AN ELECTRICAL METHOD OF PROSPECTING

Thesis for the Degree of B. S.
WILLIAM G. KECK H. WESLEY DOVE
1929

Prispecturg

Electrical enguverris

AN ELECTRICAL LIETHOD
 0 F
 PROSPECTING

Thesis for Degree of B. S.

1929

THFQ1S

$$
\because
$$

Abstract

During the course of making this research, we have used instruments and materials belonging to the Physios Dept. ile wish to express our appreciation of this favor and also for the use of the shop. Espeoially are we indebted to Geo. Chapman, who by his many helpfal sugsestions and his ability along such lines, has made it possible for us to oonstruct suitable apparatus for our work. We also wish to express our gratitude to the members of the Physios and Eleotrioal Engineering Departments for their constructive oriticism, especially Professors Chapman, Kinney, Naeter, and Snow.

INTRODUCTION

Lack of a method definitely inown to be applioable to the locating of geological formations has long hindered the development of mineral resources. It was with the object in mind of devising some method for studying these geologioal formations that this research was attempted.

The search for Nature's hidden mineral resources has always beon fascinating to that type of Amerioan known as the "Prospector". His methoda have largely been of a hit and miss nature: his results dependent anly upon the number of triala he makes. The remuneration resulting from a lucig guess, has caused certain more or less well meaning individuals, to olaim powers of looating such resources with infallible accurady. Reference is made to the "Divining Rod" and "Doodle Bug". In fact Industry, the Petroleum Industry especially, has been duped so many times that it looks with skeptioism upon anyone purporting to locate sources of mineral wealth. Many of the men having control of the financial resources of the industry have forgotten much of what theg learned in their oollege physics and consequently are not prepared to differentiate between a sincere attermpt on the part of the soientist and the fraudulent operation of the "Doodle Bug Expert". This
uncertainty is rapidiy being dispelled by the assurance given to soientific mothods by some of the leading colleges and universities in the country. The suocess of such methods is by no means graranteed, since the task is no simple one, and much researoh must be done before methods suitable to all oonditions are devised.

REVIEN OP GEOPHYSICAL METHODS FOR

PROSPECTING

As has been said previously, there have been devised a number of methods for soientifically searohing out these mineral deposits. of the methods which are being used today, there are four general typesi- magnetio, gravitational, soismio, and electrioal. Fie shall briefly consider some of the advantages and disadvantages connected With each of these types.

It is well known that the earth acts as huge irregular magnet:- the irregularities being caused for the most part by subsurface deposits of magnetic or non-magnetio bodies. For instance, an iron ore deposit near to the sarface will concentrate the magnetic lines through that point. To Obtain measurements of this sort, two types of instruments have been devised. They are the magnetometer and the magnetic variometer. The first of these measures the vertical and horizontal defleotion of a very sensitive dip-neede or compass. By plotting the difforences of these defleotions from the normal deflection on a graph , the position of the ore body may be estimated with some degree of accuracy. The magnetic variometer measures the intensities of the magnetio fields in these two directions, and graphs are made in a
similar manner.
While these methods are undoubtedly of some value to the prospector, a number of diffioulties must neoessarily be overoome. Earth ourrents, always present In the ground, have magnetic fields about them and tend to decrease the rellability of the measurements. בagnetic atorms have their distruotive influences. Substances above.the aurface which have magnetic properties, such as rail-raads, or ang iron artioles, will also introduce other sources of error. Probably the greatest fault of this mathod is the inability to determine the depths at which the deposits lie.

Another system, which has been used with some degree of aatisfaction, is the gravitational method. Of the types under this heading, the torsion balance is the most important. This instrument depends on the differences in the pull of gravity from place to place over the earth's surface. A very sensitive beam balance, with weights at difforent distances from the ground, is used to obtain the measurement. The force of gravity at the point of measurement aots at a different angle on the two weights, and thus causes the beam to be throm ont of the horisantal. The amount of the defleation may be maasured, and graphs made
of readings taicon at various points over the earth's surface. Any heavy ore-body will of course exert a greater gravitational force than would be found if the body were not present. Thus, it is possible to locate certain struotures or formations in this way. The instrument of course has a number of disadvantages. It is very expensive, extremely delicate, and must be perfeotly shielded from air ourrents and temperature changes. Caloulations afe diffioult, and many correotions must be taken into consideration. The interpretation of results is an extremely hard task. Another disadvantage that this mothod has and it is common to most of the other methods - Is the failure to obtain any accurate measurement on the depth to the deposit which has been found. However, the instrument has been used with fairly satisfactory results in a number of loailities.

