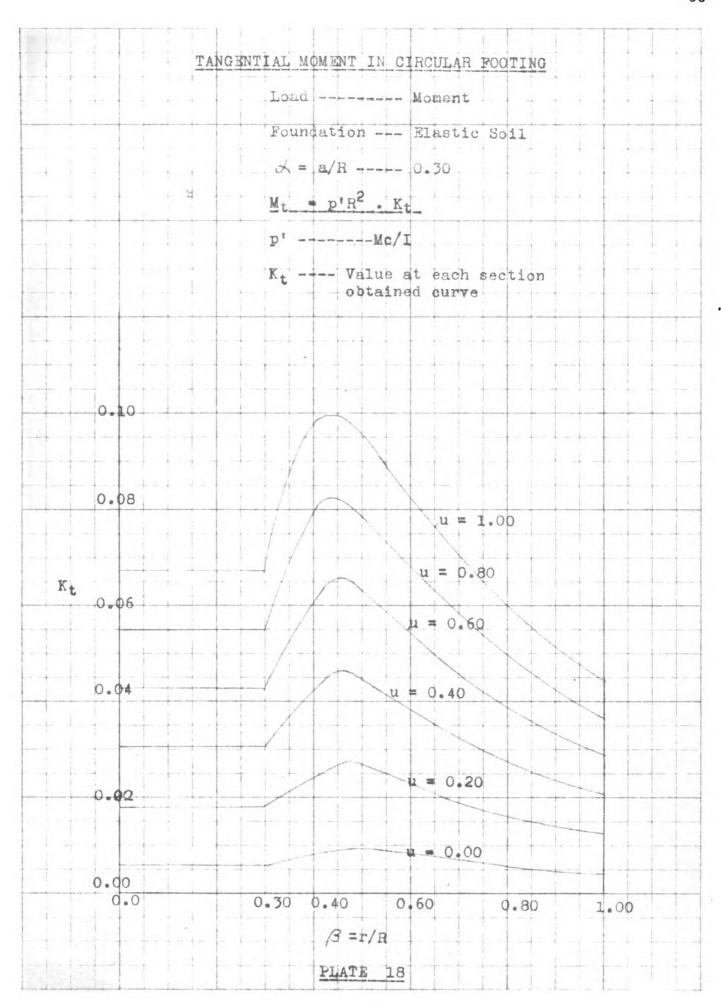


A THE BARE LACK MENT OF THE OWNER OWNER OWNER OWNER OF THE OWNER OWNE

2 3 5

-



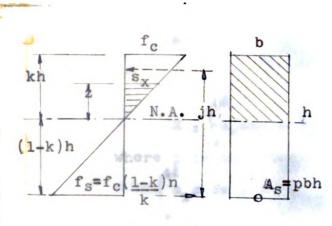

.