The third system is of the seismio type. A oharge of explosive is set off at a certain central point. A number of stations at known distances from that point receive, by means of very delioate and sensitive instruments, both the sound wares which are transmitted through the air and the ones conducted through the denser earth. The instrument also records the time of detonation of the charge, and
from these time and distance measuremtnes one may caloulate the velooity of the sound wave through the earth in the different direotions and over different distances. This gives a clue to the sub-surface struoture. For instance, sound waves may attain a speed of 16,000 feet per second through a salt dome, while the normal speed through earth is only about 6,000 feet per second. In general, the velooity depends on the density and elastioity of the medium through which it is being condnoted. This might seem to be a very good way to looate structures, and probably would be if it were not for a few things which we shall mention. In a populated territory it is inadrisable to use this method, for reasons easily seen. In a mountainous seotion more complexities arise from refleoted waves eto. Any surface disturbence may jar the recorder and introduce errors. Here again it is impossible to obtain a depth measurement. for these reasons, the above mentioned type of measurement is not all that one might desire. The fourth, and last, type of measurement, and the one in which we are espeoially interested, is the electrical mothod. mhree olasses are importants- natural earth ourrents, a direot current determination of earth resistance, and the measurement of earth resistivity by the alternating ourrent method. Of oourae, there are many other eleotrical methods,
but they have not proven to be very astisfactory.
In the first of these three classes, the ground currents resulting from buried ore bodies or salt deposits are measured by means of a null-point (or potentiometrio) mothod. Whon these are plotted, one may obtain some idea of the position of the deposit. This method does of course give no indication of the depth at which the body is located, or the composition of the body. It is only possible to use this system for deposits whioh are very 0108 to the surface.

In the measurement of earth resistance with direot ourrent, a potential difference is applied at two points and the equipotential lines traced between the two. If no ore bodies are present, the lines will be symmetrical. If, however, there is an ore deposit near the surface, the ourrent lines will be ooncentrated through an area near that point, thus indioating the location. of course variations in the resistance of surface soil tend to ohange the direotion of the lines. So also do rivers, drain pipes, cables ete. and these things mast be guarded against. Wuch difficulty is encountered in interpreting results. No idea of the depth to the deposit or the thicimess of the deposit may be obtained $\mathrm{b} r$ this method. Alternating ourrent may
be aubstituted for direot, and head-phones or an A.C. potentiometer used in locating the equi-potential lines. This removes the errors whioh are present in the D.C. measurement due to polarisation of the eleotrodes, but does not help any in ascertaining depths.

The third class of eleotrical method is the one ooncerning which this thesis has beon written, namely the earth-recistivity method. The theory will be disoussed later. However, it may here be said that deapite the diffioulties which accompány any physion researoh problem, we have developed apparatus and technique to a point where it is possible to obtain accurate results which have a definite meaning. In none of the other mothods has anyane been able to get an acourate measurement of depth to the deposit in question. Neither have they been able to get any idea as to the thickneas of the deposit or stratum. By the earth-resistivity method which we are using, it is possible to chock both the depth and thickness; and, in the case of some salt brines, the ooncentration may be estimated with a fair degree of accuracy. Surface conditions do not affect the measurements in ang way, provided the surface over which the measurements are being taken is reasonably level. This is a distinot
adrantage, for in the other methods, a thiok orerbardon of drift oauses the sensitirity and acouracy to be greatiy lowered. The instrumonts and apparatus necessary are not expensive, and are easily portable. Another point is that the depth and thicloness of a number of different rook strata may be oheclued at one time in one set of readings. The bad effects of inherent ground potentials and ourrents, whioh canses inacouracies In the magnetio methods, have been oarefully aroided. The speed of obtaining measurements compares favorably with the time required in the otber systems. The reasons for the advantages as named above will become apparent in the discussion whion follows.

THEORY OP THE EARTH RESISTIVITY
METHOD

If an electrio ourrent is passed botween any two pointa in an homogensons condmoting materiat, the ourrent Ines distribute thomseltes in the following manaersFear the electrodes they will be amost radial. and tho ourrent path will be conatrioted; near the center ther will be practioally parallel, and the ourrant path almost unlimited. From this it is soen that most of tho resistance drep in potential will ocour rery clese to the electrodesi and an masurempnt whion attompts to obtain the resistivity of the material through whon the ourrent flows, by a masurement of the potential aoross these points, will be in serions error, since conditions at the ourrent eleotrodes are so variable. It is rathor imple, however, to use two other electrodes to measure the potentisl at some points near the oonter where the ourrent IInes are approaching parallelism. Thon by maxing use of the total ourrent flowing through the outer eleotrodes, to oaloulate the resistivity is the next stop. Maner, in the D.S. Bureau of Standards Bulletin (1916) 12, NO. 4, 469, desaribes mothod by which this resistivity may be obtalned. H uses the four eleotrodes

as before mantionod, but spaces them equaliy, in a straight Iine. If the four points are on a plane surface of a conductor the resistivity is given by the formulas

R-2Nㅛ V / I
Where R is the resistivity, a is the depth to whioh the measurement is effective, T is the potential existing betwen the two inner eleotrodea, and I is the true value of the ourrent flowing through the ground. If the eleotrodes are within the conductor, so that the distance between thom is small compared to the distance to the nearest surface, the factor two is replaced by four. The depth to whioh the measurement extende for ans one reading is the same as the distance betwenn any two electrodes. By inoraasing the distance between olectrodes then, the depth to which the measurement becomes effective is also increased, and any ohange in the value of the resistivity thus obtained Will reveal something of the nature of the struoture included below the depth of the flrat measurement. To more oleariy 1llustrate this, an ideal ourve has been plotted, and reference will now be made to it. In this oase the first 300 feet is taicen to be a drift, and a value of 200 ohms per foot oubed is assigned to it. Any measurement made,

$s 0$ long as the distance between potential electrodes does not exoeed 800 feet, will give this value for the resistivity. If now the distance between electrodes be increased begond this amount, a now material is included. This is a sandstone whose resistivity is 500 ohms per foot oube. The value now obtained from the measurement must be the average for the volume of the material included in the ourrent path. Thas the resistivity plotted against depth no longer remaina a straight line, but rises immedately beyand the 300 foot depth. This continues until a brine is raached, at which point the average resistivity decreases and the ourve drops off.