																											6
; l						- 'T				1			i .	!			1						ļ -				
					•	:	TA	NG	<u>en</u>	<u>TA</u>	<u>M</u>	OM!	NI	II	C	RC	UL.	AR	Pu	TI	NG	 	: 		-		
4				<u> </u>	-1					Los	i ad			·		Mo	i Mei	t	: i -			↓ ↓	ļ +		; 	į	! -
!	-	_		<u>:</u>	· ·				 			ļ	· 	<u> </u>	I	1		!	-		<u> </u>	ļ	ļ 		 		-
	;	-		· • ~-	•	. ;			i + -	For	ind	ati	lon			E1	2.51	ic	S	il		ļ	; ;		-		•
-	1	-				•			•	d	. =	a,	'R		:	٥.	10	; 	-	-	<u> </u>				-		+
	† ;	-			•	•			· •	<u>.</u> M+	=	ים	_R 2	. K	! -		<u>.</u> .		.	-	·	<u> </u> 	<u> </u>		ļ	+	: •
	•	-		:		•		-	-	-	+		-		+		; 	-	-	-	:	!	!	-	:	-	+
				1	•	•			· - -	p'		∔ 		Мс	/I			;	: -	-		ļ 1	+		: . + .i		
		1		:	:	•			i - 1	Kt		-V	'a1	์ น้อ	at	ea	ch	s e	cti	l ion					 	‡ !	• 1
	• • •) • [3∩	<u> </u>		•			ļ	; <u>-</u>		e	rb y	ain	ed	fr	om	cu	rve	-	· •	.			‡ i	<u> </u>	
!	, , ,	•	<i></i>	i				-	;	 -	-		•	-		-			1				 	-	 	1	•
i	· :-	1		:	1	•			• -	: -	• •	-	t "	•	•		• - !	-	.			1 !			†· -	† .	<u> </u>
† ;	• · · · · · · · · · · · · · · · · · · ·	1			•	•	/-		•	,		1	! -		-		<u>.</u>		+ - 1	<u> </u>	ļ ;	• · · · · · · · · · · · · · · · · · · ·				+ - 	-
r					•	j	•)	,	1	• •-		•	-• -	1		† · ·	†		-	i	÷ !	1	-	1	i -	•
!	!!!		-	+							1				1			1	 		!					÷	:
						,			1				1		i				1							- -	į
							1		•	!	T		!		† 1		į				!						:
	C).	20			- 1	<u>'</u>		**************************************	-	1			, ;			· -	: !	; 			•	<u> </u>			-	!
	· ·			į					:	A. A.	i • ·		`. ` .				: 1.0					• -			· •		
- +	i				!				•	•	<u>.</u> .			ر نی	u		# • C	, ; •	i •			į	4		1 -•	-	! !
K	t						1	1		•		}		X	:	u:	: 0	. 80)		<u>.</u>						:
	· ••				T+	- 1			· · ·		-		<u> </u>	·	. , ¥	1	1" =	, . <mark>O</mark>	60	ļ	<u> </u>		· •		+	 	 .
- :					•	.			1 .	· ·	· ·		. ``\ †	V		K	†				i • • •	ļ	• -	-	; ; -	•	
	· .		-		1	<i>i</i> .		1	•	į •	•		•	• ``	X	. `>		u =	0	40)	! ! · · ·	•		†	, -	•
		- [:	- /	<i>i</i> .	1	-	•	:	ļ 	`	1	+ ,-	1		, ,		!	u =	0	. 20	<u>,</u>			,	
- 	g	•	.0.		- ‡	4	<u>′</u> —		-	- i			-	1	1			<u> </u>	ا • ڪسر ا	 		-	-	_		 	!
	•			• -	₹	/:			:-						, ``z 	-	ļ		+		!-	ŗu	188. (• • •) Ö_	!	;
		-		•	1	′ : :		-	+	•	1	-	1	1 /	<u> </u>			K.	•			•	-				•
	• ;	-		,	4						• •		· •		<u>;</u>		: 		•	-			-		· -		•
	!				🕹		·		-	<u></u>	- -		÷		+) 	·	+	 		-	+		 -	-	÷-
1	:	•		. :	£		-		†	.	ļ	-		+ —.	÷	•	+ -	•		-		-				.	;
+-	•	-			•	•			!		1		4		!	-	•		}	 		+ +	· ·		+	1	† -
•	D	•	0	• ·	-			-	-	-	-		· · - ·	-	-	 	1	Ĺ	• • •				4		-		†
	 		•0		:	•	C	• 2	Ò	!	- 0	4(•	0	• 60)		0	80			7	00	}		
- †	+ + 	-		:	•		-		•	-1	1		• • •	†	;	1	:	• ··	; -			•	🚣 (•	• · · ·	•
* !	1			•	•						-	1	75	52: I	*/ R		;			1	• • •	•	•-		† -	• -	•
	1				i		-		•		• • •	PI	AI	· FZ	16	† - · ·		†	• !	† ·	•	•	•		• • • • • • • •		1

THE PROPERTY OF THE PROPERTY.

0.0 E

XII. APPENDICES


1. Derivation of Flexural Rigidity of Reinforced Concrete Section

Referring to Figure 11.1,

The fiber stress at a distance z from N.A.