The previous work upon this method has carried the theory to this point. 1 disorapanoy arises imediately however, when one compares curves actually taken in the field with the ideal ourve. It appears that when a brine 1s entered a decrease in resistivity ocours which is so great as to be absolutely imposaible for even a perfeot conductor. A new theory mast therefore be substituted and ahecicod. It is assumed that as long as homogenoity oxists in the material included within the current path all previous relations hold. As aon as the brine is brought Into the range of the ourrent lines they lase their regularity
and rather than pass through the high resistance laterally above the brine sand, they dip direotly through the interrening material to the brine strata. This immedately canses the planes of equipotential to spread farther apart. due to the $10 w$ resistance of the new path, and the reading obtained at the surface is many times lower than rould be expeoted. To cheok this theory the distribution of potential betwen two electrodes for which the ourrent was not antering a brine, and that of two eleotrodes whose distance was great enough to permit the ourrent to onter the brine was reoorded. These resulta have bean plottad on an soompanying sheet. The ilpat condition show the normal distribution. The second Feveal that a moh lower potential exista betwaen the conter and the point at which potential masaremont takes place than 1s ahom whan no brine is present. This wo believe substantiates the foregoing theory. As farther proof that no distortion takes place until the brine depth is reached, whe have to offer the fact that we can check known data acourately.

The possibility of employing the method discussed above was first experimented with by the Department of Terrestial Magnetiam of the Carnegie Institute of mashington, and the Miohigan College of Minas and Teohnology. In conducting the investigation, Dr. 7. O. Hotohiciss, Professor Jame Plaber, and Dr. O. G. Ritrman of the Miohigan College of Mines, and T. J. Rooneg and J. W. Strohman of the Department of Terrestial Magnetiam worked together in the Copper Country of northern Miohigan. This location was ohosen because of the complete data at hand ooncerning the geological struotures present. Measurements were taken, for the most part, near drill-holes whiah had been bored for test purposes. Doptha to bed-rocik were ohecked in a number of instances with an accuracy which warranted further work of this nature. Next was the task of determining the depths to water level. This was also checked to within a few feot. These men also made a number of measurements to find the specific resistances of various rooks and sands by taicing readings along an outoropping of those strata.

During the past summer (1928) we were ongaged in checking the depths to salt-brines in the Marshall sandstones. This work was carried out in the central part of the state. Thi: brine bearing atratum, in that looality, was at a dopth of 1200 to 1500 feet. Wo employed the same method of procedure and used equipment similar to that outlined by Messrs. Fisher and Rooney. We found that it was possible to cheok the depth to this brine in most cases with some degree of acouracy. There were of course many irregularities in the curres similar to those shown in the work done previous to ours. A further discussion of these irregularitios and the means of aroiding them will be given later.

CORRECTION OF ERRORS ENCOUNTEEDD IN EARLI HORK

A method of taking measurements has been outlined by Hotahide, Rooney, and Fisher in a paper presented to the Instituta of Mining and Metalurgical Engineers, in February, 1928. This method was the first experimented With. The method of taking measurements was as follows: The sourod of potential was a bank of ${ }^{(B n}$ batteries. The ourrent from these batteries was sent thru a commatator which reversed it approximately 30 timea per seoond. This alternating ourrent was then oarried thru the ground by means of the outer electrodes. This resulted in an alternating potential ppearing at the two inner eleotrodes. This potential was then taken baok thria a commutator, built apon the same shaft as the first and exactly like it. The effect was to reotify the alternating potential so that it oould be measured by means of the DC potentiometer. An ammeter showed the current thra the ground and a portable galvanometer in the potentiometer circuit indicated whon a balance was obtained. The necessity of uaing alternating ourrent is occasioned by the faot that ground ourrents of varying intensities are everywhere present in the earth, and if reversed rapidly enough, their effeot will be eliminated. Various inacouracies presented themselves after a number of
readings had been completed and it was with the purpose in mind of correcting these inaccuracies that the present thesis was attempted.

The commatator was the first piece of apparatus which showed inaccuracy. It was of the ring type and necessarily had a great deal of friction. This friotion caused thermal potentials to be induced which, though ordinarily not large, and for any other type of measurement negligible, in this case Introduced oonsiderable orror. Contact resistance and contact potential showed effects whioh proved to be a source of error. The potential measured is of the order of 10 millivolts, and potentials resulting from souroes of error in the commutator were often one half that value. The inability to interpret variations in suoh potential readings is evident. As long as the depth is not great and the resistivity is high, everything goes well, for the potentials measured are thon as high as 200 millivolts, and slight variations do not affect the results appreoiably. It is for the deeper reading that accuracy is needed. For this reason, after six futile attempts to design one whioh would satisfy conditions when placed under test, a potential commatator whioh makes friction almost negligable and completely balances contact potentials was oonstructed. Previous attempts at building a potential oommatator had guarled
against shorting of the segments when reversal was made. The galvanometir whioh was a rery sensitive one, deflected sightly at each maike and break of contact. To eliminate this, the brushes were caused to maice a dead short aoross the two segments, while changing from one to the other, and this of course resulted in a short across the galvanometer during the same time. This had the tendency to "freeze" the neodle and eliminate annoying vibration. The early commutator also had a period during whioh the ourrent was completely interrupted. This for the most part amounted to about 15% of the tim of each cyole. The latest one, by means of a seoial spring arrangement makes the time for ohanging contacts almost sero. So nearly sero in fact that the milliameter shome no ohange in defleotion between the steady state and the operating condition. This too, had been a source of error since the commutating faotor varied somewhat with the speed.