Figure 11.1

in compression region

o of the section.

$$-\frac{d^2w}{dx^2}$$
 z^2 dz

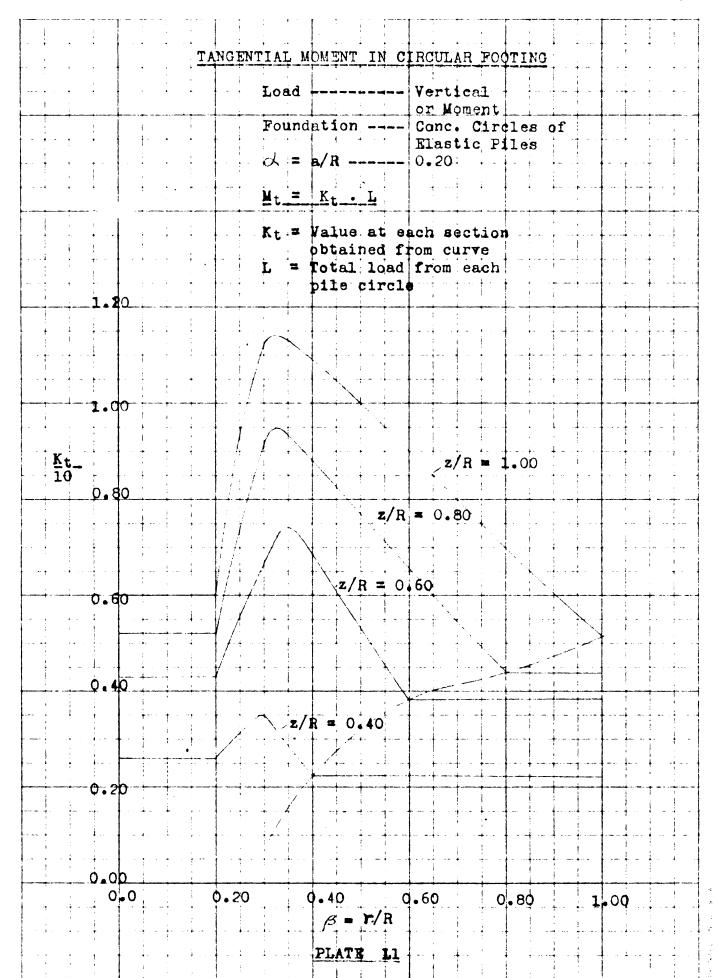
$$\frac{1}{m^2}$$
 h³ $\frac{d^2w}{dx^2}$

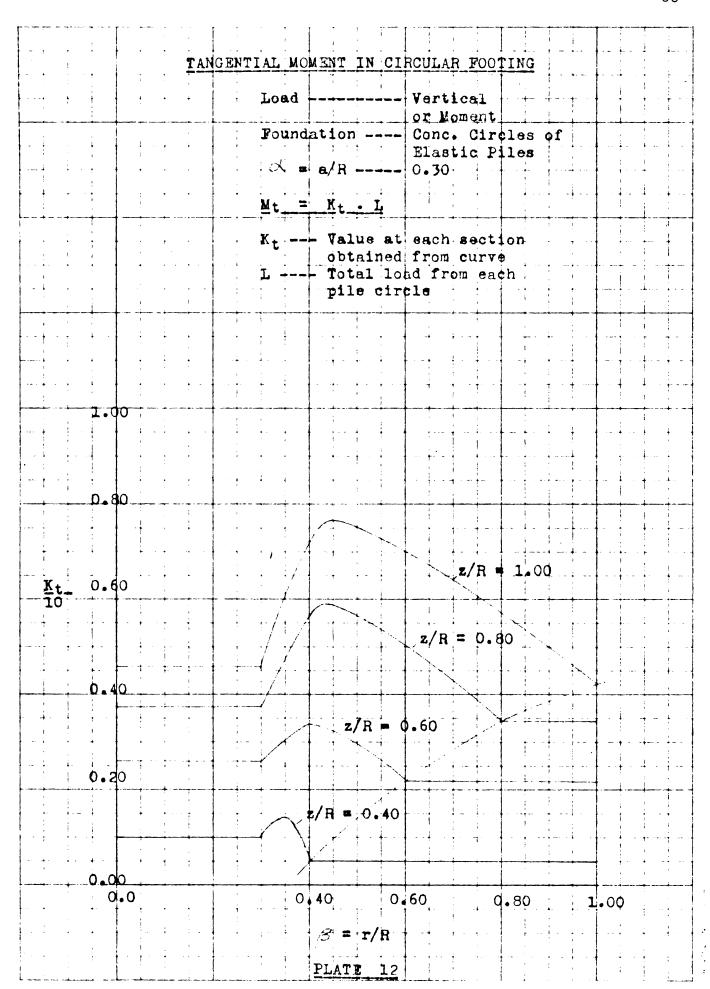
$$\frac{f_{c}(1-k)^{2}n.h.hp}{k} = -\frac{E_{c}kh}{(1-m^{2})} \cdot \frac{(1-k)^{2}nph^{2}d^{2}w}{k}$$

$$= -\frac{E_{c}(1-k)^{2}}{(1-m^{2})} \cdot (pn)h^{3} \cdot \frac{d^{2}w}{dx^{2}}$$

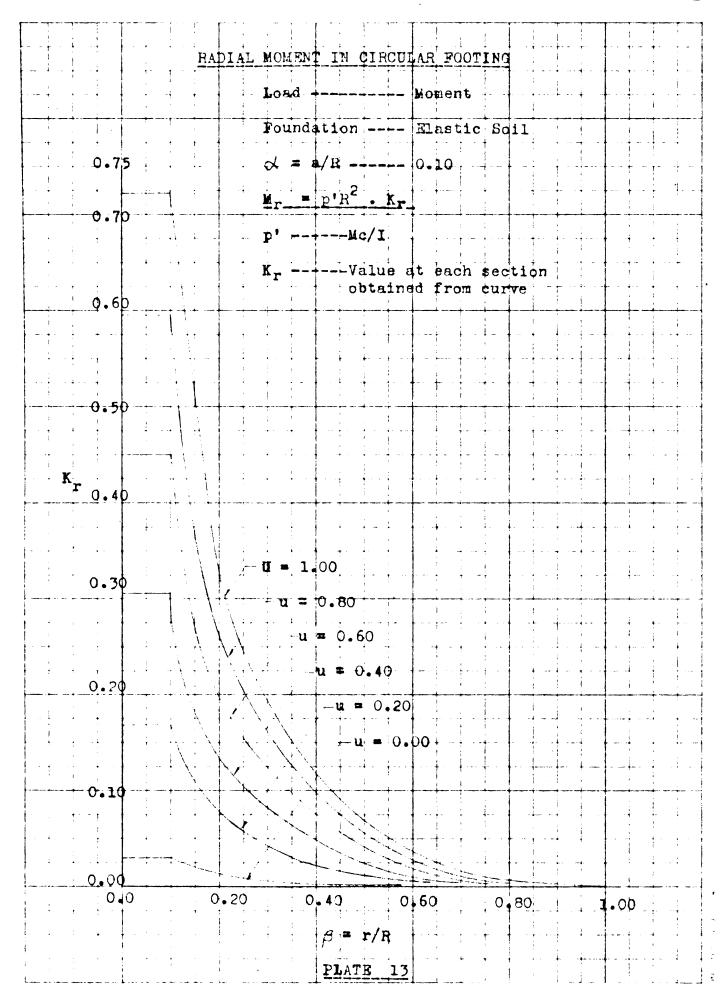
$$M = -\frac{Eh^3}{(1 - m^2)} \frac{d^2w}{dx^2} \left[\frac{k^3}{3} + pn (1 - k)^2 \right]$$
 . . . (1)

 $\frac{kh.kh}{2}$ = pn.h. (1 - k) h (taking moment about N.A.)