Another soure of error was due to oapacitance effects. 4 \#14 B\&S, double covered wive was used to conduot the ourrent to the outside leotrodes. This was laid directly upon the ground, whion oonstituted the return oirouit. Ieakage naturally resulted. The most harmful feature was not the error in ourrent reading due to leakage, however, but the fact that the learage occurred olose to where the
potential had to be measured, or in other words, all along the line of measurement. Had this leakag been constant all would have been well, but the nature of the surface soil is to furnish better conductivity in som places than in others. The result was a varying potential reading which showed surface conditions rathor than subsurface conditions. To remedy this a \#20 bare copper wire was used and supported upon stakes spaced 100 feet apart. At the top of each staice an inaulator hold tho wire in place. No more trouble mas encountered due to leakage.

Barly reports upon the subjeot indicated that Inear distance measurements need be accurate to only 5% of the distance between eleotrodes. This may well have been true With the acouracy of measurement attained at that tine, but docidody is not true at present. In macing a sot of readings over the river bed at the Logan St. viadubt in Lansing, the electrodes were supported from a footbridge and allowed to dip into the water. A breese had the tendonoy to sway thom through a di tance of a fer inches, when they ware 50 foet apart. The galvanometer changed its reading in perfect Enohronism with the swaying of the eleotrodes. The oonolusion is that distance readings mast be eraot or eryoneous results will be obtained. In addition to this it was

$$
J
$$

discovered that the surface over which massurements were to be taken should be fairly level.

The correction of all these faults took considerable time, and it was not until the spring vacation (1929)
that the new and improved apparatus was put to teat. The resulta were gretifying in the extreme.

EXPERTMENTAL

Conatraction of Apparatus.
The commatator in use is a double commatator, one side seversing the current, the other rectitying the potential. The ourrent commatator has four rings, two of them continuous, and the other two eplit. These slots are not fllled with insulating material. The brushes are all on one side and thoir tips are in a streight line. They are made of brase and are under tonsion. When the commutator is turned the twe upon the split segments drop over the edge of the alot and immediately make contact upon the opposite segments. This oances the time for contact to be very nearly 200%, whioh is very desirable. The potential side of the oommatator is the more diffioult to oonatruct. It is here that iriotion must be reduced to a minimum and balance of segmonts be almost perfect. These two requirements are exaotly opposing each other. If friotion be reduced, the diameter of the segments must be small; if the segments are small, a balance of the time in contaot on each segment is almost impossible.

It was for this reason that various types of vibrating oontact commatators were attempted. In all aiz different commatatore were constructed, each one failing to give the desired results. The seventh, and last, was built as follows:-

A hole was drilled and tapped into the end of the ourrent oommutator ahaft, whion was of on and one oighth inoh baiselite. Into this hole was placed a threaded rod about one aighth inch in diameter and two inches long. Upon this steel rod was pressed a hollow oylinder of composition insulating material. The whole commutator was then placed in the lathe and this insulating material was tarned down until it was abont on fourth inoh in diameter. Orer this composition was pressed a one half inoh niokel oylinder with the required slotting. This oylinder was then turned down until it was pare feotly mooth and contered exactly in the and of the commutator shaft. The slots between the segments were left open and were very naryow. They were placed as nearly 180° apart as was possible. The balance in time of centaot of one segment to that of the other was attained by position of the brushes. In our apparatus, since they were designed to short direotly aoross the segments for a small period of the total time for one revolution, any unbalance in construotion of segments would then be taken up in the time of shorting. Since the needle tends to read zero during the time of shorting, the tim over Which impulses are delivered to the needle is immaterial, and the reading is that of the maximum applied potential. The commatating factor does not enter into the reading where a null method is used. The whol commatator is driten by means
of alz volt direct ourrent motor, whioh is operated by ordinary automobile storage batteries.