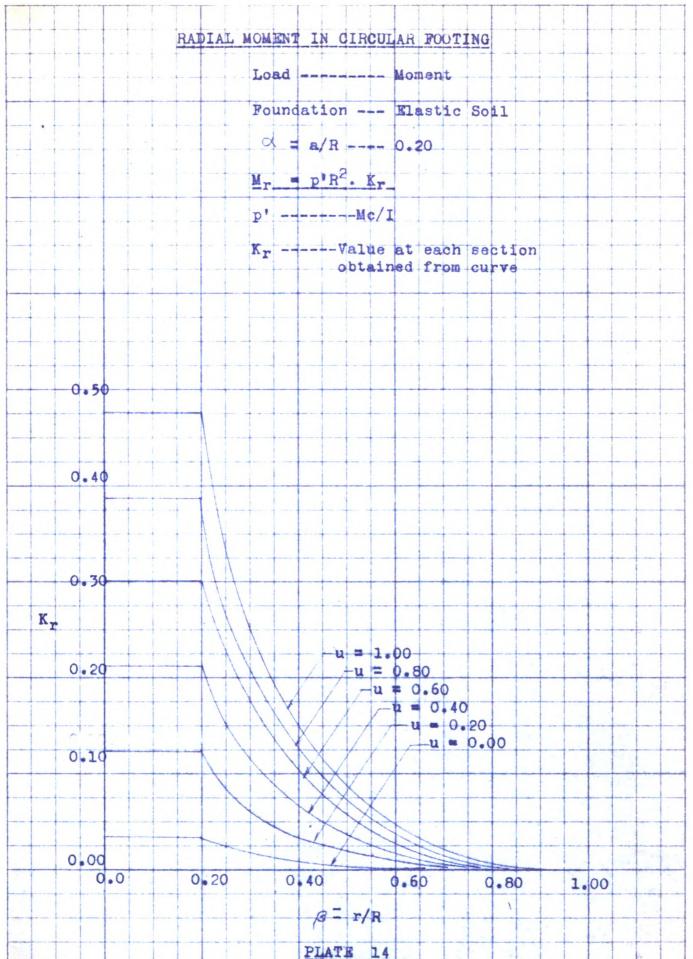

$$pn = k^2/2 (1 - k)$$
 . . . (2)


Sub. (2) into (1) we have:

$$M = -\frac{E_c k^2 j}{2(1-m^2)}$$
 $h^3 \frac{d^2 w}{dx^2} - D \frac{d^2 w}{dx^2}$

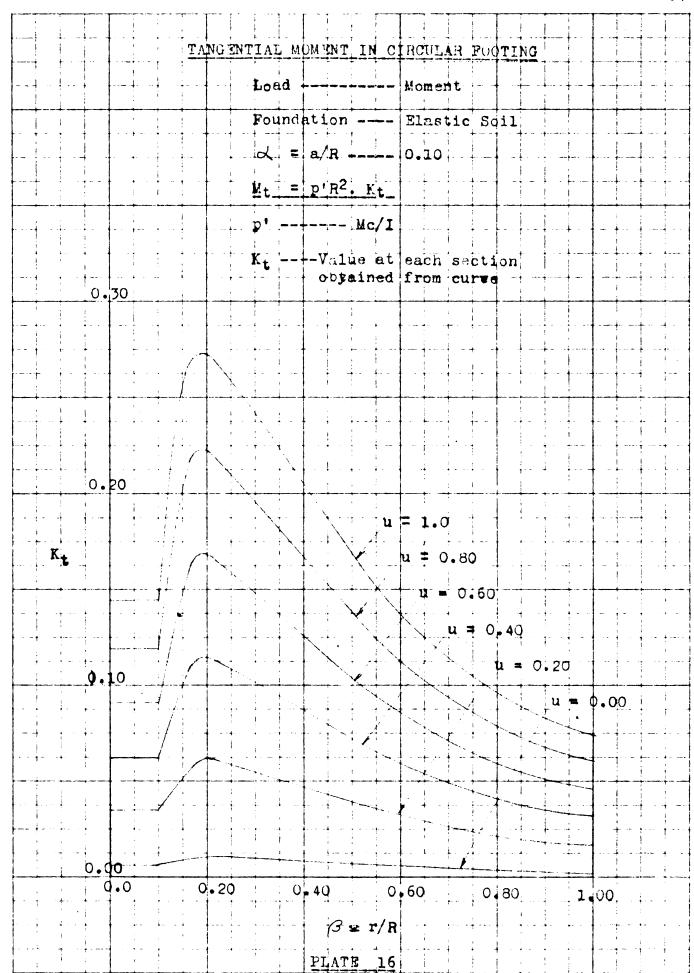

Flexural Rigidity = D =
$$\frac{E_c k^2 j}{2(1-m^2)}$$
 h³

	TA	NGENTIAL M	OMENT IN C	RCULAR FO	OTING	
		Load		Vertical or Moment		
	!	Found	ation	Conc. Cir	cles of	
-	• • • •		a/R	0.10	1168	
1.75	· · · · · · · · · · · · · · · · · · ·	<u> </u>	Kt · L			
		Kt	Value at obtained	each sact	ion	
		L		d fryn ên		
1.50	$\frac{1}{1}$					
						-
- 1				-		
1.25						
				/R = 1.00		
K _t 1.00			z/R =	0.80		
10		z/R = 0	z/R = 0.60			
		Z/H = 0	4.40			-
0.75	+ + + / - + - + / - + + / + / + / + / + / + / + / + / + / + / + / + / + / + / + /					
0.50						
		z/R = 0.20				
0.25						
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					
				-		
0.0	0 (0.20	0.40	.60	0.80	1.00
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/3 = r/R		-	
			PLATE 10		-	

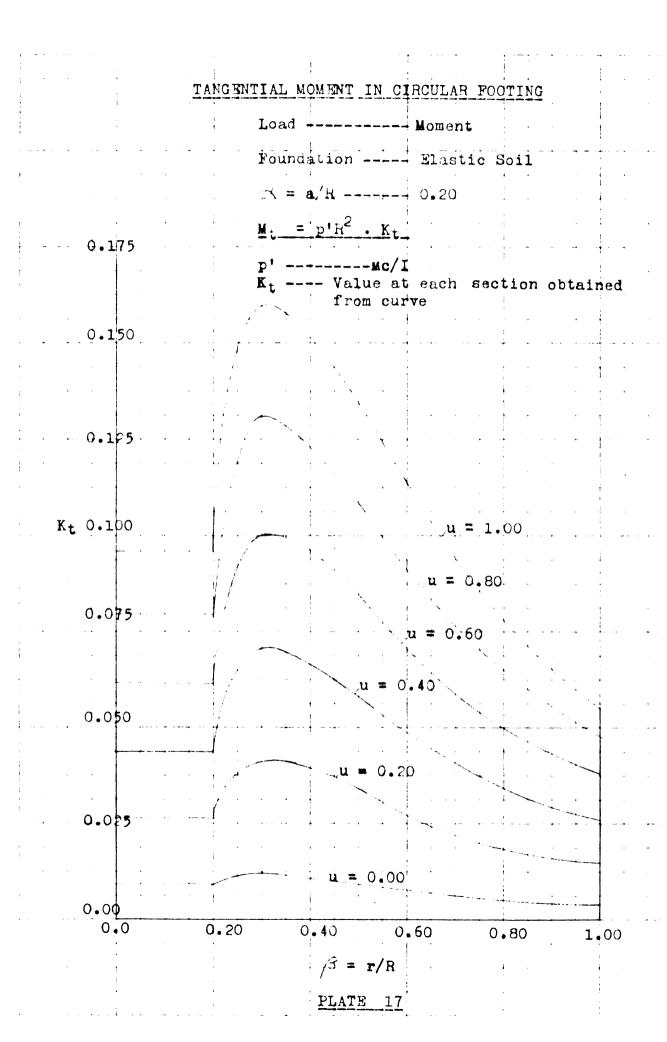


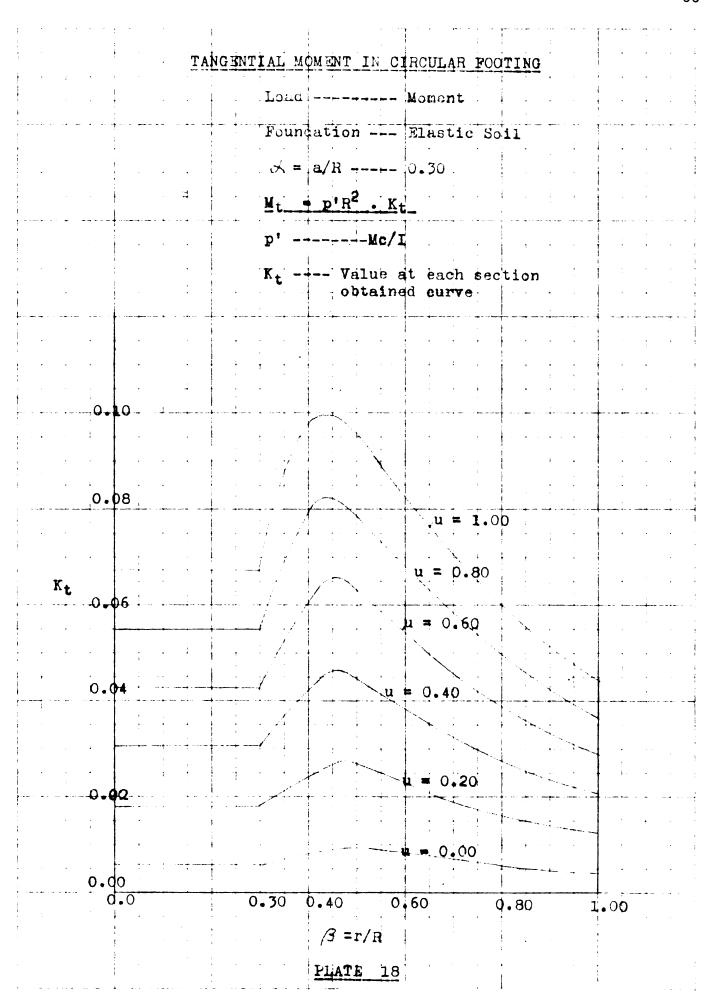
ALM FIRST MICH.