The necessary meters (mililameter, galvanometer, and potentiometer) are mounted on the top panel of the inatrument case. Thls oase is about three feet wide, three and one hale feet high, and one foot deep. The panel is placed horisontally and the metors mounted flush to it. on a vertical panel, extending downward from the front odge of the top panol are mounted the necessary resistances and controls. The right hand oontrol limits the current through the ground, the center one is the potentiameter rheostat, while the one on the left supplies a steadying potential to the ground eleotrodes. The neoessary switches for these oirouits are placed in convenient poaitions. In the bottom of the oase is a ocmpartment in whioh the "B" batteries are placod. A total of 270 volts is available. Whis is an ample souree of potantial for almost any type of soil whoh may be encountered. The motor and commutators are placed on a shelf betwean the instruments and the batteries. The wiole case complete weighs approximately 75 pounds and may conveniently be carried by two men, handles being placed on the onds for this parpose. The top oover is hinged at the back, and when opened forms a desk upon which graph and data sheets may be placed.

$$
1
$$

The supperts for the wire are three eishths inch steel rods which are about four feet long. At the top of each rod an insulator for holding the No. 20 bare oopper wire may be placed. The insulators we now have serve very well for experimental purposes, but to facilitate the maicing of measurements in a commeroial way, a better type may easily be designed. The copper wire is carried on a spool about five inches long and haring a diameter of approximately four inches. It is fitted with a orank, which easily allows one to draw in and reel up 1500 reet of the wire with no walking neoessary on the part of the operator. For greater lengths, it is necessary to walk the length of the wire while winding it in, or loop part of it back toward the spool. In all, 5000 feet of this wire may be wound on one of these reels or spools.

The eleotrodes consist of half inch steel rods about three and a half feot long with a cross arm handle at the top and and pointed at the lower end. These are forced into the ground to 2 depth of about two or two and one half foet. The oonnection of the ourrent eleotrodes to the bare wire is acoomplishod by twelve foot leads of rubber oovered wire fitted with a pring battery olips. The potential eleotrodes are fastened directly to the onds of No. 14 insulated oopper wire whioh is allowed to rest on the ground. There is no danger of leakage bere, consequently no supports are necessary.

OBTAINITG READIMGS

In beginning a set of readings in a section of the country about wioh information is desired, a stretoh is selected which is level for a distance three times the depth to which the measurements are desired. In other words, over the distance to which the electrodes are to be set. The supporting stakes are placed acourately every hundred feet, thas serving as a means of measurement for electrode distances, and the bare wire is strung out the required distance each way from the center of measusements. The instrument oase is placed at the center and the leads for the eurrent are attaohed to the bare wire. The potential leads are attached to the insulated wires whioh terminate at the potential electrodes. The first reading is usually started at about 150 feot, for in Miohigan the drift extends to almost that depth, and since we are not interested in it, we save time by starting below it. (In case it is desired to oheok the depth or thiomess of this drift, it is only necessary to begin our readings at a point nearer the surface.) At this sotting each of the potential eleatrodes are placed 75 feet from the center of measurements and each ourrent eleotrode is 225 feet from the center. The commatator is then started and readings taicen which show whether gromad potentials are eliminated. A dial setting soon romedies this
fault should it be present. The bettery switah is thon olosed and almultaneous readings of potential and current are made. These are then recorded. The operator or instrupant man 1 gnals and the electrodes are ohanged so that their effoctive depth is now 160 seet. The process of taking reading is then repeated. In some instances increments of twenty feet are suitable. If the formation is large, suah as a 100 foot brine sand, there is no need of ten foot incremente to reveal it, and the trenty foot increments will proceed more rapidif. This process is repeated until the required depth is reachod, depending upon what indicator it is desired to piok pp. In the work done in Iivingaton County it was not necessary to go more than 2000 foet. In the central part of the atate however, the dearahall brine is mach lower, and the masurements were made accordingly.

FIELD TESTM

In the Fall of 1928, arrangements were made with the State Geology Department at Lensing to oarry on a sories of measurements. We are indobted to them for their hearty co-operation and the funde which mere nocessary to equip a party for the field trips. Those consisted of an assistant. Gerald Eddy, from the Michigan State College Geological Departmont, and the necessary transportation. In addition wire and apparatus which could not be obtained at the oollege and which would have been too expensive for us to buy, were sapplied by this department.

The distriot in which it was planned to oonduct teste. centered about Powlerville. For some time it has been known that a folding of the abstrata had ocomrred in this area. Several wolls have been drilled north and east of Fowlerville with the intention of revealing this atruoture and in the possibility that oil might be discovered there. Several of these showed indications of gas and oil but no oommercial quantities wre discovered. Procesding on the asaumption that the existing wells were on the top of the antioline, as a fold of this kind is called, more wells were drilled to the north and slightly west of this place. These wells also revealed a high structure and so the direotion of the antioline was
assumed to be almost due north, and slightly west. In none of these wells howerer was 011 found in paying quantities. This fact, ooupled with the size of the structure led the geologioal department to believe that the wells already drilled were not actually apon the sumit of the antioline. It was to oheok this theory that tests were planned for this distriot.

During the winter vacation a number of tests were made near the wells already existing, as well as in the territory to the west. A big diffioulty presented itself in the fact that the Beres formation, which is nearest the surface here, Is rather patoky and does not contain a brine in any appreoiable quantity. The well data was cheoked however by a method of interpretation not before employed. Previously a structure of this kind was shown by a strong dip in the ourve dpe to the presence of brine. (See Haslett and Robb-VVll curve shoets.) Where this was absent howerer no break of importance showed. The formation, for the most part shales, directly above and below the Berea have alightif difforent eleotrical oharacteristios and are very thick, sometimes four to six hundred feot. The readings through any one of these formations have a definite slope, and the intersections of these two slopes gave indioation of the depth of the Berea, or dividing struoture. This method was applied suo0essfally to several other localities.