Windows Co. Allow Wines and allowed that


.

A R O N O S A


THE CONTRACT OF THE CHARLES A


NTED IN U.S. A

The state of the s

ı

MII. APPENDICES

1. Derivation of Flexural Rigidity of Reinforced Concrete Section

Referring to Figure 11.1.

The fiber stress at a distance z from N.A.

Figure 11.1

in compression region

is:

is:
$$s_{x} = -\frac{E_{c} z}{(1-m^{2})} \frac{d^{2}w}{dx^{2}} ... (Timoshenko: Theory of Flate and Shells P.2)$$

$$M = \int_{0}^{kh} s_{x}zdz + f_{c} \frac{(1-k)}{k} \text{ n.(1-k) h.hp}$$

where p is the steel ratio of the section.

$$\int_{0}^{kh} s_{x} z \, dz = -\int_{0}^{kh} \frac{d^{2}w}{(1-m^{2})} \frac{d^{2}w}{dx^{2}} z^{2} dz$$

$$= -\frac{E_{0} k^{3}}{3(1-m^{2})} h^{3} \frac{d^{2}w}{dx^{2}}$$

$$\frac{f_{c}(1-k)^{2}n.h.hp}{k} = -\frac{E_{c}kh}{(1-m^{2})} \cdot \frac{(1-k)^{2}nph^{2}d^{2}w}{k}$$

$$= -\frac{E_{c}(1-k)^{2}}{(1-m^{2})} \cdot (pn)h^{3} \cdot \frac{d^{2}w}{dx^{2}}$$

$$H = -\frac{Eh^3}{(1 - m^2)} \frac{d^2w}{dx^2} \left[\frac{k^3}{3} + pn (1 - k)^2 \right] ...(1)$$

 $kh.\underline{kh}$ = pn.h. (1 - k) h (taking moment about N.A.)

$$pn = k^2/2 (1 - k)$$
 ... (2)

Sub. (2) into (1) we have:

$$M = -\frac{E_c k^2 j}{2(1-m^2)}$$
 $h^3 \frac{d^2 w}{dx^2} - D \frac{d^2 w}{dx^2}$

Flexural Rigidity = D =
$$\frac{\text{Ech}^2 j}{2(1-m^2)}$$
 h³

2. Bibliography:

Cummings, A. F.

'Distribution of Stresses under a Foundation' (ASCE Transactions Vol. 101, 1936)

Foppl

Tech. Mechanic Vol. 5, (Chapters on Theory of Elastic Plates)

Holmery, E. O. & Karl Axelson

'Analysis in Circular Flates and Rings' (ASIE Transaction Vol. 54, 1932)

Newmark, Nathan M.

'Simplified Computation of Vertical Pressure in Elastic Foundations' (Bulletin No. 24, Univ. of Ill. 1935)

Frescott

Applied Elasticity (Chapters on Elastic Plates, Dover Publications, 1945)

Richart, F. E. & Klugle, R. W.

'Tests of R.C. Slab Subjected to Concentrated Loads' (Bulletin No. 314, Univ. Cf Ill., 1939)

Roark, R. J.

'Stresses Froduced in a Circular Plate by Eccentric Loading and by a Transverse Couple' (Bulletin No. 74, Univ. of Wisconsin, 1932)

Russel, G.M.

'Elastic Deflection of Thick Plate -Under Uniform Load' (Engineering (England) Vol. 123, 1927)

Stoker, J. J.

'Bending and Buckling of Elastic Plates' (New York Univ. Summer Session notes, 1941)

Talbolt, Arthur N.

'Reinforced Concrete Wall Footings and Column Footings' (Bulletin No. 57, Univ. of Ill., 1913)

Timoshenko, 3.

'Theory of Plates and Shells'
(Chapters on Plates)
'Theory of Elastic Stability'
(Chapters on Buckling of Elastic Flates)

Vetter, C. P.

'Design of File Foundation' (ASCE Transactions Vol. 104, 1939)

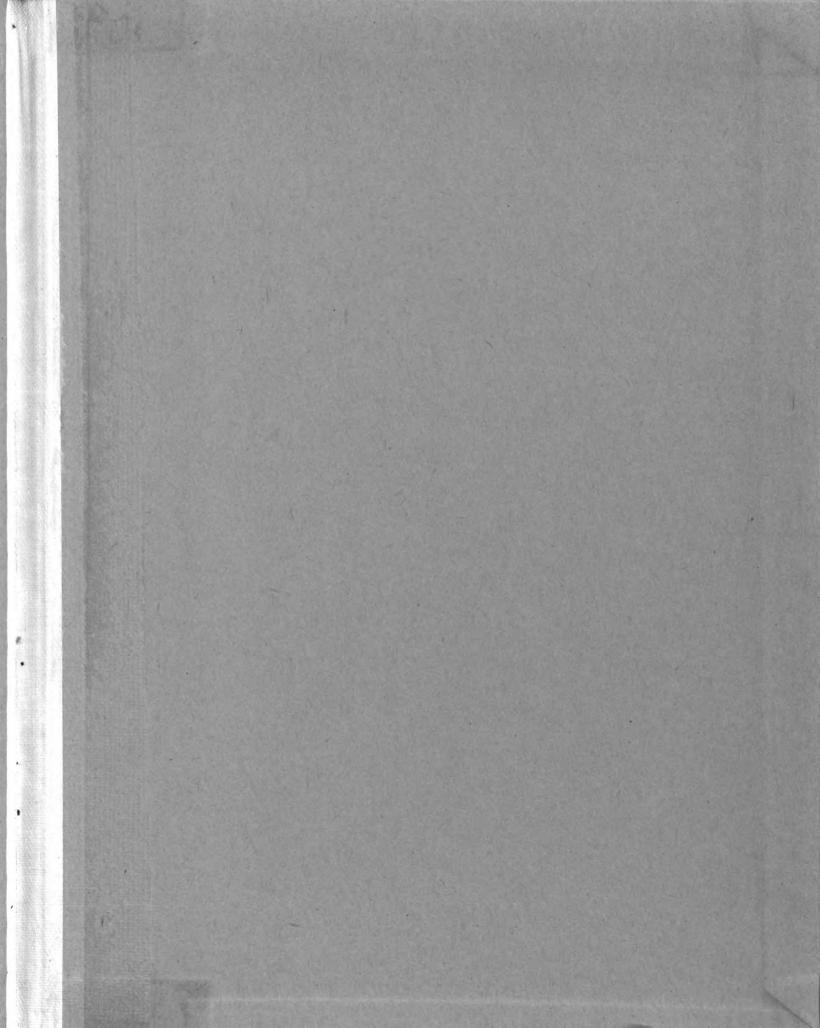
Wahl, A. B. & Brecht, W. A.

'The Radially Tapered Disc Spring' (ASME Transaction Vol. 52, 1930)

Westergard, H.M.

'Stresses Concentration in Plates over Small Areas' (ASCE Transaction Vol. 108, 1943)
'Moments and Stresses in Slabe'
(A.C.I. Frocedings Vol. 17, 1922)

Wise, Joseph A.


'Circular Flat Slab, with Central Column' (A.C.I. Journal Vol. 34, 1938)

Joint Committee

'Recommended Fractice and Standard -Specifications for Concrete and Reinforced Concrete, 1940'

No 11 '53 May 12 '54

ROOM USE CALL