Knowing that the Marshall brine, which is above the Berea about 1200 feet, is found at Lansing and not at Fowlerville, a series of measurements extending to the westward was planned in the hope that this indicator could be picked up. The larshall sand is the most produotive brine bearing strata in this area and definite measurements were expected. It was here in this attempt to looate the Marshall that the fact was revealed that the struoture was much broader than had previously been supposed. In faot although readings were taicen 88 far west 28 Willameton, the Marshall was never pioked up. The Berea was found however, this time with brine, at a depth Whioh indicated a very steep dip for the western side of the antiolino. The work for this time ended with the impressIon that the atructure was much broader than previously supposed, that it proceeded much farther to the west tinan well records showed, and that if more readings were to be taken in the Beres sand, measurements would have to be more socurate, since some of the tests did not allow us to arrive at definite conclusions. It was for this reason that new apparatus was desiyned and constructed.

During the spring racation (1929) more measurements were tacen wth the newer apparatus. This time the masurements began at Lansing, where the Marshall was definitely known to exiat. Here the harahall was pioked up easily
becauce of the high brine content of the formation. The line of measurements swung somewhat to the north of Williamston in the hope that the structure could be defined in the Marshall alone. It was not supposed at the geologioal department that the Marshall outoropped very far north of Williamston. Indications were very strong in this formation up to about three and one half miles east of Haslett. The next reading, about six miles east of Heslett, gave indioations very mach like the Berea formation. A oheck was made between these last two readings and results obtained which showed no byinc at all and which were different than any previousiy encountered. Another reading only one half mile away give a similar ourve but the depth readings were high by 300 foot. This gave the slope of the structure to be approximately 600 feet per mile. The Marshall was shown to outcrop where no previous data had indioated that it should. The indication that had beon obtained in the winter's work was verffied and the IInc of outcropping of the Marshall fitted in as was expected it might. The atructure was defined as extending to the westward for a distance of approximately ton miles from what had previously been supposed.
loting upon this data a new set of readings was planned. The ofty of St. Johns obtains its water supply from a deep well within the oity limits. This well penetrates the Parma, aand, a fresh water bearer, and the Marahall and, a brine bearer. The brine is of course plagged off and the fresh water used for the oity. Data however was in this manner available upon which to base further measurements. The fact that the brine is higher here than ordinasy geological data would indioate gave weight to our previous results since it was direotiy in line With the nev direction of the anticline. The first readings taken near the well ohecked the dopth to the brine within five feet, and in addition the fresh water strata was ohecked to within the same distance. The fact that we were measureing up the slope of the antioline, and that the brine was shown to be higher, indicated that our results were oven more acourate. The next reading was taicen a distance of three and one half miles east of St. Johns, and an absolute indioation of the Marshall was obtained 140 feet higher than previously. The next measurement was seven miles east of St. Johns and here the Marshall had dropped down again to only 10 feet higher than at 5 . Johns. This outlined the struoture entirely in the warshall and fitted in exactly with previous data. More readings are to be taken in tinis area, but cannot be inciuded in this roport.

DATA AND INTERPRETATION OH
SOAE CRARACTERISTIC MEASURETNTS

The first measurement attempted was that near the Robb well, north and east of Fowlerville. at the flrat setting, whioh was 280 feot, a surprisingly low value of resistivity was obtained. From this dopth on down to about 340 foet a definite slope occurred as shown in the accompanying graph. Between the depths 340 and 730, or for practioaldy 400 feet, the resistivity remained fairiy constant. It is aafe to ady that the avorage resistivity of this atratum of shale is about 75 ohms per foot oubed. From 730 feet on to 900 feet the ourve rises with another dofinite slope.

The interpretation is as follows the first portion of the curre rapresents the Sunbury Shale which, at the Robb Foll, extends to 317 feet. Our location was about one half mile from the well and our readings show the middle of the Berea at 540 feet. Knowing that the Berea is about 60 feet in thiokness, this brings the depth of the Sunbury shale to about 310 feet, which agrees very woll with the woll data. The horisontal portion of the curve represents the Antrim Shales. Evidently these are very low in resiativity.

Between the Antrim and Devonian Shales is the Traverse formation. This is shown at 730 feet. It is very
narrow according to well data and ocours at 740 foet there.
The oheck is remarkable considering that no brine was obtainable as an indioator. This method of interpretation has been employed in many other instances with a great deal of success, and always sorves as identification of a formation, even when a brine 18 present.

The data for the mocompanying graph is given below:-

Current	Potential	Depth	Resistivity
.545 ampere	.0274 volt	280 feet	89.0
.530	.0256	290	88.0
.548	.0240	300	83.0
.540	.0217	.0210	310
.548	.0202	320	78.5
.553	.0190	.0183	340
.558	.0177	350	76.0
.555	.0172	360	73.0
.558	.0164	370	73.0
.552	.0621	380	72.0
.5600	.0155	390	70.0
.558	.0152	400	71.0
.550	.0164	410	71.0
.553	.0144	$4 \approx 0$	71.0
.555	.0160	430	78.0
.552	.01635	440	70.5
.552	.01405	450	80.0
.552	.0133	460	83.7
.552	.01325	470	73.5
.552	.01335	480	71.0
.552	.01305	490	72.5
.550	.0126	500	75.0
.548	.0128	510	75.0
.550		520	73.5
.548			

. 555	. 01295	530	78.5
. 555	. 0123	540	75.0
. 550	. 01245	550	78.5
. 550	. 01165	560	74.5
. 552	. 0113	570	73.0
. 553	. 0115	580	67.0
. 552	. 0115	590	76.0
. 548	. 0102	600	70.5
. 550	. 0103	610	72.5
. 553	. 0107	620	75.5
. 552	. 0100	630	72.0
. 551	. 0102	640	75.5
. 556	. 01025	650	75.5
. 555	. 0101	660	65.5
. 555	. 0097	670	74.0
. 552	. 0100	680	77.5
. 555	. 0094	690	74.0
. 558	. 0094	700	75.0
. 555	. 00925	710	74.0
. 555	. 0090	720	74.0
. 555	. 00925	730	76.5
. 557	. 00865	740	72.0
. 555	. 00945	750	80.2
. 555	. 00910	760	78.0
. 555	. 00950	770	81.0
. 555	. 00980	780	82.0
. 555	. 00960	790	86.0
. 555	. 00901	800	81.6
. 552	. 00905	810	84.0
. 555	. 00950	820	86.0
. 555	. 00959	830	89.0
. 558	. 00930	840	88.0
. 555	. 00880	850	85.0
. 558	. 00940	860	91.0
. 550	. 00940	870	94.0
. 555	. 0104	880	103.0
. 552	. 0100	890	101.0
. 555	.0101	900	102.0

The next curve is one which is charaoteristic of those obtained when a salt brine is available as an indicator to etructure. The looation was two and one half miles east of Hasiett on a level stretoh skirting a swamp. Initial readings taicen at 220 feet showed a resistivity well over 500 ohms. This at once indicated that the high resistant sandstones overburdening the Marshall, as well as the high resistant shales directly beneath it, were present. The ourve drops at approximately 260 feet and indioates no doubt the top of the fresh water of the Parma eandstones. From this point on it rises steadily until, whon a penetration of 640 feot is reached, the resistivity is 760 ohms. At this point the resistivity drops noticeably for about 60 feet. This without question is the Marahall brine sand. Immodiately below this the resistivity again rises due to the high resistant Coldwater whales whioh ocour boneath the Marshall. The data is given below:-

Current	Potential	Depth	3esistivity
.304 amperes	.1062	volt	240 feet
.292	.0952	526 ohms	
.335	.0979	260	532
.424	.0850	300	514
.843	.0840	320	494

.305	.0706	340	495
.300	.0658	360	435
.335	.0708	330	504
.336	.0690	400	516
.342	.0709	420	547
.343	.0701	440	565
.310	.0618	460	575
.338	.0668	480	596
.298	.0583	500	615
.331	.0631	520	623
.320	.0559	540	635
.324	.0609	560	661
.293	.0555	580	691
.299	.0577	600	730
.342	.0630	620	751
.322	.0614	640	766
.338	.0679	660	749
.340	.0563	680	727
.347	.0540	700	713
.333	.0548	720	733
.332	.0597	740	767
.346	.0585	760	825
.370	.0639	780	925
.295	.0569	800	972

On of the readings taken near known data was the one about three fourths of a mile east of St. Johns. No knowledge of the depths to the various formations was obtained until after the readings had been taken. Readings commenced at 800 feet with a resistivity of 500 ohms, indioating again that the Marshall would be present at a lower depth. at 380 feet a decided breaic oocurred for a short distance. The ourve immediately began to climb again, and continued to do so for 290 feet. At 690 feet it broke over, and lack of wire prohibited carrying the ourve out farther.

- ر
The interpretation was as follows: The Marshall
00curred at 690 feet, the Parms at 380 feet. inhen the well
record was examined, it was found that the Parma had been
encountered at 375 feet and the Marshall at 700 feet.
There was a five foot difference in elevation between the well and our location. The error is given then, as 5 feet. It is notioed that the sandstone oovering the Marshall has great thiolness here, due to the depth at whion the Narshall occurs. It is only reasonable to expeot a high value of resistance just above the Marshall. Inspection of the graph gives it as almost 1000 ohms.

Data is given below:-

Carrent	Potential	Depth	Resiativity
.330	.8000	300	500
.288	.0728	320	510
.205	.0530	340	555
.220	.0560	360	577
.272	.0695	380	610
.220	.0525	400	602
.223	.0544	420	645
.176	.0430	440	675
.228	.0560	460	710
.279	.0686	480	745
.272	.0667	500	775
.292	.0700	520	785
.320	.0770	540	815
.280	.0680	560	856
.280	.0670	580	885
.300	.0707	600	890
.288	.0660	620	912
.253	.0585	640	932
.326	.0537	660	945

.255	.0572	680	960
.292	.0630	700	950
.271	.0565	720	951
.228	.0460	740	940
.235	.0484	760	950
.265	.0514	780	951
.290	.0545	800	945

To bring out the similar electrical oharaoteristics of the same strata at different localities, even though separated by distances as great as 15 miles, the curve obtained east of St . Johns about four and one fourth miles will be shown. Resistivities to begin were about 400 ohms per foot oubed. This value increased slightly with an increase in depth. at 560 feet it had reached a value of about 520 ohms. Here it broke and dropped slightly for a depth of 60 feet. From this point on it began to climb again. The oharacteristics of the curve are practically the same as those shown by the curve obtained east of Haslett where the Marshall was encountered at approximately the same depth. One difference does show, that is the difference is absolute values of resistivity. It would be foolish though to expeot exactly the sime value of resistivity when surface conditions have raried so much between the two places. The effect of the drift is to raise or lower the ourve by the difference in value for the resistivity from one place to the next, but the variations in the resistivity at the lower depths remain unohanged, henoe the
aimilarity when practically the same amounts of the substrata are contained in the measurement.

The data 1 s given below:-

Current	Potential	Depth	Resistivity
.233	.0495	300	397
.233	.0452	320	390
.232	.0425	340	400
.235	.0440	360	410
.255	.0435	380	412
.242	.0410	400	452
.233	.0400	420	465
.234	.0432	440	472
.250	.0410	460	475
.252	.0400	480	480
.244	.0375	500	485
.220	.0380	520	490
.225	.0340	540	500
.230	.0330	560	521
.240	.0330	580	502
.209	.0270	600	487
.220	.0275	620	488
.225	.0280	640	500
.230	.0296	660	508
.232	.0284	680	542
.220	.0280	700	560
.221	.0280	720	576
.218	.0236	740	610
.231	.0310	760	640
.232	.0320	780	676
.222	.0320	800	693

CONCLUSION

The results of this research may be divided into two parts. The one 18 the development of apparatus and theory to such a degree that they may be relied upon to the atmost. That acourate dotermination of dissimilar struoture had been made at deptha to 1000 feet has been proved by comparison with aotual well records. That the Iimit is well over 1500 feet has been shown to the satisfaction of those interested in the work by results obtained where no oheok against known data was available.

The second division in which results may be classed pertain to the data obtained upon the Fowlerville anticline. Indications are that the accopted theory among geologists that the Howell and Owosso anticlines are one and continuous is decidediy wronge Evidence indicates strongly that up to date no wells have been drilled on the exact summit of this anticline.

The accompanying contour map shows most clearly what is meant. This map has been drawn with elerations given to the top of the Berea formation. In sach places where the liarshall could be obtained the Berea was considered to be 1200 feet beneath it, whioh is correat as far as present geological data shows. The line of outorop of the Marshall is given by the - 500 contour line, which is a
broken line. Caloulations will show that this places the Warshall at elevation 700, just under the drift. An antioline extending from a point south and west of Howell, in a more or less straigint line, to a point east of St. Johns is clearly shown. This anticline plunges rapidly the farther north it proceeds. The map shows that all the existing wells are to the north and east side of the structure. The fact that gas and 011 were encountered here speaks well for the territory immodiately to the south and west. The structure slopes gently to the north and east and plunges steeply along the south and west side. It would be natural then to expect to find the highest part of the structure near the southern border of the antioline, and consequently the best possibilities for oil.

However, no undue importance must be attached to the fact that such a structure does exist. A great uncertainty that any anticline will bear oil is present in this seotion of the country, even when conditions are most favorable. This is because all zichigan formations bear their oil in limestone formations and these at best are not very reliable. Then too, the structure seems to be a large one and extends to the southward for some distance, all of the major 011 bearing strata outcropping.

If no transverse struoture were present all of the oil may easily have seeped to the surface. The presence of such a struoture has yet to be proved.

The location of oil in any seotion of the country has not been the parpose of this thesis. Our main objectire has been to derelop an existing method, which had many inacouracies, to sach a point where it could be relied upon. The development of apparatus had no small share in making this possible. Vo believe that our objeotive has been accomplished and that we are ready to carry on work of mach the same nature as that done in the Fowlarille area.

Sreveruate Confoum MAA

Appiled Goophysical Hothods in America, D. C. Barton. EOOR. Ge01. 228649: H 27.

Geophysical Hothols in Eoonomio Geology. Be DeGolyer. ECOn. Geol. Aı249-8. My. 26

Geophytical Methode in Mining. C. A. Heiland. uin. Cong. J. 22:777 I :26.

012 Mnding by Goophyical wethods, W. H. Pordham. Inst. Pot. Toch. J. 11:448 0.25

Ore Pinding. 4. Looke.
Min. \& Met. 7:520-8 D. 11 126
Proapecting by the Earth Wave Fravel Methode K. L. Kithil. Kng. Kin. J. 182:931-6 D. 71 •26

Signifleance of Appiled goophyilos in kining. G. Tuohol.
Min. Cong. J. 22:731-6 0 i26.
Exploring for 012 by Potentlal nethods. Leonardon and Relly. Eng, and H1n. J. 125:46-9 Jan. 14, 28

Geoplaysical Expleration for Ores. K. Mason
Eng. \&in. J. 2248766 \& 127
Coophysical Hothods of Prowpeoting. Eve Keys.
Buxpan of Hinee Bulletin. zoak. Paper $\# 420$
Moasuring the Variation of Ground Resistivity with a Leggor. Bureau of ilines Bulletin. Teah. Paper \# 440
-

ROOM USE UNLY

ROOM USE ONLY

